WANTED: AN ALGORITHMIC PROOF OF HALTING PROPERTY OF 3X+1 PROGRAM

ANDRZEJ SALWICKI

Abstract. Please help to construct a proof that the following program P stops for every natural number n > 0
while n > 1 do if even(n) then n := n div 2 else n := 3n + 1 fi done.
in the framework of algorithmic logic. The prize: a box of champagne is
waiting for the author of the first proof.

1. Introduction

In this note we present a problem, a prize and some hints.

2. Problem

To prove (or to disprove) the following

Conjecture 1. The following formula is a theorem of algorithmic theory of natural numbers

\[(\forall n > 0) \bigcup \{\text{if even}(n) \text{ then } n := n \div 2 \text{ else } n := 3 \times n + 1 \} \big| (n = 1)\]

The conjecture is equivalent to well known conjecture: for every natural number
n > 0 the following program P terminates its execution.

\[P : \text{while } n \neq 1 \text{ do if even}(n) \text{ then } n := n \div 2 \text{ else } n := 3 \times n + 1 \text{ fi done}\]

Recently I have indicated that the set of theorems of Peano Arithmetic does
not contain any sentence saying that the above program P halts for every natural
number n.

3. The History of the Problem

The problem has more than 60 years. Many people worked on it, without suc-
cess, J. Lagarias[1] gives a presentation of the problem and the results concerning
it. The electronic version of the paper contains bibliography till 1996.
A special conference devoted to the problem was held in Eichstaett[2].
Information about numerical records obtaind till today is to be found [3].

The language of the theory consists of three subsets: the set of formulas, the set
of programs and the set of terms.
The alphabet of the theory contains the following symbols: individual variables \(x, y, z, \ldots \), constant 0, one-argument functor \(s \), the equality predicate \(= \), logical functors, quantifiers and iteration quantifiers.

The set \(T \) of terms is the smallest set of expressions which contains the expression 0, any individual variable and is closed with respect to the following rule: if an expression \(\tau \) is a term then the expression of the form \(s(\tau) \) is also a term.

The set \(F \) of formulas is the smallest set of expression which contains the expressions of the form \(\tau = \nu \) where \(\tau, \nu \) are terms, and which is closed with respect to the following set of rules:

- if \(\alpha \) and \(\beta \) are formulas then the following expressions are also formulas:
 \[(\alpha \lor \beta), \quad (\alpha \land \beta), \quad \neg \alpha, \quad (\alpha \Rightarrow \beta) \]

- If \(\alpha \) is a formula and \(x \) is an individual variable then the expressions
 \[(\exists x)\alpha \quad \text{and} \quad (\forall x)\alpha \]
 are formulas.

- If \(\alpha \) is a formula and \(K \) is a program then the expressions
 \[K\alpha, \quad \bigcup K\alpha, \quad \bigcap K\alpha \]
 are formulas.

The set of programs is the smallest set of expressions such that
- if \(x \) is an individual variable and \(t \) is a term then the expression
 \[x := \tau \]
 is a program.
- if \(K \) and \(M \) are programs then the expression
 \[\text{begin } K; M \text{ end} \]
 is a program.
- If \(K \) and \(M \) are programs and \(\gamma \) is an open formula then the expressions
 \[\text{while } \gamma \text{ do } K \text{ done} \quad \text{if } \gamma \text{ then } K \text{ else } M \text{ if} \]
 are programs.

The set of axioms of the algorithmic theory of natural numbers consists of three formulas:

Ax1) \[(\forall x) \neg s(x) = 0 \]
Ax2) \[(\forall x)(\forall y) s(x) = s(y) \Rightarrow x = y \]
Ax3) \[(\forall x)(y := 0) \bigcup \text{if } \neg x = y \text{ then } y := s(y) \text{ if} \] \(x = y \)

5. Prize

A box of champagne is offered for he/she who will present the first proof of the conjecture, or will present a counterargument.

6. Some hints

6.1. **Find an equivalent program and prove it halts.** It seems to me that the best way to a successful answer is to find a program \(K \) such that \(K \) is equivalent to the program \(P \) and such that a proof of halting property is given.

Below I quote a few examples. Remark that there is infinitely many programs that are equivalent to the program \(P \).

First program \(P_1 \) is equivalent to the program \(P \). We do not know whether it stops for every natural number \(n \). (The compound sign \(<> \) is to be read as "not equal").
while n<>1 do
begin
 r1 := n; r2 := 0; r3 := 0; r4 := 0; r5 := 0;
 while r1 <> r2 do
 r2 := r2 + 1;
 if r3 = 0 then r3 := 1; r4 := r4 + 1 else r3 := 0 fi;
 r5 := r5 + 1 + 1 + 1
 done
 if r3 = 0 then n := r4 else n := r5 + 1 fi
end
done

The program P_1 does not use multiplication. Addition is not necessary either. One can write $s(x)$ instead of $x+1$. It is easy to prove that the internal instruction while always halts. The program P_1 has two while instructions nested one in another.

We can transform our program to have only one while instruction.
begin q := 1;
while ((q = 1 and n<>1) or q<>1) do
 if q = 1 and n<>1 then
 r1 := n; r2 := 0; r3 := 0; r4 := 0; r5 := 0; q := 0;
 else
 if r1 <> r2 then
 r2 := r2 + 1; r5 := r5 + 1 + 1 + 1;
 if r3 = 0 then r3 := 1; r4 := r4 + 1 else r3 := 0 fi;
 else
 q := 1; if r3 = 0 then n := r4 else n := r5 + 1 fi
 fi
 done
 fi
end

Still I do not know how to prove the halting property of the program P_2. The third program D builds a tree and visits it in breadth first search for the number n.
begin
var q: queue, n,x,y,z: integer;
q :=∅; x := 1; q := insert(1,q);
while x <> n do
 q := insert (2*x, q);
y := (x-1) div 3; z := (x-1) mod 3;
 if z =0 and odd(y)
 D:
 q := insert(y, q);
 fi;
 x:= first(q); q := deletefirst(q);
end

Now we have to prove that the halting properties of programs \(P \) and \(D \) are equivalent (\(P \) true \(\iff \) \(D \) true) and to prove that program \(D \) halts (\(D \) true). The first task is easy.

One can combine programs \(P \) and \(D \) in such a way that the new program \(DP \) executes alternatively one iteration of program \(P \), then, one iteration of program \(D \).

found := false; r3:=∅; q :=∅; // q is a queue of integers
setG :=∅; setD = ∅; // setD and setG are sets(e.g. priority queues)
while ~ found
 do
 if r3
 then
 if even(n) then n:= n div 2 else n:= 3*n+1 fi;
 insert(n) to setG;
 if n ∈ setD then found := true fi
 else
 x:= first(q); q := delete(q);
 q := put(2*x, q);
 insert(2*x) to setD;
 if n ∈ setG then found := true fi;
 y := (x-1) div 3; z:= (x-1) mod 3;
 if z=0 and even(x)
 then
 q := put(y, q);
 insert(y) to setD;
 found := y ∈ setG;
 fi;
 fi;
 r3 := 1-r3;
 done

6.2. Prove the halting property of program \(P \) from axioms9. An alternative way of searching is to prove the implication (\(\forall x \)Ntrue \(\implies \) (\(\forall n \)Ptrue. \(N \) is the program from the algorithmic axiom Ax3'.

Let me recall a few of useful inference rules
\[\alpha \Rightarrow \beta \]

while \(\beta \) do \(K \) done true \(\Rightarrow \) while \(\alpha \) do \(K \) done true

and

while \(\alpha \) do \(K \) done true
while \(\alpha \) do \(L; K; M \) done true

where the programs \(L \) and \(M \) always halt and do not change value of any variable occurring in \(\alpha \) or in \(K \).

It will suffice to prove the following formula.

\((\forall n > 0) \bigcup \text{if even}(n) \text{ then } n := n \text{ div } 2 \text{ else } n := 3 \ast n + 1 \text{ fi}(n = 1)\).

6.3. Other logical frameworks. a) Perhaps it may be easier for you to discuss formulas of \textit{weak second order logic} with the quantifiers over finite subsets or sequences of the set of standard natural numbers.

Our hypothesis reads: for every natural number \(n > 0 \), there exist a finite sequence \(s = s_0, \ldots, s_k \) of natural numbers such that: \(n = s_0 \), \(s_k = 1 \) and for every \(j = 1, \ldots, k \), \(s_{j+1} = s_j \text{ div } 2 \) if \(s_j \) is an even number, \(s_{j+1} = 3 \ast s_j + 1 \) if \(s_j \) is an odd number.

b) Another possibility is to consider \textit{infinite disjunctions}. Program \(P \) terminates iff

\[n = 1 \wedge (n \neq 1 \wedge (\text{even}(n) \wedge n \text{ div } 2 = 1)) \wedge (n \neq 1 \wedge (\text{even}(n) \wedge n \text{ div } 2 = 2)) \wedge (n \neq 1 \wedge (\text{even}(n) \wedge n \text{ div } 2 = 4)) \wedge (n \neq 1 \wedge ((\text{even}(n) \wedge n \text{ div } 2 = 8)) \wedge (\neg \text{even}(n) \wedge 3 \ast n + 1 = 16)) \wedge \ldots \]

One may observe that the scheme of this infinite disjunction is as follow

\[\bigvee_{i=0}^{\infty} \text{if even}(n) \text{ then } n := n \text{ div } 2 \text{ else } n := 3 \ast n + 1 \text{ fi} \quad (n = 1) \]

To verify it you need to know that the following equivalence is an algorithmic tautology

if \(\gamma \) then \(K \) else \(M \) fi \(\alpha \Leftrightarrow ((\gamma \wedge K \alpha) \vee (\neg \gamma \wedge M \alpha)) \).

REFERENCES

contains an excellent survey and bibliography till 1985, an electronic version of the paper with the annotated bibliography till 1996 is accessible as http://www.cecm.sfu.ca/organics/papers/lagarias/

[2] A link to a conference devoted exclusively to Collatz problem
http://www.math.gmu.edu/~chamberl/conf.html

an important page with records of numerical research and more ...

INSTITUTE OF INFORMATICS, UNIVERSITY OF WARSAW
E-mail address: salwicki@mimuw.edu.pl
URL: http://www.mimuw.edu.pl/~salwicki