
Fast Parallel Algorithms for Graph Matching Problems

Marek Karpinski

Department of Computer Science University of Bonn

Wojciech Rytter

Department of Computer Science University of Warsaw and Liverpool University

CONTENTS

- **Preface.** Why parallel matchings are interesting?
- Chapter 1. Introduction

Matchings in graphs; terminology, examples.

The model of parallel computations: PRAM.

The complexity classes NC and RNC.

• Chapter 2. Combinatorial tools

Augmenting paths.

Deficiencies and witness sets.

Bipartite graphs and their witness sets.

Tutte's theorem and witness sets in general graphs.

Odd-set covers.

Good-edges lemma.

• Chapter 3. Three sequential algorithms

Hopcroft Karp algorithm.

Edmonds algorithm and blossoms.

The structural algorithm (no blossoms).

• Chapter 4. Probabilistic tools

Terminology and some simple estimations.

Isolating lemma.

Large redundancy lemma.

Estimating probability of nonzero sums.

Removing large proportion of elements.

A probabilistic tool for construction of deterministic algorithms.

• Chapter 5. Algebraic tools

Determinants versus permanents

Testing if polynomial is identically zero.

Partial randomized interpolation.

Sparse polynomials.

Randomized computation of the smallest degree.

NC-computations of the rank of the matrix NC-computation of determinants

• Chapter 6. Maximum cardinality matchings

Constructing black-box polynomials

Applying the partial interpolation.

From Monte Carlo to Las Vegas.

Graphs with small number of perfect matchings.

Applying the Smallest-Degree algorithm.

• Chapter 7. Inclusion maximal matchings

An NC-algorithm

A simple RNC-algorithm

• Chapter 8. Maximal independent sets

An NC-algorithm.

A simple randomized algorithm

Maximal independent sets in hypergraphs.

k-dependent sets.

• Chapter 9. Four easy subclasses of graphs

Trees.

Dense graphs

Regular bipartite graphs. Claw-free graphs and pseudo matchings.

• Chapter 10. Convex bipartite graphs

The greedy sequential algorithm.

Left-justification of set families.

The algorithm for general case.

• Chapter 11. f-Matchings.

A simple RNC-algorithm.

An NC-algorithm.

• Chapter 12. Parallelization of sequential algorithms

Parallel version of Hopcroft-Karp algorithm.

Parallel implementation of BFS and Disjoint_Paths

NC-approximation of maximum matchings.

Bipartite expanders.

Applying planar separator theorem.

Parallel version of Edmonds algorithm.

• Chapter 13. Pfaffians, counting the number of matchings, and planar graphs

Pfaffians of Graphs

Skew Symmetric Determinants and Pfaffians

Pfaffians and Counting the Number of Perfect Matchings

Bibliographic Notes

• Chapter 14. Basic applications of matchings to other problems

Subtree isomorphism.

Maximum flows and disjoint paths

Parallel Depth First Search.

• Chapter 15. More applications

Unary Chinese postman problem.

Two-processors scheduling.

Even cycle covers and shortest superstrings.

 $\frac{3}{2}\text{-approximation of Euclidean TSP.}$

Approximating the minimum bandwidth.

3-Hypertrees and approximating Steiner trees.

• Bibliography.