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Abstract. We investigate the problem of the maximum number of cubic
subwords (of the form www) in a given word. We also consider square
subwords (of the form ww). The problem of the maximum number of
squares in a word is not well understood. Several new results related to
this problem are produced in the paper. We consider two simple problems
related to the maximum number of subwords which are squares or which
are highly repetitive; then we provide a nontrivial estimation for the
number of cubes. We show that the maximum number of squares xx
such that x is not a primitive word (nonprimitive squares) in a word of
length n is exactly

¨
n
2

˝
−1, and the maximum number of subwords of the

form xk, for k ≥ 3, is exactly n− 2. In particular, the maximum number
of cubes in a word is not greater than n− 2 either. Using very technical
properties of occurrences of cubes, we improve this bound significantly.
We show that the maximum number of cubes in a word of length n is
between 45

100
n and 4

5
n.

1 Introduction

A repetition is a word composed (as a concatenation) of several copies of an-
other word. The exponent is the number of copies. We are interested in natural
exponents higher than 2. In [4] the authors considered also exponents which are
not integer.

In this paper we investigate the bounds for the maximum number of highly
repetitive subwords in a word of length n. A word is highly repetitive iff it is
of the form xk for some integer k greater than 2. In particular, cubes w3 and
squares x2 with nonprimitive x are highly repetitive.

The subject of computing maximum number of squares and repetitions in
words is one of the fundamental topics in combinatorics on words [16, 19] initiated
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by A. Thue [25], as well as it is important in other areas: lossless compression,
word representation, computational biology etc.

The behaviour of the function squares(n) of maximum number of squares is
not well understood, though the subject of squares was studied by many authors,
see [7, 8, 15]. The best known results related to the value of squares(n) are, see
[11, 13, 14]:

n− o(n) ≤ squares(n) ≤ 2n−O(log n)

In this paper we concentrate on larger powers of words and show that in this
case we can have much better estimations. Let cubes(n) denote the maximum
number of cubes in a word of length n. We show that:

45
100

n ≤ cubes(n) ≤ 4
5
n

There are known efficient algorithms for the computation of integer powers
in words, see [1, 3, 9, 20, 21].

The powers in words are related to maximal repetitions, also called runs. It
is surprising that the bounds for the number of runs are much tighter than for
squares, this is due to the work of many people [2, 5, 6, 12, 17, 18, 22–24].

Our main result is a new estimation of the number of cubic subwords. We
use a new interesting technique in the analysis: the proof of the upper bound is
reduced to the proof of an invariant of some abstract algorithm (in our invariant
lemma). There is still some gap between upper and lower bound but it is much
smaller than the corresponding gap for the number of squares.

2 Basic properties of highly repetitive subwords

We consider words over a finite alphabet A, u ∈ A∗; by ε we denote an empty
word; the positions in a word u are numbered from 1 to |u|. For u = u1 . . . uk,
by u[i..j] we denote a subword of u equal to ui . . . uj . We say that a positive
integer p is a period of a word u = u1 . . . uk if ui = ui+p holds for 1 ≤ i ≤ k− p.
If wk = u (k is a non-negative integer) then we say that u is the kth power of
the word w.

The primitive root of a word u, denoted root(u), is the shortest word w, such
that wk = u for some positive k. We call a word u primitive if root(u) = u,
otherwise it is called nonprimitive. It can be proved that the primitive root of a
word u is the only primitive word w, such that wk = u for some positive k. A
square is the 2nd power of some word, and an np-square (a nonprimitive square)
is a square of a word, that is not primitive. A cube is a 3rd power of some word.

In this paper we focus on the last occurrences of subwords. Hence, whenever
we say that word u occurs at position i of the word v we mean its last occurrence,
that is v[i..i+ |u|−1] = u and v[j..j+ |u|−1] 6= u for j > i. The following lemma
is used extensively throughout the article.

Lemma 1 (Periodicity lemma [10, 19]). If a word of length n has two such
periods p and q, that p+ q ≤ n+ gcd(p, q), then gcd(p, q) is also a period of the
word.



We often use, so called, weak version of this lemma, where we only assume that
p+ q ≤ n.

A word is said to be highly repetitive (hr-word) if it is a kth power of a
nonempty word, for k ≥ 3.

root(y)

root(x)

Fig. 1. The situation when one hr-word is a (long) prefix of another hr-word implies
that root(x) = root(y), consequently x is a suffix of y.

Lemma 2. If a hr-word x is a prefix of a hr-word y and |x| ≥ |y| − |root(y)|,
then x is also a suffix of y.

Proof. Due to the periodicity lemma, both words have the same smallest period
and it is a common divisor of the lengths of their primitive roots, see Figure 1.
Consequently, we have root(x) = root(y) and x is a suffix of y. ut

beginning of y

j

x

k

z z z

Fig. 2. The situation from Lemma 3.

Lemma 3. Assume that x and y are two hr-words, where y = z3 and x is a
subword of y starting at position j ≤

⌈
|root(z)|

2

⌉
+ 1 and ending at position

k > |z2|. Then, |root(x)| = |root(y)|.

Proof. Let x = wk, for some k ≥ 3. First, let us note that if the hypothesis of
the lemma holds, then |x| > 3

2 |z| — this can be verified by careful examination
of simple cases: for even and odd values of |z|. Let us also observe, that |root(x)|
and |root(y)| are both periods of x. Moreover:

|x| = |wk| = |w|+ k − 1
k
|x| ≥ |w|+ 2

3
|x| > |w|+ |z| ≥ |root(x)|+ |root(y)|



From this, by the periodicity lemma, we obtain that g = gcd(|root(x)|, |root(y)|)
is also a period of x. However, root(x) and root(y) are subwords of x, so g =
|root(x)| = |root(y)|. ut

3 Some simple bounds

In this section we give some simple estimations of the number of square subwords
with nonprimitive roots and cubic subwords.

Lemma 4. Let u be a word. Let us consider highly repetitive subwords of u of
the form vk, for k ≥ 3 and v primitive. For each such subword we consider its
(last) occurrence in u. For each position i in u, at most one such subword can
have its (last) occurrence at position i.

Proof. Let us assume, that we have two different hr-words x and y with their
last occurrences starting at position i, and let us assume that x is shorter. Then,
we have: |x| ≥ |y| − |root(y)|, otherwise the considered occurrence of x would
not be the last one.

Now we can apply Lemma 2 — x is not only a prefix of y, but also its suffix.
Hence, x appears later in the text and the last occurrence of x in u does not
start at position i. This contradiction proves, that the assumption that the last
occurrences of x and y start at position i is false. ut

The following fact is a straightforward consequence of Lemma 4.

Theorem 1. The maximum number of highly repetitive subwords of a word of
length n ≥ 2 is exactly n− 2.

Proof. From Lemma 4 we know, that at each position there can be at most one
last occurrence of a nonempty hr-word. Moreover, the minimum possible length
of such a word is 3. So, it cannot occur at positions n and n − 1. On the other
hand, this upper bound is reached by the word an. ut

As a corollary, we obtain a simple upper bound for the number of cubes,
since cubes are hr-words.

Corollary 1. Let us consider a word u of length n. The number of nonempty
cubes appearing in u is not greater than n− 2.

We improve this upper bound substantially in the next section. However, it
requires a lot of technicalities. Another implication of Theorem 1 is a tight
bound for the number of np-squares.

Theorem 2. Let u be a word of length n. The maximum number of nonempty
np-squares appearing in u is exactly

⌊
n
2

⌋
− 1.



Proof. Each nonempty np-square can be viewed as v2i for some nonempty prim-
itive v and i ≥ 2. However, each such np-square contains a subword v2i−1, which
is not an np-square, but still a hr-word. Hence, the number of nonempty sub-
words of the form v2i−1 (for primitive v and i ≥ 2), appearing in the given word,
is not smaller than the number of nonempty np-squares.

Please observe, that Theorem 1 limits the total number of both subwords
of the form v2i and v2i−1, by n − 2. Hence, the total number of nonempty np-
squares appearing in the given word is not greater than n

2 − 1, and since it is
integer, it is not greater than

⌊
n
2

⌋
− 1. On the other hand, this upper bound is

reached by the word an. ut

4 The number of cubic subwords

In this section we show, that the upper bound on the number of different cubes
in a word of length n is 4

5n. We also show example words containing 0.45n
different cubes. The following lemma states the main idea of the proof of the
upper bound.

Lemma 5. Let v3 and w3 be two nonempty cubes occurring in a word u at
positions i and j respectively, such that:

i < j ≤ i+
⌈
|root(v)|

2

⌉
Then either |root(w)| = |root(v)| or |root(w)| ≥ 2 · |root(v)| − (j − i− 1).

Proof. Let us denote p = |root(v)|, q = |root(w)|, and let k be the position of
the last letter of w3.

Let us first consider the case, when the (last) occurrence of w3 is totally
inside v3. Please note, that k must then be within the last of the three v’s, since
otherwise w3 would occur in u at position j + p or further (see also Fig. 2).
Hence, due to Lemma 3, we obtain q = p.

In the opposite case, let x be the maximal prefix of w3 that lays inside v3.
If p 6= q then, by the periodicity lemma, p + q must be greater than |x| (please
note that if p + q ≤ |x| then obviously both root(v) and root(w) are subwords
of x). Therefore:

p+ q > |x| > |v3| − (j − i) ≥ 3p− (j − i)

and hence q ≥ 2p− (j − i) + 1. ut

Let us introduce a notion of p-occurrence.

Definition 1. A p-occurrence is the (last) occurrence of a cube with primitive
root of length p.

It turns out, that the primitive roots of cubes appearing close to each other
cannot be arbitrary. It is formally expressed by the following lemma.



Lemma 6. Let a1, a2, . . . , ap+1 be an increasing sequence of positions in a word
u, such that aj+1 ≤ aj + p for j = 1, 2, . . . , p. It is not possible that there are
p-occurrences at all these positions.

Proof. Let us assume, to the contrary, that at each of the positions a1, a2, . . . , ap+1

there is a p-occurrence. Please note, that the inequalities from the hypothesis of
the lemma imply that the primitive roots of cubes occurring at these positions
are all cyclic rotations of each other. There are only p different rotations of such
primitive roots, so due to the pigeonhole principle, some two of them must be
equal.

It suffices to show, that all these cubes have the same length, because then
two of them must be equal, and one of them is not the last occurrence of the
cube.

So, let us assume to the contrary, that some of the considered cubes have
different lengths. Let aj and aj+1 be such two considered positions, that cubes (v3

and w3 respectively) occurring at these positions have different lengths (3kp and
3lp respectively, for k 6= l). Let us consider two cases. If l < k, then 3kp− 3lp ≥
3p, and w3 occurs in u at position aj+1 + p or further.

w ww w

v v v

Fig. 3. Positions of cubes v3 and w3 for the case l < k: aj+1 is not the last occurrence
of w3.

On the other hand, if k < l, then 3lp − 3kp ≥ 3p and v3 appears in u at
position aj + p or further. So, in both cases we obtain a contradiction. Hence it

v v v v

ww w

Fig. 4. Positions of cubes v3 and w3 for the case k < l: aj is not the last occurrence of
v3.



is not possible, that the lengths of the cubes differ. ut

Let us introduce a notion of independent prefixes.

Definition 2. We say that v is the independent prefix of u if it is the shortest
prefix of u, that is:

1. a 1-letter word, if there is no occurrence of a cube at the first position of u,
or otherwise

2. such a word v, for which the last occurrence of a cube in u, that starts within
v is a q-occurrence (for some q ≥ 1), and after this occurrence there are
exactly

⌈
q
2

⌉
positions (within v) without any occurrences of cubes (in u).

It is not obvious, that the above definition is valid. Therefore, we prove the
following lemma:

Lemma 7. For every word u, there exists an independent prefix v of u.

Proof. If there is no occurrence of a cube at the first position of u, then obviously
v = u[1..1]. In the opposite case, let us assume that the independent prefix does
not exist. Let q be the maximum such value, that some q-occurrence exists in
u, and let i be the rightmost position in u, that contains a q-occurrence. From
Lemma 5,

⌈
q
2

⌉
positions following i do not contain any occurrences of cubes.

So, the prefix u[1..i+
⌈

q
2

⌉
] satisfies the properties of an independent prefix — a

contradiction. ut

Lemma 8. Let v be the independent prefix of u. The number of different nonempty
cubes that occur in u and start within v is not greater than 4

5 |v|.

Proof. Please note, that if v satisfies the first condition of Definition 2, then the
conclusion trivially holds. Therefore, from now on we assume that |v| > 1.

Let ci be a sequence describing the occurrences starting within v: ci = 0 iff
there are no occurrences in position v[i], and ci = q iff there is a q-occurrence in
position v[i]. Please note that:

a) Let i < j be such indices, that ci, cj > 0 and ci+1 = . . . = cj−1 = 0. If
j−i >

⌈
ci

2

⌉
, then the prefix of u of length i+

⌈
ci

2

⌉
or shorter is an independent

prefix of u — a contradiction. So, for any such i and j we have j − i ≤
⌈

ci

2

⌉
.

b) From Lemma 5 we obtain that cj ≥ 2ci − (j − i− 1).
c) From Lemma 6 and due to a) we have that no q + 1 consecutive positive

elements of c can be equal q.

From now on, we abstract from the actual word u, and focus only on the
properties of sequence c. We show, that the ratio R of non-zero elements of c to
the length of c does not exceed 4

5 .
Let us observe that if c contains such a pair of equal elements ci = cj > 0,

that all the elements between them are equal zero, then all the elements between
ci and cj can be removed from c without decreasing R. Also, if c contains a
subsequence of consecutive elements equal to q (q > 0) of length less than q then



this subsequence can be extended to length q without decreasing R. Let c′ be
a sequence obtained from c by performing the described modification steps (as
many times as possible). Please note that none of these steps violates properties
b) or c). We will show, that even for c′ the ratio of non-zero elements does not
exceed 4

5 .
Every possible sequence c′ can be generated by the (nondeterministic) pseu-

docode shown below. The following variables are used in the pseudocode:

– p — the value of the last positive element of c′

– len — the length of the sequence c′ without dp/2e trailing zeros
– occ — the number of positive elements in c′

– l — the gap between consecutive different positive elements of c′

– α — the difference between the actual value of a positive element of c′ and
the lower bound from Lemma 5.

Each step of the repeat-until loop corresponds to extending sequence c′, i.e.
adding l zeros and p elements of value p.

3 3 3 0 5 . . . 5| {z }
5 times

0 0 20 . . . 20| {z }
20 times

0 . . . 0| {z }
6 times

34 . . . 34| {z }
34 times

0 . . . 0| {z }
17 times

Fig. 5. An example of sequence c′. The length of the sequence is 88 and it contains 62
positive elements. The ratio is 62/88 ≈ 0.70 < 4/5.

Note that the algorithm specified by the pseudocode is nondeterministic in
a few different aspects — the initial value of p, the number of steps of the
repeat-until loop and values of l and α.

p := some positive integer;
occ := p; len := p;
output: p . . . p︸ ︷︷ ︸

p times

repeat
Invariant I(p, occ, len) : occ

len+ p
2
≤ 4

5 .

l := some integer from interval [0,
⌈

p
2

⌉
);

α := some non-negative integer;
p := 2p− l + α;
occ := occ+ p;
len := len+ l + p;
output: 0 . . . 0︸ ︷︷ ︸

l times

p . . . p︸ ︷︷ ︸
p times

until done



In order to prove the 4
5 bound, we need to show that inequality

occ

len+
⌈

p
2

⌉ ≤ 4
5

holds for every possible execution of the above pseudocode. But this inequality
is a consequence of the fact that I(p, occ, len) is an invariant of the repeat-until
loop (Lemma 9). ut

Lemma 9 (Invariant lemma). Inequality I(p, occ, len):

occ

len+ p
2

≤ 4
5

is an invariant of the repeat-until loop from the above pseudocode.

Proof. It is easy to check that before the first execution of the repeat-until
loop inequality I(p, occ, len) holds. Therefore, we only need to prove that if
I(p, occ, len) holds then I(p′, occ′, len′) also holds, where p′, occ′ and len′ are
the values obtained as a result of a single step of the repeat-until loop, i.e.:

p′ = 2p− l + α, occ′ = occ+ 2p− l + α, len′ = len+ 2p+ α

Let us restate I(p′, occ′, len′) equivalently in the following way:

5 · occ+ 10p− 5l + 5α ≤ 4 · len+ 8p+ 4α+ 4 · 2p− l + α

2
(1)

Since I(p, occ, len) can be expressed as 5 · occ ≤ 4 · len+ 4 · p
2 , in order to show

(1), it is sufficient to prove that:

10p− 5l + 5α ≤ 8p+ 4α+ 2 · (2p− l + α)− 2p (2)

As a result of some rearrangement, (2) can be expressed as 0 ≤ 3l + α and this
inequality trivially holds. ut

Theorem 3. The number of different nonempty cubes that occur in a word of
length n is not greater than 4

5n.

Proof. This theorem is a consequence of Lemmas 7 and 8 — it can be proved
by simple induction on n, where the inductive step consists of removing the
independent prefix. ut

Theorem 4. For infinitely many positive integers n there exist words x of length
n with at least 0.45 · n different nonempty cubic subwords.

Proof. A trivial lower bound on the number of different cubic subwords is the
word an with

⌊
n
3

⌋
cubic occurrences. The table presented in Figure 6 contains

examples of some words with higher number of cubic subwords. These words
have been computed using extensive computer experiments. For example, we



have found a word w of length 200 over binary alphabet containing 91 different
nonempty cubic subwords. For any positive integer k we can construct a word
x = w1w2 . . . wk (over the alphabet {0, 1, . . . , 2k−1}), where wi is a word created
from w by replacing all occurrences of letter 0 by 2(i− 1), and 1 by 2i− 1. Such
word x has length 200k and contains at least 91k cubic subwords (91 in each
subword wi). This gives a ratio 91/200 · n > 0.45 · n. ut

n word #cubes ratio

20 01110101011011011000 7 0.35

30 000000110110110101101011010101 11 0.36

40 1101101101110111011100010001000100100100 16 0.40

50 11111111110010010010100101001010100101010010101000 20 0.40

60 10100101001010010101001010010101001010010101001010

1001010100

25 0.41

70 00000011011011010110101101010110101101010110101101

01011010101101010111

30 0.42

80 11011011010110110101101101011010110101011010110101

011010110101011010101101010111

34 0.42

90 11101101101110110110111011011011101101110110110111

0110111011011011101101110110111011101110

40 0.44

100 10001010100101010010101001010010101001010010101001

01001010010101001010010100101010010100101001010111

44 0.44

200 00001000100010000100010001000010001000100001000100

00100010001000010001000100001000100001000100010000

10001000100001000100001000100010000100010000100010

00100001000100001000100001000010000110111011101110

91 0.45

Fig. 6. Examples of words with high number of distinct cubic subwords.

5 Conclusions

In this paper we prove a tight bound for the number of nonprimitive squares
in a word of length n. Unfortunately, this does not improve the overall bound
of the number of squares — the main open problem is improving the bound for
primitive squares.

We also give some estimations of the number of cubes in a string of length
n. Although they are much better than the best known estimations for squares
in general, they can still be subject to improvement — both the lower and the
upper bound do not seem to be tight.
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