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Abstract. We study the heat flow projected on a manifold M ⊂ L2(Ω). This manifold is
defined by the condition that the integrals

∫
Ω
uk(t, x) dx, k = 1, . . . , N are constants of motion.

We show that solutions to this problem converge to a steady state as time goes to +∞. We use
in an essential way a variant of the Łojasiewicz inequality.

1 Introduction
It is well-known that the heat equation

ut = ∆u

generates a gradient flow in L2(Ω). We are interested here in behavior of this flow projected on
M a subset of L2(Ω),

M = {u ∈ L2(Ω);

∫

Ω

uk(x) dx = Ck, k = 1, ..., N}.

We fix our attention on Ω which is bounded region in R2 with smooth boundary. Under nat-
ural conditionsM is a Hilbert manifold. In fact we can consider any finite set of integers I
containing 1 instead of {1, . . . , N} in the above definition.

The equation in question takes the form

ut = ∆u−
N∑

k=1

λku
k−1 in Ω. (1.1)

We augment it with Neumann boundary condition and initial data:

∂u

∂n
= 0 on ∂Ω, u(0, x) = u0(x), (1.2)

where n is the outer normal to ∂Ω.
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The coefficients λk, which are the Lagrange multipliers, are defined by the requirement

ut is tangent toM
or equivalently, that

Ik(u) ≡
∫

Ω

uk(x) dx, k = 1, . . . , N,

are constants of motion, we set here I1 = 0. These conditions mean that ∆u −∑N
k=1 λku

k−1

has to be orthogonal in L2(Ω) to gradients of uk, i.e. to uk−1.
In Proposition 2.1 below we show that in cases of our interest it is easy to guarantee that the

vectors 1, u, . . . , uN−1 are linearly independent. Then,M is indeed a Hilbert manifold.
In this paper we show that there exists a unique solution to (1.1)–(1.2) and this solution has

the following properties:
(i) the orbit of any u0 ∈ W 2,p(Ω) is precompact in W 2,p(Ω), for some p > 2.
(ii) any solution u has a limit limt→∞ u(t) = u∞ in W 2,p(Ω).

At this point let us recall a well-known result of L.Simon, see [6]. His work implies that
solutions of the non-linear heat equations

ut = ∆u− f(x, u) (1.3)

in Ω ⊂ Rn which are bounded in C2,µ have limits as t → ∞. This result depends crucially on
analyticity of the nonlinearity. We remark here that much weaker assumptions are sufficient if
n = 1, see the papers [7], [4] and [1].

The point of assuming analyticity of the source term f in (1.3) is that it implies the Łojasiewicz
inequality. Namely, we define a functional E on W 1,2(Ω) by formula

E(u) =

∫

Ω

[
1

2
|∇u|2 + F (x, u)] dx,

where ∂F
∂u

= f . If v0 is a critical point of E, i.e. v0 is a stationary point of (1.3) and f is analytic,
then for some ϑ ∈ ( 1

2
, 1)

|E(v)− E(v0)|1−ϑ < ‖∇E(v)‖L2 (1.4)

for all v satisfying ‖v − v0‖X < β. The point is to choose the right function space X . While
Simon proved (1.4) for X = C2,µ, µ > 0 we shall use a version of his result established for
X = W 2,p by Jendoubi, (see [3, Proposition 1.3] and Proposition 3.1 below). There is also a
substantial and growing body of recent literature on variants of generalization of the Łojasiewicz
inequality. However, our research goes in different direction and we shall not comment on
results of other authors.

One is tempted here to use Simon’s type of argument or its simplified version (e.g. see [5],
[3]) directly. However, this is not possible simply because our flow is on a manifoldM ⊂ L2,
and the gradient structure of (1.1)–(1.2) has to established yet. But first of all we have to
clarify the issue of existence, the smoothness and finally the already mentioned boundedness
of solutions. We deal with these tasks in § 2. The proof of boundedness of u(t) uses the
homogeneity of λk(u), which seems interesting for its own sake.

The main convergence result is shown in § 3. It is obtained by selecting a proper functional E
making the flow (1.1)–(1.2) a gradient flow of E . Next we use an argument based on Łojasiewicz
inequality as explained in [5].
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2 The heat flow onM and the bounds on u
We shall establish existence of solutions to

{
ut = ∆u−∑N

k=1 λku
k−1 in Ω ⊂ R2

∂u
∂u

= 0 on ∂Ω, u(0, x) = u0,
(2.1)

where Ω is a bounded region with smooth boundary and λk = λk(u) are such that ut is orthog-
onal to span{uk−1}:

ut ⊥ span {uk−1 : k = 1, . . . , N}. (2.2)

As a result, the flow will conserve the quantities

Ik(u) =

∫

Ω

uk(x) dx k = 1, . . . , N.

We note that the condition (2.2) leads to the following set of equations. Namely, once we
integrate by parts the result of multiplication of (2.1) by ui−1, i = 1, . . . , N we obtain

0 =

∫

Ω

ui−1ut =

∫

Ω

(∆u−
N∑

k=1

λku
k−1)ui−1 dx, i ≥ 1,

i.e. we have

−(i− 1)

∫

Ω

|∇u|2ui−2 dx =
N∑

k=1

λk

∫

Ω

uk+i−2 dx. (2.3)

If i = 1, then we see

0 =

N∑

k=1

λk

∫

Ω

uk−1 dx i.e.
d

dt

∫

Ω

u dx = 0,

because we have chosen
∫

Ω
u0 dx = 0.

Equations (2.3) can be rewritten as

N∑

j=1

Gij(u)λj = −(i− 1)Ei, i = 1, . . . , N, (2.4)

where
E1 ≡ 0, Ei(u) =

∫

Ω

|∇u|2ui−2 dx, for i ≥ 2

and
Gij(u) =

∫

Ω

ui+j−2 dx.

We note G = (Gij) is the Gramm matrix of vectors 1, u, u2, . . . , uN−1 in L2(Ω). Thus, (2.4)
has a unique solution provided that these vectors are linearly independent. Once we know it,
then due to Cramer’s formula we obtain

λk = − detAk/ detG, k = 1, . . . , N, (2.5)
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where matrix Ak, k = 1, . . . , N is obtained from G by replacing its k-th column with a vector

−→
E = (0, E2, . . . , (N − 1)EN )T .

It turns out that it is quite easy to guarantee linear independence of {1, u, . . . , uN−1}, for we
have:

Proposition 2.1 Let us suppose that u ∈ C(Ω̄),
∫

Ω
u(x)dx = 0 and

∫
Ω
u2(x)dx > 0. Then the

vectors 1, u, u2, . . . , uN−1 are linearly independent.
Proof. The above conditions imply that there exist xi ∈ Ω, i = 1, . . . , N such that

u(xi) 6= u(xj) 6= 1 i 6= j. (2.6)

Thus the condition
N∑

k=1

µku
k−1 = 0, i 6= j,

evaluated at xi gives a linear system for µk’s. Its determinant is the Vandermonde determinant.
It is never zero if (2.6) holds. The Proposition follows. �

Once we defined λk’s we may state an existence result.

Proposition 2.2 Let us suppose that Ω ⊂ R2 is an open, bounded region with smooth boundary.
We assume that λk’s are defined by (2.5). Then equation (2.1) has a unique solution u ∈
C([0, T ],W 2,2) ∩ C1((0, T ), L2) provided that u0 ∈ W 2,2(Ω), ∂u0

∂n
= 0 and

∫
Ω
u0(x) dx = 0.

Proof. To some extent this is a standard application of the semigroup theory as in the book
of Henry, see [2], with correction in the Russian translation. Namely, we know that −∆ :
D(−∆) ⊂ L2(Ω)→ L2(Ω) is a sectorial operator, where

D(−∆) = {u ∈ W 2,2(Ω) :
∂u

∂n
= 0,

∫

Ω

u dx = 0}.

Moreover, due to the embedding theorems (see [2, Theorem 1.6.1]) and the algebraic structure
of λk, (see (2.5)) the mappings

Xα 3 u→ λku
k−1 ∈ L2(Ω), k = 1, . . . , N

are locally Lipschitz continuous for any α ∈ ( 1
2
, 1), where Xα ≡ (L2)α denotes the fractional

power of L2, (see [2] for details). Thus, by [2, Theorem 3.3.3] there exists a unique solution u
to (2.1) such that

u ∈ C([0, T ), Xα) ∩ C((0, T ),W 2,2) ∩ C1(0, T ), L2).

Next in order to show the desired smoothness we study the variation of constants formula

u(t) = e∆tu0 +

∫ t

0

e∆(t−s)
N∑

k=1

λku
k−1(s) ds. (2.7)
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The proof that u ∈ C([0, T ],W 2,2) requires a standard argument and it is left to the interested
reader. �

We may now check that indeed Ik are constants of motion.

Proposition 2.3 Let us suppose that u ∈ C([0, T ),W 2,2) is a unique solution to (2.1). Then

d

dt

∫

Ω

uk dx = 0, k = 1, . . . , N.

Proof. We may compute d
dt

∫
Ω
uk. We see

d

dt

∫

Ω

uk dx = k

∫

Ω

utu
k−1 dx

= k

∫

Ω

(∆u−
N∑

j=1

λju
j−1)uk−1 dx

= −k(k − 1)

∫

Ω

|∇u|2uk−2 dx− k
∫

Ω

N∑

j=1

λju
j+k−2 dx

due to integration by parts utilizing the boundary conditions. Now the RHS vanishes because
of the definition of λk, i.e. formula (2.5). �

Thus, we established local in time existence of the flow of (2.1) on manifoldM in other
words, the solutions to (2.1) conserves the integrals

∫

Ω

uk(t, x)dx, k = 1, . . . , N.

Our next task is to make sure that the flow is globally defined, which is not obvious for nonlinear
equations and to show enough bounds which guarantee precompactness of any orbit. For that
purpose we have to understand better the non-linear term

P (u) =

N∑

k=1

λk(u)uk−1.

Our subsequent analysis is based on homogeneity of P . Namely, we note:

Proposition 2.4 Suppose that t > 0 and 1, u, . . . , uN−1 are linearly independent, then

λk(tu) = t2−kλk(u).

Proof. The coefficients λu’s are defined by (2.5). Hence it is sufficient to study homogeneity of
detG(u) and detAk(u). By inspection we see

detG(tu) = t(N−1)N detG(u)

and
detAk(tu) = tN(N−1)−k+2 det tk(u)
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and the desired result follows. �
Let us notice that λk’s are well-defined for u ∈ Xα, α > 1

2
, hence the quantity

Mα = sup
‖u‖=1

‖P (u)‖L2

for P defined above is also well-defined and finite. For, if un ∈ Xα, ‖un‖Xα = 1 were such a
sequence that

‖P (un)‖L2 →∞ (2.8)

when n → ∞, then by compactness of the embedding Xα ⊂ Xα′ , α′ < α, there would be a
subsequence unk converging to u∞ in Xα′ . Due to continuity of

Xβ 3 u→ ‖P (u)‖L2 ∈ R

for β > 1
2

we deduce
lim
k→∞
‖P (unk)‖L2 = ‖P (u∞)‖L2.

This contradicts (2.8) and the claim follows. �
We may now establish bounds on solutions implying that: (1) the solutions are global in

time; (2) the orbit is precompact in Xα for sufficiently large α, hence they are precompact in
W 2,p, for some p > 2.

Theorem 2.5 We assume that u0 ∈ D(−∆), and 1, u0, u
2
0, . . . , u

N−1
0 are linearly independent.

Then, the unique solution u to equation (2.1) is defined globally and it satisfies for anyα ∈ [ 1
2
, 1)

the following estimate:
sup
t>0
‖u(t)‖α ≤ Nα <∞.

Proof. The case α = 1
2

is elementary, because the norms ‖u‖X1/2 and ‖∇u‖L2 are equivalent.
Hence, it is sufficient to check that

d

dt

∫

Ω

1

2
|∇u|2 dx ≤ 0.

Indeed, after integration by parts we arrive at

d

dt

1

2

∫

Ω

|∇u|2 dx =

∫

Ω

∇u∇ut dx =

∫

Ω

−∆uut dx

=

∫

Ω

(−∆u+

N∑

k=1

λku
k−1)ut dx = −

∫

Ω

|ut|2 dx ≤ 0.

Here, in the above calculations we exploit the fact that Ik are constants of motion.
Let us now take α ∈ ( 1

2
, 1). The constant variation formula (2.7) implies

(−∆)αu(t) = (−∆)αe∆tu0 +

∫ t

0

(−∆)αe∆(t−s)P (u(s)) ds.

Due to [2, Theorem 1.4.3] we see

‖u(t)‖Xα ≤ e−λt‖u0‖Xα +

∫ t

0

cα
e−λ(t−s)

(t− s)α‖P (u(s))‖L2 ds.
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Note. Here λ is the smallest eigenvalue of −∆ and λ > 0, because no non-zero constant is
allowed in D(−∆). Moreover Proposition 2.4 implies,

P (u(s)) = P (
u(s)

τ
τ) =

N∑

k=1

λk(
u(s)

τ
τ)

(
u(s)

τ

)k−1

τk−1

= P (
u(s)

τ
)τ.

We shall take τ = ‖u(s)‖Xα′ . Thus, for any α′ satisfying 1
2
< α′ < α we have the following

string of estimates

‖u(t)‖Xα ≤ e−λt‖u0‖Xα + cα

∫ t

0

e−λ(t−s)

(t− s)α sup
0≤s≤t

‖P (u(s))‖L2 ds

≤ ‖u0‖Xα + cα

∫ t

0

e−λ(t−s)

(t− s)α sup
0≤s≤t

‖P (
u(s)

‖u(s)‖Xα′
)‖L2‖u(s)‖Xα′ ds

≤ ‖u0‖Xα + cα

∫ t

0

e−λ(t−s)

(t− s)αMα′‖u(s)‖Xα′ ds.

Inequality [2, Theorem 1.4.4] reads for 1 > β > 0

‖(−∆)βx‖ ≤ ε‖(−∆)x‖+ cε
−β
1−β ‖x‖

for x ∈ D(−∆). If x = (−∆)α−1y and β = 1 + α′ − α, where α′ < α, then we obtain

‖y‖Xα′ = ‖(−∆)1+α′−α(−∆)α−1y‖L2

≤ ε‖(−∆)(−∆)α−1y‖L2 + c(ε)‖(−∆)α−1y‖L2.

In other words we get
‖y‖Xα′ ≤ ε‖y‖Xα + C(ε)‖y‖, (2.9)

because Aα−1 is a continuous operator for α < 1.
Inequality (2.9) implies further estimates

‖u‖Xα ≤ e−λt‖u0‖Xα + cα

∫ t

0

e−λ(t−s)

(t− s)αMα′(ε‖u(s)‖Xα + c(ε)‖u‖L2) ds

We remark here, that ‖u‖2
L2 = I2 is a constant of motion, however if k = 2 is not in I we use

Poincaré’s inequality,

‖u‖L2 ≤
∥∥∥∥u−

1

|Ω|

∫

Ω

u

∥∥∥∥
L2

≤ ‖∇u‖L2 ≤ ‖∇u0‖L2 .

In any case, we see

sup
0≤s≤t

‖u(s)‖Xα ≤ e−α‖u0‖Xα +

∫ t

0

(εcαMα
e−α(t−s)

(t− s)α sup
0≤s≤t

‖u(s)‖Xα + c(ε)
√
I2) ds
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We may now choose ε such that

εcαMα′

∫ t

0

e−λ(t−s)

(t− s)α ds ≤ ελα−1cαMα′

∫ ∞

0

e−s

sα
ds = ελα−1cαMα′Γ(1− α) <

1

2
.

Thus

1
2

sups≤t ‖u(s)‖Xα ≤ e−λt‖u‖Xα +

∫ t

0

cαMα
e−λ(t−s)

(t− s)α c(ε)
√
I2

= e−λt‖u0‖Xα + cαMαλ
α−1Γ(1− α)

√
I2c(ε) = Nα.

�
Now, we shall prove more:

Theorem 2.6 Let us suppose that β ∈ (1, 1 1
2
), then

sup
t≥1
‖u‖β ≤ Sβ

Proof. We use again the constant variation formula (2.7) and apply (−∆)β to its both sides.

This yields

‖u(t)‖Xβ ≤ t−β+1e−λt‖∆u0‖L2 + C‖
∫ t

0

(−∆)β−
1
2 e∆(t−s)∇P (u)‖L2 ds

≤ t−β+1e−λt‖∆u0‖L2 +

∫ t

0

cαe
−λ(t−s)

(t− s) 1
2
−β ‖

N∑

k=1

λk(k − 1)uk−2∇u‖L2 ds,

but ‖∑N
k=1 λk(k − 1)uk−2∇u‖L2 ≤ Kα < ∞ due to Theorem 2.5. Hence the desired bound

follows. �

Corollary 2.7 There exist p > 2 such that the orbit {u(t) : t ≥ 1} is precompact in W 2,p(Ω).

Proof. We have just proved that {u(t) : t ≥ 1} is bounded in Xβ. Due to [2, Theorem 1.4.8]
embedding Xβ ⊂ Xβ′ is compact provided that β ′ < β. Moreover, by [2, Theorem 1.6.1], if
β ′ > 1, then Xβ′ ⊂ W 2,p for some p > 2.

We may now state

Corollary 2.8 The set ω(u0) exists and it is compact in W 2,p.

Proof. This follows from precompactness of {u(t) : t ≥ 1} inW 2,p by a general argument, see
[2, Theorem 4.3.3].
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3 Convergence
Once we settled the question of existence of dynamics and a compact ω–limit set, we may turn
to the main question which is convergence. We will use an argument based on analyticity of the
non-linear term. More specifically we will use an infinite dimensional version of Łojasiewicz
inequality due to Jendoubi:

Proposition 3.1 ([3, Proposition 1.3]) Let us suppose that p > 2 and Ω ⊂ R2 is a bounded
region with smooth boundary. We assume that E : W 2,p(Ω) → R is a functional of the form
E(u) =

∫
Ω

[1
2
|∇u|2 + F (x, u)] dx where F (x, u) uniformly in x real analytic in u and u0 is its

critical point. Then, there exist β > 0 and ϑ ∈ ( 1
2
, 1) such that

‖∇E(u)‖L2 ≥ |E(u)− E(u0)|1−ϑ (3.1)

for all u such that ‖u− u0‖W 2,p < β. �
Here is the main result of this paper.

Theorem 3.2 Let us suppose that u0 ∈ W 2,2(Ω),
∫

Ω
u0(x) dx = 0, ∂u0

∂n
= 0 and u0 6= 0. Then,

the unique solution to (2.1) with this initial data has a limit u∞ as time goes to +∞ in the norm
of W 2,p(Ω), for some p > 2.
Proof. We need to adapt the result of Proposition 3.1 to the case of our flow on a manifold. We
shall set

E(u) =
1

2

∫

Ω

|∇u|2 +
N∑

k=1

λk
k

∫

Ω

(uk − Ck
|Ω|),

where constants Ck, k = 1, . . . , N appear in the definition on M. We notice that E(u) is
well-defined on W 2,2 and coincides with E(u) = 1

2

∫
Ω
|∇u|2 onM.

If w is a stationary point of (2.1) and h any test function in W 1,2 with
∫

Ω
h dx = 0, then

∇E(w)h =

∫

Ω

∇w∇h+

N∑

k=1

1

k

δλk
δu

∫

Ω

(wk − Ck
|Ω|) +

N∑

k=1

λk

∫

Ω

wk−1h

=

∫

Ω

−∆wh +
N∑

k=1

λkw
k−1h

= 0,

i.e. w is also a critical point of E . Moreover, if υ ∈ W 2,p is a critical point of E and Ik(υ) = Ck,
then it is easy to see that υ is a stationary point of (2.1).

Let us calculate dE
dt

along the orbit

dE
dt

=

∫

Ω

∇u∇ut +
N∑

k=1

dλk
dt

1

k

∫

Ω

(
uk − Ck

|Ω|

)
dx +

N∑

k=1

λk

∫

Ω

uk−1ut dx

= −
∫

Ω

∆uut +

N∑

k=1

λk

∫

Ω

uk−1ut dx = −
∫

Ω

u2
t dx ≤ 0.
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Once we notice that∇E evaluated atM coincides with −∆u+
∑N

k=1 λku
k−1 we conclude the

dE
dt

= −‖∇E‖L2‖ut‖L2

Hence

−dE
ϑ

dt
=
ϑ‖∇E‖L2

E1−ϑ ‖ut‖L2 (3.2)

Starting from this point, in order to finish the proof we repeat the argument which appeared in
the proof of [5, Theorem 3.1].

We also know due to a general argument in [2, Theorem 4.3.3] that

dist (u(t), ω(u0))→ 0 (3.3)

in the norm of W 2,p. We also notice that

E|ω(u0) = e0 = const.

and all points in ω(u0) are critical points of E .
By Proposition 3.1 for each x ∈ ω(u0) there exist β0(x), θ(x) ∈ (0, 1

2
) such that

‖∇E(v)‖W 2,p ≥ |E(v)− E(x)|1−θ(x) (3.4)

for all v such that ‖v − x‖W 2,p < β(x). These balls form an open covering of ω(u0), due to
compactness of this set there exists a finite covering

U =
m⋃

j=1

BW 2,p(wj, β0(wj)) ⊃ ω(u0).

Because of (3.3) there exists t0 > 0 such that for all t > t0 u(t) ∈ U . Let us also set θ =
min{θ(w1), . . . , θ(wm)}. It is now clear that (3.4) implies that

‖∇E(v)‖W 2,p ≥ |E(v)− e0|1−θ for all v in U .

Hence, (3.2) implies

−dE
dt
≥ ϑ‖ut‖

and finally
∫ s
t
‖ut‖ ≤ −E(u(s))ϑ + E(u(t))ϑ.

Thus we are able to conclude that u(t) converges in L2, when t→∞,

lim
t→∞

u(t) = u∞.

However, due to (3.3) convergence is in W 2,p. �
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