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Abstract. We study the heat flow projected on a manifold M C L?(f2). This manifold is
defined by the condition that the integrals [, u*(t,z)dx, k = 1,..., N are constants of motion.
We show that solutions to this problem converge to a steady state as time goes to +00. We use
in an essential way a variant of the Lojasiewicz inequality.

1 Introduction
It is well-known that the heat equation
uy = Au

generates a gradient flow in L?(2). We are interested here in behavior of this flow projected on
M a subset of L*(12),

M=A{ue L2(Q);/uk(:c) de =Cy, k=1,..,N}.

Q

We fix our attention on () which is bounded region in R? with smooth boundary. Under nat-
ural conditions M is a Hilbert manifold. In fact we can consider any finite set of integers 7
containing 1 instead of {1, ..., N} in the above definition.

The equation in question takes the form

N
wp=Au—Y MNu*' in Q. (1.1)
k=1

We augment it with Neumann boundary condition and initial data:

0
a—z =0 on 09, u(0, z) = up(x), (1.2)

where n is the outer normal to 0f2.



The coefficients )\, which are the Lagrange multipliers, are defined by the requirement
u; is tangent to M

or equivalently, that
Ix(u) = / uF(z)dx, k=1,...,N,
Q

are constants of motion, we set here I; = 0. These conditions mean that Au — Zgil Apuf—t
has to be orthogonal in L?((?) to gradients of u*, i.e. to u*~!.

In Proposition 2.1 below we show that in cases of our interest it is easy to guarantee that the
vectors 1,u, ..., u™ ! are linearly independent. Then, M is indeed a Hilbert manifold.

In this paper we show that there exists a unique solution to (1.1)—(1.2) and this solution has
the following properties:
(i) the orbit of any ug € W?P(Q) is precompact in W22 (), for some p > 2.
(i) any solution u has a limit lim; . u(t) = u> in W2P(Q).

At this point let us recall a well-known result of L.Simon, see [6]. His work implies that
solutions of the non-linear heat equations

up = Au — f(x,u) (1.3)

in Q0 C R"™ which are bounded in C>* have limits as t — oo. This result depends crucially on
analyticity of the nonlinearity. We remark here that much weaker assumptions are sufficient if
n = 1, see the papers [7], [4] and [1].

The point of assuming analyticity of the source term f in (1.3) is that it implies the Lojasiewicz
inequality. Namely, we define a functional £ on W12(Q) by formula

1
B(u) = / [5IVuf? + F(e,w)] dz,
Q
where Z—Z = f. If vy is a critical point of F, i.e. v is a stationary point of (1.3) and f is analytic,
then for some ¥ € (3, 1)
|B(v) = E(v)|'™ < [VE(v)| 12 (1.4)

for all v satisfying ||v — vg||x < (. The point is to choose the right function space X. While
Simon proved (1.4) for X = C?%*, ;1 > 0 we shall use a version of his result established for
X = W?P? by Jendoubi, (see [3, Proposition 1.3] and Proposition 3.1 below). There is also a
substantial and growing body of recent literature on variants of generalization of the L.ojasiewicz
inequality. However, our research goes in different direction and we shall not comment on
results of other authors.

One is tempted here to use Simon’s type of argument or its simplified version (e.g. see [5],
[3]) directly. However, this is not possible simply because our flow is on a manifold M C L2,
and the gradient structure of (1.1)—(1.2) has to established yet. But first of all we have to
clarify the issue of existence, the smoothness and finally the already mentioned boundedness
of solutions. We deal with these tasks in § 2. The proof of boundedness of w(t) uses the
homogeneity of A, (u), which seems interesting for its own sake.

The main convergence result is shown in § 3. It is obtained by selecting a proper functional £
making the flow (1.1)—(1.2) a gradient flow of £. Next we use an argument based on FL.ojasiewicz
inequality as explained in [5].



2 The heat flow on M and the bounds on «

We shall establish existence of solutions to

{ u = Au — Z]kvz1 MuFt in Q C R?

% = O on aQ’ U(O’ :L‘) = UO’

2.1)

where () is a bounded region with smooth boundary and \;, = A\i(u) are such that u, is orthog-
onal to span{u*~1}:
uy Lspan{u*': k=1,...,N}. (2.2)

As a result, the flow will conserve the quantities

Ik(u):/Quk(:p)dx k=1,...,N.

We note that the condition (2.2) leads to the following set of equations. Namely, once we
integrate by parts the result of multiplication of (2.1) by u*~!,i =1, ..., N we obtain

N
0= / u' "y = /(Au— N D de, i > 1,
i.e. we have
N
—(i — 1)/ |Vul?u'"?dz = Z)\k/ uFT 2 da, (2.3)
0 P Q

If i = 1, then we see

N
d
O:Z)\k/gukldaz i.e. 7 Quda::O,
k=1

because we have chosen fQ ug dx = 0.
Equations (2.3) can be rewritten as

N
> Gij(u) = (i — 1)E; i=1,...,N, (2.4)
j=1

where
E, =0, Eju)= / \Vul*u'"?dz, fori>2

Q
and

Gij(u) :/Qu”j2 dw.

We note G = (G;) is the Gramm matrix of vectors 1,u,u?, ..., uV 1 in L?(Q). Thus, (2.4)
has a unique solution provided that these vectors are linearly independent. Once we know it,
then due to Cramer’s formula we obtain

)\k:—detAk/detG, kzl,...,N, (25)
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where matrix Ag, k = 1,..., N is obtained from G by replacing its k-th column with a vector
= T
E=(0,Ey....,(N=—1)EN)".

It turns out that it is quite easy to guarantee linear independence of {1,u,...,u’N "1}, for we
have:

Proposition 2.1 Let us suppose that u € C({) ), Jou(z)dz = 0 and [, u?(x)dx > 0. Then the

vectors 1,u,u?, ..., u™N "1 are linearly 1ndependent
Proof. The above conditions imply that there exist x; € €2, 7 =1,..., N such that
u(x;) #u(z;) #1 i #j. (2.6)

Thus the condition N
Zﬂkuk_l :07 Z%jv
k=1

evaluated at x; gives a linear system for y;’s. Its determinant is the Vandermonde determinant.
It is never zero if (2.6) holds. The Proposition follows. U

Once we defined )\;’s we may state an existence result.

Proposition 2.2 Let us suppose that Q C R? is an open, bounded region with smooth boundary.
We assume that \;’s are defined by (2.5). Then equation (2.1) has a unique solution u €
C([0,T), W>2) N C((0,T), L?) provided that ug € W>*(Q), 22 = 0 and [, ug(z) dx = 0.
Proof. To some extent this is a standard application of the semlgroup theory as in the book
of Henry, see [2], with correction in the Russian translation. Namely, we know that —A :
D(—A) C L*(Q) — L?*(Q) is a sectorial operator, where

D(—=A) = {u e W**Q): g—z =0, /Qudx = 0}.

Moreover, due to the embedding theorems (see [2, Theorem 1.6.1]) and the algebraic structure
of \i, (see (2.5)) the mappings

Xsu— e L?(Q), k=1,...,N

are locally Lipschitz continuous for any a € (3, 1), where X® = (L?)* denotes the fractional
power of L2, (see [2] for details). Thus, by [2, Theorem 3.3.3] there exists a unique solution u
to (2.1) such that

u € C([0,T),X*)NC((0,T), W**nC'0,T), L?).

Next in order to show the desired smoothness we study the variation of constants formula

u(t) =e u0+/ Alt=s Z)\ku : 2.7)



The proof that u € C([0, T'], W??) requires a standard argument and it is left to the interested
reader. 0

We may now check that indeed [, are constants of motion.

Proposition 2.3 Let us suppose that u € C([0,T), W*?) is a unique solution to (2.1). Then
d
—/ukdx:O, k=1,...,N.
dt Jo

Proof. We may compute % fQ u®. We see

d
— [ W dx :k/utukldx
Q

dt Jq
N
- k;/(Au — Z Al ek de
Q P

N
= —k(k — 1)/ V| ?uf =2 dx — k:/ > Nt de

due to integration by parts utilizing the boundary conditions. Now the RHS vanishes because
of the definition of )., i.e. formula (2.5). [

Thus, we established local in time existence of the flow of (2.1) on manifold M in other
words, the solutions to (2.1) conserves the integrals

/uk(t,x)dq:, k=1,...,N.
0

Our next task is to make sure that the flow is globally defined, which is not obvious for nonlinear
equations and to show enough bounds which guarantee precompactness of any orbit. For that
purpose we have to understand better the non-linear term

A (w)u L

NE

P(u) =

k=1
Our subsequent analysis is based on homogeneity of P. Namely, we note:

N=1 are linearly independent, then

Proposition 2.4 Suppose thatt > 0 and 1, u, ..., u
Ak(tu) = tsz)\k(u).

Proof. The coefficients \,’s are defined by (2.5). Hence it is sufficient to study homogeneity of
det G(u) and det Ag(u). By inspection we see

det G(tu) =t "IN det G(u)

and
det Ay (tu) = tNOV=DF2 det 1, (u)
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and the desired result follows. U
Let us notice that \;’s are well-defined for u € X¢, o > %, hence the quantity

Ma = Ssup ”P(u>||L2

[[uf| =1

for P defined above is also well-defined and finite. For, if u,, € X, ||lu,|xo = 1 were such a
sequence that
1P (un)|r2 — oo (2.8)

when n — oo, then by compactness of the embedding X* C X®, o/ < a, there would be a
subsequence u,, converging to v in X @ Due to continuity of

XPsu—||P)|, eR

for 3 > % we deduce
Jim [ P(un,) 2 = |1P() 2.

This contradicts (2.8) and the claim follows. 0

We may now establish bounds on solutions implying that: (1) the solutions are global in
time; (2) the orbit is precompact in X for sufficiently large «, hence they are precompact in
W?2P,_ for some p > 2.

Theorem 2.5 We assume that uy € D(—A), and 1, uy, u%, .. uév L are linearly independent.

Then, the unique solution u to equation (2.1) is defined globa]ly and it satisfies for any o € [%, 1)
the following estimate:

sup ||[u(t)||a < Ny < 00.

>0

Proof. The case o = 3 is elementary, because the norms ||u|| x1/> and ||Vu||z2 are equivalent.
Hence, it is sufficient to check that

d

7 |Vu|2d:p <0.

Indeed, after integration by parts we arrive at

dt2/|Vu|2dx /VuVutdx—/ —Auuy dx

/( Au—i—Z)\ku utdx——/\ut|2da:§0.
0 0

Here, in the above calculations we exploit the fact that [, are constants of motion.
Let us now take o € (%, 1). The constant variation formula (2.7) implies

(—=A)*u(t) = (=A)%e g +/0( A)eAE9 Py(s)) ds.

Due to [2, Theorem 1.4.3] we see

—A(t—s)

t A
_ e
[u(t) || xa < e |lug|l xe +/ CaTr—a
0 =

5)° 1P (u(s))l 2 ds.
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Note. Here ) is the smallest eigenvalue of —A and A > 0, because no non-zero constant is
allowed in D(—A). Moreover Proposition 2.4 implies,

Pluts)) = P = 3 (1) (1) e
u\s = —T ) = —T -~ 7 T
T — B T
u(s)
— p(8%,
(),
We shall take 7 = [u(s)]| yor. Thus, for any o satisfying 3 < o/ < o we have the following

string of estimates

—A(t—s)

t
_ (&
u(®)||xe < e |ugl|xe +Ca/ ———— sup [|P(u(s))|z2 ds
o (t—5)%0<s<t

tef)\(tfs) U(S)
< o] xe + ca / C sup 1Py e u(s)| o ds
o T 97 oo M el X
t —A(t—s)
< Juollxe + o / T Mllu(s)] o ds.
o (t—s) X

Inequality [2, Theorem 1.4.4] reads for 1 > 3 > 0
B
I(=A)%2] < el (=A)a + cer-7 |||
forz € D(—A). If v = (—A)*lyand 3 =1+ o’ — a, where &’ < a, then we obtain

Iyllxor = (=) (=A) |2
< el (=A)(=A)*yllze + (@)1 (=A)* "y e

In other words we get
1Yllxar < ellyllxe + ClE)yll; (2.9)

because A®~! is a continuous operator for o < 1.
Inequality (2.9) implies further estimates

t —A(t—s)
lullxe < e Jluolxe + ca / ¢

o (t—s)~

We remark here, that ||u||3, = I, is a constant of motion, however if £ = 2 is not in Z we use
Poincaré’s inequality,
: /
u—— [ u
9] Jo

Moy (ellu(s)||xe + c(e)|[ull =) ds

]2z < < [Vullg2 < [[Vuol 2

L2

In any case, we see

—a(t—s)

sup [|u(s)|xe + c(e)v/I2) ds

t
sup |[u(s)]|xe < e ||uol xa +/ (eca M, -
0 (T — )" os<i

0<s<t



We may now choose ¢ such that

t e—)\(t—s) 00 s
£Co My / ——ds < X leg My / ds = eX* teaMyT(1 — a) <
o (t—s)" o ¢

DO | —

Thus

t ef)\(tfs)
Lsupcy Ju(s)llxe < e fullxe + / M,
0

TS)O‘C(E)\/E

= e M||ug||xo + caM AT (1 — a)y/Lre(e) = N,.

Now, we shall prove more:
Theorem 2.6 Let us suppose that 3 € (1,13), then

sup [[ulls < Sg
t>1

Proof. We use again the constant variation formula (2.7) and apply (—A)? to its both sides.

This yields

t
[[u(t)]lxo St‘5+16_”||AuOIIL2+CI|/ (=A)7 2OV P ()| 2 ds
0

t—s) N
> Mk = DuF V|2 ds,

k=1

cae_’\(

t
< B Al 12 + / -
IAwloe+ | 25

but || Zszl Me(k — D)uf=2Vu|| ;2 < K, < oo due to Theorem 2.5. Hence the desired bound
follows. O
Corollary 2.7 There exist p > 2 such that the orbit {u(t) : ¢ > 1} is precompact in W27 (().

Proof. We have just proved that {u(t) : ¢+ > 1} is bounded in X”. Due to [2, Theorem 1.4.8]
embedding X? ¢ X7 is compact provided that 3’ < (3. Moreover, by [2, Theorem 1.6.1], if
B > 1, then X?# C W?P for some p > 2.

We may now state

Corollary 2.8 The set w(ug) exists and it is compact in W?2?.

Proof. This follows from precompactness of {u(t) : ¢ > 1} in W?? by a general argument, see
[2, Theorem 4.3.3].



3 Convergence

Once we settled the question of existence of dynamics and a compact w—limit set, we may turn
to the main question which is convergence. We will use an argument based on analyticity of the
non-linear term. More specifically we will use an infinite dimensional version of Lojasiewicz
inequality due to Jendoubi:

Proposition 3.1 ([3, Proposition 1.3]) Let us suppose that p > 2 and Q C R? is a bounded
region with smooth boundary. We assume that £ : W?*P(Q)) — R is a functional of the form
E(u) = [,[53|Vul> + F(z,u)] dz where F(x,u) uniformly in x real analytic in v and uy is its
critical point. Then, there exist 3 > 0 and ¢ € (3,1) such that

IVE@)llz2 = 1€ (u) — E(uo)[™ 3.1

for all u such that ||u — ug ||z < B. O
Here is the main result of this paper.

Theorem 3.2 Let us suppose that ug € W22(Q), [, uo(x) dz = 0, % = 0 and ug # 0. Then,
the unique solution to (2.1) with this initial data has a lumt u™ as tlrne goes to 400 in the norm
of W2P(Q), for some p > 2.

Proof. We need to adapt the result of Proposition 3.1 to the case of our flow on a manifold. We

shall set
A
E(u) = /|Vu|2+2 /u -

where constants C', K = 1,..., N appear 1n the definition on M. We notice that £(u) is
well-defined on 122 and coincides with E(u) = 5 [, |Vul*> on M.
If w is a stationary point of (2.1) and h any test function in W2 with [, hdz = 0, then

N
VE(w)h _/QVMVHZETU/Q“’ i +ZA,§/
k=1
= [ —Awh+ Y Mt 'h
/ >

k=1
=0,

i.e. w is also a critical point of £. Moreover, if v € W?2? is a critical point of £ and I;(v) = Cy,
then it is easy to see that v is a stationary point of (2.1).
Let us Calculate along the orbit

dy,
/vuvut+zdtk/( ‘Q‘)derZ)\k/ Ty d
— | Auuy + )\/ udxz—/qua:SO.



Once we notice that V& evaluated at M coincides with —Au + Zszl Meu*~! we conclude the

d€
i —IVE|l L2 ||ue| 2
Hence e 19” €||
\V4 2
—— = 51_; 2| 22 (3.2)

Starting from this point, in order to finish the proof we repeat the argument which appeared in
the proof of [5, Theorem 3.1].
We also know due to a general argument in [2, Theorem 4.3.3] that

dist (u(t),w(ug)) — 0 (3.3)
in the norm of WP, We also notice that
E\w(ue) = €0 = const.

and all points in w(u) are critical points of £.
By Proposition 3.1 for each z € w(uy) there exist 3y(z), #(x) € (0, 1) such that

IVE@) lwar > |E(v) = E ()] (3.4)

for all v such that ||v — x||y2r < B(z). These balls form an open covering of w(u), due to
compactness of this set there exists a finite covering

U = | Bwas(w;, Bo(w;)) D w(ug).

Jj=1

Because of (3.3) there exists ¢y > 0 such that for all £ > t; u(t) € U. Let us also set § =
min{f(wy), ..., 0(wy,)}. It is now clear that (3.4) implies that

IVE®)|lwar > |E(v) — eo|'™? forallvinld.

Hence, (3.2) implies
© 2 ol
—— u
e ="
and finally [;* [|u|| < —E(u(s))? + E(u(?))’.
Thus we are able to conclude that u(t) converges in L?, when t — oo,

lim u(t) = u™.

t—o0

However, due to (3.3) convergence is in W 2P, ]
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