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Abstract

We study crystalline driven curvature flow with spatially nonuniform driving force term.
We assume special monotonicity properties of the driving term, which are motivated by
our previous work on Berg’s effect. We consider special initial data which we call ‘bent
rectangles’. We prove existence of solutions for a generic forcing term as well as generic
subclass of bent rectangles. We show the initially flat facets may begin to bend, provided,
loosely speaking, they are too large. Moreover, depending on the initial configuration we
notice instantaneous loss of regularity of the moving curve.
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1 Introduction

In our previous paper [GR5] we initiated studies of evolution of special Lipschitz curves,
which we calledbent rectangles(see next section for the definition) by the driven singular
weighted mean curvature,

βV = κγ + σ on Γ(t). (1.1)

Let us explain the rational for considering evolution of such curves. Many authors in the
physical literature consider circular cylinders as an approximation to hexagonal prisms,
which are the shapes of ice crystals. We also studied this topic in a series of papers, see
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[GR1]-[GR4], where we adopted the Gibbs-Thomson law with kinetic undercooling on the
cylindrical interface. We are interested in what happens when the interface loses stability,
i.e., it begins to bend. We expect that the cross-section of our deforming interface after the
onset of instability is just a bent rectangle.

We defined in [GR5] the crucial notions and proved local in time existence for a re-
stricted class of data. By data, we mean the curve itself as well as the driving forceσ. Here,
we permit a generic drivingσ, conforming to the Berg’s effect and symmetry conditions,
i.e. for all t ≥ 0

xi
∂σ

∂xi
(t, x1, x2) > 0 for xi 6= 0, i = 1, 2, (1.2)

and
σ(t, x1, x2) = σ(t,−x1, x2), σ(t, x1, x2) = σ(t, x1,−x2). (1.3)

Our assumptions onσ are generic, in the sense that anyσ, satisfying the symmetries above
and (1.2) after a small perturbation (in theC1-topology), not only conforms to the same
restrictions but also fulfills the hypothesis of our Theorem1.1 below. We exclude, however,
one type of initial curves, because our methods are not applicable. We shall comment on
that after Proposition 3.4.

On the way we discover new phenomena, they may be most easily explained in the
terms of smoothness. We have already seen that the interfacial point, separating the flat
part ofΓ(t) from its curved part, is the point where the solution may losedifferentiability.
To be precise we have seen in [GR5] that if the velocity of the interfacial point is not
zero, thenΓ(t) is as smooth as the dataΓ0. On the other hand if this interfacial point is
motionless, then this is the point of non-differentiability of Γ(t) for t > 0, no matter how
smooth the data were. This event of loss of differentiability was observed for the only type
of interfacial curve considered in [GR5], which we calltangency curves, see Definition 3.1.

This phenomenon is recorded to hold for the remaining type ofthe interfacial curve,
which we discovered here. We call themmatching curves, see Definition 3.1. We show
below thatΓ(t) is never differentiable at thematching curves, no matter how smoothΓ0

is. This is presented in our existence result, Theorem 3.5. In other words, we exhibit an
example of a parabolic equation, whose solutions suffer from a loss of regularity. This
phenomenon is also observed if the parabolic equation degenerates in some directions, see
[GSS], [G].

We have seen that for a convenient choice ofβ equation (1.1) reduces to a system of
ODE’s, see (2.7) below. The resulting system of ODE’s is closed if it is supplied with
the evolution of the interfacial points, separating flat facets and the curved part ofΓ(t).
In [GR5] we were able to close the system but for a restricted class ofσ, satisfying what
we called a working hypothesis, [GR5, eq. (3.12)]. The interfacial points moved along
tangency curves. In the generic case the interfacial pointsmove also along another type of
curves called here matching curves.

One of our main results is Theorem 1.1 exhibiting existence of solutions to (1.1) for
special Lipschitz curves calledbent rectangles, which are defined in the next section. In
order to state Theorem 1.1, we need quantitiesΣΛ

0 , ΣΛ
1 , ΣR

0 , ΣR
1 . They are defined by

formulas (3.14), (3.26) and (3.41). Then, we can state the main existence result as follows.

Theorem 1.1 Let us suppose thatσ is of classC1 on [0, T∗) × R
2, it satisfies (1.2) as

well as (1.3),β is given by (2.7) andγ is defined by the formula below,

γ(p1, p2) = γΛ|p1| + γT |p2|. (1.4)
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If the initial curve Γ0 is a bent rectangle (possibly a rectangle) defined by (BR) below,
l00 < l10 and none of the quantitiesΣΛ

0 , ΣΛ
1 , ΣR

0 , ΣR
1 is zero, then there exists a unique

local-in-time variational solution to (1.1) on a time interval [0, T ), 0 < T ≤ T∗.

In fact, the inequalityl00 < l10 is a technical restrictions. These two quantities are intro-
duced at the beginning of Section 3.

We have to explain the appearance ofΣi
j, i = Λ, R, j = 0, 1. Roughly speaking,

ΣΛ
0 > 0 (respectively,ΣΛ

0 < 0) forces the flat portion (facet), which crosses thex1-axis to
expand (respectively, to shrink). One sufficient conditionfor ΣΛ

0 > 0 is that ∂2σ
∂x1∂x2

< 0
for σ independent of time. In this case, at the end of a flat facet thetangency condition fails
for t > 0 and its motion is a matching curve.

Theorem 1.1 is proved in Section 3. It is the content of Theorem 3.7, which specifies
what exactly happens according to the signs ofΣk

i , i = 0, 1, k = Λ, R.
Another principal result is Theorem 3.8 about bending of initially flat facets. It is much

more general than similar result [GR5, Theorem 3.1]. Once weunderstood the evolution of
bent rectangles, this result seems easier, because the structure ofΓ(t), t ∈ (0, T ) is more
transparent in the general case. The proof is given is Subsection 3.2. Finally, we present a
few examples in§3.3.

In Section 4, we show uniqueness of our solutions. This result is based on the mono-
tonicity argument presented in the proof of [GR5, Theorem 3.2]. We adapt it here to handle
the new phenomenon.

It is important to study stability or continuous dependenceof solutions upon initial
data and the driving forceσ. Once this is proved, we would be able to show the strong
containment principle as in [GGu]. But we do not touch this topic here.

2 Setting up the problem

Here, we recall the notions we used in [GR5]. We consider evolution of bent rectangles, as
defined in [GR5]. The case of graphs is simpler and may be easily derived from the present
one, thus it is omitted here.

After some a slight improvement in comparison with the original definition (see [GR5,
§3.1]), we shall call a Lipschitz closed curveΓ abent rectangle(see Fig. 1), if the following
conditions are satisfied:

There exist even, Lipschitz continuous functionsdR, dΛ : R → R+, which are
non-decreasing for positive arguments and there are positive numbersL1, R1 such
that

dΛ(L1) = R1, dR(R1) = L1.

In additiondΛ is constant in a neighborhood of zero andL1 (respectively,dR is
constant in a neighborhood of zero andR1), furthermore

(BR) Γ = ∂{(x1, x2) : |x1| ≤ dΛ(x2) , |x2| ≤ dR(x1)}.

We shall call the points(±R1,±L1) vertexes ofΓ. Thus, after we set

S±
Λ = {(x1, x2) ∈ Γ : x1 = ±dΛ(x2), x2 ∈ [−L1, L1]},

S±
R = {(x1, x2) ∈ Γ : x2 = ±dR(x1), x1 ∈ [−R1, R1]}
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we notice that the graphs of±dΛ, ±dR make up the wholeΓ(t), i.e.

Γ = S−
R ∪ S+

R ∪ S−
Λ ∪ S+

Λ .

We will collectively write SR for S±
R andSΛ for S±

Λ . We will call themsidesof Γ(t).
Vertexes ofΓ are the intersectionsS±

R ∩ S±
Λ . Moreover, the sides meet at vertexes at the

right angle.
We will denote byn the outer normal toΓ and more specifically

nΛ = (1, 0), (resp. nR = (0, 1))

are normals to the faceted regions ofSΛ, (resp.SR). A rigorous definition of the notion of
faceted regions is given later just before formula (2.8) in this section.

t>0

t=0

Fig. 1, bent rectangles

The curvature,κγ , appearing in (1.1) is defined by

κγ = −divS(∇ξγ(ξ)|ξ=n
),

wheren is the outer normal toΓ andγ is a surface energy function. In our case vectorn

is defined onlyH1-a.e. The physical examples we have in mind, see [GR1], give us the
motivation to consider

γ(p1, p2) = γΛ|p1| + γT |p2|. (2.1)

We notice that the flat parts with normals belonging to the setof normals of the Wulff
shapeWγ are energetically preferred. For the sake of completeness,we recall the definition
of Wγ

Wγ =
⋂

|m|=1

{x ∈ R
2 : m · x ≤ γ(m)}

and the surface energy,E(S),

E(S) =

∫

S

γ(n) dH1.

In our problemWγ is a rectangle of the following form,

Wγ = {x = (x1, x2) ∈ R
2 : |x1| ≤ γ(nΛ), |x2| ≤ γ(nR)}.

It is a well-known fact thatWγ minimizesE under the volume constraint. Now, the fun-
damental problem is apparent:∇γ(n) is not defined on bent rectangles on sets of positive
H1-measure. In the case of the rectangle with its side parallelto the sides ofWγ , the
situation is even worse, because∇γ(n) is nowhere defined.
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In order to resolve this issue we apply a variational principle, which we used in [GR5].
A similar approach was implemented by the Italian school, [BNP1]-[BNP3], reflecting the
idea of [FG]. Namely, we replace the gradient∇γ by the subdifferential∂γ. This is justified
by convexity ofγ. Since in general∂γ is not a singleton, this leaves us with a necessity
to select the proper Cahn-Hoffman vector fieldξ(x) ∈ ∂γ(n(x)). We note that this task is
obvious on curved parts ofSΛ, SR, because∂γ is a singleton there, while it is not trivial
on flat facets.

We impose quite natural constraints onξ, see [GR5],

divSξ ∈ L2(S).

This implies thatξ · ν has a trace, whereν ∈ TxSi is a normal vector toSi, i = R, Λ. If
we combine it with

∂γ(nR) ∩ ∂γ(nΛ) = {p},

then we see thatξ satisfies a boundary condition

ξ|vertex = p.

The necessity of selectingξ implies that in order to define a solution to (1.1), we need to
specify not only a curveΓ(t) but alsoξ(t, ·). After [GR5], we recall the notion of solution.
Namely, we call bya solution to(1.1) a family of couples(Γ(t), ξ(t)), t ∈ [0, T ), such that
for someT > 0, the following conditions are satisfied:

(a) For eacht ∈ [0, T ) the curveΓ(t) is a bent rectangle anddΛ, dR are continuous
functions of its arguments, for eachx, dj(·, x), j = Λ, R are Lipschitz continuous and for
eacht ∈ [0, T ) the functionsdj(t, ·), j = Λ, R are Lipschitz continuous;

(b) ξ :
⋃

t∈[0,T ){t} × Γ(t) → R
2 is at each time instant a Cahn-Hoffman vector. If

M := supt∈[0,T ) max{L1(t), R1(t)} + 1, and if forj = Λ, R we set

ξ̃R(t, x) =







(−γ(nΛ), γ(nR)) x ∈ [−M,−R(t)],
ξ(t, (x, dR(t, x))) x ∈ [−R(t), R(t)],
(γ(nΛ), γ(nR)) x ∈ [R(t),M ];

(2.2)

ξ̃Λ(t, x) =







(−γ(nΛ),−γ(nR)) x ∈ [−M,−L(t)],
ξ(t, (dΛ(t, x), x)) x ∈ [−L(t), L(t)],
(−γ(nΛ), γ(nR)) x ∈ [L(t),M ];

then we assume thatt 7→ ξ̃j(t, ·) ∈ L∞(0, T ;L2(−M,M)), j = Λ, R;
(c) Equation (1.1) is satisfied in theL2 sense fora.e.t ≥ 0.
A remark on the argument ofξ is in order. In principle the Cahn-Hoffman vector de-

pends upon timet and(x1, x2) ∈ Γ(t). However, we shall frequently suppresst and write
ξ(x) when the meaning of the second spacial argument is clear fromthe context, e.g. on
the sides.

We also distinguished variational solutions based on a specific way to selectξ. In order
to define them, we introduce two convenient energy functionals,

Ej(ξ) =
1

2

∫

Sj

|σ − divSξ|2 dH1, j = R,Λ. (2.3)
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Their natural domains of definition are the sets of Cahn-Hoffman vectors, satisfying all the
above constraints,

DΛ = {ξ ∈ L∞(SΛ) : ξ(x) ∈ ∂γ(n(x)), divSξ ∈ L2(SΛ), (2.5) holds},
DR = {ξ ∈ L∞(SR) : ξ(x) ∈ ∂γ(n(x)), divSξ ∈ L2(SR), (2.5) holds}.

(2.4)

where
ξ(±R1,±L1) ∈ ∂γ(±nΛ) ∩ ∂γ(±nR). (2.5)

We recall that{(Γ(t), ξ(t))}, t ∈ [0, T ), a solution to (1.1), is called avariational, if in
addition for eacht ∈ [0, T ) the vector fieldξ|Sj

(t) ∈ L2(Sj) is a solution to

Ej(ξ) = min{Ej(ζ) : ζ ∈ Dj}, j = R,Λ. (2.6)

It is worthwhile to remark that a minimizer is essentially unique. Indeed, since the problem
is convex, we at least observe that the surface divergence divSξ of a minimizer is unique.
But in our one-dimensional setting it turns out thatξ itself must be unique as well.

The rationale for this definition is that equation (1.1) is the Euler-Lagrange equation of
ER onSR (resp.EΛ onSΛ) on its flat parts,i.e., pre-images of faceted regions, see below in
this section for a precise definition. This definition is in line with the notion of solution, we
used earlier, see [GGM], [GGa], [GR3], [GR4], [GR5] and by the Italian school, [BNP1]-
[BNP3].

We have to recall another assumption, we made in [GR5, (1.5)], which simplified the
analysis,i.e.,

β(n1, n2) =
1

max(|n1|, |n2|)
, (2.7)

wheren2
1 + n2

2 = 1.
In order to deal with different parts ofΓ, we introduced in [GR5] a number of auxiliary

notions. Here is the first one. Let us consider an open line segment I in the plane,i.e.
I = (a, b) ≡ {x = at + b(1 − t), t ∈ (0, 1)}, wherea, b ∈ R

2. We shall say thatI ⊂ Γ,
having a normal equal tonΛ or nR, is a faceted regionof Γ if it is maximal (with respect
to inclusion) and it satisfies

(σ − divSξ)|I = const., (2.8)

whereξ is a solution to (2.6).
However,S±

Λ (t) andS±
R (t) are graphs,e.g.S+

R is the image of segment[−R(t), R(t)]
under the function

x 7→ (x, dR(t, x)) =: d̃R(t, x). (2.9)

Frequently it is more convenient to work with the inverse image of a faceted regionI,
(α, β) = d̃−1(I). We stress that this definition permitsS±

j (t), j = R,Λ being a line
segment which has more than one faceted region.

In order to make the presentation more clear we propose to usethe notion of acurved
part of side to denote the (relative) interior of the subset ofΓ, where normaln is such that
∂γ(n) is a singleton. In particular, it may happen that a line segment of Γ will be called a
curved part if its normal is different fromnR, nΛ.

Before proceeding, we mention that in principle it is possible to consider a more direct
approach to defining the weighted mean curvature for singular γ. We have in mind the
results of [FG], [GPR] and independent and quite different ones in a recent paper [MR],
which is however restricted to one-dimension.
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3 Existence of solutions

Here, we continue the studies which we initiated in [GR5]. There, we considered two cases:
(a) evolution of a graph under (1.1) for driving terms independent of time and (b) evolution
of a bent rectangle for a special time dependentσ.

Case (a) was much simpler and it helped to develop the notionsneeded for the analysis
of (b). In the case (b), we studied evolution of bent rectangles, which are not rectangles.
Moreover, we could also analyze the case of rectangles, as initial data, if σ satisfied the
so-called working hypothesis, [GR5, eq. (3.12)]. Here, we remove this restriction on the
driving term.

We consider only the evolution of (bent) rectangles, the evolution of graphs is easier
and may be easily deduced from our analysis. In order to make the presentation more
transparent, we consider separately the cases of evolutionof bent rectangles and the process
of facet bending of rectangles. We will present it in subsection 3.1 and 3.2, respectively.

We want to write (1.1) in the local coordinate system with thehelp of functionsdj ,
j = Λ, R. We will recall the basic steps from [GR5], but we carefully explain the final
form of equations because, contrary to what we did in [GR5], we do not want to impose any
extra assumptions on solutions to (2.6). We do, however assume that(Γ, ξ) is a variational
solution to (1.1), such that each sideSj has exactly three faceted regions, their pre-images
are

(−L1,−l1), (−l0, l0), (l1, L1), (−R1,−r1), (−r0, r0), (r1, R1).

Moreover, the functionsdΛ|[0,L1], dR|[0,R1] are increasing.
We recall sets which are useful in the process of writing the equation in the local coor-

dinates,

EΛ
Z (t) = {x ∈ (−l1,−l0) ∪ (l0, l1) : ∂dΛ

∂x
(t, x) = 0 or dΛ(t, ·) is not differentiable atx},

ER
Z (t) = {x ∈ (−r1,−r0) ∪ (r0, r1) : ∂dR

∂x
(t, x) = 0 or dR(t, ·) is not differentiable atx}.

We have shown (see [GR5, Proposition 2.1]).

Proposition 3.1 Let us suppose thatσ is of C1-class on[0, T∗)×R
2, it satisfies (1.2) and

(1.3), moreover(Γ, ξ) is a variational solution to (1.1) anddΛ, dR satisfy the restrictions
above. In addition, we assume that for at ∈ [0, T∗)

H1(Ej
Z(t) \ int Ej

Z(t)) = 0, j = R,Λ, (3.1)

where intE denotes the interior ofE. Then,ξ(t, ·) is constant over each component of the
complement of the faceted regions.

If we assume that(Γ, ξ) is a variational solution satisfying for allt ∈ [0, T∗) condition
(3.1), then we may repeat the reasoning from [GR5,§2.1] to deduce that onSΛ vector field
ξ(t, ·) must have the form,ξ(t, ·) = (γ(nΛ), ξ2(t, ·)), (see[GR5, eq. (2.28)]), where

ξ2(t, x) =







































x

(
∫

−
x

0
σ(t, R0, s) ds −

∫ l0

0
− σ(t, R0, s) ds

)

+
x

l0
ξ2(t, l0) x ∈ [0, l0]

ξ2(t, l0) x ∈ (l0, l1)

(L − x)

(
∫ L

l1

− σ(t, R1, s) ds −

∫ L

x

− σ(t, R1, s) ds

)

+ γ(nR)

+
L − x

L − l1
(ξ2(t, l1) − γ(nR)) x ∈ [l1, L].

(3.2)
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We have to determine the values ofξ2(t, l0) andξ2(t, l1).
A similar formula forξ1 onSR is valid and we have to determine the values ofξ1(t, r0),

ξ1(t, r1).

Proposition 3.2 Let us suppose thatσ satisfies the conditions stated in Proposition 3.1 and
(Γ, ξ) is a variational solution for at ∈ [0, T∗), thenξ2(t, l0) = −γ(nR) andξ1(t, r0) =
−γ(nΛ). If in addition (3.1) is satisfied, thenξ2(t, l0) = ξ2(t, l1) = −γ(nR) andξ1(t, r0) =
ξ1(t, r1) = −γ(nΛ).

Let us remark that earlier we proved Proposition 3.2 under anadditional assumption that
the so called tangency condition holds,i.e.,

∂ξ2

∂x
(t, li) = 0,

∂ξ1

∂x
(t, ri) = 0, i = 0, 1, (3.3)

(see [GR5, (3.11)]). Here, we make no such hypothesis.
In order to prove this Proposition we make few remarks on (3.3) which will be useful

in the future too. We shall talk only aboutli, i = 0, 1 since consideringri, i = 0, 1 requires
no changes. Ifξ is a solution to the variational problem (2.6), then we see that

σ(t, R0, x) −
∂

∂x2
ξ2(t, R0, x) ≡ V0 = Ṙ0 = const, for x ∈ (−l0, l0) (3.4)

σ(t, R1, x) −
∂

∂x2
ξ2(t, R1, x) ≡ V1 = Ṙ1 = const, for x ∈ (−L1,−l1) ∪ (l1, L1).

However,V0, V1 are different, in fact we showed in [GR5, Corollary 2.2] thatBerg’s effect
(1.2) and the tangency condition (3.3) implyV1 > V0.

If we write

G(t, x) =

∫ x

0
σ(t, dΛ(t, s), s) ds,

then we can rewrite (3.4) as

G(t, x) − ξ2(t, R0, x) = V0x, x ∈ (0, l0),

G(t, x) − ξ2(t, R1, x) = V1(x − L1) + G(t, L1) − γ(nR), x ∈ (l1, L1),

where we usedξ2(t, R0, 0) = 0 andξ2(t, R1, L1) = −γ(nR). In other words,

G(t, x) − Vix − bi = ξ2(t, Ri, x), i = 0, 1, (3.5)

whereb0 = 0, b1 = V1L1−G(t, L1)+γ(nR). We recall thatξ2(t, Ri, x) ∈ [−γ(nR), γ(nR)],
i = 0, 1. In particular, the lineVix+bi is belowG(t, x)+γ(nR) and aboveG(t, x)−γ(nR),
i.e.,

G(t, x) − γ(nR) ≤ V0x ≤ G(t, x) + γ(nR), x ∈ (0, l0)
G(t, x) − γ(nR) ≤ V1x + b1 ≤ G(t, x) + γ(nR), x ∈ (l1, L1).

(3.6)

We will use this geometric insight in the argument below.

Proof of Proposition 3.2.We know that atx = l0 the solutionξ touches the constraint,i.e.,
ξ2(t, l0) = ±γ(nR). We have to determine the sign. We differentiate (3.4) with respect
to x. Hence, ∂

∂x2
σ(t, R0, x) = ∂2

∂x2
2

ξ2(t, R0, x) for x ∈ [0, l0). Due to monotonicity ofσ

implied by Berg’s effect, we deduce that the functionx 7→ ξ2(t, R0, x) is strictly convex
and it has at most one critical point.
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We have exactly three possible values ofV : (a)V0 = σ(t, R0, l0), (b)V0 > σ(t, R0, l0),
(c) V0 < σ(t, R0, l0). If case (a) occurs, we see that∂

∂x2
σ(t, R0, l0) = 0, i.e., ξ2(t, R0, ·)

has a minimum there. As a result,ξ2(l0) = −γ(nR). Comparing this with (3.3), we see
that the tangency condition is satisfied.

If (b) occurs, it follows that ∂
∂x2

ξ(t, R0, l0) = σ(t, R0, l0) − V0 < 0, henceξ2(t, l0) =
−γ(nR) is the only possibility.

It turns out that (c) is not possible at all. Let us suppose it does happen. Then, due to
(3.5), the line connecting(0, 0) to (l0, G(t, l0)+γ(nR)) has the slope equal toV0. However,
by assumptionV0 < σ(t, R0, l0), the lineV0x must intersect the graph ofG(t, x) + γ(nR)
atλ < l0. i.e., the constraintξ ∈ ∂γ(n) is violated. The case (c) cannot happen. �

x

1

0

101−R r r r R− −r 01 1

L
L

1

x2

2

R

l

l

l

l

1

1

0

0

0

−

−

L− 1

Rx =d   (t,x )1

x =d   (t,x )1 2

Fig. 2, notation associated to a bent rectangle

We may now write equation (1.1) in the local coordinates, while keeping in mind the
conclusions of Proposition 3.1. Namely, we showed, see [GR5, (3.11)], that (1.1) for vari-
ational solution takes the following form,

Ṙ0 =

∫ l0

0
− σ(t, R0, s) ds +

γ(nR)

l0
on [0, l0],

∂

∂t
dΛ = σ(t, dΛ, x2) on [l0, l1],

Ṙ1 =

∫ L1

l1

− σ(t, R1, s) ds −
2γ(nR)

L1 − l1
on [l1, L1], (3.7)

L̇0 =

∫ r0

0
− σ(t, s, L0) ds +

γ(nΛ)

r0
on [0, r0],

∂

∂t
dR = σ(t, x1, d

R) on [r0, r1],

L̇1 =

∫ R1

r1

− σ(t, s, L1) ds −
2γ(nΛ)

R1 − r1
on [r1, R1],

augmented with the following initial conditions,

l0(0) = l00, l1(0) = l10, r0(0) = r00, r1(0) = r10,

R0(0) = R00, R1(0) = R10, L0(0) = L00, L1(0) = L10, (3.8)

dR(0, x1) = dR
0 (x1), dΛ(0, x2) = dΛ

0 (x2).
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We stress that the pointsli(t), ri(t), i = 0, 1, are unknown, hence they may be called
interfacial points. Fig. 2 is an illustration of the notation we use.

3.1 Evolution of bent rectangles

We should explain the importance of the interfacial pointsli(t), ri(t), i = 0, 1. We shall
concentrate our attention onl0(t), l1(t), because the analysis ofr0(t), r1(t) requires no
changes. They are points separating pre-images of faceted regions from the pre-images of
the curved parts of sides. Ifξ is a solution to the variational problem 2.6) with the constraint
ξ ∈ D, then

ξ2(t, li) = −γ(nR) i = 0, 1. (3.9)

It is, however, possible that (3.9) is implied by the fact that ∂γ(n(x, dΛ(t, x))), is a single-
ton for x ∈ (l0, l1). Then, (3.9) is just a boundary condition for the minimization problem
(2.6).

A more interesting case occurs ifdΛ(t, x) = R0 on (−λ0, λ0), λ0 > l0 anddΛ(t, x) >
R0 for x > λ0 or respectivelydΛ(t, x) = R1 on (−L1,−λ1) ∪ (λ1, L1), λ1 < l1 and
dΛ(t, x) < R1 for x ∈ [0, λ1). Then, the minimization problem is of obstacle type, hence
l0 or l1 is a free boundary,i.e., the coincidence set in the obstacle problem, and it is a part
of a solution. In these cases by the general theory

∂

∂x
ξ(t, l0) = 0 or

∂

∂x
ξ(t, l1) = 0.

These are thetangency conditions.
A more convenient version of (3.3) and the above equations follow (see [GR5, Propo-

sition 2.1] and [GR5, (3.10)]),

σ(t, R0(t), l0(t)) =

∫

−
l0(t)

0
σ(t, R0(t), s) ds +

γ(nR)

l0(t)
, ξ2(li(t)) = −γ(nR), i = 0, 1,

σ(t, R1(t), l1(t)) =

∫

−
L1(t)

l1(t)
σ(t, R1(t), s) ds −

2γ(nR)

L1(t) − l1(t)
,

(3.10)

σ(t, r0(t), L0(t)) =

∫

−
r0(t)

0
σ(t, s, L0(t)) ds +

γ(nΛ)

r0(t)
, ξ1(ri(t)) = −γ(nΛ), i = 0, 1,

σ(t, r1(t), L1(t)) =

∫

−
R1(t)

r1(t)
σ(t, s, L1(t)) ds −

2γ(nΛ)

R1(t) − r1(t)
.

In general, for any given bent rectangle and any driving termσ is it unrealistic to expect
that the tangency condition is satisfied at the interfacial points li, ri, i = 0, 1. In [GR5], we
set the working hypothesis implying the expected behavior of the interfacial points, namely,
l̇0 ≤ 0 (resp.ṙ0 ≤ 0) andl̇1 ≥ 0 (resp.ṙ1 ≥ 0). Here, we give up such a constraint in favor
of a generic condition onσ. It means that we admit both possibilities,l̇0 > 0 or l̇1 < 0.

We also stated thematching conditionfor solutions of (3.7),

dΛ(t, li(t)) = Ri(t), dR(t, ri(t)) = Li(t), i = 0, 1. (3.11)

These are simple statements of continuity ofdj , j = R,Λ, thus they are more fundamental
than the tangency conditions. Here, we shall see the profound implications of (3.11). We
start with a simple observation.
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Proposition 3.3 Let us suppose thatσ is given of classC1 on [0, T∗) × R
2, it satisfies

the Berg’s effect (1.2) and (1.3),Γ0 is a bent rectangle withl0 < l1, moreoverl0(·) and
l1(·) areC1 curves.
(a) If the tangency as well as matching conditions are satisfied atl0(t) for all t ∈ [0, ǫ), then
l0(·) is decreasing.
(b) If the tangency as well as matching conditions are satisfied atl1(t) for all t ∈ [0, ǫ),
thenl1(·) is increasing.

Remark. As long as it does not lead into confusion, we shall suppress the superscriptΛ, R
in dΛ, dR and we shall simply writed.

Proof of Proposition 3.3. It is sufficient to consider onlyl0.
Let us assume the contrary,i.e., there aret1 > t0 ≥ 0 such that for alls ∈ (t0, t1) we

havel0(s) < l0(t1). We note that the matching condition impliesd(t0, l0(t0)) = R0(t0),
as well as

d(t0, l0(t1)) +

∫ t1

t0

dt(s, l0(t1)) ds = R0(t0) +

∫ t1

t0

Ṙ0 ds. (3.12)

Thus, by the definition oḟR0 we conclude that

d(t0, l0(t1)) +

∫ t1

t0

σ(s, d(s, l0(t1)), l0(t1)) ds (3.13)

= R0(t0) +

∫ t1

t0

(

∫

−
l0(s)

0
σ(s,R0(t1), y) dy +

γ(nR)

l0(s)

)

ds.

If (3.10) held, then we would have

d0(l0(t1)) − R0(t0) +

∫ t1

t0

(σ(s, d(s, l0(t1)), l0(t1)) − σ(s,R0(s), l0(s))) ds = 0.

But d0(l0(t1)) − R0(t0) ≥ 0, moreover ifl0(s) < l0(t1) for all s ∈ (t0, t1) and Berg’s
effect holds, then

σ(s, d(s, l0(t1)), l0(t1)) − σ(s,R0(s), l0(s))

= σ(s, d(s, l0(t1)), l0(t1)) − σ(s, d(s, l0(s)), l0(t1))

+σ(s, d(s, l0(s)), l0(t1)) − σ(s,R0(s), l0(s)) > 0,

where we also usedd(s, l0(s)) = R0(s). Hence, equality above is not possible. �

As a result, we conclude that if the interfacial curvel0(·) satisfiesl0(t) > l00, then the
tangency condition may not hold there, even if this condition is satisfied atl00. Indeed,
Proposition 3.3 above implies that along the curve there would be a jump ind, i.e., the
matching condition (3.11) would be violated.

We know from [GR5, Proposition 2.5] that if the tangency condition is satisfied atl00
then there is a curve[0, t1) ∋ t 7→ l⋆0(t), where the tangency condition holds. Similar curves
l⋆1(t) and r⋆

i (·) exist for l10, ri0 satisfying the tangency condition. Thus, the matching
condition (3.11) defines a new curvel0(·) (respectively,l1(·), ri(·), i = 0, 1), for which
l0(t) < l⋆0(t), for t > 0, respectivelyl1(t) > l⋆1(t), for t > 0 and the similar properties for
r⋆
i (·), i = 0, 1.

!!!!!!!!!! It is a slight abuse of the language to call any of the functionsl0(·), l1(·), r0(·),
r1(·) an interfacial curve, nonetheless we will do so. What we have already established
about the interfacial curves justifies the following definition.
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Definition 3.1 (a) We shall say that an interfacial curveλ is a tangency curveif at each
point ofλ the appropriate tangency condition (3.10) as well as (3.11)hold.

(b) We shall call an interfacial curveλ amatching curveif at each point ofλ the match-
ing condition (3.11) holds, but the appropriate tangency condition (3.10) failsH1-a.e. !!!!!!!

xl

l

l *
0

0

00

( )

( )

.

.

t

Fig. 3, the difference between a matching curvel0(·) andl⋆0(·)

By definition a matching curve is not a tangency curve. We postpone for a moment the
proof of its existence. We would rather concentrate on theirproperties. We can deduce
further properties of the matching curves. As we mentioned,the interfacial pointsli(t),
i = 0, 1, are necessary to close the system resulting form re-writing (1.1) in the local
coordinates. It is important for us to determine sufficient and necessary conditions onσ
which guarantee that the functionsli, i = 0, 1, are monotone. We begin with the necessary
conditions.

Proposition 3.4 Let us suppose(Γ, ξ) is a variational solution on(0, T ) andσx1
, σx2

, σt

are continuous on[0, T ) × R
2. We also assume thatd(t, ·) (we suppress the superscriptΛ)

is of classC1,1 in the complement of the interior of the faceted regions,l0(·) is a matching
curve and it is strictly monotone. Moreover, the tangency condition is satisfied atl00 =
l0(0) andl00 < l0(t). Finally, we set,

ΣΛ
0 =

∫

−
l00

0
σt(0, R00, y) dy − σt(0, R00, l00) (3.14)

+σ(0, R00, l00)

(∫

−
l00

0
σx1

(0, R00, y) dy − σx1
(0, R00, l00)

)

.

Then,
(a) If, d+

x (t, l0(t)) > 0, the right derivative ofd(t, ·) at l0(t) is positive, thenl0(·) is differ-
entiable fort ∈ (0, T ) and

l̇0(t) =
1

d+
x (t, l0(t))

(Ṙ0(t) − σ(t, R0(t), l0(t))),

moreoverl̇0(0) = 0.
(b) If d+

0,x(l00) = 0 and the right second derivative ofd0 vanishes atx = l00, i.e.,

d+
0,xx(l00) = 0, then l̇0(0) = 1

2ΣΛ
0 /σx2

(0, R00, l00). In particular, the derivative ofl0 at
t = 0 is positive ifΣΛ

0 > 0.
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(c) If d+
0,x(l00) = 0 andd+

0,xx(l00) > 0, then

l̇0(0) = −
σx2

(0, R00, l00)

d+
0,xx(l00)



1 −

√

1 +
ΣΛ

0 d+
0,xx(l00)

(σx2
(0, R00, l00))2



 .

In particular, the derivative ofl0 at t = 0 is positive ifΣΛ
0 > 0.

(d) If ΣΛ
0 = 0, thenl̇0(0) = 0.

Remarks. Some comments on the structure of these formulas and their content are in order.
First of all, by Proposition 3.3 the matching curve must be different from the tangency
curve.

Moreover, if the tangency condition is satisfied att = 0, then by (a) the condition
d+
0,x(l00) > 0 implies thatl̇0(0) = 0, and no information onΣΛ

0 is needed.
It is interesting to note thatΣΛ

0 < 0 is incompatible with the matching curves. Indeed,
if we have a matching curvel0(·) fulfilling the hypotheses of Proposition 3.4, then by (b) or
(c) we conclude thaṫl0(0) < 0 which contradicts the assumptions. However, ifl̇0(0) < 0
and the tangency condition holds atl00, then by [GR5, Proposition 2.5] we have a tangency
curve starting atl00, which automatically satisfies the matching condition and the tangency
condition as well,

∫ l0(t)

0
σ(t, R0(t), y) dy + γ(nR) = l0(t)σ(t, R0(t), l0(t)).

Differentiating this with respect tot yields,

l̇0(t) =

∫ l0(t)
0 σt(t, R0(t), y) dy − l0(t)σt(t, R0(t), l0(t))

l0(t)σx2
(t, R0(t), l0(t))

(3.15)

+σ(t, R0(t), l0(t))

∫ l0(t)
0 σx1

(t, R0(t), y) dy − l0(t)σx1
(t, R0(t), l0(t))

l0(t)σx2
(t, R0(t), l0(t))

.

Hence, att = 0,

l̇0(0) =
ΣΛ

0

σx2
(0, R00, l00)

.

This formula agrees with (b), up to the factor1
2 . As a result, the sign ofΣΛ

0 can be used to
distinguish the type of curve.

In Proposition 3.4 (a) it is crucial that the functionl0(·) is strictly increasing. Without
it we cannot draw any conclusion ifΣΛ

0 = 0.
We excluded the case ofd andσ such thatd0,x(l00) = 0, but the tangency condition

fails at l00. The situation, whenΣΛ
0 < 0, i.e., the curved part is faster than the facet does

not lead to difficulties (see Theorem 3.7 (c)). On the other hand, the caseΣΛ
0 > 0 is more

involved. The formula in part (a) suggests thatl0 is not differentiable att = 0 and the limit
of l̇0(t) blows up whent goes to zero. Our methods do not apply to this case.

The matching condition is defined in an implicit way. This means investigating the
difference quotients ofl0 is a bit involved. For example, we need the following result.

Lemma 3.1 Let us suppose that the hypotheses of Proposition 3.4 are satisfied. We define
∆hl0 = (l0(h) − l00)/h, whereh > 0. Then, there is a constantM , which is independent
from h and from the value ofd+

0,xx(l00), for which we have

0 ≤ sup
h>0

∆hl0 ≤ M < ∞.
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Proof. Immediately from the definition of the matching curve (see (3.11) and (3.12)) we
obtain the following relation,

∫ h

0
Ṙ0(s) ds =

∫ h

0
σ(s, d(s, l0(h)), l0(h)) ds +

∫ l0(h)

l00

d0,x(y) dy. (3.16)

Due to the definition ofṘ0(s) this equation becomes,

∫ h

0
[F (s, s, l0(s)) − σ(s, d(s, l0(h)), l0(h))] ds

= (l0(h) − l00)d0,x(l00) +

∫ l0(h)

l00

∫ y

l00

d0,xx(z) dzdy, (3.17)

where we used the following shorthand,

F (τ, s, l) :=

∫

−
l

0
σ(τ,R0(s), y) dy +

γ(nR)

l
. (3.18)

Now, we use a simple rearrangement of the left-hand-side (LHS) of (3.17), where the tan-
gency condition att = 0, i.e., F (0, 0, l00) = σ(0, R00, l00) plays a key role,

LHS =

∫ h

0
(F (s, s, l0(s)) − F (0, s, l0(s))) ds +

∫ h

0
(F (0, s, l0(s)) − F (0, s, l00)) ds

+

∫ h

0
(F (0, s, l00) − F (0, 0, l00)) ds

−

∫ h

0
(σ(s, d(s, l0(h)), l0(h)) − σ(s, d(s, l0(h)), l00)) ds

−

∫ h

0
(σ(s, d(s, l0(h)), l00) − σ(0, d(s, l0(h)), l00)) ds (3.19)

−

∫ h

0
(σ(0, d(s, l0(h)), l00) − σ(0, d0(l00), l00)) ds

= (I1 + I2 + I3) − (J1 + J2 + J3),

with the obvious definitions ofIi andJi, i = 1, 2, 3. It is convenient to rewrite this equation
in the following form,

I1 − J2 =

∫ h

0

∫ s

0

(

∫

−
l0(s)

0
σt(τ,R0(s), y) dy − σt(τ, d(s, l0(h)), l00)

)

dsdτ,

I2 =

∫ h

0

F (0, s, l0(s)) − F (0, s, l00)

l0(s) − l00
(∆sl0)s ds,

J1 = (∆hl0)h

∫ h

0

σ(s, d(s, l0(h)), l0(h)) − σ(s, d(s, l0(h)), l00)

l0(h) − l00
ds

and

J3 =

∫ h

0

∫ 1

0

∂σ

∂x1
(0, p(τ), l00)

[
∫ s

0
σ(ρ, d(ρ, l0(h)), l0(h)) dρ + d0(l0(h)) − d0(l00)

]

dτds

= J31 + h∆hl0J32,
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where
p(τ) = τ(d(s, l0(h)) − d0(l00)) + d0(l00).

After dividing both sides of (3.17) byh and rearranging terms we shall see that,

∆hl0

[

d0,x(l00) + J32 +
J1

l0(h) − l00
+

1

l0(h) − l00

∫ l0(h)

l00

∫ x

l00

d0,xx(y) dydx

]

−
1

h
I2

=
1

h
(I1 − J2) −

1

h
J31 +

1

h
I3. (3.20)

Let us notice that

lim
h→0+

(I1 − J2)

h
= lim

h→0+

1

h
I2 = lim

h→0+

1

h
I3 = lim

h→0+

J1

l0(h) − l00
= lim

h→0+

1

h
J31 = lim

h→0+
J32 = 0.

Now, we consider several cases. Ifd0,x(l00) > 0, then we see that the coefficient in front of
∆hl0 is positive for sufficiently smallh and the right-hand-side (RHS) of (3.20) is bounded,
actually we shall see that it behaves likeO(h). Hence, our first claim follows, in particular
l̇0(0) = 0.

If, howeverd0,x(l00) = 0, then we divide (3.20) one more time byh. Then, we obtain,

∆hl0

[

J32

h
+

J1

h(l0(h) − l00)

]

−
1

h2
I2 +

(∆hl0)
2

(l0(h) − l00)2

∫ l0(h)

l00

∫ y

l00

d0,xx(y) dy

=
1

h2
(I1 − J2) −

1

h2
J31 +

1

h2
I3. (3.21)

Let us denote the absolute value RHS of (3.21) byA, we shall see that it can be estimated
independently fromh. For this purpose, we recall the following formula, which holds for
any continuous functionf ,

lim
h→0+

1

h2

∫ h

0

∫ s

0
f(τ) dτds =

1

2
f(0). (3.22)

This fact implies that

lim
h→0+

1

h2
(I1 − J2) =

1

2

∫

−
l00

0
σt(0, R00, y) dy −

1

2
σt(0, R00, l00).

By the definition ofJ31 and (3.22) we deduce that,

lim
h→0+

1

h2
J31 =

1

2
σ(0, R00, l00)σx1

(0, R00, l00).

Moreover, it is easy to see that (3.22) yields

lim
h→0+

1

h2
I3 =

1

2

d

ds
F (0, s, l00)|s=0 =

1

2

∫

−
l0

0
σx1

(0, R00, y) dyσ(0, R00 , l00).

where the last equality is the consequence of the tangency condition att = 0. Thus, indeed
A is bounded independently fromh.

Let us now set
sup

0<s≤h

|∆sl0| =: D(h),
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and

C =
1

(l0(h) − l00)2

∫ l0(h)

l00

∫ y

l00

d0,xx(y) dy.

By (3.22), we immediately conclude that

lim
h→0+

C(h) =
1

2
d0,xx(l00) ≥ 0. (3.23)

Now, we will identify and estimate the coefficient in front ofD(h). We notice that

lim
h→0+

J32

h
= σx1

(0, R00, l00)d0,x(l00) = 0,

becaused0,x(l00) = 0. Subsequently,

1

h2
|I2| ≤

∣

∣

∣

∣

F (0, s, l0(s)) − F (0, s, l00)

l0(s) − l00

∣

∣

∣

∣

ds

and the bound on the right-hand-side tends to zero ash → 0+, because of the tangency
condition att = 0. Finally,

lim
h→0+

J1

h(l0(h) − l00)
= σx2

(0, R00, l00) > 0.

We now set

B =
J1

h(l0(h) − l00)
−

1

h

∫ h

0

∣

∣

∣

∣

F (0, s, l0(s)) − F (0, s, l00)

l0(s) − l00

∣

∣

∣

∣

ds +
J32

h
.

Then, combining the above estimates, we arrive at the following inequality

D(h)B + D2(h)C ≤ A.

We have already noticed thatC andB are non-negative.
If d0,xx(l00) > 0, then inequality (3.23) implies a bound on∆hl0, which is independent

from h. On the other hand, ifd0,xx(l00) = 0, then we notice thatC(h) tends to zero, but
B(h) ≥ B0 > 0 andA ≥ 0. This is sufficient to deduce that the positive numbersD
satisfying

D2C + DB − A ≤ 0 (3.24)

belong to the interval[0, A/B]. This is so, because the the only positive numbersD satis-
fying DB − A ≤ 0 belong to this interval, and the set of solutions to (3.24) may only be
smaller. �

Proof of Proposition 3.4. We will first show cases (d), (b) and (c). Once we established
boundedness of∆hl0, we may reuse formula (3.21) to calculatel̇0(0) in the case the right
derivative ofd0 vanishes atl00, i.e., d+

0,x(l00) = 0. For this purpose, we use (3.22). Hence,

after passing withh to zero in (3.21), we conclude thatl̇0(0) must satisfy

2l̇0(0)σx2
(0, R00, l00) + (l̇0(0))

2d+
0,xx(l00) = (3.25)

∫

−
l00

0
σt(0, R00, y) dy − σt(0, R00, l00)

+σ(0, R00, l00)

(
∫

−
l00

0
σx1

(0, R00, y) dy − σx1
(0, R00, l00)

)

= ΣΛ
0 .
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The formula above was derived for monotone increasingl0(·), hencel̇0(0) must be a non-
negative solution to this equation. Thus, we conclude from (3.25):
(i) ΣΛ

0 = 0 is equivalent tȯl0(0) = 0, i.e., part (d) is shown;
(ii) if d0,xx(l00) = 0, thenl̇0(0) = 1

2ΣΛ
0 /σx2

(0, R00, l00), in particularΣΛ
0 > 0 is equivalent

to l̇0(0) > 0, i.e., (b) follows;
(iii) if d+

0,xx(l00) > 0, thenl̇0(0) > 0 if and only if ΣΛ
0 > 0 and

l̇0(0) = −
σx2

(0, R00, l00)

d+
0,xx(l00)



1 −

√

1 +
ΣΛ

0 d+
0,xx(l00)

σx2
(0, R00, l00)2



 .

Hence, (c) is proven.
The calculations fort > 0 are much simpler, because we can differentiate

R0(t) = d(t, l0(t)).

As a result, we obtain,

l̇0(t) =
1

d+
x (t, l0(t))

(

∫

−
l0(t)

0
σ(t, R0(t), y) dy +

γ(nR)

l0(t)
− σ(t, R0(t), l0(t))

)

.

This formula is valid also att = 0 provided thatd+
0,x(l00) > 0, thus (a) follows.

Once we established (a), then by the tangency condition, we deduce thaṫl0(0) = 0 what
is in accordance with our previous calculations.

Our claims follow. �

Remarks. We saw from formula (3.16) that the position of the matching curve is de-
termined at timet as the point where the facet catches up with the curved part. This is
possible only if the position of interfacial pointl0 is an increasing function of time. As a
result, this is another argument for impossibility of properly redefinedΣΛ

0 < 0 for t ≥ 0 on
matching curves.

Let us also notice that ifx is on a matching curve, then fort > 0 we have

d+
x (t, x) > 0.

Indeed,

d+
x (t, x) = d+

0,x(x) +

∫ t

0
σx(s, d(s, x), x) ds ≥

∫ t

0
σx(s, d(s, x), x) ds > 0.

An inspection of the proof of Proposition 3.4 reveals that infact the time regularity of
σ may be relaxed. Indeed, we have.

Corollary 3.1 Let us suppose that the assumptions of Proposition 3.4 are valid except
that onσ. Namely, we assume thatσx1

and σx2
are continuous on[0, T ) × R

2, σ be-
longs toW 1,1

loc ([0, T ) × R
2) and the right derivativeσ+

t exists everywhere fort ≥ 0. In
additionσ+

t (t, R0(t), ·) is integrable with theL1-norm independent from time. Then, the
conclusions of Proposition 3.4 hold withΣΛ

0 replaced by

ΣΛ
0 =

∫

−
l00

0
σ+

t (0, R00, y) dy − σ+
t (0, R00, l00)

+σ(0, R00, l00)

(
∫

−
l00

0
σx1

(0, R00, y) dy − σx1
(0, R00, l00)

)

.
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Proof. The element of the proof which requires adjustment is the passage to the limit with
h → 0+ in (3.21). Under our assumptions formula (3.22) becomes,

lim
h→0+

1

h2

∫ h

0

∫ s

0
σt(τ,R0(s), l00) dτ ds

= lim
h→0+

1

h2

∫ 1

0
τ
σ(hτ,R0(hτ), l00) − σ(0, R0(hτ), l00)

hτ
dτ =

1

2
σ+

t (0, R00, l00).

In a similar manner we conclude that

lim
h→0+

1

h2

∫ h

0

∫ s

0

∫

−
l0(s)

0
σt(τ,R00, y) dτdyds =

1

2

∫

−
l0(0)

0
σ+

t (0, R00, y) dy.

Our claim follows. �

Continuing our inspection of the proof of Proposition 3.4 wenotice that the argument
with minor adjustments is valid also in the case of the interfacial curvel1(·). In fact, we
have to take into account the dependence ofl1 uponL1, however, this does not influence
significantly our conclusion. Hence, we can state a version of Proposition 3.4 and its corol-
lary for curvel1(·).

Proposition 3.5 Let us suppose(Γ, ξ) is a variational solution,σt, σx1
andσx2

are con-
tinuous on[0, T )×R

2, σ. We also assume thatd(t, ·) (we suppress the superscriptΛ) is of
classC1,1 in the complement of the interior of the faceted regions,l1(·) is a matching curve
and it is strictly monotone. Moreover, the tangency condition is satisfied atl10 = l1(0) and
l10 > l1(t). Finally, we set,

ΣΛ
1 =

∫

−
L1(0)

l10

σt(0, R10, y) dy − σt(0, R10, l10)

+σ(0, R10, l10)

(

∫

−
L1(0)

l10

σx1
(0, R10, y) dy − σx1

(0, R10, l10)

)

+
L̇1(0)

(L1(0) − l10)
(σ(t, R10, L1(0)) − Ṙ1(0)), (3.26)

where

L̇1(0) =

∫

−
R10

r10

σ(0, y, L10) dy −
2γ(nΛ)

R10 − r10
, Ṙ1(0) =

∫

−
L10

l10

σ(0, R10, y) dy −
2γ(nR)

L10 − l10
(3.27)

(see also (3.28)). Then,
(a) If d−x (t, l1(t)), the left derivative ofd(t, ·) at l1(t) is positive, thenl1(·) is differentiable
for t > 0 andl̇1(t) = 1

d−x (t,l1(t))
(Ṙ1(t) − σ(t, R1(t), l1(t))), moreoverl̇1(0) = 0.

(b) If d−0,x(l10) = 0, andd−0,xx(l10), the second left derivative ofd0, vanishes atl10, then

l̇1(0) = 1
2ΣΛ

1 /σx2
(0, R10, l10). In particular, the derivative ofl1 at t = 0 is negative

provided thatΣΛ
1 < 0.

(c) If d−0,x(l10) = 0 andd−0,xx(l10) > 0, then

l̇1(0) = −
σx2

(0, R10, l10)

d−0,xx(l10)



1 −

√

1 +
ΣΛ

1 d−0,xx(l10)

(σx2
(0, R10, l10))2



 .

In particular, the derivative ofl1 at t = 0 is negative provided thatΣΛ
1 < 0.

(d) If ΣΛ
1 = 0, thenl̇1(0) = 0.

18



Proof. We present only the necessary changes in the calculation. Aninspection of the
proof of Proposition 3.4 suggests a new definition ofF , which appears in (3.18), namely
we set

F (τ, s, l, L) =

∫

−
L

l

σ(τ,R1(s), y) dy −
2γ(nR)

L − l
.

The subsequent calculation involvingF will require one additional change, precisely, a new
termI4 will appear at the right-hand-side of (3.19), without any matchingJ4,

I4 =

∫ h

0
(F (0, 0, l10 , L1(h)) − F (0, 0, l10, L1(0))) dh.

We can easily see that

lim
h→0

I4

h
= 0,

while

lim
h→0

I4

h2
=

1

2

∂F

∂L
(0, 0, l10, L10)L̇1(0)

=
1

(L10 − l10)

(

−

∫

−
L10

l10

σ(0, R10, y) dy +
2γ(nR)

L10 − l10
+ σ(0, R10, L10)

)

×

(
∫

−
R10

r10

σ(0, y, L10) dy −
2γ(nΛ)

R10 − r10

)

=
1

2

1

(L10 − l10)
(σ(0, R10, L10) − Ṙ1(0))L̇1(0). (3.28)

Thus, the additional contribution ofI4
h2 will appear at the right-hand-side of (3.22). Hence,

right-hand-side of (3.25), which is the definition ofΣΛ
1 will take the form we claim. �

It is worth noticing, that similarly to (3.15) we have the following formula for the ve-
locity of the tangency curve emanating froml10,

l̇1(t) =
1

(L1(t) − l1(t))σx2
(t, R1(t), l1(t))

(

∫ L1(t)

l1(t)
[σt(t, R1(t), y) + σx1

(t, R1(t), y)Ṙ1(t)] dy

)

−
σt(t, R1(t), l1(t)) + σx1

(t, R1(t), l1(t))Ṙ1(t)

σx2
(t, R1(t), l1(t))

+
L̇1(t)(σ(t, R1(t), L1(t)) − σ(t, R1(t), l1(t)))

(L1(t) − l1(t))σx2
(t, R1(t), l1(t))

Thus, att = 0 we have

l̇1(0) =
ΣΛ

1

σx2
(0, R10, l10)

,

what is in accord with Proposition 3.5 (b) up to the factor of1
2 .

We also state a version of Proposition 3.5 for less time-regular σ.

Corollary 3.2 Let us suppose that the assumptions of Proposition 3.5 are valid except
that onσ. Namely, we assume thatσx1

and σx2
are continuous on[0, T ) × R

2, σ be-
longs toW 1,1

loc ([0, T ) × R
2) and the right derivativeσ+

t exists everywhere fort ≥ 0. In
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additionσ+
t (t, R1(t), ·) is integrable with theL1-norm independent from time. Then, the

conclusions of Proposition 3.5 hold withΣΛ
1 replaced by

ΣΛ
1 =

∫

−
L10

l10

σ+
t (0, R10, y) dy − σ+

t (0, R10, l10)

+σ(0, R10, l10)

(
∫

−
L10

l10

σx1
(0, R10, y) dy − σx1

(0, R10, l10)

)

+
1

(L10 − l10)
(σ(0, R10, L10) − Ṙ1(0))L̇1(0)

Now, we return to the problem of existence of the matching curves. We will state this
so that it will be clear that they depend continuously upond.

We saw in Proposition 3.4 that we have a number of possibilities as far as the behavior
of l0(·) neart = 0 is concerned. We shall deal first with the simpler case ofd+

0,x(l00) > 0.
The fact below, stated slightly differently, appeared as Theorem 3.3 in [GR5], but without
proof. An analogous proposition forr0 is also valid, we will however omit the obvious
statement.

Proposition 3.6 Let us suppose that we are given a functiond0 ∈ C1,1([l00, L1]) → R

such thatd+
0,x(l00) > 0. In additionσ : R+ × R × R → R is Lipschitz continuous and

σ(t, ·, ·) satisfies the Berg’s effect (1.2) and (1.3). Then, there exists a unique matching
curve, which is a solution to the following system of equations

l̇0(t) =
1

d+
x (t, l0(t))

(

∫

−
l0(t)

0
σ(t, R0(t), y) dy +

γ(nR)

l0(t)
− σ(t, R0(t), l0(t))

)

,

l0(0) = l00, (3.29)

Ṙ0(t) =

∫

−
l0(t)

0
σ(t, R0(t), y) dy +

γ(nR)

l0(t)
, R0(0) = d0(l00)

provided that one of conditions below holds:
(a) the tangency condition fails atl00 but Ṙ0(0) − σ(0, R00, l00) > 0; (b) the tangency
condition holds atl00 andΣΛ

0 > 0.
Here,d(t, x) is a unique solution to

dt(t, x) = σ(t, d(t, x), x), d(0, x) = d0(x). (3.30)

In addition, the curvel0(·, d0) depends in a Lipschitz continuous manner upond0.

Proof. We begin with the condition (a). By the assumptions, it is easy to see that the
RHS of (3.29) is a continuous function ofl0, R0 and timet. In order to establish existence
of uniqueness of solutions to (3.29), it is sufficient to check that the the RHS of (3.29)
is Lipschitz continuous with respect tol0 andR0. This claim becomes obvious, once we
write the integral form ofd(·, x). As a result, existence and uniqueness of solutions to
(3.29) follow.

The condition (a) implies that the solution is an increasingfunction, thus we found a
matching curve.

Since, by the theory of ODE’s the functionx 7→ d+
x (t, x) is Lipschitz continuous as

well as(x, y) 7→ σ(t, x, y), then the Lipschitz continuity ofl0(·, d0) follows.
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In case (b) the above argument yielding existence an uniqueness of solutions to (3.29)
is still valid, but we have to make sure that the solution is increasing. If (b) holds, then
we know thatl̇0(0) = 0. We will use Taylor’s formula to show that the numerator in the
equation (3.30) forl0 is positive. Indeed,

∫

−
l0(t)

0
σ(t, R0(t), y) dy +

γ(nR)

l0(t)
− σ(t, R0(t), l0(t))

= Ṙ0(0) − σ(0, R00, l00) + t
d

dt
(Ṙ0(0) − σ(0, R00, l00))|t=0 + o(t).

By assumptionṘ0(0) = σ(0, R00, l00) and simple calculations lead us to the conclusion

d

dt
(Ṙ0(0) − σ(0, R00, l00))|t=0 = ΣΛ

0 > 0.

Thus, the solution to (3.30) is a matching curve. �

A statement analogous to Proposition 3.6 is valid also for the matching curve emanating
from l10.

Proposition 3.7 Let us suppose that we are given a functiond0 ∈ C1,1([0, L10]) → R

such thatd−0,x(l10) > 0. In additionσx1
, σx2

are continuous andσ is Lipschitz continuous
on [0, T∗) × R

2 → R and for eacht ∈ [0, T∗) functionσ(t, ·, ·) satisfies Berg’s effect (1.2)
and (1.3). Then, there exists a unique matching curve, whichis a solution to the following
system of equations

l̇1(t) =
1

d−x (t, l1(t))

(

∫

−
L1(t)

l1(t)
σ(t, R1(t), y) dy −

2γ(nR)

L1(t) − l0(t)
− σ(t, R1(t), l1(t))

)

,

l1(0) = l10, (3.31)

Ṙ1(t) =

∫

−
L1(t)

l1(t)
σ(t, R1(t), y) dy −

2γ(nR)

L1(t) − l0(t)
, R1(0) = d0(l10),

provided that one of conditions below holds:
(a) the tangency condition fails atl10 but Ṙ1(0)−σ(0, R10, l10) < 0 andL1 is a continuous
function;
(b) the tangency condition holds atl10, ΣΛ

0 < 0 andL1 is aC1 function.
Here,d(t, x) is a unique solution to

dt(t, x) = σ(t, d(t, x), x), d(0, x) = d0(x). (3.32)

In addition, the curvel1(·, d0) depends in a Lipschitz continuous manner upond0.

We skip the proof which is essentially a repetition the proofof Proposition 3.6. �

Now, we turn our attention to the construction of the matching curves emanating form
a point whered0,x vanishes and the tangency condition holds.

Theorem 3.1 (a) Let us suppose that a functiond0 ∈ C1([l00, L1]), wherel00 > 0,
is given. We assume thatσt, σx1

and σx2
are continuous on[0, T∗) × R

2. Moreover,
for eacht ∈ [0, T∗) function σ(t, ·, ·) satisfies the Berg’s effect (1.2) and (1.3). We set
R00 = d0(l00), we assume thatl00 is a point, where the tangency condition is satisfied,
andd0,x(l00) = 0, ΣΛ

0 > 0, (see formula (3.14) for the definition ofΣΛ
0 ). Then, there is
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T ∈ (0, T∗] such that there exists a unique matching curvet 7→ l0(t) for t ∈ [0, T ) which
is of classC1 and it is strictly monotone.

(b) If the functionsd1
0, d2

0 both satisfy (a) andl10, l20 are corresponding matching curves,
then there exists a constantK such that

‖l10 − l20‖C[0,T ] ≤ K‖d1
0 − d2

0‖C1[l00,L1].

Proof. (a) Step 1.It is tempting to take derivative of (3.13) with respect tot in the hope
to recover an ODE for the matching curves. Once we do this we will discover that there
is a problem. Namely, we shall see that the RHS of the resulting equation is not Lipschitz
continuous at(t, a) = (0, l00). On top of that the equation is not a regular ODE; its ex-
plicit form is found in (3.36) wherel0 is replaced bya. Thus, we have to worry about
uniqueness and part (b). This is why we apply a functional approach. If we do so, we will
encounter another difficulty related to the fact that we are interested in monotone solutions,
but monotone functions do not form linear spaces.

We first introduce a function space and re-write equation (3.13) in a functional form.
For a fixedT ∈ (0, T∗) we consider a Banach spaceXT = C([0, T ]) and its subset

Y = {f ∈ C([0, T ]) : sup
h∈(0,T )

|∆hf | < ∞, f(t) ≥ f(0) = l00},

where∆hf was defined in Lemma 3.1. It is an easy exercise to check thatY is closed.
We shall re-useD(T ) with T replacingh and explicit usage of the functional argument,

D(a, T ) = sup
0<s≤T

|∆sa|.

We define three continuous operators

K : B(l00, δ) × C1([0, T ]) → XT , L : B(l00, δ) × C1([0, T ] × [l00, L1]) → XT ,

M : Y × C1([l00, L1]) → XT ,

whereB(l00, δ) ⊂ XT is the open ball, centered at a constant functionl00 with radius
δ = 1

2 min{l00, L1 − l00}. These operators are given by formulas

K(a,R0)(t) =
1

t

∫ t

0

(

∫

−
a(s)

0
σ(s,R0(s), y) dy +

γ(nΛ)

a(s)

)

ds,

L(a, d)(t) =
1

t

∫ t

0
σ(s, d(s, a(t)), a(t)) ds, M(a, d0)(t) =

1

t
(d0(a(t)) − R00).

In the above formulasR0 ∈ C1([0, T ]) andd ∈ C1([0, T ] × [l00, L1]) are not arbitrary.
They satisfy the relations:R0(0) = R00 andd(0, ·) = d0(·).

Literally taken, the above definition ofL is correct for any elementa ∈ XT , however,
the left-hand-side of (3.12) makes sense only for monotone increasingl0(·).

The operatorsL andK are not only continuous, which is easy to check, but also dif-
ferentiable with respect toa. Moreover, they are also locally Lipschitz continuous with
respect toR0 and d. However, in order to makeM(a, d0) well-defined, we need that
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d0,x(l00) = 0 anda ∈ Y . It is subsequently easy to see that for a fixedd the mapping
M(·, d0) : Y → C[0, T ] is locally Lipschitz continuous. Namely, we have fora1, a2 ∈ Y ,

‖M(a1, d0) − M(a2, d0)‖C0 ≤
1

2
Lip(d0,x(·))(D(a1, T ) + D(a2, T ))‖a1 − a2‖C0 .

Taking into account the operators defined above, equation (3.13) takes the form

K(a,R0) = L(a, d) + M(a, d0). (3.33)

Step 2.We have to specifyR0 andd. We defined as a unique solution to (3.30) with initial
datad0. Moreover, the solution is continuously differentiable with respect tox.

Formula (3.33) implies that we should takeR0, which is a solution to

Ṙ0(t) =

∫

−
a(t)

0
σ(t, R0(t), y) dy +

γ(nΛ)

a(t)
, R0(0) = R00. (3.34)

Moreover, the mappingC([0, T ]) ∋ a 7→ R0 ∈ C([0, T ]) is Lipschitz continuous. Indeed,
if we takea1, a2 and the correspondingR1

0, R2
0, then one can easily see that fort ≤ T ,

|R1
0(t) − R2

0(t)| ≤

∫ t

0
C(σx1

, l00)(‖R
1
0 − R2

0‖C[0,T ] + ‖a1 − a2‖C[0,T ]) ds.

Thus, if we take sufficiently smallT < T∗, then

1

2
‖R1

0 − R2
0‖C[0,T ] ≤ CT‖a1 − a2‖C[0,T ], (3.35)

whereCT may be made smaller than12 .
If we stick to the above definitions ofR0 andd, then after differentiating (3.13) we

obtain the following equation for a matching curve emanating from l00,

ȧ =

∫

−
a(t)

0
σ(t, R0(t), y) dy +

γ(nΛ)

a(t)
− σ(t, d(t, a(t)), a(t))

∫ t

0
(σx1

(s, d(s, a(t)), a(t))dx(s, a(t)) + σx2
(s, d(s, a(t)), a(t))) ds − d0,x(a(t))

,

a(0) = l00. (3.36)

Let us denote the RHS of (3.36) byH(t, a(t), R0(t)) for t > 0. We also set

H(0, l00, R00) = lim
h→0+

H(h, a(h), R0(h)),

wherea is a matching curve. By Proposition 3.4 (b–d), we see thatH(0, l00, R00) is finite.
We also note thatH(0, a,R00) must blow up fora 6= l00. Thus, the Lipschitz continuity
of H does not make much sense. Thus, we will apply the method used in the proof of the
Picard Theorem. But first of all, we notice that this equationis equivalent to the following
one

a(t) = l00 +

∫ t

0
H(s, a(s), R0(s)) ds, (3.37)
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which is coupled to (3.34). For eachǫ > 0 we set,

aǫ(t) =

{

l00 for t ≤ ǫ,

l00 +
∫ t−ǫ

0 H(s, aǫ(s), Rǫ
0(s)) ds for t > ǫ,

(3.38)

Rǫ
0(t) = R00 +

∫ t

0

(

∫

−
aǫ(s)

0
σ(s,Rǫ

0(s), y) dy +
γ(nΛ)

aǫ(s)

)

ds.

Due to positivity ofH functionsaǫ are strictly increasing, the same is true aboutRǫ
0. More-

over, sinceH is bounded, we deduce that for a fixedT > 0 the family of functionsaǫ on
[0, T ] is equibounded and equicontinuous. In addition, monotonicity, boundedness ofσ and
the fact thata(t) ≥ l00 for all t ∈ [0, T ] imply a uniform bound onṘǫ

0. Hence, we deduce
thatRǫ

0 are bounded and equicontinuous. Thus, by Arzela-Ascoli Theorem we deduce ex-
istence of a sequenceǫk → 0 and two continuous functionsa, R0 such thataǫk converges
uniformly toa on [0, T ] as well asRǫk

0 converges uniformly toR0 on [0, T ]. Thus, we may
pass to the limit in (3.38), because on both sides of the equality we have the same function
aǫk andRǫk

0 , this yields (3.33).
Finally, a as a limit of increasing functions must be increasing.

Step 3.We will show that there is no more than one solution to (3.33).Due to (3.34),R0 is
defined uniquely once we specifya, thus it is sufficient to prove that there is no more than
onea satisfying (3.33).

Let us suppose thatai, i = 1, 2, satisfy (3.33), in particularRi
0 = Ri

0(ai). Hence,

K(a1, R
1
0) −K(a2, R

2
0) = (L(a1, d) + M(a1, d)) − (L(a2, d0) + M(a2, d0)).

Derivativesa′i, i = 1, 2, have a common bound and(DaK(a,R0))(0), which is the follow-
ing expression

1

l00

(∫

−
l00

0
σ(0, R00, y) dy +

γ(nΛ)

l00
− σ(0, R00, l00)

)

,

vanishes. Thus, we deduce that for anyǫ > 0 there isT > 0 and δ > 0 such that
if ‖a1 − a2‖C0[0,T ] ≤ δ and ‖R0 − R00‖C0[0,T ] ≤ δ, then ‖DaK(a,R0)‖ ≤ ǫ. We
shall estimate‖K(a,R1

0) − K(a,R2
0)‖ in C([0, T ]). It is not difficult to see that Lipschitz

continuity ofσ implies that

‖K(a1, R
1
0) −K(a2, R

2
0)‖C0[0,T ] ≤ ǫ‖a1 − a2‖C0[0,T ] + M‖R1

0 − R2
0‖C0[0,T ]

Thus, due to (3.35) we conclude that for sufficiently smallT we have

‖K(a1, R
1
0) −K(a2, R

2
0)‖C0[0,T ] ≤ 2ǫ‖a1 − a2‖C0[0,T ]. (3.39)

We shall check that there existsm0 positive, such that

‖(L(a1, d)+M(a1, d0))−(L(a2, d)+M(a2, d0))‖C0[0,T ] ≥ m0‖a1−a2‖C0[0,T ]. (3.40)

Indeed, after we seta(τ) = (a1(t) − a2(t))τ + a2(t), we see that

(L(a1, d) + M(a1, d0)) − (L(a2, d) + M(a2, d0))(t) =

(a1(t) − a2(t))
h(t)

t

∫ t

0

∫ 1

0
(σx1

(s, d(s, a(τ)), a(t))dx(s, a(τ)) + σx2
(s, d(s, a(t)), a(τ)) dτds

+(a1(t) − a2(t))

∫ 1

0
d0,x(a(τ))) dτ.
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After taking the absolute value we notice

|(L(a1, d) + M(a1, d0)) − (L(a2, d) + M(a2, d0))(t)| ≥ m0|a1(t) − a2(t)|,

wherem0 > 0 and

min
t∈[0,T ]

1

t

∫ t

0
(σx1

(s, d(s, a(t)), a(t))dx(s, a(t)) + σx2
(s, d(s, a(t)), a(t))) ds + d0,x(a(t))

= m0 > 0.

Hence,
2ǫ‖a1 − a2‖XT

≥ m0‖a1 − a2‖XT
,

where we take2ǫ < m0, as a result‖a1 − a2‖XT
= 0. The uniqueness follows.

Step 4.Part (b). This in fact is an easy consequence of Lipschitz continuity of the operators
K, L, M with respect tod andR0. Namely, from (3.33) we have

K(a1, R0(a1)) −K(a2, R0(a2)) = (L(a1, d
1) + M(a1, d

1
0)) − (L(a2, d

2) + M(a2, d
2
0))

= (L(a1, d
1) − L(a1, d

2)) + (L(a1, d
2) −L(a2, d

2))

+(M(a1, d
1
0) −M(a1, d

2
0)) + (M(a1, d

2
0) −M(a2, d

2
0)).

Combining this with Lipschitz continuity ofL andM, with respect tod, and (3.39), (3.40)
which are valid for sufficiently smallT , we come to the conclusion that

2ǫ‖a1−a2‖XT
+C‖d1−d2‖C0([0,T ]×[l00,l10])+D(a1, T )‖d1

0−d2
0‖C1[l00,l10] ≥ m0‖a1−a2‖XT

.

We are permitted to take2ǫ < m0, hence our claim follows from (3.30). �

We have to treat the case ofl1 separately because of the additional dependence onL1.

Theorem 3.2 (a) Let us suppose thatL1 ∈ C1([0, T∗]) andd0 ∈ C1([l10,M ]), where
l10 > 0, L1(t) < M are given, we setR10 = d0(l10). We assume thatσt, σx1

andσx2
are

continuous on[0, T∗) × R
2. Moreover, for eacht ∈ [0, T∗) functionσ(t, ·, ·) satisfies the

Berg’s effect (1.2) and (1.3). We assume thatl10 is a point where the tangency condition
is satisfied,d0,x(l10) = 0, andΣΛ

1 > 0 (see (3.26) for the definition). Then, there exists
T ∈ (0, T∗] such that there exists a unique matching curvet 7→ l1(t) for t ∈ [0, T ) which
is of classC1.

(b) If the couples(L1
1, d

1), (L2
1, d

2) both satisfy (a) andl11, l21 are the corresponding match-
ing curves, then there exists a constantK such that

‖l11 − l21‖C[0,T ] ≤ K(‖d1
0 − d2

0‖C1[l00,L1] + ‖L1
1 − L2

1‖C[0,T ]).

Proof. The line of reasoning is exactly as in Theorem 3.1. We keep thesame definition of
XT while Y needs an obvious modification. We define three continuous operators

K : B(l10, δ) × C1([0, T ])2 → XT , L : B(l10, δ) × C1([0, T ] × [l10, L1]) → XT ,

M : Y × C1([l10, L1]) → XT ,
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K,L : B(l10, δ) → XT andM : Y → XT , given by formulas

K(a,R1, L1)(t) =
1

t

∫ t

0

(

∫

−
L1

a(s)
σ(s,R1(s), y) dy −

2γ(nR)

L1 − a(s)

)

ds,

L(a, d)(t) =
1

t

∫ t

0
σ(s, d(s, a(t)), a(t)) ds, M(a, d0)(t) =

1

t
(R10 − d0(a(t))).

The desired matching curvel1(·) is a solution to the following equation, (where the depen-
dence upond0 andL1 has been suppressed)

K(a,R1) = L(a, d) + M(a, d0).

The only difference with the proof of Theorem 3.1 is thatK depends in theC1–manner
uponL1, hence the additional dependence ofl1, a solution of the above equation, uponL1.
�

Remark 3.1 We need the same results onr0, r1 which we proved aboutl0, l1. They are
obtained by the obvious change of notation, in particular wehave to defineΣR

0 , ΣR
1 :

ΣR
0 =

∫

−
r00

0
σt(0, y, L00) dy − σt(0, r00, L00) +

σ(0, r00, L00)

(
∫

−
r00

0
σx1

(0, y, L00) dy − σx1
(0, r00, L00)

)

,

(3.41)

ΣR
1 =

∫

−
R10

r10

σt(0, y, L10) dy − σt(0, r10, L10)

+σ(0, r10, L10)

(∫

−
R10

r10

σx1
(0, y, L10) dy − σx1

(0, r10, L10)

)

+
1

R10 − r10
(σ(0, R10, L10) − L̇1(0))Ṙ1(0),

whereL̇1(0) and Ṙ1(0) are given by (3.27). We will just state those results. All these
theorems permit us to close system (3.7).

Theorem 3.3 (a) Let us suppose thatd0 ∈ C1([r00, R1]), wherer00 > 0, is given,
we setL00 = d0(r00). We assume thatσt, σx1

andσx2
are continuous on[0, T∗) × R

2.
Moreover, for eacht ∈ [0, T∗) functionσ(t, ·, ·) satisfies the Berg’s effect (1.2) and (1.3).
We assume thatr00 is a point, where the tangency condition is satisfied andd0,x(r00) = 0,
ΣR

0 > 0. Then, there existsT ∈ (0, T∗] such that there exists a unique matching curve
t 7→ r0(t) for t ∈ [0, T ) which is of classC1.

(b) If the couplesd1
0, d2

0 both satisfy (a) andr1
0, r2

0 are the corresponding matching curves,
then there exists a constantK such that

‖r1
0 − r2

0‖C[0,T ] ≤ K‖d1
0 − d2

0‖C1[r00,R1].

By the similar token we have.
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Theorem 3.4 (a) Let us suppose thatR1 ∈ C1([0, T∗]), andd0 ∈ C1([r10,M ]), where
r10 > 0, R1(t) < M are given. We assume thatσt, σx1

and σx2
are continuous on

[0, T∗) × R
2. Moreover, for eacht ∈ [0, T∗) function σ(t, ·, ·) satisfies the Berg’s effect

(1.2) and (1.3). We setL10 = d0(r10). We assume thatr10 is a point where the tangency
condition is satisfied,d0,x(r10) = 0 (the superscriptR is suppressed) andΣR

1 > 0. Then,
there existsT ∈ (0, T∗] such that there exists a unique matching curvet 7→ r1(t) for
t ∈ [0, T ) which is of classC1.

(b) If the couples(R1
1, d

1
0), (R

2
1, d

2
0) both satisfy (a) andr1

1, r2
1 are the corresponding match-

ing curves, then there exists a constantK such that

‖r1
1 − r2

1‖C[0,T ] ≤ K(‖d1
0 − d2

0‖C1[r00,R1] + ‖R1
1 − R2

1‖C[0,T ]).

Once we closed system (1.2) by supplying the interfacial curvesli, ri, i = 0, 1, we may
show existence of solutions. We shall show Theorem 1.1 forl00 < l10 andr00 < r10, the
first step toward this goal is to consider data leading to a matching curve emanating from
r00, r10, l00 or l10. Without loss of generality we may assume that a matching curve starts
at l00.

Theorem 3.5 We adopt the following hypotheses. Functionσ is ofC1–class on[0, T∗)×
R

2 and for eacht ∈ [0, T∗) function σ(t, ·, ·) satisfies Berg’s effect (1.2) and (1.3). In
addition,β fulfills (2.7). Two Lipschitz continuous functiondΛ

0 , dR
0 are given. They define

a bent rectangleΓ0 through (BR). Moreover,dΛ
0 , dR

0 are of classC1,1 in the complement
of the interior of faceted regions. At the pointl00 the tangency condition is satisfied and
dΛ
0,x(l00) = 0. The quantityΣΛ

0 is defined by (3.14) andΣΛ
0 > 0. The other interfacial

point l10 is given andl00 < l10. Furthermore, the interfacial curvesl1(·), r0(·) andr1(·)
are well-defined and they are Lipschitz continuous with respect todΛ, dR. Then, there exist
T ∈ (0, T∗] and a variational solution to (1.1) on[0, T ) anddΛ(t, ·), dR(t, ·), defining the
bent rectangleΓ(t), are of classC1 in the complement of the interior of faceted regions at
each timet > 0. Finally, the right derivative ofdΛ(t, ·) is positive atx = l0(t) for t > 0,
thus we witness the phenomenon of loss of regularity.

Remark. We stated the above Theorem in such a way to separate behaviorof l0(·) from
the character of the other interfacial points. The assumption that the curvesl1(·), r0(·) and
r1(·) depend in a Lipschitz continuous manner upon the data holds by Theorems 3.1, 3.2,
3.3, 3.4 and [GR5, Proposition 2.5]. We will conduct the proof in such a way that it carries
over to the case ofl1, only after minor changes.

Proof of Theorem 3.5. We will write equation (3.7) as an integral equation. We notethat
if ~d = (dΛ, dR) is a solution to (3.7), then due to Theorem 3.1 the interfacial curve l0 is
uniquely determined. The other interfacial curvesl1, ri, i = 0, 1 are uniquely determined
in virtue of one of the Theorems 3.3, 3.4 or Proposition 3.7, its counterpart forr1 or the
counterpart of Proposition 3.6 forr0.

Integrating (3.7) with respect to time yields,

~d = ~d0 +

∫ t

0

~V (s, ~d) ds, (3.42)

where~d0 = (dΛ
0 , dR

0 ), ~V = (V Λ, V R) andV Λ is given by RHS of(3.7)1,2,3 while V R is
given by RHS of(3.7)4,5,6. We stress that this definition takes into account the changing in
time domain of definition ofRi, Lj, i, j = 0, 1.
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On the other hand, if~d is a solution to (3.42), then the curvel0 is uniquely determined

by Theorem 3.1, as well as the curvesl1, ri, i = 0, 1. Subsequently, taking∂
~d

∂t
yields a

solution to (3.7). Thus, it is sufficient to show that operator H(~d), defined as the RHS of
(3.42), has a unique fixed point in a properly chosen Banach space. Here we takeX =
C([0, T ]; (C[0,M ])2) for a suitableT ∈ (0, T∗) and in accordance with part (b) of the
definition of solution we setM = max{L1, R1} + 1. We also have to define (3.7) for
x1, x2 ∈ [−M,M ]. Namely, we set

Ṙ1 =

∫ L1

l1

− σ(t, R1, s) ds −
2γ(nR)

L1 − l1
on [l1,M ],

L̇1 =

∫ R1

r1

− σ(t, s, L1) ds −
2γ(nΛ)

R1 − r1
on [r1,M ]. (3.43)

We notice that the above definition ofM is a restriction onL1(t), R1(t) and timeT .
We consider here a closed set

F = {(f, g) ∈ X : f(t, ·), g(t, ·) are increasing and Lipschitz continuous and

f(0, ·) = dΛ
0 (·), g(0, ·) = dR

0 (·)}.

If ~d ∈ F , then we know from Theorem 3.1 that the curvel0 exists and it is unique. The
other interfacial curvesr0, l1 andr1 are also well-defined. The assumptions on the data
guarantee that they are monotone and in particularl0 is increasing. Existence and Lipschitz
dependence upon the data of the interfacial curvesl0, l1, r0 andr1 permit us to define~d
and consequentlyH(~d), which belongs toF , due to the signs of the velocitiesV R andV Λ.
Moreover, since~V andli, ri, i = 0, 1 are Lipschitz continuous functions of its arguments,
we conclude existence of a smallT > 0 such that operator~V is a contraction inF . Hence,
existence of a unique fixed point follows.

By theory of ODE we deduce that~d(t, ·) is C1 in the complement of the faceted regions.
Moreover, one can see

(dΛ)+x (t, l0(t)) = dΛ
0 (l0(t)) +

∫ t

0
σx1

(s, dΛ(s, l0(t)), l0(t))d
Λ
x (s, l0(t)) ds.

Due to positivity ofσx1
we conclude that(dΛ)+x (t, l0(t)) is always positive fort > 0. Thus,

we witness the loss of differentiability of solutions.
We have to exhibitξ and to show that the pair(Γ, ξ) is a variational solution. In fact,

ξ is given by formula (3.2). In order to show that thisξ is a minimizer we will adapt the
methods of [GR5, Lemma 2.1]. We shall compareEj(ξ + h) andEj(ξ), j = Λ, R. We
have to examine the assumption thatξ + h is in Dj , j = Λ, R. Let us writeh(d̃(t, x)) =
(h1(x), h2(x)). First, since∂γ(nΛ) ∩ ∂γ(nR) = {p}, thenh(±R1,±L1) = (0, 0). As
a result we may consider each sideS±

j , j = Λ, R separately. Thus, we will present the
argument only forEΛ, because the other functional is handled in the same way.

!!!!!!! The requirement div(ξ +h) = ∂
∂τ

(ξ +h) ∈ L2(Si), i = Λ, R, implies continuity
of h. Thus, !!!!!! the structure ofDΛ implies thath1(x) = 0 for all x ∈ [−L1, L1]. In
addition, due toξ2(t, x) = −γ(nR) at x = li, i = 0, 1, we haveh2(li) ≥ 0. By a similar
argumenth2(−li) ≤ 0.

In generalEΛ(ξ) is a curvilinear integral overS+
Λ . It can be written as

EΛ(ξ) =

∫ L1

−L1

1

2
|σ(t, dΛ(t, x), x) − τ ·

∂ξ

∂τ
(t, dΛ(t, x), x)|2

√

1 + (dΛ
x (t, x))2 dx.
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On inverse images of faceted regions this integral simplifies, becauseτ · ∂ξ
∂τ

= ∂ξ2
∂x

and
dΛ

x = 0.
On (l0, l1) the following formula for solutionsdΛ

dΛ(t, x) = dΛ
0 (x) +

∫ t

0
σ(s, dΛ(s, x), x) ds

is valid. Hence,dΛ is strictly increasing and due to∂σ
∂x2

(t, dΛ(x), x) > 0 for x > 0 the

derivative ∂dΛ

∂x
(t, x) never vanishes on(l0, l1). As a result, for eacht > 0 the exceptional

setEΛ
Z contains at most four point, hence Proposition 3.1 yields divSξ = 0 on(−l1,−l0)∪

(l0, l1). In addition, we deduce thatn 6= nΛ,nR there, hence∂γ(n) is a singleton. Thus
h = 0 on (−l1,−l0)∪ (l0, l1). !!!!!! Once we combine it with the continuity ofh we obtain
h(±li) = 0, i = 0, 1. !!!!!!

Our calculations require the knowledge on the behavior of the differenceσ − divSξ
on [−L,−l1], [−l1,−l0], [−l0, l0], [l0, l1], [l1, L]. Due to symmetries involved, we may
consider only positive arguments. First, we takex ∈ [0, l0], thus divSξ = ∂ξ2

∂x2
. We can

immediately see that (cf. (3.4))

σ(t, R0, l0) −
∂ξ2

∂x2
(t, R0, l0) =

∫ l0

0
− σ(t, R0, s) ds +

γ(nR)

l0
= Ṙ0 ≥ σ(t, R0, l0) (3.44)

holds on[0, l0], hence on[−l0, l0].
If Ṙ0 = σ(t, R0, l0), then by [GR5, Lemma 2.1], (see also the proof of [GR5, Theorem

3.1]) theξ we constructed (see (3.2)) is a minimizers. Below, we shall deal with the case
Ṙ0 > σ(t, R0, l0).

Next, we consider[−l1,−l0] ∪ [l0, l1]. Here, we obviously have

σ(t, dΛ(t, x), x) −
∂ξ2

∂x2
(dΛ(t, x), x) ≡ σ(t, dΛ(t, x), x).

On interval[l1, L1] it holds

σ(t, R1, x) −
∂ξ2

∂x2
(t, R1, x) =

∫ L1

l1

− σ(t, R1, s) ds −
2γ(nR)

L1 − l1
.

Let us set

δ =
1

2
(Ṙ0 − σ(t, R0, l0)) > 0

and considerh2 ≥ 0 such that

‖
∂h2

∂x2
‖L∞ ≤ δ. (3.45)

Hence,

|σ −
∂ξ2

∂x2
−

∂h2

∂x2
| = |Ṙ0 −

∂h2

∂x2
| ≥ |σ(t, R0, l0) −

∂h2

∂x2
|.

After collecting the above information we can see that,

EΛ(ξ + h) ≥
1

2

∫ l0

−l0

|σ(t, R0, l0) −
∂h2

∂x2
(x)|2 dx

+
1

2

(∫ −l0

−l1

+

∫ l1

l0

)

|σ(t, dΛ(t, x), x)|2
√

1 + (dΛ
x )2(t, x) dx

+
1

2

(∫ −l1

−L1

+

∫ L1

l1

)

|σ(t, R1, l1) −
∂h2

∂x2
(x)|2 dx. (3.46)
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Hence,

EΛ(ξ + h) − EΛ(ξ) =
∫ l0

−l0

[
1

2
(
∂h2

∂x2
)2 − σ(t, R0, l0)

∂h2

∂x2
] dx +

(
∫ −l1

−L1

+

∫ L1

l1

)

[
1

2
(
∂h2

∂x2
)2 − σ(t, R1, l1)

∂h2

∂x2
] dx.

Integration yields

EΛ(ξ + h) − EΛ(ξ) ≥ −σ(t, R0, l0)h2|
l0
−l0

− σ(t, R1, l1)
(

h2|
L1

l1
+ h2|

−l1
−L1

)

= 0.

The last conclusion follows from∂σ
∂x2

(t, dΛ(t, x), x) > 0 for x > 0, ∂σ
∂x2

(t, dΛ(t, x), x) < 0
for x < 0 andh2(±l1) = 0 = h2(±L1). �

Remarks. The question of uniqueness of solutions will be treated separately.
In the above proof we refer to Lipschitz continuity ofl0 with respect toL1, R1. How-

ever, according to Theorem 3.1 this dependence is trivial. On the other hand, in case ofl1
this dependence is not trivial and the above argument is substantial.

Theorem 3.6 Let us suppose thatσt, σx1
andσx2

are continuous on[0, T∗) × R
2. For

eacht ∈ [0, T∗) function σ(t, ·, ·) satisfies the Berg’s effect (1.2) and (1.3). In additionβ
satisfies (2.7). We assume thatdΛ

0 , dR
0 are given of classC1,1 in the complement of the inte-

rior of the faceted regions. Moreover,ΣΛ
0 is defined by (3.14),ΣΛ

0 > 0 and(dΛ
0 )+x (l00) > 0.

In addition, we assume thatl00 < l10 and that the interfacial curvesl1(·), r0(·) andr1(·)
are well-defined and they are Lipschitz continuous with respect todΛ, dR. Then, there exist
T ∈ (0, T∗] and a variational solution to (1.1) on[0, T ).

Proof. We essentially repeat the argument of Theorem 3.5. Here, instead of Theorem 3.1
we rely on Proposition 3.6 for existence of the matching curve emanating forml00. The
details are omitted. �

The point of Theorem 3.6 is that it shows existence of solutions for data violating the
tangency condition and such that we have a jump discontinuity of dΛ

x at l0.
Finally, we would like to recall the statement of Theorem 1.1, yielding the summary of

the existence.

Theorem 1.1 Let us suppose thatσ is C1 on [0, T∗) × R
2. It satisfies (1.2) and (1.3),

β is given by (2.7) andγ is defined by the formula (1.4). If the initial curveΓ0 is a bent
rectangle,l00 < l10 and none of the quantitiesΣΛ

0 , ΣΛ
1 , ΣR

0 , ΣR
1 is zero, then there exist

T ∈ (0, T∗] and a unique local-in-time variational solution to (1.1) on[0, T ).

In order to prove it, we have to make its detailed content explicit. This is done in the
Theorem below, where we restrict the statement just to a single sideSΛ and a single in-
terfacial point which does not lead to any loss of generalityas we have already remarked
in the proof of Theorem 3.5. During the course of constructing the interfacial curves we
have seen that we have to take into account the following factors: (1) the sign ofΣΛ

0 ; (2)
the tangency condition atl00; (3) the vanishing ofd+

0,x(l00). The theorem below is a report
of a book keeper about behavior of the interfacial curve whose formula for the derivative
is l̇0(t) = (Ṙ0(t) − σ(t, R0(t), l0(t)))/dx(t, l0(t)). Obviously, the casėl0(0) = 0/0 cor-
responding to the tangency condition being satisfied atl00 and to vanishing ofd+

0,x(l00) is
involved. It is also transparent that the case corresponding to d+

0,x(l00) = 0 when the tan-
gency condition fails andΣΛ

0 > 0 is left out. It is so, because it requires different methods,
it will be dealt with elsewhere.
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Theorem 3.7 Let us suppose thatσ satisfies the Berg’s effect and (1.3), it isC1 on
[0, T∗) × R

2, β is defined by (2.7) andγ is defined by the formula (1.4). We assume that
the initial curveΓ0 is a bent rectangle (but not a rectangle) andl00 < l10. Then, there exists
T ∈ (0, T∗] such that:

(a) If ΣΛ
0 < 0 and the tangency condition holds atl00, then there exists a unique local-in-

time variational solution to (1.1) on[0, T ) andl0(·) is a tangency curve.

(b) If ΣΛ
0 > 0 and the tangency condition holds atl00, then there exists a unique local-in-

time variational solution to (1.1) on[0, T ) andl0(·) is a matching curve.

(c) If ΣΛ
0 < 0 and the tangency condition does not hold atl00, then there existsλ00 < l00

where the tangency condition is satisfied atλ00. If the assumptions either (a) or (b) are
satisfied atλ00, then there exists a variational solution on[0, T ).

(d) If ΣΛ
0 > 0, the tangency condition does not hold atl00 andd+

0,x(l00) > 0, then there
exists a unique local-in-time variational solution to (1.1) on [0, T ) andl0(·) is a matching
curve.

Proof. (a) This has been proved in [GR5, Theorem 3.1].
(b) This is the content of Theorem 3.5 and Theorem 4.1 below.
(c) The interfacial curve wants to be decreasing while the tangency condition is violated.

We encountered such a situation in [GR5,§2.4]. In this caseṘ < σ(t, R0, l0), hence the
existence of the postulatedλ00 < l00 is obvious. IfΣΛ

0 6= 0 at the new location, then we
are back to cases (a) or (b) of the present theorem.

(d) This is the content of Theorem 3.6 and Theorem 4.1 below. �

We left out undecided the case ofΣΛ
0 = 0. However, suchσ’s are in aC1-neighborhood

of anotherσ1, which satisfies one of the conditions above. This is why we claim we have
solved the existence problem for the case of generic data.

We also note that if (c) in the above Theorem occurs, then the interval [λ00, l00] will
bend immediately.

3.2 Bending the rectangles

In the previous section we excluded the casel00 = l10. We will treat it now. Let us notice
that if l00 = l10, then we have a flat facet which is partitioned into three pre-images of
faceted regions,(−L1,−l00), (−l00, l00), (l00, L1) and at points belonging to these inter-
vals vector fieldξ is in the relative interior of∂γ(n). The solution to the minimization
problem (2.6) satisfies (3.4). The definition of the faceted region implies thatξ(t, l00) must
belong to the boundary of∂γ(n). Thus, it follows from Proposition 3.2 and its proof that

∂ξ

∂x2
(t, R0, l00) = 0,

i.e., the tangency condition holds atl00, thusV0 = V1 in (3.4).
This fact restricts the possible behavior of the interfacial curves li(·), i = 0, 1, and

explains our interest in data satisfying the tangency conditions.
We notice that some of the configurations are not possible. Webegin with complications

related to tangency curvesl⋆i (·), i = 0, 1.

31



Proposition 3.8 Let us suppose that(Γ, ξ) is a variational solution andl00 = l10. If
l⋆i (·), i = 0, 1 are tangency curves satisfying

l⋆0(t) > l⋆1(t) for t > 0. (3.47)

Then, fort > 0 interval(−L1, L1) is the pre-image of a single faceted region.

Proof. From the geometry of the problem we infer that the inequalityl⋆0(t) > l⋆1(t) im-
plies that the lines tangent toG at l⋆0(t) and l⋆1(t) are below the graph ofG. The first
line connects the point(0, 0) and (l⋆0(t), G(l⋆0(t) + γ(nR))), the second one connects
(l⋆1(t), G(l⋆1(t + γ(nR)))) and (L1, G(L1)). Due to convexity ofG, they are below the
graph ofG. Hence, the line joining the points(0, 0) and(L1, G(L1)) is below these tan-
gents. Thus, we showed a different solution to the variational problem (2.6) for which the
interfacial points disappear. We reached a contradiction,as a result no bending of the facet
occurs and our claim follows. �

Furthermore, a situation when both curvesl0(·), l1(·) are matching curves is not possi-
ble. Indeed, this would imply thatl1(t) < l0(t), which contradict the possibility of defining
these matching curves.

Finally, we have the situation when one ofl0(·), l1(·) is a matching curve, while the
other one is a tangency one. For the sake of definiteness, we assume thatl0 is matching
while l1 is a tangency curve. Thus,l1(t) = l⋆1(t) > l10 and l0(t) > l10. We notice that
by Proposition 3.8 inequalityl⋆0(t) > l⋆1(t) is excluded. Since the slope of the tangent to
G(t, ·) continuously depends upon time, we observe that there is a tangent to the graph of
G(t, ·) for 0 < t < ǫ and passing through(0, 0). Its tangency pointl⋆0(t) must be close
to l10 andl⋆0(t) < l⋆1(t). Sincel0(t) is a matching curve, thenl⋆0(t) < l0(t), in particular
dG
dx

(l0(t)) > dG
dx

(l⋆0(t)), hence the line connecting(0, 0) and(l0(t), G0(t) + γ(nR)) must
intersectG. Thus,ξ is not a solution to the variational principle (2.6), a contradiction. Our
claim follows.

Now, we can show the existence result, knowing that only tangency curves starting from
l00 = l10 are possible.

Theorem 3.8 Let us suppose thatσ andβ are as in Theorem 3.7,l00 = l10 andΣΛ
0 < 0,

ΣΛ
1 > 0. Then, there isT > 0 such a variational solution to (1.1) exists fort ∈ [0, T ).

Moreover, the interfacial curvesl⋆i (·), i = 0, 1, are the tangency curves andl⋆0(t) < l⋆1(t)
for t > 0.

Proof. What we have shown so far implies thatl⋆0(t) ≤ l⋆1(t). Since for the tangency
curves we haveṘ0 < Ṙ1, thenl⋆0(t) < l⋆1(t). Existence of variational solutions follows
now from Theorem 3.7 (a) and its proof. �

3.3 Examples

In [GR5] we considered a couple of examples ofσ’s. They were

σ1 = 2σ∞ − σ∞

(

1

1 + x2
+

1

1 + y2

)

,

σ2 = 2σ∞ −
σ∞

1 + x2 + y2
.
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Let us look first atσ1 with constantσ∞. It is easy to check that

Σi
0 ≡ 0, i = R,Λ,

ΣΛ
1 = L̇1(σ1(R1, L1) − σ1(R1, l1)) > 0, ΣR

1 = Ṙ1(σ1(R1, L1) − σ1(r1, L1)) > 0.

Thus, if the tangency condition is satisfied at the initial time atl00 or l10, then these points
are the starting points of the tangency curves, moreover,l0(t) ≡ l00. A similar conclusion
holds forr0 andr1.

If we assume that the tangency condition is violated atl10 (resp. atr10), then we can
solve equation (1.1) only if the left derivative ofdΛ

0 (resp.dR
0 ) is positive atl1, (resp.r1).

Let us turn our attention to theσ2, which is more interesting, because we cannot guaran-
tee in general the sign of allΣi

j, i = R,Λ, j = 0, 1. We first considerσ∞ independent from

time. It is easy to notice that, if the tangency condition is satisfied atl00, then l̇0(0) > 0,
because for a constantσ∞, the quantityΣΛ

0 takes the form

Σ̃Λ
0 = 2R00Ṙ0(0)

(∫

−
l00

0

dy

(1 + R2
00 + y2)2

−
1

(1 + R2
00 + l200)

2

)

< 0.

Hence, a tangency curve emanates froml00. We also notice that in general, we cannot
determine the sign oḟl1(0), without the detailed knowledge aboutl00, l10, R00, R10 and
L10 becauseΣΛ

1 equals to

Σ̃Λ
1 = 2R10Ṙ1(0)

(∫

−
L10

l10

dy

(1 + R2
10 + y2)2

−
1

(1 + R2
10 + l210)

2

)

+
L̇1(0)

L10 − l10

(

1

1 + R2
10 + l210

−
1

1 + R2
10 + L2

10

)

.

Thus, we cannot determine the character of the curve starting atl10.
We can change this situation ifσ∞ depends upon time. Namely,

ΣΛ
0 = Σ̃Λ

0 + σ∞
t

(

1

1 + R2
00 + l200

−

∫

−
l00

0

dy

1 + R2
00 + y2

)

and we notice that the term in the parenthesis is negative. Similarly,

ΣΛ
1 = Σ̃Λ

1 + σ∞
t

(

1

1 + R2
10 + l210

−

∫

−
L10

l10

dy

1 + R2
10 + y2

)

and the difference in the parenthesis is positive. If we choose large negativeσ∞
t , then we

can obtainΣΛ
0 > 0 while ΣΛ

1 < 0, i.e., matching curves start atl00 and atl10. If we reverse
the sign ofσ∞

t , we will obtain two tangency curves starting froml00 andl10.

4 Uniqueness of solutions

Here, we essentially use the methods of [GR5, Theorem 3.2]. They depend on the mono-
tonicity of the RHS of (3.7) and on regularity of the interfacial curves,ri, li, i = 0, 1.
For the sake of completeness we present below the proof, which is valid for both types of
curves.

33



Theorem 4.1 Let us suppose thatβ satisfies (2.7),σ is of C1-class on[0, T )×R
2, for each

t ∈ [0, T ) functionσ(t, ·, ·) fulfills (1.2) and (1.3). We are given(Γi, ξi), i = 1, 2, are two
variational solutions to (1.1) defined on[0, T ) andΓ1(0, ·) = Γ2(0, ·), ξ1(0, ·) = ξ2(0, ·).
Moreover, the initial data satisfy the assumptions of Theorem 3.7 or§3.2. Then,Γ1(t, ·) =
Γ2(t, ·), ξ1(t, ·) = ξ2(t, ·) for all t ∈ [0, T ).

Proof. One of the problems we have to overcome is the time dependenceof domains
of dRi , dΛi , i = 1, 2. We have to extend these to fixed domains. ByM we mean the
number defined in part (b) of the definition on the notion of a solution. We recall that by
assumptionσ(t, ·, ·) is defined overR2, while ξi(t, ·, ·), i = 1, 2 are over[−M,M ]2, see
(2.2). We will extenddRi anddΛi to [−M,M ]2. However, in order to simplify the notation
we will concentrate ondΛi , i = 1, 2. The argument fordRi is the same and thus the details
will be omitted. We extenddΛi , i = 1, 2 is by the solution to the system

∂dΛi

∂t
= σ(t, Ri

1, L
i
1) −

∂+ξi
2

∂x2
(t, Ri

1, L
i
1), x ∈ [Li

1,M ], (4.1)

∂dΛi

∂t
= σ(t, Ri

1,−Li
1) −

∂−ξi
2

∂x2
(t, Ri

1,−Li
1), x ∈ [−M,−Li

1],

where∂±ξi

∂x2
are one-sided derivatives. We stress that the speed of evolution of dΛi in (4.1) is

set to be constant and equal to the horizontal speed of vertex(Ri
1, L

i
1). Sinceσ(t, Ri

1, x)−
∂+ξi

2

∂x2
(t, Ri

1, x) is constant forx ∈ [li1, L
i
1] and equal toṘi

1. We see that the above definition
is compatible with (3.43).

Subsequently, we proceed as in the proof of [GR5, Theorem 3.2], i.e. we take the
difference of (4.1) fori = 1, 2, multiply by dΛ2 − dΛ1 and integrate over[−M,M ]. Hence,
we obtain

1

2

d

dt

∫ M

−M

|dΛ2(t, x) − dΛ1(t, x)|2 dx

=

∫ M

−M

(

−
∂ξ2

2

∂x2
(t, x) +

∂ξ1
2

∂x2
(t, x)

)

(dΛ2(t, x) − dΛ1(t,x)) dx

+

∫ M

−M

[σ(t, dΛ2(t, x), x) − σ(t, dΛ1(t, x), x)](dΛ2(t, x) − dΛ1(t, x)) dx

= J + I.

The second term is easily handled due to Lipschitz continuity of σ, we obtain

I ≤ C

∫ M

−M

|dΛ2 − dΛ1 |2 dx.

In order to proceed, we have to examineξi and to introduce some notation for that purpose.
Namely, we shall writeξ(·) = ξ(dΛ, L, ·) to denote the unique solution to (2.6) ford = dΛ

defined over[−L,L]. In fact, as we have seen in the course of the proof of [GR5, Theorem
3.2], it is a unique solution to the corresponding Euler–Lagrange equation. Hence, in our
caseξi(·) = ξi(dΛi , Li, ·), i = 1, 2. Similar notation should be used for the Cahn-Hoffman
vectors defined over the other pair of sidesSR. However, for the sake of simplicity of
notation we shall not do this.
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Using the new notation, we will rewrite the termJ , namely

J =

∫ M

−M

(

−
∂ξ2

∂x2
(dΛ2 , L2, x) +

∂ξ2

∂x2
(dΛ1 , L2, x)

)

(dΛ2 − dΛ1)(t, x) dx

+

∫ M

−M

(

−
∂ξ2

∂x2
(dΛ1 , L2, x) +

∂ξ2

∂x2
(dΛ1 , L1, x)

)

(dΛ2 − dΛ1)(t, x) dx

= J1 + J2.

An argument based on monotonicity of the operator∂γ, as in the proof of [GR5, Theorem
2.2], yields thatJ1 ≤ 0. Namely, by the definition ofξ’s

J1 =

∫ min{L1
1,L2

1}

−min{L1
1,L2

1}

(

−
∂ξ2

∂x2
(dΛ2 , L2, x) +

∂ξ2

∂x2
(dΛ1 , L2, x)

)

(dΛ2 − dΛ1)(t, x) dx +

(

∫ −min{L1
1,L2

1}

−max{L1
1,L2

1}
+

∫ −max{L1
1,L2

1}

min{L1
1,L2

1}

)

(

∂ξ2

∂x2
(dΛ1 , L2, x) −

∂ξ2

∂x2
(dΛ2 , L2, x)

)

|R1
1 − R2

1| dx

= J11 + J12.

The integration by parts and the boundary conditions (2.5) on ξi atx = ±Li
1, i = 1, 2, lead

us to

J11 =

∫ min{L1
1,L2

1}

−min{L1
1
,L2

1
}
(ξ2(d

Λ2 , L2, x) − ξ2(d
Λ1 , L2, x))(dΛ2

x − dΛ1
x )(t, x) dx.

Now, we notice that the integrand equals to the following inner product

−(ξ(dΛ2 , L2, x) − ξ(dΛ1 , L2, x)) · (dΛ2
x (t, x) − dΛ1

x (t, x), 0) =: I1.

Sinceξi(x) ∈ ∂γ((−dΛi
x , 1)), becausen(x) = (−dΛi

x , 1)/

√

1 + (dΛi
x )2, we conclude by

monotonicity of the subdifferential thatI1 ≤ 0. Hence

J11 ≤ 0.

Later we will deal withJ12. It requires treatment similar to that applied toJ21 below.
Now, we turn our attention toJ2. Vector fieldsξ(dΛ1 , Li), i = 1, 2 are obtained as

solutions to the Euler–Lagrange equation for the samedΛ1 but differentLi
1.

Let us notice that the data uniquely imply whether the interfacial curveli0(·), i = 1, 2, is
a tangency curve or a matching curve. Ifli0(·), i = 1, 2, are tangency curves then, by [GR5,
Proposition 2.5] they are uniquely defined byσ andR0(·) = R1

0(·) = R2
0(·). Moreover,

they are of classC1. On the other hand, ifli0(·), i = 1, 2, are matching curves, then by
Theorem 3.1 they are also uniquely defined byσ andR0(·), in additionli0 ∈ C1[0, T ].

As a result, by the formula forξ(dΛ1 , Li, x), on (−l0, l0), we deduce

∂ξ2

∂x1
(dΛ1 , L2, x) =

∂ξ2

∂x1
(dΛ1 , L1, x) for x ∈ (−l0, l0).

However, the above argument is no longer valid forli1, i = 1, 2, hence we obtain

J2 =

(∫ −l0

−M

+

∫ M

l0

)(

−
∂ξ1

∂x1
(dΛ1 , L2, x) +

∂ξ1

∂x1
(dΛ1 , L1, x)

)

(dΛ2 − dΛ1)(x) dx.
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Let us introduce further notation

lk1 = min{l21, l
1
1}, lm1 = max{l21, l

1
1} Li

1 = min{L2
1, L

1
1}, Lj

1 = max{L2
1, L

1
1}.

Let us notice that

∂ξ2
∂x1

(dΛ1 , Lp, x) = 0, for x1 ∈ (l0, l
k
1), p = 1, 2,

∂ξ2
∂x1

(dΛ1 , Lm, x) = 0, for x1 ∈ (lk1 , lm1 ),

where the superscriptm in Lm means the indexm in lm1 , and

∂ξ2

∂x1
(dΛ1 , Li, x) = 0, for x1 ∈ (Li

1, L
j
1).

Hence,

J2 ≤ 2

∫ lm1

lk1

∣

∣

∣

∣

∂ξ2

∂x2
(dΛ2 , Lk, x)

∣

∣

∣

∣

|dΛ2 − dΛ1 |(t, x) dx

+2

∫ Li
1

lm1

∣

∣

∣

∣

∂ξ2

∂x2
(dΛ2 , L2, x) −

∂ξ2

∂x2
(dΛ2 , L1, x)

∣

∣

∣

∣

|dΛ2 − dΛ1 |(t, x) dx

+2

∫ L
j
1

Li
1

∣

∣

∣

∣

∂ξ2

∂x2
(dΛ2 , Lj , x)

∣

∣

∣

∣

|dΛ2 − dΛ1 |(t, x) dx.

The formulas for∂ξ1
∂x1

, see (3.2), permit us to write

J2 ≤ K

(

∫ lm1

lk1

|dΛ2 − dΛ1 | dx1 + |L2
1 − L1

1|‖d
Λ2 − dΛ1‖L2 + |L2

1 − L1
1||R

2
1 − R1

1|

)

.

In order to reach the desired bound, we have to show the following “reverse Hölder inequal-
ities”,

|L2
1 − L1

1| ≤ C‖dR2 − dR1‖L2 , |R2
1 − R1

1| ≤ C‖dΛ2 − dΛ1‖L2 . (4.2)

We will show them, possibly after restricting the time intervals by the condition

li1(t) ≤ l10 + a, t ≤ T1, ri
1(t) ≤ r10 + a, t ≤ T1,

for somea > 0. SuchT1 exists because of differentiability ofli1 andri
1 (see [GR5, Propo-

sition 2.5] for the tangency curves and Theorem 3.6 for the matching curves). Thus, after
recalling thatLi

1(t) ≥ L10 for σ satisfying (1.2),

‖dΛ2−dΛ1‖2
L2 =

∫ M

−M

|dΛ2−dΛ1 |2 dx1 ≥

∫ L10

l10+a

|dΛ2−dΛ1 |2 dx1 = |L10−(l10+a)||R2
1−R1

1|
2.

Hence, (4.2) follows. The other inequality follows by the same token.
In order to estimate that the remaining term

∫ lm1
lk
1

|dΛ2 − dΛ1 | dx1, we have to work a

little bit more. We note that equations (3.7)2 and (3.7)5 imply that dΛi , dΛi , i = 1, 2 are
bounded on[0, T1] × [−M,M ] as long as

‖dj
0,x‖L∞ ≤ K < ∞, j = R,Λ.
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Using this information we arrive at

J21 :=

∫ lm1

lk1

∣

∣dΛ2 − dΛ1
∣

∣ dx1 =

∫ lm1

lk1

∣

∣

∣

∣

R2
1 − R1

1 +

∫ lm1

x1

(dΛ2
x − dΛ1

x ) ds

∣

∣

∣

∣

dx1.

Hence,
J21 ≤ |l21 − l11||R

2
1 − R1

1| + K|l21 − l11|
2.

We recall thatli1, no matter what is the character of these curves, they are of classC1 and
if L2

1 = L1
1, thenl11 = l21. Thus,

|l21 − l11| ≤ K|L2
1 − L1

1|.

Taking into account of above bounds we arrive at the estimate

d

dt
‖dΛ2 − dΛ1‖2

L2 ≤ K(‖dΛ2 − dΛ1‖2
L2 + ‖dΛ2 − dΛ1‖2

L2).

A similar estimate is valid for the differencedR2 − dR1 , after adding them up we reach

d

dt
(‖dR2 − dR1‖2

L2 + ‖dΛ2 − dΛ1‖2
L2) ≤ K(‖dR2 − dR1‖2

L2 + ‖dΛ2 − dΛ1‖2
L2).

Using Gronwall inequality we deduce that

‖dΛ2 − dΛ1‖2
L2 + ‖dR2 − dR1‖2

L2 = 0

for t ∈ [0, T1]. Once we show thatΓ1 = Γ2, thenξ1 = ξ2 follows from the strict convexity
of the integrand inEi, i = R,Λ as in the proof of Theorem 2.2. �
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