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Abstract. We consider a bistable reaction-diffusion system arising in the theory of phase tran-
sitions; it appears in several physical contexts such as thin magnetic films and the microphase
separation in diblock copolymer melts. Mathematically it takes the form of an Allen-Cahn equa-
tion coupled to an elliptic equation. This system possessesa Lyapunov functional which repre-
sents the Gibbs free energy of the phase separation problem.We study the large time behavior
of the solution orbits, and use the fact that the problem has agradient structure to prove their
stabilization by means of a version of Łojasiewicz inequality.
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1 Introduction

In this article we consider the following reaction-diffusion system of bistable type, where an
Allen-Cahn equation is coupled to an elliptic equation

ut = Du∆u + f(x, u) − v, in Ω × (0,∞)

(1.1)

0 = Dv∆v − av + γu − b, in Ω × (0,∞)
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together with homogeneous Neumann boundary data foru andv and an initial condition foru.
Here,a, b, γ, Du andDv are positive constants, andΩ is an open, bounded subset ofR

n, n ≥ 1,
with smooth boundary.

Whenf(x, u) = f(u), with for instancef(u) = u − u3, system (1.1) may be regarded as a
special case of the FitzHugh-Nagumo reaction-diffusion system

ut = Du∆u + f(u) − v, in Ω × (0,∞)

(1.2)

τvt = Dv∆v − av + γu − b, in Ω × (0,∞),

with τ = 0.

The FitzHugh-Nagumo system arises in neuro-physiology. Itis a simplified form of the
Hodgkin-Huxley system which describes electronic and ionic events occurring during the trans-
mission of an impulse along an axon, namely the filament carrying signals from the nerve cell
body to other parts of the organism. Its formulation is basedupon the assumption that an axon
behaves like a cylindrical electrical cable with conducting core and partially insulation sheath
[9], [18].

Problem (1.1) or closely related systems also appear in other physical contexts such as thin
magnetic films [10] and the microphase separation in diblockcopolymer melts. Let us comment
on the last one. A diblock copolymer is a linear-chain molecule of two subchains jointed cova-
lently to each other. Each subchain is made of different monomers. Below a critical temperature
the subchains begin to segregate due to repulsion between unlike monomers.

The above problems are gradient flows and involve a free energy functional of nonlocal type
[19],[20] and [23]. The Lyapunov functionalE , which is given by

E(u) =

∫

Ω

(

Du

2
|∇u(x)|2 + F (x, u(x))

)

dx +
1

2

∫

Ω

|∇v(x)|2dx, (1.3)

whereF (x, u) = −

∫ u

0

f(x, s) ds, may represent the Gibbs free energy of a phase separation

problem. The critical points of this variational problem can be regarded as the thermodynamic
equilibrium states of the phase separation phenomenon.

In this paper, in Section 3, we study the large time behavior of the solutions of Problem (1.1).
More precisely we show that any solution of (1.1) converges to a steady state. For this purpose
we use the Łojasiewicz inequality (see [15], [16], [17], [22], [4] and references therein). This
argument depends, in an essential way, on the analyticity ofthe nonlinear termf , which is here
a polynomial inu of the third degree.

On the way, in Section 2, we prove again an existence result. In order to avoid unnecessary
technical difficulties, we assume that the initial datumu0 has already been smoothed out by the
flow. Our tool is the standard theory of analytic semigroups,as exposed in Henry’s book, [13].

2



However, the key to obtain a global in time result is to perform a priori estimates on solutions.
This clearly appears in the proof of Lemma 2.1 below.

The reason for using the argument based on analyticity stemsfrom the fact that we do not
fully know the structure of the steady states of (1.1). However, we know that in similar systems in
Ω = (0, 1) the number of equilibria is finite (see e.g. [11]), so that convergence to equilibria is a
well-know property. Here, we concentrate on the casen ≥ 2. We also note (cf. [4]) that if a solu-
tion converges to an isolated steady state, then we automatically obtain an exponential decay rate.

Our paper is one of the series of articles devoted to studies of stabilization of gradient-like
systems whose main tool is Łojasiewicz inequality. The firstwas the paper by Łojasiewicz
himself, [15], [17], who showed that any bounded solution togradient systems inRn, (which
is an ODE system), converges to a stationary point. This ideawas subsequently developed for
infinite dimensions gradient systems by L. Simon, who showedan appropriate version of the
inequality and applied it to prove stabilization in the Allen-Cahn system and in general phase
field models, see [22]. Another fifteen year were needed for the appearance of a version of
Łojasiewicz inequality which was suitable for an application to Cahn-Hilliard equation, which
resulted in another stabilization result, see [21]. Here, we mention only papers which deal with
problems related to phase transitions, thus we leave out a huge part devoted to application of
Łojasiewicz inequality to evolution problems.

In all the papers mentioned above the nonlinear term was analytic. It turns out that this
assumption may be significantly relaxed. The authors of [6] use a version of the inequality for
a C1 functional, which is not analytic and prove stabilization in a non-local phase-field system;
other phase field models are studied in [7] and [5]. Interestingly, it is possible to study with the
same tools systems with logarithmic singularities, see [1]and the Ginzburg-Landau equations of
superconductivity, [8].

2 Existence

System (1.1) may be re-written as

ut = Du∆u + f(x, u) − K(γu − b), in Ω × (0, T ),

∂u

∂n

= 0, on∂Ω × (0, T ), (2.1)

u(0, x) = u0(x), x ∈ Ω,

where the nonlocal operatorK is defined as follows. Ifw given, thenv = −Kw is the solution
to

−Dv∆v + av = w, in Ω, (2.2)
∂v

∂n

= 0, on∂Ω. (2.3)

In this section we shall establish a global in time existenceresult for smooth initial data. This
is achieved in two steps. First, we show local existence. This fact combined with a priori esti-
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mates implied by the gradient structure of (2.1) and Lemma 2.1 below yields the global in time
existence.

We shall use the language and methods of the semigroup theory. We shall work in the Hilbert
spaceX2 = L2(Ω) as well as in the Banach spacesXp = Lp(Ω), p ∈ (2,∞). Let us denote
by ∆N the Laplace operator with homogeneous Neumann boundary condition. The operator
Du(−∆N + 1) will play a major role; however for the sake of a compact notation we will denote
it by Ap, wherep refers toXp. We remark that the domain ofAp is given by

D(Ap) = {u ∈ W 2,p(Ω) :
∂u

∂n

= 0}.

The operatorsAp are sectorial (see [13, Section 1.4] and [13, Section 1.6]).This fact is par-
ticularly easy whenp = 2, since thenA2 is self-adjoint and positive. Thus, the spacesXα

p are
well-defined as the domains of the operatorsAα

p , (cf. [13, chapter 1]). The norm inXα
p is given

by ‖u‖α,p = ‖Aα
pu‖Lp. In the caseα = 1/2 we denote byA1/2

p the square root ofAp, (cf. [13,

chapter 1]). In fact we can identifyX1/2
p with W 1,p(Ω). Indeed, this is particularly easy when

p = 2, if u ∈ D(Du(−∆N + 1)); then by the definition of the norm and self-adjointness of∆N

we have
Du

−1‖u‖2
1/2,2 = ‖(−∆N + 1)1/2u‖2

L2 = ((−∆N + 1)u, u)L2.

An integration by parts yields,

Du
−1‖u‖2

1/2,2 =

∫

Ω

(|∇u|2 + u2) dx = ‖u‖2
W 1,2. (2.4)

As a result we conclude that the norms‖·‖1/2,2 and‖·‖W 1,2 are equivalent, hence we may identify

W 1,2(Ω) with X
1/2
2 . For a general result, whenp ∈ (1,∞), we note thatXα

p is the complex
interpolation space[Lp(Ω),D(Ap)]α, whereD(Ap) is understood with the graph norm, (see [24,
Theorem 1.15.3]), moreover by [24, Theorem 4.3.3] we have[Lp(Ω),D(Ap)]1/2 = W 1,p(Ω).

Now, we introduce a Lyapunov functional coinciding with (1.3) up to a constant, which plays
a major role in the study of (1.1). We set

E(u) =

∫

Ω

(

Du

2
|∇u(x)|2 + F (x, u(x))

)

dx +
1

2
(γKu, u)L2 − (Kb, u)L2 + C, (2.5)

whereF (x, u) = F0 −
∫ u

0
f(x, s) ds, F0 is a suitable positive number, andC is chosen to ensure

that
1

2
(γKu, u)L2 − (Kb, u)L2 + C ≥ 0. (2.6)

More precisely we assume that

f(x, u) = −a3(x)u3 + a2(x)u2 + a1(x)u,

ai, i = 1, 2, 3 are smooth with all their derivatives bounded inΩ, (2.7)

a3(x) ≥ δ > 0 all x ∈ Ω.
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Hence we may chooseF0 so thatF (x, u) is positive for all(x, u) ∈ Ω × R.
In our examplef(u) = u− u3, i.e. F (u) = 1

4
(1− u2)2. In view of (2.6) and the definition of

F we can chooseF0 large enough so that

E(u) ≥
Du

2
‖∇u‖2

L2 + d‖u‖4
L4,

for some positive constantd.
Moreover, we can check that

ut = −E ′(u), (2.8)

whereE ′ is the variational derivative ofE or more precisely the derivative in theL2 norm, i.e.

E(u + h) − E(u) = (E ′(u), h)L2 + o(h),

whereh ∈ W 1,2(Ω) ∩ L4(Ω) and|o(h)|/‖h‖L2 → 0, when‖h‖L2 → 0. Thus,

dE

dt
(u) =

∫

Ω

E ′(u) · ut dx = −‖Du∆u + f(·, u)− K(γu − b)‖2
L2 . (2.9)

After these preliminary remarks, we state the first existence result. Our goal is to show global
existence of smooth solutions, i.e. belonging to

⋂

∞

k=1 D(Ak
p), for somep > n, for all t > 0. We

begin with a local in time result.

Proposition 2.1. Let us suppose thatΩ is an open, bounded subset ofR
n with a smooth boundary,

n ≥ 1 andp > n, N > 0 are arbitrary. Moreover,f : Ω × R → R is smooth and satisfies (2.7)
andF (x, u) defined above is positive. We also assume that the initial function u0 belongs to
D(AN

p ). Then, there exist a positive numberT and a unique local in time solution to (2.1), such
that

u ∈ C((0, T ]; W 2N+2,p(Ω)) ∩ C([0, T ]; W 2N,p(Ω)), ut ∈ C((0, T ); W 2N,p(Ω)),

more precisely, we have that

u ∈ C((0, T ];D(AN+1
p )) ∩ C([0, T ];D(AN

p )).

Proof. We will apply the Banach contraction principle. We setX2N,p
T = C([0, T ];D(AN

p ))
with the norm

‖u‖X2N,p
T

= sup
t∈[0,T ]

‖AN
p (u(t))‖Lp.

Using the fact thatAp is sectorial we rewrite (2.1) in integral form by means of thevariation of
constant formula, (see [13, chapter 3])

u(t) = e−Aptu0 +

∫ t

0

e−Ap(t−s)(Duu + f(·, u(s))− K(γu(s) − b)) ds. (2.10)
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If u ∈ X2N,p
T is given, we denote the right-hand-side of (2.10) byΛu, and we look for a fixed

point ofΛ.
Let us take a closed ballBR ⊂ X2N,p

T centered ate−Aptu0, i.e. BR = B̄(e−Aptu0, R), R > 0.
We shall show that for sufficiently smallT > 0: (a)Λ(BR) ⊂ BR and (b)Λ is a strict contraction.

To that purpose we need the following observation, which results from the elliptic regularity
theory and the embedding theorems forp > n,

‖Dju‖L∞ ≤ C‖AN
p u‖Lp (2.11)

for j < 2N .
We first show (a), i.e. thatΛ(BR) ⊂ BR. Suppose thatu ∈ BR ⊂ X2N,p

T , then∆N (f(u) +
K(γu − b)) ∈ Lp(Ω). Also using that‖Aα

p e−Apt‖Lp ≤ Cαt−αe−λt, whereλ > 0 is the smallest
eigenvalue ofAp andα > 0, (cf. [13, Theorem 1.4.3]), we deduce

‖Λu − e−Aptu0‖X2N,p
T

= sup
t∈[0,T ]

‖AN
p (Λu − e−Aptu0)‖Lp

≤ sup
t∈[0,T ]

∫ t

0

Ce−λ(t−s)‖AN
p (Duu + f(·, u(s))− K(γu(s) − b))‖Lp ds.

It is now easy to check that

‖AN
p f(·, u)‖Lp ≤ C(N, a1, a2, a3)‖A

N
p u‖3

Lp and ‖AN
p K(γu − b)‖Lp ≤ C‖AN−1

p u‖Lp.

Combining these with‖u‖X2N,p
T

≤ ‖u− e−Aptu0‖X2N,p
T

+ ‖e−Aptu0‖X2N,p
T

we conclude that foru
in the ballBR we have

‖Λu−e−Aptu0‖X2N,p
T

≤ sup
t∈[0,T ]

∫ t

0

Ce−λ(t−s)(C(N, a1, a2, a3)(R+‖u0‖X2N,p
T

)3+C(R+‖u0‖X2N,p
T

)) ds.

(2.12)
Thus, we conclude that for sufficiently smallT , the operatorΛ mapsBR into itself.

(b) After performing similar calculations as those which lead to (2.12) we can see that if
u, v ∈ BR, then

‖f(·, u)− f(·, v)‖Lp ≤ C(a1, a2, a3)(‖u‖
2
L∞ + ‖v‖2

L∞)‖u − v‖Lp

≤ C(R2, ‖u0‖X2N,p
T

)‖u − v‖X2N,p
T

,

where we also used thatX2N,p
T ⊂ L∞(QT ). This shows that the mapping

X2N,p
T ∋ u 7→ Duu + f(·, u)− K(γu − b) ∈ Lp(Ω)

is locally Lipschitz continuous. Hence, by a choice of a sufficiently smallT > 0 we come to
the conclusion thatΛ is a strict contraction. This leads to the existence of a unique fixed point.
It is now easy to check by using the methods of [13, Section 3.2] that the fixed pointu not only
belongs toX2N,p

T , but also to

u ∈ C((0, T ]; X2N+2,p
T ), ut ∈ C((0, T ]; X2N,p

T ). 2
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In order to prove the global in time existence we need a prioriestimates for solutions of
(2.10) in X2N,p

T which are independent of time. One estimate is easily available. Indeed, it
follows from Proposition 2.1 and (2.9) thatE(u(t)) ≤ E(u0). By the choice ofF0 this implies
that‖u(t)‖L4 ≤ C(E(u0))

1/4 for t > 0. Another bound is a version of [2, Lemma 3.3].

Lemma 2.1. Let u ∈ X2N,p
T , with p > n be the unique solution of (2.1) on[0, T ], then for any

p ∈ [2,∞) we have the bound,

‖u(t)‖Lp ≤ C(p)(1 + (E(u0))
r/4), for t ∈ [0, τ ], τ = min{1, T}, (2.13)

wherer = r(p, n) is defined below in (2.17).

Proof. We multiply equation (1.1)1 by tγ |u|αu, whereα, γ are to be chosen later, and integrate
by parts. By Young inequality we arrive at

1

α + 2

d

dt

∫

Ω

tγ |u|α+2 dx ≤
γ

α + 2
tγ−1

∫

Ω

|u|α+2 dx − tγ
∫

Ω

a3|u|
α+4 dx

+tγ
∫

Ω

(|a2||u|
α+3 + |a1||u|

α+2) dx + tγ
∫

Ω

|v||u|α+1 dx

≤
γ

α + 2
tγ−1

∫

Ω

|u|α+2 dx −
1

2
tγ
∫

Ω

a3|u|
α+4 dx + C(a1, a2)

+Cǫt
γ

∫

Ω

|v|(α+4)/3 + ǫtγ
∫

Ω

|u|α+4 dx,

wherev = −K(γu−b). We note thattγ−1|u|2+α = (tγ|u|(2+α) γ
γ−1 )

γ−1
γ . If we now takeγ = α

2
+2,

then we can see that
tγ−1|u|2+α ≤ ǫtγ |u|α+4 + C(ǫ, α).

Thus,
1

α + 2

d

dt

∫

Ω

tγ |u|α+2 dx ≤ C(ǫ, α, a1, a2)

(

1 + tγ
∫

Ω

|v|(α+4)/3

)

. (2.14)

We now start our iterative process, by settingq0 = 4 and noticing thatu ∈ L∞(0, T ; Lq0(Ω)).
Assuming thatu ∈ L∞(0, T ; Lqk−1(Ω)) we will deduce thatu ∈ L∞(0, T ; Lqk(Ω)) for properly
definedqk.

If we take into account thatv is defined as a solution to (2.2), with datau in Lqk−1 , then by
the standard elliptic regularity theory and the embeddingW 2,q ⊂ Lnq/(n−2q), we conclude that

‖v‖
Lnqk−1/(n−2qk−1) ≤ C‖v‖W 2,qk−1 ≤ C‖u‖Lqk−1 . (2.15)

Keeping this in mind we takeα in (2.14) satisfying the following relation
α + 4

3
=

nqk−1

n − 2qk−1
and we setqk := α + 2. Then we obtain the following recurrent relation

qk = 3
nqk−1

n − 2qk−1

− 2.
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We notice that there existsk0 such thatn ≥ 2qk0 , butn < 2qk0+1. In order to see that we consider
three cases of the dimensionn. If n < 8, then automaticallyn < 2q0 = 8. If n = 8, then we may
take forq1 any positive number, in particular we can require that2q1 > n = 8. Finally, forn > 9
andq0 ≥ 4 we notice that the sequence{qk}

∞

k=0 is strictly increasing as long asqk−1 < n/2.
Thus, the integration of (2.14) over the interval[0, t], for anyt ≤ τ , and the definition ofqk

imply

1

qk
‖u(t)‖qk

Lqk ≤ C(ǫ, qk, a1, a2)

(

1 +

∫ t

0

‖v(s)‖
nqk−1/(n−2qk−1)

Lnqk−1/(n−2qk−1) ds

)

. (2.16)

If we combine (2.15) with (2.16) and the definition ofqk, then we see

‖u(t)‖Lqk ≤ C(ǫ, qk, a1, a2)

(

1 + sup
s∈[0,τ ]

‖u(s)‖
1
3
(1+ 2

qk
)

Lqk−1 ds

)

, for 0 ≤ t ≤ τ.

Thus, forp ∈ [qk−1, qk), with k ≤ k0 we iterate this estimate, thus we come to

‖u(t)‖Lqk ≤ C(k, qk, a1, a2)(1 + max
t∈[0,τ ]

‖u(t)‖r
L4) ≤ C(k, qk)(1 + E(u0)

r/4),

for

r = r(p, n) = 3−kΠk
l=1

(

1 +
2

ql

)

, (2.17)

wherep ∈ [qk−1, qk).

If p > qk0 , then‖v‖L∞ ≤ ‖u‖L
qk0 and integrating (2.14) over[0, τ ] with r = 3−k0Πk0

l=1

(

1 + 2
ql

)

yields the desired estimate.

Remark. Once that we have established (2.13) on[0, τ ] we can extend it to[0, T ] for T ≥ 1. We
proceed iteratively on intervals[kτ, (k+1)τ ]. On each of those intervals we may takeu((k+1)τ)
in place ofu0 in formula (2.13). Thus Lemma 2.1 implies

‖u(t)‖Lp ≤ C(p)(1+(E(u((k+1)τ)))r/4) ≤ C(p)(1+(E(u(kτ)))r/4) ≤ C(p)(1+(E(u0))
r/4)

for t ∈ [kτ, (k +1)τ ], wherek is any positive integer. In the above estimate we also used the fact
thatE is a Lyapunov functional.

Now, we can iteratively establish the bounds we need.

Lemma 2.2. Let us fix p > n and a natural numberN , T > 0 and let us suppose that
u ∈ X2N,p

T is a unique solution of (2.1) constructed in Proposition 2.1, then‖u(t)‖X2N,p
T

≤

C(p, n, N, E(u0), ‖u0‖W 2N,p) for t ≤ T.

Proof. We may apply the operatorAη
p, η ∈ (1

2
, 1), to both sides of (2.10) and calculate theLp

norm. This leads us to

‖u(t)‖W 1,p ≤ C‖u(t)‖η,p ≤ Ce−λt‖u0‖η,p +

∫ t

0

Cη,p
e−λ(t−s)

(t − s)η
‖f(·, u) + K(γu − b)‖Lp ds.
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By the Remark above, the nonlinear term is bounded by the data,

‖f(·, u) + K(γu − b)‖Lp ≤ C(1 + ‖u0‖
r
L4) ≤ C(1 + Er/4(u0)),

where we have also exploited the choice ofF0 in the definition ofE.
Thus,supt∈[0,T ] ‖u(t)‖W 1,p ≤ C0(1+Er/4(u0)) independently ofT . As a result, due top > n

and the embedding theorem we conclude that,

sup
t∈[0,T ]

‖u(t)‖L∞ ≤ C1(1 + Er/4(u0))

independently ofT .
In the next step, we uniformly bound‖Apu‖Lp. Namely, we have

‖u(t)‖W 2,p ≤ C‖Apu(t)‖Lp ≤

≤ Ce−λt‖u0‖1,p +

∫ t

0

C‖A1/2
p e−Ap(t−s)∇(f(·, u(s)) + K(γu(s) − b)))‖Lp ds

≤ Ce−λt‖u0‖1,p +

∫ t

0

C1/2,p
e−λ(t−s)

(t − s)η
‖∇(f(·, u(s)) + K(γu(s) − b))‖Lp ds,

where we have also used the equivalence of the standard norm in W 1,p and inX
1/2
p .

By the previous step the term‖∇f(u)‖Lp is bounded in terms of data only and independently
of time, because we have such bounds on‖∇u‖Lp and‖u(t)‖L∞. Thus, we get a uniform bound

‖u(t)‖W 2,p ≤ C1(p, E(u0), ‖u0‖W 2,p) for t ∈ [0, T ].

This estimate implies by the embedding theorems that‖∇u‖L∞ is uniformly bounded by the data
as well.

We shall establish iteratively that

sup
t∈[0,T ]

‖AN
p u(t)‖Lp ≤ C(p, n, N, E(u0), ‖u0‖W N,p), (2.18)

which implies the desired bound due to smoothness ofu0.
We have already done it forN = 1. Let us suppose that this bound holds for a numberl ≥ 1,

we will show it for l + 1. For this purpose we apply the operatorA
l+1/2
p to both sides of (2.10),

thus

‖Al+1/2
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1/2,p +

∫ t

0

‖A1/2
p e−Ap(t−s)Al

p(f(·, u(s)) + K(γu(s) − b))‖Lp ds.

In order to proceed we make the observation that ifp > n anda ∈ C∞(Ω̄), thenDM(au3) ∈ Lp

and
‖DM(au3)‖Lp ≤ C(a, M)‖u‖3

W M,p. (2.19)
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To this end we notice thatDM(au3) is a sum composed of the termsDiaDjuDkuDmu, where
j + k + m ≤ M . Due to boundedness ofDia, it is sufficient to show that each of these products
belongs toLp. By Hölder inequality we have the following bound
∫

Ω

|DjuDkuDmu|p dx ≤

(
∫

Ω

|Dju|pαj dx

)1/αj
(
∫

Ω

|Dku|pαk dx

)1/αk
(
∫

Ω

|Dmu|pαm dx

)1/αm

,

where 1
αj

+ 1
αk

+ 1
αm

= 1. The exponentspαj , pαk, pαm must be no greater than the exponents

arising from the Sobolev embeddings. We note thatDru ∈ W M−r,2, (recallp ≥ 2), thusDru ∈
LpM,r , wherepM,r = pn

n−p(M−r)
. It sufficient to check that 1

pN,j
+ 1

pN,k
+ 1

pN,l
≤ 1

p
. A direct

calculation shows that this is the case. Moreover, combining the inequalities above for allj, k, m
such thatj + k + m ≤ M we conclude that (2.19) holds for anyM .

Having (2.19) at our disposal we conclude that

‖Al+1/2
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1/2,p +

∫ t

0

C2,pe
−λ(t−s)Cl(p, E(u0), ‖u0‖W 2l,p). (2.20)

In the next step we applyAl+1
p to both sides of (2.10); proceeding as above we arrive at the

estimate

‖Al+1
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1,p +

∫ t

0

‖A1/2
p e−Ap(t−s)Al+1/2

p (f(·, u(s)) + K(γu(s) − b))‖Lp ds.

At this point we recall that the norms‖ · ‖1/2,p and‖ · ‖W 1,p are equivalent. An application of
(2.19) and (2.20) yields the desired result (2.18).

The bound (2.18) and the method used above imply that the following estimate hold

sup
t∈[0,T ]

‖AN+1/2
p u(t)‖Lp ≤ sup

t∈[0,T ]

C‖∇AN
p u(t)‖Lp ≤ C(p, n, N +

1

2
, E(u0), ‖u0‖W N,p) (2.21)

This fact yields a global in time solution.

Theorem 2.1. Let us suppose thatΩ andf are as in Proposition 2.1. In addition we assume that
F is positive andu0 ∈

⋂

∞

k=1 D(Ak
p), wherep > n is arbitrary. Then, the solution constructed in

Proposition 2.1 is global in time. Moreover,‖u(t)‖W 2N,p ≤ MN , for anyN > 1, for all t > 0,
whereMN is independent of time.

Proof. By the preceeding Lemmas we deduce that‖u‖X2N,p
T

stays bounded independently of
T ,

sup
t∈(0,T )

‖u(t)‖W 2N,p ≤ C(p, n, N, E(u0), ‖u0‖W 2N,p).

This fact, (2.21) and the method used to establish [13, Theorem 3.3.4] imply that the limit

lim
t→T−

u(t)

exists inW 2N,p(Ω). Thus, we may extend the solution to a maximal interval of existence[0, T∞).
But the above bound which is uniform in time implies thatT∞ = ∞.
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3 Asymptotic behavior

In order to establish the existence of theω-limit set, we first show the precompactness of the
orbit. First we notice that theω-limit set may only consist of steady states, because of the fact
that (2.1) is a gradient system, see (2.9).

Proposition 3.1. Let us suppose that the assumptions of Theorem 2.1 hold. Then, for any natural
numberN ≥ 1, the setω(u0) is compact inH2N(Ω) and connected; moreover it only consists of
the stationary points of (2.1) andE is constant onω(u0).

Proof. We have already shown that the set{u(t) : t ∈ [0,∞)} is bounded inW 2N+2,p(Ω).
The existence of a compact inH2N(Ω) connected omega-limit set follows from the fact that
p ≥ 2. Connectedness ofω(u0) follows immediately from the definition of this set, see [13,
Theorem 4.3.3]. Since (2.1) is a gradient system, andE is its Lyapunov function, this implies
that only stationary points may belong toω(u0). We can also infer from the fact thatE decreases
along the trajectories thatE must be constant onω(u0).

We are now ready to state the main result of this paper.

Theorem 3.1. Let us suppose thatΩ is a bounded region ofRn with smooth boundary, and that
f satisfies the assumption of Proposition 2.1. We also assume that the initial datumu0 of (2.1)
belongs to

⋂

∞

k=1 D(Ak
p) (hence it is smooth). Then, the unique solution to (2.1) converges to a

stationary state inHN(Ω), for all N ∈ N, N ≥ 1, as time goes to infinity.

Our method of proof is based on the Łojasiewicz inequality and on the results presented by
Chill, [4]; more specifically we will use [4, Theorem 2]. First, we recall the setting used in
[4]. Namely, we suppose thatV andH are two Hilbert spaces, such thatV is continuously and
densely embedded intoH. We denote byH∗ the dual space ofH. Let the functionalE : V → R

be twice continuously differentiable,E ∈ C2(V ) and denote byL the second derivativeE ′′.
Further, letϕ ∈ V be a critical point ofE, so thatE ′(ϕ) = 0. If P : H → H is the orthogonal
projection onto kerL(ϕ), then one can define the critical manifoldS,

S = {u ∈ V : (I − P )E ′(u) = 0}.

We recall,

Lemma 3.1. [4, Lemma 1]. We assume thatE ∈ C2(V ), ϕ ∈ V is a critical point ofE and
E ′′(ϕ) = L(ϕ) is a Fredholm operator, i.e. the kernel and the orthogonal complement of the
image ofE ′′ are finite dimensional spaces. Then, the setS is, locally nearϕ, a differentiable
manifold such that

dimS = dim kerL(ϕ).

If E ∈ Ck(V ), k ≥ 2, thenS is aCk−1-manifold. If E is analytic, thenS is analytic.

The main result of [4] is the following.
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Proposition 3.2. [4, Theorem 2].Let us suppose that the assumptions of the above Lemma hold.
In addition we assume thatE|S satisfies the Łojasiewicz inequality nearϕ, namely that there
exist a neighborhoodU ⊂ V of ϕ and a constantθ ∈ (0, 1

2
], such that

|E(u) − E(ϕ)|1−θ ≤ C‖E ′(u)‖V ∗ , for everyu ∈ U ∩ S.

ThenE itself satisfies the Łojasiewicz inequality in an open setW of V containingϕ, with the
same Łojasiewicz exponentθ.

We will make a suitable choice ofH andV and prove that the hypotheses of this proposition
are satisfied. This will be done in the course of the proof of our main result.

Proof of Theorem 3.1. Let us suppose thatN is arbitrary but larger thann/2, so thatHN(Ω)
is continuously embedded intoC(Ω̄). We noticed in Proposition 3.1 thatω(u0) only consists of
stationary points of (2.1) and that there exists a constante such that

E(u) = e for all u ∈ ω(u0). (3.1)

We have to check that the assumptions of Proposition 3.2 are satisfied. We chooseH = L2(Ω)
andV = HN(Ω). SinceL(ϕ) corresponds to the linearization of (2.1), it is a Fredholm operator.
Indeed,L(ϕ) is a sum of the Laplace operator on domainD(A2), which makes it a self-adjoint
operator, and a bounded linear self-adjoint operator onL2(Ω). It follows thatL is self-adjoint
too, hence its kernel and co-kernel coincide. Moreover,L(ϕ) is a strongly elliptic operator and
the boundary ofΩ is smooth, so its kernel is finite dimensional, because in such a case all the
eigenspaces are finite dimensional. The analyticity of the functionalE, defined by (2.5), follows
from the fact thatf is a polynomial inu. Hence, the critical manifoldS is analytic due to Lemma
3.1. As a result Łojasiewicz inequality holds forE restricted toS (see [15], [17, §IV.9]) and due
to Proposition 3.2 it is true also inV , i.e. if ϕ is a critical point ofE then there existβ > 0 and
θ ∈ (0, 1/2) such that

|E(u) − E(ϕ)|1−θ ≤ C‖E ′(u)‖(HN )∗ , for ‖u − ϕ‖HN ≤ β.

However, since (1.1) is a gradient flow in theL2 norm we have to obtain an upper bound on
‖E ′(u)‖(HN )∗ in terms of‖E ′(u)‖L2. Indeed, by the definition of the norm in the adjoint space,
we have

‖E ′(u)‖(HN )∗ = sup
ϕ∈HN

〈E ′(u), ϕ〉

‖ϕ‖HN

= sup
ϕ∈HN

1

‖ϕ‖HN

(
∫

Ω

(∇u∇ϕ − f(x, u)ϕ) dx + γ(Ku, ϕ)L2 − (Kb, ϕ)L2

)

.

Now, integration by part and the Cauchy inequality yield,

‖E ′(u)‖(HN )∗ ≤ sup
ϕ∈HN

1

‖ϕ‖HN

(‖ − ∆u − f(x, u) + γKu − Kb‖L2‖ϕ‖L2) .
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Finally, we obtain,

|E(u) − E(ϕ)|1−θ ≤ C0‖E
′(u)‖L2, for ‖u − ϕ‖HN ≤ β, (3.2)

wheree is defined by (3.1).
In view of the compactness ofω(u0) in HN there existsU a neighborhood ofω(u0), com-

posed of a finite number of ballsBj , j = 1, . . . , Nω(u0). In each of the ballsBj inequality (3.2)
holds with an exponentθj and a constantCj. We take a common exponentθ̄ = min{θj : j =
1, . . . , Nω(u0)} and a common constantC = max{Cj : j = 1, . . . , Nω(u0)} so that we have

|E(u) − e|1−θ̄ ≤ C̄‖E ′(u)‖L2, for u ∈ U . (3.3)

Moreover, since the distance fromu(t) to theω-limit set converges to zero (see [12, Section 3.1],
[13, Theorem 4.3.3]), we deduce that there exists a positiveconstantT such that for allt > T ,
u(t) ∈ U . Hence, by (2.8)

−
d

dt
|E(u) − e|θ̄ = −θ̄|E(u) − e|θ̄−1〈E ′(u), ut〉 = θ̄|E(u) − e|θ̄−1‖E ′(u)‖L2‖ut‖L2 .

Now, the application of (3.3) yields the integrability of‖ut‖L2 ,

−
d

dt
|E(u) − e|θ̄ ≥

θ̄

C̄
‖ut‖L2 .

Hence,u(t) satisfies the Cauchy condition, i.e. for anyǫ > 0, there istǫ > 0 so that for all
t1 > t2 > tǫ we have

‖u(t1) − u(t2)‖L2 ≤

∫ t1

t2

‖ut(s)‖L2 ≤
C̄

θ̄
(|E(u(t2)) − e|θ̄ − |E(u(t1)) − e|θ̄) < ǫ. (3.4)

In the first inequality above we used the formulau(t1) − u(t2) =
∫ t1

t2
ut(s) ds and the triangle

inequality.
SinceE(u(t)) is bounded below and decreases along the orbit, it follows that E(u(t)) con-

verges toe ast goes to infinity. Therefore, the right-hand-side of (3.4) can be made arbitrarily
small by takingt1 andt2 large enough. Hence,u(t) is a Cauchy sequence, thus it converges in
L2 to a stationary solution ast → ∞ and the convergence takes place in theHN -topology, with
N > n/2 arbitrary.

Remark. It is known that if the solution converges to an isolated stationary point, then the rate
of convergence is exponential, see e.g. [4].

The result proven in Theorem 3.1 also extends tof(x, u) being a polynomial inu of odd
degree with smooth coefficients, such that the coefficient ofhighest degree monomial is strictly
negative, namely

f(x, u) =

2q−1
∑

l=1

al(x)ul,
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whereal ∈ C∞(Ω̄), anda2q−1 ≤ −δ < 0. This is indeed so, since the proof of the key estimate
in Lemma 2.1 extends to this case, (cf. [2, Lemma 3.3]). The details are left to the reader.
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