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1 Introduction
Evolution of fronts with prescribed velocity. Let Γ0 ⊂ Rn, be a surface represented
as the zero level set of a Lipschitz continuous function u0, i.e

(1.1) Γ0 = {x ∈ Rn : u0(x) = 0}.

We are interested in the evolution of Γ0 under a given normal velocity field. It is well known
that through the Level Set Method the the evolution {Γt}t≥0 is given as the zero level sets of
the solution of the Hamilton-Jacobi equation

(1.2a)

(1.2b)

wt = H(x, t,∇w) in Rn × (0, T ),

w(x, 0) = u0(x) in Rn.

namely Γt = {x ∈ Rn : w(x, t) = 0}. A very useful function for the Level Set Method is
the distance function. For Ω ⊂ Rn open, the distance function is defined as dist(x, ∂Ω) =
infy∈∂Ω |x− y| and it is a viscocity solution of the eikonal equation

(1.3) |∇u(x)| = 1, in Ω.

Usually as initial condition u0 in (1.2b) we chose the signed distance function of Γ0 associated
with an orientation or else a function u0 as in (1.1), which is given by

(1.4) d(x) = du0(x) :=

dist(x,Γ0) if x ∈ {u0 > 0},
−dist(x,Γ0) if x ∈ {u0 ≤ 0},

similarly we define the signed distance d(x, t) = dw(x, t) associated with the level sets Γt.
Note that different functions can give the same signed distance function.
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Numerical errors/Reinitialization. As observed in [4, Chapter 7.2], numerical errors
may occur when the gradient of the solution of (1.2) becomes too flat or too steep, but as
mentioned in the previous paragraph different functions can give the same zero level set. In
order to avoid numerical errors we stop the evolution Γt before the gradient becomes too
steep or too flat and initialize the equation (1.2a) to a new function with better gradient.
This process is referred in the literature as the reinitialization algorithm, see [5]. According
to [4] the reinitialization algorithm is a ”powerful numerical tool”. Another application of
reinitialization is presented in [3], where the authors introduce an algorithm for calculating
the motion of multiple junctions using level set methods; according to the authors the reini-
tialization is needed in order to get the right results.
In general we cannot expect that solutions of (1.2a) will preserve the distance function. The
theory of viscosity solutions provide the perfect framework for studying the well posedeness
as well as properties of solutions of (1.2); for example the unique viscosity solution of the
problem

(1.5)

ut = x · |ux| in R× (0, T ),
u(x, 0) = 1− |x| in R,

is

u(x, t) =

1− xe−t for x ≥ 0,
1 + xet for x < 0,

where we can see that the gradient of the solution flattens for x > 0 and gets steeper for
x < 0.
Stopping the equation (1.2a) and calculating the distance function from the zero level set is
very costly; for this reason in [5] the authors solve a different equation at the stopping time,
namely

(1.6) ut = u√
ε2

0 + u2
(1− |∇u|),

for some fixed ε0 > 0. The function u√
ε2

0+u2
is a smoother version of the sign function. The

solution of this equation asymptotically converges to a steady state |∇u| = 1, which is a
characteristic property of the distance function. The purpose of the sign function in (1.6)
is to control the gradient. In the region where u is positive, the equation is ut = 1 − |∇u|.
Thus, the monotonicity of u is prescribed by the order of 1 and |∇u|. This forces |∇u| to be
close to 1 as time passes. Also, by the equation (1.6) we get ut = 0 on the zero level, which
guarantees that the initial zero level set will not get distorted.
The idea, as in [5], is to solve (1.2a) and (1.6) periodically in time, the first for a period
of k1∆t and the second for k2∆t, where k1, k2,∆t > 0 and one period will be completed at
a time step of length ε = (k1 + k2)∆t. We are thus led to define the following combined
Hamiltonian

H(x, t, τ, r, p) :=


H(x, t

1+ k2
k1

, p) if (i− 1) < τ ≤ (i− 1) + k1∆t
ε
,

u√
ε2

0+u2
(1− |∇u|) if (i− 1) + k1∆t

ε
< τ ≤ i
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for i = 1, ..., dT
ε
e. Here by dxe we denote the smallest integer which is not smaller than

x ∈ R. The rescaling of the Hamiltonian H in time is required since certain time intervals
are reserved for the corrector equation. More precisely, H is solved in time length k1∆tdT

ε
e ∼

T k1
k1+k2

= T

1+ k2
k1

. One would expect that solving the two equations infinitely often would force
the solution of the reinitialization algorithm to converge to the signed distance function to
Γt; we denote it by d. Therefore we are led to study the limit as ε→ 0 of the solutions of

(1.7)

u
ε
t = H

(
x, t,

t

ε
, uε,∇uε

)
in Rn × (0, T ),

uε(x, 0) = u0(x) in Rn.

This is a homogenization problem with the Hamiltonian H being 1-periodic and discontinu-
ous in the fast variable τ = t/ε. Since the limit above is taken for ∆t→ 0 (and consequently
ε → 0), two free parameters still remain, namely k1 and k2. In fact, we show that the
solutions of (1.7) converge, as ε→ 0 and after rescaling, to the solution uθ of

(1.8)

u
θ
t = H(x, t,∇uθ) + θβ(uθ)(1− |∇uθ|) in Rn × (0, T ),
uθ(x, 0) = u0(x) in Rn.

Here θ = k2/k1 is the ratio of length of the time intervals in which the equations (1.2a) and
(1.6) are solved. If we solve the corrector equation (1.6) in a larger interval than the one we
solve the original (1.2a), we can expect the convergence to a steady state. For this reason
we study the limit as θ →∞ of the solutions of (1.8).

2 Hamilton-Jacobi equations
As usual, in order to guarantee well posedeness of (1.2) we assume that H : Rn× [0, T ]×

Rn → R is continuous, with sup
(x,t,p)∈Rn×[0,T ]×Rn

|p|=1

|H1(x, t, p)| <∞. Note that the last condition

is only used to construct the appropriate barriers for the Perron’s existence technique, if these
barriers are a priori known, as in example (1.5), this assumption is not needed. Furthermore,
instead of the classical uniform continuity conditions we will assume the stronger

|H(x, t, p)−H(y, t, p)| ≤ L1(1 + |p|)|x− y|, |H(x, t, p)−H(x, t, q)| ≤ L2|p− q|

for some L1, L2 > 0, and the geometricity

H(x, t, λp) = λH(x, t, p) for all λ > 0.

The reason we are assuming Lipschitz continuity of H in the gradient is to guarantee the
property of finite propagation of the interface, in this case the speed of the interface will
be L2. As we will see solutions of (1.8) are uniformly continuous with a uniform modulus
in space. For this reason we have to precise the convergence of uθ to the signed distance.
The distance function is continuous in space, it is also well known that is continuous from
below in time, see [1, Proposition 2.1 (ii)], it is not true however that it is continuous in

3



general; example (2.1) shows that when there is an extinction point the distance function
is discontinuous. The assumption of finite propagation implies that there are no emerging
points which is a key point into proving the continuity of the distance function from below
in time, whereas if we assume that there are no extinction points we can get the continuity
of the distance function from above.
We can write the signed distance function d = d+ − d−, where d+ and d− stand for the plus
and the minus parts of d respectively and are positive functions. In order to simplify the
presentation of our results we will assume in what follows that the function d is positive, for
this reason we choose initial data u0 in (1.2b) to be positive, then the solution w of (1.2)
is also positive by the comparison principle. This implies that d(x, t) = dist(x,Γt) ≥ 0. In
the general case where d can take negative values we split it into plus and minus parts and
study the evolution of the two parts separately.
Example 2.1. We study (1.2a) with H(x, t, p) = |p| and initial condition u0(x) = max{(1−
|x− 2|)+, (1− |x+ 2|)+}. Then the solution of (1.2) is given by the formula

w(x, t) = max
|x−y|≤t

u0(y),

which gives after a few calculations

w(x, t) = min{max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+}, 1},

and

d(x, t) =

max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+} if t ≤ 1,
(t+ 3− |x|)+ if t > 1.

Then the point 0 ∈ Γ1 is an extinction point of the interface, see Figure (1).

O x

d(x, t)(t > 1)

d(x, 1)

4

d(x, 0)

Figure 1: The graph of d.

The preservation of the zero levels by the solution uθ of (1.8) follows from the following
Proposition.
Proposition 2.1 (Barriers). There exist ε > 0, L > 0, independent of θ > 0, such that

(2.1) εw ≤ uθ ≤ Ld in Rn × (0, T ).

In order to prove this we show that εw and Ld are, respectively, a subsolution and a
supersolution of (1.8) and apply the comparison principle.

4



3 Convergence results
Continuous distance function. To illustrate the idea of the proof, we first present a
convergence result to a continuous distance function d, which is much easier to handle than
a general (possibly discontinuous) distance function. When d is continuous, it is uniformly
approximated by the solutions uθ of (1.8).

Theorem 3.1. If d is continuous, then uθ converges to d locally uniformly in Rn× (0, T ) as
θ →∞.

In the proof we use the comparison principle and the half-relaxed limits of uθ defined as

u(x, t) := lim sup
(y,s,θ)→(x,t,∞)

uθ(y, s), u(x, t) := lim inf
(y,s,θ)→(x,t,∞)

uθ(y, s).

We show that u(·, t), u(·, t) are, respectively, a subsolution and a supersolution of the eikonal
equation (1.3). But in order to apply the comparison principle we need to know the bound-
ary data of the half-relaxed limits. To this end, we use Proposition 2.1 together with the
continuity of the distance function and get

{w(·, t) = 0} = {u(·, t)} = {u(·, t)}.

Then u ≤ d ≤ u from which we get the desired result since we always have u ≤ u.

General distance function. If the distance function d is discontinuous, we cannot expect
that the continuous solutions uθ of (1.8) will converge to d locally uniformly. Since d is
always continuous from below, one can show that d ≤ u; it is the inequality u ≤ d that is
not always true, due to the fact that d might not be continuous from above. In this case we
can generalize the notion of convergence to d; namely we show a uniform convergence to d
from below in time.

Theorem 3.2.

lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ).

We call the limit in Theorem 3.2 uniform limit from below in time and denote it by
u′(x, t). This way we always have that {u′(·, t) = 0} = {w(·, t) = 0} which allows us to
compare u′ and d. We show the following Lemma

Lemma 3.3. u′ is a subsolution of (1.3) in {w(·, t) ≥ 0}.

The key point for the proof of this Lemma is the extension of the viscosity inequality for
u′ up to the terminal time in the intervals (0, t) for t ∈ (0, T ). Theorem 3.2 now follows. By
the proof of Lemma 3.3 we also get

• for every t ∈ (0, T ), uθ(·, t) converges to d(·, t) locally uniformly in Rn as θ →∞;

• u = d in Rn × (0, T ).

The above can be understood as a locally uniform convergence for every fixed time and a
convergence in the sense of lower half-relaxed limit.
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Another equation. Finally, we study the convergence of solutions of the following equa-
tion

(3.1) uθt (x, t) = H(x, t,∇uθ(x, t)) + θβ(uθ(x, t))(1− |∇uθ(x, t)|)+ in Rn × (0, T ).

As before we define the half-relaxed limits u, u, then we have u = supθ>0 u
θ and u = infθ>0 u

θ.
In the general case where we consider not necessarily positive initial data we define

(3.2) ũ :=

supθ>0 u
θ in {w > 0},

infθ>0 u
θ for {w ≤ 0}.

Although in this case we cannot show convergence to the signed distance function, the
following Theorem holds.

Theorem 3.4. Let ũ be as in (3.2), then ũ(·, t) is Lipschitz continuous in Rn for t ∈ (0, T )
with |∇u(·, t)| ≥ 1 a.e, and {ũ(·, t) = 0} = {w(·, t) = 0}.
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