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Abstract. In this paper we present a new approach to handling in-
complete information and classifier complexity reduction. We describe
a method, called D3RJ, that performs data decomposition and decision
rule joining to avoid the necessity of reasoning with missing attribute val-
ues. In the consequence more complex reasoning process is needed than
in the case of known algorithms for induction of decision rules. The origi-
nal incomplete data table is decomposed into sub-tables without missing
values. Next, methods for induction of decision rules are applied to these
sets. Finally, an algorithm for decision rule joining is used to obtain the
final rule set from partial rule sets. Using D3RJ method it is possible to
obtain smaller set of rules and next better classification accuracy than
classic decision rule induction methods. We provide an empirical evalua-
tion of the D3RJ method accuracy and model size on data with missing
values of natural origin.

1 Introduction

Rough Set theory, proposed by Pawlak in 1982, creates a framework for han-
dling the imprecise and incomplete data in information systems. However, in
classic formalization it is not addressed to the problem of missing attribute val-
ues. Some methods for reasoning with missing attribute values were proposed by
Grzymała-Busse, Stefanowski, Skowron, Słowiński, Kryszkiewicz and many oth-
ers. Current findings on Granular Computing, Approximated Reasoning Schemes
and Rough-Mereology (see, e.g., [41]) inspired research on new methods for han-
dling incomplete information as well as better understanding of classifier and
knowledge description complexity. In this paper we describe two of issues: rea-
soning under missing attribute values and reduction of induced concept descrip-
tion. A concatenation of solutions for problems related to these issues results in
high quality classifier induction method, called D3RJ.

The D3RJ method is based on data decomposition and decision rule join-
ing. The aim of this method is to avoid the necessity of reasoning with missing
attribute values and to achieve better classification accuracy at the reduced
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classification time. The D3RJ method is based on more complex reasoning pro-
cess, comparing the case of typical algorithms for induction of decision rules.
The original incomplete data table is decomposed into data sub-tables without
missing values. This is done using total templates that represent information
granules describing the resulting data subset. Next, methods for induction of
decision rules are applied to these sets. The classic decision rule induction meth-
ods are used here. In this way the knowledge hidden in data is extracted and
synthesized in form of decision rules, that can also be perceived as information
granules. Finally, an algorithm for decision rule joining is used to obtain classifier
consisting of generalized rules built from previously induced decision rules. This
final phase realizes an additional step of knowledge synthesization and can be
perceived as transformation of simpler granules into the more complex ones. The
D3RJ method makes is possible to obtain smaller set of rules and to achieve sim-
ilar or even better classification accuracy than standard decision rule induction
methods known from literature.

In the following section the related work on missing values handling and de-
cision rule joining is presented. In Section 3 we introduce some necessary formal
concepts. In Section 4 overview of the D3RJ method is provided. Section 5 de-
scribes the data decomposition phase. Next, the description of rule induction
is provided. Section 7 describes the decision rule joining. In Section 8 contain
empirical evaluation of the D3RJ method. The final section presents some con-
clusions and remarks. This paper is an extended version of [30] where several
issues related to decision rule joining were improved.

2 Related work

2.1 Missing Attribute Values

The problem of reasoning with missing attribute values is known in machine
learning and a lot of work has been already done for interpretation of the issues
related to this problem as well as methods for reasoning with missing attribute
values. However, there is no one satisfactory solution to the problems related to
reasoning over incomplete data in the considered sense. In relational databases
the nature of missing values was established and for more than a decade also
the industrial standards fulfill the proposed logical framework and semantical
meaning of the null values. Such an approach is not yet available in data mining
at all and particularly, in the rough set theory and practice. Furthermore, it
seems to be almost infeasible to discover one theoretical framework for dealing
with missing attribute values and their role in induction learning that will fit in
all aspects of Machine Learning. The findings in area of missing attribute values
are rather loosely connected or even exclusive and do not form any coherent
guidelines that would be applicable to a wide range of data mining problems.

The problem of missing values in inductive learning received its attention
very early. In late ’70 and early ’80 there were proposed some findings of Fried-
man in [9], Kononenko et al. in [24] and Breiman et al. in [7] in this area. The
proposed methods are addressed to induction of decision trees. The main idea
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is based on partitioning and replicating data objects and test nodes. In 1989
Quinlan published experimental evaluation of some proposed approaches (see
[45]). The experimental evaluation proved, that the Kononenko’s method that
partition objects with missing values across all nodes is in most cases the best
choice. His work influenced a lot the researchers and many later implementa-
tions of decision tree induction follow Kononenko’s method used also in C4.5.
This approach became widely applied due to its high performance and simple
interpretation. Recent research made on the complexity of this method showed
the great complexity breakdown that occurs when data contain many missing
values (cf. [28]).

The methods presented above, for decision trees induced by recursive par-
titioning, build rather an isolated case that is thoroughly investigated. It is a
consequence of popularity of decision trees in research and industry, as well as
relative simpleness of decision tree induction algorithms. The other approaches
for inducing classifiers directly from data with missing attribute values are usu-
ally loosely related to each other, but they perform quite well and are based
on interesting ideas for dealing with missing values. Two recent examples of
such a methods are LRI and LazyDT. Weiss and Indurkhya in [57] presented
the Lightweight Rule Induction method that is able to induce decision rules
over data with missing values. This method is trying to induce decision rules
by ignoring cases with missing values on estimated test (descriptor). The proper
functioning is obtained by redundancy of descriptors in decision rules as well as
by normalization of the test evaluation. Friedman’s Lazy Decision Tree method
(see [10]) presents a completely different approach to classification process, called
lazy learning. The decision tree is constructed on the basis of an object that is
currently a subject to classification. Missing values are omitted in classified case
and ignored in heuristical evaluation of tests.

Besides the methods that can work directly on data with missing attribute
values, also the methods for missing values imputation or replacement were pro-
posed. The simplest method — replacing the missing values with an unused
domain value — is known from the beginning of the machine learning. However,
this yields in significant decrease of classification accuracy. The applied impu-
tation methods can be roughly categorized into simple ones, that do not build
any special model of data or such a model is relatively simple, and more com-
plex ones, that impute the missing values with respect to a determined model
for a particular data. The most commonly used simple imputation methods are:
imputation with mean or median value, imputation with most common value or
imputing with mean, median or most common value, where the mean, median
or most common value is calculated only over the objects from the same decision
class (see, e.g., [18, 19]). There were proposed also some modifications of these
methods, such as using the most correlated attribute instead of the decision
class (e.g., [11]). The model based imputation methods are usually used with
statistical learning methods and are not widely used in other machine learning
algorithms like, e.g., decision rule induction. One of the best methods is the EM
imputation (see, e.g., [13, 58]), where the Expectation-Maximization model is
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builded for the data and missing values are replaced by randomizing values with
probability taken from the model. The EM imputation can be used together
with the Multiply Imputation (see [46]), that is applied to improve the accuracy
of calculating aggregates and other statistical methods. The imputation meth-
ods are inevitable in some applications, e.g., in data warehousing. However, in
machine learning the imputation methods not always are competitive and their
application is not justified or cannot be properly interpreted.

The problem of missing attribute values was investigated also within the
rough set framework. We can mainly distinguish two kinds of approaches to this
problem with respect to the modifications of the rough set theory they introduce.
In the first group of approaches it is assumed that the missing value handling
should be an immanent but special part of rough set theory. As the consequence
approaches from this group consist in modification of the indiscernibility relation.
In the second group of approaches we include all others that do not assume or
do not require such a modification.

The practice of modifying of the indiscernibility relation is rather old and
originates not directly from the rough set theory but rather from other mathe-
matics areas like, e.g., universal algebra. The adaptation of concept “partiality”
from universal algebra leaded to the tolerance or symmetrical similarity rela-
tion as a replacement for the indiscernibility relation. The successful application
of symmetrical similarity relations were investigated among others by Skowron,
Słowiński, Stefanowski, Polkowski, Grzymała-Busse and Kryszkiewicz (see, e.g.,
[19, 25, 44, 52]).

To overcome some difficulties in provided semantics of missing values (see,
e.g., [52]) also the other types of the indiscernibility relation replacements were
proposed. The one of them is the nonsymmetric similarity relation which was
investigated in [14, 16, 49, 51–53]. To achieve yet more flexibility also the para-
metric relations were proposed, sometimes also with the fuzzy extension to the
rough set concepts (see, e.g., [15, 51, 53]). All of this modifications enforce a cer-
tain semantic of the missing values. Such a sematic applies to all data sets and
their attributes (i.e., properties of objects) identically and produce a bias in
form of model assumptions. One should state, however, that this approach can
be very successful in some applications and definitely produces superior results
over the standard indiscernibility relation.

There are some other methods proposed within rough set framework that do
not assume modification of the indiscernibility relation. The approach proposed
by Grzymała-Busse in LEM2 algorithm for decision rule induction is to modify
the induction process itself (see [19, 20]). The special version of LEM2 algorithm
omits the examples with unknown attribute values when building the block for
that attribute. Than, a set of rules is induced by using the original LEM2 method.

The completely different approach is proposed in the Decomposition Method,
where neither the induction process nor the indiscernibility relation is modified
(see [27, 29]). In the decomposition method data with missing attribute values
is decomposed into subsets without missing values. Then, methods for classifier
induction are applied to these sets. Finally, a conflict resolving method is used to
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obtain final classification from partial classifiers. This method can be applied to
any algorithm of classifier induction, also these ones, that cannot directly induce
classifiers over data with missing values.

The decomposition method performs very good on data, but introduce some
difficulties in interpreting last step of reasoning related to conflict resolving. In
this chapter, among the decision rule joining, the idea of data decomposition
is investigated. The most important improvement of the data decomposition in
comparison to the previous research is avoiding the necessity of combining several
different classifiers. The decision rules from resulting classifiers are subject to
joining similarly as it is described in [33].

2.2 Decision Rule Induction

The decision rule induction problem has been extensively investigated not only
within the rough set framework, but also in other fields. In machine learning
several efficient algorithms have been proposed, like, e.g., Michalski’s AQ al-
gorithms or CN2 algorithms from Clark and Niblett. Rough sets can be used
on different stages of rule induction and data processing. The most commonly
used approaches are induction of certain and approximate decision rules by gen-
erating exhaustive, minimal or satisfactory set of decision rules (see [23, 50]).
Such algorithms for decision rule induction were extensively investigated and
are implemented in many software systems (see, e.g., [6, 17]).

There were proposed also methods for decision rule induction related to the
local properties of data objects (see, e.g., [4, 5]). This approach combines advan-
tages of lazy learning, e.g., reduced computational complexity in the learning
phase with advantages taken from induction of rough set based decision rules.

In recent years also a similar problem to the decision rule induction has been
investigated — the searching for association rules (see, e.g., [2, 21, 35, 36]). It is
possible to represent a set of all the possible descriptors as a set of items. Then
the problem of calculating the decision rules corresponds to searching for the
sets of items. Each item set corresponds with one decision rule.

Decision rules express the synthesized knowledge extracted from data set. In
our research we use the decision rule induction using the indiscernibility matrix
and boolean reasoning techniques described in, e.g., [23, 47, 48]. Such decision
rules represent some level of redundancy that from one point of view can in-
crease the classification accuracy, while from the second one can result in too
many decision rules. There were proposed some approaches for redundancy elim-
ination as well as for classification accuracy improvement in the case of noisy
or inexact data. These approaches are mainly based on shortening of decision
rules (see, e.g., [4, 34]). The shortening techniques are very useful and with care-
ful parameter assignment can improve classification accuracy and decrease the
number of decision rules.
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2.3 Decision Rule Joining

Decision rule joining is one of the methods reducing number of decision rules.
Although there is not much done in area of decision rule joining or clustering,
the reducing number of rules has already been investigated. The most common
approach to reduction of the number of decision rules is filtering. The filtering
methods assume some heuristical measure on decision rule evaluation and drop
unpromising rules with respect to this heuristical evaluation.

One can reduce the number of rules by selecting a subset of all rules using for
example quality-based filtering (see, e.g., [1, 40]). In this way we get fewer rules
at the cost of reduced classification quality mainly (see, e.g., [54]). With such
a reduced set of decision rules some new objects cannot be recognized because
they are not matched by rules. Hence, with fewer rules it is more probable that
an object will not be recognized. The essential problem is how to rate the quality
of decision rules and how to calculate the weights for voting (see, e.g., [12]).

The quality-based filtering methods give low classification quality, but make
fewer mistakes than many other decision systems. This is a consequence of
smaller set of rules taking part in the voting, which results in lack of classi-
fication for weakly recognized objects. This shows that dropping decision rules
decrease important information about the explored data.

Recently some methods for decision rule joining and clustering were proposed.
The System of Representatives, described in [33], is the method that offers a
rule joining. This method achieves very good classification accuracy and model
complexity reduction, but it is very time consuming. Therefore we utilize here a
simplified method for rule joining that is less time consuming, called Linear Rule
Joining (LRJ). This method also achieves good results and has been designed to
cooperate with data decomposition method.

3 Preliminaries

3.1 Decision Tables

For the classification and the concept approximation problems we consider data
represented in information systems called also information tables due to its nat-
ural tabular representation (see, e.g., [23, 42]). A decision system (decision table)
is an information system with a distinguished attribute called decision (see, e.g.,
[23, 42]).

Definition 1. A decision table A = (U,A, {d}) is a triple, where U is a non-
empty finite set of objects called the universe and A is a non-empty set of at-
tributes such that ai ∈ A, ai : U → Vi are conditional attributes and d : U → Vd

is a special attribute called decision.

This definition assumes that all objects have complete description. However,
in a real world data frequently not all attribute values are known. Such attribute
values that are not available are called missing attribute values. The above defini-
tion of decision table does not allow an object to have an incomplete description.
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As a consequence of this fact the missing attribute values are rarely considered
and they are not present in theoretical foundations of proposed methods. To be
able to deal with missing attribute values we have to extend the definition of
a decision table. There are two main concepts on how to give consideration to
missing values. The first and more popular is to extend the attribute domains
with a special element that denote absence of a regular attribute value. The
other approach, taken from universal algebra, is to assume that attributes are
partial functions in contrast to attributes without missing values assumed to be
total functions. Both approaches are equivalent, but the first one is easier to
implement in computer programs.

Definition 2. A decision table with missing attribute values A = (U,A, {d}) is
a triple, where U is a non-empty finite set of objects called the universe and A is
a non-empty set of attributes such that ai ∈ A, ai : U → V ∗

i , where V ∗
i = Vi∪{∗}

and ∗ /∈ Vi, are conditional attributes and d : U → Vd is a special attribute called
decision.

The special symbol “∗” denotes absence of the regular attribute value and
if ai(x) = ∗ we say that ai is not defined on x. Such an approach is frequently
used in all domains of computer science. For example in the relational databases
a similar notion — “NULL” is used for representing missing attribute values in
database record.

If all attribute values are known, the definition of the decision table with
missing attribute values is equivalent to the definition of the decision table. From
now on we will call decision tables with missing attribute values just decision
tables, for short.

3.2 Total Templates

To discover knowledge hidden in data we should search for patterns of regulari-
ties in decision tables. We would like to focus here on searching for regularities
that are based on the presence of missing attribute values. A standard tool for
describing data regularities are templates (see, e.g., [37, 38]). The concept of
template requires some modifications to be applicable in the incomplete decision
table decomposition.

Definition 3. Let A = (U,A, {d}) be a decision table and let ai 6= ∗ be a total
descriptor. An object u ∈ U satisfies a total descriptor ai 6= ∗, if the value of the
attribute ai ∈ A on this object u is not missing in A, otherwise the object u does
not satisfy total descriptor.

Definition 4. Let A = (U,A, {d}) be a decision table. Any conjunction of total
descriptors (ak1 6= ∗)∧ . . .∧(akn

6= ∗) is called a total template. An object u ∈ U
satisfies total template (ak1 6= ∗) ∧ . . . ∧ (akn 6= ∗) if the values of attributes
ak1 , . . . , akn ∈ A on the object u are not missing in A.
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Total templates are used to discover regular areas in data without missing
values. On the basis of the total templates we can create a granule system in
following way. We consider decision sub-tables B = (UB, B, {d}) of the decision
table A, where UB ⊆ U and B ⊆ A. A template t uniquely determines a granule
Gt = {B = (UB, B, {d})} consisting of such data tables B that all objects from UB
satisfies template t and all attributes b ∈ B occur in descriptors of template t. In
granule Gt exists the maximal decision table Bt = (UBt

, Bt, {d}), such that for
all B′ = (UB′ , B′, {d}) ∈ Gt the condition UB′ ⊆ UBt ∧B′ ⊆ Bt is satisfied. Such
maximal decision table has all attributes that occur in descriptors of template t
and all objects from U that satisfy template t.

Once we have a total template t, we can identify it with the sub-table Bt

of original decision table. Such a sub-table consists of the decision attribute, all
attributes that are elements of total template and it contains all objects that
satisfy template t. Obviously, the decision table Bt does not contain missing
attribute values. We will use this fact later to present the data decomposition
process in a formal and easy to implement way.

3.3 Decision Rules

Decision rules and methods for decision rule induction from decision data table
without missing attribute values are well known in rough sets (see, e.g., [23, 42]).

Definition 5. Let A = (U,A, {d}) be a decision table. The decision rule is a
function R : U → Vd ∪ {?}, where ? /∈ Vd. The decision rule consist of condition
ϕ and value of decision dR ∈ Vd and can be also denoted in form of logical
formula ϕ ⇒ dR. If the condition ϕ is satisfied for an object x ∈ U , then the rule
classifies x to the decision class dR (R(x) = dR). Otherwise, rule R for x is not
applicable, which is expressed by the answer ? /∈ Vd (R(x) =?).

In above definition one decision rule describes a part of exactly one decision
class (in mereological sense [41]). If several rules are satisfied for a given object,
than voting methods have to be used to solve potential conflicts. The simplest
approach assigns each rule exactly one vote. In more advanced approach the
weights are assigned to decision rules to measure their strength in voting (e.g.,
using their support or quality).

Decision rule induction algorithms produce rules with conjunction of descrip-
tors in the rule predecessor:

(ak1(x) = rk1 ∧ . . . ∧ akn(x) = rkn) ⇒ dR,

where x ∈ U , ak1 , . . . , akn
∈ A, rki ∈ Vki

. For example:

R : (a1(x) = 1 ∧ a3(x) = 4 ∧ a7(x) = 2) ⇒ dR.

The D3RJ method produces more general rules, where each descriptor can en-
close subset of values. We call such rules the generalized decision rules (cf. [37,
56]). The generalized rules have the form:

(ak1(x) ∈ Rk1 ∧ . . . ∧ akn(x) ∈ Rkn) ⇒ dR,
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where Rki ⊆ Vki
. It is easy to notice, that any classic decision rule is also a

generalized decision rule, where Ri = {ri}. From now on we will assume that all
decision rules are generalized.

The conditional part of a decision rule can be represented by ordered sequence
of attribute value subsets

{
Ri

}
ai∈A

for any chosen liner order on A. For example,
the decision rule R1, can be represented as:

R1 : ({1}, ∅, {4}, ∅, ∅, ∅, {2}) ⇒ dR.

The empty set denotes absence of condition for that attribute.

4 D3RJ

The D3RJ method is developed in the frameworks of Granular Computing and
Rough-Mereology [41]. The processing consists of four phases called the data
decomposition, decision rule induction, decision rule shortening and decision
rule joining.

In the first phase the data that describes the whole investigated phenomenon
is decomposed — partitioned into a number of subsets that describe, in a sense,
parts of investigated phenomenon. Such a procedure creates an overlapped, but
non-exhaustive covering that consist of elements similar to the covered data.
These elements are data subsets and parts in the mereological sense of the whole,
i.e., the original data. The data decomposition phase is aiming to avoid the
problem of reasoning from data with incomplete object descriptions.

In the second phase information contained in parts, i.e., data subsets is trans-
formed using inductive learning, to a set of decision rules. Each decision rule can
be perceived as an information granule that correspond to knowledge induced
from the set of objects that satisfy the conditional part of decision rule. The
set of decision rules can be perceived as a higher level granule that represents
knowledge extracted from the data subset. As it is explained later, we can apply
any method of decision rule induction, including such ones that cannot deal with
missing values. Often methods that make it possible to properly induce decision
rules from data with missing values lead to inefficient algorithms or algorithms
with low quality of classification. With help of a data decomposition decision
rules are induced from data without missing values to take an advantage of
lower computational complexity and more precise decision rules.

Third phase is the rule shortening. It is very useful because it reduces com-
plexity of rule set and improves classifier resistance to noise and data distur-
bances.

In the fourth phase the set of classic decision rules is converted to the smaller
and simplified set of more powerful representation of decision rules. In this phase
decision rules are clustered and joined to a coherent classifier. The constructed
generalized rules can be treated as the higher level granules that represent knowl-
edge extracted from several decision rules — lower level granules. The main ob-
jectives of the decision rule joining are reduction of classifier complexity and
simplification of knowledge representation.
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The D3RJ method returns a classifier that can be applied to a data with
missing attribute values in both, learning and classifying.

5 Data Decomposition

The data decomposition should be done in accordance to regularities in a real-
world interest domain. We expect the decomposition to reveal patterns of missing
attribute values with a similar meaning for the investigated real-world problem.
Ideally, the complete sub-tables that are result of the decomposition should
correspond to natural subproblems of the whole problem domain.

The result of data decomposition is a family of subsets of original data. Sub-
sets of original decision table must meet some requirements in order to achieve
good quality of inductive reasoning as well as to be applicable in case of methods
that cannot deal with missing attribute values. We expect the decision sub-tables
to exhaustively cover the input table, at least in the terms of objects, to mini-
mize the possibility of loosing useful information. They should contain no missing
values. It is also obvious that the quality of inductive reasoning depends on a
particular partition and some partitions are better then others.

With the help of introduced concept of total template it is possible to express
the goal of the data decomposition phase in terms of total templates. The maxi-
mal decision sub-table Bt ∈ Gt is uniquely determined by template t. With such
an assignment we can consider the data decomposition as a problem of covering
data table with templates. The finite set of templates S = {t1, t2, . . . , tn} deter-
mines uniquely a finite decomposition D = {Bt1 , Bt2 , . . . , Btn

} of the decision
table A, where Bti

∈ Gti
is a maximal decision sub-table related to template

ti. With such a unique assignment the decomposition process can be formally
described in terms of total templates. The preference over particular decompo-
sitions can be translated to preference of particular set of templates.

We illustrate the data decomposition with an example. Let consider the fol-
lowing decision table:

a b c d
x1 1 0 * 1
x2 0 1 1 0
x3 * 0 1 1
x4 * 1 0 1

In above decision table 92 out of 127 nonempty combinations of seven possible
total templates create proper data decompositions, i.e. that exhaustively cover
all objects. For example, the total template (a 6= ∗) ∧ (b 6= ∗), which covers
objects x1 and x2, with the total template (b 6= ∗) ∧ (c 6= ∗), which covers
objects x2, x3 and x4, create a proper data decomposition.

The problem of covering decision table with templates is frequently investi-
gated (see, e.g., [37, 38]) and we can make an advantage of broad experience in
this area. In our case the templates cover the original decision table in following
sense. We say that an object x is covered by a template t if object x satisfies
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a template t. The decision table is covered (almost) completely, when (almost)
all objects from U are covered by at least one template from a set of templates.
The preferences or constraints on the set of templates are translated partially
to preferences or constraints on templates and partially to constraints on an
algorithm that generates the set.

The standard approach to the problem of covering decision table with tem-
plates is to apply a greedy algorithm. Such an approach is justified, because it
is known that greedy algorithm is close to best approximate polynomial algo-
rithms for this problem (see [8, 22, 32, 39]). The greedy algorithm generates the
best template for a decision table with respect to a defined criterion and removes
all objects that are covered by generated template. In subsequent iterations the
decision table is reduced in size by objects that are already covered and the
generation of the next best template is repeated. The algorithm continues until
a defined stop criterion is satisfied. The most popular stop criterion is to have all
objects covered by generated set of templates. Such a criterion is also suitable
for our purpose. One should notice that a template generated in further iteration
can cover objects already removed from decision table. This property allows, if it
is necessary, to include a particular object in two or more data sub-tables related
to a specific pattern of data.

5.1 Decomposition criteria

Following the guidelines on covering decision table with templates we have to
choose a preference measure that define the concept of best template. The tem-
plate evaluation criterion should prefer decision sub-tables relevant to the data
decomposition and to the approximated concept. This nontrivial problem was
investigated in [26, 27, 29]. It is very difficult to define the proper criterion for an
individual template for generating decompositions of high quality. This problem
could be possibly solved with help of ontology knowledge base for investigated
phenomenon, but for now such ontologies are not commonly available. We have
to relay only on some morphological and data-related properties of decision table
Bt in order to evaluate template t.

The frequently applied template evaluation function measures the amount
of covered data with help of template height and template width. The template
height, usually denoted as h(t) is the number of covered objects, while the tem-
plate width, denoted as w(t) is the number of descriptors. To obtain a template
evaluation function, also called template quality function, we have to combine
these two factors to get one value. The usual formula is to multiply these two
factors and get the number of covered attribute-value pairs.

q1(t) = w(t) · h(t) (1)

The importance of with and height in q1 can be easily controlled by manipulating
the importance factor.

q2(t) = w(t)β · h(t) (2)
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For such preference measures finding the best template is NP-hard (see, e.g.,
[37]), so usually also here approximated algorithms instead of exact one are used.
It was also proved that there exist measures for which problem of searching for
maximal template is PTIME. For example it is enough to replace the multiplica-
tion of width and height with addition and the resulting problem can be solved
by a polynomial algorithm. Unfortunately, for the decomposition and generally
for knowledge discovery problems measures that lead to polynomial complexity
are inaccurate and unattractive.

The relation of template evaluation functions q1 and q2 with expected proper-
ties of decision tables relevant for inductive learning can be easily justified. From
one point of view the quality of learning depends on the number of examples. It
is proven that inductive construction of concept hypothesis is only feasible, when
we can provide enough number of concept examples. A strict approach to this
problem can be found in [55] where Vapnik-Chervonenkis dimension is presented
as a tool for evaluating required number of examples. From the second point of
view using inductive learning we try to discover relationships between decision
attribute and conditional attributes. A precise description of concepts in terms
of conditional attributes values is required to achieve good quality of classifica-
tion. Without an attribute that values are important to concept description it
is impossible accurately approximate a concept.

Methods that determine the best template with respect to the quality func-
tions q1 and q2 are frequently investigated and well documented (see, e.g., [37,
38]). Unfortunately, in our case such quality functions do not sufficiently prefer
the templates that are useful for data decomposition over the others. The exper-
imental evaluation in [26] showed that a lot of templates with similar size (i.e.
width and height) have very different properties for classifier induction and data
decomposition.

There were proposed some other template evaluation functions (cf. [27, 29])
that perform much better than simple q1 and q2 functions presented above.
These function have some similar properties to the feature selection criteria
because the data decomposition itself depends on proper feature selection. The
most important issue in selecting such measures is to solve the trade-off between
computational complexity of function evaluation and the quality of resulting
decomposition.

In rough sets some useful concepts to measure the information-related prop-
erties of data set are known, e.g., size of positive region or conflict measure.
Based on these and similar concepts a number of template evaluation function
were proposed and examined. One of the most promising heuristical template
evaluation counts the average purity in each indiscernibility class:

G(t) =
K∑

i=1

maxc∈Vd
card({y ∈ [xi]INDt

: d(y) = c})
card([xi]INDt)

. (3)

In above formula K is the number of indiscernibility classes (classes of abstrac-
tion of the indiscernibility relation INDt) and [xi]INDt

denotes the i-th indiscerni-
bility class. The above formula is calculated for the maximal decision sub-table
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Bt related to the template t, in particular the indiscernibility relation INDt

is based on the attributes from the template t and the indiscernibility classes
are constructed only from objects that do not have missing values on these at-
tributes.

To ensure the expected properties of decomposition the heuristical template
evaluation can be combined with size properties. Similarly to the q2 function,
one can incorporate an exponent to control the importance of each component
of the formula.

q3(t) = w(t)β · h(t) ·G(t)γ (4)

There is a number of possible heuristical evaluations functions that can be
apply here. One can also use an approach known in feature selection as wrapper
method, where the classifier induction algorithm is used to evaluate properties of
investigated feature subset (see, e.g., [29]). The q3 template evaluation function
combining the heuristical function G with size properties showed in experiments
to be reasonable good with respect to quality at the minimal computational cost,
while, e.g., the functions based on classifier trials improve quality not so much
at the enormous computational cost.

6 Decision Rule Induction

The data decomposition phase delivers a number of data tables free from missing
values. Such data tables enable us to apply any classifier induction method. In
particular, the methods for inducing decision rules, that frequently suffer from
lack of possibility to induce rules from data with missing values can be used. On
each data table returned from the decomposition phase we apply an algorithm
for decision rule induction.

In D3RJ we use a method inducing all possible consistent decision rules,
called also optimal decision rules. This method induces decision rules based on
indiscernibility matrix (see, e.g., [23, 47, 48]). The indiscernibility matrix, related
to the indiscernibility relation, indicates which attributes differentiates each two
objects from different decision classes. Using this matrix and boolean reasoning
we can calculate a set of reducts.

A reduct is a minimal (in inclusion sense) subset of attributes that is sufficient
to separate every two objects with different decision. For each reduct decision
rule induction algorithm can generate many decision rules. Different reducts
usually yields to different rule sets. These sets of rules are subject to joining,
clustering and reduction in the next, decision rule joining phase.

The treatment of decision rule sets in D3RJ differs from usual role of these
sets. The obtained sets of decision rules, each one from one decision sub-table,
are merged into one set of decision rules. It gives highly redundant set of decision
rules, where each object is covered by at least one decision rule using its non-
missing attribute values. The simplest reduction of obtained set of rules is that
duplicate rules are eliminated. The more advanced classifier complexity reduction
employed in D3RJ is decision rule clustering and joining.
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6.1 Rule Shortening

The decision rule shortening is a frequently utilized approach for achieving
shorter and more noise-redundant decision rules (see, e.g., [2, 34, 60]). In shorten-
ing process unnecessary or weak descriptors in the conditional part of a decision
rule are eliminated. The method for decision rule shortening drops some descrip-
tors from conjunction ϕ in the left part of the rule.

The shortened decision rules can possibly misclassify objects. To control this
phenomenon the parameter α of decision rule shortening is utilized, which steers
the minimal possible accuracy of decision rule. In other words decision rule after
shortening cannot misclassify more than 1 − α objects. The side effect of the
decision rule shortening is possibility of multiplication of decision rules, i.e., the
result of shortening of one decision rule can be several decision rules. This effect
is balanced from the other side by that one shortened decision rule can be a
result of shortening of several decision rules. For example, the decision rule R
can be shortened to decision rules R1, R2 and R3:

R : (a1(x) = 1 ∧ a3(x) = 4 ∧ a7(x) = 2) ⇒ d,

R1: (a1(x) = 1 ∧ a3(x) = 4) ⇒ d,
R2: (a1(x) = 1 ∧ a7(x) = 2) ⇒ d,
R3: (a3(x) = 4 ∧ a7(x) = 2) ⇒ d.

Continuing the example, the decision rule R1 can be result of shortening of
decision rules R and S:

S : (a1(x) = 1 ∧ a3(x) = 4 ∧ a5(x) = 3) ⇒ d.

In practice we never observe increase of decision rule set after shortening. The
decision rule shortening always decrease number of rules almost linearly with
respect to the factor α.

7 Decision Rule Joining

The decision rule joining is employed at the end of D3RJ method to reduce
complexity of classifier and improve the classification quality. In the decision rule
joining we allow to join only rules from the same decision class. It is possible
to join two rules that have different decisions, but it would make this method
more complicated. By joining rules with different decisions we calculate rules
dedicated not for one decision but for a subset of possible decisions. These rules
could be used to build hierarchical rule systems.

The main idea of decision rule joining is clustering that depends on distance
computed from comparison of logical structures of rules. Similar rules are easy
to join and by joining them we get rules that have similar properties.

Definition 6. Let A = (U,A, {d}) be a decision table and let R1, R2 be general-
ized rules calculated from the decision table A. We define the distance function:

dist(R1, R2) =
{

card(A) when dR1 6= dR2∑
ai∈A di(Ri

1, R
i
2) otherwise
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where:
di(X, Y ) =

card((X − Y ) ∪ (Y −X))
card(Vi)

.

The above distance function is used for comparison of decision rule logical
structures and for estimation of their similarity. This function differs from the
one presented in [30]. It gives better results and is easier to interpret. Let us
consider an example of simple rule joining:

R1 : ({1}, {3}, ∅, {1}, {2}, ∅, {2}) ⇒ d,
R2 : ({2}, {3}, ∅, {2}, {2}, ∅, {3}) ⇒ d.

If we suppose that each attribute ai has a domain Vi with ten values card(Vi) =
10, then distance between these two rules is dist(R1, R2) = 0.6. After joining
decision rules R1 and R2 we obtain a generalized decision rule:

R : ({1, 2}, {3}, ∅, {1, 2}, {2}, ∅, {2, 3}) ⇒ d.

To illustrate on example the further classification abilities of created generalized
decision rule lets consider following objects:

x1: 1 3 3 1 2 3 2
x2: 2 3 1 2 2 5 2

x3: 6 3 7 1 2 3 2
x4: 1 3 4 1 5 3 3

The objects x1 and x2 are classified by the generalized rule R to the decision
class d, while the objects x3 and x4 are not recognized and the rule R returns
the answer “?”.

Moreover, we can join the generalized rules exactly in the same way as the
classic ones. Formally speaking a new rule obtained from Rm and Rn have a form{
Ri

Rm+Rn

}
ai∈A

⇒ d, where Ri
Rm+Rn

:= Ri
m ∪ Ri

n. The D3RJ method utilizes a
decision rule joining algorithm as described in following points.

1. Let XR be a set of all induced rules. We can assume that it is a set of gen-
eralized rules, because every classic rule can be interpreted as a generalized
rule.

2. Let Rm ∈ XR and Rn ∈ XR be such, that dRm = dRn and

dist(Rm, Rn) = min
i,j
{dist(Ri, Rj) : Ri, Rj ∈ XR ∧ dRi = dRj}.

3. If there exist Rm and Rn in XR such that dist(Rm, Rn) < ε then the set of
rules XR is modified as follows:

XR := XR − {Rm, Rn},

XR := XR ∪ {RRm+Rn},
where RRm+Rn

is a new rule obtained by joining Rm and Rn.
4. If the set XR has been changed then we go back to step 2, otherwise the

algorithm is finished.

We can assume that, for example, ε = 1. The algorithm ends when in the set
XR are no two rules from the same decision class that are close enough.

Presented method called Linear Rule Joining (LRJ) is very simple and effi-
cient in time.
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Table 1. Classification accuracy of the classic exhaustive decision rule induction and
the D3RJ method using various decomposition criteria and decision rule shortening.

α No decomposition w · h w·h·G w·h·G8

1.0 70.15 70.86 71.57 70.65
0.9 71.64 71.02 71.80 71.18
0.8 73.30 72.41 73.11 72.69
0.7 71.87 71.71 72.11 72.21
0.6 69.72 69.37 70.06 69.80
0.5 67.93 70.40 71.13 71.86
0.4 66.81 70.98 71.06 71.11
0.3 68.28 71.23 71.41 71.33
0.2 66.47 71.60 71.54 71.55
0.1 66.14 71.73 71.61 71.60

8 Empirical Evaluation

There were carried out some experiments in order to evaluate the D3RJ method.
Results were obtained using the ten-fold Cross-Validation (CV10) evaluation.
The experiments were performed with different decomposition approaches as well
as without using decomposition method at all. All data sets used in evaluation of
the D3RJ method were taken from Recursive-Partitioning.com [31]. The selection
of these data sets was based on amount of missing attribute values and their
documented natural origin. We selected following 11 data tables:

– att — AT&T telemarketing data, 2 classes, 5 numerical attributes, 4 cate-
gorical attributes, 1000 observations, 24.4% incomplete cases, 4.1% missing
values.

– ech — Echocardiogram data, 2 classes, 5 numerical attributes, 1 categorical
attribute, 131 observations, 17.6% incomplete cases, 4.7% missing values.

– edu — Educational data, 4 classes, 9 numerical attributes, 3 categorical at-
tributes, 1000 observations, 100.0% incomplete cases, 22.6% missing values.

– hco — Horse colic database, 2 classes, 5 numerical attributes, 14 categorical
attributes, 368 observations, 89.4% incomplete cases, 19.9% missing values.

– hep — Hepatitis data, 2 classes, 6 numerical attributes, 13 categorical at-
tributes, 155 observations, 48.4% incomplete cases, 5.7% missing values.

– hin — Head injury data, 3 classes, 6 categorical attributes, 1000 observations,
40.5% incomplete cases, 9.8% missing values.

– hur2 — Hurricanes data, 2 classes, 6 numerical attributes, 209 observations,
10.5% incomplete cases, 1.8% missing values.

– hyp — Hypothyroid data, 2 classes, 6 numerical attributes, 9 categorical
attributes, 3163 observations, 36.8% incomplete cases, 5.1% missing values.

– inf2 — Infant congenital heart disease, 6 classes, 2 numerical attributes,
16 categorical attributes, 238 observations, 10.5% incomplete cases, 0.6%
missing values.

– pid2 — Pima Indians diabetes , 2 classes, 8 numerical attributes, 768 obser-
vations, 48.8% incomplete cases, 10.4% missing values.
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Table 2. Number of decision rules using the classic exhaustive decision rule induction
and the D3RJ method using various decomposition criteria and decision rule shortening.

α No decomposition w · h w·h·G w·h·G8

1.0 9970.54 1149.67 1031.33 872.90
0.9 8835.55 1050.29 941.30 807.19
0.8 6672.00 862.11 783.09 677.45
0.7 4945.65 685.23 626.16 545.29
0.6 3114.22 384.32 349.19 308.29
0.5 1682.63 203.57 193.37 176.61
0.4 1158.45 164.12 159.44 150.85
0.3 661.78 74.09 75.77 72.65
0.2 366.80 43.77 44.95 42.85
0.1 227.59 35.49 36.25 34.00

– smo2 — Attitudes towards workplace smoking restrictions, 3 classes, 4 nu-
merical attributes, 4 categorical attributes, 2855 observations, 18.7% incom-
plete cases, 2.5% missing values.

In presented results the exhaustive rule induction method was used to induce
classifiers from the decision subtables. This method is implemented in the RSES-
Lib software (see [6]). The data decomposition was done with the help of a genetic
algorithm for best template generation (see [29]).

Table 1 presents a general comparison of the classification accuracy using the
classic exhaustive decision rule induction with the D3RJ method using various
decomposition criteria and shortening factor values α in range from 0.1 to 1.0.
Table contains the classification accuracy averaged over eleven tested data sets
and ten folds of cross-validation (CV10). In the Table 2 the similar comparison
is presented with respect to the number of decision rules. The detailed results
are presented in next tables. From averages presented in Table 1 one can see that
in general the classification accuracy of the D3RJ method is similar or slightly
worse than classic decision rules at the top of the table, but slightly better at
the bottom of it, where the shortening factor is lower. It suggest that if the
decision rules are more general and shorter then they are easier to join and the
D3RJ method performs better. Table 2 that present number of decision rules,
shows that the D3RJ method requires averagely 8 times less decision rules than
the classic exhaustive decision rules, called also optimal decision rules. Thus,
the reduction of the classification abilities is not as high as the reduction of the
model size.

Table 3 presents detailed experimental results of D3RJ method with use of
template evaluation function q = w·h·G and shortening factor α = 0.8. The re-
sults are presented for the decomposition method without decision rule joining
as well as with the decision rule joining. The decomposition method without
decision rule joining uses the standard voting over all decision rules induced
from sub-tables. The compression ratio presented in this table is the ratio of
the number of decision rules without the decision rule joining to the number of
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Table 3. The detailed empirical evaluation of the D3RJ method using the shortening
factor α = 0.8, and template evaluation function q = w·h·G.

Before joining After joining Profits
Com- Imp-

Table Accuracy # Rules Accuracy # Rules pres- rove-
sion ment

att 60.50 ±4.39 2459.3 ±586.24 59.48 ±4.80 673.0 ±169.03 3.65 -1.02
ech 69.19 ±8.65 201.0 ±39.41 68.00 ±7.90 93.9 ±12.57 2.14 -1.19
edu 50.91 ±3.20 3580.9 ±61.20 54.20 ±3.97 397.2 ±22.84 9.02 3.29
hco 82.58 ±7.97 1440.1 ±527.19 83.94 ±6.88 391.2 ±142.73 3.68 1.36
hep 79.42 ±1.52 1454.5 ±104.70 79.42 ±1.52 1253.5 ±85.62 1.16 0.00
hin 72.51 ±4.46 436.2 ±17.88 72.01 ±4.72 285.5 ±15.38 1.53 -0.50
hur2 82.93 ±7.49 197.9 ±38.73 82.84 ±7.58 94.6 ±21.87 2.09 -0.09
hyp 95.23 ±0.09 420.2 ±39.26 95.29 ±0.16 150.0 ±8.16 2.80 0.06
inf2 70.22 ±9.67 4298.1 ±206.92 69.43 ±9.48 3866.3 ±192.67 1.11 -0.79
pid2 72.52 ±4.10 2606.3 ±121.75 70.84 ±3.92 222.9 ±16.86 11.69 -1.68
smo2 64.90 ±2.69 6108.8 ±64.77 68.72 ±0.85 1185.9 ±29.38 5.15 3.82
avg 72.81 ±4.93 2109.39 ±164.37 73.11 ±4.71 783.1 ±65.19 2.69 0.30

decision rules with the decision rule joining. The improvement is the difference
of the classification accuracy between classification without and with decision
rule joining. As we can see the decision rule joining not only reduces the num-
ber of decision rules, but also improves the classification accuracy. However, the
improvement of the classification accuracy is not significant (Wilcoxon signed
rank test p-value is 0.17) as well as the worsening in comparison to classic deci-
sion rule induction is not significant (Wilcoxon signed rank test p-value is 0.47).
Reducing shortening factor gives the D3RJ method advantage over both other
approaches.

Table 4 presents detailed experimental results of D3RJ method with use
of template evaluation function q = w·h·G8 and shortening factor α = 0.9.
Similarly to the previous table the results are presented for the decomposition
method without decision rule joining as well as with the decision rule joining.
The compression and improvement factors are also provided. The D3RJ method
using the w·h·G8 criterion in the decomposition phase achieves similar results
to the D3RJ method using the w·h·G. As we can see, the decision rule joining
significantly reduces model complexity and improves its predictive abilities. In
this case the classification accuracy improvement is significant (Wilcoxon signed
rank test p-value is 0.001), but the worsening in comparison to classic decision
rule induction is not significant (Wilcoxon signed rank test p-value is 0.39). The
D3RJ method performs quite well requiring almost three times less decision rules
then the decomposition method without rule joining and almost eleven times less
then classic decision rule induction.
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Table 4. The detailed empirical evaluation of the D3RJ method using the shortening
factor α = 0.9, and template evaluation function q = w·h·G8.

Before joining After joining Profits
Com- Imp-

Table Accuracy # Rules Accuracy # Rules pres- rove-
sion ment

att 55.20 ±2.21 2275.8 ±32.88 57.48 ±5.34 612.2 ±8.61 3.72 2.28
ech 67.34 ±9.94 157.3 ±33.67 65.58 ±7.09 58.1 ±9.51 2.71 -1.76
edu 47.72 ±5.09 4080.2 ±56.81 53.10 ±2.76 427.0 ±23.32 9.56 5.38
hco 81.79 ±6.26 2126.9 ±120.15 82.60 ±6.05 593.4 ±71.54 3.58 0.81
hep 79.46 ±4.93 758.4 ±177.42 81.41 ±5.99 611.1 ±162.98 1.24 1.95
hin 68.30 ±3.35 589.9 ±19.25 67.90 ±3.76 358.8 ±13.98 1.64 -0.40
hur2 76.10 ±7.86 77.3 ±12.02 74.69 ±11.72 31.7 ±7.58 2.44 -1.41
hyp 95.23 ±0.09 562.5 ±46.01 95.26 ±0.13 169.3 ±11.19 3.32 0.03
inf2 64.75 ±8.20 4854.0 ±488.92 66.08 ±8.96 4412.6 ±389.21 1.10 1.33
pid2 72.53 ±5.27 1953.7 ±136.74 71.09 ±5.16 149.9 ±13.81 13.03 -1.44
smo2 55.97 ±2.38 7897.4 ±57.71 67.81 ±0.99 1455.0 ±21.06 5.43 11.84
avg 69.49 ±5.05 2303.0 ±107.42 71.18 ±5.27 807.2 ±66.62 2.85 1.69

9 Conclusions

The presented method consists of two main steps. The first one, called the de-
composition step, makes it possible to split decision table with missing attribute
values into more tables without missing values. In the second step one classifier
(decision system) is induced from decision tables returned from the first step by
joining some smaller subsystems of decision rules.

In the consequence we obtain a simple strategy for building decision systems
for data tables with missing attribute values. Although the obtained decision
rules are generated only for complete data, they are able to classify data with
missing attribute values. It is done without using the missing values explicitly
in the decision rule formula. For bigger decision tables the proposed approach
works faster than one-pass classic decision rule induction. Moreover, we can use
in this task a parallel computing because created subsystems are independent. It
seems that in this way it is possible to solve many hard classification problems in
relatively short time. The further advantage from the decision rule set reduction
is reduction of time necessary for classification of test objects. The obtained
results showed that the presented method is very promising for classification
problems with missing attribute values in data sets.
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