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Abstract. The indiscernibility relation is a fundamental concept of the rough set theory. The origi-
nal definition of the indiscernibility relation does not capture the situation where some of the attribute
values are missing. This paper tries to enhance former works by proposing an individual treatment
of missing values at the attribute or value level. The main assumption of the theses presented in
this paper considers that not all missing values are semantically equal. We propose two different
approaches to create an individual indiscernibility relation for a particular information system. The
first relation assumes variable, but fixed semantics of missing attribute values in different columns.
The second relation assumes different semantics of missing attribute values, although this variability
is limited with expressive power of formulas utilizing descriptors. We provide also a comparison of
flexible indiscernibility relations and missing value imputation methods. Finally we present a simple
algorithm for inducing sub-optimal relations from data.
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1. Introduction

The concept of similarity or discernibility is important in many kinds of reasoning. It is very essential not
only for the rough set theory, but also for all other aspects of reasoning. Its importance arises from the
fact, that almost every other concept utilized in reasoning and especially in machine learning depends on
the similarity or discernibility. For example, if the reasoning process is carried out using a set of objects,
then it is necessary to know which objects are basically the same or describe the same situation. The
other example is the decision rule matching. Before applying a decision rule, it has to be compared to
an object, in order to determine does the object is somehow similar enough to the decision rule. Also
a decision rule should be identically applicable to objects that are indiscernible. The semantics of the
indiscernibility relation impacts on soundness of reasoning.

The indiscernibility relation is a fundamental concept of the rough set theory. The original definition
of the indiscernibility relation, thus the rough set theory, does not capture the situation where some of
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the attribute values are missing. The problem of missing values handling within the rough set frame-
work has been already faced in literature, e.g., by Grzymała [8, 10], Słowiński [29], Stefanowski [31]
and Kryszkiewicz [13]. The proposed approaches consider alternative definitions of the indiscernibility
relation, which reflect various semantics of missing attribute values. The main difficulty of applied al-
ternatives for the indiscernibility relation arises from semantics fixed in advance of all missing values in
whole information system, what was identified in, e.g., [31]. This paper tries to enhance former works
by proposing an individual treatment of missing values at the attribute or value level.

The main assumption of the theses presented in this paper considers that not all missing values are
semantically equal. Among a number of taxonomies (see, e.g., [3, 18, 31]) for missing attribute value
semantics, the two main types of missing values can be determined: the existential null as an unknown
value of considered property, called also “missing” semantics and the placeholder null as an inapplicable
value for considered property, what is similar to the “absent” missing value semantics. These two main
types of missing attribute values possibly can be even mixed together in one database column, in a way
precluding the distinguishing of one type from another. The different meanings of missing attribute
values obviously have an impact on the concept of the indiscernibility relation and in consequence on
the concept of certain and approximate decision rules. We expect the decision rules induced with help
of an indiscernibility relation customized to a particular decision system to perform better in terms of
knowledge discovery and classification accuracy.

In this paper we propose two different approaches to create an individual indiscernibility relation for
a particular information system. The first approach — attribute constrained indiscernibility relation —
assumes variable, but fixed semantics of missing attribute values in different columns. In other words
treatment of missing values by attribute constrained indiscernibility relation can be different for different
attributes (columns), but all missing values from one attribute have to be handled in exactly the same way.
The second approach — descriptor constrained indiscernibility relation — assumes different semantics
of missing attribute values, although this variability is limited with expressive power of formulas utilizing
descriptors. It means that treatment of missing attribute values by descriptor constrained indiscernibil-
ity relation can be differentiated using logic formulas over descriptor language for a given information
system.

The paper is organized as follows. The next section describes classic definition of the indiscernibility
relation together with standard approaches to handle missing attribute values. In the third section the
idea of flexible indiscernibility relations is presented. The fourth section describes connections between
flexible indiscernibility relations and missing value imputation methods. In the fifth section an algorithm
for inducing optimal attribute-constrained indiscernibility relations is presented together with empirical
evaluation. The last, sixth section contains final conclusions.

2. Preliminaries

The indiscernibility relation is formulated on objects belonging to an information system (see, e.g., [11,
22]).

Definition 2.1. An information system A = (U,A) is a pair, where U is a non-empty, finite set of
objects called the universe and A is a non-empty, finite set of attributes. Attributes a ∈ A are functions
a : U → Va, where Va is a domain of attribute a.
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In its original formulation an information system concerns a situation where attribute values for all ob-
jects are known. Such an information system is called complete information system. The classic indis-
cernibility relation is formulated for complete information systems (cf. [11, 22]).

Definition 2.2. Let A = (U,A) be a (complete) information system and B ⊆ A. The indiscernibility
relation INDB is defined as follows:

INDB = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y)}. (1)

The classic indiscernibility relation is an equivalence relation, i.e., is reflexive, symmetric and transitive.
The equivalence classes of the indiscernibility relation form upper and lower concept approximations
(see, e.g., [11, 22]), which are used in inductive learning to find certain and plausible knowledge.

In a presence of missing data the definition of information system has to be extended. There are
several ways of defining an incomplete information system, which include extending attribute domains,
applying partial functions as attributes and others. Also missing values are differently notated using
one or more special symbols (cf. [9]), or even without using any special symbol as in the case of partial
functions. In this paper we will use extended domain of attribute values, while such an approach is closest
to the real-life implementations of incomplete information systems and delivers easy to use notation.

Definition 2.3. An incomplete information system A = (U,A) is a pair, where U is a non-empty, finite
set of objects called the universe and A is a non-empty, finite set of attributes. Attributes ai ∈ A are
functions a : U → V ∗

a , where Va is a domain of attribute a, V ∗
a = Va ∪ {∗} and ∗ /∈ Va.

The special symbol “∗” denotes absence of regular attribute value and if a(x) = ∗ we say that a is
not defined on x. In the relational databases there exists a similar notion — “NULL” that represents
missing attribute value in a database record (see, e.g., [4, 18]). In above definition we are using only
one symbol for missing attribute value for several reasons. Firstly, in all systems for data gathering and
processing missing values are stored using only one symbol. Even in systems that have a possibility
to represent several types of missing values, only one symbol is practically used. Secondly, even if an
information system contains missing values of several types, but there is no additional information that
allows differentiating them, then it is a task for machine learning methods to detect those types and apply
to them proper semantics and treatment.

There is no necessity to use different notation for complete and incomplete information systems.
If all attribute values are defined and there is no necessity to use special symbol for denoting missing
attribute value, then both definitions are compatible. Moreover, we can consider also an extension of
indiscernibility relation that works on incomplete information systems. The above definition of the
indiscernibility relation IND is not specified on missing attribute values. Many researchers proposed
different approaches to extend this relation, some of them are described later. One extension of the
indiscernibility relation is the most similar and compatible with the classic definition. If we consider
the standard equality relation on any domain, than equal are only two exactly the same elements from
the domain. Similarly, for any domain V ∗

a the standard equality relation holds for ∗ = ∗ and for all
values other than ∗ equality v = ∗ and ∗ = v does not hold. Using such property of equality relation
the above definition of the indiscernibility relation IND is applicable also to incomplete information
systems. Moreover, this extension inherits all properties of the classic indiscernibility relation IND and
also, due to the way of representing missing attribute values in computers, any implementation of the
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classic indiscernibility relation will behave like exactly this extension of the indiscernibility relation,
when applied to incomplete data. In rest of this paper we will always assume this extension of equality
relation.

In such a case the indiscernibility relation IND is still an equivalence relation and two objects are
indiscernible if and only if their descriptions on considered attributes are identical. Such treatment of
missing attribute values corresponds to a placeholder-null semantics which assumes that a missing at-
tribute value is a consequence of the fact, that an object cannot be described by any value on considered
attribute. In contrast to further considered semantics, such a missing value is meaningful in reasoning or,
at least, is not comparable to any domain value.

It is known fact, that missing value handling by IND relation can decrease the correctness of induc-
tive reasoning (see, e.g., [32]). If for example a medical examination was not carried out on two patients,
we cannot suppose that they are similar. To overcome this problem some other indiscernibility relations
were proposed for an alternative missing values handling within the rough set framework. However,
none of them is universally the best nor always correct in the terms of correctness of reasoning and size
of upper and lower approximations (cf. [31, 32, 10]). To overcome this problem also some other ap-
proaches were proposed, where the additional numerical tuning of the indiscernibility relation is made or
fuzzy sets framework is utilized (see, e.g., [31, 32, 7]). The common problem of all these numerical ap-
proaches is lack of algorithm that selects optimal parameters and shapes of fuzzy membership functions
for a considered information system. The two most important indiscernibility relation replacements are
symmetrical similarity relation and unsymmetrical similarity relation.

Definition 2.4. Let A = (U,A) be an incomplete information system and B ⊆ A. The symmetrical
similarity relation SSB is defined as follows:

SSB = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y) ∨ a(x) = ∗ ∨ a(y) = ∗}. (2)

The symmetric similarity relation, called also tolerance relation was inspired by week equalities for
partial structures in universal algebra and was frequently considered within the rough set framework
(see, e.g., [13, 32]). Its interpretation is related with missing-null semantics, where missing values are
lost or not stored for a variety of reasons, but at least theoretically it is possible to assign to an object
a value for considered attribute. The symmetrical similarity relation is reflexive, symmetric but not
necessarily transitive. It does not form equivalence classes, so the definition of upper and lower concept
approximation has to be modified (see, e.g., [8, 32] for details).

Definition 2.5. Let A = (U,A) be an incomplete information system and B ⊆ A. The unsymmetrical
similarity relation USB is defined as follows:

USB = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y) ∨ a(x) = ∗}. (3)

The unsymmetrical similarity relation considers another interpretation of missing values, where it is not
possible to describe an object with any value of considered attribute (see, e.g., [32]). In contrast to the
classic indiscernibility relation case, the missing attribute value is unimportant for reasoning process. An
original-copy example is frequently mentioned as a justification of unsymmetrical similarity, where it is
quite natural to call a copy to be similar to the original, but it is very odd to call the original to be similar
to a copy. The unsymmetrical similarity relation is reflexive, transitive but not necessarily symmetric, so
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also upper and lower concept approximation have to be redefined. There exists also a general definition
of upper and lower concept approximation that works in the case of symmetrical and unsymmetrical
similarity and also classic indiscernibility relation.

Three introduced indiscernibility relations can be characterized by following theorem formulated by
Stefanowski in [31].

Theorem 2.1. For any incomplete information system A = (U,A) and subset of attributes B ⊆ A
following property holds:

INDB ⊆ USB ⊆ SSB. (4)

The above theorem is very important for all possible approaches to indiscernibility relation. In this paper
we will not discuss it in detail, but it is very reasonable to take two following assumptions for every
indiscernibility relation. Firstly, the indiscernibility relation should be reflexive. Such an assumption
is very common and even some definitions or implementations of information systems do not consider
contrary situation. Moreover, it would rise many problems if we do not assume that an object is similar to
itself. Secondly, the indiscernibility relation should not join objects with different defined values on the
same attribute. Joining of completely different objects can follow from utilizing additional knowledge,
which should be represented elsewhere, either in data preparation or in decision rule induction. There
exist another stream of research in rough set theory, namely tolerance relations and tolerance spaces (see,
e.g., [12, 21, 24, 25]), where such assumption is not made. However, this research is rather related with
feature extraction, but not with missing value handling. If we make two above assumptions, then the
INDB is the smallest indiscernibility relation, in inclusion sense, that satisfies assumption on reflexivity,
while SSB is the biggest indiscernibility relation, in inclusion sense, that satisfies second assumption.

3. Flexible Indiscernibility Relations

The main difficulty of applied alternatives for classic indiscernibility relation arises from the fact that
semantics of all missing values is fixed in whole information system. It has been observed (see, e.g.,
[31]), that presented above indiscernibility relations have some deficiencies in creating relevant and big
enough upper and lower approximations of considered concept.

In this paper we try to find another way to provide a flexible indiscernibility relation by using logical
approach. It means that the indiscernibility relation should be expressed as a logical formula without
any additional numeric parameters. This gives us the possibility to apply boolean reasoning methods
that proved its usefulness many times (see, e.g., [26]). We believe that indiscernibility relation based on
logical formula would be easier for automatic generation or induction using boolean reasoning.

We propose two different approaches to create an individual indiscernibility relation for a particular
information system. The first relation assumes variable, but fixed semantics of missing attribute values in
different columns. The second relation assumes different semantics of missing attribute values, although
this variability is limited with expressive power of formulas utilizing descriptors.

3.1. Attribute Constrained Indiscernibility Relation

The attribute constrained indiscernibility relation allows utilizing different missing value semantics for
each attribute.
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Definition 3.1. An attribute indiscernibility relation Ia ⊆ V ∗
a × V ∗

a is a reflexive relation that for any
pair in relation (v1, v2) ∈ Ia satisfies condition that if both values are non-missing, then they are equal,
i.e., ((v1, v2) ∈ Ia) ⇒ ((v1 6= ∗ ∧ v2 6= ∗) ⇒ (v1 = v2)).

The above implication can be rewritten also as ((v1, v2) ∈ Ia) ⇒ (v1 = v2 ∨ v1 = ∗ ∨ v2 = ∗). It
guarantees full compatibility with standard equality on defined attribute values, but leave freedom in
treatment of missing values. Relation Ia can be interpreted as a generalization of equality, which is
reflexive, symmetric at least where standard equality is symmetric, and not necessarily transitive. More-
over, if we identify a one-attribute information system A = (U, {a}) with attribute a for which attribute
indiscernibility relation Ia is constructed, then this relation can be also interpreted as an indiscernibility
relation for such one-attribute information system A = (U, {a}). Let us give some examples of attribute
indiscernibility relations:

• {(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2},

• {(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2 ∨ v1 = ∗},

• {(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2} ∪ {(3.14, ∗), (∗, 3.14)}, assuming that 3.14 ∈ Va.

Definition 3.2. Let A = (U,A) be an incomplete information system and B ⊆ A be a subset of at-
tributes such that attributes a ∈ B are functions a : U → V ∗

a . An indiscernibility relation is attribute
constrained indiscernibility relation if it can be represented in following form:

ALB = {(x, y) ∈ U × U : ∀a∈B(a(x), a(y)) ∈ Ia}, (5)

for some attribute indiscernibility relations Ia.

We may say by analogy to linear independence, that the attribute constrained indiscernibility relation is
any attribute independent relation constructed from such attribute indiscernibilities. Such a construction
allows to obtain different semantics of missing attribute values for each attribute. The name of the relation
suggests, that flexibility in using different semantics of missing attribute values is limited by fixing it for
an attribute.

To better explain the application area of such a relation let take an example of information system
A = (U, {c, w, p, ec}), containing descriptions of motorcycles and bicycles. Motorcycles and bicycles
both have color (c), weight (w) and price (p). However, the engine capacity (ec) is a property, which
does not make any sense in case of bicycles. In such an example the missing values in color, weight
and price can be treated using missing-null semantics, while missing values in engine capacity can be
treated as placeholder-null semantics. The simplest attribute constrained indiscernibility relation formula
representing the above example can be:

AL{c,w,p,ec}(x, y) = (c(x) = c(y) ∨ c(x) = ∗ ∨ c(y) = ∗)
∧ (w(x) = w(y) ∨ w(x) = ∗ ∨ w(y) = ∗)
∧ (p(x) = p(y) ∨ p(x) = ∗ ∨ p(y) = ∗)
∧ ec(x) = ec(y). (6)

The relation ALA implements for attributes c,w and p the existential missing value semantics, while for
attribute ec the placeholder missing value semantic.
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Let take a closer look at the building blocks of attribute constrained indiscernibility relations —
attribute indiscernibility relations.

Theorem 3.1. Every attribute indiscernibility relation Ia : V ∗
a × V ∗

a satisfies following property:

{(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2} ⊆ Ia ⊆ {(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2 ∨ v1 = ∗ ∨ ∗ = v2} (7)

Proof:
The first inequality results directly from the reflexivity assumption of Definition 3.1. Every attribute in-
discernibility should be reflexive, so every pair (v, v) ∈ Ia and first inequality is satisfied. This inequality
is not necessarily strict, because the relation on the left satisfies all assumptions of attribute indiscerni-
bility relation. The second inequality results from the condition in Definition 3.1. Let assume that a pair
(v1, v2) is an element of attribute indiscernibility relation. If v1 = ∗ is a missing value or v2 = ∗ is a
missing value, than such pair is an element of the right relation. In other case both v1 and v2 are defined
and they have to be equal from definition of attribute indiscernibility relation, so such pair is an element
of the right relation. The right inequality is also not necessarily strict, while the right relation satisfies
reflexivity assumption and the condition from Definition 3.1. ut

The above theorem provides the upper and lower limit for attribute indiscernibilities. For attribute con-
strained indiscernibility relations similar property holds. In fact INDB and SSB relations are also at-
tribute constrained indiscernibility relations. However, an arbitrary attribute constrained indiscernibility
relation is not comparable with unsymmetrical similarity relation USB .

Theorem 3.2. The classic indiscernibility relation INDB and symmetrical similarity relation SSB are
respectively the smallest and the biggest attribute constrained indiscernibility relation, i.e., following
property holds for any information system A = (U,A), B ⊆ A and attribute constrained indiscernibility
relation ALB:

INDB ⊆ ALB ⊆ SSB (8)

Proof:
This theorem results from Theorem 3.1 and Definition 3.2. Firstly, let us observe that if we construct an
attribute constrained indiscernibility relation using attribute indiscernibility relations IIND

a = {(v1, v2) ∈
V ∗

a ×V ∗
a : v1 = v2} for each attribute a ∈ B, then we will get the classic indiscernibility relation INDB .

Similarly, if we construct an attribute constrained indiscernibility relation using attribute indiscernibility
relations ISS

a = {(v1, v2) ∈ V ∗
a × V ∗

a : v1 = v2 ∨ v1 = ∗ ∨ v2 = ∗} for each attribute a ∈ B, then we
will get the symmetrical similarity relation SSB . Secondly, every attribute constrained indiscernibility
relation ALB is constructed by conjunction of attribute indiscernibilities Ia for each attribute a ∈ B. If
we combine separate inequalities from Theorem 3.1 and merge them with conjunctions according to the
Definition 3.2, then we get inequalities as in the above theorem. ut

We can consider also a special subfamilies of attribute constrained indiscernibility relations. For
example let assume, that the building blocks, attribute indiscernibility relations are constrained to be
only one of these three possibilities:

• IIND
a = {(v1, v2) ∈ V ∗

a × V ∗
a : v1 = v2},
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• IUS
a = {(v1, v2) ∈ V ∗

a × V ∗
a : v1 = v2 ∨ v1 = ∗},

• ISS
a = {(v1, v2) ∈ V ∗

a × V ∗
a : v1 = v2 ∨ v1 = ∗ ∨ ∗ = v2}.

These three attribute relations generate smaller family of attribute constrained indiscernibility relations,
where on each attribute only one of three previously specified missing value semantics can be used.
This subfamily contains IND, US and SS relations. Moreover any relation from this family can be
labelled by set of attribute indiscernibility relations used in its construction. For example, if B =
{a1, a2, . . . , an}, then INDB relation can be labelled by {IIND

a1
, IIND

a2
, . . . , IIND

an
}, USB relation can be

labelled by {IUS
a1
, IUS

a2
, . . . , IUS

an
} and finally SSB relation can be labelled by {ISS

a1
, ISS

a2
, . . . , ISS

an
}. These

labels simplify search space of possible attribute constrained indiscernibility relations. Using such la-
bels both systematic search methods and other search methods such as genetic algorithms can efficiently
search for optimal attribute constrained indiscernibility relation using specified optimization criterion.
In fact this search space is very regular and form a lattice with the smallest element INDB , the biggest
element SSB and 3n elements in lattice. This lattice is similar to the lattice of subsets of set of attributes
B that contains 2n elements, but here each attribute can have three states (i.e., IIND, IUS and ISS), while
in lattice of subsets each attribute can be only present or absent. Moreover a general family of attribute
constrained indiscernibility relations also create a lattice, but structure of this lattice is not as regular as
previous one.

3.2. Descriptor Constrained Indiscernibility Relation

The descriptor constrained indiscernibility relation gives more flexibility than attribute constrained in-
discernibility relation. In this case the relation in not limited to fixed missing value semantics for an
attribute, but the relation can be described with any propositional logic formula over descriptors from
information system.

Definition 3.3. Let A = (U,A) be an incomplete information system. A formula of language DLA can
be one of the following:

• a(x) = v — descriptor-value equality,

• a(x) = ∗ — descriptor-missing value equality,

• a(x) = b(y) — descriptor-descriptor equality,

• ¬φ — negation of formula φ ∈ DLA,

• φ ∨ ψ — alternative of formulas φ ∈ DLA and ψ ∈ DLA,

• φ ∧ ψ — conjunction of formulas φ ∈ DLA and ψ ∈ DLA.

An indiscernibility relation is descriptor constrained indiscernibility relation if it can be represented by a
formula φ ∈ DLA.

Also a simpler language for defining descriptor-based formulas can be considered, where only descriptor-
descriptor equalities on the same attribute are allowed (i.e., a(x) = a(y)), and without negation. How-
ever, the expressive power of such language is exactly the same, because we are considering only finite
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universes and finite attribute sets. The more advanced expressions can be transcribed using other descrip-
tors and in worst case by enumeration of cases, what usually yields in dramatic growth of expression
length.

Continuing the above example, let’s consider information system A = (U, {c, w, p, ec, t}), where t :
u→ {b,m} is an attribute describing type of object: for motorcycle t(u) = m and for bicycle t(u) = b.
Let also assume for simplicity that type attribute t does not contain missing values. If we assume, that the
values of engine capacity can be also missing in case of motorcycles, what should be treated as existential
null rather than placeholder null, than the simple descriptor constrained indiscernibility relation formula
can be as follows:

DLA(x, y) = (c(x) = c(y) ∨ c(x) = ∗ ∨ c(y) = ∗)
∧ (w(x) = w(y) ∨ w(x) = ∗ ∨ w(y) = ∗)
∧ (p(x) = p(y) ∨ p(x) = ∗ ∨ p(y) = ∗)
∧ (ec(x) = ec(y) ∨ (t(x) = m ∧ t(y) = m ∧ (ec(x) = ∗ ∨ ec(y) = ∗)))
∧ (t(x) = t(y)). (9)

The relation DLA implements for attributes c,w and p the existential missing value semantics as well
as for the attribute ec, when both objects are motorcycles. If one or two of the considered objects are
bicycles, then relation DLA implements for attribute ec the placeholder missing value semantic.

Using assumptions presented in second section, which state that for any indiscernibility relation
INDB and SSB are respectively the smallest and the biggest indiscernibility relation, we can easily
observe that family of descriptor constrained indiscernibility relations should form a lattice. However, in
this case structure of this family remains unknown. The complexity of this structure and the number of
possible descriptor constrained indiscernibility relations suggest, that for selecting (sub)optimal in some
sense relation perhaps not the search algorithm should be used, but rather inductive learning or boolean
reasoning.

3.3. Free Indiscernibility Relation

There exists the possibility to create a free indiscernibility relation which would not be limited to the
attribute nor descriptor expressive power. Such a relation gives an opportunity to capture all possible re-
lationships between objects considered in information system and semantics of missing attribute values.
However, exceeding the limits of expressive power of propositional formulae language over descriptors
precludes usability of such a relation. Without the description of indiscernibility relation formulated in
language easily decidable we are not able to apply such relation correctly to new, unseen objects. If the
relation does not contain any (decidable) description, then the only way to characterize it is the enumera-
tion of elements in relation, e.g., in form of relation matrix. If the matrix does not contain unseen objects,
then we are not able to determine whether the particular new object is in the relation with any other or is
not. This suggest that such approach is useless, unless we try to do some approximation of such relation
using attribute- or descriptor constrained indiscernibility relation.
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4. Imputation

Within machine learning and especially statistical approach to machine learning the imputation methods
are frequently considered way of handling missing attribute values (see, e.g., [5, 6, 10, 19]. Generally
speaking imputation methods cope with missing attribute values by replacing them by regular attribute
values or a set of acceptable values. Imputation methods can not substitute algorithms for inducing
optimal indiscernibility relation, but it is interesting to compare their expressive power and present a
natural transformation of imputations into indiscernibility relations.

The simplest methods for missing value imputation are imputations using mean value, median, most
common value and other statistics or manually chosen values. All these methods at first estimate replace-
ment value for each attribute and then replace all missing attribute values with it. Such way of missing
value handling can be easily implemented using an attribute constrained indiscernibility relation. Let
assume that values estimated by an imputation algorithm for attributes A = {a1, a2, . . . , an} are respec-
tively r1, r2, . . . , rn, where ri ∈ Vai . We can create attribute indiscernibility relations Ia1 , Ia2 , . . . , Ian

defined as Iai = {(v1, v2) ∈ V ∗
ai
× V ∗

ai
: v1 = v2} ∪ {(ri, ∗), (∗, ri)} and using them we can con-

struct the attribute constrained indiscernibility relation that handles missing values exactly in the same
way as the imputation method does. Similar way of proceeding can be applied to an imputation method
that does not consider inter-attribute relations, where missing values are replaced with a set of possible
values. Moreover in the case of indiscernibility relation we do not have to extend the definition of an
information system to be able to express sets of values in place of attribute values.

Not all imputation algorithms can be expressed using attribute constrained indiscernibility relations.
An example of such algorithm is a modification of previously described imputations, where replacement
values are estimated not over all objects, but only within clusters (see, e.g., [5]). If only the clusters can
be described by descriptors, what is true for presented in [5] NCBMM and RCBMM method, but not
for the KMCMM, then these descriptions can be used in conjunction with replaced value in formula-
tion of descriptor constrained indiscernibility relation. In general, descriptor constrained indiscernibility
relations can represent any deterministic imputation, where determinism is understand as the fact that
every identically described object is imputed with exactly the same value or set of values. In such a
case we simply add a conjunction of descriptor that describe considered object to the formula together
with clause describing possible replacement of missing attribute values. An example of the method that
does not satisfy this condition is the EM imputation method, where every object is imputed with value
randomized from a probability distribution. Although there is a way to bypass this limitation by introduc-
ing an artificial attribute simulating nondeterministic behavior, we must state that descriptor constrained
indiscernibility relations are not designed to cope with nondeterminism.

5. Inducing Optimal Attribute Constrained Indiscernibility Relations

The concept of attribute constrained indiscernibility relation is intentionally designed to be relatively
simple. Especially the subfamily of attribute constrained indiscernibility relations that utilizes only three
standard indiscernibility relations is designed to be relatively small and well structured. The most impor-
tant property of this family is the fact, that for an information system with N conditional attributes there
are 3N different attribute constrained indiscernibility relations. Such a reasonable number of possibili-
ties, especially where N is small, makes it possible to employ simple strategies to search for an optimal



R. Latkowski / Flexible Indiscernibility Relations for Missing Attribute Values 141

indiscernibility relation in some sense.

5.1. Approach Description

Our approach to induction of optimal attribute constrained indiscernibility relations is related with re-
duction to a search problem. We carried out some experiments in order to test the possibility of selecting
the best attribute constrained indiscernibility relation for a particular information system. For this work
we simply assumed that the best attribute constrained indiscernibility relation is this one that results in
the best accuracy of classification. The process of searching for best relation or best accuracy is some-
how similar to feature selection problem (see, e.g., [27, 27, 33]) or to learning tolerance or similarity
relations (see, e.g., [12, 21, 24]). If we consider all classifiers induced from considered information sys-
tem using the same (deterministic) method, but different indiscernibility relation, then the classifier that
achieves the best classification accuracy determines the best indiscernibility relation. Obviously, such an
indiscernibility relation is not necessary uniquely determined. For example, in the case of complete infor-
mation system (i.e. information system without missing values) all attribute constrained indiscernibility
relations are equally good.

In the case of searching for optimal indiscernibility relation the space of possible solutions is well
defined. A frequent approach to such problems is to define a special heuristic function that evaluates
possible solutions and then to utilize a search algorithm to find a (sub)optimal solution. Following this
guidelines it is necessary to create a special heuristi function that approximates quality of classification
using selected indiscernibility relation. This is not an easy task, because the induction of decision rules
from an information system is a complex process. From the other side such approximation is desirable,
since applying full classification algorithm would be very time consuming, especially without advanced
search strategy. Apart from the positive region, the most important property that characterizes indis-
cernibility together with information system is the number of indiscernible object pairs. The number
of indiscernible object pairs from different decision classes is frequently used in so called information
measures (see, e.g., [20, 27, 28, 33]). One example of such measure is the conflict measure utilized in
rough set approach to decision tree induction, where different attributes or potential cuts are compared
under constant indiscernibility relation (see, e.g., [20]). In this case a similar measure can be used, but
with some modifications that enables comparing different indiscernibility relations. A heuristic function
that satisfies this condition is the number of indiscernible objects from the same decision class divided
by the number of indiscernible objects at all.

h(R) =
card{(x, y) ∈ U × U : (x, y) ∈ R ∧ d(x) = d(y)}

card{(x, y) ∈ U × U : (x, y) ∈ R}
, (10)

whereR is an arbitrary indiscernibility relation defined on information system A = (U,A∪{d}), and d is
a decision attribute. This function takes values from 0 to 1, where h(R) = 0 means that all indiscernible
pairs are in conflict, while h(R) = 1 means that there are conflicts at all. This measure is similar to
the measure that evaluates normalized size of the positive region (cf. [11, 22]), but different. During the
initial experiments it turned out that function h(R) does not differentiate enough various indiscernibility
relations. We had to modify the heuristic function used for searching optimal indiscernibility and replace
in equation the fact of satisfying relation R by number of attributes that would satisfy R truncated to
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those attributes.

h′(R) =

∑
(x,y)∈U×U :d(x)=d(y) card{a ∈ A : (x, y) ∈ R|{a}}∑

(x,y)∈U×U card{a ∈ A : (x, y) ∈ R|{a}}
(11)

In other words, in numerator we count for each pair of objects (x, y) ∈ U×U that have the same decision
d(x) = d(y) the number of attributes on which objects x and y are indiscernible and in denominator we
count for each pair of objects (x, y) ∈ U × U , irrespective of their decisions, exactly the same number
of attributes on which objects x and y are indiscernible. Such a function gives more diversified results
than function h(R). In experimental part of our work we decided to test the function h′(R), whether it
can be used as heuristic function that approximates goodness of an indiscernibility relation R or not.

5.2. Data Sets and Data Preprocessing

Experiments were carried out using Distributed Executor for Rough Set Exploration System (DIXER
2.0.6) that allows executing in grid of workstation experiments that utilize Rough Set Exploration System
(RSES 2.1) algorithms (cf. [2]). In our experiments we used following five data sets:

• ech — Echocardiogram data, 2 classes, 5 numerical attributes, 1 categorical attribute, 131 obser-
vations, 17.6% incomplete cases, 4.7% missing values.

• hin — Head injury data, 3 classes, 6 categorical attributes, 1000 observations, 40.5% incomplete
cases, 9.8% missing values.

• hur2 — Hurricanes data, 2 classes, 6 numerical attributes, 209 observations, 10.5% incomplete
cases, 1.8% missing values.

• pid2 — Pima Indians diabetes , 2 classes, 8 numerical attributes, 768 observations, 48.8% incom-
plete cases, 10.4% missing values.

• smo2 — Attitudes towards workplace smoking restrictions, 3 classes, 4 numerical attributes, 4
categorical attributes, 2855 observations, 18.7% incomplete cases, 2.5% missing values.

All data sets were taken from Recursive-Partitioning.com [17]. The selection of these data sets was
based on number of conditional attributes (no more than eight), amount of missing attribute values and
their documented natural origin. Data sets are originally partitioned in order to use the ten-fold cross-
validation (CV10) and all results are obtained using CV10 that utilize this partition.

During empirical evaluation we encounter some obstacles. We have chosen optimal (exhaustive)
rule induction algorithm for verification of proposed approach, because it directly depends on defini-
tion of indiscernibility relation and is a very standard algorithm developed within rough set framework.
Unfortunately, every implementation of this method contain indiscernibility relation hard-coded inside
the algorithm. Moreover also other standard algorithms for classifier induction and their implementa-
tions contain indiscernibility relation hard-coded, so fixed for execution of algorithm for any information
system. Rough Set Exploration System (RSES 2.1) contain implementation of optimal rule induction
algorithm. This implementation allows decision rule induction using classic indiscernibility and sym-
metrical similarity, but not simultaneously and it does not support unsymmetrical similarity. Therefore,
in our experiments we have been forced to use only classic indiscernibility and symmetrical similarity as
components of attribute constrained indiscernibility relation and special data preprocessing.
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Table 1. Number of experiments for each data set using ten-fold cross-validation (CV10) and all possible to use
attribute constrained indiscernibility relations (2n, where n is number of attributes).

Dataset name ech hin hur2 pid2 smo2

Number of experiments 640 640 640 2560 2560

The data used in experiments was preprocessed, in order to enable simultaneous utilization of clas-
sic indiscernibility relation and symmetrical similarity. The algorithm for decision rule induction was
parameterized to use the symmetrical similarity and all missing attribute values in columns (attributes),
that should be processed utilizing symmetrical similarity, were left as “missing”. Other missing values,
that should be processed utilizing classic indiscernibility were replaced by special unused domain value
(“-9999”). Thanks to such a data preprocessing we are able to simulate simultaneous use of both classical
indiscernibility and symmetrical similarity in the same decision table.

5.3. Empirical Evaluation

The aim of the experimental evaluation was to compare how well heuristical function h′(R) selects an
indiscernibility relation that gives the best classification accuracy. We carried out two groups of experi-
ments. In the first group of experiments the h′(R) value was computed for each training data and for each
possible attribute constrained indiscernibility relation. In the second group of experiments the decision
rules were induced from training data for each possible attribute constrained indiscernibility relation and
the actual classification accuracy was calculated over the test data. The number of experiments in each
group is presented in Table 1.

The general observation from these experiments is that calculation of the heuristical function h′(R)
for each possible attribute constrained indiscernibility relation take less time than decision rule induction
from the same data. Obviously, we tested only data tables with reasonable small number of attributes,
so for wider data tables the exponential growth of possibilities will make such exhaustive calculations
unfeasible. Although, the heuristical function h′(R) proved to be reasonably fast for applying to such
problems.

The results of classification accuracy are presented in Table 2. In the first column the average classifi-
cation accuracy is presented over all ten folds of cross-validation and all attribute constrained indiscerni-
bility relations. In the second column the classification accuracy is averaged only over the indiscernibility
relations that have maximal value of heuristic h′(R) for considered fold of cross-validation. To better
compare these results we provide also further comparison. When we know all classification results, then
a posteriori we can select which indiscernibility relation is indeed the best. We averaged classification
results from all ten folds and selected only relations that give the highest average accuracy. In Table 2,
in the third column the results are averaged only over relations that are the best in average. The main
difference between relations selected by heuristic function and relations the best in average consist in
that the relations selected by heuristic are selected individually for each fold of cross-validation, while
relations the best in average are selected for all folds.

As we can see in Table 2, the indiscernibility relations selected by heuristic h′(R) achieves higher
average accuracy than all indiscernibility relations in four of five cases. Another interesting observation
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Table 2. Averaged results of classification accuracy over all ten folds of cross-validation and all or selected
indiscernibility relations.

Dataset name Average accuracy Average accuracy Average accuracy
over selected relations over the best relations

ech 64.35 ±13.39 65.69 ±12.49 70.50 ±14.35

hin 61.22 ±4.80 64.00 ±3.36 63.70 ±3.93

hur2 79.78 ±7.05 78.47 ±7.71 81.79 ±6.91

pid2 71.43 ±4.71 74.10 ±4.52 72.79 ±3.06

smo2 53.00 ±2.17 54.33 ±2.17 54.33 ±2.17

is that indiscernibility relations the best in average not always achieves the highest average accuracy.
The first observation suggest that indeed heuristic h′(R) usually selects good indiscernibility relations,
although not always. The second observation can be explained by the fact, that indiscernibility relation
the best for all ten folds of cross-validation need not be necessary the best for a particular fold. The
relations selected by heuristic h′(R) are individually chosen for each fold of cross-validation, so it is
possible that they achieve better classification accuracy on separate folds of cross-validation. However,
it raise doubts whether this fact should be perceived as improvement or rather as over-fitting.

The numbers of selected relations are presented in Table 3. In the first column the total number of
all possible attribute constrained indiscernibility relations is presented in all ten folds of cross-validation.
For datasets with six attributes it is 26 · 10 = 640, while for the datasets with eight attributes it is
28 · 10 = 2560. In the second column the number of relations the best for all ten folds is presented. Such
relation need not be uniquely identified. In our case there are two, sixteen or even sixty four equally
good relations. In the third column is presented the number of relations selected by heuristic h′(R).
Again in this case heuristic h′(R) can select more than one relation for each fold, but this time also this
number need not be divisible by ten, while the number of selected relations can differ from fold to fold.
We observe such situation for dataset ech. We can observe also that the number of relations selected by
heuristic h′(R) is very similar to the number of relations the best for all ten folds. Nevertheless, these
relations are not the same ones, what suggest the last column. In the fourth column is presented the
number of relations that are simultaneously the best for all ten folds and selected by heuristic h′(R). As
we can see, for all datasets except the last one the intersection of these two groups of relations is empty.
We do not expect that the similar number of relations in the second and the third column is incidental. It
should have something in common with the fact, that some differently defined indiscernibility relations
contain exactly the same pairs of objects. Although, empty intersection of these two groups of relations
for most of the datasets suggest, that the underlying rule for that is not so trivial.

6. Conclusions

The research on flexible indiscernibility relations has been inspired by weaknesses of standard indis-
cernibility relations observed by Stefanowski (see, e.g., [31]), experience in developing the decomposi-
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Table 3. Number of all and selected indiscernibility relations summed in all ten folds of cross-validation.

Dataset Total number Number of Number of Number of the best
name of relations the best relations selected relations and selected relations

ech 640 20 22 0

hin 640 20 20 0

hur2 640 160 160 0

pid2 2560 160 160 0

smo2 2560 640 640 640

tion method (see, e.g., [14]) and modelling of indiscernibility relation minimizing inconsistencies using
CAKE methodology (cf. [15]). This paper is an extended version of [16]. Independently a similar ap-
proach has been developed by Grzymała-Busse (see, e.g., [8, 9]), where very similar approach to the
flexible indiscernibility relations is proposed. The main difference of that work is the assumption that
missing attribute values are notated using two different symbols, which enables applying two semantics
of missing attribute values. Under such an approach semantics of missing value is a priori given and
searching for optimal indiscernibility relation is not considered. The important contribution of that work
is a complete algorithm for decision rule induction using different semantics of missing attribute values.
Although, proposed there MLEM2 algorithm is not able to deal with general flexible indiscernibility
relations presented here.

The presented two approaches for constructing flexible and customizable for a considered infor-
mation system indiscernibility relations provide a foundation for considering the problem of fitting an
indiscernibility relation to an information system. The flexibility in selecting any indiscernibility relation
between classic indiscernibility relation and symmetrical similarity is limited by some assumptions. This
property provides an opportunity to efficiently search for optimal solution for this problem. The goal of
introducing these relations is improvement in reasoning from data with missing attribute values.

The attribute constrained indiscernibility relation is simpler in its construction and is limited by much
stronger assumption. From one point of view this gives less flexibility, but from another it simplifies
construction of an algorithm that search for such a relation. The descriptor constrained indiscernibility
relation is more complex as it is limited by weaker assumption. This gives a lot of flexibility, but makes
the searching for an (sub)optimal relation more difficult. Perhaps the efficient algorithms that search for
descriptor constrained indiscernibility relation will be searching only in a special family of such relations,
to keep the computations in reasonable time.

To get a complete solution for this problem we have to provide an algorithm that searches for an
optimal indiscernibility relation. This paper tries to initiate this work for attribute constrained indiscerni-
bility relations, but there is still a lot of work to do in the case of descriptor constrained indiscernibility
relations. Two possible approaches for further work can be learning relations from data tables (cf. [21])
or applying imputation algorithms as schemes for transcription into flexible indiscernibility relations (cf.
[6]).

The other issue is related with classifier induction. Most of the rough set concepts, such as lower
and upper approximations or reducts, are naturally extensible to the case with an arbitrary indiscerni-
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bility relation. However, even if the classifier induction algorithms, in particular decision rule induction
algorithms (see, e.g., [11, 30]) are easily extensible to the case with an arbitrary indiscernibility relation,
their current implementations are fixed to one or two specific indiscernibility relations (see, e.g., [2, 8, 9].
Apart from that, there are several decision rule induction algorithms that implicitly utilizes classic indis-
cernibility relation or symmetrical similarity. Therefore it is necessary to extend decision rule induction
algorithms to the case with an arbitrary indiscernibility relation.
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