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Summary. This paper is addressed to methods for early detection of classifier fall-
down phenomenon, what gives a possibility to react in advance and avoid making
incorrect decisions. For many applications it is very essential that decisions made
by machine learning algorithms were as accurate as it is possible. The proposed ap-
proach consists in applying a monitoring mechanism only to results of classification,
what not cause an additional computational overhead. The empirical evaluation of
monitoring method is presented based on data extracted from simulated robotic
soccer as an example of autonomous agent domain and synthetic data that stands
for standard industrial application.

1.1 Introduction

The achievements of machine learning make it possible to apply it to many
areas. Predictive models and built with their help classifiers not only enable
us to create autonomous agents, but are commonly used also in business and
industry. It is very essential that decisions made by machine learning algo-
rithms were as accurate as it is possible. In other case they cannot achieve
the expected targets, wherever applied: to marketing, to industry or in au-
tonomous systems. Generally speaking the correctness of the decision making
strictly depends on the accuracy of applied classifier. Obviously, the accuracy
of the classifier is measured during the training phase. While creating the pre-
dictive model we select for deployment the model that achieves the highest
accuracy and stability measured over prepared test data sets. Such verification
is not possible during the productive life cycle of classifier, when it is applied
to the real data gathered in dynamic and nondeterministic environment. The
question that arises from such a situation is how we can trust the results of
classifier? The first phenomenon that makes it doubtful to trust the classifier
is that every natural process is evolving in time, e.g., customers are learning
other offer and products, machines are changing their physical parameters
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and autonomous agents learn new strategies, what is frequently described as
“concept drift” (see, e.g., [7]). It is known fact, that the classification results
are continuously getting weaker and such a process is called ageing of the
model. Usually the process of model ageing is slow and the reporting is em-
ployed to identify it in a posteriori process, when the actual decision is known.
The actual value of the decision is known not exactly at the same point of
time when the classification is made, but dependently on the application, from
fraction of second up to several months after the classification. The second
phenomenon is sudden change of process of the revolutionary character, e.g.,
introduction of completely new product on market, machine failure or repro-
gramming autonomous agent with new meta-strategy of learning. The sudden
classifier ageing or classifier fall-down phenomenon can be a consequence of
many circumstances, even errors or changes in data preprocessing. It is a very
dangerous phenomenon because it result in making wrong decision for a pe-
riod of time (a couple of months in worst case), what can result in severe
losses.

To better express the necessity of the classifier monitoring let take some
examples. The first example is related to autonomous agents. The open re-
search community concentrated on the robotic soccer and RoboCup world
championships has an aim to compete by the 2050 a human team of soccer
players with a team of autonomous humanoid robots (see, e.g., [4]). Many
research groups build software simulators or hardware robots for achieve this
goal. Such an artificial soccer player should have special classifier that rec-
ognizes the strategy of opponent. This classifier can be misled by opponent
that is completely reprogrammed or comes from newly created team. In such
a situation classifier fall-down phenomenon can result in losing the game. The
second example comes from business application. The telecommunication op-
erators collect a lot of data on their customers. This data is used, e.g., to
avoid the customer resignations by predicting them in advance. Such systems
for customer retention are suffering from classifier fall-down phenomenon, e.g.,
when completely new categories of products are introduced. With false pre-
diction the marketing campaigns are directed not to the desired target group.
In this case reduced accuracy results in measurable losses even comparing to
the case without classifier at all.

This paper is addressed to methods for early detection of classifier fall-
down phenomenon, what gives a possibility to react in advance and avoid
making incorrect decisions. The proposed method consists in applying a moni-
toring mechanism only to results of classification, what not cause an additional
computational overhead.

The paper is organized as follows. In next Section the classifier monitoring
method is described. Section 3 provides empirical evaluation with detailed de-
scription of the data sets and experiments. Section 4 contain final conclusions
and remarks.
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1.2 Method description

1.2.1 Motivation

The initial idea on how to monitor a classifier could be checking the distri-
butions of variables that are used to make the decision (predictors). In such
an approach all variables are independently tested before classification is per-
formed. This approach can be applied only to the cases, when the distribution
of one variable is significantly different in training and test set. If the distri-
bution is changing on more than one variable than even insignificant changes
on one variable can result in classifier fall-down. The proposed here approach
is free from such deficiencies because it consist in testing the classifier answer.
There is also another common situation that results in classifier fall-down.
Training data used to build the model does not cover the full scope of uni-
verse, because, even when universe is finite, it is enormous huge. We believe
that inductive learning find the proper generalization of presented facts. How-
ever, in real applications the classification of objects very far from presented
ones in training phase results in pure accuracy. The one-variable test can
easily do not capture such a situation. There were proposed some solutions
to this problem (see, e.g., [6]), but they assume monitoring the object space
by nearest neighbor methods or neural networks. These algorithms require
additional computational effort comparable to the cost of creating classifier
itself. Our approach require only a linearly proportional time to the number
of objects in test and training set.

1.2.2 Classifier Monitoring

The proposed approach consists in applying a monitoring mechanism only to
results of classification. The classifier monitoring compares the distribution of
answers on data set used for training with distribution of answers on data set
currently being classified. If the applied test shows the significant difference,
than it is a signal to perform detailed checking of classifier and, e.g., build
new model.

There are a number of statistical tests for comparing different properties of
one, two or a number of distributions. In this research we utilize nonparametric
statistical tests and we do not assume any particular distribution. Only several
statistical tests satisfy such a conditions, in particular: Wilcoxon rank sum
test (equivalent to the Mann-Whitney test) and Kolmogorov-Smirnov test
(see, e.g., [2, 3, 5]). These tests detect the differences in location and shape
of two distributions. The Wilcoxon and Kolmogorov-Smirnov tests have the
advantage of making no assumption about the distribution of data, i.e., they
are non-parametric and distribution free.

The result of classification process usually can be of two types. The sim-
pler type is one-valued decision that assigns classified object to a particular
decision class. The more expressive result of classification is the probability
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Fig. 1.1. The procedure of classifier monitoring applies a statistical test to results
of classification.

vector that assigns to each possible decision a predicted probability that clas-
sified object belongs to considered decision class. For our research we use the
second type of answer, what gives more detailed information on how model
works on provided data.

The classification or prediction process frequently proceed in bunches or in
data streams, where not one object is classified, but whole set of objects. Such
a situation occurs when we are performing stand-alone tests on previously
prepared data or classification (prediction) is performed for, e.g., total base of
customers. The result of classification is then a set of answers, i.e., probability
assignments. In this paper we are limited to the binary decision — yes or no,
what corresponds to classification that object belongs to a concept versus
classification that object does not belong to a concept. The procedure of
classifier monitoring is following (cf. Fig. 1.1):

1. Let C is a classifier, T = {t1, . . . , tn} is data set used for training and
P = {p1, . . . , pm} is new data set, being currently classified.

2. Select one decision class d for which the probability assignments will be
considered. From now on we will assume, that C|d : U → [0, 1] gives an
probability assignment that an object x belongs to decision class d with
probability C|d(x) = s.

3. Prepare set of probability assignment ST , called scoring, for data set used
for training T . The set ST = {sT

1 , . . . , sT
n} consist of all answers of classifier

C, such that C|d(ti) = sT
i .

4. Prepare set of probability assignment (scoring) SP for data set used for
testing P . The set SP = {sP

1 , . . . , sP
m} consist of all answers of classifier

C, such that C|d(pi) = sP
i . Scoring SP can be computed without knowing

the actual decision value, so also before gathering the data on decision.
5. Perform statistical test on ST and SP that compares whether changes

in classification process are significant or not. If the test value exceed a
specified threshold, than notify of potential classifier fall-down.
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1.2.3 Classifier Fall-Down Identification

The proposed approach for classifier monitoring consists in comparing two
scorings: for training data and for currently classified data. There are several
issues on proper classifier fall-down identification using this approach.

The empirical evaluation presented further shows, that not all statistical
tests are applicable to this problem, even in spite of satisfying requirements,
e.g., that a test is model free. Besides presented here method of classifier
monitoring we evaluated also another approach that compares not the scor-
ings, but the distributions of tested objects to final leaves of decision tree.
However, in such an approach we found no test or measure that correctly rec-
ognizes the classifier fall-down phenomenon. The Wilcoxon signed rank test,
cosine measure, Kullback-Leibner divergence measure or six-sigma rule either
do not capture the classifier fall-down or notify of nonexistent one. We sus-
pect that the problem with those measures comes from the fact, that they
do not consider the actual score value s that is assign to each decision tree
leaf. If we consider the Kolmogorov-Smirnov test on two scorings, then this
test depends not only on distribution of objects to decision tree leaves but
also on the actual score value in each leaf. The empirical distribution function
(EDF) of scoring, which is used to calculate the KS-test, can be fully deter-
mined form distribution of objects to leaves combining with leaf score value.
Perhaps other measures that take into consideration also the score value of
leaves can be successfully applied to this problem. In fact the transformation
of the Kolmogorov-Smirnov test from EDF to distribution of objects to leaves
combining with leaf score values results in reduction of computational com-
plexity of testing and in great compression of the classifier control data that
has to be stored.

The unresolved issue is how to estimate the optimal threshold value that
delimitate predicted acceptable classifier accuracy from accuracy fall-down.
Even if we precise the border between acceptable and unacceptable classifier
accuracy it is unknown how to estimate this threshold. In our research we are
familiar with considered data and classifier properties, so the threshold can be
determined based on an expert experience. However, we do not have a general
answer on how to estimate the threshold for proposed statistical tests.

The proposed classifier monitoring is able to detect the accuracy fall-down
only if there are some differences in description of classified objects. We can
imagine another situation, where all object descriptions are untouched, but
the concept is changing itself. In spite of that such a case is unobserved in
real applications, it is possible to, e.g., generate the same synthetic data but
with other concept labeling, where differences are only in decision attribute
(target variable). There is no method at all to identify that prior knowing the
actual decision (concept), while it touches the problem of learning the proper
concept itself. In particular the proposed method of classifier monitoring is
not able to recognize such a situation.
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Table 1.1. The results of experiments with synthetic data, where decision tree
classifier was induced for first data set.

Standarized P-value Kolmogorov-
Data Set Accuracy Error rate Wilcoxon Wilcoxon -Smirnov

Statistic Test Statistic
1 83.83% 16.17% 0 1 0
2 70.83% 29.17% 0.409571 0.682121 0.017434
3 57.20% 42.80% -0.3174 0.75094 0.031917
4 43.71% 56.29% 0.200541 0.841057 0.037072

1.3 Empirical Evaluation

1.3.1 Data Description

We used two groups of data sets for experimental evaluation of proposed
method. The first group is synthesized in such a way that simulates an in-
dustrial data mining application. The second group is extracted from the
RoboCup World Championship 2003 in soccer simulation league.

The datasets for simulating an industrial application are synthesized. They
contain samples from two multinormal distributions in eight dimensional space
[0, 1]8. There are four data sets, where the standard deviations are constant,
but locations are getting closer in consecutive data sets. Each data set contain
about 10000 observations (objects). The data sets from RoboCup domain are
extracted from log files of soccer simulator games that held at the finals of
RoboCup World Championship 2003. The data contain the overall information
about playfield, like position of players or number of executed already actions
of each type. Each simulated player on the playfield was manually market,
whether it plays using an offensive strategy (attacker) or defensive strategy
(defender or goalie). The data was desymmetrized and transformed to a special
form, where each record describes one player at given time point of game. The
finally transformed data contains 46 conditional attributes and one decision
(target) attribute, namely strategy. There are eight data sets collected from
four games with four participating teams, so each team is represented in two
data sets. Each data set contain about 70000 observations (objects).

1.3.2 Experiments

We carried out experiments separately for RoboCup domain data sets and
syntectic data sets. The experiments were performed using an algorithm for
decision tree induction implemented in SAS Enterprise Miner (see, e.g., [1]).
The automatically generated scoring code allows storing both, scoring and
distribution of leaves.



1 Classifier Monitoring using Statistical Tests 7

Table 1.2. The accuracy results of experiments with data sets from RoboCup
domain.

Test data set
Training TsinghuAeolus UvA_Trilearn Everest Brainstormers03
data set Game1 Game4 Game2 Game4 Game2 Game3 Game1 Game3

Tsinghu- G1 100% 98.56% 99.03% 97.13% 91.44% 96.53% 94.48% 99.25%
Aeolus G4 97.07% 100% 89.69% 87.96% 99.39% 99.07% 99.34% 95.26%
UvA_- G2 98.26% 99.86% 99.99% 99.59% 99.47% 97.37% 98.81% 98.93%
Trilearn G4 97.14% 90.19% 98.13% 100% 76.84% 76.4% 78.28% 96.11%
Everest G2 97.61% 100% 89.91% 89.28% 100% 98.66% 98.63% 96.12%

G3 99.36% 98.98% 88.32% 88.1% 99.26% 99.99% 99.25% 93.27%
Brain- G1 36.36% 63.64% 63.64% 72.73% 72.73% 45.45% 100% 100%

stormers G3 36.36% 63.64% 63.64% 72.73% 72.73% 45.45% 100% 100%

Table 1.3. The Kolmogorov-Smirnov statistic results of experiments with data sets
from RoboCup domain.

Test data set
Training TsinghuAeolus UvA_Trilearn Everest Brainstormers03
data set Game1 Game4 Game2 Game4 Game2 Game3 Game1 Game3

Tsinghu- G1 0 0.0007 0.0042 0.0143 0.0393 0.0135 0.0037 0.0030
Aeolus G4 0.0147 0 0.0515 0.0602 0.0010 0.0017 0.0027 0.0237
UvA_- G2 0.0090 0.0007 0 0.0017 0.0027 0.0112 0.0060 0.0056
Trilearn G4 0.0143 0.0490 0.0076 0 0.1158 0.1180 0.1086 0.0194
Everest G2 0.0120 0.0001 0.0504 0.0536 0 0.0015 0.0013 0.0194

G3 0.0016 0.0039 0.0583 0.0595 0.0018 0 0.0030 0.0329
Brain- G1 0.0455 0.0909 0.1818 0.1364 0.1364 0.0909 0 0

stormers G3 0.0454 0.0909 0.1817 0.1363 0.1363 0.0909 0 0

The first group of experiments were carried out for synthetic data sets. The
decision tree model was induced for the first data set, where centers of two
normal distributions are distant. Then the classifier was applied to all four
data sets. The classification results were gathered and tested as described
in previous section. The results of this experiment are presented in Table
1.1. The first data set was used in both, training and testing. In case of
first data set we can observe the highest classification accuracy and obviously
no differences detected by statistical tests at all. The consecutive data sets,
that contain samples from closer distributions, are worse classified by model
induced for the first data set. The Wilcoxon statistic does not capture the
essential classifier fall-down that occur for third and fourth data set. In the
case of Kolmogorov-Smirnov statistic we can easily observe that first and
second data set receive values less then 0.2, while third and fourth on more
than 0.2. If we put a threshold at level 0.2, than Kolmogorov-Smirnov statistic
perfectly detects the classifier fall-down.
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The experiments for data sets from RoboCup domain were performed dif-
ferently. The model for predicting strategy was built for each data set. Each
classifier was applied to all data sets. There are eight data sets, so also eight
models were induced. In total 8 ·8 = 64 experiments were carried out to cover
all combinations. Such a proceeding simulates a strategy detection classifier
that is faced to unknown team or known team but in other game.

The results of classification accuracy are presented in Table 1.2. As we
expect the diagonal elements, which correspond to classifying the data set
on which the model as built, present fully accurate or almost fully accurate
classification. The similar observation holds for classifying the same team, for
which model was built, but from the other game. The weakest classification
accuracy in this category is 97.07% for model built on team TsinghuAeolus in
game 4 (final) and tested on game 1 (third level group game). The classification
accuracy of other teams varies from 36.36% up to 100%.

The results of Kolmogorov-Smirnov test are presented in Table 1.3. The
results presented in this table are almost perfectly correlated to accuracy re-
sults. The diagonal elements are obviously equal to zero and classification of
the same team gives KS-test value below 0.015. Figure 1.2 presents the same
results in graphical form, where experiments are sorted with respect to clas-
sification accuracy. It is easy to observe that while the accuracy is decreasing
the KS-test value is almost always increasing. If we set the threshold between
0.04 and 0.045 then all 22 worst classification results in range from 36% to
90% are recognized as doubtful. If we set the threshold between 0.061 and 0.09
then the classification accuracy fall-down from level 88% to 78% is correctly
recognized except two the worst experiments. It means that 12 out of 14 cases
are correctly recognized. The p-value of Wilcoxon rank sum test, presented on
Figure 1.2, does not manifest similar properties. The p-value for experiments
with 100% classification accuracy is 1.0. However, for other experiments the p-
value is extremely variable and is almost zero also for tests with classification
accuracy above 90%.

1.4 Conclusions

The empirical evaluation shows that the application of proper statistical test
makes it possible to detect the classifier malfunctioning. The experimental
results showed that the Kolmogorov-Smirnov test is recommended for detect-
ing the classifier fall-down phenomenon. The proposed method can be applied
to monitor any type of classifier under assumption that it generates scoring
if form of probability estimation, e.g., probability of belonging to a decision
class.

The proposed approach is suitable for detection of classification accuracy
fall-down in case of binary classifiers. For other purposes it is necessary to
extend the scoring definition in order to apply similar statistical tests or re-
place the testing technique. The other deficiency of proposed method is lack
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Fig. 1.2. The classification accuracy and statitical test results on data from
RoboCup domain. The results are sorted by classification accuracy.

of strict guidelines how to determine the proper threshold value and its confi-
dence interval. In our further research we will try to overcome this problem by
providing strict estimations on the possible classification accuracy fall-down
with respect to the KS-test value.

Although presented experiments were carried out using decision tree induc-
tion algorithm, there is no obstacle to apply this method to other classifiers,
e.g., based on decision rules or artificial neural networks. The proposed method
of classifier monitoring is applicable to classifiers induced by any algorithm.
The only requirement is the availability of scoring or similar probability-like
values that are produced by classifier.
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