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Abstract

This report is dealing with the design of a subway in Utrecht.
The main goal is to find a (sub)optimal subway track with respect
to the travel times. The problem is translated into a combinatorical
optimization problem.

Because of the complexity of the problem we think that the best
approach is to use local search methods. For evaluating the quality
of the subway one has to calculate the total travel time. We line out
the steps for computing or estimating this value. The local search
algorithms presented are Hill Climbing, Taboo Search and Simulated
Annealing. Furthermore, two possible neighbourhood structures are
defined, namely ” Adding and deleting stops” and ” Exchanging stops”.
To improve the speed of the search we introduce a preselection of the
neighbourhood. Finally we give some conclusions and recommenda-
tions.
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1 Introduction to the Problem

Utrecht, situated in the center of the Netherlands, wants to add one subway
line to the existing network of bus lines. The subway has to pass the central
station and replaces several bus stops. The advantage of the design is that
travellers are getting faster from one point to another. Since the capacity of
a subway can be easily adjusted by removing or adding a compartment, the
subway is more flexible in rush hours. On the other hand, the construction
of a subway track is very expensive. Therefore, the length of the subway
track is limited to 10 km. To ensure, that the subway travels fast enough,
the distance of two subway stops should be at least 1 km.

Figure 1: network of bus lines and stops in Utrecht

The aim of this report is to describe the subway design in a mathemat-
ical model in which we can state some solution methods for a (sub)optimal
subway track.
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2 Model

In this section we translate the problem in a mathematical model.

2.1 Given Data

e We have given a network of fixed bus lines with N = 66 different bus
stops, which can be discribed by the graph

Go = (Vo, Ey). (1)

Vo ={1,..., N} is the set of bus stops,
Ey ={e={i,j} : stop i and stop j are connected directly}.

e The matrix D = (d;;) denotes the distances between the bus stops i
and j.

e The matrix C = (¢;;) denotes the numbers of passengers travelling from
1 t0 j.

e Every stop will be served by a bus and/or a subway in abouth 10 min.
This implies, that the changing time from one line to another will be
on average 5 min.

e The maintenance costs of a bus is denoted by m; and for the subway
by m.

2.2 The Problem

In order to simplify the problem we will not change the given bus lines and
restrict the problem to a fixed network.

Since we want to build a subway line through some given bus stops, the set
of vertices remains the same, but because of additional subway connection,
the set of edges will increase:

G:GOUGSZ(‘/;E) :(%7E0)U(VSaE5): (%:EOUES)a (2)

where

e The graph G, is a connected graph.
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o V, C Vj is the set of all stops belonging to the subway line wich has to
satisfy the conditions that:

deg(v) <2 Viey, (3)
V9 € ‘/5, (4)
()

where vy denotes the central station.

e F, is the set of all direct connections in the subwayline with the fol-
lowing restrictions:

> d. <10, (6)

de Z ]. veeEs . (7)

We measure the quality of the graph G by the weighted total travel time
and the maintenance costs per day of the buses and the subway, denoted by
T(G) and C(G), respectively.

(a) The weighted total travel time is the sum of travel times over all trips
from ¢ to j weighted by the numbers of passengers travelling from point
1 to 7, i.e.,

T(G) = Z Cijlij (8)

where ¢;; is the shortest travel time from i to j.

(b) The costs per day consist of the number of buses and subways travelling
per day multiplied by the maintenance costs, i.e.,

K
C(G) =Y _ mpNyx + m,N, (9)
k=1
where

— K is the number of bus lines.
— Ny, is the number of buses travelling on bus line &.

— N is the number of subways travelling on the subway line.
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We are interested in finding a balance between the travel times and the costs,
since we want to minimize both. The minimize function can be written as

f(G) = aT(G) + (1 = )C(G) (10)
where « € [0, 1].

In the following, we set & = 1 since we assume that C(G) is almost
constant for any added subway line and because we keep the network of
buses fixed.

3 Computation of the Travelling Time

For the total travel time it is important to find the shortest travel time for
every pair of points (7,j) in the graph G. This can be done by applying
a shortest path algorithm. Before that, we have to modify the graph with
respect to the changing stops in order to take into account the changing time.
At every point, where passengers can change from one line to another, we
will add so many additional ”virtual points”, that every changing possibility
will be covered. They are useful to describe the changing time in form of
additional edges 7.

Figure 2: Virtual points replace changing point.

In the given graph G it is possible that there are multiple edges. Af-
ter modifying the graph there are no multiple edges anymore. A suitable
shortest path algorithm for our problem is the Floyd algorithm described as
follows.

Initial matrix: ®° = (¢7;):
form=1,... , N+p

fori=1,... , N+p

forj=1,... , N+p
5= min{¢p, " + o o

end.
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end.
end.

@ is a (N + p) X (N + p) matrix where p is the number of changing
possibilities from one line to another in the given network. ¢f; is the travel
time on the shortest edge from vertex i to vertex j. If no such edge exists,
set ¢y; = 0o. Moreover, ¢y = 0.

The complexity of the Floyd algorithm is O ((N + p)?).

The resulting matrix ®¥+? = TP has now to be reduced again by the num-
ber of virtual points. This means that we modify 7” such that we combine
the corresponding virtual points to the original one, i.e.,

TP € RWAPXWNV4P) 7 ¢ RVXN, (11)

In particular, if 71, ... ,7; are the virtual points for the vertex i, we set

tij = ér}ciSnK{tz'kj},

li = 1£I}cigllK{tli’“}'

Now, we can compute T'(G) = ), . c;jti; for every graph G. A simple
implementation of the algorithm permits to classify different networks in
terms of the total travel time.

4 Approach

After the introduction of an implementable cost function, we are able to
define a solution method. We have a computable measure — the weight
travelling time assigned to the selected subway line. We look for subway
lines where the travel time will be small. Hence, the aim is to find a subway
line that minimizes our measure. This minimization problem on the graph
structure belongs to the well known family of combinatorial optimization
problems. This kind of problem does not permit an explicit formulation of
an optimal solution. We have to find it in a set of various possible solutions.
However, the set of possible solutions is huge, so it is impossible to look at all
possible subway lines and evaluate their weighted travel time in an acceptable
time. Fortunately, there exist some efficient heuristic methods that can find
near-optimal solution. This methods are called local search methods.
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4.1 Relation of Neighbourhood

Let S be a possible solution space. This means that S consists of all possible
subway lines that satisfy the given conditions.

Next, we introduce a relation of neighbourhood. For any s;,s9, € S we
shall say that s; and s, are neighbours in a solution space S if the differ-
ence between s; and s, is small with respect to the defined measure. The
structure of the solution space S depends on the definition of the concept of
the neighbourhood. Figure 3 shows an example of two neighbours and the
corresponding solution space S with neighbourhood structure represented as
a graph. The points s; and sy are connected i.f.f. they are neighbours.

Subway design Subway design B

s

@W@

Figure 3: Neighbours and neighbourhood structure of a solution space S.

4.2 The Idea of Local Search

It is very useful to think about the neighbourhood structure of S in the graph
representation. All local searches are based on the idea of searching optimal
solutions by following these connections. Local search algorithms consider
local changes and find in which direction we have to move to approximate
an optimal solution in the searching space. Local change means that we
exchange a current solution for any of the neighbours, and select the best so-
lution. If the relation of the neighbourhood is introduced in accordance with
variability of subway properties, we can expect that local search algorithms
will be able to detect an optimal solution.
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By comparing neighbours we are able to find near-optimal solutions. How-
ever, in most cases we have to compare a current solution with all neighbours.
A typical neighbourhood size in our project is about six hundred. This means
that we have to compute about 600 measures of subway lines for one step in
a local search algorithm. The problem is that local search algorithms needs
a lot of iteration steps. The Floyd Shortest Path algorithm is fast for our
problem, however we can not afford to apply it 600 times per iteration. This
is the main reason why we have developed some implementational improve-
ments in the computation of the weighted travel time. These improvements
are described in following section.

5 Measurement of the Subway Lines

In this section we will attach weights to the edges and the subway which
will allow us to test several different strategies for the implementation of the
subway in the graph we have defined. With these weights we can compute
the travel time for every different graph without using the shortest path
algorithm every time.

Recall that T(Gy) = >_,; cijti; denotes the total travel time ( for the
graph () defined in Section 2. When adding edges of the subway, we make
the assumption that we do it in a consecutive way, that is, once we fix one
edge of the subway {a,b}, the next edge will be {b,c} for some c. Let us
assume that we build a subway with only one edge {a,b} ( that is, we have
two stations ¢ and b and one line connecting them). Then the weight that
measures the new subway is the total travel time of the new graph, that is,
Go U {a, b} (the initial graph with the additional edge {a,b}). Denoting the
weight by we, we have

wab:T GOUab ZCUZ i (12)

Changing a and b we have the weights for all possible subways with only one
edge. For a subway with two edges (a,b), (b,c) the weight is

Wabe = T(Go Ua,bUDb, c)) = Z Cijt(qu) (13)

ij
5]

and it can be easily seen that

tg.bc)

— min (tgj”), tgj ), tfj") + tap + the — tac)- (14)
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(be)
ij
that only the edge b, c is used and the term tg;-w) + tap + the — tae means that
both edges are used.

We can generalize this formula for a subway with k£ edges {a1,as},. ..,

{ak, ag+1} in the following way:

The term tg?b) means that only the edge a,b is used, the term ¢;;” means

o) = i (192, 420, g,

197 4 b0y + tasay — tarags -+

t(%—1ak+1) +¢

ij Gf—1Qk + takak+1 - takflak+1’

9 4 b0y + tasas + Tagas — tarass -« - 5

t(l{k—zak“) +¢

ij Qp—20k—1 + tak—lak + takak+1 - tak—zak+1’

(15)

tg;_llak) +tagay +* F tay_rap — tayays

tz(;wkﬂ) + tagas + -+ takak+1 - t‘””’““’

tz(;la’H—I) + ta1a2 +oeet takak+1 B talak+l>

We have k terms representing passengers that only use one edge of the sub-
way, k — 1 terms representing passengers that use two edges, k£ — 2 terms
representing passengers that use three edges and so on, and, finally, one
term representing passengers that use the k£ edges of the subway.

So, in total we have

k(k+1)
2

terms to find the minimum. The complexity of calculating the total weighted
travel time is now O ((Nk)?) (where N is the number of stops).

k+k-1)+k—-2)+---+1= (16)

6 Local Search Algorithms

In this section we would like to introduce some local search algorithms that
are our key to find the (sub)optimal subway design. In the next section we
present how we can apply these algorithms to our problem.
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6.1 Algorithms

We would like to present three algorithms as our approach to find the optimal
subway design.

e Hill Climbing (HC)
e Taboo Search (TS)
e Simulated Annealing (SA)

Each of the algorithms have some advantages and disadvantages, however
we can rank these algorithms in the order above. The HC algorithm is the
fastest, however it can not avoid local optima to find the global one. In the
other hand SA should always find the global optimum, however it can take a
lot of time. We have to investigate and try each algorithm for our problem,
because efficiency and ability to find near-optimal solutions depend on the
complexity of the solution space in terms of density and size of local optima,
which can not be examined explicitly.

6.2 Hill Climbing

current_solution := randomize( solution_space );
best := current_solution;
repeat

S := set_of_neighbours( current_solution );

next := select_best( S );
if (next is_better_then current_solution)

then
current_solution := next
else
if (current_solution is_better_then best)
then best := current_solution;
current_solution := randomize( solution_space );

until time_out;
if (current_solution is_better_then best)
then best := current_solution;

Hill Climbing is a simple algorithm. It starts from the randomized initial
state (in our case from the randomized subway design) and looks at each
neighbour to find the best one. If the best neighbour is better than the
current solution then it replaces the current solution. If the best neighbour
is not better then we have stacked in a local optimum, and we have to start
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our process again from the other initial state. It means that in this case
we have to re-randomize the current solution to start the process in another
place of the possible solution space. Also the algorithm stores the best local
optimum before re-randomizing the current solution.

This algorithm is very easy to implement and it also runs to each lo-
cal optimum very quickly. However, it can only find a local optimum. If
the solution space is very complex we can never reach a satisfactory local
optimum.

6.3 Taboo Search

current_solution := randomize( solution_space );
best := current_solution;
create_empty_list( taboo_list , taboo_list_size );
repeat
add( taboo_list , current_solution );
S := set_of_neighbours( current_solution );
S := S - taboo_list;
current_solution := select_best( S );
if (current_solution is_better_then best)
then best := current_solution;
until time_out;

This algorithm looks like the previous one (HC). The main difference is
that here we introduce very clever mechanism that can help to avoid lo-
cal optima, however this mechanism is a little bit expensive, so we have to
trade off between speed and quality. In this algorithm we have an additional
solution list implemented as a cyclic table where we can store the last T
solutions. This is our taboo list. The algorithm can not select again the
solution from the taboo list, also the next current solution is simply the best
solution among the set of neighbours, even though it is not a better solution
in comparison to the current one. The quality of the algorithm in terms of
the ability of avoiding local optima, is better with an increasing length of the
taboo list, however comparing two subway designs is an expensive operation,
and this list can not be as long as we wish.

6.4 Simulated Annealing

current_solution := randomize( solution_space );
best := current_solution;
temperature := max_temperature;
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while ( temperature > 0 ) do

repeat
next := select_randomly_neighbour( current_solution );
delta := F( next ) - F( current_solution );

if ( delta < 0 )

then
current_solution := next;
else
X := randomize_uniform(0,1);
if ( x < exp( - delta / temperature ) )
then current_solution := next;

if (current_solution is_better_then best)

then best := current_solution;
until stabilization_criterion( current_solution );
decrease( temperature );

The Simulated Annealing algorithm differs from the two previous algo-
rithms, and can find a global optimum even more frequently than TS can do.
However, it is the most expensive algorithm. This algorithm was developed
by Metropolis in 1953 and it is proved, that it can avoid local optima in any
minimization problem.

In each iteration step we try to make a random change. If this change
gives an improvement measured by the quality function (reduction of this
value) then we select it as the new current solution. However, even if the
changed solution is not so good as the current state there is still some nonzero
probability to accept this solution. Let s. and s, respectively be a current and
next (after change) solution and F(s) be a quality function. The probability
of acceptance of change is:

F(Sn) _F(Sc) <0

F(sp) — F(s¢) >0 (17

1
P(sc = sp) = JRRICSELES

After some number of iterations we have to decrease the temperature of
the simulation. Stability criteria for decreasing the temperature have to be
defined.

7 Heuristic Improvement

We have already proposed ideas that can help us to solve a subway design
problem. In this section the ideas are combined to arrive at algorithms which
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can solve our problem. Some new ideas to improve our algorithms are also
presented here.

7.1 Initial Solution

Although the convergence proof of the local search algorithms does not de-
pend on the selection of the initial state, the time cost of the algorithm can
be dramatically decreased by selecting a good solution at the beginning. It
is obvious that if we start our program with the best solution — optimal
subway design, the computational time is reduced to the minimum. We may
also apply some cheap heuristics that can approximate our solution very
quickly in order to start our algorithm with initial state as near as possible
to the best solution. We have formulated four cheap heuristics which are
reasonable.

1. Manually created. It seems to be a good idea, to create free-hand
reasonable solutions by experts.

2. Local minima from HC. The Hill Climbing is a fast algorithm in
finding local minima. Especially Simulated Annealing algorithms can
be improved by selecting these local minima as the initial state because
they are very expensive.

3. Best 2 and 3-stop subways. Selecting some N best subways of the
2-stop subways (Central Station and secondary stop) and 3-stop sub-
ways (Central Station and two additional stops) is really very cheap
and seems to be a good first approximation of the future subway local-
ization.

4. Shortest path pre-selection. Choose the subway s that minimizes
> aper, (Wa — T'(Go)) and satisfies the given conditions. You can for-
mulate this as a LP-problem and it can be solved in reasonable time.
The criteria function gives you a rough estimation whether connections
are important or not.

7.2 Neighbourhood Definition

The definition of the neighbourhood relation is a very important requirement
for constructing a correct local search solution for the problem. If the relation
of the neighbourhood is introduced in accordance with variability of subway
properties, we can expect that local search algorithms will be able to detect an
optimal solution. Relation of the neighbourhood should at least guarantee
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cohesion of the solution space, however this relation is important for the
correct convergence of the local search process to the optimal solution. We
are presenting two possible definitions of the neighbourhood structure:

1. Adding and deleting nodes,

2. Exchanging nodes.

7.2.1 Adding and Deleting Nodes

Let the subway line be represented by a sequence of stops. The subway lines
sy = (n1,...,ng) and so = (n1,... ,nj_1,n,Nnj,...,ny) are neighbours. We
can see, that subway s; is a modified version of subway s, by deleting stop n,
and also s, is a modified version of subway s; by adding stop n between n;_;
and n;. In other words, we can say that we have two operations of the local
change in our neighbourhood structure. With this structure it is possible to
go from one solution to another in a finite number of steps.

7.2.2 Exchanging Nodes

Let the subway line be represented by a sequence of stops. We have two
subway lines s; = (n,...,n) and sy = (n1,...,n},nj11,... , ). 51 and
so are neighbours when n; # n; We can see that subway s; is subway sg
with the j-th stop is changed. In other words we have one operator that
describes the local change. We can get each stop from the current subway
design and exchange it with another, that currently does not belong to the
subway design. With this structure you can get every subway with a fixed
length.

7.3 Reducing of the Neighbourhood

The size of the neighbourhood is of O (Nk). Because the evaluation of the
criteria function 7'(G) is very expensive it is recommendable to reduce the
size of the neighbourhood. If you do a smart pre-selection, the complexity of
your algorithm decreases without loss of efficiency. So it will faster converge
to a good approximation.

Assume that we want to add a subway stop b between stop a and c¢. As
we remember, in Section 5, we have defined an equation with the minimum
that can evaluate measures for the subway with stops abc from measures of
subways with stops ab, bc and ac.

abc . ab be ac
t" = min(e5”, 657,45 + tap + toe — tac) (18)
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Since
min(z,y,2) < T2 (19)
holds true for all z,y, z € R, we obtain
b b
tz(;bc) < tg; : + tz(jC) + tz(;'w) + (tab +tpe — taC). (20)
3
Because addition can be get out of the sum, we can write that
Wabe S Wab + Whe + Wae + C(tab + tbc - taC) = Ugpe. (21)

3

Where C' =} ¢;j, can be pre-calculated before. So, now we have a formula,
that can be evaluated more quickly than real subway measures. With the
evaluation of the value u we can avoid 3 - N? multiplications, which is very
attractive. We can use the value u as a pre-selector, that does some sort of
ranking of the possible local changes.

The application of this ranking function is clear for HC and TS algo-
rithms, we can cut-off the neighbourhood from 600 to 20-200 best candidates.
The situation is not so clear for the SA algorithm. Firstly, we can do SA
without any modifications, because SA itself selects only one local change.
Secondly, we can use u for increasing probability of the selection of better
candidates in a proportional way (roulette selection). However we believe
that it can destroy the property of SA of avoidance of local optima.

8 Conclusions and Recommendations

8.1 Conclusions

e We have made a mathematical model that describes the problem of
finding the subway that minimizes a balance between costs and travel
times.

e An approach that can find a good solution for this problem, where the
costs and buslines are fixed, are designed.

8.2 Recommendations

e The approach should be generalized. Such that it is possible to change
the buslines. Another generalization step could be to make it possible
to change the number of busses for a busline.
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e This generalized approach must be implemented into a user friendly
program. The user should have the possibility to make some choices
manually.

e In order to decide how to design the subway line a couple of examples
should be tried without exceeding the available amount of money for
the costs. In this way a network will be designed that gives a good
balance between costs and travel time.
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