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Abstract. We describe a method of dealing with sets that contain miss-
ing information in case of classification task. The described method uses
multi-stage scheme that induces and combines classifiers for complete
parts of the original data. The principles of the proposed Missing Tem-
plate Decomposition Method are presented together with general expla-
nation of the implementation within the RSES framework. The intro-
duced ideas are illustrated with an example of classification experiment
on a real data set.

1 Introduction

The hard task of dealing with data imperfection in inductive learning methods
was addressed in the area of data impreciseness by Pawlak in early 80’s [9]. He
proposed a Rough Set approach that made possible to precisely express facts
about imprecise data in a formal way. The main concept of Rough Sets, the
indiscernibility relation, proved to be very useful for analysis of decision problems
concerning objects described in a data table by a set of conditional attributes
and a decision attribute [10, 11]. However, original definition of the rough set
theory does not capture the situation where some of the attribute values are
missing. In last twenty years a great research effort has been made in the area
of data incompleteness to develop methods inducing classifiers for data with
missing attribute values. Some approaches making possible to handle missing
attribute values have been developed within the rough sets framework, see [5, 6,
14].

One can identify three major approaches to the issue of handling missing
data in classification tasks. These are:

– Modification of indiscernibility relation by adopting it to handle missing
attribute values (see [6, 14]).



– Modification of classifier induction algorithms like, e.g., in case of LEM1 and
LEM2 (see [5]).

– Imputation — replacement of missing values with regular ones (see [3, 4]).

The Missing Template Decomposition method (MTD) represents an ap-
proach that cannot be strictly classified to any of the three streams of research
listed above. It is devised to make it possible to reason on the basis of data with
missing attribute values without modification of the inductive learning algorithm
itself. The empirical evaluation of core MTD method has been already presented
in, e.g, [7] showing that MTD can improve not only the reasoning quality, but
also it can reduce complexity of classifier.

In this paper we present a brief description of the principles of Missing Tem-
plate Decomposition classifier that has been implemented with use of previous
experiences (see [7]) and added to the collection of methods that are available
within the framework of Rough Set Exploration System (RSES).

The Rough Set Exploration System (RSES) is a free software tool for anal-
ysis and exploration of data with use of methods originating in the Rough Set
theory. It is being developed for several years and provides a stable platform for
experiments with data (see [2]). It can be downloaded from [16].

This paper first presents the general concepts about data, missing values,
and templates. Then we introduce the principles of MTD method and the clas-
sification method based upon it. The method and its implementation in RSES
is illustrated with an example of experiment on head injury (hin) data.

2 Basic notions

As usual in Rough Set approach, we start with data set represented in the form
of information system or, more precisely, the special case of information system
called decision table.

Information system is a pair of the form A = (U,A) where U is a universe
of objects and A = {a1, ..., am} is a set of attributes i.e. mappings of the form
ai : U → Va ∪{?} , where Va is called value set of the attribute ai and ? denotes
missing value. The decision table is also a pair of the form A = (U,A∪{d}) with
distinguished attribute d. In case of decision table the attributes belonging to A
are called conditional attributes or simply conditions while d is called decision.
We will further assume that the set of decision values is finite. The i-th decision
class is a set of objects Ci = {o ∈ U : d(o) = di}, where di is the i-th decision
value taken from decision value set Vd = {d1, ..., d|Vd|}.

For any subset of attributes B ⊂ A indiscernibility relation IND(B) for
x, y ∈ U is defined as follows:

x IND(B) y ⇐⇒ ∀a∈B a(x) = a(y). (1)

The indiscernibility relation, as an equivalence relation, induces decomposition of
objects into indiscernibility classes in which all objects are identically described
on attributes from subset B. The above, classic, definition of indiscernibility



relation is capable to handle missing attribute values only in exactly the same
way as regular values. We will use K to denote a number of all indiscernibility
classes [x1]IND(B), . . . , [xK ]IND(B), and M ≤ K to denote a number of inconsis-
tent indiscernibility classes [xj1 ]IND(B), . . . , [xjM ]IND(B), where an inconsistent
indiscernibility class [xjm ]IND(B) contains objects from more than one decision
class (i.e., card({d(x) : x ∈ [xjm ]IND(B)}) > 1).

Decision rule is a formula of the form (ai1 = v1) ∧ ... ∧ (aik
= vk) ⇒ d = vd,

where 1≤ i1 < ... < ik ≤ m, vi ∈ Vai
. Atomic subformulae (ai1 = v1) are called

conditions. We say that rule r is applicable to an object, or alternatively, the
object matches rule, if its attribute values satisfy the premise of the rule. With
the rule we can connect some numerical characteristics such as matching and
support (see [1]).

Missing template t (also called total template) of A is a propositional formula∧
(ai 6=?) where ai ∈ A. An object satisfies (matches) a template if for every

attribute ai occurring in the missing template the value of this attribute on
considered object is defined (i.e., different from ?). A width of template t denoted
as w(t) is a number of attributes occurring in the template. A height of template
t denoted as h(t) is the number of objects satisfying the template. The missing
template t induces in natural way a subtable St = (Ut, At ∪ {d}) of original
information system A = (U,A∪{d}) consisting of set objects Ut that satisfy the
missing template t and set of attributes At occurring in the template (c.f. [7]).
Obviously, h(t) = card(Ut), w(t) = card(At) and the subtable St is complete,
i.e. totally described, while all objects satisfying a template are described on
attributes occurring in the template.

We will also use a normalization factor ρ = card(U)
card(Ut)

= card(U)
h(t) to normalize

heuristic measures of different missing templates, D to denote a number of de-
cision classes occurring in subtable St and Di to denote a number of decision
classes occurring in i-th indiscernibility class [xi]IND(At) of St.

3 Missing Template Decomposition

The Missing Template Decomposition method (MTD), as it was indicated in
introduction, differs from main streams of research on reasoning with incomplete
object description. It is meant to meet two requirements. The first one is to adapt
many well-known classifier induction methods, that are initially not capable
of handling missing attribute values, to the case of incomplete data. In other
words, MTD makes it possible to analyze incomplete information systems by
previously known and implemented classification methods without the need for
their modification. The second requirement is that MTD shall be able to cope
with the problem of incomplete data without making an additional assumption
of independent random distribution of missing values and without using data
imputation methods [3, 4]. The second requirement comes from the fact that
many real world applications have shown that appearance of missing values
may be governed by very complicated dependencies. Missing attribute values
are frequently not uniformly distributed but, their distribution is determined by



the hidden nature of investigated phenomenon, just like in the case of regular
values. Hence, the application of an arbitrary method for data imputation can
reduce accuracy of a classifier.

3.1 Classifier Induction

The MTD tries to avoid the necessity of reasoning on data with missing attribute
values. The original incomplete data is decomposed into data subsets which
contain no missing values. Next, methods for classifier induction are applied to
these complete subsets. Finally, a conflict resolving method is used to obtain
final solution from partial classifiers constructed on subtables.

In the data decomposition phase the original decision table with missing
attribute values is partitioned into a number of decision subtables which contain
no missing values. This data decomposition should reveal patterns in distribution
of missing attribute values. Ideally, the complete subtables that are result of the
decomposition should correspond to natural subproblems of the whole problem
domain. With the help of the concept of total template introduced earlier, we
can define data decomposition phase as generation of set of total templates t1,
. . . , tT and extraction of subtables St1 , . . . , StT

that satisfy these templates (see
Fig. 1).

Decision table
A = (U,A ∪ {d})

Subtable for 
template t2

St2
= (Ut2

,At2
∪ {d})

Classifier for St2 Conflict Resolving

Subtable for 
template t1

St1
= (Ut1

,At1
∪ {d})

Subtable for 

template t3
St3

= (Ut3
,At3
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Classifier for St1

Classifier for St3

Fig. 1. Missing Template Decomposition Method.

Once we have data decomposed into complete decision subtables, we perform
classifier induction from these subtables and classifier fusion (refer to figure Fig.
1). For classifier induction one can apply arbitrary method of inductive learning.
In our current implementation it is possible to utilize decision tree or decision
rules’ classifier. For decision tree classifier we can play with two parameters:
minimal required confidence (purity) of each leaf and minimal nonterminal node
size. For decision rule classifier we can select between optimal exhaustive decision
rules (all rules, see [2, 12]) and LEM2 rules (see [13]). For classifier fusion we
could apply any method for conflict resolution. Current implementation provides
standard voting method and decision tree method for this purpose.



The decision subtables {St = (Ut, At∪{d})} contain exactly the same decision
attribute as the original decision table A = (U,A ∪ {d}). This fact determines
the course of classifier induction. All classifiers induced for decision subtables are
classifying objects into the same decision classes, but for a given object some of
these classifiers may be not applicable. Note, that during classification process
the (subtable-induced) classifier is applicable to an object only if this object
satisfies total template related to the considered classifier. On the other hand,
there may be objects for which more than one classifier is applicable. That is
why after classifier induction we need a mechanism for conflict resolution.

Conflict resolving shall result in creation of the final answer. In case of stan-
dard voting this answer, depending of requirements, may be obtained in one
of two ways. First approach to conflict resolving takes into account only one
final decision value (definite decision class assignment) for each partial classifier
on the examined object. The object is assigned a decision value that has been
selected by majority of partial classifiers. In the second approach conflict resolv-
ing is done on vector of decision class assignment probabilities. The final result
(class assignment) is reached by taking the decision with highest cumulative
probability.

In the case of conflict resolving with use of decision tree, the tree is induced
from a virtual decision table that consist of all classifier answers for objects from
training table. Once decision tree is constructed, it is utilized to merge answers
from all partial classifiers.

We can briefly summarize the missing template decomposition method as
follows:

– Create set of templates t1, . . . ,tT for missing values in the following way:
• Create a temporary set of objects U ′ := U from the original decision

table and repeat two following steps until the temporary set U ′ becomes
empty:

• Generate the best missing template ti for objects U ′ according to a
chosen criterion;

• Remove from the temporary set U ′ objects that are covered by missing
template ti;

– Create complete decision subtables St1 , . . . , StT
that correspond to previ-

ously generated set of templates;
– Induce classifiers over complete decision subtables;
– Select a conflict resolving method (or learn a conflict resolving strategy) to

get the final answer.

3.2 Data Decomposition Criteria

Subsets St of original decision table A must satisfy some requirements in order
to achieve good quality of inductive reasoning as well as applicability in case of
methods that cannot deal with missing attribute values. We expect the decision
subtables to exhaustively cover the input table (at least in the terms of objects,
i.e.,

⋃T
i=1 Uti = U). They should contain no missing values. It is also obvious



that the quality of inductive reasoning depends on a particular partition and
some partitions are better than others.

In current implementation of MTD the search for promising set of total tem-
plates t1, . . . , tT is done with help of heuristic functions and genetic algorithm
with variable population size. The library utilized by RSES software provides sev-
eral heuristic functions for total template evaluation. These heuristic functions
join properties of standard template evaluation measures with feature selection
measures, especially measures based on rough sets. The implemented heuristic
functions are of the form q(t) = w(t)α · h(t) · f(t)β , where q(t) is considered
heuristic function, called also quality function of template, f(t) is an additional
template evaluation measure, and α, β are exponents for controlling the impact
of different components of quality function. Currently there are 8 template eval-
uation measures implemented in RSES and ready to be used for this purpose.
These are:

– S — size measure only, f(t) = 1, the template quality function has form
q(t) = w(t)α · h(t),

– C — conflict measure that counts conflicts in inconsistent indiscernibil-
ity classes, f(t) = maxc(t)−c(t)

maxc(t) , where c(t) is a function similar to conflict

c(t) = ρ ·
∑M

i=1

∏Di

d=1 card({x ∈ [xji ]IND(At) : d(x) = d})) and maxc(t) =
ρ ·

∏D
d=1 card({x ∈ Ut : d(x) = d}) is a function that estimates maximal

possible c(t) value from the top,
– I — inconsistency measure, f(t) = h(t)−i(t)

h(t) , where h(t) estimates i(t) value

from the top and i(t) = ρ ·
∑M

i=1

∑Di

d=1 card({x ∈ [xji ]IND(At) : d(x) = d}),
– D — average ratio of maximal purity within indiscernibility classes, f(t) =

1
K

∑K
i=1

maxd∈Vd
card({x∈[xi]IND(At):d(x)=d})

card({x∈[xi]IND(At)})
,

– E — proportion of maximal purity within indiscernibility classes to template
size, f(t) =

∑K
i=1

maxd∈Vd
card({x∈[xi]IND:d(x)=d})

h(t) ,
– F — f(t) = 1

max(1,c(t)) , where c(t) is defined above,

– G — f(t) =
∑K

i=1

maxd∈Vd
card({x∈[xi]IND(At):d(x)=d})

card([xi]IND(At))
(i.e., G = K ·D),

– H — f(t) = 1
K

∑K
i=1

maxd∈Vd
card({x∈[xi]IND:d(x)=d})

h(t) (i.e., E = K ·H),
– P — predictive measure, f(t) is an accuracy of decision tree classifier trained

and tested on table St.

4 Example of Experiment with MTD

To bring the functionality of MTD closer to reader’s intuition we present an
experiment performed with the RSES’ implementation of MTD. Our experiment
is carried out with use of hin data. It is a set of data describing head injuries data
with three possible decision values (moderate disability or good recovery, severe
disability, dead or vegetative), 6 conditional attributes and 1000 observations.
This dataset was selected because of the quantity of missing information. In the



hin data table 40.5% of all objects are incomplete (contain at least one ?) and
9.8% of all values are missing. This data was originally split into ten separate
train&test pairs for ten fold cross-validation (c.f. [8]), but for simplicity we use
only the first pair of train&test datasets.

To begin with, we have to load the training and test data tables into the
RSES system (see Fig. 2). Once we have data loaded we can start experiments.
In particular we can induce Missing Template Decomposition Classifier (MTD-
C). This is easily done by selecting appropriate option from context menu for
an icon representing training table.

Fig. 2. Simple project diagram of RSES system with decision tables for training and
testing, MTD induced from train table and classification results of MTD over test
table.

Selecting this option causes the RSES system to show the dialog box with
settings for MTD, as presented in Fig. 3. Most of these settings were described
in the previous section, so here we just briefly point at their location. In the
top left part a checkbox for selecting the type of answers gathered from sub-
classifiers is located. If it is unchecked, then each classifier outputs only one
decision value for an object. Checking it causes RSES to use decision probability
vectors. Most of the left part of the dialog is related to parameters for missing
template generation method. The user can select an additional evaluation func-
tion as described previously as well as exponent factors for selecting importance
of different components in the the template quality function. There are also set-
tings for genetic algorithm with variable population size that may be used to
search for templates. The user can adjust the number of genetic algorithm iter-
ations, probability of including each attribute in initial randomized population,
and minimal and maximal population sizes. In the field placed at the bottom left
corner the user can select a name for our MTD, which will be used to identify
it in RSES project diagram.

The right side of the dialog is devoted to settings for classifiers and conflict
resolving method. In the upper part the user can select the algorithm for induc-
tion of classifiers for subtables (decision tree, all rules or LEM2 rules) and their
settings. Below classifier selection menu there is a section that controls some
basic settings for internal discretization algorithms. The internal discretization
is required if some attributes in data are numeric and is done automatically for
each subtable before rule induction. In our example the head injury data contains



no numeric attributes, so discretization is not required. In RSES we have also
option of discretizing the entire data table with appropriate algorithm before in-
voking the MTD module. Finally, the bottom-right part of the dialog is related
to selection of conflict resolving method. The user has choice between voting and
decision tree learning methods. For decision tree conflict resolution method the
user can also specify parameters such as confidence level and minimal size of a
leaf.

Fig. 3. Configuration dialog of RSES system for Missing Template Decomposition
Method.

Let us assume that we would like to construct a MTD using the parameter
choice presented in Fig. 3. These settings assume no additional template evalu-
ation function (S = w(h) ·h(t)), LEM2 1 rule induction algorithm with required
coverage factor of 0.01 (1%) for classifier induction and decision tree used for
conflict resolving. After clicking OK the RSES system will induce MTD which
which will be accessible via a newly created icon within RSES project interface.
By double clicking on the MTD icon the user may open the results window and
see the “machinery” for constructed MTD classifier. It is possible to display the
set of missing templates as well as induced rule sets and decision tree used for
conflict resolving. We can test the accuracy of our MTD model on a test ta-
ble. The easiest way to do that is by choosing the “Classify/Test table using
1 Please note, that RSES implementation of LEM2 algorithm does not reflect its cur-

rent status and is based on description from [13].



MTD-C” option from the context menu associated with the previously loaded
test table and selecting the name of MTD to be used. The classification results
are then stored in the standard RSES object that makes it possible to examine
and analyze classification quality.

In the table below we present results of several experiments carried out on
hin data with use of various classification algorithms available in the RSES
system. These results exemplify usefulness of the MTD, at least for this data
set. More results of MTD application, as well as more thorough explanation of
underlying algorithms can be found in [7].

Description Accuracy Precision Coverage Classifier Complexity

All rules on original table 0.535 0.581 0.921 734 rules

LEM2 rules on original table 0.426 0.614 0.693 392 rules

All rules on table imputed with
most common value

0.475 0.822 0.578 824 rules

LEM2 rules on table imputed
with most common value

0.257 0.650 0.396 323 rules

All rules on table imputed with
most common value w.r.t. deci-
sion class (*)

0.554 0.622 0.891 898 rules

LEM2 rules on table imputed
with most common value w.r.t.
decision class

0.268 0.628 0.426 289 rules

All Rules (*) shortened with fac-
tor 0.7

0.673 0.708 0.950 259 rules

MTD q = w · h, All rules, voting 0.554 0.554 1.000 352 rules/4 classifiers

MTD q = w ·h, All rules, decision
trees

0.663 0.663 1.000 352 rules/4 classifiers
+ 155 tree nodes

MTD q = w ·h, LEM2 rules (1%),
decision tree

0.782 0.782 1.000 8 rules/4 classifiers +
61 nodes
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