
DIXER – Distributed Executor
for Rough Set Exploration System

Jan G. Bazan1, Rafał Latkowski2, and Marcin Szczuka3

1 Institute of Mathematics, University of Rzeszów
ul. Rejtana 16A, 35-959 Rzeszów, Poland,

bazan@univ.rzeszow.pl
2 Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warszawa, Poland,

R.Latkowski@mimuw.edu.pl
3 Institute of Mathematics, Warsaw University

ul. Banacha 2, 02-097 Warszawa, Poland,
szczuka@mimuw.edu.pl

Abstract. We present the Distributed Executor for RSES (DIXER)
which is a supplementary software for the Rough Set Exploration System
(RSES). It takes an advantage of grid computing paradigm and allows
to shorten the time necessary for experiments by employing all available
workstations to run a scenario of experiments. DIXER software includes
most important rough set classification algorithms from RSES and also
other algorithms for distributed machine learning. It creates an easy to
operate and utilize platform for grid computations and provides a robust
and fault tolerant environment for computation-heavy experiments. We
provide also experimental evaluation of DIXER that proves at least 96%
efficiency in parallelization.

1 Introduction

Machine Learning researchers commonly face a problem of carrying out a huge
number of experiments or one, but very time-consuming. The two main reasons of
that is the demand for completeness of experimental evaluation and complexity
of the machine learning methods themselves.

Let us take, for example, an imaginary algorithm with three parameters.
Each of these parameters may take one of three discrete values. This makes
3 · 3 · 3 = 27 different configurations for our algorithm and if we would like to
do a complete empirical evaluation we should provide experimental results for
all 27 possibilities. Let’s also assume that we have an implementation of this
algorithm that requires one minute of execution time to complete single run. To
get results of ten experiments using ten-fold cross-validation (CV10) with this
algorithm we have to wait 27 · 10 · 10 = 2700 minutes (45 hours).

The example above is only imaginary, but in real cases we usually face much
more demanding problems. If we could acquire four times more computational
power then instead of 45 hours we would obtain results overnight. That is why for
carrying out experiments we would like to utilize not one, but several computers.



40 Jan G. Bazan, Rafał Latkowski, and Marcin Szczuka

There are several ways to get more computational power through balancing
the load over a number of computational units. The first and the simplest way to
do this is just by dividing the work manually and then, by going from machine
to machine, put parts of work on all available computers. This approach can
be improved by using remote access to another computer but, unfortunately,
this method is not available on some software platforms. Obviously, in such an
approach we waste a lot of effort on manual partitioning of work, not-automated
process of experiment execution, result gathering, and execution monitoring.

Another approach is to use specially designed parallel computers or clusters
of computers. However, these machines are extremely expensive and efficient
utilization of such resources require re-implementation of software used in ex-
periments (or manual partitioning of work as above).

In late 90’s another approach has been proposed, namely the grid computing
(cf. [5]). This approach is constantly gaining popularity in academic and com-
mercial circles. In contrast to cluster computing, the grid computing does not
require highly efficient and very expensive inter-computer connections and as-
sumes utilization of regular network of workstations, exactly like those available
at every university or company. Probably the first widely known grid computing
scientific application is the Seti@Home (cf. [10]). In this project every computer
connected to the Internet can participate in searching for extra-terrestrial civi-
lization by analyzing data from a radio-telescope.

In this paper we present a grid computing platform dedicated to machine
learning experiments. The Distributed Executor (DIXER) software system is de-
signed to meet the need for a tool that makes it possible to perform series of
complex experiments by employing the grid computing paradigm. It provides an
easy to operate environment that automates execution of tasks in heterogeneous,
commonly available networks of workstations. The DIXER is a supplementary
software for the Rough Set Exploration System (RSES, see [1,2]). It is mainly
suited for experiments based on RSES-Lib software [1], but as an open archi-
tecture it facilitates a plug-in mechanism, so that new modules can be added
without modification of the main program.

The DIXER had to be written from scratch, as existing solutions proved
to be not suitable for our purposes. We considered utilization of existing clus-
tering/concurrency support systems, such as PVM or MPI, but they are either
not efficient enough in machine learning applications or provide too low-level
solutions. It is not a surprise, as these approaches are designed to work with
specialized parallel computers or very expensive equipment like Myrinet net-
work in the case of Network of Workstations (NOW) project (cf. [3]). In the
case of grid computing applications in data analysis we should avoid implemen-
tations that assume too frequent synchronization between concurrent processes.
In general, we would like to make the use of the machine standing in the office
next door after hours, or to employ a student lab as a grid machine, when there
are no classes.

In the second section we provide a very brief description of DIXER. Next,
(Section 3) we describe two modules bundled with DIXER. In Section 4 we



DIXER – Distributed Executor for RSES 41

describe our experimental evaluation of the efficiency boost achieved through
the use of DIXER. Finally, conclusions and bibliography close the paper.

2 Description

Fig. 1. Architecture of the grid of computers running DIXER-Manager and
DIXER-Nodes.

The DIXER software consist of two applications: Manager and Node. As
they are written in Java, it is possible to install them on variety of operating
systems including Linux, MS-Windows, Mac-OS, and various flavors of Unix.
DIXER-Node has to be installed and run on all computers that cooperate in
distributed computation. DIXER-Manager should run on one machine only (see
Fig. 1). DIXER-Manager schedules experiments (jobs) for all nodes in the grid of
computers, i.e., those, where DIXER-Node is executed. DIXER-Node performs
all experiments (jobs) scheduled by DIXER-Manager.

The DIXER software creates an easy to operate and utilize platform for grid
computing and provides a robust and fault tolerant environment for computation-
heavy experiments. At the moment it is bundled with two modules for distributed
computations. The RSES Parallel Experimenter (RSParallel) allows perform-
ing experiments with classifiers available in RSES-Lib. The Branch-and-Bound
DIXER module makes it possible to perform feature selection with use of wrap-
per attribute evaluation and strategies similar to well known branch-and-bound
search algorithm.

The DIXER-Manager has a graphical user interface (GUI, see Fig. 2) that
provides the console for managing all cooperating computers. Playing the boss,
for most of the time DIXER-Manager consumes only a small fraction of system
resources, both CPU time and system memory. This load, however, depends on
the number of nodes in grid and the task at hand. DIXER-Manager requires some
additional data files to be created. These files are necessary to store experiment
control data.

The DIXER-Node contains simplistic graphical user interface (GUI, see Fig.
2) on which one can supervise the program status. On demand this GUI can be
disabled and then DIXER-Node runs silently in background. Usually, DIXER-
Node consumes a lion share of system resources, both CPU time and system
memory. DIXER-Node can also require some disc space in order to store data



42 Jan G. Bazan, Rafał Latkowski, and Marcin Szczuka

Fig. 2. Graphical User Interface of DIXER-Manager and DIXER-Node.

files needed in experiments, which are sent by DIXER-Manager together with
job descriptions.

DIXER also provides mechanisms for recovery from failure. Execution of all
experiments can be easily stopped and restarted without loss of any already
computed results. This property is used also for assuring robustness. Should one
or more nodes crash because of the hardware or software failure, the already
computed results are preserved. If crash occurs only on the computers that run
DIXER-Node, then the whole system is still working, but with less computational
power due to reduced grid size. If crash touches the computer that runs DIXER-
Manager then the DIXER-Manager should be restarted from the point of last
delivered result.

There are several advantages of using DIXER for machine learning experi-
ments. The obvious benefit from DIXER is the automation of processing multiple
experiments using several computers. If it is necessary to test, e.g., which dis-
cretization or which decision rule shortening factor gives the best classification
for particular data set, then DIXER can help in automation of experiment se-
ries. Another advantage is that DIXER architecture offers the platform that effi-
ciently utilize power of available computers. DIXER is entirely written in JavaTM
programming language, what makes possible the construction of the grid in het-
erogenous hardware and software environments. DIXER, as well as the RSES is
distributed free of charge for non-commercial purposes. It can be downloaded
from the RSES Web page [9].

3 Implemented methods

The DIXER software is distributed with two built-in modules. Apart from them
it is possible to plug-in new modules that implement other distributed algo-
rithms. The already implemented methods are: feature selection and execution
of multiple experiments.



DIXER – Distributed Executor for RSES 43

3.1 Multiple Experiments

DIXER allows to distribute multiple experiments across all computers that run
DIXER-Node. The RSES Parallel Experimenter (RSParallel) is a DIXER mod-
ule that makes it possible to carry out experiments based on methods imple-
mented in Rough Set Exploration System (RSES), and particularly in RSES-Lib
(c.f. [1]). It processes a special script language, described in DIXER User Man-
ual [7], that is used to prepare individual scenarios for experiments. This script
language is interpreted line by line from the beginning of the file to its end, and
each line contains description of a separate experiment.

While preparing the scenario file user can choose between several classifica-
tion algorithms implemented in RSES-Lib. The description of each experiment
includes the selection of algorithm, its parameters, and reference to data files
used in training and testing phases. The results of experiments are written to a
special file that can be used for generating description of results in the form of
tables and/or statistics. These results are easy to analyze and support reporting.

Currently RSParallel provides the following RSES-Lib methods in experi-
ment scenarios: discretization, decision rule induction, decision rule shortening
and decomposition-based classifiers. A given experiment scenario can be stopped
and restarted without loss of already computed partial results. User can also force
DIXER to recalculate all results from the beginning.

3.2 Feature Selection

The feature selection problem is one of the most important problems in Data
Mining as well as one of the most computationally expensive. The Branch-and-
Bound DIXER module allows to carry out experiments with very expensive and
accurate feature selection based on the wrapper method (see, e.g., [4]), which is
a non-rough set feature selection approach. The strategy for searching the space
of the possible attribute subsets is similar to the branch-and-bound search. Here,
however, this strategy is not complete and is used rather in selection of the first
candidate to visit within the lattice of the possible feature subsets. The results
are saved in the special file that can be viewed both manually and with a help
of text processing tools. As a wrapper classifier the decision tree from RSES-Lib
is used. This decision tree algorithm can perform clustering of symbolic values
using the indiscernibility as a measure for heuristic split.

This algorithm is an example of method that cannot be manually partitioned
in order to distribute work among several machines. It cannot be prepared be-
forehand as the search strategy is modified on the basis of partial results. The
integrated solutions for distributed computing give the advantage over manual
methods, because implementation of more sophisticated experiments becomes
viable.

The details on using these two methods are provided in the DIXER User
Manual [7] bundled with the software.



44 Jan G. Bazan, Rafał Latkowski, and Marcin Szczuka

4 Experimental illustration

DIXER is available for download since 2003 (see [9]) and already has been used
in several research experiments. As an example of such experiment we refer the
reader to [8] where research on flexible indiscernibility relations and, particularly,
on attribute limited indiscernibility relations is presented. The attribute limited
indiscernibility relations are modifications of the indiscernibility relations that
enable different treatment of missing attribute values for each attribute. The
experimental work consisted of discretization and induction of decision rules over
train part of data using all possible attribute limited indiscernibility relations
and calculating classification accuracy over test part of data. Since the RSES-Lib
does not support decision rule induction using attribute limited indiscernibility
relations a special data preprocessing routine was used to simulate it. Generally
speaking, there were two possible treatments of missing values for each attribute,
so the number of all possible attribute limited indiscernibility relations is 2N ,
where N is the number of conditional attributes in data. The experiments were
carried out for five data sets, three of them with six conditional attributes and
two of them with eight conditional attributes. Every data set was partitioned
into ten pairs of train and test samples in order to use ten fold cross-validation
(CV10), so in total there were 10 · (3 · 26 + 2 · 28) = 7040 experiments. The
execution of those experiments took about a week on heterogeneous grid of
computers consisting of up to three computers with Pentium 4 2.6GHz CPU
and one computer with Pentium M 1GHz CPU, connected with 100Mb switched
network. Some of computers were detached from the grid because of network
failure or other user actions, but as it was mentioned before, it did not break
the computation, it only reduced the computational power of the grid.

For the purpose of this paper we repeated a part of the experiments described
above on a homogeneous grid of computers. The experiments were carried out
with use of up to ten identical computers with a 733Mhz Pentium III CPU
connected to 100Mb non-switched network. We took one pair of train and test
data that has the shortest time of discertization and decision rule induction. The
selected data — head injury data (hin), 3 classes, 6 categorical attributes, 1000
observations, 40.5% incomplete cases, 9.8% missing values — requires less than
7 seconds on a computer mentioned above to complete a single decision rule
induction procedure. The number of possible attribute limited indiscernibility
relations, thus the number of experiments is 26 = 64. We selected this set of
data because with so small execution time the effect of communication and
synchronization overhead will be most visible. We may say, that this experiment
is the worst case as the potential communication overhead is significant.

The results of experiments are presented in Table 1. The experiments were
carried out using separate machine for manager and separate machines for nodes
of the grid. We decided to measure the execution time in that way, because the
execution of all 64 experiments on exactly the same computer acting as man-
ager and node requires up to two seconds more than the execution on separate
computers. In the first row of Table 1 the number of computers acting as nodes



DIXER – Distributed Executor for RSES 45

is presented, in the second — the execution time in seconds, and in the third
row — the relative speed-up factor.

Table 1. Execution time and observed speed-up of DIXER grid consisting of up
to ten computers.

Number of computers 1 2 3 4 5 6 7 8 9 10
Time 440.32 220.17 148.28 115.13 92.81 75.52 65.72 55.79 50.87 46.3
Speed-up 1.00 2.00 2.97 3.82 4.74 5.83 6.70 7.89 8.66 9.51

We have to take into account that on some configurations, where 64 is not
divisible by the number of nodes in grid, DIXER-Manager has to wait for the
last computer to collect all results. This implies that on configurations where
64 is divisible by the number of computers cooperating in grid the efficiency of
grid should be slightly better. The worst result, i.e., result with largest difference
from the expected speed-up is the result with ten computers acting as grid nodes.
In this case we have 9.51 speed-up ratio instead of 10. That corresponds to two
wasted seconds. In order to measure the scalability more accurately, we also
performed a linear regression on the presented results. The results are linearly
approximated by line with factor 0.9636 with goodness of fit R2 = 0.999. It
corresponds to 96% efficiency in computational resources utilization.

Fig. 3. The left chart presents execution time of the experiments on DIXER grid
with parition to first 16, 32, 48 and all 64 experiments. The right chart presents
observed speed-up of the execution.

Figure 3 presents two charts with results of experiments. On that figure the
execution time and speed-up for first 16, 32 and 48 experiments is presented
for reference purposes. On the execution time chart (left) we can notice that



46 Jan G. Bazan, Rafał Latkowski, and Marcin Szczuka

the reduction of computation time is inversely proportional to the resources
(number of computers). On the right, speed-up chart a reference line with ideal
speed-up is presented for comparison. We can observe that the lowest speed-up
curve correspond to the execution of first 16 experiments. It suggests that the
DIXER achieves worst parallelization efficiency is at the beginning of distributed
computation. However, overall efficiency is never lower than 95% of the ideal
speed-up.

The excellent results of experiments are partially caused by the fact, that
on mentioned computers we carried out multiple experiments utilizing always
the same 64 pairs of data. This means, that on those computers we needed to
download the input data to local hard disk only once. However, if the data for
scheduled experiment is not present on the remote computer then they have to
be sent from the Manager to Node using DIXER internal mechanism for data
transfer. We have not tested in detail the influence of data transfer on execution
time, but this influence should not be significant. There are two arguments sup-
porting such statement. Firstly, the size of the data is somehow proportional to
the execution time of the experiment. In this particular case each pair of files
have total size of about 19KB, so the transfer time is negligible. Secondly, even
when the data is on local hard disk, DIXER performs additional test by com-
paring properties of these files on the DIXER-Manager computer with originals
stored on the DIXER-Node computer. It checks such values as: last modification
time, total size and CRC16 of the first 4KB of the file. Such a verification is very
similar to the data transfer, as it employs both local hard drive and network
connection. This verification is, of course, included in the results presented in
Table 1 and Figure 3. After all, not all experiments done with help of DIXER uti-
lize different data files. More typical use is to test different methods or different
parameters on relatively small set of data files.

5 Conclusions

The DIXER software provides a platform for grid-like computations supporting
Machine Learning and Data Mining experiments. The computational core, with
respect to the Machine Learning algorithms, is based on renewed RSES-Lib li-
brary that implements several Rough Set based algorithms. The flexibility of
DIXER software makes it possible to extend its functionality without modifica-
tion of the essential source code. The DIXER is easy to operate and provides
a robust and fault tolerant environment for computational-heavy experiments.
Especially in an academic environment, where usually a number of standard
workstations is available, it is the cheapest way to access an enlarged computa-
tional power. The minimization of communication overhead and grid manage-
ment (load balancing) makes it possible to obtain the computational throughput
that almost equals the sum of computational powers of cooperating computers.



DIXER – Distributed Executor for RSES 47

Acknowledgments

We wish to thank supervisor of RSES and DIXER projects, professor Andrzej
Skowron, and rest of the team participating in design and development: Nguyen
Hung Son, Nguyen Sinh Hoa, Michał Mikołajczyk, Dominik Ślęzak, Piotr Synak,
Arkadiusz Wojna, Marcin Wojnarski, and Jakub Wróblewski. The research has
been supported by the grant 3T11C00226 from Ministry of Scientific Research
and Information Technology of the Republic of Poland.

References

1. Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration
system. In Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N., eds.: Rough Sets
and Current Trends in Computing, Third International Conference, RSCTC 2002,
Malvern, PA, USA, October 14-16, 2002, Proceedings. Volume 2475 of Lecture Notes
in Computer Science., Springer (2002) 397–404

2. Bazan, J.G., Szczuka, M., Wojna, A., Wojnarski, M.: On the evolution of rough set
exploration system. In Tsumoto, S., Słowiński, R., Komorowski, H.J., Grzymała-
Busse, J.W., eds.: Rough Sets and Current Trends in Computing, RSCTC 2004.
Volume 3066 of Lecture Notes in Computer Science., Springer (2004) 592–601

3. Culler, D., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Chun, B., Lumetta, S., Main-
waring, A., Martin, R., Yoshikawa, C., Wong, F.: Parallel computing on the Berkeley
NOW. In: Proceedings of the 9th Joint Symposium on Parallel Processing, JSPP’97.
(1997)

4. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1
(1997) 131–156

5. Forester, I., Kesselman, C. (Eds.): The Grid: Blueprint for a New Computing In-
frastructure. Morgan-Kaufmann. (1998)

6. Groupp, W., Lusk, E.: Why are PVM and MPI so different? Report of Mathematics
and Computer Science Division of Aragonne National Laboratory ANL/MCS-P667-
0697. (1997)

7. Latkowski, R.: DIXER User Manual. Warsaw University. (2003) (refer to [9])
8. Latkowski, R.: Flexible Indiscernibility Relations for Missing Attribute Values.

Fundamenta Informaticae 66:2 (2005), In print.
9. The RSES WWW homepage at http://logic.mimuw.edu.pl/~rses
10. SETI@home WWW homepage at http://setiathome.ssl.berkeley.edu/

http://logic.mimuw.edu.pl/~rses�
http://setiathome.ssl.berkeley.edu/�

