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The Littlewood-Offord problem

Theorem (Erdős 45)

Let ε1, . . . , εn be independent random variables such that
P (εi = ±1) = 1

2 . Then for ai ∈ R with |ai | ≥ 1 we have

P(a1ε1 + · · ·+ anεn ∈ (x , x + 2]) ≤ P(ε1 + · · ·+ εn ∈ (−1, 1]).

Answering a question of Erdős, Kleitman (70) extended the result
to arbitrary normed spaces.



Extension to other random variables

Theorem (Leader-Radcliffe 94)

Let X1, . . . ,Xn be independent random variables such that for all
x ∈ R

P(Xi ∈ (x , x + 2)) ≤ 1

k
.

Then

P(X1 + · · ·+ Xn ∈ (x , x + 2)) ≤ P(U1 + · · ·+ Un ∈ (−1, 1]),

where Ui ’s are independent uniform random variables on the
k-point set {−k + 1,−k + 3, . . . , k − 3, k − 1}.

Henceforth we shall denote the latter uniform distribution by νk .



Other values of concentration 1

Leader and Radcliffe asked about the situation with concentration
bound being not an inverse of an integer.

Notation. For α ∈ [ 1
k+1 ,

1
k ] denote by T (α) a real random

variable having distribution

pνk+1 + (1− p)νk , p = k(k + 1)α− k ,

where p = k(k + 1)α− k . The latter choise ensures that the sum
of two consecutive atoms of T (α) is exactly α.



Other values of concentration 2

Theorem (J., 2015)

Let X1, . . . ,Xn be independent random variables such that for all
x ∈ R

P(Xi ∈ (x , x + 2)) ≤ αi .

Then

P(X1+ · · ·+Xn ∈ (x , x+2)) ≤ P(T1(α1)+ · · ·+Tn(αn) ∈ (−1, 1]).

Setting αi =
1
k recovers the previous result by Leader-Radcliffe.



A conjecture by Leader-Radcliffe

Let M be a normed space. Define a notion of concentration of a
random vector X by

Q̃(X ,D) = sup
A

P(X ∈ A),

where A runs through all open sets of diameter D in M.

Conjecture. Let X1, . . . ,Xn be independent random vectors in
some normed space M such that for all i we have

Q̃(Xi , 2) ≤
1

2
.

Then

Q̃(X1 + · · ·+ Xn, 2) ≤ P(ε1 + · · ·+ εn ∈ (−1, 1]).



A conjecture by Lee Jones 78

Definition. We shall call a set of k points in a normed space M a
k-block if their pairwise distances are at least 2. We sometimes
omit the parameter k when it is convenient and just call such sets
blocks.

Conjecture. Let X1, . . . ,Xn be independent random vectors in a
normed space M. Assume that each of them is uniform on some
k−block. Then

Q̃(X1 + · · ·+ Xn, 2) ≤ Q̃(U1 + · · ·+ Un, 2),

where Ui ’s are independent and each distributed uniformly on the
k−block {−k + 1,−k + 3, . . . , k − 3, k − 1}.



Main result

Theorem (J., V. Kurauskas 2023+)

Let X1, . . . ,Xn be independent random vectors in Rd with a norm
|| · ||. Assume that Q̃(Xi , 2) ≤ α for some α ∈ [0, 1]. Then

Q̃(X1 + · · ·+ Xn, 2) ≤ (1 + o(1))Q̃(T1(α) + · · ·+ Tn(α), 2),

where the o(1) term depends on d and the underlying norm.

Remark. Apart from the 1 + o(1) multiplicative factor, the latter
inequality gives exactly the
1) bound in the Leader-Radcliffe conjecture taking α = 2;
2) bound in the conjecture of Lee Jones taking α = 1

k .



Difficulties and a negative result

Difficulties of the proof - circumventing the Krein-Milman theorem
(board).
It might be tempting to believe that the latter inequality is true
without the parasitic 1 + o(1) factor. We now show that this
natural conjecture is false, even for n = 2. A counterexample for
2-dimensional Euclidean space is when both X1 and X2 are chosen
uniformly at random from the vertices of a regular octagon with

radius 2(
√
2 + 2)−

1
2 ≈ 0.5412. Then

Q̃(X1 + X2, 2) = Q̃(X1, 2) =
3

8
.

This value is sharp when α = 3
8 since Q̃(X1 + X2, 2) ≤ Q̃(X1, 2). It

is also strictly larger than Q̃(T1(
3
8) + T2(

3
8), 2).



Setup for today

In order to present the proof ideas we shall consider the problem in
a more restricted setting:
1) Only the l2 norm;

2) Finitely supported random variables with rational probabilities.



Splitting into cases (idealized)

Case 1 (structured): all distributions lie close to a single line;

Case 2 (unstructured): distributions are substantially
”high-dimensional”, i.e., the spread of the sum is happening in
multiple directions.



Unstructured case

Use Halasz’s concentration bound that gives probabilities of
magnitude o(n−1/2).



Structured case

Now every distribution is close to a single line (to be quantified
later). Take any random vector X in Rd with finite support and
rational probabilities. We can assume that X is uniformly
distributed on some multiset M (find a common denominator for
the probabilities ant take each point appropriately many times).



The Perfect Graph Theorem

Definition. A (finite simple) graph is called perfect iff the
chromatic number and the clique number coincide on all of its
induced subgraphs.

Theorem (Chudnovsky, Robertson, Seymour, Thomas 2003)

A graph G is perfect iff neither G nor its complement have induced
odd cycles of length ≥ 5.



The use in our setting

Recall that we are working with random vectors X concentrated on
some multiset M ⊂ Rd such that Q̃(X , 2) ≤ α.

Define a distance graph on M in the following way - treat all
elements of M as distinct (repeating elements are distinguished)
vertices of a graph G . Two vertices x , y ∈ M are joined iff
d(x , y) < 2.

Theorem (J., V. Kurauskas)

Let G be a distance graph of points x1, . . . , xN in Rd , and assume

each of the points is of distance at most
√
3
2 from the line

generated by the vector (1, 0, . . . , 0)T (the “x axis”). Then
neigher G nor its complement contain an induced cycles of odd
length 5 or more.



So what? Quite a lot, actually.

We now know that in the structured case our distance graph of the
supporting multiset of each variable is perfect. The optimal
coloring of any such graph produces a certain number of
independent sets (color classes) which we can control via the clique
number. The condition Q̃(X , 2) ≤ α means that the largest clique
in G has at most α-proportion of the vertices which is also a
bound on the chromatic number.

Why care about the chromatic classes (independent sets)? They
decompose the distribution of X into blocks! And we can
control the number of them (and thus, the sizes).



Where are the bodies burried?

Lee Jones actually has proved his conjecture when the underlying
normed space satisfies a certain partitioning condition (called the
De Bruijn, Tengbergen, Kruyswijk or B.K.T. condition) of the
sumset of blocks. Regrettably, that condition fails for l2. Yet we
can justify it in the structured case and we do not need it in the
unrestricted case.



Finishing up

To get the desired result we split the underlying product measure
into product measures of blocks and use a more general version of
Lee Jones’s result when the B.K.T. condition is satisfied. This
makes every distribution on a block into a distribution νk . Putting
it all back into a single product structure gives us a convolution of
measures on the line by keeping the concentration condition
Q̃(Xi , 2) ≤ α. Then we just apply what we know about the linear
case.



THE END


