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We consider the problem of solving the fixed-point equation H(x) =
x, where H : Rd → Rd is a contractive operator wrt a given norm
∥ · ∥ in Rd. However, the operator H is unknown, and instead, one
has access to a noisy oracle that at time k, given a vector xk, return
H(xk)+wk, where wk is the noise (that can depend on {x0, x1, . . . xk}).
Robbins and Monro [1] introduced the Stochastic Approximation (SA)
algorithm for this problem, where xk+1 = xk + αk (H(xk)− xk + wk),
where {αk} is the step-size sequence.

Such problems arise in various applications such as optimization and
reinforcement learning. Of special interest in reinforcement learning
is the case when the underlying norm is the ℓ∞ norm which is much
more challenging to study than the case of ℓ2 norm. We consider two
cases. The first is when the magnitude of noise does not scale with
the iterates, which we call the additive noise setting. The second is
when the magnitude of noise is allowed to affinely grow with the it-
erates, which we call the multiplicative noise setting. An illustrative
special case is when H is linear. Then the problem reduces to solving a
linear equation of the form Ax = b, and the stochastic approximation
algorithm reduces to xk+1 = xk + αk (Akxk − bk), where Ak and bk are
noisy samples of A and b respectively. With appropriate choice of step
sizes, it can be argued that the contractive property in this case reduces
to A being Hurwitz (i.e., all its eigenvalues have negative real parts).
Additive noise here corresponds to the setting where A is known (i.e.,
Ak = A), and b alone is noisy. Multiplicative noise corresponds to when
both A and b are noisy.
Prior work has established asymptotic convergence of the iterates

xk to x∗, the unique fixed point of H. The focus of our work is on
establishing finite time error bounds, ∥xk − x∗∥. First, we present a
bound on the mean-square error, E[∥xk − x∗∥2] under various choices
of step-sizes. In particular, we show that when the step sizes are of
the form α

k+k0
for appropriately chosen constants α and k0, the mean

square error is upper bounded by C
k
where C is a problem-dependant

constant. Such a result is well-known in the case when the underlying
norm is the ℓ2 norm. However, obtaining this result for ℓ∞ norm was
open since the 90’s, and our results is applicable for arbitrary norm.
We use a Lyapunov (potential) function framework where the key is
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constructing a Lyapunov function. In the ℓ2 norm case, V (x) = ∥x −
x∗∥2 works as a Lyapunov function. In the general setting, we construct
a smooth (i.e., has Lipschitz gradients) approximation of ∥x−x∗∥2 using
infimal convolution and the generalized Moreau envelop, and show that
it serves as a Lyapunov function and gives the mean-square bounds.

Our next focus is on establishing tail bounds on the error ∥x− x∗∥2.
Using Chebyschev inequality and the bound on the mean-square er-
ror, one immediately gets that P(∥x − x∗∥2 ≥ C

k
z) ≤ 1

z
for all z > 0.

Our goal is to establish tail bounds that decay faster than any polyno-
mial. In the additive noise setting, we establish exponentially decaying
tail bound of the form P(∥x − x∗∥2 ≥ C

k
z) ≤ e−cz where c is a prob-

lem dependant constant. This implies the following sample complexity
result: In order to obtain a solution x̂ that is within ϵ of x∗ (i.e.,
∥x̂ − x∗∥ ≤ ϵ) with probability (1 − δ), we need to run the stochas-
tic approximation algorithm for O

(
1
ϵ2

)
O
(
log

(
1
δ

))
iterations. In the

multiplicative noise setting, we establish Weibullian tails of the form

P(∥x− x∗∥2 ≥ C
k
z) ≤ e−cz

1
R for some R ≥ 1, and this implies a sample

complexity of O
(

1
ϵ2

)
O
((

log
(
1
δ

))R)
. We also present a counter exam-

ple to show that in the multiplicative noise setting, it is not possible
to obtain exponential tails. In addition, we show that our results are
applicable uniformly over the entire sample path.

In the additive noise setting, the iterates are bounded by a constant
almost surely, and we construct an exponential supermartingale based
on the Moreau envelop Lyapunov function. An application of the Ville’s
(aka Doob’s) maximal inequality gives the result. The key challenge is
in the multiplicative noise setting, where the iterates need not bounded
by a constant. We adopt the following bootstrapping approach. First,
we obtain an almost sure bound on the iterates that increases over
time. Say the bound is of the form O(kR) for some R > 0. Starting
from this upper bound, and going through the same steps as in the
additive noise setting (i.e., using the exponential supermartingale), we
obtain a tighter bound of the form O(kR−1) with high probability. This
process is inductively repeated ⌈R+1⌉ times to get the O(1/k) bound.
This talk is based on joint work with Zaiwei Chen, Sanjay Shakkottai,

Karthikeyan Shanmugam and Martin Zubeldia and presents results
from [2, 3].
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