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One dimensional covariance identities

Höffding (1940) Given random variables X and Y with finite
second moments, we have

cov(X, Y ) = EXY − EX EY

=

∫ ∞
−∞

∫ ∞
−∞

H(x, y) dx dy,

where the Höffding kernel is defined by

H(x, y) = P{X ≤ x, Y ≤ y} − P{X ≤ x}P{Y ≤ y}.

Generalized Höffding formula (Mardia, Sen, Cuadras ...)

cov(u(X), v(Y )) =

∫ ∞
−∞

∫ ∞
−∞

u′(x)v′(y)H(x, y) dx dy.
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The case X = Y with distribution µ

Theorem. Given a probability measure µ on the real line,

covµ(u, v) =

∫ ∞
−∞

∫ ∞
−∞

u′(x)v′(y) dλ(x, y)

for a unique positive, locally finite measure λ, with density

H(x, y) =
dλ(x, y)

dx dy
= F (x ∧ y) (1− F (x ∨ y)),

where
F (x) = P{X ≤ x} = µ((−∞, x]),

x ∧ y = min(x, y), x ∨ y = max(x, y).

Definition: λ is called Höffding’s measure.

Assumptions:∫ ∞
−∞

∫ ∞
−∞
|u′(x)| |u′(y)| dλ(x, y) <∞,∫ ∞

−∞

∫ ∞
−∞
|v′(x)| |v′(y)| dλ(x, y) <∞.

Total mass:

λ(R× R) =

∫ ∞
−∞

∫ ∞
−∞

H(x, y) dx dy = Var(X).
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Marginals of Höffding measures

Let µ have finite second moment with a = EX . The measure
λ has equal unimodal marginals: For Borel sets A ⊂ R,

Λ(A) = λ(A× R) =

∫ ∞
A

∫ ∞
−∞

H(x, y) dx dy

with density

h(x) =
dΛ(x)

dx
=

∫ ∞
x

(y − a) dF (y).

Corollary.

cov(X, u(X)) =

∫ ∞
−∞

u′(x)h(x) dx.

If µ is supported on an interval ∆ and has there a positive density
p, this formula may be rewritten as Stein’s identity

cov(X, u(X)) = E τ (X)u′(X),

where

τ (x) =
h(x)

p(x)
=

1

p(x)

∫ ∞
x

(y − a) p(y) dy, x ∈ ∆,

is the Stein kernel.
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Characterization of Gaussian measures via
marginals of Höffding measures

Claim. Λ = σ2µ for some σ ≥ 0 iff µ ∼ N(a, σ2).

Proof. If a = 0, the Fourier-Stieltjes transform of Λ is

Λ̂(t) =

∫ ∞
−∞

eitx h(x) dx = −f
′(t)

t
(t 6= 0),

where f is the characteristic function of X . Hence Λ = σ2µ iff

f ′(t) = −σ2tf (t) for all t ∈ R,

that is, µ ∼ N(0, σ2).

Standard normal case. If a = 0, σ = 1, we have Stein’s identity
with τ = 1,

cov(X, u(X)) = Eu′(X).
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Multidimensional extension

Let µ be the standard Gaussian measure on Rn with density

ϕ(x) =
1

(2π)n/2
e−|x|

2/2, x ∈ Rn.

Theorem. For a (unique) probability measure λ on Rn × Rn,

covµ(u, v) =

∫
Rn

∫
Rn
〈∇u(x),∇v(y)〉 dλ(x, y).

Necessarily Λ = µ.

History: Via Ornstein-Uhlenbeck semigroups (Ledoux 1995):

covµ(u, v) =

∫ ∞
0

Eµ 〈∇u,∇Ptv〉 dt,

Ptv(x) =

∫
Rn
v
(
e−tx +

√
1− e−2t y

)
dµ(y).

Interpolation (Houdré, Pérez-Abreu 1995, H-PA-Surgailis 1998),
B-Houdré-Götze (2001)

Uniqueness of λ: Apply the identity to

u(x) = ei〈a,x〉, v(y) = ei〈b,y〉 (a, b ∈ Rn).
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Characterization of Gaussian measures via
covariance identity

Theorem. Given a probability measure µ on Rn, suppose that

covµ(u, v) =

∫
Rn

∫
Rn
〈∇u(x),∇v(y)〉 dλ(x, y)

for some finite measure λ on Rn×Rn in the class of all bounded
smooth u, v on Rn with bounded partial derivatives. Then µ is
Gaussian with covariance matrix σ2In.

Proof is based on the Darmois-Skitovitch theorem.
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Gaussian concentration

Let µ be the standard Gaussian measure on Rn.
Let u be a Lipschitz function on Rn with ‖u‖Lip ≤ 1 and mean
m = Eu.

Log-Sobolev: For all r > 0,

µ{|u−m| ≥ r} ≤ 2e−r
2/2.

Isoperimetry:

µ{|u−m| ≥ r} ≤ 4
e−r

2/2

r
.

Corollary (from the covariance identity):

µ{|u−m| ≥ r} ≤ E |u−m| e
−r2/2

r
.

Example: u(x) = max(x1, . . . , xn).
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Proof

Let m = 0 and v = T (u) with non-decreasing T . Then

covµ(u, T (u)) =

∫
Rn

∫
Rn
〈∇u(x),∇u(y)〉T ′(u(y)) dλ(x, y)

implies
EuT (u) ≤ ET ′(u).

Choose
T (x) = min{(x− r)+, ε}, x, ε > 0.

Let ε→ 0, we get

V (r) ≡
∫ ∞
r

xp(x) dx ≤ p(r),

where p is density of u under µ. Equivalently, V (r) er
2/2 is non-

increasing in r > 0, so,

V (r) er
2/2 ≤ V (0) = Eu+.

But V (r) ≥ rµ{u ≥ r}, and we arrive at

µ{u ≥ r} ≤ Eu+
e−r

2/2

r
.
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Spherical derivatives

Let µ = σn−1 be a uniform distribution on the unit sphere

Sn−1 = {x ∈ Rn : |x| = 1}, n ≥ 2.

If f is smooth on the sphere, then w = ∇Sf (x) at the point
x ∈ Sn−1 is the shortest vector such that

f (y) = f (x) + 〈w, y − x〉 + o(|y − x|)

for y → x, y ∈ Sn−1. If f is smooth in a neighborhood of the
sphere,

∇Sf (x) = Px⊥∇f (x) = ∇f (x)− 〈∇f (x), x〉x.
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Spherical covariance identity

Theorem. On Sn−1 × Sn−1 there exist a probability measure ν
with marginals σn−1 and a constant cn > 0 such that

covσn−1(f, g) = cn

∫
Sn−1

∫
Sn−1
〈∇Sf (x),∇Sg(y)〉 dν(x, y)

for all smooth f, g on Sn−1. Moreover, ν has density with respect
to σn−1 ⊗ σn−1 of the form ψ(〈x, y〉). We also have

1

n− 1
< cn <

1

n− 2
(n ≥ 3).

Notes. 1) Since 〈x, y〉 = 1− 1
2 |x− y|

2, the density depends on
the distance |x− y|.
2) In general no uniqueness. If S ⊂ Sn−1 is a circle, and ν ′ is
supported on the set A = {(x, y) ∈ S × S : 〈x, y〉 = 0}, then

〈∇Sf (x),∇Sg(y)〉 = 0 for (x, y) ∈ A.
Hence, a similar covariance identity is also true for cnν + ν ′.
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Density in Gaussian covariance representation

The probability measure λ in

covµ(u, v) =

∫
Rn

∫
Rn
〈∇u(x),∇v(y)〉 dλ(x, y)

may be described as

λ =

∫ 1

0

L
(
X, tX + sZ

)
dt, s =

√
1− t2.

Here X and Z are independent standard normal random vectors
in Rn. It has density on Rn × Rn

p(x, y) =
1

(2π)n

∫ 1

0

s−n exp

[
− |x|

2 + |y|2 − 2t 〈x, y〉
2s2

]
dt.
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Construction of spherical mixing density

With smooth f, g : Sn−1 → R, we associate the functions

u(x) = f (r−1x) = f (θ), r = |x|, θ = r−1x,

v(x) = g(r−1x) = g(θ),

on Rn \ {0}, with their gradients

∇u(x) =
1

r
∇Sf (θ), ∇v(y) =

1

r′
∇Sg(θ′)

Here r and θ are independent under µ, and Lµ(u) = Lσn−1(f ).
Hence

covσn−1(f, g) = covµ(u, v).

Applying the Gaussian covariance identity and integrating in po-
lar coordinates, we represent covσn−1(f, g) as∫ ∫

〈∇Sf (θ),∇Sg(θ′)〉ψ(〈θ, θ′〉) dσn−1(θ) dσn−1(θ
′),

ψ(α) =
1

2n−2 Γ(n2)2

∫ 1

0

sn−2
[ ∫ ∞

0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′tα

2

]
(rr′)n−2 dr dr′

]
dt.
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Marginals. Estimation of constants cn

Repeating integration in polar coordinates, we get

cn =

∫ ∫
ψ(〈θ, θ′〉) dσn−1(θ) dσn−1(θ

′)

=

∫
Rn

∫
Rn

p(x, y)

|x| |y|
dx dy = E

∫ 1

0

1

|X| |tX + sZ|
dt.

By Cauchy’s inequality, the latter expectation is smaller than(
E

1

|X|2

)1/2(
E

1

|tX + sZ|2

)1/2

= E
1

|X|2
=

1

n− 2
.

Rotational invariance: The density of the marginal of ν is

q(θ) =

∫
Sn−1

ψ(〈θ, θ′〉) dσn−1(θ′).

This integral does not depend on θ and is therefore equal to cn.
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Behavior of ψ near the diagonal

Write ψ = ψn.

Claim: ψ2 is bounded, while (within n-dependent factors)

ψ3(〈θ, θ′〉) ∼ log
1

|θ − θ′|
(n = 3),

ψn(〈θ, θ′〉) ∼ 1

|θ − θ′|n−3
(n ≥ 4).
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Application to spherical concentration

Let f on Sn−1 satisfy ‖f‖Lip ≤ 1 and have σn−1-mean m.

Classical deviation inequality: For all r > 0,

σn−1

{
|f −m| ≥ r

}
≤ 2 e−(n−1)r

2/2.

Corollary. For all r > 0,

σn−1

{
|f −m| ≥ r

}
≤ 1

r
e−r

2/2cn Eσn−1 |f −m|.
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Periodic covariance identities

For a probability measure µ on [0, 1), consider an identity

covµ(u, v) =

∫ 1

0

∫ 1

0

u′(x)v′(y) dλ(x, y)

in the class of all 1-periodic smooth functions u and v on R,
assuming that λ is a signed measure.

Example: The Höffding measure λ = λµ whose marginal Λµ are
however not multiples of µ.

Theorem. Subject to the constraint that the marginal distribu-
tion of λ is equal to cµ for a prescribed value c ∈ R, the mixing
measure λ exists, is unique and is given by

λ = λµ + (σ2 − c)m⊗m
+ c (µ⊗m + m⊗ µ)− (Λµ ⊗m + m⊗ Λµ),

where σ2 is variance of µ and m is the uniform distribution on
(0, 1).
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Uniform distribution

Let µ be uniform on (0, 1).

Corollary. Subject to the constraint that the marginal distribu-
tion of λ is equal to cµ, c ∈ R, the measure λ has density

λ(x, y)

dx dy
= D(|x− y|) +

(
c− 1

24

)
, x, y ∈ (0, 1),

where

D(h) =
1

8

[
1− 4h(1− h)

]
, 0 ≤ h ≤ 1.

Optimal choice c = 1
24 leads to

covµ(u, v) =

∫ 1

0

∫ 1

0

u′(x)v′(y)D(|x− y|) dx dy

=
1

24

∫ 1

0

∫ 1

0

u′(x)v′(y) dν(x, y)

with a probability measure dν(x, y) = 24D(|x − y|) dx dy on
(0, 1)× (0, 1). It has µ as a marginal one.
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