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One dimensional covariance identities

Hoffding (1940) Given random variables X and Y with finite

second moments, we have

cov(X,Y) = EXY —EXEY

/ / H(x,y)dx dy,

where the Hoffding kernel is defined by
H(x,y) =P{X <z,Y <y} —P{X <z} P{Y < y}.

Generalized Hoffding formula (Mardia, Sen, Cuadras ...)

cov(u(X / / H(z,y)dx dy.



The case X =Y with distribution p

Theorem. Given a probability measure 1 on the real line,

cov,(u, v) / / y) dA(z,y)

for a unique positive, locally finite measure A, with density
dA(z, y)
dx dy

H(z,y) = =F(zANy) (1 - F(zVy)),

where
F(z) = P{X <z} = p((—o00,z]),
r Ay =min(z,y), x Vy = max(x,y).

Definition: A is called Hoffding's measure.

Assumptions:

/OO /OO o' ()] |/ (y)| dA(z,y) < oo
/ / )| [V'(y)] dA(z, y) <

Total mass:

AR x R) = /Z /Z Hi(z.y) dz dy = Var(X).



Marginals of Hoffding measures

Let 14 have finite second moment with a = [EX. The measure
A has equal unimodal marginals: For Borel sets A C R,

A(A) = MA x R) :AOO/ZH(:c,y)dxdy

with density

R ly—a)dF(y)

Corollary.

cov( X, u(X)) = /_OO u'(z) h(z) dx.

oo

If 11 is supported on an interval A and has there a positive density
p, this formula may be rewritten as Stein's identity

cov(X,u(X)) =Er(X)u'(X),

where

is the Stein kernel.



Characterization of Gaussian measures via
marginals of Hoffding measures

Claim. A = o*u for some o > 0 iff  ~ N(a, o?).

Proof. If a = 0, the Fourier-Stieltjes transform of A is

) = /_ "t () dy = 7 'it) (t +0),

©.¢)

where f is the characteristic function of X. Hence A = o2 iff
f'(t) = —c’tf(t) forall t € R,

that is, u ~ N(0,0?).

Standard normal case. If a = 0, 0 = 1, we have Stein’s identity

with 7 =1,
cov(X,u(X)) =Eu'(X).



Multidimensional extension

Let 11 be the standard Gaussian measure on R" with density

1 g2 .
p(r) = 2] e 12 ¢ e R

Theorem. For a (unique) probability measure A on R"” x R",

cov,(u,v) = /n /n (Vu(x), Vo(y)) dA(x,y).

Necessarily A = L.
History: Via Ornstein-Uhlenbeck semigroups (Ledoux 1995):

cov,(u,v) = / E, (Vu, VPv) dt,
0
Po(x) = / v(e Tz +V1—e2y)duly).

Interpolation (Houdré, Pérez-Abreu 1995, H-PA-Surgailis 1998),
B-Houdré-Gotze (2001)

Uniqueness of A: Apply the identity to
u(z) = ' yly) =Y (q,b e R").



Characterization of Gaussian measures via
covariance identity

Theorem. Given a probability measure 1 on R", suppose that

cov,(u,v) = /n /n (Vu(x), Vo(y)) dA(x,y)

for some finite measure A on R” x R" in the class of all bounded
smooth u, v on R" with bounded partial derivatives. Then p is
Gaussian with covariance matrix o*1,,.

Proof is based on the Darmois-Skitovitch theorem.



Gaussian concentration

Let 1+ be the standard Gaussian measure on R".
Let u be a Lipschitz function on R” with ||u|ri; < 1 and mean
m = Eu.

Log-Sobolev: For all » > 0,
pflu —m| >r} < 2e "2,

Isoperimetry:

—7"2/2
pflu—m| > r} <4——
-

Corollary (from the covariance identity):

—7“2/2

p{lu—m| >} <Eju—m| —.
T

Example: u(z) = max(xq,...,z,).



Proof

Let m = 0 and v = T'(u) with non-decreasing T'. Then
cov,,(u, T'(u / / (Vu(x), Vu(y)) T (u(y)) d\(z,y)
implies

EuTl (u) <ET'(u).
Choose
T(z) =min{(x —r)",e}, x,&>0.
Let ¢ — 0, we get

vin= [ " apla) de < p(r),

702/2 .

where p is density of v under p. Equivalently, V' (r) e /¢ is non-

Increasing in 7 > 0, so,
V(r) e 2 < V() =Eu'.
But V(r) > ru{u > r}, and we arrive at

.2
67"/2

p{lu>r <Eu”
r



Spherical derivatives

Let 1 = 0,1 be a uniform distribution on the unit sphere
S"h={zeR":|z|=1}, n>2

If f is smooth on the sphere, then w = Vg f(x) at the point
x € S is the shortest vector such that

fly) = flo) +(w,y — z) + olly — z])

for y — 2, y € S" L If f is smooth in a neighborhood of the
sphere,

Vsf(x)=P.Vflx)=Vflx)—(Vf(z)x) .
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Spherical covariance identity

Theorem. On S"~! x S"~! there exist a probability measure v
with marginals ,,_1 and a constant ¢, > 0 such that

cova,_(f,9) = cn /S . /S ~ (\Vsf(2), Vsgly)) dv(z,y)

for all smooth £, g on S"~!. Moreover, v has density with respect
to 0,1 ® 0,1 of the form ¥ ({x,y)). We also have

1 _ _ 1
Cn
n—1 n—2

(n > 3).

Notes. 1) Since (z,y) =1 — 1|z — y|?, the density depends on
the distance |z — y|.

2) In general no uniqueness. If S C S" ! is a circle, and ¢/ is
supported on the set A = {(x,y) € S x S : (z,y) = 0}, then

(Vsf(x),Vsgly)) =0 for (z,y) € A

Hence, a similar covariance identity is also true for ¢,v + /.
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Density in Gaussian covariance representation

The probability measure A in

cov,(u,v) = /n /n (Vu(z), Vou(y)) d\(x,y)

may be described as

1
A:/ L(X, tX +sZ)dt, s=+/1—1
0

Here X and Z are independent standard normal random vectors
in R". It has density on R" x R"

1 L - z]? 4 |yl? — 2t {x,y
p(x,y):(%r)n/o S exp[—l "+ |232 2, y) dt.
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Construction of spherical mixing density

With smooth f,g: S" ! — R, we associate the functions
w(x) = f(rte) = f0), r=lz], 0=r""a,
v(z) = g(r~'z) = g(0),
on R"\ {0}, with their gradients
1 1
Vu(z) = ” Vsf(0), Vo(y) = 7 VSQW)

Here r and 0 are independent under y, and £, (u) = L, _(f).
Hence

covy (f,g) = cov,(u,v).
Applying the Gaussian covariance identity and integrating in po-
lar coordinates, we represent cov, . (f,g) as

/ (Vs £(6), Vsg(6)) ({6, 0)) do1(6) do (8,

T 21F / U /

12 2 /t
exp [ Bl w7 a] (rr")" 2 dr dr’] dt.

2
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Marginals. Estimation of constants ¢,

Repeating integration in polar coordinates, we get

/ ’Qb 9 8 dO’n 1(9) dO’n 1((9)

1
) g dy — IE/ dt
// ] |y| \y\ o [ X][tX +sZ]

By Cauchy’s inequality, the latter expectation is smaller than
1\ 12 | 1/2 ! |

E——r E —E— = :

| X |? tX + sZ|? XZ n-2

Rotational invariance: The density of the marginal of v is

00)= [ w(0.0)do,a(8)

This integral does not depend on 6 and is therefore equal to ¢,,.
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Behavior of ) near the diagonal

Write ¢ = 1),,.

Claim: ) is bounded, while (within n-dependent factors)

1
6 — 0]
1
‘(9 _ 6)/‘71—3

P3((0,0")) ~ log

Pn((6,07)) ~
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Application to spherical concentration

Let f on S" ! satisfy || f||Li, < 1 and have o,,_;-mean m.

Classical deviation inequality: For all » > 0,

On_1{|f —m| > 7“} < 2e (U2

Corollary. For all » > 0,

L 2,
ST, |f —m]

Jn_1{\f —m| > 'r} <
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Periodic covariance identities

For a probability measure o on [0, 1), consider an identity

cov,,(u, v) / / y) dA(z,y)

in the class of all 1-periodic smooth functions v and v on R,
assuming that A is a signed measure.

Example: The Hoffding measure A = A\, whose marginal A, are
however not multiples of L.

Theorem. Subject to the constraint that the marginal distribu-
tion of A is equal to cu for a prescribed value ¢ € R, the mixing
measure \ exists, is unique and is given by

A= N+ (P —c)mem
clpem+meu) — (A, @m+meAN,),

2

where o is variance of 1 and m is the uniform distribution on

(0,1).
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Uniform distribution

Let 1 be uniform on (0, 1).

Corollary. Subject to the constraint that the marginal distribu-
tion of A is equal to cu, ¢ € R, the measure A\ has density

where

Dh)==[1-4h(1—h)], 0<h <1

1
8

Optimal choice ¢ = 5; leads to

cov,(u,v) = // D(|z —y|) dz dy
_ // y) dv(z. 1)

with a probability measure dv(x,y) = 24 D(|x — y|) dx dy on
(0,1) x (0,1). It has i as a marginal one.
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