The suprema of selector processes

Rafał Meller (based on joint work with W. Bednorz and R. Martynek)

Polish Academy of Science
Bedlewo June 2023

Motivation

Problem

Let $\left(X_{t}\right)_{t \in T}$ be a stochastic process. $\mathbb{E} \sup X_{t} \approx$? $t \in T$

Motivation

Problem

Let $\left(X_{t}\right)_{t \in T}$ be a stochastic process. $\mathbb{E} \sup X_{t} \approx$? $t \in T$

Theorem (Talagrand 1987)

Let $\left(G_{t}\right)_{t \in T}$ be a Gaussian process. Then $\mathbb{E} \sup G_{t} \approx \gamma(T)$ and $\gamma(T)$ $t \in T$
depends only on the geometry of the index set T.

Motivation

Problem

Let $\left(X_{t}\right)_{t \in T}$ be a stochastic process. $\mathbb{E} \sup X_{t} \approx$? $t \in T$

Theorem (Talagrand 1987)

Let $\left(G_{t}\right)_{t \in T}$ be a Gaussian process. Then $\mathbb{E} \sup G_{t} \approx \gamma(T)$ and $\gamma(T)$ $t \in T$
depends only on the geometry of the index set T.
Some further generalization

- Variables with c.d.f $c_{r} \exp \left(-|x|^{r}\right), 1 \leq r<\infty$, Talagrand 1994; Variables with LCT + technical condition on growth, Latała 1997; Variables which moments are not "too big" and not "too small", Latała, Tkocz 2015

Motivation

Problem

Let $\left(X_{t}\right)_{t \in T}$ be a stochastic process. $\mathbb{E} \sup X_{t} \approx$? $t \in T$

Theorem (Talagrand 1987)

Let $\left(G_{t}\right)_{t \in T}$ be a Gaussian process. Then $\mathbb{E} \sup G_{t} \approx \gamma(T)$ and $\gamma(T)$ $t \in T$
depends only on the geometry of the index set T.
Some further generalization

- Variables with c.d.f $c_{r} \exp \left(-|x|^{r}\right), 1 \leq r<\infty$, Talagrand 1994; Variables with LCT + technical condition on growth, Latała 1997; Variables which moments are not "too big" and not "too small", Latała, Tkocz 2015
- Bernoulli r.v's, Bednorz, Latała 2014

Motivation

Problem

Let $\left(X_{t}\right)_{t \in T}$ be a stochastic process. $\mathbb{E} \sup _{t \in T} X_{t} \approx$?

Theorem (Talagrand 1987)

Let $\left(G_{t}\right)_{t \in T}$ be a Gaussian process. Then $\mathbb{E} \sup G_{t} \approx \gamma(T)$ and $\gamma(T)$ $t \in T$
depends only on the geometry of the index set T.
Some further generalization

- Variables with c.d.f $c_{r} \exp \left(-|x|^{r}\right), 1 \leq r<\infty$, Talagrand 1994; Variables with LCT + technical condition on growth, Latała 1997; Variables which moments are not "too big" and not "too small", Latała, Tkocz 2015
- Bernoulli r.v's, Bednorz, Latała 2014

Conclusion

It's hard to describe exact size of \mathbb{E} sup X_{t} when the process is "small". $t \in T$

Motivation

Problem (Very hard)

Let δ_{i} be i.i.d, $\mathbb{P}\left(\delta_{i}=1\right)=p=1-\mathbb{P}\left(\delta_{i}=0\right)$ and $T \subset \mathbb{R}^{n}$. $\mathbb{E} \sup _{t \in T} \sum_{i} t_{i} \delta_{i} \approx ?$

Motivation

Problem (Very hard)

Let δ_{i} be i.i.d, $\mathbb{P}\left(\delta_{i}=1\right)=p=1-\mathbb{P}\left(\delta_{i}=0\right)$ and $T \subset \mathbb{R}^{n}$.
$\mathbb{E} \sup _{t \in T} \sum_{i} t_{i} \delta_{i} \approx ?$

Fact (Talagrand)

g_{1}, \ldots i.i.d $\mathcal{N}(0,1)$. Then
$\left\{\sup _{t \in T} \sum_{i} g_{i} t_{i} \geq L \mathbb{E} \sup _{t \in T} \sum_{i} g_{i} t_{i}\right\} \subset \bigcup_{k \geq 1}\left\{\sum_{i} g_{i} t_{i}^{k} \geq u_{k}\right\}$, where
$\sum_{k} \mathbb{P}\left(\sum_{i} g_{i} t_{i}^{k} \geq u_{k}\right) \leq 1 / 2$.

Conjecture (Talagrand ~ 2010)
Is generalization of the above statement true for selector process?

Formulation of the Problem

Let δ_{i} be i.i.d, $\mathbb{P}\left(\delta_{i}=1\right)=p=1-\mathbb{P}\left(\delta_{i}=0\right), \delta(T):=\mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \delta_{i}$.

Theorem (Park, Pham 2022)

There exists constant L such that for any $T \subset\left(\mathbb{R}_{+}\right)^{n}$, there exists family \mathcal{G} of subsets of $[n]$ such that

$$
\begin{align*}
\left\{\sup _{t \in T}\right. & \left.\sum_{i=1}^{n} t_{i} \delta_{i} \geq L \delta(T)\right\} \subset \bigcup_{S \in \mathcal{G}}\left\{\delta_{i}=1 \text { for } i \in S\right\} \tag{1}\\
& \sum_{S \in \mathcal{G}} \mathbb{P}\left(\delta_{i}=1 \text { for } i \in S\right)=\sum_{S \in \mathcal{G}} p^{|S|} \leq 1 / 2 \tag{2}
\end{align*}
$$

Formulation of the Problem

Let δ_{i} be i.i.d, $\mathbb{P}\left(\delta_{i}=1\right)=p=1-\mathbb{P}\left(\delta_{i}=0\right), \delta(T):=\mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \delta_{i}$.

Theorem (Park, Pham 2022)

There exists constant L such that for any $T \subset\left(\mathbb{R}_{+}\right)^{n}$, there exists family \mathcal{G} of subsets of $[n]$ such that

$$
\begin{align*}
\left\{\sup _{t \in T}\right. & \left.\sum_{i=1}^{n} t_{i} \delta_{i} \geq L \delta(T)\right\} \subset \bigcup_{S \in \mathcal{G}}\left\{\delta_{i}=1 \text { for } i \in S\right\} \tag{1}\\
& \sum_{S \in \mathcal{G}} \mathbb{P}\left(\delta_{i}=1 \text { for } i \in S\right)=\sum_{S \in \mathcal{G}} p^{|S|} \leq 1 / 2 \tag{2}
\end{align*}
$$

Remark

The Theorem is obvious for $p>c>0$ since

$$
\sup _{t \in T} \sum_{i} t_{i} \delta_{i} \leq \sup _{t \in T} t_{i}=p^{-1} \sup _{t \in T} \mathbb{E} \sum_{i=1}^{n}
$$

Small families

A collection \mathcal{F} of subsets of $[n]:=\{1, \ldots, n\}$ is p-small if there exists a collection \mathcal{G} of $[n]$ such that

$$
\mathcal{F} \subset\langle\mathcal{G}\rangle:=\bigcup_{S \in \mathcal{G}}\langle S\rangle=\bigcup_{S \in \mathcal{G}}\{I \subset\{1, \ldots, n\}: S \subset I\}, \sum_{S \in G} p^{|S|} \leq 1 / 2
$$

$\langle S\rangle=$ all subsets of $[n]$ that contains $S . \mathbb{P}(\langle S\rangle)=p^{|S|}$.

Small families

A collection \mathcal{F} of subsets of $[n]:=\{1, \ldots, n\}$ is p-small if there exists a collection \mathcal{G} of $[n]$ such that

$$
\mathcal{F} \subset\langle\mathcal{G}\rangle:=\bigcup_{S \in \mathcal{G}}\langle S\rangle=\bigcup_{S \in \mathcal{G}}\{I \subset\{1, \ldots, n\}: S \subset I\}, \quad \sum_{S \in G} p^{|S|} \leq 1 / 2
$$

$\langle S\rangle=$ all subsets of $[n]$ that contains $S . \mathbb{P}(\langle S\rangle)=p^{|S|}$. Examples:

- $2^{[n]}=\bigcup_{k=1}^{n}\langle k\rangle \cup \emptyset$. If $n p \leq 1 / 2$ than any familly is small.

Small families

A collection \mathcal{F} of subsets of $[n]:=\{1, \ldots, n\}$ is p-small if there exists a collection \mathcal{G} of [n] such that

$$
\mathcal{F} \subset\langle\mathcal{G}\rangle:=\bigcup_{S \in \mathcal{G}}\langle S\rangle=\bigcup_{S \in \mathcal{G}}\{I \subset\{1, \ldots, n\}: S \subset I\}, \sum_{S \in G} p^{|S|} \leq 1 / 2
$$

$\langle S\rangle=$ all subsets of $[n]$ that contains $S . \mathbb{P}(\langle S\rangle)=p^{|S|}$. Examples:

- $2^{[n]}=\bigcup_{k=1}^{n}\langle k\rangle \cup \emptyset$. If $n p \leq 1 / 2$ than any familly is small.
- $\mathcal{F}=$ all subsets of $[n]$ with cardinality $\geq k+1$. Then

$$
\mathcal{F} \subset \bigcup_{|I|=k}\langle I\rangle \subset \bigcup_{|I|=k-1}\langle I\rangle \subset \ldots
$$

If $\min _{I \leq k} p^{\prime}\binom{n}{I} \leq 1 / 2$ then \mathcal{F} is small.

Refomulation of Theorem

The following is equivalent to the Theorem formulated on the previous slides.

Theorem

Let \mathcal{F} be a family of subsets of [n], which is not p-small and with each $I \in \mathcal{F}$ we have an associated probabilistic measure μ_{I} on $[n], \mu_{I}(I)=1$. Then $\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i \in I} \mu_{I}(i) \delta_{i} \geq \frac{1}{220}$.

Refomulation of Theorem

The following is equivalent to the Theorem formulated on the previous slides.

Theorem

Let \mathcal{F} be a family of subsets of $[n]$, which is not p-small and with each $I \in \mathcal{F}$ we have an associated probabilistic measure μ_{I} on $[n], \mu_{I}(I)=1$. Then $\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i \in I} \mu_{I}(i) \delta_{i} \geq \frac{1}{220}$.
(1) We may assume that $n p \geq 1 / 2$

Refomulation of Theorem

The following is equivalent to the Theorem formulated on the previous slides.

Theorem

Let \mathcal{F} be a family of subsets of $[n]$, which is not p-small and with each $I \in \mathcal{F}$ we have an associated probabilistic measure μ_{I} on $[n], \mu_{I}(I)=1$. Then $\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i \in I} \mu_{I}(i) \delta_{i} \geq \frac{1}{220}$.
(1) We may assume that $n p \geq 1 / 2$
(2) Improvement over trivial argument for small p

$$
\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i \in I} \mu_{I}(i) \delta_{i} \geq \sup _{I \in \mathcal{F}} \mathbb{E} \sum_{i \in I} \mu_{I}(i) \delta_{i}=p
$$

Proof - first step

Let $\left(\delta_{i}^{\prime}\right),\left(\delta_{i}^{\prime \prime}\right)$ be independent Bernoulli r.v's, $\mathbb{P}\left(\delta_{i}^{\prime}=1\right)=C p, \mathbb{P}\left(\delta_{i}^{\prime \prime}=1\right)=\frac{1}{C}$.

Proof - first step

Let $\left(\delta_{i}^{\prime}\right),\left(\delta_{i}^{\prime \prime}\right)$ be independent Bernoulli r.v's, $\mathbb{P}\left(\delta_{i}^{\prime}=1\right)=C p, \mathbb{P}\left(\delta_{i}^{\prime \prime}=1\right)=\frac{1}{C}$. By Jensen's inequality

$$
\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}=\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \delta_{i}^{\prime \prime} \geq \frac{1}{C} \mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime}
$$

Proof - first step

Let $\left(\delta_{i}^{\prime}\right),\left(\delta_{i}^{\prime \prime}\right)$ be independent Bernoulli r.v's, $\mathbb{P}\left(\delta_{i}^{\prime}=1\right)=C p, \mathbb{P}\left(\delta_{i}^{\prime \prime}=1\right)=\frac{1}{C}$. By Jensen's inequality

$$
\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}=\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \delta_{i}^{\prime \prime} \geq \frac{1}{C} \mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime}
$$

Denote $S=\sum_{i=1}^{n} \delta_{i}^{\prime}$ so that

$$
E \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \geq \sum_{m \geq C_{p n}} \mathbb{E}\left(\sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \mid S=m\right) \mathbb{P}(S=m)
$$

Proof - first step

Let $\left(\delta_{i}^{\prime}\right),\left(\delta_{i}^{\prime \prime}\right)$ be independent Bernoulli r.v's,
$\mathbb{P}\left(\delta_{i}^{\prime}=1\right)=C p, \mathbb{P}\left(\delta_{i}^{\prime \prime}=1\right)=\frac{1}{C}$. By Jensen's inequality

$$
\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}=\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \delta_{i}^{\prime \prime} \geq \frac{1}{C} \mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}^{\prime}
$$

Denote $S=\sum_{i=1}^{n} \delta_{i}^{\prime}$ so that

$$
E \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \geq \sum_{m \geq C_{p n}} \mathbb{E}\left(\sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \mid S=m\right) \mathbb{P}(S=m)
$$

Since $n p \geq 1 / 2$, we may assume that $C n p$ is an integer and by N. Lord's result $\mathbb{P}(S \geq$ Cnp $) \geq 1 / 2$.

Proof - first step

Let $\left(\delta_{i}^{\prime}\right),\left(\delta_{i}^{\prime \prime}\right)$ be independent Bernoulli r.v's,
$\mathbb{P}\left(\delta_{i}^{\prime}=1\right)=C p, \mathbb{P}\left(\delta_{i}^{\prime \prime}=1\right)=\frac{1}{C}$. By Jensen's inequality

$$
\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}=\mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \delta_{i}^{\prime \prime} \geq \frac{1}{C} \mathbb{E} \sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}^{\prime}
$$

Denote $S=\sum_{i=1}^{n} \delta_{i}^{\prime}$ so that

$$
E \sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \geq \sum_{m \geq C p n} \mathbb{E}\left(\sup _{I \in \mathcal{F}} \sum_{i} \mu_{l}(i) \delta_{i}^{\prime} \mid S=m\right) \mathbb{P}(S=m) .
$$

Since $n p \geq 1 / 2$, we may assume that $C n p$ is an integer and by N. Lord's result $\mathbb{P}(S \geq C n p) \geq 1 / 2$.Goal: $\mathbb{E}\left(\sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}^{\prime} \mid S=m\right) \geq 0.1$ for $m \geq C n p$.

Key Lemma

Definition
 A set $X \subset[n]$ is bad if $\sup \mu_{l}(X \cap I)<1 / 2$. $I \in \mathcal{F}$

Key Lemma

Definition

A set $X \subset[n]$ is bad if $\sup \mu_{I}(X \cap I)<1 / 2$. $I \in \mathcal{F}$

By referring to X as a random set we mean $X=\left\{i \in[n]: \delta_{i}^{\prime}=1\right\} \subset[n]$.

Key Lemma

Definition

A set $X \subset[n]$ is bad if $\sup \mu_{l}(X \cap I)<1 / 2$.

$$
I \in \mathcal{F}^{\prime}
$$

By referring to X as a random set we mean $X=\left\{i \in[n]: \delta_{i}^{\prime}=1\right\} \subset[n]$.
Lemma (key lemma)
Let \mathcal{F} be not small p-small. Then for any $m \leq n$

$$
\mathbb{P}\left(X \text { is bad }||X|=m) \leq \sum_{k=1}^{n}\left(4 \frac{n p}{m}\right)^{k}\right.
$$

Key Lemma

Definition

A set $X \subset[n]$ is bad if $\sup \mu_{I}(X \cap I)<1 / 2$.

$$
I \in \mathcal{F}
$$

By referring to X as a random set we mean $X=\left\{i \in[n]: \delta_{i}^{\prime}=1\right\} \subset[n]$.

Lemma (key lemma)

Let \mathcal{F} be not small p-small. Then for any $m \leq n$

$$
\mathbb{P}\left(X \text { is bad }||X|=m) \leq \sum_{k=1}^{n}\left(4 \frac{n p}{m}\right)^{k}\right.
$$

Proof of the main Theorem, assuming key lemma:

$$
\begin{aligned}
& \mathbb{E}\left(2 \sup _{I \in \mathcal{F}} \sum_{i} \mu_{I}(i) \delta_{i}^{\prime} \mid S=m\right)=\mathbb{E}\left(2 \sup _{l \in \mathcal{F}} \mu_{I}(X \cap I) \mid S=m\right) \\
& \geq \mathbb{P}(X \operatorname{not} \operatorname{bad} \mid S=m) \stackrel{\text { key lemma }}{\geq} 1-\sum_{k=1}^{n}\left(4 \frac{n p}{m}\right)^{k} \stackrel{m \geq C n p}{\geq} \frac{1}{5} .
\end{aligned}
$$

Structure of a bad set

We write elements of $\mathcal{F} \ni I=\left(i_{1}, i_{2}, \ldots, i_{|| |}\right)$in such way that $\mu_{l}\left(i_{1}\right), \mu_{l}\left(i_{2}\right), \ldots$ is non-increasing. Define $I_{j}:=\left(i_{1}, \ldots, i_{j}\right)$. So $l_{j} \subset I$ consisting of j elements with largest $\mu_{l}(i)$.

Structure of a bad set

We write elements of $\mathcal{F} \ni I=\left(i_{1}, i_{2}, \ldots, i_{|| |}\right)$in such way that $\mu_{l}\left(i_{1}\right), \mu_{l}\left(i_{2}\right), \ldots$ is non-increasing. Define $l_{j}:=\left(i_{1}, \ldots, i_{j}\right)$. So $l_{j} \subset I$ consisting of j elements with largest $\mu_{l}(i)$.

Lemma (Bad sets intersects \mathcal{F} sparsely)

Fix $X \subset[n]$ a bad set. Then for any $I \in \mathcal{F}$ there exists $j=j(I, X)$ such that $\left|\ell_{j} \cap X\right|<\frac{1}{2}\left|\iota_{j}\right|$.

Structure of a bad set

We write elements of $\mathcal{F} \ni I=\left(i_{1}, i_{2}, \ldots, i_{|| |}\right)$in such way that $\mu_{l}\left(i_{1}\right), \mu_{l}\left(i_{2}\right), \ldots$ is non-increasing. Define $l_{j}:=\left(i_{1}, \ldots, i_{j}\right)$. So $l_{j} \subset I$ consisting of j elements with largest $\mu_{l}(i)$.

Lemma (Bad sets intersects \mathcal{F} sparsely)

Fix $X \subset[n]$ a bad set. Then for any $I \in \mathcal{F}$ there exists $j=j(I, X)$ such that $\left|\ell_{j} \cap X\right|<\frac{1}{2}\left|\iota_{j}\right|$.

Proof: Fix $I \in \mathcal{F}$. For $\varepsilon \in[0,1]$ we define

$$
f(\varepsilon)=\sum_{i \in \operatorname{In} X} \mu_{I}(i) \wedge \varepsilon-\frac{1}{2} \sum_{i \in I} \mu_{I}(i) \wedge \varepsilon
$$

Structure of a bad set

We write elements of $\mathcal{F} \ni I=\left(i_{1}, i_{2}, \ldots, i_{|| |}\right)$in such way that $\mu_{l}\left(i_{1}\right), \mu_{l}\left(i_{2}\right), \ldots$ is non-increasing. Define $I_{j}:=\left(i_{1}, \ldots, i_{j}\right)$. So $I_{j} \subset I$ consisting of j elements with largest $\mu_{l}(i)$.

Lemma (Bad sets intersects \mathcal{F} sparsely)

Fix $X \subset[n]$ a bad set. Then for any $I \in \mathcal{F}$ there exists $j=j(I, X)$ such that $\left|\ell_{j} \cap X\right|<\frac{1}{2}\left|\iota_{j}\right|$.

Proof: Fix $I \in \mathcal{F}$. For $\varepsilon \in[0,1]$ we define

$$
f(\varepsilon)=\sum_{i \in I \cap X} \mu_{l}(i) \wedge \varepsilon-\frac{1}{2} \sum_{i \in I} \mu_{I}(i) \wedge \varepsilon
$$

f is continuous, $f(1)<0(X$ is bad), $f(0)=0$. So exists largest $\varepsilon(I, X) \in[0,1]$ such that $f(\varepsilon(I, X)) \geq 0$ and $f(x)<0$ for $x>\varepsilon(I, X)$.

Structure of a bad set

$$
\begin{equation*}
\sum_{i \in I \cap x} \mu_{l}(i) \wedge \varepsilon(I, X) \geq \frac{1}{2} \sum_{i \in I} \mu_{l}(i) \wedge \varepsilon(I, X) \quad(\text { since } f(\varepsilon(I, X)) \geq 0), \tag{3}
\end{equation*}
$$

Structure of a bad set

$$
\begin{equation*}
\sum_{i \in \cap \cap X} \mu_{l}(i) \wedge \varepsilon(I, X) \geq \frac{1}{2} \sum_{i \in I} \mu_{l}(i) \wedge \varepsilon(I, X) \quad(\text { since } f(\varepsilon(I, X)) \geq 0) \tag{3}
\end{equation*}
$$

For $x>\varepsilon(I, X)$ reverse inequality holds i.e.

$$
\begin{equation*}
\sum_{i \in \operatorname{In} X} \mu_{I}(i) \wedge(\varepsilon(I, X)+\delta)<\frac{1}{2} \sum_{i \in I} \mu_{I}(i) \wedge(\varepsilon(I, X)+\delta) \tag{4}
\end{equation*}
$$

Structure of a bad set

$$
\begin{equation*}
\sum_{i \in I \cap X} \mu_{l}(i) \wedge \varepsilon(I, X) \geq \frac{1}{2} \sum_{i \in I} \mu_{l}(i) \wedge \varepsilon(I, X) \quad(\text { since } f(\varepsilon(I, X)) \geq 0), \tag{3}
\end{equation*}
$$

For $x>\varepsilon(I, X)$ reverse inequality holds i.e.

$$
\begin{equation*}
\sum_{i \in \operatorname{In} X} \mu_{I}(i) \wedge(\varepsilon(I, X)+\delta)<\frac{1}{2} \sum_{i \in I} \mu_{I}(i) \wedge(\varepsilon(I, X)+\delta) \tag{4}
\end{equation*}
$$

If $\delta>0$ is sufficiently small

$$
\sum_{i \in I} \mu_{l}(i) \wedge(\varepsilon(I, X)+\delta)=\sum_{i \in I} \mu_{I}(i) \wedge \varepsilon(I, X)+\delta \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}
$$

and the same hold for I replaced by $I \cap X$.

Structure of a bad set

$$
\begin{equation*}
\sum_{i \in \operatorname{In} X} \mu_{I}(i) \wedge \varepsilon(I, X) \geq \frac{1}{2} \sum_{i \in I} \mu_{I}(i) \wedge \varepsilon(I, X) \quad(\text { since } f(\varepsilon(I, X)) \geq 0), \tag{3}
\end{equation*}
$$

For $x>\varepsilon(I, X)$ reverse inequality holds i.e.

$$
\begin{equation*}
\sum_{i \in \ln X} \mu_{I}(i) \wedge(\varepsilon(I, X)+\delta)<\frac{1}{2} \sum_{i \in 1} \mu_{l}(i) \wedge(\varepsilon(I, X)+\delta) . \tag{4}
\end{equation*}
$$

If $\delta>0$ is sufficiently small

$$
\sum_{i \in I} \mu_{l}(i) \wedge(\varepsilon(I, X)+\delta)=\sum_{i \in I} \mu_{I}(i) \wedge \varepsilon(I, X)+\delta \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}
$$

and the same hold for I replaced by $I \cap X$.Substituting this to (4) and using (3) gives

$$
\sum_{i \in I \cap X} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}<\frac{1}{2} \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}
$$

Witnesses

Since $\sum_{i \in \cap \cap X} \mathbf{1}_{\mu_{1}(i)>\varepsilon \varepsilon(I, X)}<\frac{1}{2} \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}$, we take
$\tilde{I}:=\left\{i \in I: \mu_{l}(i)>\varepsilon(I, X)\right\}$ and $j(I, X):=|\tilde{I}|$. The results follows, since $I_{j(I, X)}=\tilde{I}$.

Witnesses

Since $\sum_{i \in \cap \cap X} \mathbf{1}_{\mu_{1}(i)>\varepsilon \varepsilon(I, X)}<\frac{1}{2} \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}$, we take
$\tilde{I}:=\left\{i \in I: \mu_{l}(i)>\varepsilon(I, X)\right\}$ and $j(I, X):=|\tilde{\eta}|$. The results follows, since $I_{j(1, X)}=\tilde{I}$.
To remember: Set $I_{j(I, X)}$ consists of elements of I for which coefficient $\mu_{l}(i)$ exceeds certain level.

Witnesses

Since $\sum_{i \in I \cap X} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}<\frac{1}{2} \sum_{i \in I} \mathbf{1}_{\mu_{l}(i)>\varepsilon(I, X)}$, we take
$\tilde{I}:=\left\{i \in I: \mu_{I}(i)>\varepsilon(I, X)\right\}$ and $j(I, X):=|\tilde{I}|$. The results follows, since $I_{j(I, X)}=\tilde{l}$.
To remember: Set $I_{j(I, X)}$ consists of elements of I for which coefficient $\mu_{l}(i)$ exceeds certain level.

Definition (Pivotal definition)

Fix bad set $X \subset[n]$. To each $I \in \mathcal{F}$ we associate number $j(I, X)$ from the previous lemma. Fix $I \in \mathcal{F}$. Among all $I^{\prime} \in \mathcal{F}$ such that $I_{j\left(l^{\prime}, X\right)}^{\prime} \backslash X \subset I \backslash X$ we chose the ones for which $j\left(I^{\prime}, X\right)$ is smallest. Among the latter we pick any I^{\prime} such that $I_{j\left(I^{\prime}, X\right)}^{\prime} \backslash X$ has a minimal number of elements. We define (I, X) witness as

$$
W(I, X):=I_{j\left(I^{\prime}, X\right)}^{\prime}
$$

Remark: Park and Pham used $I_{j\left(I^{\prime}, X\right)}^{\prime} \backslash X$ rather than $W(I, X)$.

The cover

Definition

The cover of \mathcal{F} is given by $\mathcal{G}(X)=\{W(I, X) \backslash X: I \in \mathcal{F}\}$. It is a cover since for any $I \in \mathcal{F}, W(I, X) \backslash X \subset I$.

The cover

Definition

The cover of \mathcal{F} is given by $\mathcal{G}(X)=\{W(I, X) \backslash X: I \in \mathcal{F}\}$. It is a cover since for any $I \in \mathcal{F}, W(I, X) \backslash X \subset I$.

Plan: \mathcal{F} is not $p-$ small so $\sum_{G \in \mathcal{G}(X)} p^{|G|} \geq 1 / 2$ and as a result
$\mathbb{P}\left(X\right.$ is bad $||X|=m)\binom{n}{m}=\sum_{\substack{X \text { is bad } \\|X|=m}} 1 \leq 2 \sum_{\substack{X \text { is bad } \\|X|=m}} \sum_{G \in \mathcal{G}(X)} p^{|G|}$

The cover

Definition

The cover of \mathcal{F} is given by $\mathcal{G}(X)=\{W(I, X) \backslash X: I \in \mathcal{F}\}$. It is a cover since for any $I \in \mathcal{F}, W(I, X) \backslash X \subset I$.

Plan: \mathcal{F} is not p-small so $\sum_{G \in \mathcal{G}(X)} p^{|G|} \geq 1 / 2$ and as a result

$$
\mathbb{P}\left(X \text { is bad }||X|=m)\binom{n}{m}=\sum_{\substack{X \text { is bad } \\|X|=m}} 1 \leq 2 \sum_{\substack{X \text { is bad } \\|X|=m}} \sum_{G \in \mathcal{G}(X)} p^{|G|}\right.
$$

Questions:

(1) How to control the above sum?
(2) Can we somehow "parameterize" pairs (G, X) ?

Properties of bad sets

Lemma

Let X, Y be bad sets, $I, J \in \mathcal{F}$. Let $I_{j}^{\prime}=W(I, X), J_{k}^{\prime}=W(J, Y)$. Assume that

$$
\text { 1) } \left.j:=j\left(I^{\prime}, X\right)=j\left(J^{\prime}, Y\right) 2\right) Z:=I_{j}^{\prime} \cup X=J_{j}^{\prime} \cup Y \text { 3) } t:=\left|I_{j}^{\prime} \backslash X\right|=\left|J_{j}^{\prime} \backslash Y\right| .
$$

Then

$$
\begin{equation*}
\sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) \geq \frac{1}{2} \sum_{i \in I^{\prime}} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) \tag{5}
\end{equation*}
$$

where $\varepsilon(\cdot, \cdot)$ is the proper threshold from the key lemma.

Properties of bad sets

Lemma

Let X, Y be bad sets, $I, J \in \mathcal{F}$. Let $I_{j}^{\prime}=W(I, X), J_{k}^{\prime}=W(J, Y)$. Assume that

1) $\left.j:=j\left(I^{\prime}, X\right)=j\left(J^{\prime}, Y\right) 2\right) Z:=I_{j}^{\prime} \cup X=J_{j}^{\prime} \cup Y$ 3) $t:=\left|I_{j}^{\prime} \backslash X\right|=\left|J_{j}^{\prime} \backslash Y\right|$.

Then

$$
\begin{equation*}
\sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) \geq \frac{1}{2} \sum_{i \in I^{\prime}} \mu_{\prime^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) \tag{5}
\end{equation*}
$$

where $\varepsilon(\cdot, \cdot)$ is the proper threshold from the key lemma.
(1) By the definition $\varepsilon\left(I^{\prime}, Y\right)$ is the greatest number for which (5) holds. Thus, $\varepsilon\left(I^{\prime}, Y\right) \geq \varepsilon\left(I^{\prime}, X\right)$. This is a key consequence of the above lemma.
(2) In fact under the above assumptions, $W(I, X) \backslash Y=W(J, Y) \backslash Y$.

Proof of Lemma

$$
\sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right) \subset \cap} \mu_{\prime^{\prime}}(i)+\sum_{i \in I_{j}^{\prime \cap Y}} \varepsilon\left(I^{\prime}, X\right)
$$

Proof of Lemma

$$
\begin{aligned}
& \sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right) \subset Y} \mu_{I^{\prime}}(i)+\sum_{i \in I_{j}^{\prime} \cap Y} \varepsilon\left(I^{\prime}, X\right) \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(l_{j}^{\prime}\right)^{c} \cap(Z \backslash Y)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left|I_{j}^{\prime} \cap Y\right|
\end{aligned}
$$

Proof of Lemma

$$
\begin{array}{r}
\sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right) \subset \cap Y} \mu_{I^{\prime}}(i)+\sum_{i \in I_{j}^{\prime} \cap Y} \varepsilon\left(I^{\prime}, X\right) \\
=\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap(Z \backslash Y)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left|I_{j}^{\prime} \cap Y\right| \\
=\sum_{i \in\left(I_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right) \subset\left(J_{j}^{\prime} \backslash Y\right)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(\left|I_{j}^{\prime} \cap Z\right|-\left|I_{j}^{\prime} \cap(Z \backslash Y)\right|\right)
\end{array}
$$

Proof of Lemma

$$
\begin{aligned}
& \sum_{i \in I^{\prime} \cap \gamma} \mu_{\mu}(i) \wedge \varepsilon\left(l^{\prime}, X\right)=\sum_{i \in\left(l_{j}\right) \in \cap \gamma} \mu_{\mu}(i)+\sum_{i \in l_{j} \cap \gamma} \varepsilon\left(l^{\prime}, X\right) \\
& =\sum_{i \in\left(Y^{\prime}\right) \cap \cap Z} \mu_{\mu}(i)-\sum_{i \in\left(l_{j}\right) \cap(Z \backslash Y)} \mu_{r}(i)+\varepsilon\left(l^{\prime}, X\right)\left|r_{j}^{\prime} \cap Y\right| \\
& =\sum_{i \in\left(y_{j}\right)^{\cap} \cap Z} \mu_{r}(i)-\sum_{i \in\left(l_{j}\right) \cap\left(J_{j}^{\prime} \backslash Y\right)} \mu_{r}(i)+\varepsilon\left(I^{\prime}, X\right)\left(\left|I_{j}^{\prime} \cap Z\right|-\left|\left.\right|_{j} ^{\prime} \cap(Z \backslash Y)\right|\right) \\
& =\sum_{i \in\left(l_{j}\right) \cap Z} \mu_{l}(i)-\sum_{\left.i \in\left(l_{j}^{\prime}\right)^{\circ} \cap\left(\mu_{j}^{\prime} \backslash l^{\prime}\right) \backslash Y\right)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(l^{\prime}, X\right)\left(j-\left|l_{j}^{\prime} \cap\left(J_{j}^{\prime} \backslash Y\right)\right|\right)
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
& \sum_{i \in I^{\prime} \cap Y} \mu_{\prime^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right) \subset \cap} \mu_{I^{\prime}}(i)+\sum_{i \in I_{j}^{\prime} \cap Y} \varepsilon\left(I^{\prime}, X\right) \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{\subset \cap} \cap(Z \backslash Y)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left|I_{j}^{\prime} \cap Y\right| \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{\wedge} \cap Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right) \subset\left(J_{j}^{\prime} \backslash Y\right)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(\left|I_{j}^{\prime} \cap Z\right|-\left|I_{j}^{\prime} \cap(Z \backslash Y)\right|\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right) \cap \cap\left(\left(J_{j}^{\prime} \backslash l_{j}^{\prime}\right) \backslash Y\right)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-\left|I_{j}^{\prime} \cap\left(J_{j}^{\prime} \backslash Y\right)\right|\right) \\
& =\sum_{i \in\left(I_{j}^{\prime}\right) \subset \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right) \subset \cap \underline{\left(\left(J_{j}^{\prime} \backslash l_{j}^{\prime}\right) \backslash Y\right)}} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-t+\underline{\left|\left(J_{j}^{\prime} \backslash I_{j}^{\prime}\right) \backslash Y\right|}\right)
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
& \sum_{i \in I^{\prime} \cap Y} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right)^{\wedge} \cap Y} \mu_{I^{\prime}}(i)+\sum_{i \in I_{j}^{\prime} \cap Y} \varepsilon\left(I^{\prime}, X\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(l_{j}^{\prime}\right)^{c} \cap(Z \backslash Y)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left|I_{j}^{\prime} \cap Y\right| \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{\wedge} \cap Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap\left(J_{j}^{\prime} \backslash Y\right)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(\left|I_{j}^{\prime} \cap Z\right|-\left|I_{j}^{\prime} \cap(Z \backslash Y)\right|\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right) \cap \cap\left(\left(J_{j}^{\prime} \backslash l_{j}^{\prime}\right) \backslash Y\right)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-\left|I_{j}^{\prime} \cap\left(J_{j}^{\prime} \backslash Y\right)\right|\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{\wedge} \cap \underline{\left(\left(J_{j}^{\prime} \backslash l_{j}^{\prime}\right) \backslash Y\right)}} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-t+\underline{\left|\left(J_{j}^{\prime} \backslash I_{j}^{\prime}\right) \backslash Y\right|}\right) \\
& \geq \sum_{i \in\left(I_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)(j-t)=\sum_{i \in I^{\prime} \cap X} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right)
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
& \sum_{i \in I^{\prime} \cap Y} \mu I^{\prime}(i) \wedge \varepsilon\left(I^{\prime}, X\right)=\sum_{i \in\left(I_{j}^{\prime}\right) \subset Y} \mu_{I^{\prime}}(i)+\sum_{i \in I_{j}^{\prime} \cap Y} \varepsilon\left(I^{\prime}, X\right) \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap(Z \backslash Y)} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left|I_{j}^{\prime} \cap Y\right| \\
& =\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap\left(J_{j}^{\prime} \backslash Y\right)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(\left|I_{j}^{\prime} \cap Z\right|-\left|I_{j}^{\prime} \cap(Z \backslash Y)\right|\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{c} \cap\left(\left(J_{j}^{\prime} \backslash \prime_{j}^{\prime}\right) \backslash Y\right)} \mu_{\prime^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-\left|I_{j}^{\prime} \cap\left(J_{j}^{\prime} \backslash Y\right)\right|\right) \\
& =\sum_{i \in\left(l_{j}^{\prime}\right)^{c} \cap Z} \mu_{\prime^{\prime}}(i)-\sum_{i \in\left(I_{j}^{\prime}\right)^{\wedge} \cap \underline{\left(\left(J_{j}^{\prime} \backslash l_{j}^{\prime}\right) \backslash Y\right)}} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)\left(j-t+\underline{\left|\left(J_{j}^{\prime} \backslash I_{j}^{\prime}\right) \backslash Y\right|}\right) \\
& \geq \sum_{i \in\left(I_{j}^{\prime}\right) \subset Z} \mu_{I^{\prime}}(i)+\varepsilon\left(I^{\prime}, X\right)(j-t)=\sum_{i \in I^{\prime} \cap X} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) \\
& \geq \frac{1}{2} \sum_{i \in I^{\prime}} \mu_{I^{\prime}}(i) \wedge \varepsilon\left(I^{\prime}, X\right) . \text { We used that on }\left(I_{j}^{\prime}\right)^{c}, \mu_{\prime^{\prime}}(i) \leq \varepsilon\left(I^{\prime}, X\right) \text {. }
\end{aligned}
$$

Structure of bad sets

Lemma

Under the assumption of the previous lemma, we have $W(I, X) \backslash Y=W(J, Y) \backslash Y$.

Structure of bad sets

Lemma

Under the assumption of the previous lemma, we have $W(I, X) \backslash Y=W(J, Y) \backslash Y$.

As before let $I_{j}^{\prime}=W(I, X), J_{j}^{\prime}=W(J, Y)$.

$$
\begin{equation*}
I_{j}^{\prime} \backslash Y \subset\left(I_{j}^{\prime} \cup X\right) \backslash Y=\left(J_{j}^{\prime} \cup Y\right) \backslash Y=J_{j}^{\prime} \backslash Y \subset J \backslash Y \tag{6}
\end{equation*}
$$

Structure of bad sets

Lemma

Under the assumption of the previous lemma, we have $W(I, X) \backslash Y=W(J, Y) \backslash Y$.

As before let $I_{j}^{\prime}=W(I, X), J_{j}^{\prime}=W(J, Y)$.

$$
\begin{equation*}
I_{j}^{\prime} \backslash Y \subset\left(I_{j}^{\prime} \cup X\right) \backslash Y=\left(J_{j}^{\prime} \cup Y\right) \backslash Y=J_{j}^{\prime} \backslash Y \subset J \backslash Y \tag{6}
\end{equation*}
$$

By the construction, we must have $j_{0}:=j\left(I^{\prime}, Y\right) \geq j$, otwerwise

$$
I_{j_{0}}^{\prime} \backslash Y \subset I_{j}^{\prime} \backslash Y \subset J \backslash Y, \text { and } J_{j}^{\prime} \text { was not optimal for } Y, J .
$$

Structure of bad sets

Lemma

Under the assumption of the previous lemma, we have $W(I, X) \backslash Y=W(J, Y) \backslash Y$.

As before let $I_{j}^{\prime}=W(I, X), J_{j}^{\prime}=W(J, Y)$.

$$
\begin{equation*}
I_{j}^{\prime} \backslash Y \subset\left(I_{j}^{\prime} \cup X\right) \backslash Y=\left(J_{j}^{\prime} \cup Y\right) \backslash Y=J_{j}^{\prime} \backslash Y \subset J \backslash Y \tag{6}
\end{equation*}
$$

By the construction, we must have $j_{0}:=j\left(I^{\prime}, Y\right) \geq j$, otwerwise

$$
I_{j_{0}}^{\prime} \backslash Y \subset I_{j}^{\prime} \backslash Y \subset J \backslash Y, \text { and } J_{j}^{\prime} \text { was not optimal for } Y, J .
$$

Assume $j_{0}=j\left(I^{\prime}, Y\right)>j=j\left(I^{\prime}, X\right)$. Thus,

$$
I_{j}^{\prime}=\left\{i \in I^{\prime}: \mu_{\prime^{\prime}}(i) \geq \varepsilon\left(I^{\prime}, X\right)\right\} \subsetneq I_{j_{0}}^{\prime}=\left\{i \in I^{\prime}: \mu_{\prime^{\prime}}(i) \geq \varepsilon\left(I^{\prime}, Y\right)\right\}
$$

so $\varepsilon\left(I^{\prime}, Y\right)<\varepsilon\left(I^{\prime}, X\right)$. This contradicts the previous lemma, so $j_{0}=j$. So by construction $\left|I_{j}^{\prime} \backslash Y\right| \geq\left|J_{j}^{\prime} \backslash Y\right|$ and since (6) the assertion follows.

Parametrization of bad sets

Corollary

Fix m, t and $Z \subset[n]$, where $|Z|=m+t$. Fix bad set $X \subset[n],|X|=m$. For any $t \leq j \leq n$ there are at most $\binom{j}{t}$ sets of the form $W(I, X) \backslash X$ where $I \in \mathcal{F},|W(I, X)|=j, Z=W(I, X) \cup X,|W(I, X) \backslash X|=t$.

Parametrization of bad sets

Corollary

Fix m, t and $Z \subset[n]$, where $|Z|=m+t$. Fix bad set $X \subset[n],|X|=m$. For any $t \leq j \leq n$ there are at most $\binom{j}{t}$ sets of the form $W(I, X) \backslash X$ where $I \in \mathcal{F},|W(I, X)|=j, Z=W(I, X) \cup X,|W(I, X) \backslash X|=t$.

Proof: Fix any X, I satisfying conditions in the corollary. Take any other pair Y, J which also satisfies the same conditions.

Parametrization of bad sets

Corollary

Fix m, t and $Z \subset[n]$, where $|Z|=m+t$. Fix bad set $X \subset[n],|X|=m$. For any $t \leq j \leq n$ there are at most $\binom{j}{t}$ sets of the form $W(I, X) \backslash X$ where $I \in \mathcal{F},|W(I, X)|=j, Z=W(I, X) \cup X,|W(I, X) \backslash X|=t$.

Proof: Fix any X, I satisfying conditions in the corollary. Take any other pair Y, J which also satisfies the same conditions. By previous lemma, $W(Y, J) \backslash Y \subset W(X, I)$ (since $W(Y, J) \backslash Y=W(X, I) \backslash X)$. Cardinality of $W(X, I)=j$ so there are at most $\binom{j}{t}$ choices for $W(Y, J) \backslash Y$.

Parametrization of bad sets

Corollary

Fix m, t and $Z \subset[n]$, where $|Z|=m+t$. Fix bad set $X \subset[n],|X|=m$. For any $t \leq j \leq n$ there are at most $\binom{j}{t}$ sets of the form $W(I, X) \backslash X$ where $I \in \mathcal{F},|W(I, X)|=j, Z=W(I, X) \cup X,|W(I, X) \backslash X|=t$.

Proof: Fix any X, I satisfying conditions in the corollary. Take any other pair Y, J which also satisfies the same conditions. By previous lemma, $W(Y, J) \backslash Y \subset W(X, I)$ (since $W(Y, J) \backslash Y=W(X, I) \backslash X)$. Cardinality of $W(X, I)=j$ so there are at most $\binom{j}{t}$ choices for $W(Y, J) \backslash Y$.

Remark

X is bad so by one of the previous lemma
$j=|W(I, X)|=|W(I, X) \cap X|+|W(I, X) \backslash X| \leq \frac{1}{2} j+t$, so $t \geq \frac{1}{2} j$.

Proof of the key lemma

Goal: upper bound $\mathbb{P}(X$ is bad $||X|=m)$.

Proof of the key lemma

Goal: upper bound $\mathbb{P}(X$ is bad $||X|=m)$.
Reminder: $\mathbb{P}\left(X\right.$ is bad $||X|=m)\binom{n}{m} \leq 2 \sum_{|X|=m, \text { bad }} \sum_{G \in \mathcal{G}(X)} p^{|G|}$.

Proof of the key lemma

Goal: upper bound $\mathbb{P}(X$ is bad $||X|=m)$.
Reminder: $\mathbb{P}\left(X\right.$ is bad $||X|=m)\binom{n}{m} \leq 2 \sum_{|X|=m, \text { bad }} \sum_{G \in \mathcal{G}(X)} p^{|G|}$.
The last hard thing to understand:

$$
\begin{aligned}
& \sum_{|X|=m, \operatorname{bad}} \sum_{G \in \mathcal{G}(X)} p^{|G|} \\
& \quad=\sum_{j \geq 1} \sum_{j / 2 \leq t \leq j} \sum_{\substack{Z \subset[n] \\
|Z|=m+t}} p^{t} \mid\{\underbrace{W(I, X) \backslash X}_{=G \text { element from } \mathcal{G}(X)}: \\
& \quad Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\} \mid
\end{aligned}
$$

Proof of the key lemma

Goal: upper bound $\mathbb{P}(X$ is bad $||X|=m)$.
Reminder: $\mathbb{P}\left(X\right.$ is bad $||X|=m)\binom{n}{m} \leq 2 \sum_{|X|=m, \text { bad }} \sum_{G \in \mathcal{G}(X)} p^{|G|}$.
The last hard thing to understand:

$$
\begin{aligned}
& \sum_{|X|=m, \operatorname{bad}} \sum_{G \in \mathcal{G}(X)} p^{|G|} \\
& =\sum_{j \geq 1} \sum_{j / 2 \leq t \leq j} \sum_{\substack{Z \subset[n] \\
|Z|=m+t}} p^{t} \mid\{\underbrace{W(I, X) \backslash X}_{=G \text { element from } \mathcal{G}(X)}: \\
& \quad Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\} \mid
\end{aligned}
$$

(1) We parameterise pairs (X, G) by $X \cup G ;|G|, ;|G \backslash X|$.
(2) The previous Corollary gives upper bound for the cardinality of the set in the above formula.

Proof of the key lemma

The assertion of our Corollary states that
$|\{W(I, X) \backslash X: Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\}| \leq\binom{ j}{t}$.

Proof of the key lemma

The assertion of our Corollary states that

$$
\begin{gathered}
|\{W(I, X) \backslash X: Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\}| \leq\binom{ j}{t} . \\
\frac{1}{2} \mathbb{P}\left(X \text { is bad }||X|=m)\binom{n}{m} \leq \sum_{|X|=m, \text { bad }} \sum_{G \in \mathcal{G}(X)} p^{|G|}\right.
\end{gathered}
$$

Proof of the key lemma

The assertion of our Corollary states that

$$
\begin{gathered}
|\{W(I, X) \backslash X: Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\}| \leq\binom{ j}{t} \\
\frac{1}{2} \mathbb{P}\left(X \text { is bad }||X|=m)\binom{n}{m} \leq \sum_{|X|=m, \operatorname{bad}} \sum_{G \in \mathcal{G}(X)} p^{|G|}\right. \\
\leq \sum_{j \geq 1} \sum_{j / 2 \leq t \leq j} \sum_{|Z|=m+t} p^{t}\binom{j}{t}
\end{gathered}
$$

Proof of the key lemma

The assertion of our Corollary states that

$$
\begin{aligned}
& |\{W(I, X) \backslash X: Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\}| \leq\binom{ j}{t} . \\
& \frac{1}{2} \mathbb{P}\left(X \text { is } \operatorname{bad}||X|=m)\binom{n}{m} \leq \sum_{|X|=m, \operatorname{bad}} \sum_{G \in \mathcal{G}(X)} p^{|G|}\right. \\
& \leq \sum_{j \geq 1} \sum_{j / 2 \leq t \leq j} \sum_{|Z|=m+t} p^{t}\binom{j}{t} \\
& =\sum_{t=1}^{n} \sum_{j=t}^{2 t}\binom{j}{t}\binom{n}{m+t} p^{t}=\sum_{t=1}^{n}\binom{n}{m+t} p^{t} \sum_{j=t}^{2 t}\binom{j}{t}
\end{aligned}
$$

Proof of the key lemma

The assertion of our Corollary states that

$$
\begin{gathered}
|\{W(I, X) \backslash X: Z=W(I, X) \cup X,|W(I, X)|=j,|W(I, X) \backslash X|=t\}| \leq\binom{ j}{t} \\
\frac{1}{2} \mathbb{P}\left(X \text { is bad }||X|=m)\binom{n}{m} \leq \sum_{|X|=m, \text { bad }} \sum_{G \in \mathcal{G}(X)} p^{|G|}\right. \\
\leq \sum_{j \geq 1} \sum_{j / 2 \leq t \leq j} \sum_{|Z|=m+t} p^{t}\binom{j}{t} \\
=\sum_{t=1}^{n} \sum_{j=t}^{2 t}\binom{j}{t}\binom{n}{m+t} p^{t}=\sum_{t=1}^{n}\binom{n}{m+t} p^{t} \sum_{j=t}^{2 t}\binom{j}{t}
\end{gathered}
$$

$$
=\sum_{t=1}^{n}\binom{n}{m+t} p^{t}\binom{2 t+1}{t+1} \leq \sum_{t=1}^{n}\binom{n}{m+t}(4 p)^{t} \leq \sum_{t=1}^{n}\left(4 \frac{n p}{m}\right)^{t}\binom{n}{m}
$$

since $\binom{n}{m+t} \leq\left(\frac{n}{m}\right)^{t}\binom{n}{m}$.

Further results and questions

Theorem (Park, Pham; different proof Bednorz, Martynek, Meller)

(E, ρ) a metric space, fix $d \in \mathbb{N}$. Let X_{1}, \ldots, X_{d} be i.i.d with values in E with distribution μ. Assume μ has no atoms. Let T be a finite class of nonnegative Borel measurable functions on E. Then there exists a family \mathcal{F} of pairs (g, u) where each $g: E \rightarrow \mathbb{R}_{+}$is μ-measurable and $u \geq 0$ such that

$$
\begin{gathered}
\left\{\sup _{t \in T} \sum_{i=1}^{d} t\left(X_{i}\right) \geq K \mathbb{E} \sup _{t \in T} \sum_{i=1}^{d} t\left(X_{i}\right)\right\} \subset \bigcup_{(g, u) \in \mathcal{F}}\left\{\frac{1}{d} \sum_{i=1}^{d} g\left(X_{i}\right) \geq u\right\} \\
\sum_{(g, u) \in \mathcal{F}} \mathbb{P}\left(\frac{1}{d} \sum_{i=1}^{d} g\left(X_{i}\right) \geq u\right) \leq \frac{1}{2}
\end{gathered}
$$

Questions: Can T be infinite? What for not i.i.d variables?
We know: We can skip the assumptions about atoms. Also similar result for invinitely divisable processes.

