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It's hard to describe exact size of IE sup X; when the process is "small".
teT
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Fact (Talagrand)
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Conjecture (Talagrand ~ 2010)

Is generalization of the above statement true for selector process?
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Theorem (Park, Pham 2022)

There exists constant L such that for any T C (R)", there exists family
G of subsets of [n] such that

{supz ti0; > L6(T)} C U {6i=1 forieS} (1)

teT Seg
ZIP’é;:lforiES):Zp|5|§1/2. (2)
Seg Seg

v

The Theorem is obvious for p > ¢ > 0 since

supZt,cS <supt,—p lsupEZ
teT teT 5
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collection G of [n] such that

Fc@ = =U{lc{,....np:scn, Y pl<iye,

Seg Seg SeG

(S) = all subsets of [n] that contains S. P((S)) = p!°l. Examples:

n

0 2l = U (k) U®. If np <1/2 than any familly is small.
k=1

e F = all subsets of [n] with cardinality > k + 1. Then

FclUme Y ..

[l|=k |l|=k—1

.y n .
< .
If minp </> < '1/2 then F is small
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Refomulation of Theorem

The following is equivalent to the Theorem formulated on the previous
slides.

Let F be a family of subsets of [n], which is not p-small and with each
I € F we have an associated probabilistic measure ; on [n], w,(I) = 1.

Then Esup Zﬂl(i)5

IeF 45 "= 220°

@ We may assume that np > 1/2

@ Improvement over trivial argument for small p

Esupz,u/(i)é,- > supEZ,u,(i)é,- =p.
IeF e IeF el
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P(6i =1) = Cp, P(§/ =1) = By Jensen’s inequality
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1eF 5

n
Denote S = Z 5 so that
i=1

Esupz,u, )6k > Z E(supz;u 5|5—m> P(S = m).
m>Cpn
Since np > 1/2, we may assume that Cnp is an integer and by N. Lord's
result P(S > Cnp) > 1/2.Goal: E (supZu,(i)df | S = m) > 0.1 for
1eF 5

m > Cnp.
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Definition
A set X C [n] is bad if sup p(XN1) <1/2.
leF

By referring to X as a random set we mean X = {i € [n] : §; = 1} C [n].

Lemma (key lemma)

Let F be not small p-small. Then for any m < n

P(X is bad | |X] = m) < Z (4”p>k
r=AN VA

Proof of the main Theorem, assuming key lemma:

E (25upZul(i)5§ | S = m) =E <2sup,u,(Xﬂ Nis= m)
IeF < IeF

key lemma n k m>Cnp 1
>P(Xnotbad|S=m) > 1—2(4”") > 2
o\ m 5
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We write elements of 7 > [ = (i1, i2,..., i) in such way that
pi(i), pi(i2), . . . is non-increasing. Define Ij := (i1,...,i;). So [ C I
consisting of j elements with largest (7).

Lemma (Bad sets intersects F sparsely)

Fix X C [n] a bad set. Then for any | € F there exists j = j(I, X) such
1
that |, N X| < 5y/j|.

Proof: Fix | € F. For ¢ € [0, 1] we define
, 1 ,
f(e) = Z (i) Ne — 5 Z,u/(l) Ne.
ielnX icl

f is continuous, (1) < 0 (X is bad), f(0) = 0. So exists largest
(1, X) € [0,1] such that f(e(/,X)) > 0 and f(x) < 0 for x > (I, X).
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Structure of a bad set

Z wi(i) Ae(l, X) Z,u/ YA e(l,X) (since f(e(/,X)) >0), (3)
ielnX IEI

For x > (I, X) reverse inequality holds i.e.
> i) A1, X) +6) < Zu, e(l, X) + ). (4)
ielnX Iel
If § > 0 is sufficiently small
S (i) A (LX) +6) =D () Ae(L,X) + 6> 1 )>e(1.x)>
icl iel iel

and the same hold for / replaced by / N X.Substituting this to (4) and
using (3) gives

> Lu(sex0 < 5 S L
iel

ielnX
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Witnesses

Since Z 1, 6y>e0.x) < 5 Zlm (i)><(1,x), We take

ielnX IEI
T:={iel:u(i)>e(l,X)}and j(I,X) = |I]. The results follows, since
lix) =1 0
To remember: Set /;; x) consists of elements of | for which coefficient
(i) exceeds certain level.

Definition (Pivotal definition)

Fix bad set X C [n]. To each | € F we associate number j(I, X) from the
previous lemma. Fix | € F. Among all I' € F such that [}, 1\ X C I\ X
we chose the ones for which j(I', X) is smallest. Among the latter we pick
any I" such that I} sy \ X has a minimal number of elements. We define
(1, X) witness as

W(I,X) = j(//7x).

Remark: Park and Pham used / (r.x) \ X rather than W(/, X).
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The cover

Definition

The cover of F is given by G(X) = {W(I,X)\ X : | € F}. It is a cover
since for any | € F, W(I,X)\ X C I.

Plan: F is not p—small so Z plG| > 1/2 and as a result
Geg(X)

P(X is bad ]|X\:m)<n> - Y 1<2 3 % pe

ad X is bad Geg(X)
m |X|=
Questions:

@ How to control the above sum?

@ Can we somehow "parameterize" pairs (G, X)?
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Let X,Y be bad sets, I,J € F. Let I = W(I,X), Jy = W(J,Y). Assume
that

1)) :=j(I,X) = j(J,Y) 2)Z = LUX = JJUY 3)t := [\ X| =[S\ Y].

Then
> ur(ne(l, X ZM// ) Ae(l', X)), ()

iel’'ny IEI’

where (-, ) is the proper threshold from the key lemma.

@ By the definition £(/', Y) is the greatest number for which (5) holds.
Thus, e(I', Y) > (I, X). This is a key consequence of the above
lemma.

@ In fact under the above assumptions, W(/,X)\ Y = W(J,Y)\ Y.
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Proof of Lemma
(', X)

Yoo Ae(l,X) =D i)+ > el

icl’ny ie(leny ielny
= > w)— Y )+ X)NY]
ie(l))enz i€(l)n(Z\Y)
= Z wr) = Y () (LX) (10 2= 02\ Y))
€(lenz i€(l)n(J\Y)
= Z we@ = Y )+ X) (- 10 Y))
ez EHTAVAING]
= Z w@= X )+ X) (e [N Y)
ie(lf)nz ie()N((IAINY)
> Z pr(i)+e(l',X)(j—t)= Z wr (i) Ae(l, X)
ie(lf)nz iel'nX

Zu// Ae(l', X). We used that on ()¢, up(i) < e(l,X). O

IEI’
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Structure of bad sets

Under the assumption of the previous lemma, we have
W(LX)\Y=W(,Y)\Y.

As before let [} = W(I,X),J; = W(J,Y).
ENY C(TUX)\Y =(LUY)\Y=J\YCJ\Y. (6)
By the construction, we must have jo := j(I', Y) > j, otwerwise
LAY Cl\YCJ\Y, and J; was not optimal for Y, J.
Assume jo = j(I',Y) > j = j(I', X). Thus,
= fiel )= (1 X)) C Iy = (i€ I (i) = (1, V)

so e(I',Y) < e(V, X). This contradicts the previous lemma, so jo = j. So
by construction [/} \ Y| > |J\ Y| and since (6) the assertion follows.
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Fix m,t and Z C [n], where |Z| = m+ t. Fix bad set X C [n], |X| = m.

For any t < j < n there are at most ‘i sets of the form W(I,X) \ X

where | € F, |W(I,X)| =j, Z=W(,X)UX, [W(l,X)\ X| =t.

Proof: Fix any X, I satisfying conditions in the corollary. Take any other
pair Y, J which also satisfies the same conditions. By previous lemma,
W(Y,J)\Y Cc W(X,I) (since W(Y,J)\ Y =W(X,I)\ X). Cardinality

of W(X, 1) = so there are at most (Jt> choices for W(Y,J)\ Y. O

X is bad so by one of the previous lemma
1 1
J=IW(LX) = IW(LX)Nn X+ |[W(,X)\ X| < §j+ t, sot > §j.
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Proof of the key lemma

Goal: upper bound P(X is bad | | X| = m).

Reminder: P(X is bad | |X| = m)<;> <2 Y% gl

|X|=m,bad GEG(X)
The last hard thing to understand:

> > P

|X|=m,bad GeG(X)

= S P WOILX)\ X
J>1j/2<t< |zZ|:Cr[:4]rt =G clement from G(X)

Z=W({X)UuX, W, X)| =], IW(,X)\X| =t}

© We parameterise pairs (X, G) by XU G ; |G|, ;|G\ X].

@ The previous Corollary gives upper bound for the cardinality of the set
in the above formula.
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Further results and questions

Theorem (Park, Pham; different proof Bednorz, Martynek, Meller)

(E, p) a metric space, fix d € N. Let Xi,...,Xy be i.i.d with values in E
with distribution . Assume i has no atoms. Let T be a finite class of
nonnegative Borel measurable functions on E. Then there exists a family
F of pairs (g, u) where each g : E — R is p-measurable and u > 0 such
that

d d
{SUEZ t(X;) > KEsupZt(X;)} C U { Zg(X) > u}

(gu)eF =l

zp(zg z)s

(g,u)eF

I\JII—l

Questions: Can T be infinite? What for not i.i.d variables?
We know: We can skip the assumptions about atoms. Also similar result
for invinitely divisable processes.



