# Fluctuations of the spectrum of random quantum states 

Joint work with David Grzybowski and Elizabeth Meckes

Mark Meckes

Case Western Reserve University
High Dimensional Probability X
Bedlewo, Poland, 15 June, 2023

## Discrete probability with quantum terminology

- A state on $\Omega_{n}=\{1, \ldots, n\}$ is a vector $p \in \mathbb{R}_{+}^{n}$ with $\sum_{i} p_{i}=1$.
- An observable is a function $f: \Omega_{n} \rightarrow \mathbb{R}$.
- $f$ is observed to be $f(i)$ with probability $p_{i}$.


## Discrete probability as noncommutative probability

- $F=\left[\begin{array}{ccc}f(1) & & 0 \\ & \ddots & \\ 0 & & f(n)\end{array}\right]=\sum_{i} f(i) e_{i} e_{i}^{*}$
- $P=\left[\begin{array}{lll}p_{1} & & 0 \\ & \ddots & \\ 0 & & p_{n}\end{array}\right]=\sum_{i} p_{i} e_{i} e_{i}^{*}$
- $F$ is observed to be the eigenvalue $f(i)$ with probability $\left\langle P e_{i}, e_{i}\right\rangle$.


## Discrete probability as noncommutative probability

- $F=\left[\begin{array}{ccc}f(1) & & 0 \\ & \ddots & \\ 0 & & f(n)\end{array}\right]=\sum_{i} f(i) e_{i} e_{i}^{*}$
- $P=\left[\begin{array}{lll}p_{1} & & 0 \\ & \ddots & \\ 0 & & p_{n}\end{array}\right]=\sum_{i} p_{i} e_{i} e_{i}^{*}$
- $F$ is observed to be the eigenvalue $f(i)$ with probability $\left\langle P e_{i}, e_{i}\right\rangle$.
$P \in M_{n}$ is diagonal, PSD, with $\operatorname{Tr} P=1$.


## Pure quantum states and observables

- A pure state on $\mathbb{C}^{n}$ is a unit vector $\psi \in \mathbb{C}^{n}$.
- An observable is a Hermitian matrix $A \in M_{n}(\mathbb{C})$.
$A$ has a spectral decomposition $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{*}$.
- $A$ is observed to be the eigenvalue $\lambda_{i}$ with probability $\left|\left\langle\psi, u_{i}\right\rangle\right|^{2}=\left\langle\psi \psi^{*} u_{i}, u_{i}\right\rangle$.


## Pure quantum states and observables

- A pure state on $\mathbb{C}^{n}$ is a unit vector $\psi \in \mathbb{C}^{n}$.
- An observable is a Hermitian matrix $A \in M_{n}(\mathbb{C})$.
$A$ has a spectral decomposition $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{*}$.
- $A$ is observed to be the eigenvalue $\lambda_{i}$ with probability $\left|\left\langle\psi, u_{i}\right\rangle\right|^{2}=\left\langle\psi \psi^{*} u_{i}, u_{i}\right\rangle$.
$\psi \psi^{*} \in M_{n}(\mathbb{C})$ is PSD with $\operatorname{Tr} \psi \psi^{*}=1$ and rank 1.


## Marginals in noncommutative probability

Suppose

- $p$ is a state on $\Omega_{n} \times \Omega_{m}$.
- $f$ is an observable on $\Omega_{n}$ only.

The probability of observing $f(i)$ is $q_{i}=\sum_{j} p_{i j}$.
$q \in \mathbb{R}_{+}^{n}$ with $\sum_{i} q_{i}=1$.

## Marginals in noncommutative probability

Suppose

- $p$ is a state on $\Omega_{n} \times \Omega_{m}$.
- $f$ is an observable on $\Omega_{n}$ only.

The probability of observing $f(i)$ is $q_{i}=\sum_{j} p_{i j}$.
$q \in \mathbb{R}_{+}^{n}$ with $\sum_{i} q_{i}=1$.
Matrix version:

- $P \in M_{n} \otimes M_{m} \cong M_{n \times m}$.
- $\sum_{j} p_{i j}=\left\langle\left(\operatorname{Tr}_{2} P\right) e_{i}, e_{i}\right\rangle$, where

$$
\mathrm{Tr}_{2}=\mathrm{Id} \otimes \operatorname{Tr}: M_{n} \otimes M_{m} \rightarrow \mathbb{C}
$$

is the partial trace.

## Marginals in noncommutative probability

Suppose

- $p$ is a state on $\Omega_{n} \times \Omega_{m}$.
- $f$ is an observable on $\Omega_{n}$ only.

The probability of observing $f(i)$ is $q_{i}=\sum_{j} p_{i j}$.
$q \in \mathbb{R}_{+}^{n}$ with $\sum_{i} q_{i}=1$.
Matrix version:

- $P \in M_{n} \otimes M_{m} \cong M_{n \times m}$.
- $\sum_{j} p_{i j}=\left\langle\left(\operatorname{Tr}_{2} P\right) e_{i}, e_{i}\right\rangle$, where

$$
\mathrm{Tr}_{2}=\mathrm{Id} \otimes \operatorname{Tr}: M_{n} \otimes M_{m} \rightarrow \mathbb{C}
$$

is the partial trace.
$\operatorname{Tr}_{2} P \in M_{n}$ is diagonal, PSD, with $\operatorname{Tr}\left(\operatorname{Tr}_{2} P\right)=1$.

## Quantum marginals

Suppose

- $\psi$ is a pure state on $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \cong \mathbb{C}^{n \times m}$
- $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{*} \in M_{n}$ is an observable on $\mathbb{C}^{n}$ only.
- The probability of observing $\lambda_{i}$ is

$$
\begin{aligned}
\sum_{j=1}^{m}\left|\left\langle\psi, u_{i} \otimes v_{j}\right\rangle\right|^{2} & =\sum_{j}\left\langle\psi \psi^{*}\left(u_{i} \otimes v_{j}\right), u_{i} \otimes v_{j}\right\rangle \\
& =\left\langle\left(\operatorname{Tr}_{2} \psi \psi^{*}\right) u_{i}, u_{i}\right\rangle
\end{aligned}
$$

Here $\left\{v_{j}\right\}$ is any ONB of $\mathbb{C}^{m}$.

## Quantum marginals

Suppose

- $\psi$ is a pure state on $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \cong \mathbb{C}^{n \times m}$
- $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{*} \in M_{n}$ is an observable on $\mathbb{C}^{n}$ only.
- The probability of observing $\lambda_{i}$ is

$$
\begin{aligned}
\sum_{j=1}^{m}\left|\left\langle\psi, u_{i} \otimes v_{j}\right\rangle\right|^{2} & =\sum_{j}\left\langle\psi \psi^{*}\left(u_{i} \otimes v_{j}\right), u_{i} \otimes v_{j}\right\rangle \\
& =\left\langle\left(\operatorname{Tr}_{2} \psi \psi^{*}\right) u_{i}, u_{i}\right\rangle .
\end{aligned}
$$

Here $\left\{v_{j}\right\}$ is any ONB of $\mathbb{C}^{m}$.
$\operatorname{Tr}_{2} \psi \psi^{*} \in M_{n}$ is PSD with $\operatorname{Tr}\left(\operatorname{Tr}_{2} \psi \psi^{*}\right)=1$, but now generically has rank $\min \{m, n\}$.

## Induced distributions

A PSD matrix $\rho \in M_{n}$ with $\operatorname{Tr} \rho=1$ is a mixed state or density matrix.

There is a canonical (Haar) distribution on simple states $\psi \in \mathbb{C}^{n}$.

For each $m$, the Haar distribution on simple states $\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$ induces a distribution on density matrices

$$
\rho=\operatorname{Tr}_{2}\left(\psi \psi^{*}\right) \in M_{n} .
$$

These distributions are widely studied in quantum information theory.

## Induced distributions

Unitary invariance of $\psi \rightsquigarrow$ unitary invariance of $\rho$.

$$
\psi \stackrel{D}{=}(V \otimes U) \psi \quad \Rightarrow \quad \rho \stackrel{D}{=} V_{\rho} V^{*} .
$$

To understand the induced distribution we want to understand the eigenvalues of $\rho$.

## Induced distributions

Unitary invariance of $\psi \rightsquigarrow$ unitary invariance of $\rho$.

$$
\psi \stackrel{D}{=}(V \otimes U) \psi \quad \Rightarrow \quad \rho \stackrel{D}{=} V \rho V^{*}
$$

To understand the induced distribution we want to understand the eigenvalues of $\rho$.

Concrete random matrix representation:
Under the identification

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{m} \cong \mathbb{C}^{n \times m} \cong M_{n \times m}
$$

we can write

$$
\rho=X X^{*}
$$

where $X$ is uniformly distributed in the Hilbert-Schmidt unit sphere of $M_{n \times m}$.

## Spectral measure

The spectral measure of a Hermitian $A \in M_{n}$ is

$$
\mu_{A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(A)}
$$

For $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\int f d \mu_{A}=\frac{1}{n} \sum_{i=1}^{n} f\left(\lambda_{i}(A)\right)=\frac{1}{n} \operatorname{Tr} f(A)
$$

## Spectral measure

The spectral measure of a Hermitian $A \in M_{n}$ is

$$
\mu_{A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(A)}
$$

For $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\int f d \mu_{A}=\frac{1}{n} \sum_{i=1}^{n} f\left(\lambda_{i}(A)\right)=\frac{1}{n} \operatorname{Tr} f(A)
$$

Note

$$
\mathbb{E} \int x d \mu_{n X X^{*}}=\operatorname{Tr} X X^{*}=1
$$

so $A=n X X^{*}$ is the right normalization to look for a large- $n$ limit for $\mu_{A}$.

## Limiting spectral measure

## Theorem (Nechita '07)

Suppose that $\frac{m}{n} \xrightarrow{n \rightarrow \infty} \alpha \geq 1$. Then $\mu_{n X X^{*}}$ approaches a deterministic limit measure $\mu_{\alpha}$ almost surely.

## Limiting spectral measure

## Theorem (Nechita '07)

Suppose that $\frac{m}{n} \xrightarrow{n \rightarrow \infty} \alpha \geq 1$. Then $\mu_{n X x^{*}}$ approaches a deterministic limit measure $\mu_{\alpha}$ almost surely.

Idea of proof:
$X \stackrel{D}{=} \frac{Z}{\|Z\|_{H S}}$ where $Z \in M_{n \times m}$ is standard Gaussian.
$\|Z\|_{H S} \approx \sqrt{m n}$ with high probability
$\Rightarrow \mu_{n X X *} \approx \mu_{\frac{\alpha}{n} Z Z^{*}}$
$\mu_{\frac{1}{n} Z Z^{*}}$ is known to have a limit $\mu_{\alpha}$ (Marčenko-Pastur law).

## Main theorem of this talk - rough statement

Theorem (DG-EM-MM '23+)
Suppose that $\frac{m}{n} \xrightarrow{n \rightarrow \infty} \alpha \geq 1$. Linear eigenvalue statistics

$$
\operatorname{Tr} f\left(n X X^{*}\right)=\sum_{i=1}^{n} f\left(\lambda_{i}\left(n X X^{*}\right)\right)
$$

for polynomials $f$ satisfy a multivariate CLT.

## Main theorem of this talk - rough statement

Theorem (DG-EM-MM '23+)
Suppose that $\frac{m}{n} \xrightarrow{n \rightarrow \infty} \alpha \geq 1$. Linear eigenvalue statistics

$$
\operatorname{Tr} f\left(n X X^{*}\right)=\sum_{i=1}^{n} f\left(\lambda_{i}\left(n X X^{*}\right)\right)
$$

for polynomials $f$ satisfy a multivariate CLT.

The corresponding result for $\frac{1}{n} Z Z^{*}$ is known (Bai-Silverstein '04, etc.).

## Main theorem of this talk - rough statement

Theorem (DG-EM-MM '23+)
Suppose that $\frac{m}{n} \xrightarrow{n \rightarrow \infty} \alpha \geq 1$. Linear eigenvalue statistics

$$
\operatorname{Tr} f\left(n X X^{*}\right)=\sum_{i=1}^{n} f\left(\lambda_{i}\left(n X X^{*}\right)\right)
$$

for polynomials $f$ satisfy a multivariate CLT.

The corresponding result for $\frac{1}{n} Z Z^{*}$ is known (Bai-Silverstein '04, etc.).

But the same trick doesn't work - the fluctuations of $\|Z\|_{H S}$ aren't small enough in this setting.

We need a different approach.

## Stein's method for functions of stationary distributions

## Theorem (Grzybowski '23)

Let $X \in S$ be in the stationary distribution for a nice Markov process with infinitesimal generator $L$ and carré du champ operator $\Gamma$, and let $F: S \rightarrow \mathbb{R}^{d}$ such that $\mathbb{E} F(X)=0$.
Suppose that

- $L F(X)=-\Lambda F(X)+E$ and
- $\left[\Gamma\left(F_{i}(X), F_{j}(X)\right)\right]_{j j}=\Lambda \Sigma+E^{\prime}$
for deterministic $\Lambda, \Sigma \in M_{d}$ and random centered $E \in \mathbb{R}^{d}$, $E^{\prime} \in M_{d}$.
If $\Sigma$ is positive definite, then

$$
\begin{aligned}
& d_{W}(F(X), \mathcal{N}(0, \Sigma)) \\
& \quad \leq c\left\|\Lambda^{-1}\right\|_{o p}\left(\mathbb{E}\|E\|_{2}+\left\|\Sigma^{-1 / 2}\right\|_{o p} \mathbb{E}\left\|E^{\prime}\right\|_{H S}\right) .
\end{aligned}
$$

## Stein's method for functions of stationary distributions

Theorem (Grzybowski '23, continued)
Moreover, if $\wedge$ is upper triangular with distinct positive entries and $\wedge \Sigma$ is diagonal, then $\Sigma$ is indeed both positive definite and diagonal.

## Stein's method for functions of stationary distributions

## Theorem (Grzybowski '23, continued)

Moreover, if $\wedge$ is upper triangular with distinct positive entries and $\wedge \Sigma$ is diagonal, then $\Sigma$ is indeed both positive definite and diagonal.

The first part follows by applying the multivariate infinitesimal version of Stein's method of exchangeable pairs (Chatterjee-E. Meckes '08, E. Meckes '09) with the pair $\left(F\left(X_{t}\right), F\left(X_{0}\right)\right)$.
(Similar approaches in Ledoux, Nourdin-Zhen, Du...).

## Stein's method for functions of stationary distributions

## Theorem (Grzybowski '23, continued)

Moreover, if $\wedge$ is upper triangular with distinct positive entries and $\wedge \Sigma$ is diagonal, then $\Sigma$ is indeed both positive definite and diagonal.

The first part follows by applying the multivariate infinitesimal version of Stein's method of exchangeable pairs (Chatterjee-E. Meckes '08, E. Meckes '09) with the pair $\left(F\left(X_{t}\right), F\left(X_{0}\right)\right)$.
(Similar approaches in Ledoux, Nourdin-Zhen, Du...).

The second part is linear algebra.

## First warm-up result

## Theorem (Johansson '98)

Let $A \in M_{n}^{s a}(\mathbb{C})$ be a GUE matrix (standard normal distribution on the space of Hermitian matrices). For each $k$ let

$$
Y_{k}=\operatorname{Tr} T_{k}\left(\frac{1}{\sqrt{2 n}} A\right)-\mathbb{E} \operatorname{Tr} T_{k}\left(\frac{1}{\sqrt{2 n}} A\right)
$$

where $T_{k}(x)$ are the Chebyshev polynomials of the first kind.
Then

$$
d_{W}\left(\left(Y_{1}, \ldots, Y_{d}\right), \mathcal{N}\left(0, \frac{1}{2} \operatorname{diag}(1,2, \ldots, d)\right)\right) \leq \frac{C_{d}}{n}
$$

Analogous results hold for the GOE and GSE.
(More general results by many authors.)

## First warm-up result

Sketch of proof (Grzybowski '23):
$A$ is stationary for the Ornstein-Uhlenbeck process on $M_{n}^{\text {sa }}$ :

- $L f(x)=\Delta f(x)-\langle\nabla f(x), x\rangle$
- $\Gamma(f, g)=\langle\nabla f, \nabla g\rangle$


## First warm-up result

Sketch of proof (Grzybowski '23):
$A$ is stationary for the Ornstein-Uhlenbeck process on $M_{n}^{\text {sa }}$ :

- $L f(x)=\Delta f(x)-\langle\nabla f(x), x\rangle$
- $\Gamma(f, g)=\langle\nabla f, \nabla g\rangle$

For a polynomial $p, \nabla \operatorname{Tr} p(A)=p^{\prime}(A)$, so
$\langle\nabla \operatorname{Tr} p(A), A\rangle=\operatorname{Tr}\left(p^{\prime}(A) A\right)$
$\Rightarrow \Lambda$ will be upper triangular with distinct positive diagonal entries.

## First warm-up result

Sketch of proof (Grzybowski '23):
$A$ is stationary for the Ornstein-Uhlenbeck process on $M_{n}^{\text {sa }}$ :

- $L f(x)=\Delta f(x)-\langle\nabla f(x), x\rangle$
- $\Gamma(f, g)=\langle\nabla f, \nabla g\rangle$

For a polynomial $p, \nabla \operatorname{Tr} p(A)=p^{\prime}(A)$, so
$\langle\nabla \operatorname{Tr} p(A), A\rangle=\operatorname{Tr}\left(p^{\prime}(A) A\right)$
$\Rightarrow \Lambda$ will be upper triangular with distinct positive diagonal entries.

This reasoning holds for any sequence of polynomials $p_{k}$ with $\operatorname{deg} p_{k}=k$.

## First warm-up result

Why Chebyshev polynomials of the first kind?

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu_{\frac{1}{\sqrt{2 n}}} A .
\end{aligned}
$$

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu \frac{1}{\sqrt{2 n}} A .
\end{aligned}
$$

$\mu_{\frac{1}{2 n} A} \xrightarrow{n \rightarrow \infty}$ the semicircle law $\sigma$.

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu \frac{1}{\sqrt{2 n}} A .
\end{aligned}
$$

$\mu_{\frac{1}{2 n} A} \xrightarrow{n \rightarrow \infty}$ the semicircle law $\sigma$.
$\Rightarrow$ to make $\wedge \Sigma$ diagonal, we want the derivatives of our polynomials to be orthogonal with respect to $\sigma$.

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu_{\frac{1}{\sqrt{2 n}}} A .
\end{aligned}
$$

$\mu_{\frac{1}{2 n} A} \xrightarrow{n \rightarrow \infty}$ the semicircle law $\sigma$.
$\Rightarrow$ to make $\wedge \Sigma$ diagonal, we want the derivatives of our polynomials to be orthogonal with respect to $\sigma$.

The orthogonal polynomials w.r.t. $\sigma$ are the Chebyshev polynomials of the second kind $U_{k}$

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu_{\frac{1}{\sqrt{2 n}}} A .
\end{aligned}
$$

$\mu_{\frac{1}{2 n} A} \xrightarrow{n \rightarrow \infty}$ the semicircle law $\sigma$.
$\Rightarrow$ to make $\wedge \Sigma$ diagonal, we want the derivatives of our polynomials to be orthogonal with respect to $\sigma$.

The orthogonal polynomials w.r.t. $\sigma$ are the Chebyshev polynomials of the second kind $U_{k}$, and $T_{k}^{\prime}=k U_{k-1}$.

## First warm-up result

Why Chebyshev polynomials of the first kind?

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \operatorname{Tr} p\left(\frac{1}{\sqrt{2 n}} A\right), \nabla \operatorname{Tr} q\left(\frac{1}{\sqrt{2 n}} A\right)\right\rangle & =\mathbb{E} \frac{1}{2 n} \operatorname{Tr}\left(p^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right) q^{\prime}\left(\frac{1}{\sqrt{2 n}} A\right)\right) \\
& =\frac{1}{2} \mathbb{E} \int p^{\prime} q^{\prime} d \mu \frac{1}{\sqrt{2 n}} A^{\prime}
\end{aligned}
$$

$\mu_{\frac{1}{2 n} A} \xrightarrow{n \rightarrow \infty}$ the semicircle law $\sigma$.
$\Rightarrow$ to make $\wedge \Sigma$ diagonal, we want the derivatives of our polynomials to be orthogonal with respect to $\sigma$.

The orthogonal polynomials w.r.t. $\sigma$ are the Chebyshev polynomials of the second kind $U_{k}$, and $T_{k}^{\prime}=k U_{k-1}$.

Error terms can be bounded via measure concentration (M-Szarek '12). $\quad \square$

## Second warm-up result

Now let $A \in M_{n}^{s a}$ be uniformly distributed in the Hilbert-Schmidt unit sphere $S$.
$A$ is stationary for Brownian motion on $S$ :

- $L f(x)=\Delta_{S} f(x)=r^{2} \Delta f(x)-r^{2} \frac{\partial^{2} f}{\partial r^{2}}-r(\operatorname{dim} S) \frac{\partial f}{\partial r}$
- $\Gamma(f, g)(x)=\left\langle\nabla_{s} f(x), \nabla_{s} g(x)\right\rangle$
$=\langle\nabla f(x), \nabla g(x)\rangle-\langle\nabla f(x), x\rangle\langle\nabla g(x), x\rangle$


## Second warm-up result

Now let $A \in M_{n}^{s a}$ be uniformly distributed in the Hilbert-Schmidt unit sphere $S$.
$A$ is stationary for Brownian motion on $S$ :

- $L f(x)=\Delta_{S} f(x)=r^{2} \Delta f(x)-r^{2} \frac{\partial^{2} f}{\partial r^{2}}-r(\operatorname{dim} S) \frac{\partial f}{\partial r}$
- $\Gamma(f, g)(x)=\left\langle\nabla_{s} f(x), \nabla_{s} g(x)\right\rangle$ $=\langle\nabla f(x), \nabla g(x)\rangle-\langle\nabla f(x), x\rangle\langle\nabla g(x), x\rangle$
$\Lambda$ will be nice as before.
We want to pick polynomials so that

$$
\mathbb{E} \Gamma\left(\operatorname{Tr} p_{i}(\sqrt{n} A), \operatorname{Tr} p_{j}(\sqrt{n} A)\right)
$$

is asymptotically diagonal.

## Second warm-up result

$$
\begin{aligned}
\mathbb{E} & \Gamma \\
= & \operatorname{Tr} p(\sqrt{n} A), \operatorname{Tr} q(\sqrt{n} A)) \\
= & n \mathbb{E} \operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) q^{\prime}(\sqrt{n} A)\right) \\
& -\mathbb{E}\left(\operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right)\left(\operatorname{Tr}\left(q^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right)
\end{aligned}
$$

## Second warm-up result

$$
\begin{aligned}
& \mathbb{E} \Gamma(\operatorname{Tr} p(\sqrt{n} A), \operatorname{Tr} q(\sqrt{n} A)) \\
& =n \mathbb{E r}\left(p^{\prime}(\sqrt{n} A) q^{\prime}(\sqrt{n} A)\right) \\
& \quad-\mathbb{E}\left(\operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right)\left(\operatorname{Tr}\left(q^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right) \\
& =n^{2} \mathbb{E}\left[\int p^{\prime} q^{\prime} d \mu_{\sqrt{n} A}\right. \\
& \left.\quad-\left(\int p^{\prime}(x) x d \mu_{\sqrt{n A}}(x)\right)\left(\int q^{\prime}(x) x d \mu_{\sqrt{n} A}(x)\right)\right]
\end{aligned}
$$

## Second warm-up result

$$
\begin{aligned}
& \mathbb{E} \Gamma \Gamma(\operatorname{Tr} p(\sqrt{n} A), \operatorname{Tr} q(\sqrt{n} A)) \\
&= n \mathbb{E} \operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) q^{\prime}(\sqrt{n} A)\right) \\
& \quad-\mathbb{E}\left(\operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right)\left(\operatorname{Tr}\left(q^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right) \\
&= n^{2} \mathbb{E}\left[\int p^{\prime} q^{\prime} d \mu_{\sqrt{n} A}\right. \\
&\left.\quad \quad-\left(\int p^{\prime}(x) x d \mu_{\sqrt{n} A}(x)\right)\left(\int q^{\prime}(x) \times d \mu_{\sqrt{n} A}(x)\right)\right] \\
&= n^{2}\left[\int p^{\prime} q^{\prime} d \sigma-\left(\int p^{\prime}(x) x d \sigma(x)\right)\left(\int q^{\prime}(x) x d \sigma(x)\right)\right] .
\end{aligned}
$$

## Second warm-up result

$$
\begin{aligned}
& \mathbb{E} \Gamma(\operatorname{Tr} p(\sqrt{n} A), \operatorname{Tr} q(\sqrt{n} A)) \\
&= n \mathbb{E} \operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) q^{\prime}(\sqrt{n} A)\right) \\
&-\mathbb{E}\left(\operatorname{Tr}\left(p^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right)\left(\operatorname{Tr}\left(q^{\prime}(\sqrt{n} A) \sqrt{n} A\right)\right) \\
&= n^{2} \mathbb{E}\left[\int p^{\prime} q^{\prime} d \mu_{\sqrt{n} A}\right. \\
&\left.\quad \quad-\left(\int p^{\prime}(x) x d \mu_{\sqrt{n} A}(x)\right)\left(\int q^{\prime}(x) \times d \mu_{\sqrt{n} A}(x)\right)\right] \\
&= n^{2}\left[\int p^{\prime} q^{\prime} d \sigma-\left(\int p^{\prime}(x) x d \sigma(x)\right)\left(\int q^{\prime}(x) x d \sigma(x)\right)\right] .
\end{aligned}
$$

$\Rightarrow \Sigma$ will be diagonal when the derivatives of our polynomials are orthogonal w.r.t. $\sigma$ to each other and to $U_{1}(x)=2 x$.

## Second warm-up result

Theorem (EM-MM '21, DG-EM-MM '23+)
Let $A \in M_{n}^{\text {sa }}(\mathbb{C})$ be a uniformly distributed in the Hilbert-Schmidt unit sphere. For each k let

$$
Y_{k}=\operatorname{Tr} T_{k}(\sqrt{n} A)-\mathbb{E} \operatorname{Tr}(\sqrt{n} A) .
$$

Then

$$
d_{w}\left(\left(Y_{1}, Y_{3}, Y_{4} \ldots, Y_{d}\right), \mathcal{N}\left(0, \frac{1}{2} \operatorname{diag}(1,3,4, \ldots, d)\right)\right) \leq \frac{C_{d}}{n}
$$

## Third warm-up result

Now let $Z \in M_{n \times m}$ be standard Gaussian, and $m=\lfloor\alpha n\rfloor$.

We again use the Ornstein-Uhlenbeck semigroup.

We have

$$
\nabla \operatorname{Tr} p\left(\frac{1}{n} Z Z^{*}\right)=\frac{2}{n} p^{\prime}\left(\frac{1}{n} Z Z^{*}\right) Z
$$

## Third warm-up result

Now let $Z \in M_{n \times m}$ be standard Gaussian, and $m=\lfloor\alpha n\rfloor$.

We again use the Ornstein-Uhlenbeck semigroup.

We have

$$
\nabla \operatorname{Tr} p\left(\frac{1}{n} Z Z^{*}\right)=\frac{2}{n} p^{\prime}\left(\frac{1}{n} Z Z^{*}\right) Z
$$

and so

$$
\mathbb{E} \Gamma\left(\operatorname{Tr} p\left(\frac{1}{n} Z Z^{*}\right), \operatorname{Tr} q\left(\frac{1}{n} Z Z^{*}\right)\right) \approx 4 \int p^{\prime}(x) q^{\prime}(x) x d \mu_{\alpha}
$$

## Third warm-up result

Now let $Z \in M_{n \times m}$ be standard Gaussian, and $m=\lfloor\alpha n\rfloor$.

We again use the Ornstein-Uhlenbeck semigroup.

We have

$$
\nabla \operatorname{Tr} p\left(\frac{1}{n} Z Z^{*}\right)=\frac{2}{n} p^{\prime}\left(\frac{1}{n} Z Z^{*}\right) Z
$$

and so

$$
\mathbb{E} \Gamma\left(\operatorname{Tr} p\left(\frac{1}{n} Z Z^{*}\right), \operatorname{Tr} q\left(\frac{1}{n} Z Z^{*}\right)\right) \approx 4 \int p^{\prime}(x) q^{\prime}(x) x d \mu_{\alpha}
$$

We thus want to work with derivatives of orthogonal polynomials w.r.t. $x d \mu_{\alpha}(x)$.

## Third warm-up result

## Theorem (Cabanal-Duvillard '01,

 Kusalik-Mingo-Speicher '07)Let $Z \in M_{n \times m}$ be standard Gaussian, and $m=\lfloor\alpha n\rfloor$. For each k let

$$
Y_{k}=\operatorname{Tr} \widetilde{T}_{k}\left(\frac{1}{n} Z Z^{*}\right)-\mathbb{E} \widetilde{T}_{k}\left(\frac{1}{n} Z Z^{*}\right),
$$

where $\widetilde{T}_{k}$ are shifted Chebyshev polynomials of the first kind, which have the form

$$
\tilde{T}_{k}(x)=a_{\alpha, k} T_{k}\left(b_{\alpha} k+c_{\alpha}\right)+d_{\alpha, k} .
$$

Then

$$
d_{W}\left(\left(Y_{1}, \ldots, Y_{d}\right), \mathcal{N}\left(0, \operatorname{diag}\left(s_{\alpha, 1}, \ldots, s_{\alpha, d}\right)\right)\right) \leq \frac{C_{d, \alpha}}{n}
$$

## Main theorem, finally

Return to the first setting:
$X \in M_{n \times m}$ is uniformly distributed in the Hilbert-Schmidt unit sphere $S$, $m=\lfloor\alpha n\rfloor$.
$X$ is stationary for Brownian motion on $S$.

## Main theorem, finally

Return to the first setting:
$X \in M_{n \times m}$ is uniformly distributed in the Hilbert-Schmidt unit sphere $S$, $m=\lfloor\alpha n\rfloor$.
$X$ is stationary for Brownian motion on $S$.

$$
\begin{aligned}
& \mathbb{E} \Gamma\left(\operatorname{Tr} p\left(n X X^{*}\right), \operatorname{Tr} q\left(n X X^{*}\right)\right) \\
& \qquad \begin{aligned}
& \approx 4 n^{2} \mathbb{E}\left[\int p^{\prime}(x) q^{\prime}(x) x d \mu_{\alpha}(x)\right. \\
&\left.-\left(\int p^{\prime}(x) x d \mu_{\alpha}(x)\right)\left(\int q^{\prime}(x) x d \mu_{\alpha}(x)\right)\right]
\end{aligned}
\end{aligned}
$$

## Main theorem, finally

Return to the first setting:
$X \in M_{n \times m}$ is uniformly distributed in the Hilbert-Schmidt unit sphere $S$, $m=\lfloor\alpha n\rfloor$.
$X$ is stationary for Brownian motion on $S$.

$$
\begin{aligned}
& \mathbb{E} \Gamma\left(\operatorname{Tr} p\left(n X X^{*}\right), \operatorname{Tr} q\left(n X X^{*}\right)\right) \\
& \qquad \begin{aligned}
& \approx 4 n^{2} \mathbb{E}\left[\int p^{\prime}(x) q^{\prime}(x) x d \mu_{\alpha}(x)\right. \\
&\left.-\left(\int p^{\prime}(x) x d \mu_{\alpha}(x)\right)\left(\int q^{\prime}(x) x d \mu_{\alpha}(x)\right)\right]
\end{aligned}
\end{aligned}
$$

In this case it is only when $p$ and $q$ are linear that the latter integrals are nonzero.

## Main theorem, finally stated

## Theorem (DG-EM-MM '23+)

Let $\rho \in M_{n}$ be a random density matrix with the $m^{\text {th }}$ induced distribution, with $m=\lfloor\alpha n\rfloor$. For each $k$ let

$$
Y_{k}=\operatorname{Tr} \tilde{T}_{k}(n \rho)-\mathbb{E} \operatorname{Tr} \widetilde{T}_{k}(n \rho) .
$$

Then

$$
d_{W}\left(\left(Y_{2}, \ldots, Y_{d}\right), \mathcal{N}\left(0, \operatorname{diag}\left(s_{\alpha, 2}, \ldots, s_{\alpha, d}\right)\right)\right) \leq \frac{C_{d, \alpha}}{n} .
$$

The end

Thank you!

