Rényi entropy and variance comparison for symmetric log-concave random variables (joint work with Piotr Nayar)

Maciej Białobrzeski

Definition of the Rényi entropy

For a random variable X with density f its Rényi entropy of order $\alpha \in(0, \infty) \backslash\{1\}$ is defined as

$$
h_{\alpha}(X)=h_{\alpha}(f)=\frac{1}{1-\alpha} \log \left(\int f^{\alpha}(x) \mathrm{d} x\right)
$$

assuming that the integral converges.

Definition of the Rényi entropy

For a random variable X with density f its Rényi entropy of order $\alpha \in(0, \infty) \backslash\{1\}$ is defined as

$$
h_{\alpha}(X)=h_{\alpha}(f)=\frac{1}{1-\alpha} \log \left(\int f^{\alpha}(x) \mathrm{d} x\right)
$$

assuming that the integral converges.
When $\alpha \rightarrow 1$, we recover in the limit the usual Shannon differential entropy $h(f)=h_{1}(f)=-\int f \log f$. Another limiting cases are

$$
\begin{gathered}
h_{0}(f)=\log |\operatorname{supp} f| \\
h_{\infty}(f)=-\log \|f\|_{\infty}
\end{gathered}
$$

Bounding Rényi entropy by variance

It is a well known fact that for any random variable with density f one has

$$
h(f) \leq \frac{1}{2} \log \operatorname{Var}(f)+\frac{1}{2} \log (2 \pi e)
$$

with equality only for Gaussian random variables.

Proof: by inequality $\log x \geq x-1$ we have $\int f \log (f / g) \geq 0$ for any densities f, g. If g is a gaussian density of the same variance as f, then $\int f \log g=-h(g)$.

Bounding Rényi entropy by variance

It is a well known fact that for any random variable with density f one has

$$
h(f) \leq \frac{1}{2} \log \operatorname{Var}(f)+\frac{1}{2} \log (2 \pi e)
$$

with equality only for Gaussian random variables.

Proof: by inequality $\log x \geq x-1$ we have $\int f \log (f / g) \geq 0$ for any densities f, g. If g is a gaussian density of the same variance as f, then $\int f \log g=-h(g)$.
For $\alpha \in\left(\frac{1}{3}, \infty\right) \backslash\{1\}$ the maximizer of Rényi entropy under fixed variance is of the form

$$
f(x)=c_{0}\left(1+(1-\alpha)\left(c_{1} x\right)^{2}\right)_{+}^{\frac{1}{\alpha-1}}
$$

(Lutwak, Yang, Zhang, 2005).
For $\alpha \leq \frac{1}{3}$ the supremum of h_{α} under fixed variance is infinite.

Reverse bounds

For density $f_{n}(x)=\frac{n}{2} 1_{\left[1,1+n^{-1}\right]}(|x|)$ variance stays bounded, whereas $h_{\alpha}\left(f_{n}\right) \rightarrow-\infty$ for any $\alpha \in[0, \infty]$.
We will consider the problem of minimizing Rényi entropy under fixed variance in the class of log-concave densities.

A random variable X is log-concave, if it has density of the form e^{-V}, where $V: \mathbb{R} \rightarrow(-\infty, \infty]$ is convex.

Main theorem

Theorem 1

Let X be a symmetric log-concave random variable in \mathbb{R} and $\alpha>0, \alpha \neq 1$. Define α^{*} to be the unique solution to the equation $\frac{1}{\alpha-1} \log \alpha=\frac{1}{2} \log 6$ ($\alpha^{*} \approx 1.241$). Then

$$
h_{\alpha}(X) \geq \frac{1}{2} \log \operatorname{Var}(X)+\frac{1}{2} \log 12 \quad \text { for } \alpha \leq \alpha^{*}
$$

and

$$
h_{\alpha}(X) \geq \frac{1}{2} \log \operatorname{Var}(X)+\frac{1}{2} \log 2+\frac{\log \alpha}{\alpha-1} \quad \text { for } \alpha \geq \alpha^{*}
$$

The only cases of equality are uniform random variable on a symmetric interval for $\alpha \leq \alpha^{*}$ and two-sided exponential distribution for $\alpha \geq \alpha^{*}$.

Preliminary simplifications

The following well known lemma reduces Theorem 1 to the case $\alpha=\alpha^{*}$.

Lemma 2 (Fradelizi, Madiman, Wang, 2015)

Let f be a log-concave probability density in \mathbb{R}^{n}. Then for any $p \geq q>0$ we have

$$
0 \leq h_{q}(f)-h_{p}(f) \leq n \frac{\log q}{q-1}-n \frac{\log p}{p-1}
$$

Preliminary simplifications

By an approximation argument it is enough to show that for every $\sigma, L>0$ we have

$$
\inf \left\{h_{\alpha^{*}}(f): f \in A\right\} \geq \log \sigma+\frac{1}{2} \log 2+\frac{\log \alpha^{*}}{\alpha^{*}-1}
$$

where $A=\left\{f: \operatorname{Var}(f)=\sigma^{2}, \operatorname{supp}(f) \subset[-L, L]\right\}$.
Furthermore, the infimum is attained on A.

Degrees of freedom

The degree of freedom (Fradelizi, Guédon, 2000) of a log-concave function $g: \mathbb{R} \rightarrow[0, \infty)$ is the largest integer k such that there exist $\delta>0$ and linearly independent continuous functions h_{1}, \ldots, h_{k} defined on $\{x \in \mathbb{R}, g(x)>0\}$ such that for every $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in[-\delta, \delta]^{k}$ the function $g+\sum_{i=1}^{k} \varepsilon_{i} h_{i}$ is log-concave.

Degrees of freedom

The degree of freedom (Fradelizi, Guédon, 2000) of a log-concave function $g: \mathbb{R} \rightarrow[0, \infty)$ is the largest integer k such that there exist $\delta>0$ and linearly independent continuous functions h_{1}, \ldots, h_{k} defined on $\{x \in \mathbb{R}, g(x)>0\}$ such that for every $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in[-\delta, \delta]^{k}$ the function $g+\sum_{i=1}^{k} \varepsilon_{i} h_{i}$ is log-concave.
Fact: if $V:(a, b) \rightarrow \mathbb{R}$ is a convex function, then the degree of freedom of e^{-V} is $k+1$ if and only if there exist k (and not less than k) affine functions $\phi_{1}, \ldots, \phi_{k}$ such that

$$
V=\max _{1 \leq i \leq k} \phi_{i} .
$$

Minimizer has low degree of freedom

Suppose that $f \in A$ has more than two degrees of freedom, so $f+\varepsilon_{1} h_{1}+\varepsilon_{2} h_{2}+\varepsilon_{3} h_{3}$ is log-concave for some linearly independent h_{1}, h_{2}, h_{3} and every $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) \in[-\delta, \delta]^{3}$. Then the system of equations

$$
\begin{gathered}
\varepsilon_{1} \int h_{1}+\varepsilon_{2} \int h_{2}+\varepsilon_{3} \int h_{3}=0 \\
\varepsilon_{1} \int x^{2} h_{1}+\varepsilon_{2} \int x^{2} h_{2}+\varepsilon_{3} \int x^{2} h_{3}=0
\end{gathered}
$$

has space of solutions of dimension at least 1 , hence there are $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in[-\delta, \delta]^{3}$ such that $f_{+}=f+\eta_{1} h_{1}+\eta_{2} h_{2}+\eta_{3} h_{3}$ and $f_{-}=f-\eta_{1} h_{1}-\eta_{2} h_{2}-\eta_{3} h_{3}$ are both members of A and $f_{+} \neq f_{-}$.

Minimizer has low degree of freedom

Suppose that $f \in A$ has more than two degrees of freedom, so $f+\varepsilon_{1} h_{1}+\varepsilon_{2} h_{2}+\varepsilon_{3} h_{3}$ is log-concave for some linearly independent h_{1}, h_{2}, h_{3} and every $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) \in[-\delta, \delta]^{3}$. Then the system of equations

$$
\begin{gathered}
\varepsilon_{1} \int h_{1}+\varepsilon_{2} \int h_{2}+\varepsilon_{3} \int h_{3}=0 \\
\varepsilon_{1} \int x^{2} h_{1}+\varepsilon_{2} \int x^{2} h_{2}+\varepsilon_{3} \int x^{2} h_{3}=0
\end{gathered}
$$

has space of solutions of dimension at least 1 , hence there are $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in[-\delta, \delta]^{3}$ such that $f_{+}=f+\eta_{1} h_{1}+\eta_{2} h_{2}+\eta_{3} h_{3}$ and $f_{-}=f-\eta_{1} h_{1}-\eta_{2} h_{2}-\eta_{3} h_{3}$ are both members of A and $f_{+} \neq f_{-}$. Then, by strict concavity of $x \rightarrow x^{\alpha^{*}}$,

$$
\int f^{\alpha^{*}}=\int\left(\frac{1}{2} f_{+}+\frac{1}{2} f_{-}\right)^{\alpha^{*}}<\frac{1}{2} \int f_{+}^{\alpha^{*}}+\frac{1}{2} \int f_{-}^{\alpha^{*}}
$$

so f cannot be the minimizer.

Two-point form of the inequality

It follows that the minimizer of Rényi entropy in A must have at most two degrees of freedom, so it is of the form

$$
f(x)=c \mathbf{1}_{[0, a]}(|x|)+c e^{-\gamma(|x|-a)} \mathbf{1}_{[a, a+b]}(|x|)
$$

where $a+b \leq L, c>0, a, b, \gamma \geq 0$ and also $\int f=1$. We can restrict ourselves to such densities.

Two-point form of the inequality

It follows that the minimizer of Rényi entropy in A must have at most two degrees of freedom, so it is of the form

$$
f(x)=c \mathbf{1}_{[0, a]}(|x|)+c e^{-\gamma(|x|-a)} \mathbf{1}_{[a, a+b]}(|x|)
$$

where $a+b \leq L, c>0, a, b, \gamma \geq 0$ and also $\int f=1$. We can restrict ourselves to such densities.
The inequality we are left to prove is

$$
\begin{aligned}
G(a, b)= & \left(2 a \alpha^{*}+1-e^{-\alpha^{*} b}\right)^{\frac{2}{1-\alpha^{*}}}\left(a+1-e^{-b}\right)^{\frac{1-3 \alpha^{*}}{1-\alpha^{*}}} \\
& -\left(\frac{a^{3}}{3}+\int_{0}^{b}(x+a)^{2} e^{-x} \mathrm{~d} x\right) \geq 0
\end{aligned}
$$

Fixed sign of fourth derivative

$$
\begin{aligned}
G(a, b)= & \left(2 a \alpha^{*}+1-e^{-\alpha^{*} b}\right)^{\frac{2}{1-\alpha^{*}}}\left(a+1-e^{-b}\right)^{\frac{1-3 \alpha^{*}}{1-\alpha^{*}}} \\
& -\left(\frac{a^{3}}{3}+\int_{0}^{b}(x+a)^{2} e^{-x} \mathrm{~d} x\right) \geq 0
\end{aligned}
$$

Note that the second term is polynomial of degree 3 in a. It turns out that $\frac{\partial^{4}}{\partial a^{4}} G(a, b) \geq 0$ for every $a, b \geq 0$. It follows from the following observation.

Fixed sign of fourth derivative

$$
\begin{aligned}
G(a, b)= & \left(2 a \alpha^{*}+1-e^{-\alpha^{*} b}\right)^{\frac{2}{1-\alpha^{*}}}\left(a+1-e^{-b}\right)^{\frac{1-3 \alpha^{*}}{1-\alpha^{*}}} \\
& -\left(\frac{a^{3}}{3}+\int_{0}^{b}(x+a)^{2} e^{-x} \mathrm{~d} x\right) \geq 0
\end{aligned}
$$

Note that the second term is polynomial of degree 3 in a. It turns out that $\frac{\partial^{4}}{\partial a^{4}} G(a, b) \geq 0$ for every $a, b \geq 0$. It follows from the following observation.

Lemma 3

Let $f(x)=(x+a)^{\gamma}(x+b)^{\delta}$, where $a, b \geq 0$ and $\gamma+\delta=m \in \mathbb{N}$. Then $(m+1)$-th derivative of f has fixed sign on $[0, \infty)$. The sign of f is equal to $\operatorname{sgn}(\gamma(\gamma-1) \cdots(\gamma-m)) \operatorname{sgn}\left((b-a)^{m+1}\right)$.

Finishing the proof

Now it suffices to prove the following:
(a) $\lim _{a \rightarrow \infty} \frac{\partial^{3}}{\partial a^{3}} G(a, b)=0$ for every $b \geq 0$,
(b) $\lim _{a \rightarrow \infty} \frac{\partial^{2}}{\partial a^{2}} G(a, b) \geq 0$ for every $b \geq 0$,
(c) $\left.\frac{\partial}{\partial a} G(a, b)\right|_{a=0} \geq 0$ for every $b \geq 0$,
(d) $G(0, b) \geq 0$ for every $b \geq 0$.

Finishing the proof

Now it suffices to prove the following:
(a) $\lim _{a \rightarrow \infty} \frac{\partial^{3}}{\partial a^{3}} G(a, b)=0$ for every $b \geq 0$,
(b) $\lim _{a \rightarrow \infty} \frac{\partial^{2}}{\partial a^{2}} G(a, b) \geq 0$ for every $b \geq 0$,
(c) $\left.\frac{\partial}{\partial a} G(a, b)\right|_{a=0} \geq 0$ for every $b \geq 0$,
(d) $G(0, b) \geq 0$ for every $b \geq 0$.

With those claims, combined with $\frac{\partial^{4}}{\partial a^{4}} G(a, b) \geq 0$, we get one by one

$$
\frac{\partial^{3} G}{\partial a^{3}} \leq 0, \quad \frac{\partial^{2} G}{\partial a^{2}} \geq 0, \quad \frac{\partial G}{\partial a} \geq 0, \quad G \geq 0
$$

Extension to the non-symmetric case

We can partially extend our inequality to general, not necessarily even, log-concave densities. To that end, we use the following result.

Theorem 4 (Melbourne, Tkocz, 2021)

Let X and Y be iid log-concave random variables in \mathbb{R}. If $\alpha \in[2, \infty]$, then

$$
h_{\alpha}(X-Y) \leq h_{\alpha}(X)+\log 2
$$

with equality when X has exponential distribution $\mathbf{1}_{(0, \infty)}(x) e^{-x}$.

Extension to the non-symmetric case

We can partially extend our inequality to general, not necessarily even, log-concave densities. To that end, we use the following result.

Theorem 4 (Melbourne, Tkocz, 2021)

Let X and Y be iid log-concave random variables in \mathbb{R}. If $\alpha \in[2, \infty]$, then

$$
h_{\alpha}(X-Y) \leq h_{\alpha}(X)+\log 2
$$

with equality when X has exponential distribution $\mathbf{1}_{(0, \infty)}(x) e^{-x}$.

Corollary 5

Let X be a log-concave random variable in \mathbb{R} and let $\alpha \geq 2$. Then

$$
h_{\alpha}(X) \geq \frac{1}{2} \log \operatorname{Var}(X)+\frac{\log \alpha}{\alpha-1}
$$

with equality for one-sided exponential variable.

