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Definition of the Rényi entropy

For a random variable X with density f its Rényi entropy of order
a € (0,00) \ {1} is defined as

ha(X) = ha(f) = - ! ~log </ f“(x)dx) ,

assuming that the integral converges.

Maciej Biatobrzeski 2/13



Definition of the Rényi entropy

For a random variable X with density f its Rényi entropy of order
a € (0,00) \ {1} is defined as

ha(X) = ha(f) = - ! ~log </ fa(x)dx> ,

assuming that the integral converges.

When o — 1, we recover in the limit the usual Shannon differential
entropy h(f) = hi(f) = — [ flog f. Another limiting cases are

ho(f) = log | supp f|,
hoo(f) = —log ||f]|co-
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Bounding Rényi entropy by variance

It is a well known fact that for any random variable with density f one
has

1 1
h(f) < 5 log Var(f) + 5 log(2me)

with equality only for Gaussian random variables.

Proof: by inequality log x > x — 1 we have [ flog(f/g) > 0 for any
densities 7, g. If g is a gaussian density of the same variance as f,

then [ flogg = —h(g).
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Bounding Rényi entropy by variance

It is a well known fact that for any random variable with density f one
has ) )
h(f) < 5 log Var(f) + 5 log(2me)

with equality only for Gaussian random variables.

Proof: by inequality log x > x — 1 we have [ flog(f/g) > 0 for any
densities 7, g. If g is a gaussian density of the same variance as f,
then [ flogg = —h(g).

For o € (%, 00) \ {1} the maximizer of Rényi entropy under fixed
variance is of the form

f(x) =co(l+ (1 —a)(ax)®)" (Lutwak, Yang, Zhang, 2005).
For a < % the supremum of h, under fixed variance is infinite.
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Reverse bounds

For density f,(x) = 51[1,14n-1](|x|) variance stays bounded, whereas
ha(fy) — —oo for any « € [0, o0].

We will consider the problem of minimizing Rényi entropy under fixed
variance in the class of log-concave densities.

A random variable X is log-concave, if it has density of the form e~V

where V : R — (—o00, 0] is convex.
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Main theorem

Let X be a symmetric log-concave random variable in R and oo > 0, o # 1.
Define o* to be the unique solution to the equation ﬁ logar = % log 6
(" =~ 1.241). Then

1
ha(X) > = log Var(X) + 5 log 12 for a < o

N =

and
log «

1 1
ha(X) > 5IogVar(X)+§Iog2+ fora > o*.

The only cases of equality are uniform random variable on a symmetric
interval for o < o* and two-sided exponential distribution for o > o*.
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Preliminary simplifications

The following well known lemma reduces Theorem 1 to the case a = o*.

Lemma 2 (Fradelizi, Madiman, Wang, 2015)

Let f be a log-concave probability density in R". Then for any p > q > 0
we have

log g log p
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Preliminary simplifications

By an approximation argument it is enough to show that for every o, L > 0

we have
Iog a*

17

inf{ha=(f) : f € A} >logo + = Iog2+

where A = {f : Var(f) = o2, supp(f) C [—L, L]}.
Furthermore, the infimum is attained on A.
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Degrees of freedom

The degree of freedom (Fradelizi, Guédon, 2000) of a log-concave
function g : R — [0, 00) is the largest integer k such that there exist
0 > 0 and linearly independent continuous functions hy, ..., hy defined
on {x € R, g(x) > 0} such that for every (e1,...,cx) € [-6,5]* the
function g + Zle eih; is log-concave.
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Degrees of freedom

The degree of freedom (Fradelizi, Guédon, 2000) of a log-concave
function g : R — [0, 00) is the largest integer k such that there exist
0 > 0 and linearly independent continuous functions hy, ..., hy defined
on {x € R, g(x) > 0} such that for every (e1,...,cx) € [-6,5]* the
function g + Zf-;l eih; is log-concave.

Fact: if V : (a,b) — R is a convex function, then the degree of
freedom of e~V is k + 1 if and only if there exist k (and not less than

k) affine functions ¢1,. .., ¢k such that
V= 12?§)(k Pi-
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Minimizer has low degree of freedom

Suppose that £ € A has more than two degrees of freedom, so
f 4+ e1hy + exhy + £3h3 is log-concave for some linearly independent
h1, hy, h3 and every (g1,¢2,€3) € [0, 0]3. Then the system of

equations
81/h1+€2/h2+€3/h3:0
81/X2h1+€2/X2h2+83/X2h3 =0

has space of solutions of dimension at least 1, hence there are
(11, m2,m3) € [0, 0] such that i = f +n1hy + n2hy +3h3 and
- =1f—mn1hi —mhy — n3hs are both members of A and f # f_.
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Minimizer has low degree of freedom

Suppose that £ € A has more than two degrees of freedom, so
f 4+ e1hy + exhy + £3h3 is log-concave for some linearly independent
h1, hy, h3 and every (g1,¢2,€3) € [0, 0]3. Then the system of

equations
81/h1+€2/h2+€3/h3:0
81/X2h1+€2/X2h2+83/X2h3 =0

has space of solutions of dimension at least 1, hence there are
(11, m2,m3) € [0, 0] such that i = f +n1hy + n2hy +3h3 and
- =1f—mn1hi —mhy — n3hs are both members of A and f # f_.

Then, by strict concavity of x — x*,

. 1 1\ 1 .1 .
For = “f 4+ Zf Sl T
/ /<2++2 > <2/++2/—’

so f cannot be the minimizer.
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Two-point form of the inequality
It follows that the minimizer of Rényi entropy in A must have at most
two degrees of freedom, so it is of the form
f(x) = clg o (x]) + ce =21, L p(]x)),

where a+ b< L, c>0, a,b,v>0 and also f f = 1. We can restrict
ourselves to such densities.
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Two-point form of the inequality

It follows that the minimizer of Rényi entropy in A must have at most
two degrees of freedom, so it is of the form

F(x) = cLpp q(IxI) + ce =21, Ly (1),

where a+ b< L, c>0, a,b,v>0 and also f f = 1. We can restrict
ourselves to such densities.

The inequality we are left to prove is

1-3a*

G(a,b) = (230" +1— e @ P)TFam (a 41— e b)Tor

3 b
- <3 +/ (x + a)2e_de> >0
0
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Fixed sign of fourth derivative

G(a,b) = (2aa” +1 — e—a*b)ﬁ(a +1-— e—b)%

3 b
- (? -I-/ (x + a)ze_xdx> >0
0

Note that the second term is polynomial of degree 3 in a. It turns out

4 .
that %G(a, b) > 0 for every a, b > 0. It follows from the following
observation.
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Fixed sign of fourth derivative

G(a,b) = (2ac* +1 — *o‘b)la(a—f-l—e b)la

3 b
- <3 ~|—/ (x + a)ze_xdx> >0
0

Note that the second term is polynomial of degree 3 in a. It turns out

4 .
that %G(a, b) > 0 for every a, b > 0. It follows from the following
observation.

Let f(x) = (x + a)?(x + b)°, where a,b >0 and v+ = m € N. Then
(m + 1)-th derivative of f has fixed sign on [0,00). The sign of f is equal

to sgn(v(y —1) -~ (v — m))sgn((b — a)™*?).

Maciej Biatobrzeski 11/13



Finishing the proof

Now it suffices to prove the following:

(a) lima—oo 5933 G(a, b) = 0 for every b > 0,
(b) I|ma_>oo 557 G(a b) > 0 for every b > 0,
() G(a, b) |a=0> 0 for every b > 0,

(d) (O b) > 0 for every b > 0.
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Finishing the proof

Now it suffices to prove the following:

(a) lima—oo 5963 G(a, b) = 0 for every b > 0,

(b) lim, 00 2 557 G(a b) > 0 for every b > 0,

(c) (%G(a b) |a=0> 0 for every b >0,

(d) G(0,b) > 0 for every b > 0.

With those claims, combined with %G(a, b) > 0, we get one by one
0G 0°G 0G
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Extension to the non-symmetric case

We can partially extend our inequality to general, not necessarily even,
log-concave densities. To that end, we use the following result.

Theorem 4 (Melbourne, Tkocz, 2021)

Let X and Y be iid log-concave random variables in R. If a € [2, 0], then
ha(X — Y) < ha(X) + log 2

with equality when X has exponential distribution 1y .o)(x)e™.
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Extension to the non-symmetric case

We can partially extend our inequality to general, not necessarily even,
log-concave densities. To that end, we use the following result.

Theorem 4 (Melbourne, Tkocz, 2021)

Let X and Y be iid log-concave random variables in R. If a € [2, 0], then
ha(X — Y) < ha(X) + log 2

with equality when X has exponential distribution 1y .o)(x)e™.

Corollary 5

Let X be a log-concave random variable in R and let o > 2. Then

log o
a—1

1
ha(X) > 2 log Var(X) +

with equality for one-sided exponential variable.
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