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De�nition of the Rényi entropy

For a random variable X with density f its Rényi entropy of order

α ∈ (0,∞) \ {1} is de�ned as

hα(X ) = hα(f ) =
1

1− α
log

(∫
f α(x)dx

)
,

assuming that the integral converges.

When α → 1, we recover in the limit the usual Shannon di�erential

entropy h(f ) = h1(f ) = −
∫
f log f . Another limiting cases are

h0(f ) = log | supp f |,

h∞(f ) = − log ||f ||∞.
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Bounding Rényi entropy by variance

It is a well known fact that for any random variable with density f one

has

h(f ) ≤ 1

2
log Var(f ) +

1

2
log(2πe)

with equality only for Gaussian random variables.

Proof: by inequality log x ≥ x − 1 we have
∫
f log(f /g) ≥ 0 for any

densities f , g . If g is a gaussian density of the same variance as f ,
then

∫
f log g = −h(g).

For α ∈
(
1

3
,∞

)
\ {1} the maximizer of Rényi entropy under �xed

variance is of the form

f (x) = c0(1+ (1− α)(c1x)
2)

1
α−1

+ (Lutwak, Yang, Zhang, 2005).

For α ≤ 1

3
the supremum of hα under �xed variance is in�nite.
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Reverse bounds

For density fn(x) =
n
2
1[1,1+n−1](|x |) variance stays bounded, whereas

hα(fn) → −∞ for any α ∈ [0,∞].
We will consider the problem of minimizing Rényi entropy under �xed

variance in the class of log-concave densities.

A random variable X is log-concave, if it has density of the form e−V ,

where V : R → (−∞,∞] is convex.
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Main theorem

Theorem 1

Let X be a symmetric log-concave random variable in R and α > 0, α ̸= 1.

De�ne α∗ to be the unique solution to the equation 1

α−1
logα = 1

2
log 6

(α∗ ≈ 1.241). Then

hα(X ) ≥ 1

2
log Var(X ) +

1

2
log 12 for α ≤ α∗

and

hα(X ) ≥ 1

2
log Var(X ) +

1

2
log 2+

logα

α− 1
for α ≥ α∗.

The only cases of equality are uniform random variable on a symmetric

interval for α ≤ α∗ and two-sided exponential distribution for α ≥ α∗.
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Preliminary simpli�cations

The following well known lemma reduces Theorem 1 to the case α = α∗.

Lemma 2 (Fradelizi, Madiman, Wang, 2015)

Let f be a log-concave probability density in Rn. Then for any p ≥ q > 0

we have

0 ≤ hq(f )− hp(f ) ≤ n
log q

q − 1
− n

log p

p − 1
.
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Preliminary simpli�cations

By an approximation argument it is enough to show that for every σ, L > 0

we have

inf{hα∗(f ) : f ∈ A} ≥ log σ +
1

2
log 2+

logα∗

α∗ − 1
,

where A = {f : Var(f ) = σ2, supp(f ) ⊂ [−L, L]}.
Furthermore, the in�mum is attained on A.
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Degrees of freedom

The degree of freedom (Fradelizi, Guédon, 2000) of a log-concave

function g : R → [0,∞) is the largest integer k such that there exist

δ > 0 and linearly independent continuous functions h1, . . . , hk de�ned

on {x ∈ R, g(x) > 0} such that for every (ε1, . . . , εk) ∈ [−δ, δ]k the

function g +
∑k

i=1
εihi is log-concave.

Fact: if V : (a, b) → R is a convex function, then the degree of

freedom of e−V is k + 1 if and only if there exist k (and not less than

k) a�ne functions ϕ1, . . . , ϕk such that

V = max
1≤i≤k

ϕi .
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Minimizer has low degree of freedom

Suppose that f ∈ A has more than two degrees of freedom, so

f + ε1h1 + ε2h2 + ε3h3 is log-concave for some linearly independent

h1, h2, h3 and every (ε1, ε2, ε3) ∈ [−δ, δ]3. Then the system of

equations

ε1

∫
h1 + ε2

∫
h2 + ε3

∫
h3 = 0

ε1

∫
x2h1 + ε2

∫
x2h2 + ε3

∫
x2h3 = 0

has space of solutions of dimension at least 1, hence there are

(η1, η2, η3) ∈ [−δ, δ]3 such that f+ = f + η1h1 + η2h2 + η3h3 and

f− = f − η1h1 − η2h2 − η3h3 are both members of A and f+ ̸= f−.

Then, by strict concavity of x → xα
∗
,∫

f α
∗
=

∫ (
1

2
f+ +

1

2
f−

)α∗

<
1

2

∫
f α

∗
+ +

1

2

∫
f α

∗
− ,

so f cannot be the minimizer.
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Two-point form of the inequality

It follows that the minimizer of Rényi entropy in A must have at most

two degrees of freedom, so it is of the form

f (x) = c1[0,a](|x |) + ce−γ(|x |−a)
1[a,a+b](|x |),

where a+ b ≤ L, c > 0, a, b, γ ≥ 0 and also
∫
f = 1. We can restrict

ourselves to such densities.

The inequality we are left to prove is

G (a, b) = (2aα∗ + 1− e−α∗b)
2

1−α∗ (a+ 1− e−b)
1−3α∗
1−α∗

−
(
a3

3
+

∫ b

0

(x + a)2e−x
dx

)
≥ 0

Maciej Biaªobrzeski 10 / 13



Two-point form of the inequality

It follows that the minimizer of Rényi entropy in A must have at most

two degrees of freedom, so it is of the form

f (x) = c1[0,a](|x |) + ce−γ(|x |−a)
1[a,a+b](|x |),

where a+ b ≤ L, c > 0, a, b, γ ≥ 0 and also
∫
f = 1. We can restrict

ourselves to such densities.

The inequality we are left to prove is

G (a, b) = (2aα∗ + 1− e−α∗b)
2

1−α∗ (a+ 1− e−b)
1−3α∗
1−α∗

−
(
a3

3
+

∫ b

0

(x + a)2e−x
dx

)
≥ 0

Maciej Biaªobrzeski 10 / 13



Fixed sign of fourth derivative

G (a, b) = (2aα∗ + 1− e−α∗b)
2

1−α∗ (a+ 1− e−b)
1−3α∗
1−α∗

−
(
a3

3
+

∫ b

0

(x + a)2e−x
dx

)
≥ 0

Note that the second term is polynomial of degree 3 in a. It turns out
that ∂4

∂a4
G (a, b) ≥ 0 for every a, b ≥ 0. It follows from the following

observation.

Lemma 3

Let f (x) = (x + a)γ(x + b)δ, where a, b ≥ 0 and γ + δ = m ∈ N. Then

(m + 1)-th derivative of f has �xed sign on [0,∞). The sign of f is equal

to sgn(γ(γ − 1) · · · (γ −m)) sgn((b − a)m+1).
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Finishing the proof

Now it su�ces to prove the following:

(a) lima→∞
∂3

∂a3
G (a, b) = 0 for every b ≥ 0,

(b) lima→∞
∂2

∂a2
G (a, b) ≥ 0 for every b ≥ 0,

(c) ∂
∂aG (a, b) |a=0≥ 0 for every b ≥ 0,

(d) G (0, b) ≥ 0 for every b ≥ 0.

With those claims, combined with ∂4

∂a4
G (a, b) ≥ 0, we get one by one

∂3G

∂a3
≤ 0,

∂2G

∂a2
≥ 0,

∂G

∂a
≥ 0, G ≥ 0.
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Extension to the non-symmetric case
We can partially extend our inequality to general, not necessarily even,

log-concave densities. To that end, we use the following result.

Theorem 4 (Melbourne, Tkocz, 2021)

Let X and Y be iid log-concave random variables in R. If α ∈ [2,∞], then

hα(X − Y ) ≤ hα(X ) + log 2

with equality when X has exponential distribution 1(0,∞)(x)e
−x .

Corollary 5

Let X be a log-concave random variable in R and let α ≥ 2. Then

hα(X ) ≥ 1

2
log Var(X ) +

logα

α− 1

with equality for one-sided exponential variable.
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