
Towards multi-dimensional localisation

Krzysztof Ciosmak
Fields Institute
University of Toronto

11th-16th of June, 2023, High Dimensional Probability, Banach Centre



Payne and Weinberger approach to Poincaré inequality – hyperplane bisections
Motivating example from 1960

I Suppose K ⊂ Rn is a closed convex set and let f ∈ C1(K ) be such
that

∫
K
f dµ = 0 for a log-concave measure µ on K .

I Then

λK

∫
K

f 2 dµ ≤
∫
K

‖∇f ‖2 dµ

for some λK ≥ π2

(diamK)2 .

I By the Borsuk–Ulam theorem, if
∫
K
f dµ = 0, then there exists a

hyperplane H such that
∫
K∩H+

f dµ =
∫
K∩H− f dµ = 0.

H+ H−

K

v

H = v⊥

F (v)=
∫
H+∩K f dµ

I It suffices to prove the inequality for K ∩ H+ and K ∩ H−.

I Reduction can be done as long as dimK ≥ 2.

I This procedure produces a measurable partition and conditional
measures of µ with respect to the partition are log-concave.

I Therefore, it suffices to prove the inequality in the one-dimensional
case.
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Background
Localisation technique

I The localisation technique in convex geometry reduces an
n-dimensional problem to a collection of one-dimensional problems.

I Applications include geometric and functional inequalities.

I In 2014 Klartag came up with an idea how to generalise the
technique to Riemannian manifolds.

I The generalisation used optimal transport with respect to the metric
cost function.

I It has been conjectured by Klartag that it can be generalised to
multiple constraints setting.

I Ohta generalised the technique to Finsler manifolds and Cavalletti
and Mondino generalised it to metric measure spaces.
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Optimal transport
One-dimensional localisation

I Let (M, d , µ) be an n-dimensional weighted Riemannian manifold.
Assume that f : M → R has null-integral and that d(·, x0)f (·) is
µ-integrable.

I Consider the problem of optimal transport of dη1 = f+ dµ to
dη2 = f− dµ with metric cost.

I The Kantorovich–Rubinstein duality gives us a more useful way to
look at the problem. It tells that the minimal cost coincides with

max
{∫

M

ufdµ
∣∣u : M → R is 1-Lipschitz

}
.
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Partition and disintegration
One-dimensional localisation

I Let v : M → R be a maximiser.
T ⊂ M – is a transport ray if it is a maximal set such that v |T is an
isometry.
A – is a transport set if it is a Borel union of some transport rays.

v(x) = ‖x‖

I Then
∫
A
fdµ = 0 for any transport set A.

I Transport rays partition M into minimising geodesics, up to a null
set.

I We may disintegrate µ with respect to this partition

µ =

∫
I
µT dν(T ).

I It follows that
∫
M
fdµT = 0 for ν-almost every T .
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Curvature-dimension condition CD(κ,N)
Generalisation of log-concavity

I If µ is defined on Rn and is log-concave, then ν-almost every µT is
log-concave. Moreover it is concentrated on intT .

I CD(κ,N) may be understood as a condition that the Ricci curvature
is bounded from below and the dimension is bounded from above.

I If µ is satisfies CD(κ,N), then ν-almost every µT is satisfies
CD(κ,N).
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Generalisation to multiple constraints
Multi-dimensional localisation

I The above method was applied to problems with one linear
constraint.

I Namely, for a weighted Riemannian manifold (M, d , µ) and a
function f we assumed that

∫
M
f dµ = 0.

I Suppose that for some functions f1, . . . , fm we have
∫
M
fi dµ = 0 for

i = 1, . . . ,m. Does there exist a partition of M into m-dimensional
pieces for which the related conditional measures would have zero
integrals against f1, . . . , fm? Would it be possible for the pieces to
retain the curvature-dimension properties of (M, d , µ)?

I Possible applications would include bounds for higher-order
eigenvalues of Laplacian, multi-bubble problems, etc.

I Such generalisation was conjectured by Klartag to hold true in
Euclidean spaces.
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Conjecture – mass-balance condition
Multi-dimensional case

I Let η be an Rm-valued vector-measure on Rn with finite first
moment and such that η(Rn) = 0.

I For example, dη = (f1, . . . , fm) dµ.

I Consider an optimisation problem

sup
{∫

Rn

〈u, dη〉 | u : Rn → Rm is 1-Lipschitz
}
.

I Let v : Rn → Rm be a maximiser.
S ⊂ Rn – is a leaf if it is a maximal set such that v |S is an isometry.
A – is a transport set if it is a Borel union of some leaves of v .

I Suppose η � λ. It was conjectured by Klartag that η(A) = 0 for
any transport set A.
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Extensions of 1-Lipschitz functions
One-dimensional case

Theorem (C.)

I Let A ⊂ Rn and let v : Rn → R and u : A→ R be 1-Lipschitz
functions.

I Then there exists a 1-Lipschitz extension ũ of u such that
‖u − v‖A,∞ = ‖ũ − v‖Rn,∞.

Proof.

I Let ũ′ be any 1-Lipschitz extension of u to Rn. Let δ = ‖u − v‖A,∞.

I Take ũ = ũ′ ∨ (v − δ) ∧ (v + δ).

Using the above theorem, one may show that if v is an optimal potential
for f dµ, then for any transport set A ⊂ M,

∫
A
f dµ = 0.
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Proof.
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Kirszbraun theorem
Multi-dimensional case

Theorem (Kirszbraun, ’34)
Let X ⊂ Rn and let v : X → Rm be a 1-Lipschitz map. Then there exists
a 1-Lipschitz extension of v to Rn.
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Mass balance condition (C.)
Multi-dimensional case

I We shall show that the mass balance condition does not hold in
multi-dimensional case m ≥ 2. Suppose on the contrary that it does.

I Choose any pairwise distinct x1, x2, x3 ∈ Rn and v1, v2, v3 ∈ Rm in
general position, with

∑3
i=1 vi = 0.

I Let ν0 =
∑3

i=1 viδxi . For ε > 0 set νε = 1
λ(B(0,ε))

∑3
i=1 viλB(xi ,ε).

I Choose maximisers uε for νε. Then νε(Bε) = 0 for any transport set
associated with uε.

I νε has to be concentrated on transport set of uε consisting of leaves
of dimension at least one.

I For i = 1, 2, 3 let Niε be the set of all non-trivial leaves intersecting
B(xi , ε). Then νε(Niε) = 0.

I This implies that λ(B(xj , ε) ∩ Niε) 6= 0 for i , j = 1, 2, 3.

I Hence, there exist (xεrs , x
ε
sr ) ∈ B(xr , ε)× B(xs , ε) such that

‖uε(xεrs)− uε(x
ε
sr )‖ = ‖xεrs − xεsr‖.
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Mass balance condition (C.)
Multi-dimensional case

I Then, up to a subsequence, uε converges locally uniformly to a
maximiser u0 for ν0.

I By uniform convergence, u0 is an isometry on {x1, x2, x3}.
I We may take x2 = tx1 + (1− t)x3 for some t ∈ (0, 1). Then any

1-Lipschitz map f that is isometric on {x1, x2, x3} has to satisfy
f (x2) = tf (x1) + (1− t)f (x3).

I Indeed, by the isometric property we have equality in the triangle
inequality ‖f (x3)− f (x1)‖ ≤ ‖f (x2)− f (x1)‖+ ‖f (x3)− f (x2)‖.
Strict convexity of balls in Rm implies that assertion.

I We extend u0 to an affine 1-Lipschitz map on Rn.

I We infer that for any 1-Lipschitz u

3∑
i=1

〈u(xi ), vi 〉 ≤ sup
{ 3∑

i=1

〈f (xi ), vi 〉 | f is affine and 1-Lipschitz
}
.
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Mass balance condition (C.)
Multi-dimensional case

I By the density of vectors in general position, we infer that for any
1-Lipschitz u and any w1,w2,w3 ∈ R3 that sum up to zero there is

3∑
i=1

〈u(xi ),wi 〉 ≤ sup
{ 3∑

i=1

〈f (xi ),wi 〉 | f is affine and 1-Lipschitz
}
.

I Take w2 = v , v1 = −tv and w3 = −(1− t)v for t as before.

I It follows that 〈u(x2)− tu(x1)− (1− t)u(x3), v〉 ≤ 0 for all
1-Lipschitz u and all v ∈ Rm. We infer that any Lipschitz u is affine:
a contradiction.

I The same ideas allow to show that similar result for any norm on Rn

and a strictly convex norm on Rm. Also, similar conclusion will follow

if we replace sup
{∫

Rm〈u, dµ〉 | u : Rn → Rm is 1-Lipschitz
}
, by

maximisation over any uniformly closed subset of 1-Lipschitz maps.

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 13



Mass balance condition (C.)
Multi-dimensional case

I By the density of vectors in general position, we infer that for any
1-Lipschitz u and any w1,w2,w3 ∈ R3 that sum up to zero there is

3∑
i=1

〈u(xi ),wi 〉 ≤ sup
{ 3∑

i=1

〈f (xi ),wi 〉 | f is affine and 1-Lipschitz
}
.

I Take w2 = v , v1 = −tv and w3 = −(1− t)v for t as before.

I It follows that 〈u(x2)− tu(x1)− (1− t)u(x3), v〉 ≤ 0 for all
1-Lipschitz u and all v ∈ Rm. We infer that any Lipschitz u is affine:
a contradiction.

I The same ideas allow to show that similar result for any norm on Rn

and a strictly convex norm on Rm. Also, similar conclusion will follow

if we replace sup
{∫

Rm〈u, dµ〉 | u : Rn → Rm is 1-Lipschitz
}
, by

maximisation over any uniformly closed subset of 1-Lipschitz maps.

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 13



Mass balance condition (C.)
Multi-dimensional case

I By the density of vectors in general position, we infer that for any
1-Lipschitz u and any w1,w2,w3 ∈ R3 that sum up to zero there is

3∑
i=1

〈u(xi ),wi 〉 ≤ sup
{ 3∑

i=1

〈f (xi ),wi 〉 | f is affine and 1-Lipschitz
}
.

I Take w2 = v , v1 = −tv and w3 = −(1− t)v for t as before.

I It follows that 〈u(x2)− tu(x1)− (1− t)u(x3), v〉 ≤ 0 for all
1-Lipschitz u and all v ∈ Rm. We infer that any Lipschitz u is affine:
a contradiction.

I The same ideas allow to show that similar result for any norm on Rn

and a strictly convex norm on Rm. Also, similar conclusion will follow

if we replace sup
{∫

Rm〈u, dµ〉 | u : Rn → Rm is 1-Lipschitz
}
, by

maximisation over any uniformly closed subset of 1-Lipschitz maps.

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 13



Mass balance condition (C.)
Multi-dimensional case

I By the density of vectors in general position, we infer that for any
1-Lipschitz u and any w1,w2,w3 ∈ R3 that sum up to zero there is

3∑
i=1

〈u(xi ),wi 〉 ≤ sup
{ 3∑

i=1

〈f (xi ),wi 〉 | f is affine and 1-Lipschitz
}
.

I Take w2 = v , v1 = −tv and w3 = −(1− t)v for t as before.

I It follows that 〈u(x2)− tu(x1)− (1− t)u(x3), v〉 ≤ 0 for all
1-Lipschitz u and all v ∈ Rm. We infer that any Lipschitz u is affine:
a contradiction.

I The same ideas allow to show that similar result for any norm on Rn

and a strictly convex norm on Rm. Also, similar conclusion will follow

if we replace sup
{∫

Rm〈u, dµ〉 | u : Rn → Rm is 1-Lipschitz
}
, by

maximisation over any uniformly closed subset of 1-Lipschitz maps.

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 13



Optimal transport of vector measures (C.)
Primal problem and duality

I Let η be an Rm-valued measure on Rn, η(Rn) = 0.

I The optimisation problem above admits a primal problem:

I(η) = inf

{∫
Rn×Rn

‖x − y‖d‖π‖(x , y)
∣∣∣π ∈ Γ(η)

}
.

I Here Γ(η) is the set of vector measures π on Rn × Rn such that
η = P1π − P2π.

Theorem (C.)

I(η) = sup
{∫

Rn

〈u, dη〉
∣∣u : X → Rm is 1-Lipschitz

}
.

The same holds true for metric spaces (X , d) in lieu of (Rn, ‖·‖). This
generalises the result for m = 1, where one can take π to be a
non-negative measure with P1π = µ1 and P2π = µ2, µ = µ1 − µ2.
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Optimal transport of vector measures
Mass-balance condition

Theorem (C.)

I Suppose that η is absolutely continuous and has finite first moment,
η(Rn) = 0.

I Let v be an optimal potential for η.

I Then the following conditions are equivalent:

1. there exists an optimal transport π ∈ Γ(η),
2. for any transport set A associated to v there is η(A) = 0.
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Disintegration (C.)
Curvature-dimension condition

I Leaves of a 1-Lipschitz map v form a partition of Rn, up to a
Lebesgue null set.

I Moreover, they are all closed and convex, of dimension at most m.

I We may disintegrate η with respect to this partition

η =

∫
I
ηSdν(S).

I If η satisfies CD(κ,N), then for ν-almost every S of dimension m,
ηS satisfies CD(κ,N). Moreover it is concentrated on intS.

I This partially resolves another conjecture of Klartag, in the
affirmative.

I The idea of proof of CD(κ,N) for conditional measures on leaves
builds upon work of Caffarelli, Feldman and McCann.
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Ghost subspaces (C.)
Work in progress

I How does the situation differ for leaves of dimension strictly less
than m?

I The derivative Dv(x), for x ∈ intS, is an isometry on the tangent
space V of S, independent on the choice of x .

I But, it may be an isometry on a strictly larger subspace.

I There exists the maximal subspace G on which Dv(x) is
isometric and independent on the choice of x on the leaf.

S

q xw

V

I Such a subspace is termed ghost subspace. A ghost subspace is
called trivial whenever it is equal to the tangent space to a leaf.

I If the ghost subspace for S is trivial then ηS � HdimS .

I If all the ghost subspaces for an optimal potential for a vector
measure η are trivial, then there exists an optimal transport and the
mass-balance condition holds true.
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Continuity of extensions
Multi-dimensional case

How the extension properties in the multi-dimensional setting differ from
the one-dimensional setting?

Theorem (C.)
Let m ≥ 2, v : Rn → Rm. The following conditions are equivalent:

i) for any A ⊂ Rn and for any 1-Lipschitz map u : A→ Rm there exists
1-Lipschitz extension ũ : Rn → Rm of u such that

‖v − ũ‖Rn,∞ = ‖v − u‖A,∞.

ii) v is affine and 1-Lipschitz.
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Thank you for your attention.
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2020

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 19



Mass balance condition
One-dimensional case, relation to extensions of 1-Lipschitz maps

I Let v attain max
{∫

M
ufdµ | u : M → R is 1− Lipschitz

}
.

I Take a transport set A ⊂ M, ε > 0, and a compact K ⊂ A with∫
K c∩A|f |dµ ≤ ε. Pick δ > 0 and set uδ,0 = v + δ on K and uδ,0 = v

on

Kδ = {x ∈ M | δ ≤ ‖x − y‖ − |v(x)− v(y)| for all y ∈ K}.

Then it is 1-Lipschitz and within δ-distance to v . We may extend it
to M to uδ, which is 1-Lipschitz and within δ-distance to v .

A
K

Kδ
uδ,0=v

uδ,0=v+δ

I Observe that Ac =
⋃
δ>0 Kδ ∪ B. Here B is the

set of points belonging to at least two transport
rays of v ; λ(B) = 0 – v is not differentiable on B.

I Moreover
∫
M

v−uδ
δ fdµ ≥ 0. Sending δ to zero, we

get
∫
A
fdµ ≥ −2ε. Similarly,

∫
A

(−f )dµ ≥ 0.
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Idea of the proof (C.)
Foliation

I The formula F (a, b) = r(a) + Dv(r(a))∗(b), where a ∈ Rn−m and
b ∈ Rm, provides a local diffeomorphism, which is linear on the
images of leaves of v . Here r is a local parametrisation of a fibre.

F

v=const
q(a,0)

q(a,b) qr(a)

qF (a,b)
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Idea of the proof (C.)
Foliation, continuation

I Let P(x) denote the orthogonal projection onto the tangent space to
the leaf containing x .

I By the area formula and Fubini theorem, the density on the leaves
needs to be multiplied by |det(Id + P⊥D2v∗(P⊥·)(b))|. Notice the
relation to the second fundamental form of the fibre of v .

I In the relative interiors of m-dimensional leaves Dv is Lipschitz:

2σ2‖Dv(x1)− Dv(x2)‖2 ≤ ‖x1 − x2‖2 − ‖v(x1)− v(x2)‖2
,

where σ = min(d(x1, ∂S(x1)),d(x2, ∂S(x2))).
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I In the relative interiors of m-dimensional leaves Dv is Lipschitz:

2σ2‖Dv(x1)− Dv(x2)‖2 ≤ ‖x1 − x2‖2 − ‖v(x1)− v(x2)‖2
,

where σ = min(d(x1, ∂S(x1)),d(x2, ∂S(x2))).
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Continuity of extensions
Arbitrary subsets of Rn

Theorem (C.)

I Let A ⊂ X ⊂ Rn. Suppose that v : X → Rm is such that for all
non-negative t1, . . . , tm that sum up to one and all x , x1, . . . , xm ∈ X
there is ∥∥∥v(x)−

m∑
i=1

tiv(xi )
∥∥∥ ≤ ∥∥∥x − m∑

i=1

tixi

∥∥∥.

I Suppose that u : A→ Rm is 1-Lipschitz.

I Then there exists 1-Lipschitz extension ũ : X → Rm of u such that
‖v − ũ‖X ,∞ = ‖v − u‖A,∞.

The converse is proven for m = 1, 2, 3.
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‖v − ũ‖X ,∞ = ‖v − u‖A,∞.

The converse is proven for m = 1, 2, 3.

Krzysztof Ciosmak 11-16.06.2023 Towards multi-dimensional localisation 23



Continuity of extensions
Arbitrary subsets of Rn

Theorem (C.)

I Let A ⊂ X ⊂ Rn. Suppose that v : X → Rm is such that for all
non-negative t1, . . . , tm that sum up to one and all x , x1, . . . , xm ∈ X
there is ∥∥∥v(x)−

m∑
i=1

tiv(xi )
∥∥∥ ≤ ∥∥∥x − m∑

i=1

tixi

∥∥∥.
I Suppose that u : A→ Rm is 1-Lipschitz.

I Then there exists 1-Lipschitz extension ũ : X → Rm of u such that
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Rate of continuity

Let A ⊂ B ⊂ Rn, v : Rn → Rm be 1-Lipschitz. Set

dv (A,B) = sup{‖v(x)− v(y)‖|x ∈ A, y ∈ B}.

Theorem (C.)

I Let u : A→ Rm be 1-Lipschitz.

I Assume that ‖u(x)− v(x)‖ ≤ δ for x ∈ A.

I Then there exists a 1-Lipschitz map ũ : B → Rm such that
ũ(x) = u(x) for x ∈ A and

‖v(x)− ũ(x)‖ ≤
√
δ2 + 2δdv (A,B)

for all x ∈ B.
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Rate of continuity
Proof

Proof.

I The idea is to bootstrap the Kirszbraun theorem.

I On A× {0} ∪ B × {ε} ⊂ Rn+1 we define w so that w(x , 0) = u(x)
for x ∈ A and w(x , ε) = v(x) for x ∈ B.

I If we take ε =
√
δ2 + 2δdv (A,B), then w is 1-Lipschitz.

I Let w̃ be its 1-Lipschitz extension to Rn+1.

I Define ũ(x) = w̃(x , 0) for x ∈ Rn.

I Then for x ∈ B, ‖ũ(x)− v(x)‖ = ‖w̃(x , 0)− w(x , ε)‖ ≤ ε.
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I Define ũ(x) = w̃(x , 0) for x ∈ Rn.
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Optimality of the rate of continuity (C.)
Example

Let m > 1. Define u, v as in the picture, ‖x − y‖ = 2a, z = x+y
2 . Set

A = {x , y}, B = {x , y , z}.

u(x)

v(z)

u(y)ũ(z) = u(x)+u(y)
2

v(x) v(y)
δ δ

a

a

a

a

Then, for any 1-Lipschitz extension ũ of u to B we have

‖v(z)− ũ(z)‖ =
√
δ2 + 2δa.

If δ ≥ a, this is equal to
√
δ2 + 2δdv (A,B).
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‖v(z)− ũ(z)‖ =
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