Towards multi-dimensional localisation

Krzysztof Ciosmak
Fields Institute
University of Toronto
11th-16th of June, 2023, High Dimensional Probability, Banach Centre

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

- By the Borsuk-Ulam theorem, if $\int_{K} f d \mu=0$, then there exists a hyperplane H such that $\int_{\mathrm{K} \mathrm{\cap H}_{+}} f d \mu=\int_{K \cap H_{-}} f d \mu=0$.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

- By the Borsuk-Ulam theorem, if $\int_{K} f d \mu=0$, then there exists a hyperplane H such that $\int_{K \cap H_{+}} f d \mu=\int_{K \cap H_{-}} f d \mu=0$.
- It suffices to prove the inequality for $K \cap H_{+}$and $K \cap H_{-}$.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

- By the Borsuk-Ulam theorem, if $\int_{K} f d \mu=0$, then there exists a hyperplane H such that $\int_{K \cap H_{+}} f d \mu=\int_{K \cap H_{-}} f d \mu=0$.
- It suffices to prove the inequality for $K \cap H_{+}$and $K \cap H_{-}$.
- Reduction can be done as long as $\operatorname{dim} K \geq 2$.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections
Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

- By the Borsuk-Ulam theorem, if $\int_{K} f d \mu=0$, then there exists a hyperplane H such that $\int_{K \cap H_{+}} f d \mu=\int_{K \cap H_{-}} f d \mu=0$.
- It suffices to prove the inequality for $K \cap H_{+}$and $K \cap H_{-}$.
- Reduction can be done as long as $\operatorname{dim} K \geq 2$.
- This procedure produces a measurable partition and conditional measures of μ with respect to the partition are log-concave.

Payne and Weinberger approach to Poincaré inequality - hyperplane bisections
Motivating example from 1960

- Suppose $K \subset \mathbb{R}^{n}$ is a closed convex set and let $f \in \mathcal{C}^{1}(K)$ be such that $\int_{K} f d \mu=0$ for a log-concave measure μ on K.
- Then

$$
\lambda_{K} \int_{K} f^{2} d \mu \leq \int_{K}\|\nabla f\|^{2} d \mu
$$

for some $\lambda_{K} \geq \frac{\pi^{2}}{(\operatorname{diam} K)^{2}}$.

- By the Borsuk-Ulam theorem, if $\int_{K} f d \mu=0$, then there exists a hyperplane H such that $\int_{K \cap H_{+}} f d \mu=\int_{K \cap H_{-}} f d \mu=0$.
- It suffices to prove the inequality for $K \cap H_{+}$and $K \cap H_{-}$.
- Reduction can be done as long as $\operatorname{dim} K \geq 2$.
- This procedure produces a measurable partition and conditional measures of μ with respect to the partition are log-concave.
- Therefore, it suffices to prove the inequality in the one-dimensional case.

Background

Localisation technique

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.

Background

Localisation technique

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.
- Applications include geometric and functional inequalities.

Background

Localisation technique

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.
- Applications include geometric and functional inequalities.
- In 2014 Klartag came up with an idea how to generalise the technique to Riemannian manifolds.

Background

Localisation technique

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.
- Applications include geometric and functional inequalities.
- In 2014 Klartag came up with an idea how to generalise the technique to Riemannian manifolds.
- The generalisation used optimal transport with respect to the metric cost function.

Background

Localisation technique

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.
- Applications include geometric and functional inequalities.
- In 2014 Klartag came up with an idea how to generalise the technique to Riemannian manifolds.
- The generalisation used optimal transport with respect to the metric cost function.
- It has been conjectured by Klartag that it can be generalised to multiple constraints setting.

Background

- The localisation technique in convex geometry reduces an n-dimensional problem to a collection of one-dimensional problems.
- Applications include geometric and functional inequalities.
- In 2014 Klartag came up with an idea how to generalise the technique to Riemannian manifolds.
- The generalisation used optimal transport with respect to the metric cost function.
- It has been conjectured by Klartag that it can be generalised to multiple constraints setting.
- Ohta generalised the technique to Finsler manifolds and Cavalletti and Mondino generalised it to metric measure spaces.

Optimal transport

- Let (M, d, μ) be an n-dimensional weighted Riemannian manifold. Assume that $f: M \rightarrow \mathbb{R}$ has null-integral and that $d\left(\cdot, x_{0}\right) f(\cdot)$ is μ-integrable.

Optimal transport

- Let (M, d, μ) be an n-dimensional weighted Riemannian manifold. Assume that $f: M \rightarrow \mathbb{R}$ has null-integral and that $d\left(\cdot, x_{0}\right) f(\cdot)$ is μ-integrable.
- Consider the problem of optimal transport of $d \eta_{1}=f_{+} d \mu$ to $d \eta_{2}=f_{-} d \mu$ with metric cost.

Optimal transport

- Let (M, d, μ) be an n-dimensional weighted Riemannian manifold. Assume that $f: M \rightarrow \mathbb{R}$ has null-integral and that $d\left(\cdot, x_{0}\right) f(\cdot)$ is μ-integrable.
- Consider the problem of optimal transport of $d \eta_{1}=f_{+} d \mu$ to $d \eta_{2}=f_{-} d \mu$ with metric cost.
- The Kantorovich-Rubinstein duality gives us a more useful way to look at the problem. It tells that the minimal cost coincides with

$$
\max \left\{\int_{M} u f d \mu \mid u: M \rightarrow \mathbb{R} \text { is } 1 \text {-Lipschitz }\right\}
$$

Partition and disintegration

One-dimensional localisation

- Let $v: M \rightarrow \mathbb{R}$ be a maximiser. $\mathcal{T} \subset M$ - is a transport ray if it is a maximal set such that $\left.v\right|_{\mathcal{T}}$ is an isometry.
A - is a transport set if it is a Borel union of some transport rays.

Partition and disintegration

One-dimensional localisation

- Let $v: M \rightarrow \mathbb{R}$ be a maximiser. $\mathcal{T} \subset M$ - is a transport ray if it is a maximal set such that $\left.v\right|_{\mathcal{T}}$ is an isometry.
A - is a transport set if it is a Borel union of some transport rays.
- Then $\int_{A} f d \mu=0$ for any transport set A.

Partition and disintegration

One-dimensional localisation

- Let $v: M \rightarrow \mathbb{R}$ be a maximiser. $\mathcal{T} \subset M$ - is a transport ray if it is a maximal set such that $\left.v\right|_{\mathcal{T}}$ is an isometry.
A - is a transport set if it is a Borel union of some transport rays.
- Then $\int_{A} f d \mu=0$ for any transport set A.
- Transport rays partition M into minimising geodesics, up to a null set.

Partition and disintegration

One-dimensional localisation

- Let $v: M \rightarrow \mathbb{R}$ be a maximiser.
$\mathcal{T} \subset M$ - is a transport ray if it is a maximal set such that $\left.v\right|_{\mathcal{T}}$ is an isometry.
A - is a transport set if it is a Borel union of some transport rays.
- Then $\int_{A} f d \mu=0$ for any transport set A.
- Transport rays partition M into minimising geodesics, up to a null set.
- We may disintegrate μ with respect to this partition

$$
\mu=\int_{\mathcal{I}} \mu_{\mathcal{T}} d \nu(\mathcal{T})
$$

$$
v(x)=\|x\|
$$

Partition and disintegration

One-dimensional localisation

- Let $v: M \rightarrow \mathbb{R}$ be a maximiser.
$\mathcal{T} \subset M$ - is a transport ray if it is a maximal set such that $\left.v\right|_{\mathcal{T}}$ is an isometry.
A - is a transport set if it is a Borel union of some transport rays.
- Then $\int_{A} f d \mu=0$ for any transport set A.
- Transport rays partition M into minimising geodesics, up to a null set.
- We may disintegrate μ with respect to this partition

$$
\mu=\int_{\mathcal{I}} \mu_{\mathcal{T}} d \nu(\mathcal{T})
$$

- It follows that $\int_{M} f d \mu_{\mathcal{T}}=0$ for ν-almost every \mathcal{T}.

$$
v(x)=\|x\|
$$

Curvature-dimension condition $C D(\kappa, N)$

Generalisation of log-concavity

- If μ is defined on \mathbb{R}^{n} and is log-concave, then ν-almost every $\mu \mathcal{T}$ is log-concave. Moreover it is concentrated on int \mathcal{T}.

Curvature-dimension condition $C D(\kappa, N)$

Generalisation of log-concavity

- If μ is defined on \mathbb{R}^{n} and is log-concave, then ν-almost every $\mu_{\mathcal{T}}$ is log-concave. Moreover it is concentrated on int \mathcal{T}.
- $C D(\kappa, N)$ may be understood as a condition that the Ricci curvature is bounded from below and the dimension is bounded from above.

Curvature-dimension condition $C D(\kappa, N)$

Generalisation of log-concavity

- If μ is defined on \mathbb{R}^{n} and is log-concave, then ν-almost every $\mu_{\mathcal{T}}$ is \log-concave. Moreover it is concentrated on int \mathcal{T}.
- $C D(\kappa, N)$ may be understood as a condition that the Ricci curvature is bounded from below and the dimension is bounded from above.
- If μ is satisfies $C D(\kappa, N)$, then ν-almost every $\mu_{\mathcal{T}}$ is satisfies $C D(\kappa, N)$.

Generalisation to multiple constraints

Multi-dimensional localisation

- The above method was applied to problems with one linear constraint.

Generalisation to multiple constraints

Multi-dimensional localisation

- The above method was applied to problems with one linear constraint.
- Namely, for a weighted Riemannian manifold (M, d, μ) and a function f we assumed that $\int_{M} f d \mu=0$.

Generalisation to multiple constraints

Multi-dimensional localisation

- The above method was applied to problems with one linear constraint.
- Namely, for a weighted Riemannian manifold (M, d, μ) and a function f we assumed that $\int_{M} f d \mu=0$.
- Suppose that for some functions f_{1}, \ldots, f_{m} we have $\int_{M} f_{i} d \mu=0$ for $i=1, \ldots, m$. Does there exist a partition of M into m-dimensional pieces for which the related conditional measures would have zero integrals against f_{1}, \ldots, f_{m} ? Would it be possible for the pieces to retain the curvature-dimension properties of (M, d, μ) ?

Generalisation to multiple constraints

Multi-dimensional localisation

- The above method was applied to problems with one linear constraint.
- Namely, for a weighted Riemannian manifold (M, d, μ) and a function f we assumed that $\int_{M} f d \mu=0$.
- Suppose that for some functions f_{1}, \ldots, f_{m} we have $\int_{M} f_{i} d \mu=0$ for $i=1, \ldots, m$. Does there exist a partition of M into m-dimensional pieces for which the related conditional measures would have zero integrals against f_{1}, \ldots, f_{m} ? Would it be possible for the pieces to retain the curvature-dimension properties of (M, d, μ) ?
- Possible applications would include bounds for higher-order eigenvalues of Laplacian, multi-bubble problems, etc.

Generalisation to multiple constraints

Multi-dimensional localisation

- The above method was applied to problems with one linear constraint.
- Namely, for a weighted Riemannian manifold (M, d, μ) and a function f we assumed that $\int_{M} f d \mu=0$.
- Suppose that for some functions f_{1}, \ldots, f_{m} we have $\int_{M} f_{i} d \mu=0$ for $i=1, \ldots, m$. Does there exist a partition of M into m-dimensional pieces for which the related conditional measures would have zero integrals against f_{1}, \ldots, f_{m} ? Would it be possible for the pieces to retain the curvature-dimension properties of (M, d, μ) ?
- Possible applications would include bounds for higher-order eigenvalues of Laplacian, multi-bubble problems, etc.
- Such generalisation was conjectured by Klartag to hold true in Euclidean spaces.

Conjecture - mass-balance condition
Multi-dimensional case

- Let η be an \mathbb{R}^{m}-valued vector-measure on \mathbb{R}^{n} with finite first moment and such that $\eta\left(\mathbb{R}^{n}\right)=0$.

Conjecture - mass-balance condition
Multi-dimensional case

- Let η be an \mathbb{R}^{m}-valued vector-measure on \mathbb{R}^{n} with finite first moment and such that $\eta\left(\mathbb{R}^{n}\right)=0$.
- For example, $d \eta=\left(f_{1}, \ldots, f_{m}\right) d \mu$.

Conjecture - mass-balance condition

- Let η be an \mathbb{R}^{m}-valued vector-measure on \mathbb{R}^{n} with finite first moment and such that $\eta\left(\mathbb{R}^{n}\right)=0$.
- For example, $d \eta=\left(f_{1}, \ldots, f_{m}\right) d \mu$.
- Consider an optimisation problem

$$
\sup \left\{\int_{\mathbb{R}^{n}}\langle u, d \eta\rangle \mid u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { is 1-Lipschitz }\right\} .
$$

Conjecture - mass-balance condition

- Let η be an \mathbb{R}^{m}-valued vector-measure on \mathbb{R}^{n} with finite first moment and such that $\eta\left(\mathbb{R}^{n}\right)=0$.
- For example, $d \eta=\left(f_{1}, \ldots, f_{m}\right) d \mu$.
- Consider an optimisation problem

$$
\sup \left\{\int_{\mathbb{R}^{n}}\langle u, d \eta\rangle \mid u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { is 1-Lipschitz }\right\} .
$$

- Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a maximiser.
$\mathcal{S} \subset \mathbb{R}^{n}$ - is a leaf if it is a maximal set such that $\left.v\right|_{\mathcal{S}}$ is an isometry. $A-$ is a transport set if it is a Borel union of some leaves of v.

Conjecture - mass-balance condition

- Let η be an \mathbb{R}^{m}-valued vector-measure on \mathbb{R}^{n} with finite first moment and such that $\eta\left(\mathbb{R}^{n}\right)=0$.
- For example, $d \eta=\left(f_{1}, \ldots, f_{m}\right) d \mu$.
- Consider an optimisation problem

$$
\sup \left\{\int_{\mathbb{R}^{n}}\langle u, d \eta\rangle \mid u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { is 1-Lipschitz }\right\} .
$$

- Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a maximiser.
$\mathcal{S} \subset \mathbb{R}^{n}$ - is a leaf if it is a maximal set such that $\left.v\right|_{\mathcal{S}}$ is an isometry. $A-$ is a transport set if it is a Borel union of some leaves of v.
- Suppose $\eta \ll \lambda$. It was conjectured by Klartag that $\eta(A)=0$ for any transport set A.

Extensions of 1-Lipschitz functions

One-dimensional case
Theorem (C.)

- Let $A \subset \mathbb{R}^{n}$ and let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: A \rightarrow \mathbb{R}$ be 1-Lipschitz functions.

Extensions of 1-Lipschitz functions

One-dimensional case

Theorem (C.)

- Let $A \subset \mathbb{R}^{n}$ and let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: A \rightarrow \mathbb{R}$ be 1-Lipschitz functions.
- Then there exists a 1-Lipschitz extension ũ of u such that

$$
\|u-v\|_{A, \infty}=\|\tilde{u}-v\|_{\mathbb{R}^{n}, \infty} .
$$

Extensions of 1-Lipschitz functions

One-dimensional case

Theorem (C.)

- Let $A \subset \mathbb{R}^{n}$ and let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: A \rightarrow \mathbb{R}$ be 1-Lipschitz functions.
- Then there exists a 1-Lipschitz extension ũ of u such that

$$
\|u-v\|_{A, \infty}=\|\tilde{u}-v\|_{\mathbb{R}^{n}, \infty} .
$$

Extensions of 1-Lipschitz functions

Theorem (C.)

- Let $A \subset \mathbb{R}^{n}$ and let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: A \rightarrow \mathbb{R}$ be 1-Lipschitz functions.
- Then there exists a 1-Lipschitz extension ũ of u such that

$$
\|u-v\|_{A, \infty}=\|\tilde{u}-v\|_{\mathbb{R}^{n}, \infty}
$$

Proof.

- Let \tilde{u}^{\prime} be any 1 -Lipschitz extension of u to \mathbb{R}^{n}. Let $\delta=\|u-v\|_{A, \infty}$.

Using the above theorem, one may show that if v is an optimal potential for $f d \mu$, then for any transport set $A \subset M, \int_{A} f d \mu=0$.

Extensions of 1-Lipschitz functions

Theorem (C.)

- Let $A \subset \mathbb{R}^{n}$ and let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: A \rightarrow \mathbb{R}$ be 1-Lipschitz functions.
- Then there exists a 1-Lipschitz extension ũ of u such that

$$
\|u-v\|_{A, \infty}=\|\tilde{u}-v\|_{\mathbb{R}^{n}, \infty}
$$

Proof.

- Let \tilde{u}^{\prime} be any 1 -Lipschitz extension of u to \mathbb{R}^{n}. Let $\delta=\|u-v\|_{A, \infty}$.
- Take $\tilde{u}=\tilde{u}^{\prime} \vee(v-\delta) \wedge(v+\delta)$.

Using the above theorem, one may show that if v is an optimal potential for $f d \mu$, then for any transport set $A \subset M, \int_{A} f d \mu=0$.

Kirszbraun theorem

Theorem (Kirszbraun, '34)
Let $X \subset \mathbb{R}^{n}$ and let $v: X \rightarrow \mathbb{R}^{m}$ be a 1-Lipschitz map. Then there exists a 1 -Lipschitz extension of v to \mathbb{R}^{n}.

Mass balance condition (C.)
Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.
- Choose maximisers u_{ϵ} for ν_{ϵ}. Then $\nu_{\epsilon}\left(B_{\epsilon}\right)=0$ for any transport set associated with u_{ϵ}.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.
- Choose maximisers u_{ϵ} for ν_{ϵ}. Then $\nu_{\epsilon}\left(B_{\epsilon}\right)=0$ for any transport set associated with u_{ϵ}.
- ν_{ϵ} has to be concentrated on transport set of u_{ϵ} consisting of leaves of dimension at least one.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.
- Choose maximisers u_{ϵ} for ν_{ϵ}. Then $\nu_{\epsilon}\left(B_{\epsilon}\right)=0$ for any transport set associated with u_{ϵ}.
- ν_{ϵ} has to be concentrated on transport set of u_{ϵ} consisting of leaves of dimension at least one.
- For $i=1,2,3$ let $N_{i \epsilon}$ be the set of all non-trivial leaves intersecting $B\left(x_{i}, \epsilon\right)$. Then $\nu_{\epsilon}\left(N_{i \epsilon}\right)=0$.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.
- Choose maximisers u_{ϵ} for ν_{ϵ}. Then $\nu_{\epsilon}\left(B_{\epsilon}\right)=0$ for any transport set associated with u_{ϵ}.
- ν_{ϵ} has to be concentrated on transport set of u_{ϵ} consisting of leaves of dimension at least one.
- For $i=1,2,3$ let $N_{i \epsilon}$ be the set of all non-trivial leaves intersecting $B\left(x_{i}, \epsilon\right)$. Then $\nu_{\epsilon}\left(N_{i \epsilon}\right)=0$.
- This implies that $\lambda\left(B\left(x_{j}, \epsilon\right) \cap N_{i \epsilon}\right) \neq 0$ for $i, j=1,2,3$.

Mass balance condition (C.)

Multi-dimensional case

- We shall show that the mass balance condition does not hold in multi-dimensional case $m \geq 2$. Suppose on the contrary that it does.
- Choose any pairwise distinct $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{m}$ in general position, with $\sum_{i=1}^{3} v_{i}=0$.
- Let $\nu_{0}=\sum_{i=1}^{3} v_{i} \delta_{x_{i}}$. For $\epsilon>0$ set $\nu_{\epsilon}=\frac{1}{\lambda(B(0, \epsilon))} \sum_{i=1}^{3} v_{i} \lambda_{B\left(x_{i}, \epsilon\right)}$.
- Choose maximisers u_{ϵ} for ν_{ϵ}. Then $\nu_{\epsilon}\left(B_{\epsilon}\right)=0$ for any transport set associated with u_{ϵ}.
- ν_{ϵ} has to be concentrated on transport set of u_{ϵ} consisting of leaves of dimension at least one.
- For $i=1,2,3$ let $N_{i \epsilon}$ be the set of all non-trivial leaves intersecting $B\left(x_{i}, \epsilon\right)$. Then $\nu_{\epsilon}\left(N_{i \epsilon}\right)=0$.
- This implies that $\lambda\left(B\left(x_{j}, \epsilon\right) \cap N_{i \epsilon}\right) \neq 0$ for $i, j=1,2,3$.
- Hence, there exist $\left(x_{r s}^{\epsilon}, x_{s r}^{\epsilon}\right) \in B\left(x_{r}, \epsilon\right) \times B\left(x_{s}, \epsilon\right)$ such that $\left\|u_{\epsilon}\left(x_{r s}^{\epsilon}\right)-u_{\epsilon}\left(x_{s r}^{\epsilon}\right)\right\|=\left\|x_{r s}^{\epsilon}-x_{s r}^{\epsilon}\right\|$.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.
- By uniform convergence, u_{0} is an isometry on $\left\{x_{1}, x_{2}, x_{3}\right\}$.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.
- By uniform convergence, u_{0} is an isometry on $\left\{x_{1}, x_{2}, x_{3}\right\}$.
- We may take $x_{2}=t x_{1}+(1-t) x_{3}$ for some $t \in(0,1)$. Then any 1-Lipschitz map f that is isometric on $\left\{x_{1}, x_{2}, x_{3}\right\}$ has to satisfy $f\left(x_{2}\right)=t f\left(x_{1}\right)+(1-t) f\left(x_{3}\right)$.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.
- By uniform convergence, u_{0} is an isometry on $\left\{x_{1}, x_{2}, x_{3}\right\}$.
- We may take $x_{2}=t x_{1}+(1-t) x_{3}$ for some $t \in(0,1)$. Then any 1-Lipschitz map f that is isometric on $\left\{x_{1}, x_{2}, x_{3}\right\}$ has to satisfy $f\left(x_{2}\right)=t f\left(x_{1}\right)+(1-t) f\left(x_{3}\right)$.
- Indeed, by the isometric property we have equality in the triangle inequality $\left\|f\left(x_{3}\right)-f\left(x_{1}\right)\right\| \leq\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\|+\left\|f\left(x_{3}\right)-f\left(x_{2}\right)\right\|$. Strict convexity of balls in \mathbb{R}^{m} implies that assertion.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.
- By uniform convergence, u_{0} is an isometry on $\left\{x_{1}, x_{2}, x_{3}\right\}$.
- We may take $x_{2}=t x_{1}+(1-t) x_{3}$ for some $t \in(0,1)$. Then any 1-Lipschitz map f that is isometric on $\left\{x_{1}, x_{2}, x_{3}\right\}$ has to satisfy $f\left(x_{2}\right)=t f\left(x_{1}\right)+(1-t) f\left(x_{3}\right)$.
- Indeed, by the isometric property we have equality in the triangle inequality $\left\|f\left(x_{3}\right)-f\left(x_{1}\right)\right\| \leq\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\|+\left\|f\left(x_{3}\right)-f\left(x_{2}\right)\right\|$. Strict convexity of balls in \mathbb{R}^{m} implies that assertion.
- We extend u_{0} to an affine 1-Lipschitz map on \mathbb{R}^{n}.

Mass balance condition (C.)

Multi-dimensional case

- Then, up to a subsequence, u_{ϵ} converges locally uniformly to a maximiser u_{0} for ν_{0}.
- By uniform convergence, u_{0} is an isometry on $\left\{x_{1}, x_{2}, x_{3}\right\}$.
- We may take $x_{2}=t x_{1}+(1-t) x_{3}$ for some $t \in(0,1)$. Then any 1-Lipschitz map f that is isometric on $\left\{x_{1}, x_{2}, x_{3}\right\}$ has to satisfy $f\left(x_{2}\right)=t f\left(x_{1}\right)+(1-t) f\left(x_{3}\right)$.
- Indeed, by the isometric property we have equality in the triangle inequality $\left\|f\left(x_{3}\right)-f\left(x_{1}\right)\right\| \leq\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\|+\left\|f\left(x_{3}\right)-f\left(x_{2}\right)\right\|$. Strict convexity of balls in \mathbb{R}^{m} implies that assertion.
- We extend u_{0} to an affine 1-Lipschitz map on \mathbb{R}^{n}.
- We infer that for any 1-Lipschitz u

$$
\sum_{i=1}^{3}\left\langle u\left(x_{i}\right), v_{i}\right\rangle \leq \sup \left\{\sum_{i=1}^{3}\left\langle f\left(x_{i}\right), v_{i}\right\rangle \mid f \text { is affine and } 1 \text {-Lipschitz }\right\}
$$

Mass balance condition (C.)

- By the density of vectors in general position, we infer that for any 1 -Lipschitz u and any $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{3}$ that sum up to zero there is

$$
\sum_{i=1}^{3}\left\langle u\left(x_{i}\right), w_{i}\right\rangle \leq \sup \left\{\sum_{i=1}^{3}\left\langle f\left(x_{i}\right), w_{i}\right\rangle \mid f \text { is affine and 1-Lipschitz }\right\} .
$$

Mass balance condition (C.)

- By the density of vectors in general position, we infer that for any 1-Lipschitz u and any $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{3}$ that sum up to zero there is

$$
\sum_{i=1}^{3}\left\langle u\left(x_{i}\right), w_{i}\right\rangle \leq \sup \left\{\sum_{i=1}^{3}\left\langle f\left(x_{i}\right), w_{i}\right\rangle \mid f \text { is affine and 1-Lipschitz }\right\} .
$$

- Take $w_{2}=v, v_{1}=-t v$ and $w_{3}=-(1-t) v$ for t as before.

Mass balance condition (C.)
Multi-dimensional case

- By the density of vectors in general position, we infer that for any 1-Lipschitz u and any $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{3}$ that sum up to zero there is

$$
\sum_{i=1}^{3}\left\langle u\left(x_{i}\right), w_{i}\right\rangle \leq \sup \left\{\sum_{i=1}^{3}\left\langle f\left(x_{i}\right), w_{i}\right\rangle \mid f \text { is affine and } 1 \text {-Lipschitz }\right\} .
$$

- Take $w_{2}=v, v_{1}=-t v$ and $w_{3}=-(1-t) v$ for t as before.
- It follows that $\left\langle u\left(x_{2}\right)-t u\left(x_{1}\right)-(1-t) u\left(x_{3}\right), v\right\rangle \leq 0$ for all 1-Lipschitz u and all $v \in \mathbb{R}^{m}$. We infer that any Lipschitz u is affine: a contradiction.

Mass balance condition (C.)
Multi-dimensional case

- By the density of vectors in general position, we infer that for any 1-Lipschitz u and any $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{3}$ that sum up to zero there is

$$
\sum_{i=1}^{3}\left\langle u\left(x_{i}\right), w_{i}\right\rangle \leq \sup \left\{\sum_{i=1}^{3}\left\langle f\left(x_{i}\right), w_{i}\right\rangle \mid f \text { is affine and 1-Lipschitz }\right\} .
$$

- Take $w_{2}=v, v_{1}=-t v$ and $w_{3}=-(1-t) v$ for t as before.
- It follows that $\left\langle u\left(x_{2}\right)-t u\left(x_{1}\right)-(1-t) u\left(x_{3}\right), v\right\rangle \leq 0$ for all 1-Lipschitz u and all $v \in \mathbb{R}^{m}$. We infer that any Lipschitz u is affine: a contradiction.
- The same ideas allow to show that similar result for any norm on \mathbb{R}^{n} and a strictly convex norm on \mathbb{R}^{m}. Also, similar conclusion will follow if we replace $\sup \left\{\int_{\mathbb{R}^{m}}\langle u, d \mu\rangle \mid u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right.$ is 1 -Lipschitz $\}$, by maximisation over any uniformly closed subset of 1-Lipschitz maps.

Optimal transport of vector measures (C.)

Primal problem and duality

- Let η be an \mathbb{R}^{m}-valued measure on $\mathbb{R}^{n}, \eta\left(\mathbb{R}^{n}\right)=0$.

Optimal transport of vector measures (C.)
Primal problem and duality

- Let η be an \mathbb{R}^{m}-valued measure on $\mathbb{R}^{n}, \eta\left(\mathbb{R}^{n}\right)=0$.
- The optimisation problem above admits a primal problem:

$$
\mathcal{I}(\eta)=\inf \left\{\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\|x-y\| d\|\pi\|(x, y) \mid \pi \in \Gamma(\eta)\right\}
$$

Optimal transport of vector measures (C.)
Primal problem and duality

- Let η be an \mathbb{R}^{m}-valued measure on $\mathbb{R}^{n}, \eta\left(\mathbb{R}^{n}\right)=0$.
- The optimisation problem above admits a primal problem:

$$
\mathcal{I}(\eta)=\inf \left\{\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\|x-y\| d\|\pi\|(x, y) \mid \pi \in \Gamma(\eta)\right\}
$$

- Here $\Gamma(\eta)$ is the set of vector measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that $\eta=\mathrm{P}_{1} \pi-\mathrm{P}_{2} \pi$.

Optimal transport of vector measures (C.)
Primal problem and duality

- Let η be an \mathbb{R}^{m}-valued measure on $\mathbb{R}^{n}, \eta\left(\mathbb{R}^{n}\right)=0$.
- The optimisation problem above admits a primal problem:

$$
\mathcal{I}(\eta)=\inf \left\{\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\|x-y\| d\|\pi\|(x, y) \mid \pi \in \Gamma(\eta)\right\}
$$

- Here $\Gamma(\eta)$ is the set of vector measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that $\eta=\mathrm{P}_{1} \pi-\mathrm{P}_{2} \pi$.

Optimal transport of vector measures (C.)

Primal problem and duality

- Let η be an \mathbb{R}^{m}-valued measure on $\mathbb{R}^{n}, \eta\left(\mathbb{R}^{n}\right)=0$.
- The optimisation problem above admits a primal problem:

$$
\mathcal{I}(\eta)=\inf \left\{\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\|x-y\| d\|\pi\|(x, y) \mid \pi \in \Gamma(\eta)\right\}
$$

- Here $\Gamma(\eta)$ is the set of vector measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that $\eta=\mathrm{P}_{1} \pi-\mathrm{P}_{2} \pi$.

Theorem (C.)

$$
\mathcal{I}(\eta)=\sup \left\{\int_{\mathbb{R}^{n}}\langle u, d \eta\rangle \mid u: X \rightarrow \mathbb{R}^{m} \text { is 1-Lipschitz }\right\} .
$$

The same holds true for metric spaces (X, d) in lieu of $\left(\mathbb{R}^{n},\|\cdot\|\right)$. This generalises the result for $m=1$, where one can take π to be a non-negative measure with $\mathrm{P}_{1} \pi=\mu_{1}$ and $\mathrm{P}_{2} \pi=\mu_{2}, \mu=\mu_{1}-\mu_{2}$.

Optimal transport of vector measures

Theorem (C.)

- Suppose that η is absolutely continuous and has finite first moment, $\eta\left(\mathbb{R}^{n}\right)=0$.

Optimal transport of vector measures

Theorem (C.)

- Suppose that η is absolutely continuous and has finite first moment, $\eta\left(\mathbb{R}^{n}\right)=0$.
- Let v be an optimal potential for η.

Optimal transport of vector measures

Theorem (C.)

- Suppose that η is absolutely continuous and has finite first moment, $\eta\left(\mathbb{R}^{n}\right)=0$.
- Let v be an optimal potential for η.
- Then the following conditions are equivalent:

Optimal transport of vector measures

Theorem (C.)

- Suppose that η is absolutely continuous and has finite first moment, $\eta\left(\mathbb{R}^{n}\right)=0$.
- Let v be an optimal potential for η.
- Then the following conditions are equivalent:

1. there exists an optimal transport $\pi \in \Gamma(\eta)$,

Optimal transport of vector measures

Theorem (C.)

- Suppose that η is absolutely continuous and has finite first moment, $\eta\left(\mathbb{R}^{n}\right)=0$.
- Let v be an optimal potential for η.
- Then the following conditions are equivalent:

1. there exists an optimal transport $\pi \in \Gamma(\eta)$,
2. for any transport set A associated to v there is $\eta(A)=0$.

Disintegration (C.)

Curvature-dimension condition

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.

Disintegration (C.)

Curvature-dimension condition

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.
- Moreover, they are all closed and convex, of dimension at most m.

Disintegration (C.)

Curvature-dimension condition

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.
- Moreover, they are all closed and convex, of dimension at most m.
- We may disintegrate η with respect to this partition

$$
\eta=\int_{\mathcal{I}} \eta_{\mathcal{S}} d \nu(\mathcal{S})
$$

Disintegration (C.)

Curvature-dimension condition

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.
- Moreover, they are all closed and convex, of dimension at most m.
- We may disintegrate η with respect to this partition

$$
\eta=\int_{\mathcal{I}} \eta_{\mathcal{S}} d \nu(\mathcal{S})
$$

- If η satisfies $C D(\kappa, N)$, then for ν-almost every \mathcal{S} of dimension m, $\eta_{\mathcal{S}}$ satisfies $C D(\kappa, N)$. Moreover it is concentrated on int \mathcal{S}.

Disintegration (C.)

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.
- Moreover, they are all closed and convex, of dimension at most m.
- We may disintegrate η with respect to this partition

$$
\eta=\int_{\mathcal{I}} \eta_{\mathcal{S}} d \nu(\mathcal{S})
$$

- If η satisfies $C D(\kappa, N)$, then for ν-almost every \mathcal{S} of dimension m, $\eta_{\mathcal{S}}$ satisfies $C D(\kappa, N)$. Moreover it is concentrated on int \mathcal{S}.
- This partially resolves another conjecture of Klartag, in the affirmative.

Disintegration (C.)

- Leaves of a 1-Lipschitz map v form a partition of \mathbb{R}^{n}, up to a Lebesgue null set.
- Moreover, they are all closed and convex, of dimension at most m.
- We may disintegrate η with respect to this partition

$$
\eta=\int_{\mathcal{I}} \eta_{\mathcal{S}} d \nu(\mathcal{S})
$$

- If η satisfies $C D(\kappa, N)$, then for ν-almost every \mathcal{S} of dimension m, $\eta_{\mathcal{S}}$ satisfies $C D(\kappa, N)$. Moreover it is concentrated on int \mathcal{S}.
- This partially resolves another conjecture of Klartag, in the affirmative.
- The idea of proof of $C D(\kappa, N)$ for conditional measures on leaves builds upon work of Caffarelli, Feldman and McCann.

Ghost subspaces (C.)
Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?

Ghost subspaces (C.)
Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $\operatorname{Dv}(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.

Ghost subspaces (C.)
Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $\operatorname{Dv}(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.
- But, it may be an isometry on a strictly larger subspace.

Ghost subspaces (C.)
Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $D v(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.
- But, it may be an isometry on a strictly larger subspace.
- There exists the maximal subspace G on which $D v(x)$ is isometric and independent on the choice of x on the leaf.

Ghost subspaces (C.)
Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $D v(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.
- But, it may be an isometry on a strictly larger subspace.
- There exists the maximal subspace G on which $D v(x)$ is isometric and independent on the choice of x on the leaf.
- Such a subspace is termed ghost subspace. A ghost subspace is called trivial whenever it is equal to the tangent space to a leaf.

Ghost subspaces (C.)

Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $D v(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.
- But, it may be an isometry on a strictly larger subspace.
- There exists the maximal subspace G on which $D v(x)$ is isometric and independent on the choice of x on the leaf.
- Such a subspace is termed ghost subspace. A ghost subspace is \mathcal{S} called trivial whenever it is equal to the tangent space to a leaf.
- If the ghost subspace for \mathcal{S} is trivial then $\eta_{\mathcal{S}} \ll \mathcal{H}_{\operatorname{dim} \mathcal{S}}$.

Ghost subspaces (C.)

Work in progress

- How does the situation differ for leaves of dimension strictly less than m ?
- The derivative $D v(x)$, for $x \in \operatorname{int} \mathcal{S}$, is an isometry on the tangent space V of \mathcal{S}, independent on the choice of x.
- But, it may be an isometry on a strictly larger subspace.
- There exists the maximal subspace G on which $D v(x)$ is isometric and independent on the choice of x on the leaf.

- Such a subspace is termed ghost subspace. A ghost subspace is called trivial whenever it is equal to the tangent space to a leaf.
- If the ghost subspace for \mathcal{S} is trivial then $\eta_{\mathcal{S}} \ll \mathcal{H}_{\operatorname{dim} \mathcal{S}}$.
- If all the ghost subspaces for an optimal potential for a vector measure η are trivial, then there exists an optimal transport and the mass-balance condition holds true.

Continuity of extensions
Multi-dimensional case

How the extension properties in the multi-dimensional setting differ from the one-dimensional setting?

Continuity of extensions

How the extension properties in the multi-dimensional setting differ from the one-dimensional setting?
Theorem (C.)
Let $m \geq 2, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The following conditions are equivalent:

Continuity of extensions

How the extension properties in the multi-dimensional setting differ from the one-dimensional setting?
Theorem (C.)
Let $m \geq 2, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The following conditions are equivalent:
i) for any $A \subset \mathbb{R}^{n}$ and for any 1-Lipschitz map $u: A \rightarrow \mathbb{R}^{m}$ there exists 1-Lipschitz extension $\tilde{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of u such that

$$
\|v-\tilde{u}\|_{\mathbb{R}^{n}, \infty}=\|v-u\|_{A, \infty} .
$$

Continuity of extensions

How the extension properties in the multi-dimensional setting differ from the one-dimensional setting?
Theorem (C.)
Let $m \geq 2, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The following conditions are equivalent:
i) for any $A \subset \mathbb{R}^{n}$ and for any 1-Lipschitz map $u: A \rightarrow \mathbb{R}^{m}$ there exists 1-Lipschitz extension $\tilde{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of u such that

$$
\|v-\tilde{u}\|_{\mathbb{R}^{n}, \infty}=\|v-u\|_{A, \infty} .
$$

ii) v is affine and 1-Lipschitz.

Thank you for your attention.

C. Leaves decompositions in Euclidean spaces, Journal de Mathématiques Pures et Appliquées, 2021
C. Leaves decompositions in Euclidean spaces II: ghost subspaces, in preparation, 2023
C. Optimal transport of vector measures, Calculus of Variations and Partial Differential Equations, 2021
C. Conitnuity of extensions of Lipschitz maps, Israel Journal of Mathematics, 2021 C. Optimal transport and 1-Lipschitz maps, D.Phil. dissertation, University of Oxford, 2020

Mass balance condition

One-dimensional case, relation to extensions of 1-Lipschitz maps

- Let v attain $\max \left\{\int_{M} u f d \mu \mid u: M \rightarrow \mathbb{R}\right.$ is 1 - Lipschitz $\}$.

Mass balance condition

One-dimensional case, relation to extensions of 1-Lipschitz maps

- Let v attain $\max \left\{\int_{M} u f d \mu \mid u: M \rightarrow \mathbb{R}\right.$ is $1-$ Lipschitz $\}$.
- Take a transport set $A \subset M, \epsilon>0$, and a compact $K \subset A$ with $\int_{K^{c} \cap A}|f| d \mu \leq \epsilon$. Pick $\delta>0$ and set $u_{\delta, 0}=v+\delta$ on K and $u_{\delta, 0}=v$ on

$$
K_{\delta}=\{x \in M|\delta \leq\|x-y\|-|v(x)-v(y)| \text { for all } y \in K\}
$$

Then it is 1 -Lipschitz and within δ-distance to v. We may extend it to M to u_{δ}, which is 1 -Lipschitz and within δ-distance to v.

Mass balance condition

One-dimensional case, relation to extensions of 1-Lipschitz maps

- Let v attain $\max \left\{\int_{M} u f d \mu \mid u: M \rightarrow \mathbb{R}\right.$ is 1 - Lipschitz $\}$.
- Take a transport set $A \subset M, \epsilon>0$, and a compact $K \subset A$ with $\int_{K^{c} \cap A}|f| d \mu \leq \epsilon$. Pick $\delta>0$ and set $u_{\delta, 0}=v+\delta$ on K and $u_{\delta, 0}=v$ on

$$
K_{\delta}=\{x \in M|\delta \leq\|x-y\|-|v(x)-v(y)| \text { for all } y \in K\} .
$$

Then it is 1-Lipschitz and within δ-distance to v. We may extend it to M to u_{δ}, which is 1 -Lipschitz and within δ-distance to v.

- Observe that $A^{c}=\bigcup_{\delta>0} K_{\delta} \cup B$. Here B is the set of points belonging to at least two transport rays of $v ; \lambda(B)=0-v$ is not differentiable on B.

Mass balance condition

One-dimensional case, relation to extensions of 1-Lipschitz maps

- Let v attain $\max \left\{\int_{M} u f d \mu \mid u: M \rightarrow \mathbb{R}\right.$ is 1 - Lipschitz $\}$.
- Take a transport set $A \subset M, \epsilon>0$, and a compact $K \subset A$ with $\int_{K^{c} \cap A}|f| d \mu \leq \epsilon$. Pick $\delta>0$ and set $u_{\delta, 0}=v+\delta$ on K and $u_{\delta, 0}=v$ on

$$
K_{\delta}=\{x \in M|\delta \leq\|x-y\|-|v(x)-v(y)| \text { for all } y \in K\} .
$$

Then it is 1 -Lipschitz and within δ-distance to v. We may extend it to M to u_{δ}, which is 1 -Lipschitz and within δ-distance to v.

- Observe that $A^{c}=\bigcup_{\delta>0} K_{\delta} \cup B$. Here B is the set of points belonging to at least two transport rays of $v ; \lambda(B)=0-v$ is not differentiable on B.
- Moreover $\int_{M} \frac{v-u_{\delta}}{\delta} f d \mu \geq 0$. Sending δ to zero, we get $\int_{A} f d \mu \geq-2 \epsilon$. Similarly, $\int_{A}(-f) d \mu \geq 0$.

Idea of the proof (C.)

- The formula $F(a, b)=r(a)+\operatorname{Dv}(r(a))^{*}(b)$, where $a \in \mathbb{R}^{n-m}$ and $b \in \mathbb{R}^{m}$, provides a local diffeomorphism, which is linear on the images of leaves of v. Here r is a local parametrisation of a fibre.

Idea of the proof (C.)
Foliation, continuation

- Let $P(x)$ denote the orthogonal projection onto the tangent space to the leaf containing x.

Idea of the proof (C.)

- Let $P(x)$ denote the orthogonal projection onto the tangent space to the leaf containing x.
- By the area formula and Fubini theorem, the density on the leaves needs to be multiplied by $\left|\operatorname{det}\left(\operatorname{Id}+P^{\perp} D^{2} v^{*}\left(P^{\perp}.\right)(b)\right)\right|$. Notice the relation to the second fundamental form of the fibre of v.

Idea of the proof (C.)

- Let $P(x)$ denote the orthogonal projection onto the tangent space to the leaf containing x.
- By the area formula and Fubini theorem, the density on the leaves needs to be multiplied by $\left|\operatorname{det}\left(\operatorname{Id}+P^{\perp} D^{2} v^{*}\left(P^{\perp}.\right)(b)\right)\right|$. Notice the relation to the second fundamental form of the fibre of v.
- In the relative interiors of m-dimensional leaves $D v$ is Lipschitz:

$$
2 \sigma^{2}\left\|D v\left(x_{1}\right)-D v\left(x_{2}\right)\right\|^{2} \leq\left\|x_{1}-x_{2}\right\|^{2}-\left\|v\left(x_{1}\right)-v\left(x_{2}\right)\right\|^{2}
$$

where $\sigma=\min \left(\mathrm{d}\left(x_{1}, \partial \mathcal{S}\left(x_{1}\right)\right), \mathrm{d}\left(x_{2}, \partial \mathcal{S}\left(x_{2}\right)\right)\right)$.

Continuity of extensions

Arbitrary subsets of \mathbb{R}^{n}

Theorem (C.)

- Let $A \subset X \subset \mathbb{R}^{n}$. Suppose that $v: X \rightarrow \mathbb{R}^{m}$ is such that for all non-negative t_{1}, \ldots, t_{m} that sum up to one and all $x, x_{1}, \ldots, x_{m} \in X$ there is

$$
\left\|v(x)-\sum_{i=1}^{m} t_{i} v\left(x_{i}\right)\right\| \leq\left\|x-\sum_{i=1}^{m} t_{i} x_{i}\right\|
$$

Continuity of extensions

Arbitrary subsets of \mathbb{R}^{n}

Theorem (C.)

- Let $A \subset X \subset \mathbb{R}^{n}$. Suppose that $v: X \rightarrow \mathbb{R}^{m}$ is such that for all non-negative t_{1}, \ldots, t_{m} that sum up to one and all $x, x_{1}, \ldots, x_{m} \in X$ there is

$$
\left\|v(x)-\sum_{i=1}^{m} t_{i} v\left(x_{i}\right)\right\| \leq\left\|x-\sum_{i=1}^{m} t_{i} x_{i}\right\|
$$

- Suppose that $u: A \rightarrow \mathbb{R}^{m}$ is 1-Lipschitz.

Continuity of extensions

Arbitrary subsets of \mathbb{R}^{n}

Theorem (C.)

- Let $A \subset X \subset \mathbb{R}^{n}$. Suppose that $v: X \rightarrow \mathbb{R}^{m}$ is such that for all non-negative t_{1}, \ldots, t_{m} that sum up to one and all $x, x_{1}, \ldots, x_{m} \in X$ there is

$$
\left\|v(x)-\sum_{i=1}^{m} t_{i} v\left(x_{i}\right)\right\| \leq\left\|x-\sum_{i=1}^{m} t_{i} x_{i}\right\|
$$

- Suppose that $u: A \rightarrow \mathbb{R}^{m}$ is 1-Lipschitz.
- Then there exists 1-Lipschitz extension $\tilde{u}: X \rightarrow \mathbb{R}^{m}$ of u such that $\|v-\tilde{u}\|_{X, \infty}=\|v-u\|_{A, \infty}$.

Continuity of extensions

Arbitrary subsets of \mathbb{R}^{n}

Theorem (C.)

- Let $A \subset X \subset \mathbb{R}^{n}$. Suppose that $v: X \rightarrow \mathbb{R}^{m}$ is such that for all non-negative t_{1}, \ldots, t_{m} that sum up to one and all $x, x_{1}, \ldots, x_{m} \in X$ there is

$$
\left\|v(x)-\sum_{i=1}^{m} t_{i} v\left(x_{i}\right)\right\| \leq\left\|x-\sum_{i=1}^{m} t_{i} x_{i}\right\|
$$

- Suppose that $u: A \rightarrow \mathbb{R}^{m}$ is 1-Lipschitz.
- Then there exists 1-Lipschitz extension $\tilde{u}: X \rightarrow \mathbb{R}^{m}$ of u such that $\|v-\tilde{u}\|_{X, \infty}=\|v-u\|_{A, \infty}$.

Continuity of extensions

Arbitrary subsets of \mathbb{R}^{n}

Theorem (C.)

- Let $A \subset X \subset \mathbb{R}^{n}$. Suppose that $v: X \rightarrow \mathbb{R}^{m}$ is such that for all non-negative t_{1}, \ldots, t_{m} that sum up to one and all $x, x_{1}, \ldots, x_{m} \in X$ there is

$$
\left\|v(x)-\sum_{i=1}^{m} t_{i} v\left(x_{i}\right)\right\| \leq\left\|x-\sum_{i=1}^{m} t_{i} x_{i}\right\|
$$

- Suppose that $u: A \rightarrow \mathbb{R}^{m}$ is 1-Lipschitz.
- Then there exists 1-Lipschitz extension $\tilde{u}: X \rightarrow \mathbb{R}^{m}$ of u such that $\|v-\tilde{u}\|_{X, \infty}=\|v-u\|_{A, \infty}$.

The converse is proven for $m=1,2,3$.

Rate of continuity

Let $A \subset B \subset \mathbb{R}^{n}, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz. Set

$$
d_{v}(A, B)=\sup \{\|v(x)-v(y)\| x \in A, y \in B\} .
$$

Theorem (C.)

- Let $u: A \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz.

Rate of continuity

Let $A \subset B \subset \mathbb{R}^{n}, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz. Set

$$
d_{v}(A, B)=\sup \{\|v(x)-v(y)\| x \in A, y \in B\} .
$$

Theorem (C.)

- Let $u: A \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz.
- Assume that $\|u(x)-v(x)\| \leq \delta$ for $x \in A$.

Rate of continuity

Let $A \subset B \subset \mathbb{R}^{n}, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz. Set

$$
d_{v}(A, B)=\sup \{\|v(x)-v(y)\| \mid x \in A, y \in B\} .
$$

Theorem (C.)

- Let $u: A \rightarrow \mathbb{R}^{m}$ be 1-Lipschitz.
- Assume that $\|u(x)-v(x)\| \leq \delta$ for $x \in A$.
- Then there exists a 1-Lipschitz map ũ: $B \rightarrow \mathbb{R}^{m}$ such that $\tilde{u}(x)=u(x)$ for $x \in A$ and

$$
\|v(x)-\tilde{u}(x)\| \leq \sqrt{\delta^{2}+2 \delta d_{v}(A, B)}
$$

for all $x \in B$.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.
- On $A \times\{0\} \cup B \times\{\epsilon\} \subset \mathbb{R}^{n+1}$ we define w so that $w(x, 0)=u(x)$ for $x \in A$ and $w(x, \epsilon)=v(x)$ for $x \in B$.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.
- On $A \times\{0\} \cup B \times\{\epsilon\} \subset \mathbb{R}^{n+1}$ we define w so that $w(x, 0)=u(x)$ for $x \in A$ and $w(x, \epsilon)=v(x)$ for $x \in B$.
- If we take $\epsilon=\sqrt{\delta^{2}+2 \delta d_{v}(A, B)}$, then w is 1-Lipschitz.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.
- On $A \times\{0\} \cup B \times\{\epsilon\} \subset \mathbb{R}^{n+1}$ we define w so that $w(x, 0)=u(x)$ for $x \in A$ and $w(x, \epsilon)=v(x)$ for $x \in B$.
- If we take $\epsilon=\sqrt{\delta^{2}+2 \delta d_{v}(A, B)}$, then w is 1-Lipschitz.
- Let \tilde{w} be its 1 -Lipschitz extension to \mathbb{R}^{n+1}.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.
- On $A \times\{0\} \cup B \times\{\epsilon\} \subset \mathbb{R}^{n+1}$ we define w so that $w(x, 0)=u(x)$ for $x \in A$ and $w(x, \epsilon)=v(x)$ for $x \in B$.
- If we take $\epsilon=\sqrt{\delta^{2}+2 \delta d_{v}(A, B)}$, then w is 1-Lipschitz.
- Let \tilde{w} be its 1 -Lipschitz extension to \mathbb{R}^{n+1}.
- Define $\tilde{u}(x)=\tilde{w}(x, 0)$ for $x \in \mathbb{R}^{n}$.

Rate of continuity

Proof.

- The idea is to bootstrap the Kirszbraun theorem.
- On $A \times\{0\} \cup B \times\{\epsilon\} \subset \mathbb{R}^{n+1}$ we define w so that $w(x, 0)=u(x)$ for $x \in A$ and $w(x, \epsilon)=v(x)$ for $x \in B$.
- If we take $\epsilon=\sqrt{\delta^{2}+2 \delta d_{v}(A, B)}$, then w is 1-Lipschitz.
- Let \tilde{w} be its 1 -Lipschitz extension to \mathbb{R}^{n+1}.
- Define $\tilde{u}(x)=\tilde{w}(x, 0)$ for $x \in \mathbb{R}^{n}$.
- Then for $x \in B,\|\tilde{u}(x)-v(x)\|=\|\tilde{w}(x, 0)-w(x, \epsilon)\| \leq \epsilon$.

Optimality of the rate of continuity (C.)
Example

Let $m>1$. Define u, v as in the picture, $\|x-y\|=2 a, z=\frac{x+y}{2}$. Set $A=\{x, y\}, B=\{x, y, z\}$.

Optimality of the rate of continuity (C.)

Example

Let $m>1$. Define u, v as in the picture, $\|x-y\|=2 a, z=\frac{x+y}{2}$. Set $A=\{x, y\}, B=\{x, y, z\}$.

Then, for any 1-Lipschitz extension \tilde{u} of u to B we have

$$
\|v(z)-\tilde{u}(z)\|=\sqrt{\delta^{2}+2 \delta a}
$$

If $\delta \geq a$, this is equal to $\sqrt{\delta^{2}+2 \delta d_{v}(A, B)}$.

