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General setting

We say that a sequence p defined on an interval I ⊂ Z is
log-concave if it is of the form e−V for some convex V ,
equivalently p(n)2  p(n − 1)p(n + 1) for all n and the support is
an interval. Denote the set of log-concave sequences by LI .

Consider the following problem. We want to maximize a given
convex functional Φ defined on LI under n linear constraints
Φi (p) = mi .

One of the main problems is nonlinearity, class LI is not even
closed under summation.

Solution: degrees of freedom.
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Discrete degrees of freedom
Introduction

The notion of degree of freedom appeared for the first time in the
work of Fredelizi and Guedon in continuous setting (2006).

Discrete analogue was developed independently by JMNS and by
Aravinda (2023).

Definition

A log-concave sequence p has d degrees of freedom if there exists
ε > 0 and linearly independent sequences q1, . . . , qd ∈ LI such
that for all δ1, . . . , δd ∈ (−ε, ε) the sequence p + δ1q1 + . . .+ δdqd
is log-concave.
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Discrete degrees of freedom
How it works

Suppose we are given n constraints and the sequence p having
d > n degrees of freedom. Take d-dimensional neighbourhood of p
in LI , then by linearity there is a (d − n)-dimensional
neighbourhood consisting of sequences satisfying all constraints. In
such neighbourhood one can find p1, p2 such that p ∈ (p1, p2).
Hence p is not extreme.

Assume that Φ is convex and continuous and that the set of
log-concave sequences satisfying all constraints is compact. Then
Φ attains maximum in some extreme point. Thus the problem of
maximizing Φ under n constraints can be restricted to sequences
having at most n degrees of freedom.

Theorem

A log-concave sequence p has at most d + 1 degrees of freedom if
and only if it is of the form e−V for V being maximum of at most
d arithmetic progressions.
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Applications
Maximum-variance bounds

Let X be an integer-valued random variable with log-concave
distribution p. Denote M(X ) = maxn p(n).

In 2021 Bobkov, Marsiglietti and Melbourne proved that

1√
1+ 12Var(X )

¬ M(X ) ¬ 1√
1
4 +Var(X )

and assuming additionally that X is symmetric

M(X )2(1+ 2Var(X )) ¬ 1.

The last result is optimal for all values of Var(X ) and the equality
occurs for two-sided geometric distributions.
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Applications
Maximum-variance bounds

In 2023 Aravinda proved that

M(X )2(1+Var(X )) ¬ 1,

which is achieved asymptotically for geometric distribution
p(k) = θ(1− θ)k1k0 as θ → 0.

We give a stronger result, namely

M(X )2Var(X ) +M(X ) ¬ 1, (1)

which is optimal for all values of Var(X ) and the equality occurs
for geometric distributions.
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Applications
Proof of maximum-variance inequality

Sketch of the proof:
1 LHS is monotone wrt M(X ), hence it suffices to maximize
convex functional Φ(p) = maxn p(n). Constraints are

Φ1(p) =
∑

n p(n) = 1 fixing p to be a probability distribution;

Φ2(p) =
∑

n np(n), Φ3(p) =
∑

n n
2p(n) fixing the variance.

Developed theory, together with translation and approximation
argument, reduces the problem to p being of the form

p(n) = Ce−β1(n−N)1[0,N](n) + Ce−β2(n−N)1[N+1,L](n).
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Applications
Proof of maximum-variance inequality

2 Assume p is monotone. For simplicity we allow sequences
supported on {0, 1, . . .} in this case. Assume p is
non-increasing and consider a variable Y with geometric
distribution q of the same mean. Then p − q changes sign
exactly twice with sign pattern (−,+,−).

Hence

M(X ) = p(0) ¬ q(0) = M(Y ).

Also one can find a, b such that n2 + an+ b and p(n)− q(n)
have opposite sign and

EX 2 − EY 2 =
∑
n

n2(p(n)− q(n)) =

=
∑
n

(n2 + an + b)(p(n)− q(n)) ¬ 0.

For Y equality holds in (1), which ends the proof in
monotone case.
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Applications
Proof of maximum-variance inequality

3 Assume p is not monotone, then C = M(X ). Denote x = eβ1 ,
y = e−β2 and K = L− N.

By algebraic transformations we obtain inequality (1) in the
equivalent form(

1+
N∑

n=1

xn +
K∑

k=1

yk
)4
−
(
1+

N∑
n=1

xn +
K∑

k=1

yk
)3
−

−
(
1+

N∑
n=1

xn +
K∑

k=1

yk
)(

N∑
n=1

n2xn +
K∑

k=1

k2yk
)
+

+

(
N∑

n=1

nxn −
K∑

k=1

kyk
)2
 0.

4 Now it suffices to show that coefficients of the obtained
polynomial are nonnegative.
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Applications
Ultra-log-concavity

We say that a random variable X with distribution µ taking
nonnegative integer values is ultra-log-concave if µ(n)e

λn!
λn is

log-concave.

The notion of ultra-log-concavity appeared for the first time in the
work of Pemantle in 2000. In 2007 Johnson proved that the
Poisson distribution maximises entropy in the class of ultra
log–concave distributions under fixed mean. In 2009 Yu simplified
this proof. In 2021 Aravinda, Marsiglietti and Melbourne proved
some concentration results for ultra-log-concave variables. The
following theorem results by using discrete degrees of freedom.

Theorem (JMNS, 2023)

Let X be an ultra-log-concave random variable with integral mean.
Then

P(X = EX )  P(Poiss(EX ) = EX ).
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