Log-concavity and discrete degrees of freedom

Jacek Jakimiuk, University of Warsaw based on joint work with D. Murawski, P. Nayar and S. Słobodianiuk

Conference "High Dimensional Probability" Będlewo, 15 June 2023

General setting

We say that a sequence p defined on an interval $l \subset \mathbb{Z}$ is log-concave if it is of the form e^{-V} for some convex V, equivalently $p(n)^{2} \geqslant p(n-1) p(n+1)$ for all n and the support is an interval. Denote the set of log-concave sequences by \mathcal{L}_{1}.

General setting

We say that a sequence p defined on an interval $I \subset \mathbb{Z}$ is log-concave if it is of the form e^{-V} for some convex V, equivalently $p(n)^{2} \geqslant p(n-1) p(n+1)$ for all n and the support is an interval. Denote the set of log-concave sequences by \mathcal{L}_{1}.

Consider the following problem. We want to maximize a given convex functional Φ defined on $\mathcal{L}_{\text {/ }}$ under n linear constraints $\Phi_{i}(p)=m_{i}$.

General setting

We say that a sequence p defined on an interval $I \subset \mathbb{Z}$ is log-concave if it is of the form e^{-V} for some convex V, equivalently $p(n)^{2} \geqslant p(n-1) p(n+1)$ for all n and the support is an interval. Denote the set of log-concave sequences by \mathcal{L}_{1}.

Consider the following problem. We want to maximize a given convex functional Φ defined on $\mathcal{L}_{\text {/ }}$ under n linear constraints $\Phi_{i}(p)=m_{i}$.

One of the main problems is nonlinearity, class $\mathcal{L}_{/}$is not even closed under summation.

General setting

We say that a sequence p defined on an interval $I \subset \mathbb{Z}$ is log-concave if it is of the form e^{-V} for some convex V, equivalently $p(n)^{2} \geqslant p(n-1) p(n+1)$ for all n and the support is an interval. Denote the set of log-concave sequences by \mathcal{L}_{1}.

Consider the following problem. We want to maximize a given convex functional Φ defined on $\mathcal{L}_{\text {/ }}$ under n linear constraints $\Phi_{i}(p)=m_{i}$.

One of the main problems is nonlinearity, class $\mathcal{L}_{\text {/ }}$ is not even closed under summation.

Solution: degrees of freedom.

Discrete degrees of freedom

Introduction

The notion of degree of freedom appeared for the first time in the work of Fredelizi and Guedon in continuous setting (2006).

Discrete degrees of freedom

Introduction

The notion of degree of freedom appeared for the first time in the work of Fredelizi and Guedon in continuous setting (2006). Discrete analogue was developed independently by JMNS and by Aravinda (2023).

Discrete degrees of freedom

Introduction

The notion of degree of freedom appeared for the first time in the work of Fredelizi and Guedon in continuous setting (2006). Discrete analogue was developed independently by JMNS and by Aravinda (2023).

Definition

A log-concave sequence p has d degrees of freedom if there exists $\varepsilon>0$ and linearly independent sequences $q_{1}, \ldots, q_{d} \in \mathcal{L}_{l}$ such that for all $\delta_{1}, \ldots, \delta_{d} \in(-\varepsilon, \varepsilon)$ the sequence $p+\delta_{1} q_{1}+\ldots+\delta_{d} q_{d}$ is log-concave.

Discrete degrees of freedom

How it works
Suppose we are given n constraints and the sequence p having $d>n$ degrees of freedom. Take d-dimensional neighbourhood of p in \mathcal{L}_{l}, then by linearity there is a $(d-n)$-dimensional neighbourhood consisting of sequences satisfying all constraints. In such neighbourhood one can find p_{1}, p_{2} such that $p \in\left(p_{1}, p_{2}\right)$. Hence p is not extreme.

Discrete degrees of freedom

How it works
Suppose we are given n constraints and the sequence p having $d>n$ degrees of freedom. Take d-dimensional neighbourhood of p in \mathcal{L}_{l}, then by linearity there is a $(d-n)$-dimensional neighbourhood consisting of sequences satisfying all constraints. In such neighbourhood one can find p_{1}, p_{2} such that $p \in\left(p_{1}, p_{2}\right)$. Hence p is not extreme.
Assume that Φ is convex and continuous and that the set of log-concave sequences satisfying all constraints is compact. Then Φ attains maximum in some extreme point.

Discrete degrees of freedom

How it works

Suppose we are given n constraints and the sequence p having $d>n$ degrees of freedom. Take d-dimensional neighbourhood of p in \mathcal{L}_{l}, then by linearity there is a $(d-n)$-dimensional neighbourhood consisting of sequences satisfying all constraints. In such neighbourhood one can find p_{1}, p_{2} such that $p \in\left(p_{1}, p_{2}\right)$. Hence p is not extreme.
Assume that Φ is convex and continuous and that the set of log-concave sequences satisfying all constraints is compact. Then Φ attains maximum in some extreme point. Thus the problem of maximizing Φ under n constraints can be restricted to sequences having at most n degrees of freedom.

Discrete degrees of freedom

How it works
Suppose we are given n constraints and the sequence p having $d>n$ degrees of freedom. Take d-dimensional neighbourhood of p in \mathcal{L}_{l}, then by linearity there is a $(d-n)$-dimensional neighbourhood consisting of sequences satisfying all constraints. In such neighbourhood one can find p_{1}, p_{2} such that $p \in\left(p_{1}, p_{2}\right)$. Hence p is not extreme.
Assume that Φ is convex and continuous and that the set of log-concave sequences satisfying all constraints is compact. Then Φ attains maximum in some extreme point. Thus the problem of maximizing Φ under n constraints can be restricted to sequences having at most n degrees of freedom.

Theorem

A log-concave sequence p has at most $d+1$ degrees of freedom if and only if it is of the form e^{-V} for V being maximum of at most d arithmetic progressions.

Applications

Maximum-variance bounds

Let X be an integer-valued random variable with log-concave distribution p. Denote $M(X)=\max _{n} p(n)$.

Applications

Maximum-variance bounds

Let X be an integer-valued random variable with log-concave distribution p. Denote $M(X)=\max _{n} p(n)$.

In 2021 Bobkov, Marsiglietti and Melbourne proved that

$$
\frac{1}{\sqrt{1+12 \operatorname{Var}(X)}} \leqslant M(X) \leqslant \frac{1}{\sqrt{\frac{1}{4}+\operatorname{Var}(X)}}
$$

and assuming additionally that X is symmetric

$$
M(X)^{2}(1+2 \operatorname{Var}(X)) \leqslant 1
$$

Applications

Maximum-variance bounds

Let X be an integer-valued random variable with log-concave distribution p. Denote $M(X)=\max _{n} p(n)$.

In 2021 Bobkov, Marsiglietti and Melbourne proved that

$$
\frac{1}{\sqrt{1+12 \operatorname{Var}(X)}} \leqslant M(X) \leqslant \frac{1}{\sqrt{\frac{1}{4}+\operatorname{Var}(X)}}
$$

and assuming additionally that X is symmetric

$$
M(X)^{2}(1+2 \operatorname{Var}(X)) \leqslant 1
$$

The last result is optimal for all values of $\operatorname{Var}(X)$ and the equality occurs for two-sided geometric distributions.

Applications

Maximum-variance bounds

In 2023 Aravinda proved that

$$
M(X)^{2}(1+\operatorname{Var}(X)) \leqslant 1
$$

which is achieved asymptotically for geometric distribution $p(k)=\theta(1-\theta)^{k} 1_{k \geqslant 0}$ as $\theta \rightarrow 0$.

Applications

Maximum-variance bounds

In 2023 Aravinda proved that

$$
M(X)^{2}(1+\operatorname{Var}(X)) \leqslant 1
$$

which is achieved asymptotically for geometric distribution $p(k)=\theta(1-\theta)^{k} 1_{k \geqslant 0}$ as $\theta \rightarrow 0$. We give a stronger result, namely

$$
\begin{equation*}
M(X)^{2} \operatorname{Var}(X)+M(X) \leqslant 1 \tag{1}
\end{equation*}
$$

which is optimal for all values of $\operatorname{Var}(X)$ and the equality occurs for geometric distributions.

Applications

Proof of maximum-variance inequality

Sketch of the proof:
1 LHS is monotone wrt $M(X)$, hence it suffices to maximize convex functional $\Phi(p)=\max _{n} p(n)$. Constraints are

- $\Phi_{1}(p)=\sum_{n} p(n)=1$ fixing p to be a probability distribution;
- $\Phi_{2}(p)=\sum_{n} n p(n), \Phi_{3}(p)=\sum_{n} n^{2} p(n)$ fixing the variance.

Applications

Proof of maximum-variance inequality

Sketch of the proof:
1 LHS is monotone wrt $M(X)$, hence it suffices to maximize convex functional $\Phi(p)=\max _{n} p(n)$. Constraints are

- $\Phi_{1}(p)=\sum_{n} p(n)=1$ fixing p to be a probability distribution;
- $\Phi_{2}(p)=\sum_{n} n p(n), \Phi_{3}(p)=\sum_{n} n^{2} p(n)$ fixing the variance.

Developed theory, together with translation and approximation argument, reduces the problem to p being of the form

$$
p(n)=C e^{-\beta_{1}(n-N)} 1_{[0, N]}(n)+C e^{-\beta_{2}(n-N)} 1_{[N+1, L]}(n) .
$$

Applications

Proof of maximum-variance inequality
2 Assume p is monotone. For simplicity we allow sequences supported on $\{0,1, \ldots\}$ in this case. Assume p is non-increasing and consider a variable Y with geometric distribution q of the same mean. Then $p-q$ changes sign exactly twice with sign pattern $(-,+,-)$.

Applications

Proof of maximum-variance inequality
2 Assume p is monotone. For simplicity we allow sequences supported on $\{0,1, \ldots\}$ in this case. Assume p is non-increasing and consider a variable Y with geometric distribution q of the same mean. Then $p-q$ changes sign exactly twice with sign pattern $(-,+,-)$. Hence

$$
M(X)=p(0) \leqslant q(0)=M(Y)
$$

Applications

Proof of maximum-variance inequality
2 Assume p is monotone. For simplicity we allow sequences supported on $\{0,1, \ldots\}$ in this case. Assume p is non-increasing and consider a variable Y with geometric distribution q of the same mean. Then $p-q$ changes sign exactly twice with sign pattern $(-,+,-)$. Hence

$$
M(X)=p(0) \leqslant q(0)=M(Y)
$$

Also one can find a, b such that $n^{2}+a n+b$ and $p(n)-q(n)$ have opposite sign and

$$
\begin{aligned}
& \mathbb{E} X^{2}-\mathbb{E} Y^{2}=\sum_{n} n^{2}(p(n)-q(n))= \\
& =\sum_{n}\left(n^{2}+a n+b\right)(p(n)-q(n)) \leqslant 0
\end{aligned}
$$

Applications

Proof of maximum-variance inequality
2 Assume p is monotone. For simplicity we allow sequences supported on $\{0,1, \ldots\}$ in this case. Assume p is non-increasing and consider a variable Y with geometric distribution q of the same mean. Then $p-q$ changes sign exactly twice with sign pattern $(-,+,-)$. Hence

$$
M(X)=p(0) \leqslant q(0)=M(Y)
$$

Also one can find a, b such that $n^{2}+a n+b$ and $p(n)-q(n)$ have opposite sign and

$$
\begin{aligned}
& \mathbb{E} X^{2}-\mathbb{E} Y^{2}=\sum_{n} n^{2}(p(n)-q(n))= \\
& =\sum_{n}\left(n^{2}+a n+b\right)(p(n)-q(n)) \leqslant 0
\end{aligned}
$$

For Y equality holds in (1), which ends the proof in monotone case.

Applications

Proof of maximum-variance inequality
3 Assume p is not monotone, then $C=M(X)$. Denote $x=e^{\beta_{1}}$, $y=e^{-\beta_{2}}$ and $K=L-N$.

Applications

Proof of maximum-variance inequality
3 Assume p is not monotone, then $C=M(X)$. Denote $x=e^{\beta_{1}}$, $y=e^{-\beta_{2}}$ and $K=L-N$.
By algebraic transformations we obtain inequality (1) in the equivalent form

$$
\begin{gathered}
\left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)^{4}-\left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)^{3}- \\
-\left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)\left(\sum_{n=1}^{N} n^{2} x^{n}+\sum_{k=1}^{K} k^{2} y^{k}\right)+ \\
+\left(\sum_{n=1}^{N} n x^{n}-\sum_{k=1}^{K} k y^{k}\right)^{2} \geqslant 0
\end{gathered}
$$

Applications

Proof of maximum-variance inequality
3 Assume p is not monotone, then $C=M(X)$. Denote $x=e^{\beta_{1}}$, $y=e^{-\beta_{2}}$ and $K=L-N$.
By algebraic transformations we obtain inequality (1) in the equivalent form

$$
\begin{aligned}
& \left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)^{4}-\left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)^{3}- \\
& -\left(1+\sum_{n=1}^{N} x^{n}+\sum_{k=1}^{K} y^{k}\right)\left(\sum_{n=1}^{N} n^{2} x^{n}+\sum_{k=1}^{K} k^{2} y^{k}\right)+ \\
& \quad+\left(\sum_{n=1}^{N} n x^{n}-\sum_{k=1}^{K} k y^{k}\right)^{2} \geqslant 0
\end{aligned}
$$

4 Now it suffices to show that coefficients of the obtained polynomial are nonnegative.

Applications

Ultra-log-concavity
We say that a random variable X with distribution μ taking nonnegative integer values is ultra-log-concave if $\frac{\mu(n) e^{\lambda} n!}{\lambda^{n}}$ is log-concave.

Applications

Ultra-log-concavity
We say that a random variable X with distribution μ taking nonnegative integer values is ultra-log-concave if $\frac{\mu(n) e^{\lambda} n!}{\lambda^{n}}$ is log-concave.
The notion of ultra-log-concavity appeared for the first time in the work of Pemantle in 2000. In 2007 Johnson proved that the Poisson distribution maximises entropy in the class of ultra log-concave distributions under fixed mean. In 2009 Yu simplified this proof. In 2021 Aravinda, Marsiglietti and Melbourne proved some concentration results for ultra-log-concave variables.

Applications

Ultra-log-concavity
We say that a random variable X with distribution μ taking nonnegative integer values is ultra-log-concave if $\frac{\mu(n) e^{\lambda} n!}{\lambda^{n}}$ is log-concave.
The notion of ultra-log-concavity appeared for the first time in the work of Pemantle in 2000. In 2007 Johnson proved that the Poisson distribution maximises entropy in the class of ultra log-concave distributions under fixed mean. In 2009 Yu simplified this proof. In 2021 Aravinda, Marsiglietti and Melbourne proved some concentration results for ultra-log-concave variables. The following theorem results by using discrete degrees of freedom.

Theorem (JMNS, 2023)

Let X be an ultra-log-concave random variable with integral mean. Then

$$
\mathbb{P}(X=\mathbb{E} X) \geqslant \mathbb{P}(\operatorname{Poiss}(\mathbb{E} X)=\mathbb{E} X)
$$

