Probabilistic limit theorems induced by the zeros of

polynomials

Holger Sambale joint work with:

Nils Heerten and Christoph Thäle

Ruhr University Bochum
High Dimensional Probability
June 11-16, 2023, Będlewo

Polynomials and Random Variables

1) $P_{n}(z)=a_{0}+a_{1} z^{1}+\ldots+a_{n} z^{n}$ polynomial, $a_{k} \geq 0 \forall k$

Polynomials and Random Variables

1) $P_{n}(z)=a_{0}+a_{1} z^{1}+\ldots+a_{n} z^{n}$ polynomial, $a_{k} \geq 0 \forall k$ \Rightarrow defines r.v. X_{n} by $\quad \mathbb{P}\left(X_{n}=k\right)=a_{k} /\left(\sum_{j=0}^{n} a_{j}\right)$

Polynomials and Random Variables

1) $P_{n}(z)=a_{0}+a_{1} z^{1}+\ldots+a_{n} z^{n}$ polynomial, $a_{k} \geq 0 \forall k$ \Rightarrow defines r.v. X_{n} by $\mathbb{P}\left(X_{n}=k\right)=a_{k} /\left(\sum_{j=0}^{n} a_{j}\right)$
2) X_{n} r.v., values in $\{0,1, \ldots, n\}$
\Rightarrow probab. gen. fct. $\sum_{k=0}^{n} \mathbb{P}\left(X_{n}=k\right) z^{k}$ is polynomial

Polynomials and Random Variables

1) $P_{n}(z)=a_{0}+a_{1} z^{1}+\ldots+a_{n} z^{n}$ polynomial, $a_{k} \geq 0 \forall k$
\Rightarrow defines r.v. X_{n} by $\mathbb{P}\left(X_{n}=k\right)=a_{k} /\left(\sum_{j=0}^{n} a_{j}\right)$
2) X_{n} r.v., values in $\{0,1, \ldots, n\}$
\Rightarrow probab. gen. fct. $\sum_{k=0}^{n} \mathbb{P}\left(X_{n}=k\right) z^{k}$ is polynomial
Conclusion: Have natural bijection
\{"normed" polynomials, coeff. $\geq 0\} \longleftrightarrow$ bounded \mathbb{N}_{0}-valued r.v.s $\}$

Polynomials and Random Variables

1) $P_{n}(z)=a_{0}+a_{1} z^{1}+\ldots+a_{n} z^{n}$ polynomial, $a_{k} \geq 0 \forall k$
\Rightarrow defines r.v. X_{n} by $\mathbb{P}\left(X_{n}=k\right)=a_{k} /\left(\sum_{j=0}^{n} a_{j}\right)$
2) X_{n} r.v., values in $\{0,1, \ldots, n\}$
\Rightarrow probab. gen. fct. $\sum_{k=0}^{n} \mathbb{P}\left(X_{n}=k\right) z^{k}$ is polynomial
Conclusion: Have natural bijection
\{"normed" polynomials, coeff. $\geq 0\} \longleftrightarrow$ bounded \mathbb{N}_{0}-valued r.v.s $\}$
Question: Consider sequences $\left(P_{n}\right)_{n} \stackrel{1: 1}{\longleftrightarrow}\left(X_{n}\right)_{n}$. Relations between zeros of P_{n} and (asymptotic) distributional behaviour of X_{n} ?

Real roots

Situation 1: Assume all roots of $P_{n}(z)$ are real (\Rightarrow negative)
$\Rightarrow \quad P_{n}(z)=\prod_{k=1}^{n}\left(p_{k} z+q_{k}\right)$ for $p_{k} \in(0,1), q_{k}=1-p_{k}$

Real roots

Situation 1: Assume all roots of $P_{n}(z)$ are real (\Rightarrow negative)
$\Rightarrow \quad P_{n}(z)=\prod_{k=1}^{n}\left(p_{k} z+q_{k}\right)$ for $p_{k} \in(0,1), q_{k}=1-p_{k}$
$\Rightarrow \quad X_{n}=X_{n, 1}+\ldots+X_{n, n}, X_{n, 1}, \ldots, X_{n, n}$ indep., $X_{n, k} \sim \operatorname{Ber}\left(p_{k}\right)$

Real roots

Situation 1: Assume all roots of $P_{n}(z)$ are real (\Rightarrow negative)
$\Rightarrow \quad P_{n}(z)=\prod_{k=1}^{n}\left(p_{k} z+q_{k}\right)$ for $p_{k} \in(0,1), q_{k}=1-p_{k}$
$\Rightarrow \quad X_{n}=X_{n, 1}+\ldots+X_{n, n}, X_{n, 1}, \ldots, X_{n, n}$ indep., $X_{n, k} \sim \operatorname{Ber}\left(p_{k}\right)$

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2}=\sum_{k=1}^{n} p_{k} q_{k} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Real roots

Situation 1: Assume all roots of $P_{n}(z)$ are real (\Rightarrow negative)
$\Rightarrow \quad P_{n}(z)=\prod_{k=1}^{n}\left(p_{k} z+q_{k}\right)$ for $p_{k} \in(0,1), q_{k}=1-p_{k}$
$\Rightarrow \quad X_{n}=X_{n, 1}+\ldots+X_{n, n}, X_{n, 1}, \ldots, X_{n, n}$ indep., $X_{n, k} \sim \operatorname{Ber}\left(p_{k}\right)$

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2}=\sum_{k=1}^{n} p_{k} q_{k} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Example: $\pi \in \mathfrak{S}_{n}$ permutation has descent at i if $\pi(i)>\pi(i+1)$
$X_{n}:=\#\{$ descents of uniform random permutation $\}$

Real roots

Situation 1: Assume all roots of $P_{n}(z)$ are real (\Rightarrow negative)
$\Rightarrow \quad P_{n}(z)=\prod_{k=1}^{n}\left(p_{k} z+q_{k}\right)$ for $p_{k} \in(0,1), q_{k}=1-p_{k}$
$\Rightarrow \quad X_{n}=X_{n, 1}+\ldots+X_{n, n}, X_{n, 1}, \ldots, X_{n, n}$ indep., $X_{n, k} \sim \operatorname{Ber}\left(p_{k}\right)$

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2}=\sum_{k=1}^{n} p_{k} q_{k} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Example: $\pi \in \mathfrak{S}_{n}$ permutation has descent at i if $\pi(i)>\pi(i+1)$
$X_{n}:=\#\{$ descents of uniform random permutation $\}$
P_{n} "Eulerian polynomial", only real roots, $\sigma_{n}^{2} \sim n$
\Rightarrow CLT with speed of convergence $n^{-1 / 2}$

Hurwitz polynomials
Situation 2: $P_{n}(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta)<0$ for all roots ζ

Situation 2: $P_{n}(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta)<0$ for all roots ζ Note: $P_{n}(\zeta)=0 \Rightarrow P_{n}(\bar{\zeta})=0 \rightsquigarrow P_{n}(z)=\prod_{j} P_{n, j}(z), \quad P_{n, j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)

Situation 2: $P_{n}(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta)<0$ for all roots ζ Note: $P_{n}(\zeta)=0 \Rightarrow P_{n}(\bar{\zeta})=0 \rightsquigarrow P_{n}(z)=\prod_{j} P_{n, j}(z), \quad P_{n, j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)
\Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Hurwitz polynomials

Situation 2: $P_{n}(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta)<0$ for all roots ζ Note: $P_{n}(\zeta)=0 \Rightarrow P_{n}(\bar{\zeta})=0 \rightsquigarrow P_{n}(z)=\prod_{j} P_{n, j}(z), \quad P_{n, j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)
\Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_{n}$, i. e. descent if i odd, ascent if i even
$X_{n}:=\#\{$ alternating descents of uniform random permutation $\}$

Hurwitz polynomials

Situation 2: $P_{n}(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta)<0$ for all roots ζ Note: $P_{n}(\zeta)=0 \Rightarrow P_{n}(\bar{\zeta})=0 \rightsquigarrow P_{n}(z)=\prod_{j} P_{n, j}(z), \quad P_{n, j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)
\Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

- $\left(X_{n}\right)_{n}$ satisfies CLT iff $\operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$
- Speed of Convergence $\sim \sigma_{n}^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_{n}$, i. e. descent if i odd, ascent if i even
$X_{n}:=\#\{$ alternating descents of uniform random permutation $\}$ all roots of P_{n} on the left-hand side of the unit circle, $\sigma_{n}^{2} \sim n$
$\Rightarrow \quad$ CLT with speed of convergence $n^{-1 / 2}$

General polynomials

Situation 3: What about general polynomials?

General polynomials

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s

General polynomials

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s

Example: inversions of $\pi \in \mathfrak{S}_{n}$, i. e. tuples $i<j$ with $\pi(i)>\pi(j)$
$X_{n}:=\#\{$ inversions of uniform random permutation $\}$
$P_{n}(z)=\prod_{k=1}^{n-1}\left(1+\ldots+z^{k}\right)=\prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle)

General polynomials

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s

Example: inversions of $\pi \in \mathfrak{S}_{n}$, i. e. tuples $i<j$ with $\pi(i)>\pi(j)$
$X_{n}:=\#\{$ inversions of uniform random permutation $\}$
$P_{n}(z)=\prod_{k=1}^{n-1}\left(1+\ldots+z^{k}\right)=\prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle)
Known: $\sigma_{n}^{2} \sim n^{3}$, but X_{n} sat. CLT with speed $n^{-1 / 2} \neq \sigma_{n}^{-1}$
\Rightarrow something different is happening!

General polynomials

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s

Example: inversions of $\pi \in \mathfrak{S}_{n}$, i. e. tuples $i<j$ with $\pi(i)>\pi(j)$
$X_{n}:=\#\{$ inversions of uniform random permutation $\}$
$P_{n}(z)=\prod_{k=1}^{n-1}\left(1+\ldots+z^{k}\right)=\prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle)
Known: $\sigma_{n}^{2} \sim n^{3}$, but X_{n} sat. CLT with speed $n^{-1 / 2} \neq \sigma_{n}^{-1}$
\Rightarrow something different is happening!
Note: $\operatorname{argmin}\left\{\zeta: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi / n=: \delta_{n}$
Observation: rate of convergence agrees with $\left(\delta_{n} \sigma_{n}\right)^{-1}=n^{-1 / 2}$

General polynomials

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s

Example: inversions of $\pi \in \mathfrak{S}_{n}$, i. e. tuples $i<j$ with $\pi(i)>\pi(j)$
$X_{n}:=\#\{$ inversions of uniform random permutation $\}$
$P_{n}(z)=\prod_{k=1}^{n-1}\left(1+\ldots+z^{k}\right)=\prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle)
Known: $\sigma_{n}^{2} \sim n^{3}$, but X_{n} sat. CLT with speed $n^{-1 / 2} \neq \sigma_{n}^{-1}$
\Rightarrow something different is happening!
Note: $\operatorname{argmin}\left\{\zeta: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi / n=: \delta_{n}$
Observation: rate of convergence agrees with $\left(\delta_{n} \sigma_{n}\right)^{-1}=n^{-1 / 2}$
\Rightarrow General principle behind?

Root-unitary polynomials
Theorem (Hwang-Zacharovas (2015))
CLT for root-unitary polynomials $P_{n}(z)$:

$$
X_{n}^{*}:=\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right) / \sigma_{n} \Rightarrow \mathcal{N}(0,1) \quad \text { iff } \quad \mathbb{E}\left(X_{n}^{*}\right)^{4} \rightarrow 3
$$

Theorem (Hwang-Zacharovas (2015))
CLT for root-unitary polynomials $P_{n}(z)$:

$$
X_{n}^{*}:=\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right) / \sigma_{n} \Rightarrow \mathcal{N}(0,1) \quad \text { iff } \quad \mathbb{E}\left(X_{n}^{*}\right)^{4} \rightarrow 3
$$

Proof based on cumulant bounds

Theorem (Hwang-Zacharovas (2015))
CLT for root-unitary polynomials $P_{n}(z)$:

$$
X_{n}^{*}:=\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right) / \sigma_{n} \Rightarrow \mathcal{N}(0,1) \quad \text { iff } \quad \mathbb{E}\left(X_{n}^{*}\right)^{4} \rightarrow 3
$$

Proof based on cumulant bounds
Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \geq 3, \forall n \geq 1$

$$
\left|\kappa_{m, n}^{*}\right| \equiv\left|\kappa_{m}\left(X_{n}^{*}\right)\right| \leq \frac{\bar{m}!}{\Delta_{n}^{m-2}}, \quad \text { some } \Delta_{n}>0
$$

Theorem (Hwang-Zacharovas (2015))
CLT for root-unitary polynomials $P_{n}(z)$:

$$
X_{n}^{*}:=\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right) / \sigma_{n} \Rightarrow \mathcal{N}(0,1) \quad \text { iff } \quad \mathbb{E}\left(X_{n}^{*}\right)^{4} \rightarrow 3
$$

Proof based on cumulant bounds
Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \geq 3, \forall n \geq 1$

$$
\left|\kappa_{m, n}^{*}\right| \equiv\left|\kappa_{m}\left(X_{n}^{*}\right)\right| \leq \frac{\bar{m}!}{\Delta_{n}^{m-2}}, \quad \text { some } \Delta_{n}>0
$$

(i) CLT \& Berry-Esseen bound:

$$
\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left(X_{n}^{*} \geq x\right)-\mathbb{P}(Z \geq x)\right| \leq C \Delta_{n}^{-1}, \quad Z \sim \mathcal{N}(0,1)
$$

The method of cumulants

Proposition (cont.)

(ii) moderate deviations: $\left(a_{n}\right)$ s.th. $a_{n} \rightarrow \infty, a_{n}=o\left(\Delta_{n}\right)$
$\rightsquigarrow X_{n}^{*} / a_{n}$ satisfies a MDP with speed $a_{n}^{2} \&$ rate $f c t . I(x)=x^{2} / 2$

The method of cumulants

Proposition (cont.)

(ii) moderate deviations: $\left(a_{n}\right)$ s.th. $a_{n} \rightarrow \infty, a_{n}=o\left(\Delta_{n}\right)$
$\rightsquigarrow X_{n}^{*} / a_{n}$ satisfies a MDP with speed $a_{n}^{2} \&$ rate $f c t . I(x)=x^{2} / 2$
Example: $\lim _{n \rightarrow \infty} a_{n}^{-2} \log \mathbb{P}\left(X_{n}^{*} / a_{n} \in(x, \infty)\right)=-x^{2} / 2, \quad x \geq 0$

The method of cumulants

Proposition (cont.)

(ii) moderate deviations: $\left(a_{n}\right)$ s.th. $a_{n} \rightarrow \infty, a_{n}=o\left(\Delta_{n}\right)$
$\rightsquigarrow X_{n}^{*} / a_{n}$ satisfies a MDP with speed $a_{n}^{2} \&$ rate $f c t . I(x)=x^{2} / 2$
Example: $\lim _{n \rightarrow \infty} a_{n}^{-2} \log \mathbb{P}\left(X_{n}^{*} / a_{n} \in(x, \infty)\right)=-x^{2} / 2, \quad x \geq 0$
(iii) Bernstein-type conc. ineq.: $\mathbb{P}\left(X_{n}^{*} \geq x\right) \leq C \exp \left(-\frac{1}{2} \frac{x^{2}}{2+x / \Delta_{n}}\right)$

The method of cumulants

Proposition (cont.)

(ii) moderate deviations: $\left(a_{n}\right)$ s.th. $a_{n} \rightarrow \infty, a_{n}=o\left(\Delta_{n}\right)$
$\rightsquigarrow X_{n}^{*} / a_{n}$ satisfies a MDP with speed $a_{n}^{2} \&$ rate $f c t . I(x)=x^{2} / 2$
Example: $\lim _{n \rightarrow \infty} a_{n}^{-2} \log \mathbb{P}\left(X_{n}^{*} / a_{n} \in(x, \infty)\right)=-x^{2} / 2, \quad x \geq 0$
(iii) Bernstein-type conc. ineq.: $\mathbb{P}\left(X_{n}^{*} \geq x\right) \leq C \exp \left(-\frac{1}{2} \frac{x^{2}}{2+x / \Delta_{n}}\right)$
(iv) mod-Gaussian convergence: Ass. $\kappa_{m, n}^{*}=0 \forall m=3, \ldots, v-1$, $\kappa_{v, n}^{*} \Delta_{n}^{v-2} \rightarrow L \in \mathbb{R} \rightsquigarrow \Delta_{n}^{1-2 / v} X_{n}^{*}$ converges in the mod-Gaussian sense with param. $t_{n}:=\Delta_{n}^{2(v-2) / v}$ and limiting fct. $\Psi(z):=e^{\frac{L}{v!} z^{v}}$

The method of cumulants

Proposition (cont.)

(ii) moderate deviations: $\left(a_{n}\right)$ s.th. $a_{n} \rightarrow \infty, a_{n}=o\left(\Delta_{n}\right)$
$\rightsquigarrow X_{n}^{*} / a_{n}$ satisfies a MDP with speed $a_{n}^{2} \&$ rate fct. $I(x)=x^{2} / 2$
Example: $\lim _{n \rightarrow \infty} a_{n}^{-2} \log \mathbb{P}\left(X_{n}^{*} / a_{n} \in(x, \infty)\right)=-x^{2} / 2, \quad x \geq 0$
(iii) Bernstein-type conc. ineq.: $\mathbb{P}\left(X_{n}^{*} \geq x\right) \leq C \exp \left(-\frac{1}{2} \frac{x^{2}}{2+x / \Delta_{n}}\right)$
(iv) mod-Gaussian convergence: Ass. $\kappa_{m, n}^{*}=0 \forall m=3, \ldots, v-1$, $\kappa_{v, n}^{*} \Delta_{n}^{v-2} \rightarrow L \in \mathbb{R} \rightsquigarrow \Delta_{n}^{1-2 / v} X_{n}^{*}$ converges in the mod-Gaussian sense with param. $t_{n}:=\Delta_{n}^{2(v-2) / v}$ and limiting fct. $\Psi(z):=e^{\frac{L}{v!} z^{v}}$ This means: $\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{z X_{n}^{*}}\right] e^{-t_{n} \frac{z^{2}}{2}}=\Psi(z)$ loc. unif. on \mathbb{C}

A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:

$$
P_{n}(z)=\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right), \quad a_{k} \leq b_{k}
$$

A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:

$$
P_{n}(z)=\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right), \quad a_{k} \leq b_{k}
$$

- appear in inversions in random permutations (+ generalizations), Gaussian polynomials, q-Catalan numbers etc.

A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:

$$
P_{n}(z)=\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right), \quad a_{k} \leq b_{k}
$$

- appear in inversions in random permutations (+ generalizations), Gaussian polynomials, q-Catalan numbers etc.
- cumulants $\kappa_{m, n} \equiv \kappa_{m}\left(X_{n}\right)=\left(B_{m} / m\right) \sum_{j=1}^{n}\left(b_{j}^{m}-a_{j}^{m}\right), \quad m \geq 3$, $B_{m}=m$-th Bernoulli number $\left(\rightsquigarrow \kappa_{2 m+1, n} \equiv 0\right)$

A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:

$$
P_{n}(z)=\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right), \quad a_{k} \leq b_{k}
$$

- appear in inversions in random permutations (+ generalizations), Gaussian polynomials, q-Catalan numbers etc.
- cumulants $\kappa_{m, n} \equiv \kappa_{m}\left(X_{n}\right)=\left(B_{m} / m\right) \sum_{j=1}^{n}\left(b_{j}^{m}-a_{j}^{m}\right), \quad m \geq 3$, $B_{m}=m$-th Bernoulli number $\left(\rightsquigarrow \kappa_{2 m+1, n} \equiv 0\right)$

Theorem (Heerten-S-Thäle (2022+))

$$
\left|\kappa_{2 m, n}^{*}\right| \leq \frac{(2 m)!}{\Delta_{n}^{2 m-2}}
$$

where

$$
\Delta_{n}=\pi^{2} \sqrt{\frac{7}{6}} \frac{\sigma_{n}}{M_{n}}, \quad M_{n}=\max _{1 \leq k \leq n} b_{k}
$$

Elements of the proof

Step 1: By induction, show that

$$
b^{2 m}-a^{2 m} \leq\left(b^{2}-a^{2}\right) 2^{m-1} b^{2 m-2} \forall b \geq a \geq 0 \forall m \geq 2
$$

Elements of the proof

Step 1: By induction, show that

$$
b^{2 m}-a^{2 m} \leq\left(b^{2}-a^{2}\right) 2^{m-1} b^{2 m-2} \forall b \geq a \geq 0 \forall m \geq 2
$$

Step 2: Use this inequality to obtain

$$
\left|\kappa_{2 m, N}^{*}\right|=\frac{\left|B_{2 m}\right|}{2 m \sigma_{N}^{2 m}} \sum_{j=1}^{n}\left(b_{j}^{2 m}-a_{j}^{2 m}\right) \leq \frac{2^{m-2}}{m \sigma_{N}^{2 m}}\left|B_{2 m}\right| M_{N}^{2 m-2} \sum_{j=1}^{n}\left(b_{j}^{2}-a_{j}^{2}\right)
$$

Elements of the proof

Step 1: By induction, show that

$$
b^{2 m}-a^{2 m} \leq\left(b^{2}-a^{2}\right) 2^{m-1} b^{2 m-2} \forall b \geq a \geq 0 \forall m \geq 2
$$

Step 2: Use this inequality to obtain

$$
\left|\kappa_{2 m, N}^{*}\right|=\frac{\left|B_{2 m}\right|}{2 m \sigma_{N}^{2 m}} \sum_{j=1}^{n}\left(b_{j}^{2 m}-a_{j}^{2 m}\right) \leq \frac{2^{m-2}}{m \sigma_{N}^{2 m}}\left|B_{2 m}\right| M_{N}^{2 m-2} \sum_{j=1}^{n}\left(b_{j}^{2}-a_{j}^{2}\right)
$$

Since $\sigma_{N}^{2}=\kappa_{2, N}=\frac{1}{12} \sum_{j=1}^{n}\left(b_{j}^{2}-a_{j}^{2}\right)$ and $\left|B_{2 m}\right| \leq \frac{2(2 m)!}{(2 \pi)^{2 m}} \frac{1}{1-2^{1-2 m}} \rightsquigarrow$

$$
\left|\kappa_{2 m, N}^{*}\right| \leq(2 m)!\frac{3 \cdot 2^{1-m}}{m \pi^{2 m}\left(1-2^{1-2 m}\right)}\left(\frac{M_{N}}{\sigma_{N}}\right)^{2 m-2}
$$

Elements of the proof

Step 1: By induction, show that

$$
b^{2 m}-a^{2 m} \leq\left(b^{2}-a^{2}\right) 2^{m-1} b^{2 m-2} \forall b \geq a \geq 0 \forall m \geq 2
$$

Step 2: Use this inequality to obtain

$$
\left|\kappa_{2 m, N}^{*}\right|=\frac{\left|B_{2 m}\right|}{2 m \sigma_{N}^{2 m}} \sum_{j=1}^{n}\left(b_{j}^{2 m}-a_{j}^{2 m}\right) \leq \frac{2^{m-2}}{m \sigma_{N}^{2 m}}\left|B_{2 m}\right| M_{N}^{2 m-2} \sum_{j=1}^{n}\left(b_{j}^{2}-a_{j}^{2}\right)
$$

Since $\sigma_{N}^{2}=\kappa_{2, N}=\frac{1}{12} \sum_{j=1}^{n}\left(b_{j}^{2}-a_{j}^{2}\right)$ and $\left|B_{2 m}\right| \leq \frac{2(2 m)!}{(2 \pi)^{2 m}} \frac{1}{1-2^{1-2 m}} \rightsquigarrow$

$$
\left|\kappa_{2 m, N}^{*}\right| \leq(2 m)!\frac{3 \cdot 2^{1-m}}{m \pi^{2 m}\left(1-2^{1-2 m}\right)}\left(\frac{M_{N}}{\sigma_{N}}\right)^{2 m-2}
$$

The proof is completed by monotonicity arguments.

One further example

$p(n, \ell, j)=\#\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

$$
G(n, \ell ; z):=\sum_{j=0}^{n} p(n, \ell, j) z^{j}
$$

One further example

$p(n, \ell, j)=\#\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

$$
G(n, \ell ; z):=\sum_{j=0}^{n} p(n, \ell, j) z^{j}=\prod_{j=1}^{n}\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)
$$

Note: $G(n, \ell ; z)$ is polynomial, but not $\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)$ in gen.

One further example

$p(n, \ell, j)=\#\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

$$
G(n, \ell ; z):=\sum_{j=0}^{n} p(n, \ell, j) z^{j}=\prod_{j=1}^{n}\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)
$$

Note: $G(n, \ell ; z)$ is polynomial, but not $\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)$ in gen.
Can calculate: $\sigma_{n, \ell}^{2}=\left(\ell^{2} n+\ell n+\ell n^{2}\right) / 12, M_{n}=n+\ell$
$\Rightarrow \Delta_{n, \ell}=c \sqrt{\ell n(\ell+n+1)} /(\ell+n) \rightarrow \infty$ as $n, \ell \rightarrow \infty$

One further example

$p(n, \ell, j)=\#\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

$$
G(n, \ell ; z):=\sum_{j=0}^{n} p(n, \ell, j) z^{j}=\prod_{j=1}^{n}\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)
$$

Note: $G(n, \ell ; z)$ is polynomial, but not $\left(1-z^{j+\ell}\right) /\left(1-z^{j}\right)$ in gen.
Can calculate: $\sigma_{n, \ell}^{2}=\left(\ell^{2} n+\ell n+\ell n^{2}\right) / 12, M_{n}=n+\ell$
$\Rightarrow \Delta_{n, \ell}=c \sqrt{\ell n(\ell+n+1)} /(\ell+n) \rightarrow \infty$ as $n, \ell \rightarrow \infty$
$\Rightarrow\left(X_{n, \ell}\right)_{n, \ell}$ sat. CLT with speed of convergence $\sim n^{-1 / 2}+\ell^{-1 / 2}$

Towards a generalization

Note: roots of $\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right)$ are subset of

$$
\left\{\exp \left(\pm 2 \pi i k / b_{j}\right), k=1, \ldots,\left\lfloor b_{j} / 2\right\rfloor, j=1, \ldots, n\right\}
$$

Note: roots of $\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right)$ are subset of

$$
\left\{\exp \left(\pm 2 \pi i k / b_{j}\right), k=1, \ldots,\left\lfloor b_{j} / 2\right\rfloor, j=1, \ldots, n\right\}
$$

$\Rightarrow \operatorname{argmin}\left\{|\zeta|: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi /\left(\max _{j} b_{j}\right)=2 \pi / M_{n}=: \delta_{n}$

Note: roots of $\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right)$ are subset of

$$
\left\{\exp \left(\pm 2 \pi i k / b_{j}\right), k=1, \ldots,\left\lfloor b_{j} / 2\right\rfloor, j=1, \ldots, n\right\}
$$

$\Rightarrow \operatorname{argmin}\left\{|\zeta|: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi /\left(\max _{j} b_{j}\right)=2 \pi / M_{n}=: \delta_{n}$

- $P_{n}(z)$ zero-free in sector $S\left(\delta_{n}\right):=\left\{z \in \mathbb{C}: \arg (z) \in\left(-\delta_{n}, \delta_{n}\right)\right\}$

Note: roots of $\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right)$ are subset of

$$
\left\{\exp \left(\pm 2 \pi i k / b_{j}\right), k=1, \ldots,\left\lfloor b_{j} / 2\right\rfloor, j=1, \ldots, n\right\}
$$

$\Rightarrow \operatorname{argmin}\left\{|\zeta|: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi /\left(\max _{j} b_{j}\right)=2 \pi / M_{n}=: \delta_{n}$

- $P_{n}(z)$ zero-free in sector $S\left(\delta_{n}\right):=\left\{z \in \mathbb{C}: \arg (z) \in\left(-\delta_{n}, \delta_{n}\right)\right\}$
- Have $\Delta_{n} \approx \sigma_{n} / M_{n} \approx \sigma_{n} \delta_{n}$

Note: roots of $\prod_{k=1}^{n}\left(1-z^{b_{k}}\right) /\left(1-z^{a_{k}}\right)$ are subset of

$$
\left\{\exp \left(\pm 2 \pi i k / b_{j}\right), k=1, \ldots,\left\lfloor b_{j} / 2\right\rfloor, j=1, \ldots, n\right\}
$$

$\Rightarrow \operatorname{argmin}\left\{|\zeta|: \zeta\right.$ root of $\left.P_{n}\right\}=2 \pi /\left(\max _{j} b_{j}\right)=2 \pi / M_{n}=: \delta_{n}$

- $P_{n}(z)$ zero-free in sector $S\left(\delta_{n}\right):=\left\{z \in \mathbb{C}: \arg (z) \in\left(-\delta_{n}, \delta_{n}\right)\right\}$
- Have $\Delta_{n} \approx \sigma_{n} / M_{n} \approx \sigma_{n} \delta_{n}$

Theorem (Michelen-Sahasrabudhe (2019+), H-S-T (2022+))
$\left(X_{n}\right)_{n}$ bounded \mathbb{N}_{0}-valued r.v.s, $\left(P_{n}\right)_{n}$ probab. gen. fcts. Ass. P_{n} has no roots in $S\left(\delta_{n}\right)$ for $\delta_{n} \in(0, \pi)$. Then,

$$
\left|\kappa_{m, n}^{*}\right| \leq \frac{m!}{\left(c \delta_{n} \sigma_{n}\right)^{m-2}} \forall m \geq 3, c>0 \text { abs. const. }
$$

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen-Sahasrabudhe

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen-Sahasrabudhe
- our proof for the class (C) is more elementary

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen-Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant c in $\Delta_{n}=c \delta_{n} \sigma_{n}$:
$c=\pi \sqrt{7 / 24}$ for (C)

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen-Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant c in $\Delta_{n}=c \delta_{n} \sigma_{n}$:
$c=\pi \sqrt{7 / 24}$ for (C) vs. $c=2^{-3248}$ in general

Comments and comparisons

- includes all previous results (choose any δ_{n} for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen-Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant c in $\Delta_{n}=c \delta_{n} \sigma_{n}$:
$c=\pi \sqrt{7 / 24}$ for (C) vs. $c=2^{-3248}$ in general
- many examples of combinatorial statistics such that the roots of P_{n} can be calculated are either Hurwitz or belong to (C)

Another class of examples

Recall: a polytope $Q \subset \mathbb{R}^{N}$ is called a lattice polytope if all of its vertices have integer coordinates
Ex.: $Q=W_{N}=[0,1]^{N}$ unit cube

Another class of examples

Recall: a polytope $Q \subset \mathbb{R}^{N}$ is called a lattice polytope if all of its vertices have integer coordinates
Ex.: $Q=W_{N}=[0,1]^{N}$ unit cube
Ehrhart's theorem: if Q is a lattice polytope, then

$$
E_{Q}(k):=\left|\left\{t \in \mathbb{Z}^{N}: t \in k Q\right\}\right|, \quad k \in \mathbb{N}_{0}
$$

is the evaluation of a polynomial $E_{Q}(z)$ of degree N "Ehrhart pol."

Another class of examples

Recall: a polytope $Q \subset \mathbb{R}^{N}$ is called a lattice polytope if all of its vertices have integer coordinates
Ex.: $Q=W_{N}=[0,1]^{N}$ unit cube
Ehrhart's theorem: if Q is a lattice polytope, then

$$
E_{Q}(k):=\left|\left\{t \in \mathbb{Z}^{N}: t \in k Q\right\}\right|, \quad k \in \mathbb{N}_{0}
$$

is the evaluation of a polynomial $E_{Q}(z)$ of degree N "Ehrhart pol."
Ex.: $E_{W_{N}}(z)=(z+1)^{N}$

Another class of examples

Recall: a polytope $Q \subset \mathbb{R}^{N}$ is called a lattice polytope if all of its vertices have integer coordinates
Ex.: $Q=W_{N}=[0,1]^{N}$ unit cube
Ehrhart's theorem: if Q is a lattice polytope, then

$$
E_{Q}(k):=\left|\left\{t \in \mathbb{Z}^{N}: t \in k Q\right\}\right|, \quad k \in \mathbb{N}_{0}
$$

is the evaluation of a polynomial $E_{Q}(z)$ of degree N "Ehrhart pol."
Ex.: $E_{W_{N}}(z)=(z+1)^{N} \rightsquigarrow$ after renormalization p.g.f. of $\operatorname{Bin}(N, 1 / 2)$

Another class of examples

Recall: a polytope $Q \subset \mathbb{R}^{N}$ is called a lattice polytope if all of its vertices have integer coordinates
Ex.: $Q=W_{N}=[0,1]^{N}$ unit cube
Ehrhart's theorem: if Q is a lattice polytope, then

$$
E_{Q}(k):=\left|\left\{t \in \mathbb{Z}^{N}: t \in k Q\right\}\right|, \quad k \in \mathbb{N}_{0}
$$

is the evaluation of a polynomial $E_{Q}(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_{N}}(z)=(z+1)^{N} \rightsquigarrow$ after renormalization p.g.f. of $\operatorname{Bin}(N, 1 / 2)$ in general: consider Q Ehrhart positive, i. e. all coefficients of $E_{Q}(z)$ are positive

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"

Q Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"
- Q lattice polytope is reflexive if its convex dual $Q^{\circ}:=$ $\left\{x \in \mathbb{R}^{N}:\langle x, y\rangle \leq 1\right.$ for all $\left.y \in Q\right\}$ is lattice polytope as well

Q Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"
- Q lattice polytope is reflexive if its convex dual $Q^{\circ}:=$ $\left\{x \in \mathbb{R}^{N}:\langle x, y\rangle \leq 1\right.$ for all $\left.y \in Q\right\}$ is lattice polytope as well
$\rightsquigarrow Q$ Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"
- Q lattice polytope is reflexive if its convex dual $Q^{\circ}:=$ $\left\{x \in \mathbb{R}^{N}:\langle x, y\rangle \leq 1\right.$ for all $\left.y \in Q\right\}$ is lattice polytope as well
$\rightsquigarrow Q$ Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!
Example: Consider the "root polytopes"

$$
A_{N}:=\operatorname{conv}\left(\left\{ \pm\left(e_{i}+\ldots+e_{j}\right): 1 \leq i \leq j \leq N\right\}\right),
$$

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"
- Q lattice polytope is reflexive if its convex dual $Q^{\circ}:=$ $\left\{x \in \mathbb{R}^{N}:\langle x, y\rangle \leq 1\right.$ for all $\left.y \in Q\right\}$ is lattice polytope as well
$\rightsquigarrow Q$ Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!
Example: Consider the "root polytopes"

$$
\begin{aligned}
& A_{N}:=\operatorname{conv}\left(\left\{ \pm\left(e_{i}+\ldots+e_{j}\right): 1 \leq i \leq j \leq N\right\}\right), \\
& C_{N}:=\operatorname{conv}\left(\left\{ \pm\left(2 e_{i}+\ldots+2 e_{N-1}+e_{N}\right): 1 \leq i \leq N-1\right\} \cup\left\{ \pm e_{N}\right\}\right) .
\end{aligned}
$$

CL-polytopes

Definition

- Q lattice polytope is called CL-polytope if all roots of E_{Q} lie on $\{z \in \mathbb{C}: \Re(z)=-1 / 2\}$ "critical line"
- Q lattice polytope is reflexive if its convex dual $Q^{\circ}:=$ $\left\{x \in \mathbb{R}^{N}:\langle x, y\rangle \leq 1\right.$ for all $\left.y \in Q\right\}$ is lattice polytope as well
$\rightsquigarrow Q$ Ehrhart positive CL-polytope $\Rightarrow E_{Q}(z)$ Hurwitz polynomial!
Example: Consider the "root polytopes"

$$
\begin{aligned}
& A_{N}:=\operatorname{conv}\left(\left\{ \pm\left(e_{i}+\ldots+e_{j}\right): 1 \leq i \leq j \leq N\right\}\right), \\
& C_{N}:=\operatorname{conv}\left(\left\{ \pm\left(2 e_{i}+\ldots+2 e_{N-1}+e_{N}\right): 1 \leq i \leq N-1\right\} \cup\left\{ \pm e_{N}\right\}\right) .
\end{aligned}
$$

Fact: A_{N}, C_{N} are reflexive CL-polytopes!

CL-polytopes (cont.)

Ehrhart polynomials of $A_{N}^{\circ}, C_{N}^{\circ}$:

$$
E_{A_{N}^{\circ}}(z)=(z+1)^{N+1}-z^{N+1}, \quad E_{C_{N}^{\circ}}(z)=(z+1)^{N}+z^{N}
$$

CL-polytopes (cont.)

Ehrhart polynomials of $A_{N}^{\circ}, C_{N}^{\circ}$:

$$
E_{A_{N}^{\circ}}(z)=(z+1)^{N+1}-z^{N+1}, \quad E_{C_{N}^{\circ}}(z)=(z+1)^{N}+z^{N}
$$

Interpretation in terms of "simple" r.v.s:

CL-polytopes (cont.)

Ehrhart polynomials of $A_{N}^{\circ}, C_{N}^{\circ}$:

$$
E_{A_{N}^{\circ}}(z)=(z+1)^{N+1}-z^{N+1}, \quad E_{C_{N}^{\circ}}(z)=(z+1)^{N}+z^{N}
$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_{N}^{\circ}}$ is p.g.f. of $Y_{N} \mid\left\{Y_{N} \leq N-1\right\}$, where $Y_{N} \sim \operatorname{Bin}(N, 1 / 2)$ (up to renormalization)

CL-polytopes (cont.)

Ehrhart polynomials of $A_{N}^{\circ}, C_{N}^{\circ}$:

$$
E_{A_{N}^{\circ}}(z)=(z+1)^{N+1}-z^{N+1}, \quad E_{C_{N}^{\circ}}(z)=(z+1)^{N}+z^{N}
$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_{N}^{\circ}}$ is p.g.f. of $Y_{N} \mid\left\{Y_{N} \leq N-1\right\}$, where $Y_{N} \sim \operatorname{Bin}(N, 1 / 2)$ (up to renormalization)
- $E_{C_{N}^{\circ}}$ is p.g.f. of $N-U_{N} V_{N}$ with $U_{N} \Perp V_{N}, U_{N} \sim \operatorname{Bin}(N, 1 / 2)$,

$$
V_{N} \sim \operatorname{Ber}\left(2^{N} /\left(2^{N}-1\right)\right)
$$

CL-polytopes (cont.)

Ehrhart polynomials of $A_{N}^{\circ},{C_{N}^{\circ}}^{\circ}$:

$$
E_{A_{N}^{\circ}}(z)=(z+1)^{N+1}-z^{N+1}, \quad E_{C_{N}^{\circ}}(z)=(z+1)^{N}+z^{N}
$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_{N}^{\circ}}$ is p.g.f. of $Y_{N} \mid\left\{Y_{N} \leq N-1\right\}$, where $Y_{N} \sim \operatorname{Bin}(N, 1 / 2)$ (up to renormalization)
- $E_{C_{N}^{\circ}}$ is p.g.f. of $N-U_{N} V_{N}$ with $U_{N} \Perp V_{N}, U_{N} \sim \operatorname{Bin}(N, 1 / 2)$,

$$
V_{N} \sim \operatorname{Ber}\left(2^{N} /\left(2^{N}-1\right)\right)
$$

In particular, our asymptotic distributional results hold in these cases.

Thank you!

