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Polynomials and Random Variables

1) Pn(z) = a0 + a1z1 + . . .+ anzn polynomial, ak ≥ 0 ∀k

⇒ defines r.v. Xn by P(Xn = k) = ak/(
∑n

j=0 aj)

2) Xn r.v., values in {0,1, . . . ,n}

⇒ probab. gen. fct.
∑n

k=0 P(Xn = k)zk is polynomial

Conclusion: Have natural bijection

{“normed” polynomials, coeff. ≥ 0} ←→ {bounded N0-valued r.v.s}

Question: Consider sequences (Pn)n
1:1←→ (Xn)n. Relations between

zeros of Pn and (asymptotic) distributional behaviour of Xn?
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Real roots

Situation 1: Assume all roots of Pn(z) are real (⇒ negative)

⇒ Pn(z) =
∏n

k=1(pkz + qk ) for pk ∈ (0,1), qk = 1− pk

⇒ Xn = Xn,1 + . . .+ Xn,n, Xn,1, . . . ,Xn,n indep., Xn,k ∼ Ber(pk )

(Xn)n satisfies CLT iff Var(Xn) = σ2
n =

∑n
k=1 pkqk →∞ as n→∞

Speed of Convergence ∼ σ−1
n

Example: π ∈ Sn permutation has descent at i if π(i) > π(i + 1)

Xn := #{descents of uniform random permutation}

Pn “Eulerian polynomial”, only real roots, σ2
n ∼ n

⇒ CLT with speed of convergence n−1/2
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Hurwitz polynomials

Situation 2: Pn(z) is a Hurwitz polynomial if Re(ζ) < 0 for all roots ζ

Note: Pn(ζ) = 0⇒ Pn(ζ̄) = 0  Pn(z) =
∏

j Pn,j(z), Pn,j(z) linear

or quadratic with positive coeff. (by Hurwitz prop.)

⇒ corresponds to sum of indep. (unif. bounded) r.v.s again

(Xn)n satisfies CLT iff Var(Xn) = σ2
n →∞ as n→∞

Speed of Convergence ∼ σ−1
n

Example: alternating descents of π ∈ Sn, i. e. descent if i odd, ascent

if i even

Xn := #{alternating descents of uniform random permutation}

all roots of Pn on the left-hand side of the unit circle, σ2
n ∼ n

⇒ CLT with speed of convergence n−1/2
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General polynomials

Situation 3: What about general polynomials?

positive coeff. ⇒ factorization into linear and quadratic terms, but

possibly with negative coeff.  not a sum of indep. r.v.s

Example: inversions of π ∈ Sn, i. e. tuples i < j with π(i) > π(j)

Xn := #{inversions of uniform random permutation}

Pn(z) =
∏n−1

k=1(1 + . . .+ zk ) =
∏n−1

k=1
1−zk+1

1−z (all roots on unit circle)

Known: σ2
n ∼ n3, but Xn sat. CLT with speed n−1/2 6= σ−1

n

⇒ something different is happening!

Note: argmin{ζ : ζ root of Pn} = 2π/n =: δn

Observation: rate of convergence agrees with (δnσn)−1 = n−1/2

⇒ General principle behind?
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Root-unitary polynomials

Theorem (Hwang–Zacharovas (2015))
CLT for root-unitary polynomials Pn(z):

X ∗n := (Xn − E(Xn))/σn ⇒ N (0,1) iff E(X ∗n )4 → 3

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition
Assume Statulevičius condition: ∀m ≥ 3, ∀n ≥ 1

|κ∗m,n| ≡ |κm(X ∗n )| ≤ m!

∆m−2
n

, some ∆n > 0

(i) CLT & Berry–Esseen bound:

supx∈R |P(X ∗n ≥ x)− P(Z ≥ x)| ≤ C∆−1
n , Z ∼ N (0,1)
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The method of cumulants

Proposition (cont.)
(ii) moderate deviations: (an) s.th. an →∞, an = o(∆n)

 X ∗n /an satisfies a MDP with speed a2
n & rate fct. I(x) = x2/2

Example: limn→∞ a−2
n logP(X ∗n /an ∈ (x ,∞)) = −x2/2, x ≥ 0

(iii) Bernstein-type conc. ineq.: P(X ∗n ≥ x) ≤ C exp(−1
2

x2

2+x/∆n
)

(iv) mod-Gaussian convergence: Ass. κ∗m,n = 0 ∀m = 3, . . . , v − 1,

κ∗v ,n∆v−2
n → L ∈ R ∆

1−2/v
n X ∗n converges in the mod-Gaussian

sense with param. tn := ∆
2(v−2)/v
n and limiting fct. Ψ(z) := e

L
v !

zv

This means: limn→∞ E[ezX∗
n ]e−tn z2

2 = Ψ(z) loc. unif. on C
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This means: limn→∞ E[ezX∗
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The method of cumulants

Proposition (cont.)
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A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:

Pn(z) =
∏n

k=1(1− zbk )/(1− zak ), ak ≤ bk

appear in inversions in random permutations (+ generalizations),

Gaussian polynomials, q-Catalan numbers etc.

cumulants κm,n ≡ κm(Xn) = (Bm/m)
∑n

j=1(bm
j − am

j ), m ≥ 3,

Bm = m-th Bernoulli number ( κ2m+1,n ≡ 0)

Theorem (Heerten-S-Thäle (2022+))

|κ∗2m,n| ≤
(2m)!

∆2m−2
n

,

where

∆n = π2

√
7
6
σn

Mn
, Mn = max

1≤k≤n
bk .
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Elements of the proof

Step 1: By induction, show that

b2m − a2m ≤ (b2 − a2)2m−1b2m−2 ∀b ≥ a ≥ 0 ∀m ≥ 2

Step 2: Use this inequality to obtain

|κ∗2m,N | =
|B2m|

2mσ2m
N

n∑
j=1

(b2m
j − a2m

j ) ≤ 2m−2

mσ2m
N
|B2m|M2m−2

N

n∑
j=1

(b2
j − a2

j )

Since σ2
N = κ2,N = 1

12
∑n

j=1(b2
j − a2

j ) and |B2m| ≤ 2(2m)!
(2π)2m

1
1−21−2m  

|κ∗2m,N | ≤ (2m)!
3 · 21−m

mπ2m(1− 21−2m)

(MN

σN

)2m−2

The proof is completed by monotonicity arguments.
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One further example

p(n, `, j) = #{partitions of j with at most ` summands, each ≤ n}

Gaussian polynomials

G(n, `; z) :=
∑n

j=0 p(n, `, j)z j =
∏n

j=1(1− z j+`)/(1− z j)

Note: G(n, `; z) is polynomial, but not (1− z j+`)/(1− z j) in gen.

Can calculate: σ2
n,` = (`2n + `n + `n2)/12, Mn = n + `

⇒ ∆n,` = c
√
`n(`+ n + 1)/(`+ n)→∞ as n, `→∞

⇒ (Xn,`)n,` sat. CLT with speed of convergence ∼ n−1/2 + `−1/2
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Towards a generalization

Note: roots of
∏n

k=1(1− zbk )/(1− zak ) are subset of

{exp(±2πik/bj), k = 1, . . . , bbj/2c, j = 1, . . . ,n}

⇒ argmin{|ζ| : ζ root of Pn} = 2π/(maxj bj) = 2π/Mn =: δn

Pn(z) zero-free in sector S(δn) := {z ∈ C : arg(z) ∈ (−δn, δn)}

Have ∆n ≈ σn/Mn ≈ σnδn

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+))
(Xn)n bounded N0-valued r.v.s, (Pn)n probab. gen. fcts. Ass. Pn has no

roots in S(δn) for δn ∈ (0, π). Then,

|κ∗m,n| ≤
m!

(cδnσn)m−2 ∀m ≥ 3, c > 0 abs. const.
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Comments and comparisons

includes all previous results (choose any δn for Hurwitz pol.)

Theorem and proof can be found along the lines of the proofs in

Michelen–Sahasrabudhe

our proof for the class (C) is more elementary

different abs. constant c in ∆n = cδnσn:

c = π
√

7/24 for (C) vs. c = 2−3248 in general

many examples of combinatorial statistics such that the roots of

Pn can be calculated are either Hurwitz or belong to (C)
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Another class of examples

Recall: a polytope Q ⊂ RN is called a lattice polytope if all of its

vertices have integer coordinates

Ex.: Q = WN = [0,1]N unit cube

Ehrhart’s theorem: if Q is a lattice polytope, then

EQ(k) := |{t ∈ ZN : t ∈ kQ}|, k ∈ N0

is the evaluation of a polynomial EQ(z) of degree N “Ehrhart pol.”

Ex.: EWN (z) = (z + 1)N  after renormalization p.g.f. of Bin(N,1/2)

in general: consider Q Ehrhart positive, i. e. all coefficients of EQ(z)

are positive
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CL-polytopes

Definition
Q lattice polytope is called CL-polytope if all roots of EQ lie on

{z ∈ C : <(z) = −1/2} “critical line”

Q lattice polytope is reflexive if its convex dual Q◦ :=

{x ∈ RN : 〈x , y〉 ≤ 1 for all y ∈ Q} is lattice polytope as well

 Q Ehrhart positive CL-polytope⇒ EQ(z) Hurwitz polynomial!

Example: Consider the “root polytopes”

AN := conv({±(ei + . . .+ ej) : 1 ≤ i ≤ j ≤ N}),

CN := conv({±(2ei + . . .+ 2eN−1 + eN) : 1 ≤ i ≤ N − 1} ∪ {±eN}).

Fact: AN ,CN are reflexive CL-polytopes!
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CL-polytopes (cont.)

Ehrhart polynomials of A◦N , C◦N :

EA◦
N

(z) = (z + 1)N+1 − zN+1, EC◦
N

(z) = (z + 1)N + zN

Interpretation in terms of “simple” r.v.s:

EA◦
N

is p.g.f. of YN |{YN ≤ N − 1}, where YN ∼ Bin(N,1/2) (up to

renormalization)

EC◦
N

is p.g.f. of N − UNVN with UN ⊥⊥ VN , UN ∼ Bin(N,1/2),

VN ∼ Ber(2N/(2N − 1))

In particular, our asymptotic distributional results hold in these cases.
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Thank you!

H. Sambale (Bochum) Limit Theorems & Zeros of Polynomials HDP 2023 16 / 16


