Probabilistic limit theorems induced by the zeros of polynomials

Holger Sambale joint work with:

Nils Heerten and Christoph Thäle

Ruhr University Bochum

High Dimensional Probability June 11–16, 2023, Będlewo

- A - E - N

1) $P_n(z) = a_0 + a_1 z^1 + \ldots + a_n z^n$ polynomial, $a_k \ge 0 \ \forall k$ \Rightarrow defines r.v. X_n by $\mathbb{P}(X_n = k) = a_k / (\sum_{j=0}^n a_j)$ **2)** X_n r.v., values in $\{0, 1, \ldots, n\}$ \Rightarrow probab. gen. fct. $\sum_{k=0}^n \mathbb{P}(X_n = k) z^k$ is polynomial **Conclusion:** Have natural bijection

 $\{\text{``normed'' polynomials, coeff.} \geq 0\} \longleftrightarrow \{\text{bounded } \mathbb{N}_0\text{-valued r.v.s}\}$

Question: Consider sequences $(P_n)_n \xleftarrow{1:1} (X_n)_n$. Relations between zeros of P_n and (asymptotic) distributional behaviour of X_n ?

1) $P_n(z) = a_0 + a_1 z^1 + ... + a_n z^n$ polynomial, $a_k \ge 0 \ \forall k$ \Rightarrow defines r.v. X_n by $\mathbb{P}(X_n = k) = a_k / (\sum_{j=0}^n a_j)$ **2)** X_n r.v., values in $\{0, 1, ..., n\}$ \Rightarrow probab. gen. fct. $\sum_{k=0}^n \mathbb{P}(X_n = k) z^k$ is polynomial **Conclusion:** Have natural bijection

 $\{\text{``normed'' polynomials, coeff.} \geq 0\} \longleftrightarrow \{\text{bounded } \mathbb{N}_0\text{-valued r.v.s}\}$

Question: Consider sequences $(P_n)_n \stackrel{1:1}{\longleftrightarrow} (X_n)_n$. Relations between zeros of P_n and (asymptotic) distributional behaviour of X_n ?

(a)

1) $P_n(z) = a_0 + a_1 z^1 + \ldots + a_n z^n$ polynomial, $a_k \ge 0 \forall k$ \Rightarrow defines r.v. X_n by $\mathbb{P}(X_n = k) = a_k / (\sum_{j=0}^n a_j)$ **2)** X_n r.v., values in $\{0, 1, \ldots, n\}$ \Rightarrow probab. gen. fct. $\sum_{k=0}^n \mathbb{P}(X_n = k) z^k$ is polynomial **Conclusion:** Have natural bijection

{"normed" polynomials, coeff. ≥ 0 } \longleftrightarrow {bounded \mathbb{N}_0 -valued r.v.s}

Question: Consider sequences $(P_n)_n \xleftarrow{1:1} (X_n)_n$. Relations between zeros of P_n and (asymptotic) distributional behaviour of X_n ?

() < </p>

1) $P_n(z) = a_0 + a_1 z^1 + \ldots + a_n z^n$ polynomial, $a_k \ge 0 \ \forall k$ \Rightarrow defines r.v. X_n by $\mathbb{P}(X_n = k) = a_k / (\sum_{j=0}^n a_j)$ **2)** X_n r.v., values in $\{0, 1, \ldots, n\}$ \Rightarrow probab. gen. fct. $\sum_{k=0}^n \mathbb{P}(X_n = k) z^k$ is polynomial **Conclusion:** Have natural bijection

 $\{\text{``normed'' polynomials, coeff.} \geq 0\} \longleftrightarrow \{\text{bounded } \mathbb{N}_0\text{-valued r.v.s}\}$

Question: Consider sequences $(P_n)_n \stackrel{\text{\tiny (1)}}{\longleftrightarrow} (X_n)_n$. Relations between zeros of P_n and (asymptotic) distributional behaviour of X_n ?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ りゅつ

1) $P_n(z) = a_0 + a_1 z^1 + \ldots + a_n z^n$ polynomial, $a_k \ge 0 \ \forall k$ \Rightarrow defines r.v. X_n by $\mathbb{P}(X_n = k) = a_k / (\sum_{j=0}^n a_j)$ **2)** X_n r.v., values in $\{0, 1, \ldots, n\}$ \Rightarrow probab. gen. fct. $\sum_{k=0}^n \mathbb{P}(X_n = k) z^k$ is polynomial **Conclusion:** Have natural bijection

 $\{\text{``normed'' polynomials, coeff.} \geq 0\} \longleftrightarrow \{\text{bounded } \mathbb{N}_0\text{-valued r.v.s}\}$

Question: Consider sequences $(P_n)_n \xleftarrow{1:1} (X_n)_n$. Relations between zeros of P_n and (asymptotic) distributional behaviour of X_n ?

Situation 1: Assume all roots of $P_n(z)$ are real (\Rightarrow negative)

$$\Rightarrow$$
 $P_n(z) = \prod_{k=1}^n (p_k z + q_k)$ for $p_k \in (0, 1), q_k = 1 - p_k$

 $\Rightarrow X_n = X_{n,1} + \ldots + X_{n,n}, X_{n,1}, \ldots, X_{n,n} \text{ indep., } X_{n,k} \sim \text{Ber}(p_k)$

• $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 = \sum_{k=1}^n p_k q_k \to \infty$ as $n \to \infty$

Speed of Convergence ~ σ_n⁻¹

Example: $\pi \in \mathfrak{S}_n$ permutation has descent at *i* if $\pi(i) > \pi(i+1)$

 $X_n := #\{$ descents of uniform random permutation $\}$

 P_n "Eulerian polynomial", only real roots, $\sigma_n^2 \sim n$

 \Rightarrow CLT with speed of convergence $n^{-1/2}$

マロト イラト イラ

Situation 1: Assume all roots of $P_n(z)$ are real (\Rightarrow negative)

$$\Rightarrow \quad P_n(z) = \prod_{k=1}^n (p_k z + q_k) \text{ for } p_k \in (0,1), \, q_k = 1 - p_k$$

$$\Rightarrow X_n = X_{n,1} + \ldots + X_{n,n}, X_{n,1}, \ldots, X_{n,n} \text{ indep.}, X_{n,k} \sim \text{Ber}(p_k)$$

• $(X_n)_n$ satisfies CLT iff $\operatorname{Var}(X_n) = \sigma_n^2 = \sum_{k=1}^n p_k q_k \to \infty$ as $n \to \infty$

Speed of Convergence ~ σ_n⁻¹

Example: $\pi \in \mathfrak{S}_n$ permutation has descent at *i* if $\pi(i) > \pi(i+1)$

 $X_n := #\{$ descents of uniform random permutation $\}$

 P_n "Eulerian polynomial", only real roots, $\sigma_n^2 \sim n$

 \Rightarrow CLT with speed of convergence $n^{-1/2}$

< 同 > < 回 > < 回

Situation 1: Assume all roots of $P_n(z)$ are real (\Rightarrow negative)

$$\Rightarrow$$
 $P_n(z) = \prod_{k=1}^n (p_k z + q_k)$ for $p_k \in (0, 1), q_k = 1 - p_k$

$$\Rightarrow X_n = X_{n,1} + \ldots + X_{n,n}, X_{n,1}, \ldots, X_{n,n} \text{ indep.}, X_{n,k} \sim \text{Ber}(p_k)$$

• $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 = \sum_{k=1}^n p_k q_k \to \infty$ as $n \to \infty$

• Speed of Convergence $\sim \sigma_n^{-1}$

Example: $\pi \in \mathfrak{S}_n$ permutation has descent at *i* if $\pi(i) > \pi(i + 1)$ $X_n := \#\{\text{descents of uniform random permutation}\}$ P_n "Eulerian polynomial", only real roots, $\sigma_n^2 \sim n$ \Rightarrow CLT with speed of convergence $n^{-1/2}$

< 回 > < 三 > < 三

Situation 1: Assume all roots of $P_n(z)$ are real (\Rightarrow negative)

$$\Rightarrow$$
 $P_n(z) = \prod_{k=1}^n (p_k z + q_k)$ for $p_k \in (0, 1), q_k = 1 - p_k$

$$\Rightarrow X_n = X_{n,1} + \ldots + X_{n,n}, X_{n,1}, \ldots, X_{n,n} \text{ indep.}, X_{n,k} \sim \text{Ber}(p_k)$$

- $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 = \sum_{k=1}^n p_k q_k \to \infty$ as $n \to \infty$
- Speed of Convergence $\sim \sigma_n^{-1}$

Example: $\pi \in \mathfrak{S}_n$ permutation has descent at *i* if $\pi(i) > \pi(i+1)$

 $X_n := #\{$ descents of uniform random permutation $\}$

 P_n "Eulerian polynomial", only real roots, $\sigma_n^2 \sim n$

 \Rightarrow CLT with speed of convergence n^{-1}

イロト イポト イラト イラト 一日

Situation 1: Assume all roots of $P_n(z)$ are real (\Rightarrow negative)

$$\Rightarrow$$
 $P_n(z) = \prod_{k=1}^n (p_k z + q_k)$ for $p_k \in (0, 1), q_k = 1 - p_k$

$$\Rightarrow X_n = X_{n,1} + \ldots + X_{n,n}, X_{n,1}, \ldots, X_{n,n} \text{ indep.}, X_{n,k} \sim \text{Ber}(p_k)$$

• $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 = \sum_{k=1}^n p_k q_k \to \infty$ as $n \to \infty$

• Speed of Convergence $\sim \sigma_n^{-1}$

Example: $\pi \in \mathfrak{S}_n$ permutation has descent at *i* if $\pi(i) > \pi(i+1)$

 $X_n := #\{$ descents of uniform random permutation $\}$

 P_n "Eulerian polynomial", only real roots, $\sigma_n^2 \sim n$

$$\Rightarrow$$
 CLT with speed of convergence $n^{-1/2}$

Situation 2: $P_n(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta) < 0$ for all roots ζ Note: $P_n(\zeta) = 0 \Rightarrow P_n(\overline{\zeta}) = 0 \longrightarrow P_n(z) = \prod_j P_{n,j}(z), \quad P_{n,j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.) \Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again \bullet $(X_n)_n$ satisfies CLT iff $\operatorname{Var}(X_n) = \sigma_n^2 \to \infty$ as $n \to \infty$

• Speed of Convergence $\sim \sigma_n^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_n$, i. e. descent if *i* odd, ascent if *i* even

 $X_n := \#\{$ alternating descents of uniform random permutation $\}$ all roots of P_n on the left-hand side of the unit circle, $\sigma_n^2 \sim n$

 $\Rightarrow \quad \text{CLT with speed of convergence } n^{-1/2}$

• • • • • • • • • • • •

Situation 2: $P_n(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta) < 0$ for all roots ζ Note: $P_n(\zeta) = 0 \Rightarrow P_n(\overline{\zeta}) = 0 \implies P_n(z) = \prod_j P_{n,j}(z), \quad P_{n,j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)

 \Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

• $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 \to \infty$ as $n \to \infty$

Speed of Convergence ~ σ_n⁻¹

Example: alternating descents of $\pi \in \mathfrak{S}_n$, i. e. descent if *i* odd, ascent if *i* even

 $X_n := #\{$ alternating descents of uniform random permutation $\}$

 $\Rightarrow \quad \text{CLT with speed of convergence } n^{-1/2}$

Situation 2: $P_n(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta) < 0$ for all roots ζ Note: $P_n(\zeta) = 0 \Rightarrow P_n(\overline{\zeta}) = 0 \implies P_n(z) = \prod_j P_{n,j}(z), \quad P_{n,j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)

 \Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

•
$$(X_n)_n$$
 satisfies CLT iff $Var(X_n) = \sigma_n^2 \to \infty$ as $n \to \infty$

• Speed of Convergence $\sim \sigma_n^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_n$, i. e. descent if *i* odd, ascent if *i* even

 $X_n := #\{$ alternating descents of uniform random permutation $\}$

all roots of P_n on the left-hand side of the unit circle, $\sigma_n^2 \sim n$

 $\Rightarrow \quad \text{CLT with speed of convergence } n^{-1/2}$

Situation 2: $P_n(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta) < 0$ for all roots ζ Note: $P_n(\zeta) = 0 \Rightarrow P_n(\overline{\zeta}) = 0 \quad \rightsquigarrow P_n(z) = \prod_j P_{n,j}(z), \quad P_{n,j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)

 \Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

- $(X_n)_n$ satisfies CLT iff $Var(X_n) = \sigma_n^2 \to \infty$ as $n \to \infty$
- Speed of Convergence $\sim \sigma_n^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_n$, i. e. descent if *i* odd, ascent if *i* even

 $X_n := #\{$ alternating descents of uniform random permutation $\}$

all roots of P_n on the left-hand side of the unit circle, $\sigma_n^2 \sim n$

CLT with speed of convergence $n^{-1/2}$

Situation 2: $P_n(z)$ is a Hurwitz polynomial if $\operatorname{Re}(\zeta) < 0$ for all roots ζ Note: $P_n(\zeta) = 0 \Rightarrow P_n(\overline{\zeta}) = 0 \quad \rightsquigarrow P_n(z) = \prod_j P_{n,j}(z), \quad P_{n,j}(z)$ linear or quadratic with positive coeff. (by Hurwitz prop.)

 \Rightarrow corresponds to sum of indep. (unif. bounded) r.v.s again

•
$$(X_n)_n$$
 satisfies CLT iff $Var(X_n) = \sigma_n^2 \to \infty$ as $n \to \infty$

• Speed of Convergence $\sim \sigma_n^{-1}$

Example: alternating descents of $\pi \in \mathfrak{S}_n$, i. e. descent if *i* odd, ascent if *i* even

 $X_n := \#\{\text{alternating descents of uniform random permutation}\}$ all roots of *P_n* on the left-hand side of the unit circle, $\sigma_n^2 \sim n$

 \Rightarrow CLT with speed of convergence $n^{-1/2}$

Situation 3: What about general polynomials?

positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightarrow not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i. e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle) Known: $\sigma_n^2 \sim n^3$, but X_n sat. CLT with speed $n^{-1/2} \neq \sigma_n^{-1}$

 \Rightarrow something different is happening!

Note: argmin{ $\zeta : \zeta$ root of P_n } = $2\pi/n =: \delta_n$

Observation: rate of convergence agrees with $(\delta_n \sigma_n)^{-1} = n^{-1/2}$

 \Rightarrow General principle behind?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Situation 3: What about general polynomials? positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i.e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1 - z^{k-1}}{1 - z}$ (all roots on unit circle) Known: $\sigma_n^2 \sim n^3$, but X_n sat. CLT with speed $n^{-1/2} \neq \sigma_n^{-1}$

 \Rightarrow something different is happening!

Note: argmin{ $\zeta : \zeta$ root of P_n } = $2\pi/n =: \delta_n$

Observation: rate of convergence agrees with $(\delta_n \sigma_n)^{-1} = n^{-1/2}$

 \Rightarrow General principle behind?

Situation 3: What about general polynomials?

positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. ~ not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i. e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1 - z^{k+1}}{1 - z}$ (all roots on unit circle)

⇒ General principle behind?

Situation 3: What about general polynomials?

positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i. e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle) Known: $\sigma_n^2 \sim n^3$, but X_n sat. CLT with speed $n^{-1/2} \neq \sigma_n^{-1}$

 \Rightarrow something different is happening!

Note: $\operatorname{argmin}\{\zeta : \zeta \text{ root of } P_n\} = 2\pi/n =: \delta_n$ Observation: rate of convergence agrees with $(\delta_n \sigma_n)^{-1} = n^{-1/2}$ \Rightarrow General principle behind?

Situation 3: What about general polynomials?

positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i. e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle) Known: $\sigma_n^2 \sim n^3$, but X_n sat. CLT with speed $n^{-1/2} \neq \sigma_n^{-1}$

 \Rightarrow something different is happening!

Note: argmin{ $\zeta : \zeta$ root of P_n } = $2\pi/n =: \delta_n$

Observation: rate of convergence agrees with $(\delta_n \sigma_n)^{-1} = n^{-1/2}$

⇒ General principle behind?

Situation 3: What about general polynomials?

positive coeff. \Rightarrow factorization into linear and quadratic terms, but possibly with negative coeff. \rightsquigarrow not a sum of indep. r.v.s **Example:** inversions of $\pi \in \mathfrak{S}_n$, i. e. tuples i < j with $\pi(i) > \pi(j)$ $X_n := \#\{\text{inversions of uniform random permutation}\}$ $P_n(z) = \prod_{k=1}^{n-1} (1 + \ldots + z^k) = \prod_{k=1}^{n-1} \frac{1-z^{k+1}}{1-z}$ (all roots on unit circle) Known: $\sigma_n^2 \sim n^3$, but X_n sat. CLT with speed $n^{-1/2} \neq \sigma_n^{-1}$

 \Rightarrow something different is happening!

Note: argmin{ $\zeta : \zeta$ root of P_n } = $2\pi/n =: \delta_n$

Observation: rate of convergence agrees with $(\delta_n \sigma_n)^{-1} = n^{-1/2}$

 \Rightarrow General principle behind?

Theorem (Hwang–Zacharovas (2015))CLT for root-unitary polynomials $P_n(z)$: $X_n^* := (X_n - \mathbb{E}(X_n))/\sigma_n \Rightarrow \mathcal{N}(0,1)$ iff $\mathbb{E}(X_n^*)^4 \to 3$

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \ge 3, \forall n \ge 1$ $|\kappa_{m,n}^*| \equiv |\kappa_m(X_n^*)| \le \frac{m!}{\Delta_n^{m-2}}, \quad some \ \Delta_n > 0$

(i) CLT & Berry–Esseen bound:

$\sup_{x\in\mathbb{R}}|\mathbb{P}(X_n^*\geq x)-\mathbb{P}(Z\geq x)|\leq C\Delta_n^{-1}, \ \ Z\sim\mathcal{N}(0,1)$

H. Sambale (Bochum)

Limit Theorems & Zeros of Polynomials

(글) 글 ·) 역 (HDP 2023 6/16

ヘロン 人間 とくほ とくほう

Theorem (Hwang–Zacharovas (2015))CLT for root-unitary polynomials $P_n(z)$: $X_n^* := (X_n - \mathbb{E}(X_n))/\sigma_n \Rightarrow \mathcal{N}(0, 1)$ iff $\mathbb{E}(X_n^*)^4 \to 3$

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \ge 3, \forall n \ge 1$ $|\kappa_{m,n}^*| \equiv |\kappa_m(X_n^*)| \le \frac{m!}{\Delta_n^{m-2}}, \text{ some } \Delta_n > 0$

(i) CLT & Berry–Esseen bound:

 $\sup_{x\in\mathbb{R}}|\mathbb{P}(X_n^*\geq x)-\mathbb{P}(Z\geq x)|\leq C\Delta_n^{-1}, \ \ Z\sim\mathcal{N}(0,1)$

ヘロン 人間 とくほ とくほう

Theorem (Hwang–Zacharovas (2015))CLT for root-unitary polynomials $P_n(z)$: $X_n^* := (X_n - \mathbb{E}(X_n))/\sigma_n \Rightarrow \mathcal{N}(0, 1)$ iff $\mathbb{E}(X_n^*)^4 \rightarrow 3$

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \ge 3, \forall n \ge 1$ $|\kappa_{m,n}^*| \equiv |\kappa_m(X_n^*)| \le \frac{m!}{\Delta_n^{m-2}}, \text{ some } \Delta_n > 0$

(i) CLT & Berry–Esseen bound:

 $\sup_{x \in \mathbb{R}} |\mathbb{P}(X_n^* \ge x) - \mathbb{P}(Z \ge x)| \le C\Delta_n^{-1}, \quad Z \sim \mathcal{N}(0, 1)$

H. Sambale (Bochum)

Limit Theorems & Zeros of Polynomials

・ロン ・ 「 ・ ・ ヨン ・ ヨン ・ ヨ

Theorem (Hwang–Zacharovas (2015))CLT for root-unitary polynomials $P_n(z)$: $X_n^* := (X_n - \mathbb{E}(X_n))/\sigma_n \Rightarrow \mathcal{N}(0, 1)$ iff $\mathbb{E}(X_n^*)^4 \to 3$

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition

Assume Statulevičius condition: $\forall m \ge 3, \forall n \ge 1$ $|\kappa_{m,n}^*| \equiv |\kappa_m(X_n^*)| \le \frac{m!}{\Delta_n^{m-2}}, \text{ some } \Delta_n > 0$

(i) CLT & Berry–Esseen bound:

 $\sup_{x\in\mathbb{R}}|\mathbb{P}(X_n^*\geq x)-\mathbb{P}(Z\geq x)|\leq C\Delta_n^{-1}, \ \ Z\sim\mathcal{N}(0,1)$

Proposition (cont.)

(ii) moderate deviations: (a_n) s.th. $a_n \to \infty$, $a_n = o(\Delta_n)$ $\rightsquigarrow X_n^*/a_n$ satisfies a MDP with speed a_n^2 & rate fct. $I(x) = x^2/2$

Proposition (cont.)

(ii) moderate deviations: (a_n) s.th. $a_n \to \infty$, $a_n = o(\Delta_n)$ $\rightsquigarrow X_n^*/a_n$ satisfies a MDP with speed a_n^2 & rate fct. $I(x) = x^2/2$ Example: $\lim_{n\to\infty} a_n^{-2} \log \mathbb{P}(X_n^*/a_n \in (x,\infty)) = -x^2/2, x > 0$

< < p>< < p>

Proposition (cont.)

(ii) moderate deviations: (a_n) s.th. $a_n \to \infty$, $a_n = o(\Delta_n)$ $\rightsquigarrow X_n^*/a_n$ satisfies a MDP with speed a_n^2 & rate fct. $I(x) = x^2/2$ Example: $\lim_{n\to\infty} a_n^{-2} \log \mathbb{P}(X_n^*/a_n \in (x,\infty)) = -x^2/2, x > 0$ (iii) Bernstein-type conc. ineq.: $\mathbb{P}(X_n^* \ge x) \le C \exp(-\frac{1}{2} \frac{x^2}{2+x/\Lambda_n})$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ

Proposition (cont.)

(ii) moderate deviations: (a_n) s.th. $a_n \rightarrow \infty$, $a_n = o(\Delta_n)$

 $\rightsquigarrow X_n^*/a_n$ satisfies a MDP with speed a_n^2 & rate fct. $I(x) = x^2/2$ Example: $\lim_{n\to\infty} a_n^{-2} \log \mathbb{P}(X_n^*/a_n \in (x,\infty)) = -x^2/2, x \ge 0$

(iii) Bernstein-type conc. ineq.: $\mathbb{P}(X_n^* \ge x) \le C \exp(-\frac{1}{2} \frac{x^2}{2+x/\Delta_n})$

(iv) mod-Gaussian convergence: Ass. $\kappa_{m,n}^* = 0 \ \forall m = 3, ..., v - 1$, $\kappa_{v,n}^* \Delta_n^{v-2} \rightarrow L \in \mathbb{R} \rightsquigarrow \Delta_n^{1-2/v} X_n^*$ converges in the mod-Gaussian sense with param. $t_n := \Delta_n^{2(v-2)/v}$ and limiting fct. $\Psi(z) := e^{\frac{L}{v!}z^v}$ This means time relevance $\Psi(z)$ for unit on U(z).

(日)

Proposition (cont.)

(ii) moderate deviations: (*a_n*) s.th. $a_n \rightarrow \infty$, $a_n = o(\Delta_n)$

 $\rightsquigarrow X_n^*/a_n$ satisfies a MDP with speed a_n^2 & rate fct. $I(x) = x^2/2$ Example: $\lim_{n\to\infty} a_n^{-2} \log \mathbb{P}(X_n^*/a_n \in (x,\infty)) = -x^2/2, x \ge 0$

(iii) Bernstein-type conc. ineq.: $\mathbb{P}(X_n^* \ge x) \le C \exp(-\frac{1}{2} \frac{x^2}{2+x/\Delta_n})$

(iv) mod-Gaussian convergence: Ass. $\kappa_{m,n}^* = 0 \ \forall m = 3, ..., v - 1$, $\kappa_{v,n}^* \Delta_n^{v-2} \rightarrow L \in \mathbb{R} \rightsquigarrow \Delta_n^{1-2/v} X_n^*$ converges in the mod-Gaussian sense with param. $t_n := \Delta_n^{2(v-2)/v}$ and limiting fct. $\Psi(z) := e^{\frac{L}{v!}z^v}$ This means: $\lim_{n\to\infty} \mathbb{E}[e^{zX_n^*}]e^{-t_n\frac{z^2}{2}} = \Psi(z)$ loc. unif. on \mathbb{C}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Important class (C) of root-unitary polynomials:

$$P_n(z) = \prod_{k=1}^n (1-z^{b_k})/(1-z^{a_k}), \quad a_k \le b_k$$

appear in inversions in random permutations (+ generalizations),
 Gaussian polynomials, q-Catalan numbers etc.

• cumulants $\kappa_{m,n} \equiv \kappa_m(X_n) = (B_m/m) \sum_{j=1}^n (b_j^m - a_j^m), \quad m \ge 3,$ $B_m = m$ -th Bernoulli number ($\rightsquigarrow \kappa_{2m+1,n} \equiv 0$)

Theorem (Heerten-S-Thäle (2022+))

$$|\kappa_{2m,n}^*| \leq \frac{(2m)!}{\Delta_n^{2m-2}},$$

Important class (C) of root-unitary polynomials:

$$P_n(z) = \prod_{k=1}^n (1-z^{b_k})/(1-z^{a_k}), \quad a_k \leq b_k$$

- appear in inversions in random permutations (+ generalizations),
 Gaussian polynomials, *q*-Catalan numbers etc.
- cumulants $\kappa_{m,n} \equiv \kappa_m(X_n) = (B_m/m) \sum_{j=1}^n (b_j^m a_j^m), \quad m \ge 3,$ $B_m = m$ -th Bernoulli number ($\rightsquigarrow \kappa_{2m+1,n} \equiv 0$)

Theorem (Heerten-S-Thäle (2022+))

$$|\kappa_{2m,n}^*| \leq \frac{(2m)!}{\Delta_n^{2m-2}},$$

Important class (C) of root-unitary polynomials:

$$P_n(z) = \prod_{k=1}^n (1-z^{b_k})/(1-z^{a_k}), \quad a_k \le b_k$$

- appear in inversions in random permutations (+ generalizations),
 Gaussian polynomials, *q*-Catalan numbers etc.
- cumulants $\kappa_{m,n} \equiv \kappa_m(X_n) = (B_m/m) \sum_{j=1}^n (b_j^m a_j^m), \quad m \ge 3,$

 $B_m = m$ -th Bernoulli number ($\rightsquigarrow \kappa_{2m+1,n} \equiv 0$)

Theorem (Heerten-S-Thäle (2022+))

$$|\kappa_{2m,n}^*| \leq \frac{(2m)!}{\Delta_n^{2m-2}},$$

Important class (C) of root-unitary polynomials:

$$P_n(z) = \prod_{k=1}^n (1-z^{b_k})/(1-z^{a_k}), \quad a_k \le b_k$$

- appear in inversions in random permutations (+ generalizations),
 Gaussian polynomials, *q*-Catalan numbers etc.
- cumulants $\kappa_{m,n} \equiv \kappa_m(X_n) = (B_m/m) \sum_{j=1}^n (b_j^m a_j^m), \quad m \ge 3,$

 $B_m = m$ -th Bernoulli number ($\rightsquigarrow \kappa_{2m+1,n} \equiv 0$)

Theorem (Heerten-S-Thäle (2022+))

$$|\kappa_{2m,n}^*| \leq \frac{(2m)!}{\Delta_n^{2m-2}},$$

$$\Delta_n = \pi^2 \sqrt{\frac{7}{6}} \frac{\sigma_n}{M_n}, \qquad M_n = \max_{1 \le k \le n} b_k.$$

Step 1: By induction, show that

$$b^{2m} - a^{2m} \le (b^2 - a^2) 2^{m-1} b^{2m-2} \; \forall b \ge a \ge 0 \; \forall m \ge 2$$

Step 2: Use this inequality to obtain

$$|\kappa_{2m,N}^*| = \frac{|B_{2m}|}{2m\sigma_N^{2m}} \sum_{j=1}^n (b_j^{2m} - a_j^{2m}) \le \frac{2^{m-2}}{m\sigma_N^{2m}} |B_{2m}| M_N^{2m-2} \sum_{j=1}^n (b_j^2 - a_j^2)$$

Since $\sigma_N^2 = \kappa_{2,N} = \frac{1}{12} \sum_{j=1}^n (b_j^2 - a_j^2)$ and $|B_{2m}| \le \frac{2(2m)!}{(2\pi)^{2m}} \frac{1}{1 - 2^{1-2m}} \rightsquigarrow$

$$|\kappa_{2m,N}^*| \le (2m)! \frac{3 \cdot 2^{1-m}}{m\pi^{2m}(1-2^{1-2m})} \left(\frac{M_N}{\sigma_N}\right)^{2m-2}$$

The proof is completed by monotonicity arguments.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Step 1: By induction, show that

$$b^{2m} - a^{2m} \leq (b^2 - a^2) 2^{m-1} b^{2m-2} \; \forall b \geq a \geq 0 \; \forall m \geq 2$$

Step 2: Use this inequality to obtain

$$|\kappa_{2m,N}^*| = \frac{|B_{2m}|}{2m\sigma_N^{2m}} \sum_{j=1}^n (b_j^{2m} - a_j^{2m}) \le \frac{2^{m-2}}{m\sigma_N^{2m}} |B_{2m}| M_N^{2m-2} \sum_{j=1}^n (b_j^2 - a_j^2)$$

Since $\sigma_N^2 = \kappa_{2,N} = rac{1}{12} \sum_{j=1}^n (b_j^2 - a_j^2)$ and $|B_{2m}| \le rac{2(2m)!}{(2\pi)^{2m}} rac{1}{1-2^{1-2m}} \rightsquigarrow$

$$|\kappa_{2m,N}^*| \le (2m)! \frac{3 \cdot 2^{1-m}}{m\pi^{2m}(1-2^{1-2m})} \Big(\frac{M_N}{\sigma_N}\Big)^{2m-2}$$

The proof is completed by monotonicity arguments.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Step 1: By induction, show that

$$b^{2m} - a^{2m} \leq (b^2 - a^2) 2^{m-1} b^{2m-2} \; \forall b \geq a \geq 0 \; \forall m \geq 2$$

Step 2: Use this inequality to obtain

$$|\kappa_{2m,N}^*| = \frac{|B_{2m}|}{2m\sigma_N^{2m}} \sum_{j=1}^n (b_j^{2m} - a_j^{2m}) \le \frac{2^{m-2}}{m\sigma_N^{2m}} |B_{2m}| M_N^{2m-2} \sum_{j=1}^n (b_j^2 - a_j^2)$$

Since
$$\sigma_N^2 = \kappa_{2,N} = \frac{1}{12} \sum_{j=1}^n (b_j^2 - a_j^2)$$
 and $|B_{2m}| \le \frac{2(2m)!}{(2\pi)^{2m}} \frac{1}{1 - 2^{1-2m}} \rightsquigarrow$

$$|\kappa_{2m,N}^*| \leq (2m)! \frac{3 \cdot 2^{1-m}}{m\pi^{2m}(1-2^{1-2m})} \Big(\frac{M_N}{\sigma_N}\Big)^{2m-2}$$

The proof is completed by monotonicity arguments.

< ロ > < 同 > < 三 > < 三

Step 1: By induction, show that

$$b^{2m} - a^{2m} \le (b^2 - a^2) 2^{m-1} b^{2m-2} \; \forall b \ge a \ge 0 \; \forall m \ge 2$$

Step 2: Use this inequality to obtain

$$|\kappa_{2m,N}^*| = \frac{|B_{2m}|}{2m\sigma_N^{2m}} \sum_{j=1}^n (b_j^{2m} - a_j^{2m}) \le \frac{2^{m-2}}{m\sigma_N^{2m}} |B_{2m}| M_N^{2m-2} \sum_{j=1}^n (b_j^2 - a_j^2)$$

Since
$$\sigma_N^2 = \kappa_{2,N} = \frac{1}{12} \sum_{j=1}^n (b_j^2 - a_j^2)$$
 and $|B_{2m}| \le \frac{2(2m)!}{(2\pi)^{2m}} \frac{1}{1 - 2^{1-2m}} \rightsquigarrow$

$$|\kappa_{2m,N}^*| \le (2m)! \frac{3 \cdot 2^{1-m}}{m\pi^{2m}(1-2^{1-2m})} \Big(\frac{M_N}{\sigma_N}\Big)^{2m-2}$$

The proof is completed by monotonicity arguments.

 $p(n, \ell, j) = #\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

 $G(n,\ell;z) := \sum_{j=0}^{n} p(n,\ell,j) z^{j} = \prod_{j=1}^{n} (1-z^{j+\ell})/(1-z^{j})$

Note: $G(n, \ell; z)$ is polynomial, but not $(1 - z^{j+\ell})/(1 - z^j)$ in gen. Can calculate: $\sigma_{n,\ell}^2 = (\ell^2 n + \ell n + \ell n^2)/12$, $M_n = n + \ell$ $\Rightarrow \Delta_{n,\ell} = c_{\sqrt{\ell n (\ell + n + 1)}}/(\ell + n) \to \infty$ as $n, \ell \to \infty$

 $\Rightarrow (X_{n,\ell})_{n,\ell}$ sat. CLT with speed of convergence $\sim n^{-1/2} + \ell^{-1/2}$

・ 同 ト ・ ヨ ト ・ ヨ

 $p(n, \ell, j) = #\{$ partitions of j with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

$$G(n, \ell; z) := \sum_{j=0}^{n} p(n, \ell, j) z^{j} = \prod_{j=1}^{n} (1 - z^{j+\ell}) / (1 - z^{j})$$

Note: $G(n, \ell; z)$ is polynomial, but not $(1 - z^{j+\ell})/(1 - z^j)$ in gen.

Can calculate: $\sigma_{n,\ell}^2 = (\ell^2 n + \ell n + \ell n^2)/12, M_n = n + \ell$

 $\Rightarrow \Delta_{n,\ell} = c \sqrt{\ell n (\ell + n + 1)} / (\ell + n) \rightarrow \infty \text{ as } n, \ell \rightarrow \infty$

 $\Rightarrow (X_{n,\ell})_{n,\ell}$ sat. CLT with speed of convergence $\sim n^{-1/2} + \ell^{-1/2}$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $p(n, \ell, j) = #\{$ partitions of *j* with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

 $G(n, \ell; z) := \sum_{j=0}^{n} p(n, \ell, j) z^{j} = \prod_{j=1}^{n} (1 - z^{j+\ell})/(1 - z^{j})$ Note: $G(n, \ell; z)$ is polynomial, but not $(1 - z^{j+\ell})/(1 - z^{j})$ in gen. Can calculate: $\sigma_{n,\ell}^{2} = (\ell^{2}n + \ell n + \ell n^{2})/12$, $M_{n} = n + \ell$ $\Rightarrow \Delta_{n,\ell} = c \sqrt{\ell n (\ell + n + 1)}/(\ell + n) \rightarrow \infty$ as $n, \ell \rightarrow \infty$ $\Rightarrow (X_{n,\ell}) = c \sqrt{\ell n (\ell + n + 1)}/(\ell + n)$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $p(n, \ell, j) = #\{$ partitions of *j* with at most ℓ summands, each $\leq n\}$ Gaussian polynomials

 $G(n, \ell; z) := \sum_{j=0}^{n} p(n, \ell, j) z^{j} = \prod_{j=1}^{n} (1 - z^{j+\ell})/(1 - z^{j})$ Note: $G(n, \ell; z)$ is polynomial, but not $(1 - z^{j+\ell})/(1 - z^{j})$ in gen. Can calculate: $\sigma_{n,\ell}^{2} = (\ell^{2}n + \ell n + \ell n^{2})/12$, $M_{n} = n + \ell$ $\Rightarrow \Delta_{n,\ell} = c \sqrt{\ell n (\ell + n + 1)}/(\ell + n) \rightarrow \infty$ as $n, \ell \rightarrow \infty$ $\Rightarrow (X_{n,\ell})_{n,\ell}$ sat. CLT with speed of convergence $\sim n^{-1/2} + \ell^{-1/2}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Note: roots of $\prod_{k=1}^{n} (1 - z^{b_k})/(1 - z^{a_k})$ are subset of $\{\exp(\pm 2\pi i k/b_j), k = 1, \dots, \lfloor b_j/2 \rfloor, j = 1, \dots, n\}$

 $\Rightarrow \operatorname{argmin}\{|\zeta|: \zeta \text{ root of } P_n\} = 2\pi/(\max_j b_j) = 2\pi/M_n =: \delta_n$

- $P_n(z)$ zero-free in sector $S(\delta_n) := \{z \in \mathbb{C} : \arg(z) \in (-\delta_n, \delta_n)\}$
- Have $\Delta_n \approx \sigma_n / M_n \approx \sigma_n \delta_n$

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+)) (X_n)_n bounded \mathbb{N}_0 -valued r.v.s, (P_n)_n probab. gen. fcts. Ass. P_n has no roots in $S(\delta_n)$ for $\delta_n \in (0, \pi)$. Then,

$$|\kappa_{m,n}^*| \leq \frac{m!}{(c\delta_n\sigma_n)^{m-2}} \ \forall m \geq 3, c > 0 \ abs. \ const.$$

< ロ > < 同 > < 回 > < 回 >

Note: roots of $\prod_{k=1}^{n} (1 - z^{b_k})/(1 - z^{a_k})$ are subset of $\{\exp(\pm 2\pi i k/b_j), k = 1, \dots, \lfloor b_j/2 \rfloor, j = 1, \dots, n\}$ $\Rightarrow \operatorname{argmin}\{|\zeta|: \zeta \text{ root of } P_n\} = 2\pi/(\max_j b_j) = 2\pi/M_n =: \delta_n$

P_n(z) zero-free in sector *S*(δ_n) := {*z* ∈ C : arg(*z*) ∈ (−δ_n, δ_n)}
Have Δ_n ≈ σ_n/M_n ≈ σ_nδ_n

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+)) (X_n)_n bounded \mathbb{N}_0 -valued r.v.s, (P_n)_n probab. gen. fcts. Ass. P_n has no roots in $S(\delta_n)$ for $\delta_n \in (0, \pi)$. Then,

$$|\kappa_{m,n}^*| \leq \frac{m!}{(c\delta_n\sigma_n)^{m-2}} \ \forall m \geq 3, c > 0 \ abs. \ const.$$

< ロ > < 同 > < 回 > < 回 >

Note: roots of $\prod_{k=1}^{n} (1 - z^{b_k})/(1 - z^{a_k})$ are subset of $\{\exp(\pm 2\pi i k/b_j), k = 1, \dots, \lfloor b_j/2 \rfloor, j = 1, \dots, n\}$ $\Rightarrow \operatorname{argmin}\{|\zeta|: \zeta \text{ root of } P_n\} = 2\pi/(\max_i b_i) = 2\pi/M_n =: \delta_n$

• $P_n(z)$ zero-free in sector $S(\delta_n) := \{z \in \mathbb{C} : \arg(z) \in (-\delta_n, \delta_n)\}$

• Have $\Delta_n \approx \sigma_n / M_n \approx \sigma_n \delta_n$

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+)) (X_n)_n bounded \mathbb{N}_0 -valued r.v.s, (P_n)_n probab. gen. fcts. Ass. P_n has no roots in $S(\delta_n)$ for $\delta_n \in (0, \pi)$. Then,

$$|\kappa_{m,n}^*| \leq \frac{m!}{(c\delta_n\sigma_n)^{m-2}} \ \forall m \geq 3, c > 0 \ abs. \ const.$$

Note: roots of $\prod_{k=1}^{n} (1 - z^{b_k})/(1 - z^{a_k})$ are subset of $\{\exp(\pm 2\pi i k/b_j), k = 1, \dots, \lfloor b_j/2 \rfloor, j = 1, \dots, n\}$ $\Rightarrow \operatorname{argmin}\{|\zeta|: \zeta \text{ root of } P_n\} = 2\pi/(\max_j b_j) = 2\pi/M_n =: \delta_n$

• $P_n(z)$ zero-free in sector $S(\delta_n) := \{z \in \mathbb{C} : \arg(z) \in (-\delta_n, \delta_n)\}$

• Have
$$\Delta_n \approx \sigma_n / M_n \approx \sigma_n \delta_n$$

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+)) (X_n)_n bounded \mathbb{N}_0 -valued r.v.s, (P_n)_n probab. gen. fcts. Ass. P_n has no roots in $S(\delta_n)$ for $\delta_n \in (0, \pi)$. Then,

$$|\kappa_{m,n}^*| \leq \frac{m!}{(c\delta_n\sigma_n)^{m-2}} \ \forall m \geq 3, c > 0 \ abs. \ const.$$

< ロ > < 同 > < 回 > < 回 >

Note: roots of $\prod_{k=1}^{n} (1 - z^{b_k})/(1 - z^{a_k})$ are subset of $\{\exp(\pm 2\pi i k/b_j), k = 1, \dots, \lfloor b_j/2 \rfloor, j = 1, \dots, n\}$ $\Rightarrow \operatorname{argmin}\{|\zeta|: \zeta \text{ root of } P_n\} = 2\pi/(\max_j b_j) = 2\pi/M_n =: \delta_n$

• $P_n(z)$ zero-free in sector $S(\delta_n) := \{z \in \mathbb{C} : \arg(z) \in (-\delta_n, \delta_n)\}$

• Have
$$\Delta_n \approx \sigma_n / M_n \approx \sigma_n \delta_n$$

Theorem (Michelen–Sahasrabudhe (2019+), H–S–T (2022+)) (X_n)_n bounded \mathbb{N}_0 -valued r.v.s, (P_n)_n probab. gen. fcts. Ass. P_n has no roots in $S(\delta_n)$ for $\delta_n \in (0, \pi)$. Then,

$$|\kappa_{m,n}^*| \leq rac{m!}{(c\delta_n\sigma_n)^{m-2}} \ \forall m \geq 3, c > 0 \ abs. \ const.$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

• includes all previous results (choose any δ_n for Hurwitz pol.)

- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c \delta_n \sigma_n$: $c = \pi \sqrt{7/24}$ for (C) vs. $c = 2^{-3248}$ in genera
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

< 回 > < 三 > < 三

- includes all previous results (choose any δ_n for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c\delta_n \sigma_n$: $c = \pi \sqrt{7/24}$ for (G) vs. $c = 2^{-3248}$ in generation
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

< 同 > < 三 > < 三

- includes all previous results (choose any δ_n for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c\delta_n\sigma_n$: $c = \pi\sqrt{7/24}$ for (C) vs. $c = 2^{-3248}$ in general
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

< 同 > < 三 > < 三

- includes all previous results (choose any δ_n for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c \delta_n \sigma_n$: $c = \pi \sqrt{7/24}$ for (C) vs. $c = 2^{-3248}$ in general
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

A (B) > A (B) > A (B) >

- includes all previous results (choose any δ_n for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c \delta_n \sigma_n$: $c = \pi \sqrt{7/24}$ for (C) vs. $c = 2^{-3248}$ in general
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

A (B) > A (B) > A (B)

- includes all previous results (choose any δ_n for Hurwitz pol.)
- Theorem and proof can be found along the lines of the proofs in Michelen–Sahasrabudhe
- our proof for the class (C) is more elementary
- different abs. constant *c* in $\Delta_n = c\delta_n\sigma_n$: $c = \pi\sqrt{7/24}$ for (C) vs. $c = 2^{-3248}$ in general
- many examples of combinatorial statistics such that the roots of *P_n* can be calculated are either Hurwitz or belong to (C)

Recall: a polytope $Q \subset \mathbb{R}^N$ is called a lattice polytope if all of its vertices have integer coordinates

Ex.: $Q = W_N = [0, 1]^N$ unit cube

Ehrhart's theorem: if Q is a lattice polytope, then

 $E_{\mathcal{Q}}(k) := |\{t \in \mathbb{Z}^N \colon t \in k\mathcal{Q}\}|, \qquad k \in \mathbb{N}_0$

is the evaluation of a polynomial $E_Q(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_N}(z) = (z + 1)^N \rightarrow$ after renormalization p.g.f. of Bin(N, 1/2)in general: consider Q Ehrhart positive, i. e. all coefficients of $E_Q(z)$ are positive

< 回 > < 回 > < 回 >

Recall: a polytope $Q \subset \mathbb{R}^N$ is called a lattice polytope if all of its vertices have integer coordinates

Ex.: $Q = W_N = [0, 1]^N$ unit cube

Ehrhart's theorem: if Q is a lattice polytope, then

$$E_Q(k) := |\{t \in \mathbb{Z}^N : t \in kQ\}|, \qquad k \in \mathbb{N}_0$$

is the evaluation of a polynomial $E_Q(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_N}(z) = (z + 1)^N \rightarrow$ after renormalization p.g.f. of Bin(N, 1/2)in general: consider Q Ehrhart positive, i. e. all coefficients of $E_Q(z)$ are positive

(本語) (本語) (本語) (語) (語)

Recall: a polytope $Q \subset \mathbb{R}^N$ is called a lattice polytope if all of its vertices have integer coordinates

Ex.: $Q = W_N = [0, 1]^N$ unit cube

Ehrhart's theorem: if Q is a lattice polytope, then

$$E_Q(k) := |\{t \in \mathbb{Z}^N : t \in kQ\}|, \qquad k \in \mathbb{N}_0$$

is the evaluation of a polynomial $E_Q(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_N}(z) = (z + 1)^N$ — after renormalization p.g.f. of Bin(N, 1/2)in general: consider Q Ehrhart positive, i. e. all coefficients of $E_Q(z)$ are positive

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Recall: a polytope $Q \subset \mathbb{R}^N$ is called a lattice polytope if all of its vertices have integer coordinates

Ex.: $Q = W_N = [0, 1]^N$ unit cube

Ehrhart's theorem: if Q is a lattice polytope, then

$$E_Q(k) := |\{t \in \mathbb{Z}^N : t \in kQ\}|, \qquad k \in \mathbb{N}_0$$

is the evaluation of a polynomial $E_Q(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_N}(z) = (z + 1)^N \rightsquigarrow$ after renormalization p.g.f. of Bin(N, 1/2)in general: consider Q Ehrhart positive, i. e. all coefficients of $E_Q(z)$ are positive

Recall: a polytope $Q \subset \mathbb{R}^N$ is called a lattice polytope if all of its vertices have integer coordinates

Ex.: $Q = W_N = [0, 1]^N$ unit cube

Ehrhart's theorem: if Q is a lattice polytope, then

$$E_Q(k) := |\{t \in \mathbb{Z}^N : t \in kQ\}|, \qquad k \in \mathbb{N}_0$$

is the evaluation of a polynomial $E_Q(z)$ of degree N "Ehrhart pol." Ex.: $E_{W_N}(z) = (z+1)^N \rightsquigarrow$ after renormalization p.g.f. of Bin(N, 1/2) in general: consider Q Ehrhart positive, i. e. all coefficients of $E_Q(z)$ are positive

Definition

 Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"

Q lattice polytope is reflexive if its convex dual Q° :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well

→ *Q* Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial! Example: Consider the "root polytopes"

 $A_N := \operatorname{conv}(\{\pm(e_i + \ldots + e_j) : 1 \le i \le j \le N\}),$

 $C_N := \operatorname{conv}(\{\pm (2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}).$

Fact: A_N , C_N are reflexive CL-polytopes!

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Definition

- Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"
- Q lattice polytope is reflexive if its convex dual Q[◦] :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well

→ *Q* Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial! Example: Consider the "root polytopes"

 $A_N := \operatorname{conv}(\{\pm(e_i + \ldots + e_j) : 1 \le i \le j \le N\}),$

 $C_N := \operatorname{conv}(\{\pm(2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}).$

Fact: A_N , C_N are reflexive CL-polytopes!

Definition

- Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"
- Q lattice polytope is reflexive if its convex dual Q[◦] :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well
- $\rightsquigarrow Q$ Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial!

Example: Consider the "root polytopes"

 $A_N := \operatorname{conv}(\{\pm(e_i + \ldots + e_j) : 1 \le i \le j \le N\}),$

 $C_N := \operatorname{conv}(\{\pm (2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}).$

Fact: A_N , C_N are reflexive CL-polytopes!

Definition

- Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"
- Q lattice polytope is reflexive if its convex dual Q[◦] :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well
- → *Q* Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial! Example: Consider the "root polytopes"

$$A_N := \operatorname{conv}(\{\pm(e_i + \ldots + e_j) : 1 \le i \le j \le N\}),$$

 $C_N := \operatorname{conv}(\{\pm(2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}).$

Fact: A_N , C_N are reflexive CL-polytopes!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"
- Q lattice polytope is reflexive if its convex dual Q[◦] :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well

→ *Q* Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial! Example: Consider the "root polytopes"

$$\begin{split} &A_N := \operatorname{conv}(\{\pm (e_i + \ldots + e_j) : 1 \le i \le j \le N\}), \\ &C_N := \operatorname{conv}(\{\pm (2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}). \end{split}$$

Fact: A_N , C_N are reflexive CL-polytopes!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

- Q lattice polytope is called CL-polytope if all roots of E_Q lie on {z ∈ C: ℜ(z) = −1/2} "critical line"
- Q lattice polytope is reflexive if its convex dual Q[◦] :=
 {x ∈ ℝ^N : ⟨x, y⟩ ≤ 1 for all y ∈ Q} is lattice polytope as well

→ *Q* Ehrhart positive CL-polytope $\Rightarrow E_Q(z)$ Hurwitz polynomial! Example: Consider the "root polytopes"

$$\begin{split} A_N &:= \operatorname{conv}(\{\pm(e_i + \ldots + e_j) : 1 \le i \le j \le N\}), \\ C_N &:= \operatorname{conv}(\{\pm(2e_i + \ldots + 2e_{N-1} + e_N) : 1 \le i \le N-1\} \cup \{\pm e_N\}). \end{split}$$

Fact: A_N , C_N are reflexive CL-polytopes!

Ehrhart polynomials of A_N° , C_N° :

$$E_{A_N^{\circ}}(z) = (z+1)^{N+1} - z^{N+1}, \qquad E_{C_N^{\circ}}(z) = (z+1)^N + z^N$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_N^{\circ}}$ is p.g.f. of $Y_N | \{Y_N \le N 1\}$, where $Y_N \sim Bin(N, 1/2)$ (up to renormalization)
- $E_{C_N^{\circ}}$ is p.g.f. of $N U_N V_N$ with $U_N \perp V_N$, $U_N \sim Bin(N, 1/2)$, $V_N \sim Ber(2^N/(2^N - 1))$

In particular, our asymptotic distributional results hold in these cases.

Ehrhart polynomials of A_N° , C_N° :

$$E_{A_N^\circ}(z) = (z+1)^{N+1} - z^{N+1}, \qquad E_{C_N^\circ}(z) = (z+1)^N + z^N$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_N^{\circ}}$ is p.g.f. of $Y_N | \{Y_N \le N 1\}$, where $Y_N \sim Bin(N, 1/2)$ (up to renormalization)
- $E_{C_N^{\circ}}$ is p.g.f. of $N U_N V_N$ with $U_N \perp V_N$, $U_N \sim Bin(N, 1/2)$, $V_N \sim Ber(2^N/(2^N 1))$

In particular, our asymptotic distributional results hold in these cases.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Ehrhart polynomials of A_N° , C_N° :

$$E_{A_N^\circ}(z) = (z+1)^{N+1} - z^{N+1}, \qquad E_{C_N^\circ}(z) = (z+1)^N + z^N$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_N^{\circ}}$ is p.g.f. of $Y_N | \{Y_N \le N 1\}$, where $Y_N \sim Bin(N, 1/2)$ (up to renormalization)
- $E_{C_N^{\circ}}$ is p.g.f. of $N U_N V_N$ with $U_N \perp V_N$, $U_N \sim Bin(N, 1/2)$, $V_N \sim Ber(2^N/(2^N - 1))$

In particular, our asymptotic distributional results hold in these cases.

(日)

Ehrhart polynomials of A_N° , C_N° :

$$E_{A_N^\circ}(z) = (z+1)^{N+1} - z^{N+1}, \qquad E_{C_N^\circ}(z) = (z+1)^N + z^N$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_N^{\circ}}$ is p.g.f. of $Y_N | \{Y_N \le N 1\}$, where $Y_N \sim Bin(N, 1/2)$ (up to renormalization)
- $E_{C_N^{\circ}}$ is p.g.f. of $N U_N V_N$ with $U_N \perp V_N$, $U_N \sim Bin(N, 1/2)$, $V_N \sim Ber(2^N/(2^N 1))$

In particular, our asymptotic distributional results hold in these cases.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ehrhart polynomials of A_N° , C_N° :

$$E_{A_N^\circ}(z) = (z+1)^{N+1} - z^{N+1}, \qquad E_{C_N^\circ}(z) = (z+1)^N + z^N$$

Interpretation in terms of "simple" r.v.s:

- $E_{A_N^{\circ}}$ is p.g.f. of $Y_N | \{Y_N \le N 1\}$, where $Y_N \sim Bin(N, 1/2)$ (up to renormalization)
- $E_{C_N^{\circ}}$ is p.g.f. of $N U_N V_N$ with $U_N \perp V_N$, $U_N \sim \text{Bin}(N, 1/2)$, $V_N \sim \text{Ber}(2^N/(2^N - 1))$

In particular, our asymptotic distributional results hold in these cases.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Thank you!

< ロ > < 回 > < 回 > < 回 >