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Polynomials and Random Variables

1) Pp(z) = ap + a1z' + ... + apz" polynomial, ax > 0 Vk
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Polynomials and Random Variables

1) Pp(z) = ap + a1z' + ... + apz" polynomial, ax > 0 Vk
= defines rv. Xp by  P(Xp = k) = a /(3o &)

2) X, r.v, valuesin {0,1,...,n}

= probab. gen. fct. >°7_, (X, = k)z¥ is polynomial

Conclusion: Have natural bijection
{“normed” polynomials, coeff. > 0} +— {bounded Ny-valued r.v.s}

Question: Consider sequences (Pp)n A (Xn)n. Relations between
zeros of P, and (asymptotic) distributional behaviour of X,?
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Real roots

Situation 1: Assume all roots of P,(z) are real (= negative)
= Pn(2) = ITx=1(pkz + qi) for px € (0,1), g = 1 — px
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Real roots
Situation 1: Assume all roots of P,(z) are real (= negative)

= Pn(2) = [Tkz1(Pkz + qi) for pi € (0,1), gk = 1 — px
= Xn = Xn,1 + e + Xn’n, Xn"] PRI ,Xn’n Indep, Xn,k ~ Ber(pk)
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Real roots

Situation 1: Assume all roots of P,(z) are real (= negative)
= Pn(2) = [Tkt (Pkz + ) for px € (0,1), g = 1 — px
= Xo=Xn1+ ...+ Xon Xn1,..., Xnnindep., X, x ~ Ber(pk)
@ (Xp)n satisfies CLT iff Var(X,) = 02 = > 7_; pkQk — 00 @S N — oo

@ Speed of Convergence ~ o5,
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@ (Xp)n satisfies CLT iff Var(X,) = 02 = > 7_; pkQk — 00 @S N — oo

@ Speed of Convergence ~ o5,

Example: 7 € &, permutation has descent at j if 7(i) > w(i + 1)

Xn = #{descents of uniform random permutation}
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Real roots

Situation 1: Assume all roots of P,(z) are real (= negative)
= Pn(2) = [Tk=1(Pkz + qk) for px € (0,1), gk = 1 — px
= Xo=Xn1+ ...+ Xon Xn1,..., Xnnindep., X, x ~ Ber(pk)
@ (Xp)n satisfies CLT iff Var(X,) = 02 = > 7_; pkQk — 00 @S N — oo

@ Speed of Convergence ~ o5,

Example: 7 € &, permutation has descent at j if 7(i) > w(i + 1)
Xn = #{descents of uniform random permutation}
P, “Eulerian polynomial”, only real roots, o2 ~ n

=  CLT with speed of convergence n—1/2
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Hurwitz polynomials

Situation 2: P,(z) is a Hurwitz polynomial if Re(¢) < O for all roots ¢
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Situation 2: P,(z) is a Hurwitz polynomial if Re(¢) < O for all roots ¢
Note: Pp(¢) =0 = Pn(¢) =0~ Pn(2) =TI, Pnj(2), Pnj(2)linear
or quadratic with positive coeff. (by Hurwitz prop.)
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Situation 2: P,(z) is a Hurwitz polynomial if Re(¢) < O for all roots ¢
Note: Pn(¢) =0 = Pn(¢) =0 ~» Pp(2) =TI, Pnj(2), Pnj(2)linear
or quadratic with positive coeff. (by Hurwitz prop.)
= corresponds to sum of indep. (unif. bounded) r.v.s again

@ (Xp)n satisfies CLT iff Var(X,,) = 02 — oo as n — oo

@ Speed of Convergence ~ o5
Example: alternating descents of 7 € G, i. e. descent if i odd, ascent
if / even

Xy := #{alternating descents of uniform random permutation}
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Hurwitz polynomials

Situation 2: P,(z) is a Hurwitz polynomial if Re(¢) < O for all roots ¢
Note: Pn(¢) =0 = Pn(¢) =0 ~» Pp(2) =TI, Pnj(2), Pnj(2)linear
or quadratic with positive coeff. (by Hurwitz prop.)
= corresponds to sum of indep. (unif. bounded) r.v.s again

@ (Xp)n satisfies CLT iff Var(X,,) = 02 — oo as n — oo

@ Speed of Convergence ~ o,

Example: alternating descents of 7 € G, i. e. descent if i odd, ascent
if / even

Xy := #{alternating descents of uniform random permutation}

all roots of P, on the left-hand side of the unit circle, a% ~n

=  CLT with speed of convergence n—1/2
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General polynomials

Situation 3: What about general polynomials?
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possibly with negative coeff. ~ not a sum of indep. r.v.s
Example: inversions of 7 € G, i.e. tuples i < j with 7(i) > 7 (j)

Xn := #{inversions of uniform random permutation}

Po(z) = 17211 + ...+ 25) = [17=1 1522 (all roots on unit circle)
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positive coeff. = factorization into linear and quadratic terms, but
possibly with negative coeff. ~ not a sum of indep. r.v.s
Example: inversions of 7 € G, i.e. tuples i < j with 7(i) > 7 (j)
Xn := #{inversions of uniform random permutation}

Po(z) = 17211 + ...+ 25) = [17=1 1522 (all roots on unit circle)
Known: o2 ~ n?, but X, sat. CLT with speed n=1/2 £ ¢,
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positive coeff. = factorization into linear and quadratic terms, but
possibly with negative coeff. ~ not a sum of indep. r.v.s
Example: inversions of 7 € G, i.e. tuples i < j with 7(i) > 7 (j)
Xn := #{inversions of uniform random permutation}

Po(z) = 17211 + ...+ 25) = [17=1 1522 (all roots on unit circle)
Known: o2 ~ n?, but X, sat. CLT with speed n=1/2 £ ¢,

= something different is happening!
Note: argmin{(: ¢ root of Pp} =27 /n=: 6,

Observation: rate of convergence agrees with (§,0,)~" = n=1/2
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General polynomials

Situation 3: What about general polynomials?

positive coeff. = factorization into linear and quadratic terms, but
possibly with negative coeff. ~ not a sum of indep. r.v.s
Example: inversions of 7 € G, i.e. tuples i < j with 7(i) > 7 (j)
Xn := #{inversions of uniform random permutation}

Po(z) = 17211 + ...+ 25) = [17=1 1522 (all roots on unit circle)
Known: o2 ~ n?, but X, sat. CLT with speed n=1/2 £ ¢,

= something different is happening!
Note: argmin{(: ¢ root of Pp} =27 /n=: 6,
Observation: rate of convergence agrees with (§,0,)~" = n=1/2

= General principle behind?
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Root-unitary polynomials
Theorem (Hwang—Zacharovas (2015))

CLT for root-unitary polynomials Py(z):
X, = (Xn —E(Xn))/on = N(0,1)

iff  E(X:)*—3
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Root-unitary polynomials

Theorem (Hwang—Zacharovas (2015))
CLT for root-unitary polynomials Pp(z):
X = (Xn —E(Xp))/on = N(0,1)  iff E(X3)*—3

Proof based on cumulant bounds
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Root-unitary polynomials

Theorem (Hwang—Zacharovas (2015))
CLT for root-unitary polynomials Pp(z):
X = (Xn —E(Xp))/on = N(0,1)  iff E(X3)*—3

Proof based on cumulant bounds
Cumulant bounds imply a lot more probabilistic results than CLTs:

Proposition
Assume Statulevicius condition: Ym > 3,Vn > 1

m!
[Kmnl = [Em(X5)| < N

5, SomeAp>0
n

4
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Root-unitary polynomials

Theorem (Hwang—Zacharovas (2015))
CLT for root-unitary polynomials Pp(z):
Xi = (Xp —E(Xn))/on=N(0,1) iff E(X;)*—3

Proof based on cumulant bounds

Cumulant bounds imply a lot more probabilistic results than CLTs:
Proposition

Assume Statulevicius condition: Vm > 3, Vn > 1

m!
[Kmnl = [Em(X5)| < N

5, SomeAp>0
n

(i) CLT & Berry—Esseen bound:
supyer |P(X: > x) —P(Z > x)| < CA;', Z ~ N(0,1)
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The method of cumulants

Proposition (cont.)
(i) moderate deviations: (an) s.th. a, — oo, an = 0(4An)
~ X} | a, satisfies a MDP with speed a2 & rate fct. I(x) = x?/2

H. Sambale (Bochum) Limit Theorems & Zeros of Polynomials HDP 2023 7/16



The method of cumulants

Proposition (cont.)

(i) moderate deviations: (an) s.th. a, — oo, an = 0(4An)
~ X' /an satisfies a MDP with speed a2 & rate fct. I(x) = x?/2
Example: limp_.o a,2 log P(X}:/an € (X,00)) = —x?/2, x>0
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The method of cumulants
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(i) moderate deviations: (an) s.th. a, — oo, an = 0(4An)
~ X' /an satisfies a MDP with speed a2 & rate fct. I(x) = x?/2
Example: limp_.o a,2 log P(X}:/an € (X,00)) = —x?/2, x>0

(iii) Bernstein-type conc. ineq.: P(X; > x) < Cexp(— 2 5x] An)
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The method of cumulants

Proposition (cont.)

(i) moderate deviations: (an) s.th. a, — oo, an = 0(4An)
~ X' /an satisfies a MDP with speed a2 & rate fct. I(x) = x?/2
Example: limp_.o a,2 log P(X}:/an € (X,00)) = —x?/2, x>0

(iii) Bernstein-type conc. ineq.: P(X; > x) < Cexp(— 2 5x] An)

(iv) mod-Gaussian convergence: Ass. kp, , =0Vm=3,...,v -1,

Ky Db 2 = L e R~ ALY X;; converges in the mod-Gaussian

2(v—2)/v
n

sense with param. t, .= A and limiting fet. V(z) .= e w2’
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The method of cumulants

Proposition (cont.)

(i) moderate deviations: (an) s.th. a, — oo, an = 0(4An)
~ X' /an satisfies a MDP with speed a2 & rate fct. I(x) = x?/2
Example: limp_.o a,2 log P(X}:/an € (X,00)) = —x?/2, x>0

(iii) Bernstein-type conc. ineq.: P(X; > x) < Cexp(— 2 X An)

(iv) mod-Gaussian convergence: Ass. kp, , =0Vm=3,...,v -1,

Ky Db 2 = L e R~ ALY X;; converges in the mod-Gaussian

2(v—2)/v
n

sense with param. t, .= A and limiting fet. V(z) .= e w2’

22 .
This means: lim,_.., E[e?7]e~"z = W(2) loc. unif. on C
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A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:
Pn(2) =TTk (1 — 2%) /(1 — 2%), ax < by

=y = = =
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A class of root-unitary polynomials
Important class (C) of root-unitary polynomials:
Pn(2) = [Tkt (1 — 2%)/(1 — 2%), & < bk
@ appear in inversions in random permutations (+ generalizations),

Gaussian polynomials, g-Catalan numbers etc.
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A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:
Pn(2) =TTk (1 — 2%) /(1 — 2%), ax < by
@ appear in inversions in random permutations (+ generalizations),
Gaussian polynomials, g-Catalan numbers etc.
o cumulants kmn = km(Xn) = (Bm/m) 31_1(b" — &), m >3,

B = m-th Bernoulli number (~ xomy1.0 = 0)

— = = = — yert
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A class of root-unitary polynomials

Important class (C) of root-unitary polynomials:
Pn(2) =TTk (1 — 2%) /(1 — 2%), ax < by
@ appear in inversions in random permutations (+ generalizations),
Gaussian polynomials, g-Catalan numbers etc.
o cumulants kmn = km(Xn) = (Bm/m) 31_1(b" — &), m >3,

B = m-th Bernoulli number (~ xomy1.0 = 0)

Theorem (Heerten-S-Théle (2022+))

Kemnl = 7 om—2>
Anm
where
7 On
Ay =12 =2 M, = max by.
n 6 M, N Zken K

= v - = =t
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Elements of the proof

Step 1: By induction, show that
BPm — 22M < (b? — &2)2M kP2 yb>a>0VYm> 2
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Elements of the proof

Step 1: By induction, show that
BPm — 22M < (b? — &2)2M kP2 yb>a>0VYm> 2
Step 2: Use this inequality to obtain
. B> 2m-
bl = 22 Z <l S (6 - )

Jj=1
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Elements of the proof

Step 1: By induction, show that
BPm — 22M < (b? — &2)2M kP2 yb>a>0VYm> 2

Step 2: Use this inequality to obtain

Bom| <=, 2 2m- 2m—2

* _ m m m—

[Komn| = 2mo - (bf 32 ) < oo |32m|M Z )
=1 j=1

Since 0% = ko = 12 Z/ 1(b2 ) and |Bap| <? (r )2%% ~

3.91-m (MN>2m—2

‘K“Zm,N‘ < (zm)!mﬂ_gmm — 21,2,77)

ON
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Elements of the proof

Step 1: By induction, show that
BPm — 22M < (b? — &2)2M kP2 yb>a>0VYm> 2

Step 2: Use this inequality to obtain

|82m| 2 2m m 2m- 2m—2
|Kamnl = 555 > _(BF" — &™) < |82m|M § (b7 — &)
2maoy; = mo e
Since O-%I = HZ,N = 1172 27:1 (b/2 - ) and ‘32m| < 2 )2?771 21 2m 7

3.91-m (MN>2m—2

‘HZm,N‘ < (2m)!m7'r2m(1 — 21,2,77)

ON

The proof is completed by monotonicity arguments.

H. Sambale (Bochum) Limit Theorems & Zeros of Polynomials HDP 2023 9/16



One further example

p(n, ¢, j) = #{partitions of j with at most £ summands, each < n}
Gaussian polynomials

G(n, £;2) .= > op(n,L,f)Z
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One further example

p(n, ¢, j) = #{partitions of j with at most £ summands, each < n}
Gaussian polynomials

G(n.6;2) = YjLop(n. 6, )2 =TT (1 = 21T /(1 - )
Note: G(n, ¢; z) is polynomial, but not (1 — 2Z/+4)/(1 — 2/) in gen.
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One further example

p(n, ¢, j) = #{partitions of j with at most £ summands, each < n}
Gaussian polynomials

G(n.t;2) == op(n.¢,j)2 = T[ILs(1 = 24 /(1 = 2)
Note: G(n, ¢; z) is polynomial, but not (1 — 2Z/+4)/(1 — 2/) in gen.
Can calculate: 05, = ((2n+(n+(n?)/12, My = n+(

= Apy=c\/Inl+n+1)/({+n)—occasnl— oo
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One further example

p(n,¢,j) = #{partitions of j with at most ¢ summands, each < n}
Gaussian polynomials

G(n,£:2) = SJo pln, £,))2) = TT]4(1 — 20)/(1 — 2)
Note: G(n, ¢; z) is polynomial, but not (1 — Z/*4)/(1 — Z) in gen.
Can calculate: 05, = (12n+ n+(n?)/12, My = n+ {

= Apg=c\/In(l+n+1)/({+n)— ocoasnt— oo

= (Xn.¢)ne sat. CLT with speed of convergence ~ n~1/2 4 ¢=1/2
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Towards a generalization
Note: roots of [Tf_(1 — z%)/(1 — z3) are subset of

{exp(x2rik/bj), k =1,...,|bj/2],j=1,....n}

= & - = DA
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Towards a generalization

Note: roots of [Tf_(1 — z%)/(1 — z3) are subset of
{exp(£27ik/bj), k =1,...,|bj/2],j=1,....n}
= argmin{|(|: ¢ root of Pp} = 27 /(max; b;) = 27/M, =: i,
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Towards a generalization

Note: roots of [Tf_(1 — z%)/(1 — z3) are subset of
{exp(£27ik/bj), k =1,...,|bj/2],j=1,....n}
= argmin{|(|: ¢ root of Pp} = 27 /(max; b;) = 27/M, =: i,

@ Pj(z) zero-free in sector S(d,) := {z € C : arg(2) € (—dn,0n)}
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Towards a generalization

Note: roots of [Tf_(1 — z%)/(1 — z3) are subset of
{exp(£2rmik/bj), k =1,...,|bj/2],j=1,...,n}
= argmin{|(|: ¢ root of Pp} = 27 /(max; b;) = 27/M, =: i,
@ Pp(z) zero-free in sector S(6p) := {z € C : arg(z) € (—dn, dn)}

o Have An ~ Un/Mn ~ 0'[75[7
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Towards a generalization

Note: roots of [[y_(1 — z%)/(1 — z3) are subset of
{exp(£2rmik/bj), k =1,...,|bj/2],j=1,...,n}

= argmin{|(|: ¢ root of Pp} = 27 /(max; b;) = 27/M, =: i,

@ Pp(z) zero-free in sector S(6p) := {z € C : arg(z) € (—dn, dn)}

@ Have A, =~ op/Mp =~ opdp
Theorem (Michelen—Sahasrabudhe (2019+), H-S-T (2022+))
(Xn)n bounded Ny-valued r.v.s, (Pn)n probab. gen. fcts. Ass. P, has no
roots in S(dp) for 6, € (0, 7). Then,

. m!
<-——-Vm>3,c¢c> 0 abs. const.
‘/{mﬂ‘ — (Can’n)m_z -
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Comments and comparisons

@ includes all previous results (choose any é, for Hurwitz pol.)
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@ Theorem and proof can be found along the lines of the proofs in
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@ Theorem and proof can be found along the lines of the proofs in
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@ our proof for the class (C) is more elementary
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Comments and comparisons

@ includes all previous results (choose any é, for Hurwitz pol.)

@ Theorem and proof can be found along the lines of the proofs in
Michelen—Sahasrabudhe

@ our proof for the class (C) is more elementary

@ different abs. constant ¢ in A, = cépon:

c =my\/7/24 for (C)
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Comments and comparisons

@ includes all previous results (choose any é, for Hurwitz pol.)

@ Theorem and proof can be found along the lines of the proofs in
Michelen—Sahasrabudhe

@ our proof for the class (C) is more elementary

@ different abs. constant cin A, = ¢dpon:
¢ = m/7/24 for (C) vs. ¢ = 273248 in general
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Comments and comparisons

@ includes all previous results (choose any é, for Hurwitz pol.)

@ Theorem and proof can be found along the lines of the proofs in
Michelen—Sahasrabudhe

@ our proof for the class (C) is more elementary

@ different abs. constant ¢ in A, = ¢épon:
¢ =m\/7/24 for (C) vs. ¢ = 273248 in general

@ many examples of combinatorial statistics such that the roots of
Pn can be calculated are either Hurwitz or belong to (C)
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Another class of examples

Recall: a polytope Q c RN is called a lattice polytope if all of its
vertices have integer coordinates
Ex.: Q = Wy = [0, 1]" unit cube
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Another class of examples

Recall: a polytope Q c RN is called a lattice polytope if all of its
vertices have integer coordinates

Ex.: Q = Wy = [0, 1]V unit cube

Ehrhart’s theorem: if Q is a lattice polytope, then

Egok) :=|{teZN: tc kQ}|, keNg

is the evaluation of a polynomial Eq(z) of degree N “Ehrhart pol.”
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Another class of examples

Recall: a polytope Q c RN is called a lattice polytope if all of its
vertices have integer coordinates

Ex.: Q = Wy = [0, 1]V unit cube

Ehrhart’s theorem: if Q is a lattice polytope, then

Egok) :=|{teZN: tc kQ}|, keNg

is the evaluation of a polynomial Eq(z) of degree N “Ehrhart pol.”
Ex.: Ewy(z) = (z+ 1N
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Another class of examples

Recall: a polytope Q c RN is called a lattice polytope if all of its
vertices have integer coordinates

Ex.: Q = Wy = [0, 1]V unit cube

Ehrhart’s theorem: if Q is a lattice polytope, then

Egok) :=|{teZN: tc kQ}|, keNg

is the evaluation of a polynomial Eq(z) of degree N “Ehrhart pol.”
Ex.: Ew,(2) = (z + 1)N ~ after renormalization p.g.f. of Bin(N, 1/2)
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Another class of examples

Recall: a polytope Q c RN is called a lattice polytope if all of its
vertices have integer coordinates

Ex.: Q = Wy = [0, 1]V unit cube

Ehrhart’s theorem: if Q is a lattice polytope, then

Egok) :=|{teZN: tc kQ}|, keNg

is the evaluation of a polynomial Eq(z) of degree N “Ehrhart pol.”
Ex.: Ew,(2) = (z + 1)N ~ after renormalization p.g.f. of Bin(N, 1/2)
in general: consider Q Ehrhart positive, i. e. all coefficients of Eq(z)

are positive
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(z) = —1/2} “critical line”
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(2) = —1/2} “critical line”
@ Q lattice polytope is reflexive if its convex dual Q° :=
{x eRN: (x,y) < 1forall y € Q) is lattice polytope as well
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(z) = —1/2} “critical line”

@ Q lattice polytope is reflexive if its convex dual Q° :=

{x eRN: (x,y) < 1forall y € Q) is lattice polytope as well

~» Q Ehrhart positive CL-polytope = Eq(z) Hurwitz polynomial!
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(z) = —1/2} “critical line”

@ Q lattice polytope is reflexive if its convex dual Q° :=

{x eRN: (x,y) < 1forall y € Q) is lattice polytope as well

~» Q Ehrhart positive CL-polytope = Eq(z) Hurwitz polynomial!

Example: Consider the “root polytopes”

Ay :=conv({X(ei+...+¢€): 1 <i<j< N},
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(z) = —1/2} “critical line”

@ Q lattice polytope is reflexive if its convex dual Q° :=

{x eRN: (x,y) < 1forall y € Q) is lattice polytope as well

~» Q Ehrhart positive CL-polytope = Eq(z) Hurwitz polynomial!

Example: Consider the “root polytopes”
Ay :=conv({£(ej+ ...+ ej) 1 <i<j< N},

Cn :=conv({£(2e;+... +2en_1 +en): 1 <i<N-1}uU{£epn}).
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CL-polytopes
Definition
@ Q lattice polytope is called CL-polytope if all roots of Eq lie on
{z € C: R(z) = —1/2} “critical line”

@ Q lattice polytope is reflexive if its convex dual Q° :=

{x eRN: (x,y) < 1forall y € Q) is lattice polytope as well

~» Q Ehrhart positive CL-polytope = Eq(z) Hurwitz polynomial!

Example: Consider the “root polytopes”
Ay :=conv({X(ei+...+¢€): 1 <i<j< N},
Cn:=conv({£(2ei+...+2en_1+en): 1 <i<N-1}U{*en}).

Fact: Ay, Cy are reflexive CL-polytopes!
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CL-polytopes (cont.)

Ehrhart polynomials of AR, Cy;:

Epc(2) = (z+ )V 2N Epe(2) = (z+ 1)V + 2N
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CL-polytopes (cont.)

Ehrhart polynomials of AR, Cy;:
Epc(2) = (z+ )V 2N Epe(2) = (z+ 1)V + 2N

Interpretation in terms of “simple” r.v.s:
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CL-polytopes (cont.)

Ehrhart polynomials of AR, Cy;:
Ex(2) = (z+ D)V 2N Ege(z) = (z+ 1)V + 2"

Interpretation in terms of “simple” r.v.s:
) EA;JV is p.g.f. of Yy|[{Yn < N—1}, where Yy ~ Bin(N,1/2) (up to

renormalization)
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CL-polytopes (cont.)

Ehrhart polynomials of AR, Cy;:
Ex(2) = (z+ )N 2N Eg(z) = (z+ 1)V + 2N

Interpretation in terms of “simple” r.v.s:
® Epo is p.g.f of Yy[{Yn < N—1}, where Yy ~ Bin(N,1/2) (up to
renormalization)
® Ecoisp.g.f. of N— UyVy with Uy UL Vi, Uy ~ Bin(N, 1/2),
Vn ~ Ber(2V/(2" — 1))
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CL-polytopes (cont.)

Ehrhart polynomials of AR, Cy;:
Ex(2) = (z+ )N 2N Eg(z) = (z+ 1)V + 2N

Interpretation in terms of “simple” r.v.s:
® Epo is p.g.f of Yy[{Yn < N—1}, where Yy ~ Bin(N,1/2) (up to
renormalization)
® Ecoisp.g.f. of N— UyVy with Uy UL Vi, Uy ~ Bin(N, 1/2),
Vn ~ Ber(2V/(2N — 1))

In particular, our asymptotic distributional results hold in these cases.
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Thank you!
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