Comparing moments of real log-concave random variables

Daniel Murawski
University of Warsaw

2023

Let X be a real log-concave random variable with non-negative values. From Prékopa-Leindler inequality we know that the function $t \mapsto \mathbb{P}(X \geqslant t)$ is log-concave. Let E denote a random variable with exponential distribution with $\lambda=1, \gamma_{p}=\|E\|_{p}=\Gamma(p+1)^{1 / p}$.

Let X be a real log-concave random variable with non-negative values. From Prékopa-Leindler inequality we know that the function $t \mapsto \mathbb{P}(X \geqslant t)$ is log-concave. Let E denote a random variable with exponential distribution with $\lambda=1, \gamma_{p}=\|E\|_{p}=\Gamma(p+1)^{1 / p}$.

Theorem (Barlow, Marshall, Proschan, 1963)

If X is a real random variable with log-concave tails, then the function $p \mapsto \frac{\|X\|_{p}}{\gamma_{p}}$ is non-increasing on $(0, \infty)$.

Let X be a real log-concave random variable with non-negative values. From Prékopa-Leindler inequality we know that the function $t \mapsto \mathbb{P}(X \geqslant t)$ is log-concave. Let E denote a random variable with exponential distribution with $\lambda=1, \gamma_{p}=\|E\|_{p}=\Gamma(p+1)^{1 / p}$.

Theorem (Barlow, Marshall, Proschan, 1963)

If X is a real random variable with log-concave tails, then the function $p \mapsto \frac{\|X\|_{p}}{\gamma_{p}}$ is non-increasing on $(0, \infty)$.

This, in particular, shows that for symmetric/non-negative log-concave X and $p>q>0$ we have $\|X\|_{p} \leqslant \frac{\gamma_{p}}{\gamma_{q}}$ and the equality holds for $X=E$.

If X not symmetric, let X^{\prime} be independent copy of X.

If X not symmetric, let X^{\prime} be independent copy of X. Thus

$$
\begin{aligned}
& \|X\|_{p} \leqslant\|X-\mathbb{E} X\|_{p}+\|\mathbb{E} X\|_{p} \leqslant\left\|X-X^{\prime}\right\|_{p}+|\mathbb{E} X| \\
& \leqslant \frac{\gamma_{p}}{\gamma_{q}}\left\|X-X^{\prime}\right\|_{q}+|\mathbb{E} X| \leqslant 2 \frac{\gamma_{p}}{\gamma_{q}}\|X\|_{q}+|\mathbb{E} X| .
\end{aligned}
$$

If X not symmetric, let X^{\prime} be independent copy of X. Thus

$$
\begin{aligned}
& \|X\|_{p} \leqslant\|X-\mathbb{E} X\|_{p}+\|\mathbb{E} X\|_{p} \leqslant\left\|X-X^{\prime}\right\|_{p}+|\mathbb{E} X| \\
& \leqslant \frac{\gamma_{p}}{\gamma_{q}}\left\|X-X^{\prime}\right\|_{q}+|\mathbb{E} X| \leqslant 2 \frac{\gamma_{p}}{\gamma_{q}}\|X\|_{q}+|\mathbb{E} X| .
\end{aligned}
$$

From Stirling's formula $\frac{\gamma_{p}}{\gamma_{q}} \leqslant \frac{p}{q}$. We also have $|\mathbb{E} X| \leqslant \frac{p}{q}\|X\|_{q}$.

If X not symmetric, let X^{\prime} be independent copy of X. Thus

$$
\begin{aligned}
& \|X\|_{p} \leqslant\|X-\mathbb{E} X\|_{p}+\|\mathbb{E} X\|_{p} \leqslant\left\|X-X^{\prime}\right\|_{p}+|\mathbb{E} X| \\
& \leqslant \frac{\gamma_{p}}{\gamma_{q}}\left\|X-X^{\prime}\right\|_{q}+|\mathbb{E} X| \leqslant 2 \frac{\gamma_{p}}{\gamma_{q}}\|X\|_{q}+|\mathbb{E} X| .
\end{aligned}
$$

From Stirling's formula $\frac{\gamma_{p}}{\gamma_{q}} \leqslant \frac{p}{q}$. We also have $|\mathbb{E} X| \leqslant \frac{p}{q}\|X\|_{q}$. Thus, $\|X\|_{p} \leqslant C \frac{p}{q}\|X\|_{q}$ where

- $C=1$ if X symmetric/non-negative,
- $C=2$ if $\mathbb{E} X=0$,
- $C=3$ in general case.

Q:
(1) Does the inequality hold with $C=1$ in all cases?

Q:
(1) Does the inequality hold with $C=1$ in all cases?
(2) If not, what are the optimal constants?

Q:
(1) Does the inequality hold with $C=1$ in all cases?
(2) If not, what are the optimal constants?
(0) Which distributions maximize $\frac{\|X\|_{p}}{\|X\|_{q}}$?

Q:
(1) Does the inequality hold with $C=1$ in all cases?
(2) If not, what are the optimal constants?
(0) Which distributions maximize $\frac{\|X\|_{p}}{\|X\|_{q}}$?

A:
(1) It holds with $C=1$ if $\mathbb{E} X=0$, but not in general.

Q:
(1) Does the inequality hold with $C=1$ in all cases?
(2) If not, what are the optimal constants?
(0) Which distributions maximize $\frac{\|X\|_{p}}{\|X\|_{q}}$?

A:
(1) It holds with $C=1$ if $\mathbb{E} X=0$, but not in general.
(2) For general case, $p \geqslant q \geqslant 2$ it is $C_{0}=e^{W(1 / e)} \approx 1.3211$.

Q:

(1) Does the inequality hold with $C=1$ in all cases?
(2) If not, what are the optimal constants?
(0) Which distributions maximize $\frac{\|X\|_{p}}{\|X\|_{q}}$?

A:
(1) It holds with $C=1$ if $\mathbb{E} X=0$, but not in general.
(2) For general case, $p \geqslant q \geqslant 2$ it is $C_{0}=e^{W(1 / e)} \approx 1.3211$.
(0) The ratio is always maximized for a variable of the form $E-t$ for some $t \geqslant 0$.

We consider three linear functionals on the space of measures supported on some interval $[a, b]$ with density g

$$
\begin{gathered}
F_{1}(g)=\int_{a}^{b} g(x) d x \\
F_{2}(g)=\int_{a}^{b}|x|^{q} g(x) d x \\
H(g)=\int_{a}^{b}|x|^{p} g(x) d x .
\end{gathered}
$$

We consider three linear functionals on the space of measures supported on some interval $[a, b]$ with density g

$$
\begin{gathered}
F_{1}(g)=\int_{a}^{b} g(x) d x \\
F_{2}(g)=\int_{a}^{b}|x|^{q} g(x) d x \\
H(g)=\int_{a}^{b}|x|^{p} g(x) d x .
\end{gathered}
$$

We maximize H with constraints $F_{1}=1, F_{2}=1$. By Fradelizi-Guédon theory of degrees of freedom, it is enough to consider densities of the form

$$
g(x)=e^{\alpha x+\beta} \mathbb{1}_{[a, b]}(x)
$$

Non-negative case already solved, we consider intervals $[-a, b]$, where $a, b>0$.

Define

$$
\begin{gathered}
F_{1}(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta} d x \\
F_{2}(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta}|x|^{q} d x \\
H(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta}|x|^{p} d x
\end{gathered}
$$

We want to maximize G under $F_{1}=F_{2}=1$.

Define

$$
\begin{gathered}
F_{1}(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta} d x \\
F_{2}(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta}|x|^{q} d x \\
H(a, b, \alpha, \beta):=\int_{-a}^{b} e^{\alpha x+\beta}|x|^{p} d x
\end{gathered}
$$

We want to maximize G under $F_{1}=F_{2}=1$.
Lagrange multipliers:

$$
\left(D H-\lambda_{1} D F_{1}-\lambda_{2} D F_{2}\right)(a, b, \alpha, \beta)=0 .
$$

Define $r_{\lambda}(x)=|x|^{p}-\lambda_{2}|x|^{q}-\lambda_{1}$. The conditions can be written as

$$
r_{\lambda}(a)=0 ; r_{\lambda}(b)=0 ; \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x=0 ; \int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

Define $r_{\lambda}(x)=|x|^{p}-\lambda_{2}|x|^{q}-\lambda_{1}$. The conditions can be written as

$$
r_{\lambda}(a)=0 ; r_{\lambda}(b)=0 ; \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x=0 ; \int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

Suppose $a<b$. By convexity of $x \mapsto r_{\lambda}\left(x^{1 / q}\right)$, we have $(a-x) r_{\lambda}(x)>0$ a. e. on $[-a, b]$.

Define $r_{\lambda}(x)=|x|^{p}-\lambda_{2}|x|^{q}-\lambda_{1}$. The conditions can be written as

$$
r_{\lambda}(a)=0 ; r_{\lambda}(b)=0 ; \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x=0 ; \int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

Suppose $a<b$. By convexity of $x \mapsto r_{\lambda}\left(x^{1 / q}\right)$, we have $(a-x) r_{\lambda}(x)>0$ a. e. on $[-a, b]$.
From this,

$$
0=a \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x>\int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

a contradiction.

Define $r_{\lambda}(x)=|x|^{p}-\lambda_{2}|x|^{q}-\lambda_{1}$. The conditions can be written as

$$
r_{\lambda}(a)=0 ; r_{\lambda}(b)=0 ; \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x=0 ; \int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

Suppose $a<b$. By convexity of $x \mapsto r_{\lambda}\left(x^{1 / q}\right)$, we have $(a-x) r_{\lambda}(x)>0$ a. e. on $[-a, b]$.
From this,

$$
0=a \int_{-a}^{b} e^{\alpha x} r_{\lambda}(x) d x>\int_{-a}^{b} x e^{\alpha x} r_{\lambda}(x) d x=0
$$

a contradiction.
Case $a=b, \alpha \neq 0$ is similar. From this the maximizer is $X=E-t$ for some t.

Asymptotics for $\|E-t\|_{s}$. We have

$$
\mathbb{E}|E-t|^{s}=\int_{-t}^{\infty} e^{-x-t}|x|^{s} d x=\int_{0}^{t} e^{x-t} x^{s}+e^{-t} \Gamma(s+1) .
$$

Asymptotics for $\|E-t\|_{s}$. We have

$$
\mathbb{E}|E-t|^{s}=\int_{-t}^{\infty} e^{-x-t}|x|^{s} d x=\int_{0}^{t} e^{x-t} x^{s}+e^{-t} \Gamma(s+1) .
$$

We note that $(x+y)^{1 / s} \approx \max \left(x^{1 / s}, y^{1 / s}\right)$. We have

$$
\begin{gathered}
\left(e^{-t} \Gamma(s+1)\right)^{1 / s} \approx e^{-t / s} \frac{s}{e} \\
\left(\int_{0}^{t} e^{x-t} x^{s}\right)^{1 / s} \approx t
\end{gathered}
$$

The approximate equalities are uniform in t.

Asymptotics for $\|E-t\|_{s}$. We have

$$
\mathbb{E}|E-t|^{s}=\int_{-t}^{\infty} e^{-x-t}|x|^{s} d x=\int_{0}^{t} e^{x-t} x^{s}+e^{-t} \Gamma(s+1) .
$$

We note that $(x+y)^{1 / s} \approx \max \left(x^{1 / s}, y^{1 / s}\right)$. We have

$$
\begin{gathered}
\left(e^{-t} \Gamma(s+1)\right)^{1 / s} \approx e^{-t / s} \frac{s}{e}, \\
\left(\int_{0}^{t} e^{x-t} x^{s}\right)^{1 / s} \approx t .
\end{gathered}
$$

The approximate equalities are uniform in t.
Thus, for large s we have

$$
\|E-t\|_{s} \approx \max \left(t, e^{-t / s} \frac{s}{e}\right)= \begin{cases}t & \text { for } t \geqslant W(1 / e) s \\ e^{-t / s} \frac{s}{e} & \text { for } t \leqslant W(1 / e) s\end{cases}
$$

Asymptotic optimal bound Let $p>q$ with q large. We will show that $\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \leqslant e^{W(1 / e)} \frac{p}{q}$ up to a constant arbitrarily close to 1 .

Asymptotic optimal bound Let $p>q$ with q large. We will show that $\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \leqslant e^{W(1 / e)} \frac{p}{q}$ up to a constant arbitrarily close to 1 .

Case 1. $t \leqslant W(1 / e) q$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx e^{t / q-t / p} \frac{p}{q} \leqslant e^{W(1 / e)} \frac{p}{q}
$$

Note: If we take $t=W(1 / e) q, p \gg q$ we get the lower bound.

Asymptotic optimal bound Let $p>q$ with q large. We will show that $\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \leqslant e^{W(1 / e)} \frac{p}{q}$ up to a constant arbitrarily close to 1 .

Case 1. $t \leqslant W(1 / e) q$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx e^{t / q-t / p} \frac{p}{q} \leqslant e^{W(1 / e)} \frac{p}{q}
$$

Note: If we take $t=W(1 / e) q, p \gg q$ we get the lower bound.
Case 2. $t \in(W(1 / e) q, W(1 / e) p$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx \frac{e^{-t / p} p}{e t} \leqslant \frac{p}{e W(1 / e) q}=e^{W(1 / e)} q
$$

Asymptotic optimal bound Let $p>q$ with q large. We will show that $\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \leqslant e^{W(1 / e)} \frac{p}{q}$ up to a constant arbitrarily close to 1 .

Case 1. $t \leqslant W(1 / e) q$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx e^{t / q-t / p} \frac{p}{q} \leqslant e^{W(1 / e)} \frac{p}{q}
$$

Note: If we take $t=W(1 / e) q, p \gg q$ we get the lower bound.
Case 2. $t \in(W(1 / e) q, W(1 / e) p$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx \frac{e^{-t / p} p}{e t} \leqslant \frac{p}{e W(1 / e) q}=e^{W(1 / e)} q
$$

Case 3. $t \geqslant W(1 / e) p$.

$$
\frac{\|E-t\|_{p}}{\|E-t\|_{q}} \approx \frac{t}{t}=1
$$

Thank you for your attention!

