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Let X be a real log-concave random variable with non-negative values.
From Prékopa-Leindler inequality we know that the function
t 7→ P(X  t) is log-concave. Let E denote a random variable with
exponential distribution with λ = 1, γp = ‖E‖p = Γ(p+ 1)1/p.

Theorem (Barlow, Marshall, Proschan, 1963)

If X is a real random variable with log-concave tails, then the function
p 7→ ‖X‖p

γp
is non-increasing on (0,∞).

This, in particular, shows that for symmetric/non-negative log-concave X
and p > q > 0 we have ‖X‖p ¬ γp

γq
and the equality holds for X = E.
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If X not symmetric, let X ′ be independent copy of X.

Thus

‖X‖p ¬ ‖X − EX‖p + ‖EX‖p ¬ ‖X −X ′‖p + |EX|

¬ γp
γq
‖X −X ′‖q + |EX| ¬ 2

γp
γq
‖X‖q + |EX|.

From Stirling’s formula γp
γq
¬ p

q . We also have |EX| ¬ p
q ‖X‖q.

Thus, ‖X‖p ¬ C p
q ‖X‖q where

C = 1 if X symmetric/non-negative,

C = 2 if EX = 0,

C = 3 in general case.
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Q:
1 Does the inequality hold with C = 1 in all cases?

2 If not, what are the optimal constants?

3 Which distributions maximize ‖X‖p‖X‖q ?

A:
1 It holds with C = 1 if EX = 0, but not in general.
2 For general case, p  q  2 it is C0 = eW (1/e) ≈ 1.3211.
3 The ratio is always maximized for a variable of the form E − t for

some t  0.
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We consider three linear functionals on the space of measures supported
on some interval [a, b] with density g

F1(g) =
∫ b

a

g(x)dx,

F2(g) =
∫ b

a

|x|qg(x)dx,

H(g) =
∫ b

a

|x|pg(x)dx.

We maximize H with constraints F1 = 1, F2 = 1. By Fradelizi-Guédon
theory of degrees of freedom, it is enough to consider densities of the
form

g(x) = eαx+β1[a,b](x)

Non-negative case already solved, we consider intervals [−a, b], where
a, b > 0.
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Define

F1(a, b, α, β) :=
∫ b

−a
eαx+βdx,

F2(a, b, α, β) :=
∫ b

−a
eαx+β |x|qdx,

H(a, b, α, β) :=
∫ b

−a
eαx+β |x|pdx.

We want to maximize G under F1 = F2 = 1.

Lagrange multipliers:

(DH − λ1DF1 − λ2DF2)(a, b, α, β) = 0.
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Define rλ(x) = |x|p − λ2|x|q − λ1. The conditions can be written as

rλ(a) = 0; rλ(b) = 0;
∫ b

−a
eαxrλ(x)dx = 0;

∫ b

−a
xeαxrλ(x)dx = 0.

Suppose a < b. By convexity of x 7→ rλ(x1/q), we have
(a− x)rλ(x) > 0 a. e. on [−a, b].
From this,

0 = a

∫ b

−a
eαxrλ(x)dx >

∫ b

−a
xeαxrλ(x)dx = 0,

a contradiction.
Case a = b, α 6= 0 is similar. From this the maximizer is X = E − t for
some t.
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Asymptotics for ‖E − t‖s. We have

E|E − t|s =
∫ ∞
−t

e−x−t|x|sdx =
∫ t

0
ex−txs + e−tΓ(s+ 1).

We note that (x+ y)1/s ≈ max(x1/s, y1/s). We have(
e−tΓ(s+ 1)

)1/s ≈ e−t/s s
e
,

(∫ t

0
ex−txs

)1/s
≈ t.

The approximate equalities are uniform in t.
Thus, for large s we have

‖E − t‖s ≈ max(t, e−t/s
s

e
) =

{
t for t W (1/e)s
e−t/s se for t ¬W (1/e)s.
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Asymptotic optimal bound Let p > q with q large. We will show that
‖E−t‖p
‖E−t‖q ¬ e

W (1/e) p
q up to a constant arbitrarily close to 1.

Case 1. t ¬W (1/e)q.

‖E − t‖p
‖E − t‖q

≈ et/q−t/p p
q
¬ eW (1/e) p

q
.

Note: If we take t = W (1/e)q, p >> q we get the lower bound.

Case 2. t ∈ (W (1/e)q,W (1/e)p.

‖E − t‖p
‖E − t‖q

≈ e−t/pp

et
¬ p

eW (1/e)q
= eW (1/e)q.

Case 3. t W (1/e)p.

‖E − t‖p
‖E − t‖q

≈ t

t
= 1.
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Thank you for your attention!
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