Random (Beta) Polytopes

Christoph Thäle

Ruhr University Bochum, Germany

Based on joint works with Florian Besau, Thomas Godland, Anna Gusakova, Zakhar Kabluchko, Olexander Marynych, Matthias Reitzner, Daniel Rosen, Carsten Schütt, Daniel Temesvari, Elisabeth Werner

Classical random polytopes

• $K \subset \mathbb{R}^d$ a convex body (compact, convex & non-empty interior)

• Two classical models: For $n \in \mathbb{N}$ let

• X_1, \ldots, X_n be uniformly distributed in the interior of K

Random polytope $[K]_n = \operatorname{conv}\{X_1, ..., X_n\}$

Classical random polytopes

• $K \subset \mathbb{R}^d$ a convex body (compact, convex & non-empty interior)

- Two classical models: For $n \in \mathbb{N}$ let
 - X_1, \ldots, X_n be uniformly distributed in the interior of K

Random polytope $[K]_n = conv\{X_1, ..., X_n\}$

• $X_1, ..., X_n$ be uniformly distributed on the boundary of KRandom inscribed polytope $[\partial K]_n = \operatorname{conv}\{X_1, ..., X_n\}$

- Rényi & Sulanke (1963) d = 2, K smooth enough
- Schneider & Wieacker (1980) $d \ge 2, K$ smooth enough
- Bárány (1982) $d \ge 2, K$ of class C_+^3
- Schütt (1994), Böröczky, Fodor, Hug (2010) $d \ge 2, K$ general

• The constant as(K) is the affine surface area of *K*:

$$\operatorname{as}(K) = \int_{\partial K} H_{d-1}(K; x)^{\frac{1}{d+1}} \mu_K(\mathrm{d}x).$$

- Blaschke (1923), Santaló (1949) d = 2, d = 3, K smooth enough
- Leichtweiss (1988), Schütt & Werner (1990) $d \ge 2$, general K
- Ludwig & Reitzner (1999) characterization

Theorem (Reitzner 2003) Suppose *K* is of class C_+^2 . Then $c_1(K)n^{-1-\frac{2}{d+1}} \leq \operatorname{Var}\operatorname{Vol}([K]_n) \leq c_2(K)n^{-1-\frac{2}{d+1}}$

- Küfer (1994) upper bound if $K = B^d$
- Buchta (2005) lower bound d = 2, K smooth enough
- Calka & Yukich (2014) asymptotics, K smooth enough

Theorem (Reitzner 2003) Suppose *K* is of class C_+^2 . Then $c_1(K)n^{-1-\frac{2}{d+1}} \leq \operatorname{Var}\operatorname{Vol}([K]_n) \leq c_2(K)n^{-1-\frac{2}{d+1}}$

- Küfer (1994) upper bound if $K = B^d$
- Buchta (2005) lower bound d = 2, K smooth enough
- Calka & Yukich (2014) asymptotics, K smooth enough

Theorem (Reitzner 2005)
Suppose *K* is of class
$$C_{+}^{2}$$
. Then $\frac{\operatorname{Vol}([K]_{n}) - \mathbb{E}\operatorname{Vol}([K]_{n})}{\sqrt{\operatorname{Var}\operatorname{Vol}([K]_{n})}} \xrightarrow{D} Z \sim \mathcal{N}(0,1)$

Theorem

$$\operatorname{EVol}([\partial K]_n) = \operatorname{Vol}(K) - \tilde{c}(d)\Omega(K) \left(\frac{\mu_K(K)}{n}\right)^{\frac{2}{d-1}} (1 + o_n(1))$$

Buchta, Müller & Tichy (1985): K of class C_+^3 Reitzner (2002), Schütt & Werner (2001): K of class C_+^2

Suppose *K* is of class C_+^2 . Then

$$c_1(K)n^{-1-\frac{4}{d-1}} \le \operatorname{Var}\operatorname{Vol}([\partial K]_n) \le c_2(K)n^{-1-\frac{4}{d-1}}$$

Richardson, Vu, Wu (2008)

 $\frac{\operatorname{Vol}([\partial K]_n) - \mathbb{E}\operatorname{Vol}([\partial K]_n)}{\sqrt{\operatorname{Var}\operatorname{Vol}([\partial K]_n)}} \xrightarrow{D} Z \sim \mathcal{N}(0,1)$

T. (2018)

Theorem

Random polytopes on the sphere

• $K \subset \mathbb{S}^d$ a spherical convex body (geodesically convex, contained in open hemisphere)

- Two classical models: For $n \in \mathbb{N}$ let
 - X_1, \ldots, X_n be uniformly distributed in the interior of K

Spherical random polytope $[K]_n = \operatorname{conv}_s \{X_1, \dots, X_n\}$

Random polytopes on the sphere

• $K \subset \mathbb{S}^d$ a spherical convex body (geodesically convex, contained in open hemisphere)

- Two classical models: For $n \in \mathbb{N}$ let
 - X_1, \ldots, X_n be uniformly distributed in the interior of K

Spherical random polytope $[K]_n = \operatorname{conv}_s \{X_1, ..., X_n\}$

• $X_1, ..., X_n$ be uniformly distributed on the boundary of KSpherical random inscribed polytope $[\partial K]_n = \operatorname{conv}_s \{X_1, ..., X_n\}$

Theorem

Suppose *K* is of class C_+^2 . Then

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d)\operatorname{as}_{s}(K) \left(\frac{\operatorname{Vol}_{s}(K)}{n}\right)^{\frac{2}{d+1}} (1 + o_{n}(1))$$

Besau, Ludwig, Werner (2018)

$$\mathbb{E}\operatorname{Vol}_{s}([\partial K]_{n}) = \operatorname{Vol}_{s}(K) - \widetilde{c}(d)\Omega_{s}(K) \left(\frac{\operatorname{Vol}_{s}(K)}{n}\right)^{\frac{2}{d-1}} (1 + o_{n}(1))$$

Follows from Böröczky, Fodor, Hug (2013) and Besau, Ludwig, Werner (2018)

Theorem

Suppose K is of class C_{+}^{2} . Then $\operatorname{Var}\operatorname{Vol}_{s}([K]_{n}) \geq c(K)n^{-1-\frac{2}{d+1}}$ Besau & Thäle (2020) $\frac{\operatorname{Vol}_{s}([K]_{n}) - \mathbb{E}\operatorname{Vol}_{s}([K]_{n})}{\sqrt{\operatorname{Var}\operatorname{Vol}_{s}([K]_{n})}} \xrightarrow{D} Z \sim \mathcal{N}(0,1)$ $\operatorname{Var}\operatorname{Vol}_{s}([\partial K]_{n}) \geq c(K)n^{-1-\frac{4}{d-1}}$ Besau, Rosen & Thäle (2021) $\frac{\operatorname{Vol}_{s}([\partial K]_{n}) - \mathbb{E}\operatorname{Vol}_{s}([\partial K]_{n})}{\sqrt{\operatorname{Var}\operatorname{Vol}_{s}([\partial K]_{n})}} \xrightarrow{D} Z \sim \mathcal{N}(0,1)$

- The proof for asymptotic normality relies on a version of Stein's method due to Chatterjee (2008) as presented by Lachiéze-Rey & Peccati (2017),
- geometric estimates involving weighted floating bodies and weighted surface bodies,
- and a projection argument reducing the problem to \mathbb{R}^d .

The projection argument

$$X_i \sim \operatorname{Vol}_s|_K$$
$$[K]_n = \operatorname{conv}_s \{X_1, \dots, X_n\}$$
$$\operatorname{Vol}_s([K]_n)$$

 $\bar{X}_i \sim (g \sharp \operatorname{Vol}_s) |_{\bar{K}}$ $[\bar{K}]_n = \operatorname{conv} \{ \bar{X}_1, \dots, \bar{X}_n \}$ $\operatorname{Vol}_{\varphi}([\bar{K}]_n) = \int_{[\bar{K}]_n} \varphi(x) \, \mathrm{d}x$

 $\varphi = \text{density of } g \sharp \text{Vol}_s$

Stein's method

 $K \subset \mathbb{R}^d$ a convex body, X_1, \ldots, X_n independent random points in K distributed according to some *nice* density ψ . Consider the weighted volume $\operatorname{Vol}_{\varphi}([K]_n^{\psi})$ where φ is another *nice* density function on K.

$$d_{\text{Wass}}(V_n, Z) \le \frac{c}{\text{Var Vol}_{\varphi}([K]_n^{\psi})} \left(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4\right)$$

where γ_1 , γ_2 , γ_3 , γ_4 are terms only involving the first and second order difference operator applied to the weighted volume functional:

$$D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) = \operatorname{Vol}_{\varphi}(\operatorname{conv}\{X_1, \dots, X_n\}) - \operatorname{Vol}_{\varphi}(\operatorname{conv}\{X_2, \dots, X_n\})$$
$$D_{1,2} \operatorname{Vol}_{\varphi}([K]_n^{\psi}) = D_2(D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}))$$

Stein's method

 $K \subset \mathbb{R}^d$ a convex body, X_1, \ldots, X_n independent random points in K distributed according to some *nice* density ψ . Consider the weighted volume $\operatorname{Vol}_{\varphi}([K]_n^{\psi})$ where φ is another *nice* density function on K.

$$d_{\text{Wass}}(V_n, Z) \le \frac{c}{\text{Var Vol}_{\varphi}([K]_n^{\psi})} \left(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4\right)$$

where γ_1 , γ_2 , γ_3 , γ_4 are terms only involving the first and second order difference operator applied to the weighted volume functional:

$$D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) = \operatorname{Vol}_{\varphi}(\operatorname{conv}\{X_1, \dots, X_n\}) - \operatorname{Vol}_{\varphi}(\operatorname{conv}\{X_2, \dots, X_n\})$$
$$D_{1,2} \operatorname{Vol}_{\varphi}([K]_n^{\psi}) = D_2(D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}))$$

Especially $\gamma_3 \simeq \mathbb{E} |D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^3$ and $\gamma_4 \simeq \mathbb{E} |D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^4$.

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with
probability $1 - c_2 n^{-7}$. Vu (2005)

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with
probability $1 - c_2 n^{-7}$. Vu (2005)

$$\gamma_4 = \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4$$

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with probability $1 - c_2 n^{-7}$. Vu (2005)

 $\gamma_4 \asymp \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4$

 $\leq \mathbb{E}[|D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^4 |A_n] + c_3 \mathbb{P}(A_n^c)$

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with probability $1 - c_2 n^{-7}$. Vu (2005)

 $\gamma_4 \asymp \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4$

 $\leq \mathbb{E}[|D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^4 |A_n] + c_3 \mathbb{P}(A_n^c)$

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with probability $1 - c_2 n^{-7}$. Vu (2005)

$$\begin{split} \gamma_4 &\asymp \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4 \\ &\leq \mathbb{E} \left[\left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4 \left| A_n \right] + c_3 \mathbb{P}(A_n^c) \\ &\leq \mathbb{E} \operatorname{Vol}_{\psi} \left(\Delta_K^{\varphi} \left(X_1, c_1 \frac{\log n}{n} \right) \right)^4 + c_4 n^{-7} \end{split}$$

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with probability $1 - c_2 n^{-7}$. Vu (2005)

 $\gamma_4 \asymp \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4$

$$\leq \mathbb{E}[|D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^4 |A_n] + c_3 \mathbb{P}(A_n^c)$$

$$\leq \mathbb{E}\operatorname{Vol}_{\psi} \left(\Delta_K^{\varphi} \left(X_1, c_1 \frac{\log n}{n}\right)\right)^4 + c_4 n^{-7}$$

$$\leq c_5 \left(\frac{\log n}{n}\right)^4 \operatorname{Vol}_{\psi}(K \setminus K_{c_1 \frac{\log n}{n}}^{\varphi}) + c_4 n^{-7}$$

The weighted floating body of K is defined by

$$K^{\varphi}_{\delta} = \bigcap \left\{ H^{-} : \operatorname{Vol}_{\varphi}(K \cap H^{+}) \leq \delta \right\}$$

Schütt & Werner (1990), Werner (2002)

$$[K]_n^{\psi}$$
 contains $K_{c_1 \frac{\log n}{n}}^{\varphi}$ with
probability $1 - c_2 n^{-7}$. Vu (2005)

 $\gamma_4 \asymp \mathbb{E} \left| D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi}) \right|^4$

$$\leq \mathbb{E}[|D_1 \operatorname{Vol}_{\varphi}([K]_n^{\psi})|^4 |A_n] + c_3 \mathbb{P}(A_n^c)$$

$$\leq \mathbb{E}\operatorname{Vol}_{\psi} \left(\Delta_K^{\varphi} \left(X_1, c_1 \frac{\log n}{n}\right)\right)^4 + c_4 n^{-7}$$

$$\leq c_5 \left(\frac{\log n}{n}\right)^4 \operatorname{Vol}_{\psi}(K \setminus K_{c_1 \frac{\log n}{n}}^{\varphi}) + c_4 n^{-7}$$

$$\leq c_6 \left(\frac{\log n}{n}\right)^{4 + \frac{2}{d+1}}$$

Random polytopes in hyperbolic space

Suppose *K* is of class C_+^2 . Then

$$\mathbb{E}\operatorname{Vol}_{h}([K]_{n}) = \operatorname{Vol}_{h}(K) - c(d)\operatorname{as}_{h}(K) \left(\frac{\operatorname{Vol}_{h}(K)}{n}\right)^{\frac{2}{d+1}} (1 + o_{n}(1))$$

 $\operatorname{Var}\operatorname{Vol}_{h}([K]_{n}) \geq c(K)n^{-1-\frac{2}{d+1}}$

$$\frac{\operatorname{Vol}_{h}([K]_{n}) - \mathbb{E}\operatorname{Vol}_{h}([K]_{n})}{\sqrt{\operatorname{Var}\operatorname{Vol}_{h}([K]_{n})}} \xrightarrow{D} Z \sim \mathcal{N}(0,1)$$

Besau, Ludwig, Werner (2018)

Besau & Thäle (2020)

Suppose *K* is of class C_+^2 .

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d, K) \left(\frac{\operatorname{Vol}_{s}(K)}{n}\right)^{\frac{2}{d+1}} (1 + o_{n}(1))$$

Suppose *K* is of class C_+^2 .

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d, K) \left(\frac{\operatorname{Vol}_{s}(K)}{n}\right)^{\frac{2}{d+1}} (1 + o_{n}(1))$$

... random polytopes in a spherical wedge

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d)\frac{\log n}{n}(1 + o_{n}(1))$$

Besau, Gusakova, Reitzner, Schütt, T. & Werner (2022)

In this case g(K) = a strip and $g \# Vol_s$ has some density.

Suppose *K* is of class C_+^2 .

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d, K) \left(\frac{\operatorname{Vol}_{s}(K)}{n}\right)^{\frac{2}{d+1}} (1 + o_{n}(1))$$

... random polytopes in a spherical wedge

$$\mathbb{E}\operatorname{Vol}_{s}([K]_{n}) = \operatorname{Vol}_{s}(K) - c(d)\frac{\log n}{n}(1 + o_{n}(1))$$

Besau, Gusakova, Reitzner, Schütt, T. & Werner (2022)

In this case g(K) = a strip and $g \# Vol_s$ has some density.

Suppose K is the half-sphere.

 \mathbb{E} Vol_s([K]_n) = Vol_s(K) - c(d)n⁻¹(1 + o_n(1))

Bárány, Hug, Reitzner & Schneider (2017)

In this case $g(K) = \mathbb{R}^d$ and $g \sharp \operatorname{Vol}_s$ has density $\propto (1 - \|x\|^2)^{-\frac{d+1}{2}}$.

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

• Special cases: $\beta \rightarrow -1$ uniform distribution on \mathbb{S}^{d-1}

There are weak sub-sequential limits by Helly's compactness theorem. All sub-sequential limits must be concentrated on \mathbb{S}^{d-1} . All sub-sequential limits must be rotationally invariant.

 $\beta = 0$ uniform distribution on \mathbb{B}^d

 $\beta \to \infty$ Gaussian distribution on \mathbb{R}^d

$$X \sim f_{d,\beta} \Longrightarrow \sqrt{2\beta} X \sim c_{d,\beta} \left(1 - \frac{\|x\|^2}{2\beta}\right)^{\beta} \longrightarrow c e^{-\|x\|^2/2}$$

Now, apply Scheffé's lemma.

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in \mathbb{R}^d :

$$\tilde{f}_{d,\beta}(x) = \tilde{c}_{d,\beta}(1 + \|x\|^2)^{-\beta} \qquad (x \in \mathbb{R}^d, \beta > d/2)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in
$$\mathbb{R}^d$$

:
$$\tilde{f}_{d,\beta}(x) = \tilde{c}_{d,\beta}(1 + ||x||^2)^{-\beta}$$
 $(x \in \mathbb{R}^d, \beta > d/2)$

• Beta polytope:
$$P_{n,d}^{\beta} = [X_1, ..., X_n]$$

$$X_1, \ldots, X_n$$
 iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

• Poisson polytope:

$$\eta = \operatorname{PPP}\left(\frac{\mathrm{d}x}{\|x\|^{d+\alpha}}\right), \qquad \alpha > 0$$

 $\Pi_{d,\alpha} = [\eta]$

Poisson polytopes are rescaled limits of beta prime polytopes:

$$n^{-1}\tilde{P}^{\beta}_{n,d} \longrightarrow \Pi_{d,2\beta-d}$$

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in \mathbb{R}^d :

$$\tilde{f}_{d,\beta}(x) = \tilde{c}_{d,\beta}(1 + \|x\|^2)^{-\beta} \qquad (x \in \mathbb{R}^d, \beta > d/2)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

• Key properties:

Projection invariance

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in \mathbb{R}^d :

$$\tilde{f}_{d,\beta}(x) = \tilde{c}_{d,\beta}(1 + \|x\|^2)^{-\beta} \qquad (x \in \mathbb{R}^d, \beta > d/2)$$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

• Key properties:

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in
$$\mathbb{R}^d$$
: $\tilde{f}_{d,\beta}$

$$\tilde{c}_{d,\beta}(x) = \tilde{c}_{d,\beta}(1 + ||x||^2)^{-\beta}$$
 $(x \in \mathbb{R}^d, \beta > d/2)$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

$$X_1, \ldots, X_n$$
 iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

• Known results:

 $\mathbb{E}f_{k}(P_{n,d}^{\beta}), \quad \mathbb{E}f_{k}(\tilde{P}_{n,d}^{\beta})$ $\mathbb{E}V_{k}(P_{n,d}^{\beta}), \quad \mathbb{E}V_{k}(\tilde{P}_{n,d}^{\beta})$

Angles of tangent cones

Explicit formulas Asymptotic expansions Threshold phenomena

$$f_{d,\beta}(x) = c_{d,\beta}(1 - \|x\|^2)^{\beta} \qquad (\|x\| \le 1, \beta > -1)$$

• Beta prime distribution in
$$\mathbb{R}^d$$
 : $\tilde{f}_{d,\beta}$

$$c_{\beta}(x) = \tilde{c}_{d,\beta}(1 + ||x||^2)^{-\beta}$$
 $(x \in \mathbb{R}^d, \beta > d/2)$

• Beta polytope: $P_{n,d}^{\beta} = [X_1, ..., X_n]$

$$X_1, \ldots, X_n$$
 iid with density $f_{d,\beta}$

• Beta prime polytope: $\tilde{P}_{n,d}^{\beta} = [X_1, ..., X_n]$

 X_1, \ldots, X_n iid with density $\tilde{f}_{d,\beta}$

• Known results:

 $\mathbb{E}f_{k}(P_{n,d}^{\beta}), \quad \mathbb{E}f_{k}(\tilde{P}_{n,d}^{\beta})$ $\mathbb{E}V_{k}(P_{n,d}^{\beta}), \quad \mathbb{E}V_{k}(\tilde{P}_{n,d}^{\beta})$

Angles of tangent cones

Explicit formulas Asymptotic expansions Threshold phenomena

Application to stochastic geometry models

 $\mathbb{S}^d_+ := \{ (x_0, x_1, \dots, x_d) \in \mathbb{R}^{d+1} : x_0^2 + x_1^2 + \dots + x_d^2 = 1, x_0 \ge 0 \}$

upper half-sphere in \mathbb{R}^{d+1}

 U_1, U_2, \dots iid uniform random points on \mathbb{S}^d_+

$$C_n := \operatorname{pos}(U_1, \dots, U_n) = \left\{ \sum_{i=1}^n \lambda_i U_i : \lambda_i \ge 0 \right\}$$

random cone generated by $U_1, ..., U_n$

 $\mathbb{S}^d_+ := \{ (x_0, x_1, \dots, x_d) \in \mathbb{R}^{d+1} : x_0^2 + x_1^2 + \dots + x_d^2 = 1, x_0 \ge 0 \}$

upper half-sphere in \mathbb{R}^{d+1}

 U_1, U_2, \dots iid uniform random points on \mathbb{S}^d_+

$$C_n := \operatorname{pos}(U_1, \dots, U_n) = \left\{ \sum_{i=1}^n \lambda_i U_i : \lambda_i \ge 0 \right\}$$

random cone generated by $U_1, ..., U_n$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1 + \|x\|^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1+\|x\|^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1+\|x\|^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

Density of
$$\frac{V_i}{n}$$
: $c_d \frac{n^d}{(1+\|nx\|^2)^{\frac{d+1}{2}}} = c_d \frac{n^d}{n^{d+1}(\frac{1}{n^2}+\|x\|^2)^{\frac{d+1}{2}}} \sim \frac{1}{n} \frac{c_d}{\|x\|^{d+1}}$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1+\|x\|^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

Density of
$$\frac{V_i}{n}$$
: $c_d \frac{n^d}{(1+\|nx\|^2)^{\frac{d+1}{2}}} = c_d \frac{n^d}{n^{d+1}(\frac{1}{n^2}+\|x\|^2)^{\frac{d+1}{2}}} \sim \frac{1}{n} \frac{c_d}{\|x\|^{d+1}}$
Take $B \subset \mathbb{R}^d \setminus \{0\}$: $\sum_{i=1}^n \mathbf{1} \left\{ \frac{V_i}{n} \in B \right\} \sim \operatorname{Bin}\left(n, \frac{c_d}{n} \int_B \frac{dx}{\|x\|^{d+1}}\right) \xrightarrow{d} \operatorname{Po}\left(c_d \int_B \frac{dx}{\|x\|^{d+1}}\right)$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1+\|x\|^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

Density of
$$\frac{V_i}{n}$$
: $c_d \frac{n^d}{(1+\|nx\|^2)^{\frac{d+1}{2}}} = c_d \frac{n^d}{n^{d+1}(\frac{1}{n^2}+\|x\|^2)^{\frac{d+1}{2}}} \sim \frac{1}{n} \frac{c_d}{\|x\|^{d+1}}$
Take $B \subset \mathbb{R}^d \setminus \{0\}$: $\sum_{i=1}^n \mathbf{1} \Big\{ \frac{V_i}{n} \in B \Big\} \sim \operatorname{Bin}\Big(n, \frac{c_d}{n} \int_B \frac{dx}{\|x\|^{d+1}}\Big) \xrightarrow{d} \operatorname{Po}\Big(c_d \int_B \frac{dx}{\|x\|^{d+1}}\Big)$
 $\implies \sum_{i=1}^n \delta_{\frac{V_i}{n}} \xrightarrow{w} \operatorname{PPP}\Big(\frac{c_d dx}{\|x\|^{d+1}}\Big)$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1 + ||x||^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

Density of
$$\frac{V_i}{n}$$
: $c_d \frac{n^d}{(1+\|nx\|^2)^{\frac{d+1}{2}}} = c_d \frac{n^d}{n^{d+1}(\frac{1}{n^2}+\|x\|^2)^{\frac{d+1}{2}}} \sim \frac{1}{n} \frac{c_d}{\|x\|^{d+1}}$
Take $B \subset \mathbb{R}^d \setminus \{0\}$: $\sum_{i=1}^n \mathbf{1}\left\{\frac{V_i}{n} \in B\right\} \sim \operatorname{Bin}\left(n, \frac{c_d}{n}\int_B \frac{dx}{\|x\|^{d+1}}\right) \xrightarrow{d} \operatorname{Po}\left(c_d \int_B \frac{dx}{\|x\|^{d+1}}\right)$
 $\Longrightarrow \sum_{i=1}^n \delta_{\frac{V_i}{n}} \xrightarrow{w} \operatorname{PPP}\left(\frac{c_d dx}{\|x\|^{d+1}}\right)$
 $\Longrightarrow \frac{1}{n}[V_1, \dots, V_n] \xrightarrow{w} \left[\operatorname{PPP}\left(\frac{c_d dx}{\|x\|^{d+1}}\right)\right]$

$$(x_0, x_1, \dots, x_d) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right)$$
$$U_i \mapsto V_i$$

Density of
$$V_i$$
: $\frac{c_d}{(1 + ||x||^2)^{\frac{d+1}{2}}} = \tilde{f}_{d,\frac{d+1}{2}}$

$$\begin{array}{lll} \text{Density of } \displaystyle \frac{V_i}{n}: & c_d \frac{n^d}{(1+\|nx\|^2)^{\frac{d+1}{2}}} = c_d \frac{n^d}{n^{d+1}(\frac{1}{n^2}+\|x\|^2)^{\frac{d+1}{2}}} \sim \frac{1}{n} \frac{c_d}{\|x\|^{d+1}} \\ \text{Take } B \subset \mathbb{R}^d \backslash \{0\}: & \displaystyle \sum_{i=1}^n \mathbf{1} \Big\{ \frac{V_i}{n} \in B \Big\} \sim \text{Bin}\Big(n, \frac{c_d}{n} \int_B \frac{dx}{\|x\|^{d+1}}\Big) \xrightarrow{d} \text{Po}\Big(c_d \int_B \frac{dx}{\|x\|^{d+1}}\Big) \\ & \Longrightarrow \sum_{i=1}^n \delta_{\frac{V_i}{n}} \xrightarrow{w} \text{PPP}\Big(\frac{c_d dx}{\|x\|^{d+1}}\Big) \\ & \Longrightarrow \frac{1}{n} [V_1, \dots, V_n] \xrightarrow{w} \Big[\text{PPP}\Big(\frac{c_d dx}{\|x\|^{d+1}}\Big) \Big] & \swarrow \\ & \Longrightarrow \mathbb{E} f_{k+1}(C_n) = \mathbb{E} f_k(n^{-1}[V_1, \dots, V_n]) \longrightarrow \mathbb{E} f_k(\Pi_{d,1}) \\ & \text{Example } d = 2: & \mathbb{E} f_0(C_n) \rightarrow \mathbb{E} f_0(\Pi_{d,1}) = \frac{\pi^2}{2} \end{array}$$

Application 2: Typical Voronoi cells on the sphere

- $X_1, ..., X_n$ iid uniform random points on \mathbb{S}^d
- $C_i = \{z \in \mathbb{S}^d : d_g(z, X_i) \le d_g(z, X_j) \; \forall j\}$

Voronoi cell of X_i

- $\{C_1, ..., C_n\}$ Voronoi tessellation
- V_n Typical Voronoi cell = cell picked uniformly at random

Application 2: Typical Voronoi cells on the sphere

 $X_1, ..., X_n$ iid uniform random points on \mathbb{S}^d $C_i = \{z \in \mathbb{S}^d : d_g(z, X_i) \le d_g(z, X_j) \ \forall j\}$ Voronoi cell of X_i

 $\{C_1, ..., C_n\}$ Voronoi tessellation

 V_n Typical Voronoi cell = cell picked uniformly at random

Theorem: $\mathbb{E}f_k(V_n)$ can be computed explicitly! More precisely: $f_k(V_{n+1}) \stackrel{d}{=} f_{d-k-1}(\tilde{P}^d_{n,d})$

Application 2: Typical Voronoi cells on the sphere

 $X_1, ..., X_n$ iid uniform random points on \mathbb{S}^d $C_i = \{z \in \mathbb{S}^d : d_g(z, X_i) \le d_g(z, X_j) \ \forall j\}$ Voronoi cell of X_i

 $\{C_1, ..., C_n\}$ Voronoi tessellation

 V_n Typical Voronoi cell = cell picked uniformly at random

Theorem: $\mathbb{E}f_k(V_n)$ can be computed explicitly! More precisely: $f_k(V_{n+1}) \stackrel{d}{=} f_{d-k-1}(\tilde{P}^d_{n,d})$

Application 3: Typical Voronoi cells in hyperbolic space

 η_t stationary Poisson point process in \mathbb{H}^d

 $C_X = \{z \in \mathbb{H}^d : d_g(z, X) \le d_g(z, Y) \; \forall Y \in \eta_t \}$ Voronoi cell of $X \in \eta_t$

- $\{C_X : X \in \eta_t\}$ Poisson Voronoi tessellation
- V_0 typical Voronoi cell = cell around an origin

Application 3: Typical Voronoi cells in hyperbolic space

 η_t stationary Poisson point process in \mathbb{H}^d

 $C_X = \{z \in \mathbb{H}^d : d_g(z, X) \le d_g(z, Y) \; \forall Y \in \eta_t \}$ Voronoi cell of $X \in \eta_t$

- $\{C_X : X \in \eta_t\}$ Poisson Voronoi tessellation
- V_0 typical Voronoi cell = cell around an origin

Theorem: $\mathbb{E}f_k(V_0)$ can be computed explicitly

Application 3: Typical Voronoi cells in hyperbolic space

 η_t stationary Poisson point process in \mathbb{H}^d

 $C_X = \{z \in \mathbb{H}^d : d_g(z, X) \le d_g(z, Y) \; \forall Y \in \eta_t \}$ Voronoi cell of $X \in \eta_t$

- $\{C_X : X \in \eta_t\}$ Poisson Voronoi tessellation
- V_0 typical Voronoi cell = cell around an origin

Theorem: $\mathbb{E}f_k(V_0)$ can be computed explicitly in terms of a beta-star polytope.

Thank you!

R.S