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Opening lecture

The origin of Noncommutative Geometry is twofold. On the one hand there is a
wealth of examples of spaces whose coordinate algebra is no longer commutative
but which have obvious geometric meaning. The first examples came from phase
space in quantum mechanics but there are many others, such as the leaf spaces
of foliations, duals of nonabelian discrete groups, the space of Penrose tilings,
the noncommutative torus which plays a role in M-theory compactification, and
finally the space of Q-lattices which is a natural geometric space carrying an
action of the analogue of the Frobenius for global fields of zero characteristic.

On the other hand the stretching of geometric thinking imposed by passing to
noncommutative spaces forces one to rethink about most of our familiar notions.
The difficulty is not to add arbitrarily the adjective quantum behind our familiar
geometric language but to develop far reaching extensions of classical concepts.
This has been achieved a long time ago by operator algebraists as far as measure
theory is concerned. The theory of nonabelian von-Neumann algebras is indeed
a far reaching extension of measure theory, whose main surprise is that such an
algebra inherits from its noncommutativity a god-given time evolution.

The development of the topological ideas was prompted by the Novikov con-
jecture on homotopy invariance of higher signatures of ordinary manifolds as
well as by the Atiyah-Singer Index Theorem. It has led to the recognition that
not only the Atiyah-Hirzebruch K-theory but more importantly the dual K-
homology admit Noncommutative Geometry as their natural framework. The
cycles in K-homology are given by Fredholm representations of the C*-algebra
A of continuous functions. A basic example is the group ring of a discrete group
and restricting oneself to commutative algebras is an obviously undesirable as-
sumption.

The development of differential geometric ideas, including de Rham homol-
ogy, connections and curvature of vector bundles, took place during the eighties
thanks to cyclic homology which led for instance to the proof of the Novikov
conjecture for hyperbolic groups but got many other applications. Basically,
by extending the characteristic classes to the general framework it allows us for
many concrete computations on noncommutative spaces.

The very notion of Noncommutative Geometry comes from the identification
of the two basic concepts in Riemann’s formulation of Geometry, namely those
of manifold and of infinitesimal line element. It was recognized at an early
stage that the formalism of quantum mechanics gives a natural place both to
infinitesimals (the compact operators in Hilbert space) and to the integral (the
logarithmic divergence in an operator trace). It was also recognized long ago by
geometers that the main quality of the homotopy type of a manifold, (besides
being defined by a cooking recipe) is to satisfy Poincare duality not only in
ordinary homology but in K-homology.

In the general framework of Noncommutative Geometry the confluence of
the two notions of metric and fundamental class for a manifold led very naturally
to the equality ds=1/D which expresses the infinitesimal line element ds as the
inverse of the Dirac operator D, hence under suitable boundary conditions as a
propagator. The significance of D is two-fold. On the one hand it defines the
metric by the above equation, on the other hand its homotopy class represents
the K-homology fundamental class of the space under consideration.

We shall discuss three of the recent developments of Noncommutative Geom-
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etry. The first is the understanding of the noncommutative nature of spacetime
from the symmetries of the Lagrangian of gravity coupled with matter. The
starting point is that the natural symmetry group G of this Lagrangian is iso-
morphic to the group of diffeomorphisms of a space X, provided one stretches
one’s geometrical notions to allow slightly noncommutative spaces. The spectral
action principle allows to recover the Lagrangian of gravity coupled with matter
from the spectrum of the line element ds.

The second has to do with various appearances of Hopf algebras relevant to
Quantum Field Theory which originated from my joint work with D.Kreimer
and led recently in joint work with M.Marcolli to the discovery of the relation
between renormalization and one of the most elaborate forms of Galois theory
given in the Riemann-Hilbert correspondence and the theory of motives. A
tantalizing unexplained bare fact is the appearance in the universal singular
frame eliminating the divergence of QFT of the same numerical coefficients as
in the local index formula. The latter is the corner stone of the definition of
curvature in noncommutative geometry.

The third is the spectral interpretation of the zeros of the Riemann zeta
function from the action of the idele class group on the space of Q-lattices and
of the explicit formulas of number theory as a trace formula of Lefschetz type.

Alain Connes (Warszawa, 6 October 2004)
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Introduction

lecture by Nigel Higson

0.1 Spectral geometry

0.1.1 The Lorentz problem

The Lorentz problem (1910) was solved by Weyl.

∆un = λnun

un|∂Ω = 0

lim
n→∞

λn
n

=
4π

Area(Ω)
(0.1)

The idea is to consider an inverse of Laplace operator K = ∆−1. For the
eigenvalues of K one has

λ−1
n = min

dim(V )=n−1
max
v⊥V

||Kv||
||v|| , V ⊆ L2(Ω).

Denote

N(λ) = ♯{λn ≤ λ},
N(λ)

λ
∼ Area(Ω)

4π
.

Domain dependence

K1 ≤ K2

Ω1 ≤ Ω2
=⇒ N1(λ) ≤ N2(λ).

Divide Ω into squares. For each square In the Lorentz problem is easy.

0.1.2 Coefficient of logarithmic divergence

Trω(∆−1) = lim
λ→∞

1

logλ

∑

λn≤λ
λ−1
n . (0.2)

This is a trace on operators with λn(T ) = O( 1
n ). One has

Trω(∆−1) =
1

4π
Vol(Ω), (0.3)

and for f : Ω→ C

Trω(Mf∆−1) =
1

4π

∫

Ω

f(x)dx, (0.4)

where Mf is the operator of multiplication by f .
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0.1.3 Zeta function of ∆

Let M be a manifold. Consider the Laplace operator with ∆un = λnun. Define

∆zun := λznun. (0.5)

Theorem 0.1. The trace Tr(∆
z
2 ) is a meromorphic function on C with only

simple poles.

0.1.4 Noncommutative residue

NCRes(P ) := const ·Resz=0 Tr(P∆z) (0.6)

The function Tr(P∆z) is also meromorphic on C with only simple poles. We
have

[∆z , P ] = z[∆, P ]∆z − 1 +
z(z − 1)

2
[∆, [∆, P ]]∆z−2 + . . . ,

so NCRes is a trace:

NCRes([P,Q]) ∼ Tr([P,Q],∆z)

= Tr(PQ∆z −QP∆z)

= Tr(Q[∆z , P ])

= 0.

Tauberian theorem:

NCRes(∆−
dim M

2 ) = Trω(∆−
dim M

2 ). (0.7)

NCRes(∆−
dim M

2 ) = Vol(M). (0.8)

From the equality NCRes([P,Q]) = 0 one has

1. Order(P) = − dimM

2. NCRes depends only on th symbol of P . If σ(P ) = {−,−} (), then
NCRes = 0.

0.1.5 Residues an geometry (and physics?)

Connes’ notation

NCRes =

∫
− (0.9)

Up to constants:

1.
∫

∆−
dim M

2 = Vol(M)

2.
∫
f∆−

dim M
2 =

∫
fdVol

3.
∫

∆−
dim M

2 +1 =
∫
κdVol, where κ is a scalar curvature of M .
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0.1.6 Square root of the Laplacian

Let ∆ be a Laplace-type operator,D will denote a first order selfadjoint operator
of “Dirac type”

D2 = ∆.

Introducing D adds

• Index (topology)

• Forms (“Fermions”)

The spectrum of D is symmetric. D can be written as

(
0 D−
D+ 0

)

Then the index

Index(D) = dim(kerD+)− dim(kerD−) (0.10)

is a topological invariant.
Furthermore

[D, f ]2 = −||df ||2Id, (0.11)

and for complex fuunctions f0, . . . , fn, on M , n = dimM

∫
− f0[D, f1] . . . [D, fn]|D|−n =

∫

M

f0df1 . . . dfn. (0.12)

Spectral theory leads to integrals, index differential forms.

0.1.7 Spectral triples

Spectral triple (A,H,D) consists of

• algebra of bounded operators A

• Hilbert space H

• selfadjoint operator D such that D−1 is compact, and

||[D, a]|| <∞ for all a ∈ A.

Example 0.2.

• Standard example
(C∞(M), L2(M), D) (0.13)

• Matrices
(Mn(C),Cn, F ), (0.14)

where F is any operator.

• Products
(C∞(M), L2(M), D)× (Mn(C),Cn, F ) (0.15)
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Theorem 0.3 (Reconstruction theorem of A. Connes). Let A be a commutative
algebra, and (A,H,D) a spectral triple, such that

• |λn(D)| = O(n−k),

• a0[D, a1] . . . [D, an] = Id (orientation condition),

• [a0, [D, a1]] = 0 (D is local),

• D2 is of Laplace type (regularity),

• H satisfies projectivity condition as an A-module, then A = C∞(M) and
D is of Dirac type.

Suppose we have

• a1, . . . , an - functions in A,

• X1, . . . , Xn - elements of order 1 in the algebra generated by A and D
(“vector fields”).

∑
[Q, ai]Xi = qQ+ r, q = Order(Q), Order(R) < q,

∑
[Xi, ai] = n

Example 0.4. ai = xi - coordinate functions on a manifold, Xi = ∂
∂x i

, Q - any
differential operator. Since

(n+ q)Q =
∑

[Qai, xi]−
∑

[aiQ, xi] +R

there is no trace function on D.

The identities extend to Q∆−z, “pseudodifferential”.

Order(Q∆−z) = q − 2z

0.2 Singular spaces

0.2.1 Groupoids

Let G×X → X be a group acting on a set. Denote

G⋉X := {(x1, g, x2) | gx2 = x1} (0.16)

with
(x1, g, x2)(x2, h, x3) = (x1, gh, x3)

(collection of arrows).

Definition 0.5. A groupoid is a (small) category in which every morphism is
invertible.
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Denote by H the set of morphisms, and by K the set of objects in a given
groupoid. There are source and range maps s, r : H → K and we denote

H ×K H := {(γ1, γ2) | s(γ1) = r(γ2)}

Structure maps:

H ×K H
◦−→ H

K
unit−−→ H

H
inverse−−−−→ H

Example 0.6.

• K - a set, H ⊆ K ×K - equivalence relation

• the action groupoid (0.16)

• if G ×M → M is a principal action, then H = M ×G M , K = M/G is
called a fundamental groupoid.

[m1,m2][m2,m3] = [m1,m3]

• Ehresmann’s groupoid

H = (M ×X ×M)/G (0.17)

[m1, x,m2][m2, xm3] = [m1, x,m3]

For M = G
[g1, x, g2] 7→ (g−1

1 x, g−1
1 g2, g

−1
2 x)

gives an isomorphism with action groupoid.

In general K = (M × X)/G. For M = S1, G = Z we can obtain a
Kronecker foliation of a torus.

If the action on X is free, then

(M ×X ×M)/G

is an equivalence relation of foliation.

For any groupoid H denote

Hk := {γ ∈ H | s(γ) = k}

Definition 0.7. For a groupoid H define a groupoid algebra of funtions f : H →
C with multiplication given by

f1 ∗ f2(γ) =

∫

Hs(γ)

f1(γη−1)f2(η)dη. (0.18)

The formula (0.18) defines a representation of C∞(H) on each L2(Hk).
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Example 0.8. Let V be a vector space, and W an affine vector space over V .
There is an action

V × (W × R)→W × R

v · (w, t) 7→ (w + tv, t)

Then H = V ⋉ (W × R) is a family of groupoids over R

Ht =

{
V ⋉tW = {(w1, v, w2)} = {(w1, w2)} for t 6= 0

V ×0 W = V ⋉W for t = 0

V ⋉ (W × R) ∼= TW × {0} ∐W ×W × R∗.

The groupoid V ⋊ (W × R) depends only on W as a smooth manifold. It
globalizes to Connes tangent groupoid

TM := TM × {0} ∐M ×M × R∗. (0.19)

If we form C∗(TM) we obtain a continuous field of C*-algebras. At t = 0,
C∗(TM) = C0(T ∗M), and at t 6= 0 K(L2(M)).

0.3 Index theorem

0.3.1 K-theory

For an algebra A there is a Grothendieck group of projective modules K(A).

K(A) = π1(GL∞(A))

p, p2 = p 7→ e2πitp (loop of invertible elements)

If A is a C*-algebra with unit, then typical projective module is pA, p2 = p. If
||p − q|| < ε then p = uqu−1 for some unitary u. If p ∈ A0 for a continuous
field of C*-algebras At, then there is a section pt near t = 0. Hence if {At} has
At1 = At2 for t1, t2 6= 0, then we get K(A0)→ K(A1). As a special case we have

K(T ∗M)→ K(pt)

If A is an algebra with unit, and τ : A→ C is a trace, τ(ab) = τ(ba), then there
is

τ : K(A)→ C

τ([pij ]) =
∑

τ(pii)

If (M,µ) is a manifold with measure µ, A = C∞(M), then

τ(p) :=

∫

M

rank(p(u))dµ(u).

Suppose we have ϕ : A×A×A→ C. Define

bϕ(a0, a1, a2, a3) := ϕ(a0a1, a2, a3)

− ϕ(a0, a1a2, a3)

+ ϕ(a0, a1, a2a3)

− ϕ(a3a0, a1, a2)

Λϕ(a0, a1, a2) := ϕ(a2, a0, a1)
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Theorem 0.9. If bϕ = 0 and Λϕ = ϕ, then p 7→ ϕ(p, p, p) gives

ϕ : K(A)→ C

0.3.2 Cyclic cocycles from Lie algebra actions

For a Lie algebra g there is a chain complex

. . . Λn−1g
boo Λng

boo Λn+1g
boo . . . .boo

Let g × A → A be an action by derivations. An invariant trace τ : A → C
satisfies

τ(X(a)) = 0, for X ∈ g.

Let c = X1 ∧ · · · ∧Xn. Denote

ϕc(a
0, . . . , an) = τ(a0X1(a1) . . . Xn(an)) (anti-symmetrize)

Then bϕc = 0. For example, if δ1, δ2 are commuting derivations, then

ϕ(a0, a1, a2) = τ(a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))).

For the irrational rotation algebra Aθ we get

U(g)×A→ A.

Consider G ⊆ Diff(M), A = C∞c (G ⋉ M). Say M = R. An algebra A has no
trace in general. But form an “ax+ b” group

P := R× R+,

(
a b
0 1

)
,

with action g(x, y) = (g(x), g′(x)−1y). There is an invariant smooth measure.
Now consider

Diff(R)+ = P · {g | g(0) = 0, g′(0) = 1}

δn(g) =
dn

dxn
log

(
dg−1

dx

)

Connes–Moscovici Hopf algebra H1:

∆Y = Y ⊗ 1 + 1⊗ Y
∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y
∆δ1 = δ1 ⊗ 1 + 1⊗ δ1

[Y,X ] = X

[X, δn] = δn+1

[Y, δn] = nδn

[δn, δn] = 0
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0.3.3 Back to the tangent groupoid

Consider once more the tangent groupoid

TM =
∐

t∈R

TtM,TtM =

{
TM for t = 0

M ×M for t 6= 0

V ⋉ (W × R) ∼= TM

(w1, v, w2) 7→ (w1, w2) for t 6= 0

(w1, v, w2) 7→ (v, w2) for t = 0, w1 = w2

We can think of
TM = TM × {0} ∐M ×M × R∗

as of a family (equivariant)

TM = {TM(m,t)}

If D is a PDO on M (of order 1), then

D(m,t) =

{
Dm for t = 0 on TM(m,0) = TmM

tD for t 6= 0 on TM(m,t) = M

is a smooth equivariant family.

Definition 0.10. Family of PDO D is elliptic if the model operators Dp are
elliptic for all p ∈M
Definition 0.11. A constant coefficient operator Dp is elliptic if its Fourier
transform (a function on T ∗pM) vanishes only at ξ = 0.

0.3.4 Ellipticity and C*-algebras

Lemma 0.12. Dp is elliptic if and only if f(D̂p) ∈ C0(T ∗pM) for all f ∈ C0(R),
that is if and only if f(Dp) ∈ C∗(TpM) for all f ∈ C0(R).

Theorem 0.13. If D is an elliptic family on a groupoid H with compact base,
then f(D) ∈ C∗(H).

The following theorem represents most of the work in proving the Atiyah-
Singer index theorem:

Theorem 0.14. If D is elliptic on M , then the index map

K(T ∗M)→ K(pt)

takes the symbol of D to the analytic index of D.

0.3.5 Baum-Connes conjecture

Assume that G acts properly on M , and M is universal (e. g. M is a symmetric
space of non-compact type). Then the index map

K(C∗(G⋉ T ∗M))→ K(C∗G) (0.20)

associated to G⋉ TM is an isomorphism.
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0.3.6 Contact manifolds

Definition 0.15. Contact manifold is a pair (M,S) such that M is a manifold,
S ⊆ TM is a subbundle such that locally there exists α ∈ Ω1(M) such that

S = kerα

αdα ∧ · · · ∧ dα = vol

Examples 0.16.

• S2n−1 ⊂ CN ,

• SM , M Riemannian,

• Heisenberg groups

Theorem 0.17 (Darboux). Contact = locally Heisenberg

H3 =








1 x z
0 1 y
0 0 1







H5 =








1 x y z
0 1 0 w
0 0 1 v
0 0 0 1








Start with Heisenberg group H3 and define for t ∈ R

t ·




1 x z
0 1 y
0 0 1


 =




1 tx t2z
0 1 ty
0 0 1




Define
H ⋉ (H × R), h · (k, t) = ((t · h)k, t).

This depends only on the contact structure. We get Heisenberg contact groupoid
HM = HM and an index map

K(C∗(HM))→ K(pt).
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29



Based on the lectures of:

• Rainer Matthes
(Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski, ul. Hoża
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Chapter 1

Preliminaries on
C*-algebras

These notes on K-theory owe a great deal to the book by Rørdam, Larsen and
Laustsen [rll00], from which we borrowed both theoretical material and some
exercises

1.1 Basic definitions

1.1.1 Definitions C*-algebra, ∗-algebra

Definition 1.1. A C*-algebra A is an algebra over C with involution a 7→ a∗

(*-algebra), equipped with a norm a 7→ ‖a‖, such that A is a Banach space, and
the norm satisfies ‖ab‖ ≤ ‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 (C∗-property).

Immediate consequence: ‖a∗‖ = ‖a‖. a∗ is called adjoint of a.
A C*-algebra A is called unital if it has a multiplicative unit 1A = 1. Im-

mediate consequence: 1∗ = 1, ‖1‖ = 1 (‖1‖ = ‖12‖ = ‖1‖2). If A and B
are C*-algebras, a ∗-homomorphism ϕ : A → B is a linear multiplicative map
commuting with the involution. If A and B are unital, ϕ is called unital if
ϕ(1A) = 1B. A surjective ϕ is always unital.

A C*-algebra A is called separable, if it contains a countable dense subset.

1.1.2 Sub-C∗ and sub-∗-algebras

A subset B of a C*-algebra A is called sub-∗-algebra, if it closed under all
algebraic operations (including the involution). It is called sub-C*-algebra, if
it is also norm-closed. The norm closure of a sub-∗-algebra is a sub-C*-algebra
(from continuity of the algebraic operations).

If F is a subset of a C*-algebra A, the sub-C*-algebra generated by F ,
denoted by C∗(F ), is the smallest sub-C*-algebra containing F . It coincides
with the norm closure of the linear span of all monomials in elements of F and
their adjoints. A subset F is called self-adjoint, if F ∗ := {a∗ | a ∈ F} = F .
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1.1.3 Ideals and quotients

An ideal in a C*-algebra is a norm-closed two-sided ideal. Such an ideal is always
self-adjoint, hence a sub-C*-algebra. ([d-j77, 1.8.2], [m-gj90, 3.1.3]) If I is an
ideal in a C*-algebra A, the quotient A/I = {a+ I | a ∈ A} is a ∗-algebra, and
also a C*-algebra with respect to the norm ‖a+ I‖ := inf{‖a+x‖ | x ∈ I}. I is
obviously the kernel of the quotient map π : A→ A/I. ([m-gj90, 3.1.4], [d-j77,
1.8.2])

A ∗-homomorphism ϕ : A → B of C*-algebras is always norm-decreasing,
‖ϕ(a)‖ ≤ ‖a‖. It is injective if and only if it is isometric. ([m-gj90, 3.1.5]).
kerϕ is an ideal in A, imϕ a sub-C*-algebra of B. ([m-gj90, 3.1.6]). ϕ always
factorizes as ϕ = ϕ0 ◦ π, with injective ϕ0 : A/ kerϕ→ B.

A C*-algebra is called simple if its only ideals are {0} and A (trivial ideals).

1.1.4 The main examples

Example 1. Let X be a locally compact Hausdorff space, and let C0(X) be the
vector space of complex-valued continuous functions that vanish at infinity, i.e.,
for all ǫ > 0 exists a compact subset Kǫ ⊆ X such that |f(x)| < ǫ for x /∈ Kǫ.
Equipped with the pointwise multiplication and the complex conjugation as
involution, C0(X) is a ∗-algebra. With the norm ‖f‖ := supx∈X{|f(x)|}, C0(X)
is a (in general non-unital) commutative C*-algebra.

Theorem 1.2. (Gelfand-Naimark) Every commutative C*-algebra is isometri-
cally isomorphic to an algebra C0(X) for some locally compact Hausdorff space
X.

Idea of proof: X is the set of multiplicative linear functionals (characters
(every character is automatically *-preserving, [d-j77, 1.4.1(i)], equivalently, the
set of maximal ideals), with the weak-∗-topology (i.e., the weakest topology
such that all the functionals χ 7→ χ(a), a ∈ A, are continuous.

Additions:

(i) C0(X) is unital if and only if X is compact.

(ii) C0(X) is separable if and only if X is separable.

(iii) X and Y are homeomorphic if and only if C0(X) and C0(Y ) are isomor-
phic.

(iv) Each proper continuous map η : Y → X induces a ∗-homomorphism
η∗ : C0(X) → C0(Y ) (η∗(f) = f ◦ η). Conversely, each ∗-homomorphism
ϕ : C0(X)→ C0(Y ) induces a proper continuous map η : Y → X (map a
character χ of C0(Y ) to the character χ ◦ ϕ of C0(X)).

(v) There is a bijective correspondence between open subsets of X and ideals
in C0(X) (the ideal to an open subset is the set of functions vanishing on
the complement of the subset, to an ideal always corresponds the set of
characters vanishing on the ideal, its complement in the set of all charac-
ters is the desired open set). If U ⊆ X is open, then there is a short exact
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sequence
0 −→ C0(U) −→ C0(X) −→ C0(X \ U) −→ 0, (1.1)

where C0(U) → C0(X) is given by extending a function on U as 0 to all
of X , and C0(X) → C0(X \ U) is the restriction, being surjective due to
Stone-Weierstras̈.

Example 2. Let H be a complex Hilbert space, and let B(H) denote the set
of all continuous linear operators on H. Then B(H) is an algebra with respect
to addition, multiplication with scalars, and composition of operators, it is a
∗-algebra with the usual operator adjoint, and it is a C*-algebra with respect
to the operator norm.

Theorem 1.3. (Gelfand-Naimark) Every C*-algebra A is isometrically isomor-
phic to a closed C∗-subalgebra of some B(H).

Idea of proof: Consider the set of positive linear functionals (ϕ(a∗a) ≥ 0) on
A. Every such functional allows to turn the algebra into a Hilbert space on which
the algebra is represented by its left action. Take as Hilbert space the direct
sum of all these Hilbert spaces. Then the direct sum of these representations
gives the desired injection.

1.1.5 Short exact sequences

A sequence of C*-algebras and ∗-homomorphisms

. . . −→ Ak
ϕk−→ Ak+1

ϕk+1−→ Ak+2 −→ . . . (1.2)

is said to be exact, if imϕk = kerϕk+1 for all k. An exact sequence of the form

0 −→ I
ϕ−→ A

ψ−→ B −→ 0 (1.3)

is called short exact. Example: If I ⊆ A is an ideal, then

0 −→ I
ι−→ A

π−→ A/I −→ 0 (1.4)

is short exact (ι the natural embedding I → A). If a short exact sequence (1.3)
is given, then ϕ(I) is an ideal in A, there is an isomorphism ψ/ : B → A/ϕ(I),
and the diagram

0 // I ϕ //
ϕ �� A

ψ //
id �� B //

ψ/ �� 0

0 // A ι // A π // A/I // 0
is commutative. If for a short exact sequence (1.3) exists λ : B → A with
ψ ◦ λ = idB, then the sequence is called split exact, and λ is called lift of ψ.
Diagrammatic:

0 // I ϕ // A ψ //
B

λ
oo // 0. (1.5)
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Not all short exact sequences are split exact.
Example:

0 −→ C0((0, 1))
ι−→ C([0, 1])

ψ−→ C⊕ C −→ 0 (1.6)

with ψ(f) = (f(0), f(1)) is an exact sequence. It does not split: Every linear
map λ : C ⊕ C → C([0, 1]) is determined by its values on the basis elements,
λ((1, 0)) = f1, λ((0, 1)) = f2. The split condition means f1(0) = 1, f1(1) = 0
and f2(0) = 0, f2(1) = 1. If λ is to be a homomorphism, because of (1, 0)2 =
(1, 0), we should have f2

1 = λ((1, 0))2 = λ((1, 0)2) = λ((1, 0)) = f1, and analo-
gously f2

2 = f2. However, a continuous function on a connected space is equal
to its square if and only if it is either the constant function 1 or the constant
function 0. Both is not the case for f1 and f2.
Geometric interpretation: ψ corresponds to the embedding of two points as end
points of the interval [0, 1]. However, it is not possible to map this interval
continuously onto the set {0, 1}.

The direct sum A⊕B of two C*-algebras is the direct sum of the underlying
vector spaces, with component-wise defined multiplication and involution, and
with the norm ‖(a, b)‖ = max(‖a‖, ‖b‖). It is again a C*-algebra. There are
natural homomorphisms ιA : A→ A⊕B, a 7→ (a, 0), πA : A⊕B → A, (a, b) 7→
a, analogously ιB, πB. Then

0 // A ιA // A⊕B πB //
B

ιB
oo // 0. (1.7)

is a split exact sequence with lift ιB . Not all split exact sequences come in this
manner from direct sums.
Example (not presented in lecture).
Let

0 −→ A
ϕ−→ E

ψ−→ B −→ 0 (1.8)

be an exact sequence. Then there exists an isomorphism θ : E → A⊕B making
the diagram

0 // A ϕ //
id �� E

ψ //
θ �� B //

id �� 0

0 // A ιA // A⊕B πB // B // 0
commutative if and only there exists a homomorphism ν : E → A such that
ν ◦ ϕ = idA.

Proof. If θ : E → A ⊕ B makes the diagram commutative, then θ|imϕ is an
injective map whose image is ιA(A). ν := πA◦θ| imϕ : E → A fulfills ν◦ϕ = idA.
If ν : E → A with this property is given, put θ(e) = (ιA ◦ ν(e), ψ(e)). θ is an
isomorphism:
surjective: Let a ∈ A. Then ϕ(a) ∈ kerψ, hence ψ(ϕ(a)) = 0. But, ν(ϕ(a)) = a,
i.e., θ(ϕ(a)) = (a, 0). On the other hand, as πB ◦ θ = ψ and ψ is surjective,
for any b ∈ B exists a′ ∈ A such that (a′, b) ∈ im θ. Since (a′, 0) ∈ im θ, also
(0, b) ∈ im θ for any b ∈ B, thus finally all (a, b) ∈ im θ.
injective: If ψ(e) = 0 with e 6= 0 then e = ϕ(a) with a 6= 0, and ν(e) = ν◦ϕ(a) =

34



Part I Basic definitions

a 6= 0, thus ιA◦ν(e) 6= 0 by injectivity of ιA. Otherwise, ψ(e) 6= 0 already means
θ(e) 6= 0.

If this condition is satisfied, the upper sequence is isomorphic to the lower
one, and thus also split. Counterexample (where the condition is not fulfilled)?

1.1.6 Adjoining a unit

Definition 1.4. Let A be a ∗-algebra. Put Ã = A ⊕ C (direct sum of vector
spaces) and

(a, α)(b, β) := (ab+ βa+ αb, αβ), (a, α)∗ := (a∗, ᾱ). (1.9)

Define ι : A → Ã and π : Ã → C by ι(a) = (a, 0), π(a, α) = α (i.e., ι = ιA,
π = πC in the direct sum terminology used above).

Proposition 1.5. With the operations just introduced, Ã is a unital ∗-algebra
with unit 1Ã = (0, 1). ι is an injective, π a surjective ∗-homomorphism.

Proof. Straightforward.

Sometimes ι is suppressed, and we write also Ã = {a+ α1 | a ∈ A,α ∈ C}.
Let now A be a C*-algebra, and let ‖.‖A be the norm on A.
Note that the direct sum norm ‖(a, α)‖ = max(‖a‖, |α|) does in general not

have the C∗-property (because A ⊕ C does not have the direct sum product).
Example: A unital, put α = 1, a = 1A, then ‖(a, α)(a∗, ᾱ)‖ = max(‖aa∗+ᾱa∗+
αa∗‖, |α|2) = 3, ‖(a, α)‖2 = max(‖a‖2, |α|2) = 1.
Recall that the algebra B(E) of linear operators on a Banach space E is a
Banach space (algebra) with norm ‖b‖ = sup‖x‖≤1 ‖b(x)‖ (see [rs72, Theorem
III.2], [d-j73, 5.7]). Note that (a, α) 7→ La+αidA, where La(b) = ab for a, b ∈ A,
defines a homomorphism ϕ of Ã onto the subspace of all continuous linear
operators of the form La + αidA in B(A). This homomorphism is injective if
and only if A is not unital. (exercise) Indeed, let A be not unital, and assume
La(b)+αb = 0 for all b ∈ A. If α would be 6= 0 then − a

α would be a left unit for
A, thus also a right unit, hence a unit, contradicting the assumed non-unitality.
Thus we have α = 0, i.e. ab = 0 for all b ∈ A. In particular, aa∗ = 0, hence
‖a∗‖2 = ‖aa∗‖ = 0, i.e., ‖a‖ = ‖a∗‖ = 0, i.e., a = 0. On the other hand, if A is
unital, (1A,−1) is in the kernel of ϕ.

We have ‖a‖ = ‖La‖ for a ∈ A: ‖La‖ ≤ ‖a‖ is clear by the definition
of the operator norm (‖La‖ = sup‖b‖≤1 ‖ab‖ ≤ sup‖b‖≤1 ‖a‖‖b‖ = ‖a‖), and

‖a‖2 = ‖aa∗‖ = ‖La(a∗)‖ ≤ ‖La‖‖a∗‖, hence also ‖a‖ ≤ ‖La‖. Thus it makes
sense to define for non-unital A a norm on Ã by transporting the norm of B(A),
i.e., we put ‖(a, α)‖Ã := ‖La + αidA‖. For unital A, we note that Ã is as a
∗-algebra isomorphic to A ⊕ C (direct sum of C*-algebras). The isomorphism
is given by (a, α) 7→ (a+α1A, α) (easy exercise). As before, we define the norm
on Ã by transport with the isomorphism. Note that (−1A, 1) is a projector in
A⊕ C.

Proposition 1.6. Ã is a unital C*-algebra with norm ‖.‖Ã. ι(A) is a closed

ideal in Ã.
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Proof. The additive and multiplicative triangle inequality come from these prop-
erties for the norm in B(A) and A ⊕ C. Since {La|a ∈ A} is closed and thus
complete in B(A), and {La|a ∈ A} has codimension 1 in ϕ(Ã), the latter is
also complete in the nonunital case, and it is obviously complete in the unital
case. Also, it is obvious in the unital case that the norm has the C∗-property.
To prove the latter for the nonunital case, we define the involution on ϕ(Ã) by
transport with ϕ, i.e.,

(La + αidA)∗ := La∗ + ᾱidA. (1.10)

Hence, by this definition ϕ(Ã) is a complete normed ∗-algebra. It remains to
show that the C∗-property is satisfied. Let ǫ > 0 and let x = La+αidA ∈ ϕ(Ã).
By the definition of the operator norm, there exists b ∈ A with ‖b‖ ≤ 1 such
that

‖x‖2 = ‖La + αidA‖2 ≤ ‖(La + αidA)(b)‖2 + ǫ. (1.11)

The right hand side can be continued as follows:

= ‖ab+ αb‖2 + ǫ

= ‖(ab+ αb)∗(ab+ αb)‖+ ǫ

= ‖(b∗a∗ + ᾱb∗)(ab + αb)‖+ ǫ

= ‖b∗(La∗ + ᾱidA)(La + αidA)(b)‖ + ǫ

≤ ‖b∗‖‖(La∗ + ᾱidA)(La + αidA)(b)‖ + ǫ

≤ ‖b∗‖‖((La∗ + ᾱidA)(La + αidA)‖‖b‖+ ǫ

≤ ‖x∗x‖+ ǫ.

Thus we have ‖x‖2 ≤ ‖x∗x‖ + ǫ for any ǫ, hence ‖x‖2 ≤ ‖x∗x‖. However, also
‖x∗x‖ ≤ ‖x∗‖‖x‖ (B(A) is a normed algebra). Exchanging the roles of x and
x∗, we also obtain ‖x∗‖2 ≤ ‖x‖‖x∗‖, together ‖x‖ = ‖x∗‖. Going back to the
inequalities, this also gives the C∗-property.

For both the unital and nonunital case, we have Ã/ι(A) ∼= C, and the se-
quence

0 // A // Ã π //
C

λ
oo // 0. (1.12)

with π : Ã → C the quotient map and λ : C → Ã given by α 7→ (0, α), is
split exact. Note also that adjoining a unit is functorial: If ϕ : A → B is
a homomorphism of C*-algebras, there is a unique homorphism ϕ̃ : Ã → B̃
making the diagram

0 // A ιA //
ϕ �� Ã

πA //
ϕ̃ �� C //

id �� 0

0 // B ιB // B̃ πB // C // 0
commutative. It is given by ϕ̃(a, α) = (ϕ(a), α). ϕ̃ is unit-preserving, ϕ̃(0, 1) =
(0, 1). If A is a sub-C*-algebra of a unital C*-algebra B whose unit 1B is not
in A, then Ã is isomorphic to the sub-C*-algebra A+ C1B of B (exercise).
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1.2 Spectral theory

1.2.1 Spectrum

Let A be a unital C*-algebra. Then the spectrum (with respect to A) of a ∈ A
is defined as

sp(a)(= spA(a)) := {λ ∈ C | a− λ1A is not invertible in A}. (1.13)

Elementary statements about the spectrum, true already for a unital algebra,
are:

(i) If A = {0} then sp(0) = ∅.

(ii) sp(λ1A) = {λ} for λ ∈ C.

(iii) a ∈ A is invertible if and only if 0 /∈ sp(a).

(iv) If P ∈ C[X ] (polynomial in one variable with complex coefficients), then
sp(P (a)) = P (sp(a)).

(v) If a ∈ A is nilpotent, then sp(a) = {0} (if A 6= {0}).

(vi) If ϕ : A → B is a morphism of unital algebras over C, then spB(ϕ(a)) ⊆
spA(a).

(vii) If (a, b) ∈ A⊕ B (direct sum of algebras), then spA⊕B((a, b)) = spA(a) ∪
spB(b). (Can be generalized to direct products.)

If A is the algebra of continuous complex-valued functions on a topological
space, then the spectrum of any element is the set of values of the function. If
A is the algebra of endomorphisms of a finite dimensional vector space over C
then the spectrum of an element is the set of eigenvalues.

For a Banach algebra, the spectrum of an element is always a compact subset
of C contained in the ball of radius ‖a‖,

r(a) = sup{|λ| | λ ∈ sp(a)} ≤ ‖a‖. (1.14)

Idea of proof: If |λ| > ‖a‖, then ‖λ−1a‖ < 1, hence 1− λ−1a is invertible (This
uses: if ‖a‖ < 1 then 1 − a is invertible, with (1 − a)−1 = 1 + a + a2 + . . . –
Neumann series.) Thus λ /∈ sp(a). The spectrum is closed because the set of
invertible elements is open (use again the fact stated in parentheses).

The number r(a) is called spectral radius of a. Using complex analysis, one
can show that the spectrum is non-empty. The sequence (‖an‖1/n) is convergent,
and r(a) = limn→∞ ‖an‖1/n. If A is not unital, the spectrum of an element
a ∈ A is defined as the spectrum of ι(a) ∈ Ã. In this case always 0 ∈ sp(a)
((a, 0)(b, β) = (ab + βa, 0) 6= (0, 1) = 1Ã).

Definition 1.7. An element a of a C*-algebra A is called

• normal if aa∗ = a∗a,

• self-adjoint if a = a∗,

• positive if it is normal and sp(a) ⊆ R+(= [0,∞[),
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• unitary if A is unital and aa∗ = a∗a = 1A.

• a projector if a = a∗ = a2.

The set of positive elements is denoted by A+.

The spectrum of a self-adjoint element is contained in R, that of a unitary
element is contained in T1 = S1 (the unit circle, considered as a subset of
C), that of a projector is contained in {0, 1} (exercises). An element a of a
C*-algebra A is positive if and only if it is of the form a = x∗x, for some
x ∈ A. For normal elements, the above formula for the spectral radius reduces
to r(a) = ‖a‖. This allows to conclude

Proposition 1.8. The C∗-norm of a C*-algebra is unique.

Proof. ‖a‖′2 = ‖a∗a‖′ = r(a∗a) = ‖a∗a‖ = ‖a‖2.

Let us also note that every element is a linear combination of two self-
adjoint elements, a = 1

2 (a+ a∗) + i 1
2i(a− a∗) (this is the unique decomposition

a = h1 + ih2, with h1 and h2 self-adjoint), and also a linear combination of four
unitary elements.

The spectrum a priori depends on the ambient C*-algebra. However, if
B is a unital C∗-subalgebra of a unital C*-algebra A, whose unit coincides
with the unit of A, then the spectrum of an element of B with respect to B
coincides with its spectrum with respect to A (exercise, use that the inverse of
an element belongs to the smallest C*-algebra containing that element, i.e., the
C∗-subalgebra generated by that element). If A is not unital, or if the unit of
A does not belong to B, then spA(b) ∪ {0} = spB(b) ∪ {0} (exercise).

1.2.2 Continuous functional calculus

Let A be a unital C*-algebra, and let a ∈ A be normal. Then there is a unique
C∗-isomorphism j : C(sp(a)) → C∗(a, 1) mapping the identity map of sp(a)
into a. Moreover, this isomorphism maps a polynomial P into P (a) and the
complex conjugation z 7→ z̄ into a∗. Therefore one writes j(f) = f(a). One
knows that sp(f(a)) = f(sp(a)) (spectral mapping theorem).

If ϕ : A → B is ∗-homomorphism of unital C*-algebras, then sp(ϕ(a)) ⊆
sp(a) and ϕ(f(a)) = f(ϕ(a)) for f ∈ C(sp(a)).

If a C*-algebra is realized as a subalgebra of B(H), the functional calculus
is realized for self-adjoint elements in terms of their spectral decompositions: If
a =

∫
λdEλ then f(a) =

∫
f(λ)dEλ, where Eλ is the family of spectral measures

belonging to a.
If a is a normal element of a non-unital C*-algebra A, then f(a) is a priori

in Ã. We have f(a) ∈ ι(A) ≃ A if and only if f(0) = 0: When π : Ã→ C is the
quotient mapping, we have π(f(a)) = f(π(a)) = f(0).

Lemma 1.9. Let K ⊆ R be compact and non-empty, and let f ∈ C(K). Let A
be a unital C*-algebra, and let ΩK be the set of self-adjoint elments of A with
spectrum contained in K. Then the induced function

f : ΩK −→ A, a 7→ f(a), (1.15)

is continuous.
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Proof. The map a 7→ an, A → A is continuous (continuity of multiplication).
Thus every complex polynomial f induces a continuous map A→ A, a 7→ f(a).

Now, let f ∈ C(K), let a ∈ ΩK , and let ǫ > 0. Then there is a complex
polynomial g such that |f(z) − g(z)| < ǫ

3 for every z ∈ K. By continuity
discussed above, for every ǫ we find δ < 0 such that ‖g(a)− g(b)‖ ≤ ǫ

3 for b ∈ A
with ‖a− b‖ ≤ δ. Since, moreover,

‖f(c)− g(c)‖ = ‖(f − g)(c)‖ = sup{|(f − g)(z)| | z ∈ sp(c)} ≤ ǫ

3
(1.16)

for c ∈ ΩK , we conclude ‖f(a)−f(b)‖ = ‖f(a)−g(a)+g(a)−g(b)+g(b)−f(b)‖ ≤
‖f(a−g(a)‖+‖g(a)−g(b)‖+‖g(b)−f(b)‖ ≤ ǫ for b ∈ ΩK with ‖a−b‖ ≤ δ.

1.3 Matrix algebras and tensor products

Let A1, A2 be C*-algebras. The algebraic tensor product A1⊗A2 is a ∗-algebra
with multiplication and adjoint given by

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2, (1.17)

(a1 ⊗ a2)∗ = a∗1 ⊗ a∗2. (1.18)

Problem: There may exist different norms with the C∗-property on this ∗-
algebra, leading to different C*-algebras under completion (though one can show
that all norms with the C∗-property are cross norms, ‖a1 ⊗ a2‖ = ‖a1‖‖a2‖).
We will restrict to the case where this problem is not there by definition: A C*-
algebra is called nuclear if for any C*-algebra B there is only one C∗-norm on
the algebraic tensor product A⊗B. Examples: finite dimensional, commutative,
type I (every non-zero irreducible representation in a Hilbert space contains the
compact operators). If one of the tensor factors is nuclear, the unique C∗-norm
on the algebraic tensor product coincides with the norm in B(H) under a faithful
representation of the completed tensor product.

We will mainly need the following very special situation. Let A be a C*-
algebra, and let Mn(C) (n ∈ N) be the algebra of complex n×n-matrices. Then
A⊗Mn(C) can be identified with Mn(A), the ∗-algebra of n× n-matrices with
entries from A, with product and adjoint given according to the matrix struc-
ture. The unique C∗-norm on A⊗Mn(C) = Mn(A) is defined using any injective
∗-homomorphism ϕ : A→ B(H), and the canonical injective ∗-homomorphism
Mn(C) → B(Cn), i.e., ‖a ⊗m‖ = ‖ϕ(a) ⊗m‖, where on the right stands the
norm in B(H)⊗B(Cn) = B(H⊗ Cn). One has the inequality (exercise):

max ‖aij‖ ≤

∥∥∥∥∥∥∥∥∥




a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann




∥∥∥∥∥∥∥∥∥
≤
∑
‖aij‖. (1.19)

The following lemma will be needed later. It involves the C*-algebraC0(X,A),
see Exercice 6.

Lemma 1.10. Let X be a locally compact Hausdorff space and let A be a C*-
algebra. Define for f ∈ C0(X), a ∈ A an element fa ∈ C0(X,A) by

(fa)(x) = f(x)a. (1.20)
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Then span{fa | f ∈ C0(X), a ∈ A} is dense in C0(X,A).

Proof. Let X+ = X ∪ {∞} be the one-point compactification of X . Then

C0(X,A) = {f ∈ C(X+, A) | f(∞) = 0}. (1.21)

Let f ∈ C0(X,A), ǫ > 0. There is an open covering U1, . . . , Un of X+ such
that ‖f(x) − f(y)‖ < ǫ if x, y ∈ Uk. (Compactness of X+, continuity of f .)
Choose xk ∈ Uk, with xk = ∞ if ∞ ∈ Uk. Let (hk)nk=1 be a partition of unity
subordinate to the covering (Uk), i.e., hk ∈ C(X+), supphk ⊆ Uk,

∑n
k=1 hk = 1,

0 ≤ hk ≤ 1. (Note that every compact Hausdorff space is paracompact.) Then
‖f(x)hk(x) − fk(xk)hk(x)‖ ≤ ǫhk(x) for x ∈ X, k = 1, . . . , n. It follows that
‖f(x) − ∑n

k=1 f(xk)hk(x)‖ ≤ ǫ, for x ∈ X . Put ak = f(xk) ∈ A. Then∑n
k=1 hkak ∈ span{fa | f ∈ C0(X), a ∈ A}, because ak = f(xk) = 0 if ∞ ∈ Uk,

and ‖f −∑n
k=1 hkak‖ ≤ ǫ.

1.4 Examples and Exercises

Exercise 1. If A is a sub-C*-algebra of a unital C*-algebra B whose unit 1B is
not in A, then Ã is isomorphic to the sub-C*-algebra A+ C1B of B.

The map (a, α) 7→ a + α1B is the desired isomorphism: It is obviously sur-
jective, and injectivity follows as injectivity of ϕ in the proof of Proposition 1.6:
Let a + α1B = 0. If α 6= 0, then 1B = − a

α ∈ A, contradicting the assumption.
Thus α = 0 = a. That the mapping is a ∗-homomorphism is straightforward.

Exercise 2. Let A be a unital C*-algebra. Show the following.

(i) Let u be unitary. Then sp(u) ⊆ T.

(ii) Let u be normal, and sp(u) ⊆ T. Then u is unitary.

(iii) Let a be self-adjoint. Then sp(a) ⊆ R.

(iv) Let p be a projection. Then sp(p) ⊆ {0, 1}.
(v) Let p be normal with sp(p) ⊆ {0, 1}. Then p is a projector.

(i): ‖u‖ = 1, due to ‖u‖2 = ‖u∗u‖ = ‖1A‖ = 1. Hence |λ| ≤ 1 for λ ∈ sp(u).
By the spectral mapping theorem, λ−1 ∈ sp(u−1) = sp(u∗). But also ‖u∗‖ = 1,
and thus |λ−1| ≤ 1, so |λ| = 1.

(ii): Due to normality, there is a C∗-isomorphism C(sp(u)) → C∗(u, 1),
mapping idsp(u) 7→ u and īdsp(u) 7→ u∗. Hence 1sp(u) 7→ u∗u = uu∗ = 1(= 1A).

(iii): a ∈ A is invertible if and only if a∗ is invertible, thus a−λ1A is invertible
if and only if a∗ − λ̄ is invertible. Thus λ ∈ sp(a) if and only if λ̄ ∈ sp(a∗),
and for a = a∗ the spectrum is invariant under complex conjugation. The series

exp (ia) :=
∑∞
n=0

(ia)n

n! is absolutely convergent, its adjoint is (due to continuity

of the star operation) exp (−ia) =
∑∞
n=0

(−ia)n

n! and fulfills exp (ia) exp (−ia) =
1A = exp (−ia) exp (ia), so it is a unitary element in C∗(a, 1), which means that
exp (iλ) ∈ T for λ ∈ sp(a), i.e., λ ∈ R.

(iv): Let p = p∗ = p2. By (iii), sp(p) is real, and by the spectral mapping
theorem we have sp(p) = sp(p)2. This means that sp(p) ⊆ [0, 1]. Using the
isomorphism C(sp(p))→ C∗(p, 1), we have idsp(p) = id2

sp(p), thus sp(p) ⊆ {0, 1}.
(v): Let p be normal, sp(p) ⊆ {0, 1}. Then idsp(p) = īdsp(p) = id2

sp(p), and
the same is true for p (using the isomorphism C(sp(p))→ C∗(p, 1)).
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Exercise 3. Let A be a unital C*-algebra, a ∈ A.

(i) a is invertible if and only if aa∗ and a∗a are invertible. In that case,
a−1 = (a∗a)−1a∗ = a∗(aa∗)−1.

(ii) Let a be normal and invertible in A. Then there exists f ∈ C(sp(a)) such
that a−1 = f(a), i.e., a−1 belongs to C∗(a, 1).

(iii) Let a ∈ A be invertible. Then a−1 belongs to C∗(a, 1), the smallest unital
C∗-subalgebra containing a.

(i): If a−1 exists, then also a∗−1 = a−1∗ and (aa∗)−1 = a∗−1a−1, (a∗a)−1 =
a−1a∗−1. If (aa∗)−1 and (a∗a)−1 exist, put b := a∗(aa∗)−1 and c := (a∗a)−1a∗.
Then ab = 1 = ca and, multiplying the left of these equalities by c from the left,
the right one by b from the right, cab = c, b = cab. This means b = c = a−1.

(ii): a invertible means that 0 /∈ sp(a). Thus, the function idsp(a) corre-
sponding to a under the isomorphism C(sp(a))→ C∗(a, 1) is invertible, and the
corresponding inverse is in C∗(a, 1).

(iii): aa∗ and a∗a are normal (selfadjoint) and by (i) invertible in A. By
(ii) their inverses are in the C∗-subalgebras generated by {aa∗, 1} and {a∗a, 1},
thus also in C∗(a, 1). Again using (i) (considering C∗(a, 1) instead of A), we
obtain a−1 ∈ C∗(a, 1).

Exercise 4. Show the uniqueness of the decomposition a = h1 + ih2, h1,2 self-
adjoint.

We have a∗ = h1 − ih2, hence h1 = 1
2 (a+ a∗) and h2 = 1

2i(a− a∗).
Exercise 5. Let ϕ : A→ B be a morphism of unital C*-algebras.

(i) Show that sp(ϕ(a)) ⊆ sp(a) for all a ∈ A, and that there is equality if ϕ is
injective.

(ii) Show that ‖ϕ(a)‖ ≤ ‖a‖, equality if ϕ is injective.

Let ϕ be not necessarily injective. If a − λ1A is invertible, then ϕ(a −
λ1A) = ϕ(a) − λ1B is invertible (with inverse ϕ((a − λ1A)−1)). This shows
C \ sp(a) ⊆ C \ sp(ϕ(a)). Thus we also have r(ϕ(a∗a)) ≤ r(a∗a), which gives
‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2.

Let ϕ be injective, and let a ∈ A. With the isomorphisms C(sp(a∗a)) →
C∗(a∗a, 1) and C(sp(ϕ(a∗a))) → C∗(ϕ(a∗a), 1), ϕ gives rise under to an in-
jective C∗-homomorphism ϕa : C(sp(a∗a)) → C(sp(ϕ(a∗a))). One shows as
in [d-j77, Proof of 1.8.1] that ϕa corresponds to a surjective continuous map
ψa : sp(ϕ(a∗a)) → sp(a∗a). Now, the pull-back of any surjective continuous
map is isometric: If ψ : Y → X is a surjective map of sets, and if f : X → C is a
function such that supx∈X |f(x)| exists, then supx∈X |f(x)| = supy∈Y |f(ψ(y))|.
In our situation, each ϕa is isometric, which, using the above isomorphisms, just
amounts to saying that ϕ is isometric. This proves both desired equalities.

Exercise 6. If A is a C*-algebra, and X is a locally compact Hausdorff space,
then let C0(X,A) denote the set of all continuous maps f : X → A such that
‖f‖ := supx∈X ‖f(x)‖ exists and f vanishes at infinity, i.e., ∀ǫ > 0 ∃ compact
K ⊆ X : ‖f(x)‖ < ǫ for x ∈ X \ K. On C(X,A), introduce operations of a
∗-algebra pointwise. Show that C0(X,A) is a C*-algebra.

The algebraic properties, the triangle inequalities and the C∗ property are
easy to verify. The proof of completeness (convergence of Cauchy sequences)
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is standard (e.g., [d-j73, 7.1.3] or [rs72, Theorem I.23]). The idea is to show
that the limit given by pointwise Cauchy sequences is indeed an element of
C0(X,A). The only thing not proven in the above references is vanishing at
infinity of the limit. This can be concluded from the following statement: Let
f ∈ C(X,A), g ∈ C0(X,A), ‖f − g‖ < ǫ/2. Then there is a compact K ⊆ X
such that ‖f(x)‖ < ǫ for x ∈ X \ K. Indeed, since g ∈ C0(X,A), there is
a compact K ⊆ X such that ‖g(x)‖ < ǫ/2 for x ∈ X \ K. Then ‖f(x)‖ ≤
‖f(x)− g(x)‖+ ‖g(x)‖ < ǫ/2 + ǫ/2 = ǫ for x ∈ X \K.

Exercise 7. Let A be a unital C*-algebra, x ∈ M2(A). Show that x commutes

with

(
1 0
0 0

)
if and only if x = diag(a, b) for some a, b ∈ A. Then a, b are

unitary if and only if x is unitary.

Exercise 8. Prove the inequalities (1.19).
Let a(ij) be the element of Mn(A) which has aij at the intersection of the

i-th row with the j-th column and zero at all other places. Let us first show
‖a(ij)‖ = ‖aij‖. In the identification Mn(A) = A ⊗ Mn(C) we have a(ij) =
aij ⊗ eij , where eij ∈ Mn(C) is the ij-th matrix unit. Thus, for an injective
∗-homomorphism ϕ : A → B(H), we have ‖a(ij)‖ = ‖ϕ⊗ id(a(ij)‖ = ‖ϕ(aij) ⊗
eij‖ = ‖ϕ(aij‖‖eij‖ = ‖aij‖. Here, we have made use of the following facts:
Every injective ∗-homomorphism of C*-algebras is isometric (Exercice 5 (ii)),
the norm of a tensor product of operators is the product of the norms of the
factors (see e.g. [m-gj90, p. 187]), and ‖eij‖ = 1 (easy to verify). This is enough
to prove the right inequality: ‖(aij)‖ = ‖∑i,j a

(ij)‖ ≤∑i,j ‖a(ij)‖ =
∑

i,j ‖aij‖.
For the left inequality, we have

‖(aij)‖2 = sup
ψ∈H⊗Cn,‖ψ‖=1

‖
∑

i,j

ϕ(aij)⊗ eij(ψ)‖2

≥ sup
ψ=ψ1⊗ψ2,‖ψ1‖=‖ψ2‖=1

‖
∑

i,j

ϕ(aij)(ψ1)⊗ eij(ψ2)‖2. (1.22)

Now, choose ψ2 = ek, ek an element of the canonical basis of Cn. Then eij(ek) =
δjkei, and the above inequality can be continued:

≥ sup
‖ψ‖=1

‖
∑

i

ϕ(aik)(ψ) ⊗ ei‖2

= sup
‖ψ‖=1

∑

i

‖ϕ(aik)(ψ)‖2

≥ max
i
‖ϕ(aik)‖2 = max

i
‖aik‖2.

(1.23)

(Note that ‖∑i ψi ⊗ ei‖2 =
∑

i ‖ψi‖2.) Since this is true for all k, we have the
desired inequality.

Exercise 9. Let A be a unital C*-algebra, and let a ∈Mn(A) be upper triangu-
lar, i.e.,

a =




a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n

...
...

...
. . .

...
0 0 0 . . . ann



. (1.24)
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Show that a has an inverse in the subalgebra of upper triangular elements of
Mn(A) if and only if all diagonal elements akk are invertible in A.

Let all akk be invertible in A. Then a0 := diag(a11, . . . , ann) is invertible in
Mn(A) (with inverse a−1

0 = diag(a−1
11 , . . . , a

−1
nn)), and a = a0 +N with nilpotent

N ∈ Mn(A). We can write a = a0 + N = a0(1 + a−1
0 N) where in our concrete

case a−1
0 N is again nilpotent. Since for nilpotent m we have (1 + m)−1 =

1−m+m2 −m3 + . . .±mk for a certain k ∈ N, a is invertible.
Conversely, assume that there exists an inverse b of a that is upper triangular.

Then ab = 1 and ba = 1 give immediately that bkk = a−1
kk for k = 1, . . . , n.

Note that there are invertible upper triangular matrices, whose diagonal
elements are not invertible, and whose inverse is not upper triangular. Example:
Let s be the unilateral shift, satisfying s∗s = 1. Neither s nor s∗ is invertible.

Nevertheless, the matrix

(
s 1
0 s∗

)
has the inverse

(
s∗ −1

1− ss∗ s

)
.

Exercise 10. Let A be a C*-algebra, a, b ∈ A. Show that

∥∥∥∥
(
a 0
0 b

)∥∥∥∥ =

max{‖a‖, ‖b‖}.
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Chapter 2

Projections and Unitaries

2.1 Homotopy for unitaries

Definition 2.1. Let X be a topological space. Then x, y ∈ X are homotopic in
X, x ∼h y in X, if there exists a continuous map f : [0, 1]→ X with f(0) = x
and f(1) = y.

The relation ∼h is an equivalence relation on X (exercise). f : t 7→ f(t) = ft
as above is called continuous path from x to y. In a vector space, any two
elements are homotopic: Take the path t 7→ (1− t)x+ ty.

Definition 2.2. Let A be a unital C*-algebra, and let U(A) denote the group
of unitary elements of A. Then U0(A) := {u ∈ U(A) | u ∼h 1A in U(A)}
(connected component of 1A in U(A)).

Remark 2.3. If u1, u2, v1, v2 ∈ U(A) with ui ∼h vj , j = 1, 2, then u1u2 ∼h
v1v2. Indeed, if t 7→ wj(t) are continuous paths connecting uj with vj , then
t 7→ w1(t)w2(t) is a continuous path connecting u1u2 with v1v2 (everything in
U(A)).

Lemma 2.4. Let A be a unital C*-algebra.

(i) If h ∈ A is self-adjoint, then exp (ih) ∈ U0(A).

(ii) If u ∈ U(A) and sp(u) 6= T, then u ∈ U0(A).

(iii) If u, v ∈ U(A) and ‖u− v‖ < 2, then u ∼h v.
Proof. (i) By the contiuous functional calculus, if h = h∗ and f is a continuous
function on R with values in T, then f(h)∗ = f̄(h) = f−1(h), i.e., f(h) is unitary.
In particular, exp (ih) is unitary. Now for t ∈ [0, 1] define ft : sp(h) → T by
ft(x) := exp (itx). Then, by continuity of t 7→ ft, the path t 7→ ft(h) in U(A) is
continuous, thus exp (ih) = f1(h) ∼h f0(h) = 1.
(ii) If sp(u) 6= T, there exists θ ∈ R such that exp (iθ) /∈ sp(u). Note that
ϕ(exp (it)) = t defines a continuous function ϕ on sp(u) with values in the open
interval ]θ, θ + 2π[⊆ R. We have z = exp (iϕ(z)) for z ∈ sp(u). Then h = ϕ(u)
is a self-adjoint element of A with u = exp (ih), and by (i) u ∈ U0(A).
(iii) From ‖u − v‖ < 2 it follows that ‖v∗u − 1‖ = ‖v∗(u − v)‖ < 2 (since
‖v∗‖ = 1). Thus −2 /∈ sp(v∗u− 1), i.e., −1 /∈ sp(v∗u). Then, by (ii), v∗u ∼h 1,
hence u ∼h v (remark before the lemma).
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Part I Homotopy for unitaries

Corollary 2.5. U(Mn(C) = U(Mn(C)), i.e., the unitary group in Mn(C) is
connected.

Proof. Each unitary in Mn(C) has finite spectrum, therefore the assumption of
(ii) of Lemma 2.4 is satisfied.

Lemma 2.6. (Whitehead) Let A be a unital C*-algebra, and u, v ∈ U(A). Then

(
u 0
0 v

)
∼h
(
uv 0
0 1

)
∼h
(
vu 0
0 1

)
∼h
(
v 0
0 u

)
in U(M2(A). (2.1)

In particular, (
u 0
0 u∗

)
∼h
(

1 0
0 1

)
in U(M2(A)). (2.2)

Proof. First note that the spectrum of

(
0 1
1 0

)
is {1,−1} (direct elementary

computation). Thus by Lemma 2.4 (ii)

(
0 1
1 0

)
∼h
(

1 0
0 1

)
. Now write

(
u 0
0 v

)
=

(
u 0
0 1

)(
0 1
1 0

)(
v 0
0 1

)(
0 1
1 0

)
. (2.3)

Then, by Remark 2.3,

(
u 0
0 1

)(
0 1
1 0

)
∼h
(
u 0
0 1

)(
1 0
0 1

)
=

(
u 0
0 1

)
, (2.4)

analogously (
v 0
0 1

)(
0 1
1 0

)
∼h
(
v 0
0 1

)
, (2.5)

thus

(
u 0
0 v

)
∼h
(
uv 0
0 1

)
. In particular,

(
1 0
0 v

)
∼h
(
v 0
0 1

)
, thus

(
u 0
0 v

)
=

(
1 0
0 v

)(
u 0
0 1

)
∼h
(
v 0
0 1

)(
u 0
0 1

)
=

(
vu 0
0 1

)
.

(2.6)

Proposition 2.7. Let A be a unital C*-algebra.

(i) U0(A) is a normal subgroup of U(A).

(ii) U0(A) is open and closed relative to U(A).

(iii) u ∈ U0(A) if and only if there are finitely many self-adjoint h1, . . . , hn ∈ A
such that

u = exp (ih1) · · · exp (ihn). (2.7)

Proof. (i): First note that U0(A) is closed under multiplication by Remark 2.3.
In order to show that with u ∈ U0(A) also u−1 ∈ U0(A) and vuv∗ ∈ U0(A) (for
any v ∈ U(A)), let t 7→ wt be a continuous path from 1 to u in U(A). Then
t 7→ w−1

t and t 7→ vwtv
∗ are continuous paths from 1 to u−1 and vuv∗ in U(A).
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Part I Homotopy for unitaries

(ii) and (iii): Let G := {exp (ih1) · · · exp (ihn) | n ∈ N, hk = h∗k ∈ A}. By (i)
and Lemma 2.4, (i), G ⊆ U0(A). Since exp(ih)−1 = exp(−ih), for h = h∗, G is
a subgroup of U0(A).

G is open relative to U(A): If v ∈ G and u ∈ U(A) with ‖u − v‖ < 2, then
‖1− uv∗‖ = ‖(u − v)‖ < 2, and by Lemma 2.4 (iii) and its proof, sp(uv∗) 6= T,
and, by the proof of Lemma 2.4 (ii), there exists h = h∗ ∈ A such that uv∗ =
exp(ih). Thus u = exp(ih)v ∈ G.

G is closed relative to U(A): U(A) \G is a disjoint union of cosets Gu, with
u ∈ U(A). Each Gu is homeomorphic to G, therefore Gu is open relative to
U(A). Thus G is closed in U(A).

By the above, G is a nonempty subset of U0(A), it is open and closed in
U(A), consequently also in U0(A). The latter is connected, hence G = U0(A).
This proves (ii) and (iii).

Lemma 2.8. Let A and B be unital C*-algebras, and let ϕ : A → B be a
surjective (thus unital) ∗-homorphism.

(i) ϕ(U0(A)) = U0(B).

(ii) ∀u ∈ U(B)∃v ∈ U0(M2(A)):

ϕ2(v) =

(
u 0
0 u∗

)

with ϕ2 : M2(A)→M2(B) the extension of ϕ.

(iii) If u ∈ U(B) and there is v ∈ U(A) with u ∼h ϕ(v), then u ∈ ϕ(U(A)).

Proof. Any unital ∗-homomorphism is continuous and maps unitaries into uni-
taries, hence ϕ(U0(A)) ⊆ U0(B). Conversely, if u ∈ U0(B), then by Proposi-
tion 2.7 (iii) there are self-adjoint hj ∈ B such that

u = exp(ih1) · · · exp(ihn).

By surjectivity of ϕ, there are aj ∈ A with ϕ(aj) = hj . Then kj :=
aj+a

∗
j

2 are
self-adjoint and satisfy ϕ(kj) = hj. Put

v = exp(ik1) · · · exp(ikn).

Then ϕ(v) = u and v ∈ U0(A) by Proposition 2.7 (iii). This proves (i).

(ii): By Lemma 2.4 we have

(
u 0
0 u∗

)
∈ U0(M2(A)). On the other hand,

ϕ2 : M2(A)→M2(B) is a surjective ∗-homomorphism, so (i) proves the desired
claim.

(iii): If u ∼h ϕ(v), then uϕ(v∗) ∈ U0(B), and, by (i), uϕ(v∗) = ϕ(w) with
w ∈ U0(A). Hence u = ϕ(wv), with wv ∈ U(A).

Definition 2.9. Let A be a unital C*-algebra. The group of invertible elements
in A is denoted by GL(A). GL0(A) := {a ∈ GL(A) | a ∼h 1 in GL(A)}.

U(A) is a subgroup of GL(A).

If a ∈ A, then there is a well-defined element |a| = (a∗a)
1
2 , by the continuous

functional calculus. |a| is called absolute value of a.
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Part I Homotopy for unitaries

Proposition 2.10. Let A be a unital C*-algebra.

(i) If a ∈ GL(A), then also |a| ∈ GL(A), and a|a|−1 ∈ U(A).

(ii) Let ω : GL(A)→ U(A) be defined by ω(a) = a|a|−1. Then ω is continuous,
ω(u) = u for u ∈ U(A), and ω(a) ∼h a in GL(A) for every a ∈ GL(A).

(iii) If u, v ∈ U(A) and if u ∼h v in GL(A), then u ∼h v in U(A).

Proof. (i): If a ∈ GL(A) then also a∗, a∗a ∈ GL(A). Hence also |a| = (a∗a)
1
2 ∈

GL(A), with |a|−1 = ((a∗a)−1)
1
2 . Then a|a|−1 is invertible and unitary: |a|−1

is self-adjoint and |a|−1a∗a|a|−1 = |a|−1|a|2|a|−1 = 1.
(ii): Multiplication in a C*-algebra is continuous, as well as the map a 7→ a−1

in GL(A). (see [m-gj90, Theorem 1.2.3]) Therefore to show continuity of ω, it
is sufficient to show that a 7→ |a| is continuous. The latter is the composition

of a 7→ a∗a and h 7→ h
1
2 (for h ∈ A+). The first of these maps is continuous by

continuity of ∗ and the multiplication. Now it is sufficient to show the continuity
of the square root on any bounded Ω ⊆ A+.This follows from Lemma 1.9,
because each such Ω is contained in ΩK , with K = [0, R], R = suph∈Ω ‖h‖.

For u ∈ U(A) we have |u| = 1, hence ω(u) = u.
For a ∈ GL(A), put at := ω(a)(t|a|+(1−t)1A), t ∈ [0, 1]. This is a continuous

path from ω(a) = a0 to a = a1. It remains to show that at ∈ GL(A), t ∈ [0, 1].
Since |a| is positive and invertible, there is λ ∈]0, 1] with |a| ≥ λ1A. Then, for
each t ∈ [0, 1], t|a|+ (1− t)1A ≥ λ1A. (Properties of positive operators, use the
isomorphism C(sp(a∗a))→ C∗(a∗a, 1).) Hence t|a|+(1−t)1A and consequently
at are invertible.

(iii) If t 7→ at is a continuous path in GL(A) from u to v (unitaries), then
t 7→ ω(at) is such a path in U(A).

Remark 2.11. (ii) of the above proposition says that U(A) is a retract of GL(A).
ω : GL(A) → U(A) is the corresponding retraction. (A subspace X of a topo-
logical space Y is called retract of Y if there is a continuous r : Y → X with
x ∼h r(x) in Y ∀x ∈ Y and r(x) = x ∀x ∈ X .)

Remark 2.12. (ii) also says that a = ω(a)|a|, with unitary ω(a), for invertible
a. This is called the (unitary) polar decomposition of a. For any a ∈ A, there
is a polar decomposition a = v|a|, with a unique partial isometry v.

Proposition 2.13. Let A be a unital C*-algebra. Let a ∈ GL(A), and let b ∈ A
with ‖a− b‖ < ‖a−1‖−1. Then b ∈ GL(A),

‖b−1‖−1 ≥ ‖a−1‖−1 − ‖a− b‖,

and a ∼h b in GL(A).

Proof. We have

‖1− a−1b‖ = ‖a−1(a− b)‖ ≤ ‖a−1‖‖a− b‖ < 1,

thus (a−1b)−1 =
∑∞
k=0(1 − a−1b)k is absolutely convergent with norm

‖(a−1b)−1‖ ≤
∞∑

k=0

‖1− a−1b‖k = (1 − ‖1− a−1b‖)−1.
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Thus b ∈ GL(A) with inverse b−1 = (a−1b)−1a−1, and

‖b−1‖−1 ≥ ‖(a−1b)−1‖−1‖a−1‖−1 ≥ (1−‖1−a−1b‖)‖a−1‖−1 ≥ ‖a−1‖−1−‖a−b‖.

For the last claim, put ct = (1−t)a+tb for t ∈ [0, 1]. Then ‖a−ct‖ = t‖a−b‖ <
‖a−1‖−1, therefeore ct ∈ GL(A) by the first part of the proof.

2.2 Equivalence of projections

Definition 2.14. The set of projections in a C*-algebra A is denoted by P(A).
A partial isometry is a v ∈ A such that v∗v ∈ P(A). If v is a partial isometry,
then vv∗ is also a projection (exercise). v∗v is called the support projection,
vv∗ the range projection of v.

If v is a partial isometry, put p = v∗v and q = vv∗. then

v = qv = vp = qvp. (2.8)

(exercise).

Lemma 2.15. The following are equivalence relations on P(A):

• p ∼ q if and only if there exists v ∈ A with p = v∗v and q = vv∗ (Murray-
von Neumann equivalence),

• p ∼u q if and only if there exists u ∈ U(A) with q = upu∗ (unitary
equivalence).

Proof. Transitivity of Murray-von Neumann: Let p ∼ q and q ∼ r, and let v, w
be partial isometries such that p = v∗v, q = vv∗ = w∗w, r = ww∗. Put z = wv.
Then z∗z = v∗w∗wv = v∗qv = v∗v = p, zz∗ = wvv∗w∗ = wqw∗ = ww∗ = r,
i.e., p ∼ r. The other claims are checked easily.

Proposition 2.16. Let p, qP(A), A unital. The following are equivalent:

(i) ∃u ∈ U(Ã) : q = upu∗,

(ii) ∃u ∈ U(A) : q = upu∗,

(iii) p ∼ q and 1A − p ∼ 1A − q.

Proof. Let f = 1Ã−1A = (−1A, 1). Then Ã = A+Cf and fa = af = 0 ∀a ∈ A.

(i) =⇒ (ii): Let q = zpz∗ for some z ∈ U(Ã). Then z = u + αf for some
u ∈ A and α ∈ C. It is straightforward to show u ∈ U(A) and q = upu∗.

(ii) =⇒ (iii): Let q = upu∗ for u ∈ U(A). Put v = up and w = u(1A − p).
Then

v∗v = p, vv∗ = q, w∗w = 1A − p, ww∗ = 1A − q. (2.9)

(iii) =⇒ (i): Assume that there are partial isometries v, w satisfying (2.9).
Then (2.8) gives by direct calculation z := v + w + f ∈ U(Ã), and that zpz∗ =
vpv∗ = vv∗ = q.

Note that one could prove (iii) =⇒ (ii) using the unitary u = v+w ∈ U(A).
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Lemma 2.17. Let A be a C*-algebra, p ∈ P(A), and a = a∗ ∈ A. Put
δ = ‖p− a‖. Then

sp(a) ⊆ [−δ, δ] ∪ [1− δ, 1 + δ]. (2.10)

Proof. We know sp(a) ∈ R and sp(p) ∈ {0, 1}. It suffices to show that for t ∈ R
the assumption dist(t, {0, 1}) > δ implies t /∈ sp(a). Such a t is not in sp(p),
i.e., p− t1 is invertible in Ã, and

‖(p− t1)−1‖ = max(| − t|−1, |1− t|−1) = d−1. (2.11)

(consider p− t1 as an element of C(sp(p)) ⊆ C2.) Consequently,

‖(p− t1)−1(a− t1)− 1‖ = ‖(p− t1)−1(a− p)‖ ≤ d−1δ < 1. (2.12)

Thus (p − t1)−1(a − t1) is invertible, hence also a − t1 is invertible, i.e., t /∈
sp(a).

Proposition 2.18. If p, q ∈ P(A), ‖p− q‖ < 1, then p ∼h q.
Proof. Put at = (1− t)p+ tq, t ∈ [0, 1]. Then at = a∗t , t 7→ at is continuous, and

min(‖at − p‖, ‖at − q‖) ≤ ‖p− q‖/2 < 1/2. (2.13)

Thus by Lemma 2.17 sp(at) ⊆ K := [−δ, δ]∪ [1− δ, 1 + δ], with δ = ‖p− q‖/2 <
1/2, i.e., at ∈ ΩK in the notation of Lemma 1.9. Then f : K → C, defined to be
zero on [−δ, δ] and one on [1− δ, 1 + δ], is continuous, and f(at) is a projection
for each t ∈ [0, 1] because f = f2 = f̄ . By Lemma 1.9, t 7→ f(at) is continuous,
and p = f(p) = f(a0) ∼h f(a1) = f(q) = q.

Proposition 2.19. Let A be a unital C*-algebra, a, b ∈ A selfadjoint. Suppose
b = zaz−1 for some invertible z ∈ A. Then b = uau∗, where u ∈ U(A) is the
unitary in the polar decomposition z = u|z| of z (see Remark 2.12).

Proof. b = zaz−1 is the same as bz = za, and also z∗b = az∗. Hence

|z|2a = z∗za = z∗bz = az∗z = a|z|2, (2.14)

a commutes with |z|2. Thus a commutes with all elements of C∗(1, |z|2), in
particular with |z|−1. Therefore,

uau∗ = z|z|−1au∗ = za|z|−1u∗ = bz|z|−1u∗ = buu∗ = b. (2.15)

Proposition 2.20. Let A be a C*-algebra, p, q ∈ P(A). Then p ∼h q in P(A)
if and only if ∃u ∈ U0(Ã) : q = upu∗.

Proof. Assume q = upu∗ for some u ∈ U0(Ã), and let t 7→ ut be a continuous
path in U0(Ã) connecting 1(=1Ã) and u. Then t 7→ utpu

∗
t is a continuous path

of projections in A (A is an ideal in Ã).
Conversely, if p ∼h q, then there are p = p0, p1, . . . , pn ∈ P(A) such that

‖pj − pj+1‖ < 1/2 (the set {pt | t ∈ [0, 1]} is compact in the metric space P(A)
and thus totally bounded, cf. [d-j73, 3.16]). Thus it is sufficient to consider only
the case ‖p− q‖ < 1/2. The element z := pq + (1− p)(1− q) ∈ Ã satisfies

pz = pq = zq (2.16)
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and ‖z − 1‖ = ‖p(q − p) + (1 − p)((1 − q)− (1− p))‖ ≤ 2‖p− q‖ < 1 (consider
2p − 1 under the isomorphism C(sp(p)) → C∗(p, 1)), thus z is invertible and
z ∼h 1 by Proposition 5.2. If z = u|z| is the unitary polar decomposition of
z (Remark 2.12), then from formula (2.16) and Proposition 2.19 p = uqu∗.
Eventually, it follows from Proposition 2.10 (ii) that u ∼h z ∼h 1 in GL(Ã),
and from Proposition 2.10 (iii) that u ∈ U0(Ã).

Proposition 2.21. Let A be a C*-algebra, p, q ∈ P(A).

(i) p ∼h q =⇒ p ∼u q.

(ii) p ∼u q =⇒ p ∼ q.

Proof. (i): Immediate from Proposition 2.20.
(ii): If upu∗ = q for u ∈ U(Ã), then v = up ∈ A, v∗v = p, and vv∗ = q.

Proposition 2.22. Let A be a C*-algebra, p, q ∈ P(A).

(i) p ∼ q =⇒
(
p 0
0 0

)
∼u
(
q 0
0 0

)
in M2(A).

(ii) p ∼u q =⇒
(
p 0
0 0

)
∼h
(
q 0
0 0

)
in M2(A).

Proof. Let v ∈ A such that p = v∗v, q = vv∗. Then (2.8) can be used to show
that

u =

(
v 1− q

1− p v∗

)
, w =

(
q 1− q

1− q q

)
∈ U(M2(Ã)). (2.17)

Since

wu

(
p 0
0 0

)
u∗w∗ = w

(
q 0
0 0

)
w∗ =

(
q 0
0 0

)
, (2.18)

on the other hand

wu =

(
v + (1− q)(1 − p) (1 − q)v∗

q(1 − p) 1− q + qv∗

)
∈ M̃2(A), (2.19)

(i) is proved. Note that M̃2(A) is considered as a unital subalgebra of M2(Ã)

via the map

((
a b
c d

)
, α

)
7→
(

(a, α) (b, 0)
(c, 0) (d, α)

)
, and that one has to check

that wu, being a priori in M2(Ã), is indeed in M̃2(A).
(ii): The assumption means q = upu∗ for some u ∈ U(Ã). By Lemma 2.6

there is a homotopy t 7→ wt in U(M2(Ã) connecting w0 =

(
1 0
0 1

)
with

w0 =

(
u 0
0 u∗

)
. Put et = wt diag(p, 0)w∗t . Then et ∈ P(M2(A)) (A is an

ideal in Ã), t 7→ et is continuous, e0 = diag(p, 0), and e1 = diag(q, 0).

Remark 2.23. Propositions 2.21 and 2.22 say that the three equivalence relations
∼, ∼u and ∼h are equivalent if one passes to matrix algebras. Otherwise, the
implications p ∼ q =⇒ p ∼u q and p ∼u q =⇒ p ∼h q do not hold:
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Let A be a unital C*-algebra containing a non-unitary isometry s, i.e., s∗s =
1 6= ss∗. Example: one-sided shift. Then s∗s and ss∗ are projections, and by
definition s∗s ∼ ss∗. On the other hand, 1−s∗s = 0 ≁ 1−ss∗ 6= 0, because from
v∗v = 0 follows v = 0 (C∗-property and thus also vv∗ = 0. By Proposition 2.16
(iii), s∗s and ss∗ cannot be unitarily equivalent.

Example of a unital C*-algebra containing projections p, q with p ∼u q
and p ≁h q: There exists a unital C*-algebra B such that M2(B) contains
u ∈ U(M2(B) not being homotopic in U(M2(B)) to any diag(v, 1), v ∈ U(B).

Then p :=

(
1 0
0 0

)
∼u u

(
1 0
0 0

)
u∗ in M2(B), but p ≁h q. Indeed, if one

assumes p ∼h q, then by Proposition 2.20 there is w ∈ U(M2(B)) such that
wqw∗ = p. Hence (wu)p = p(wu), and (see exercise ) wu = diag(a, b), with
a, b ∈ U(B). From Lemma 2.6 and w ∈ U(M2(B)) we obtain u ∼h wu =
diag(a, b) ∼h diag(ab, 1), contradicting the original assumption about u.

2.3 Semigroups of projections

Definition 2.24. Let A be a C*-algebra, n ∈ N. Put Pn(A) = P(Mn(A)) and
P∞(A) = ∪∞n=1Pn(A) (disjoint union).

Let Mm,n(A) be the set of rectangular m× n-matrices with entries from A.
The adjoint of such a matrix is defined combining the matrix adjoint with the
adjoint in A.

Definition 2.25. Let p ∈ Pn(A), q ∈ Pm(A). Then p ∼0 q iff ∃v ∈Mm,n(A) :
p = v∗v, q = vv∗.

∼0 is an equivalence relation on P∞(A) and reduces for m = n to the
Murray-von Neumann equivalence on P(Mn(A)).

Definition 2.26. Define a binary operation ⊕ on P∞(A) by

p⊕ q =

(
p 0
0 q

)
. (2.20)

If p ∈ Pn(A), q ∈ Pm(A), then p⊕ q ∈ Pn+m(A).

Proposition 2.27. Let A be a C*-algebra, p, q, r, p′, q′ ∈ P∞(A).

(i) ∀n ∈ N : p ∼0 p⊕ 0n (0n the zero of Mn(A)),

(ii) if p ∼0 p
′ and q ∼0 q

′, then p⊕ q ∼0 p
′ ⊕ q′,

(iii) p⊕ q ∼0 q ⊕ p,

(iv) if p, q ∈ Pn(A), pq = 0, then p+ q ∈ Pn(A) and p+ q ∼0 p⊕ q,

(v) (p⊕ q)⊕ r = p⊕ (q ⊕ r).

Proof. (i): Let m,n ∈ N, p ∈ Pm(A). Put u1 =

(
p
0

)
∈ Mm+n,m(A). Then

p = u∗1u1 ∼0 u1u
∗
1 = p⊕ 0n.

(ii): If p ∼0 p
′ and q ∼0 q

′, then ∃v, w : p = v∗v, p′ = vv∗, q = w∗w, q′ = ww∗.
Put u2 = diag(v, w). Then p⊕ q = u∗2u2 ∼0 u2u

∗
2 = p′ ⊕ q′.
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(iii): Let p ∈ Pn(A), q ∈ Pm(A), and put u3 :=

(
0n,m q
p 0m,n

)
, with 0k,l the

zero of Mk,l(A). Then u3 ∈Mn+m(A), and p⊕ q = u∗3u3 ∼0 u3u
∗
3 = q ⊕ p.

(iv): If pq = 0 then p+q is a projection (exercise). Put u4 =

(
p
q

)
∈M2n,n(A).

Then p+ q = u∗4u4 ∼0 u4u
∗
4 = p⊕ q.

(v): trivial.

Definition 2.28.
D(A) := P∞(A)/ ∼0 . (2.21)

[p]D ∈ D(A) denotes the equivalence class of p ∈ P∞(A).

Lemma 2.29. The formula

[p]D + [q]D = [p⊕ q]D (2.22)

defines a binary operation on D(A) making it an abelian semigroup.

Proof. This is immediate from Proposition 2.27.

2.4 Examples and Exercises

Exercise 11. Let ϕ : A→ B be a surjective ∗-homomorphism of C*-algebras. If
ϕ(a) = b, then a is called lift of b.

(i) Any b ∈ B has a lift a ∈ A with ‖b‖ = ‖a‖.

(ii) Any selfadjoint b has a selfadjoint lift a with ‖b‖ = ‖a‖.

(iii) Any positive b has a positive lift a with ‖b‖ = ‖a‖.

(iv) A normal element does not in general have a normal lift.

(v) A projection does not in general lift to a projection.

(vi) A unitary does not in general lift to a unitary.

(ii) For a lift x of b, also a0 := x+x∗

2 = a∗0 is a lift of b. Consider the function
f : R→ R given by

f(t) =




−‖b‖ t ≤ ‖b‖,
t −‖b‖ ≤ t ≤ ‖b‖,
‖b‖ t ≥ ‖b‖.

(2.23)

Put a = f(a0). Then a = a∗, sp(a) = {f(t) | t ∈ sp(a0)} ⊆ [−‖b‖, ‖b‖]
(by definition of f), and ‖a‖ = r(a) ≤ r(b) = ‖b‖. Also, a is a lift of b,
ϕ(a) = ϕ(f(a0)) = f(ϕ(a0)) = f(b) = b, because f(t) = t for t ∈ sp(b). Finally,
ϕ is norm-decreasing (as any ∗-homomorphism), thus also ‖b‖ = ‖ϕ(a)‖ ≤ ‖a‖,
hence ‖b‖ = ‖a‖.

(i) For b ∈ B, y :=

(
0 b
b∗ 0

)
is a self-adjoint element of M2(B) with ‖y‖ =

‖b‖ (‖y‖2 = ‖y∗y‖ = ‖
(
bb∗ 0
0 b∗b

)
‖ = max{‖bb∗‖, ‖b∗b‖} = ‖b‖2, using
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Exercise 10 of Chapter 1). By (ii), there is a self-adjoint lift x =

(
x11 x12

x21 x22

)

of y with ‖x‖ = ‖y‖. a = x12 is a lift of b, and by (1.19) ‖a‖ ≤ ‖x‖ = ‖y‖ = ‖b‖.
But also ‖b‖ ≤ ‖a‖, thus ‖a‖ = ‖b‖.

(iii) For a lift x of b, also a0 := (x∗x)1/2 ≥ 0 is a lift: ϕ(a0) = (ϕ(x∗)ϕ(x))1/2 =
(b∗b)1/2 = b. Put a = f(a0), with f from (2.23). Then a is normal, ϕ(a) = b
(ϕ(a) = ϕ(f(a0)) = f(ϕ(a0)) = f(b) = b), sp(a) ⊆ [0, ‖b‖]. Thus, a ≥ 0,
‖a‖ = ‖b‖.

(iv) Let s be the unilateral shift. Then s∗s = 1, s∗s−ss∗ = pre0 is compact.
Let π : B(H) → Q(H) = B(H)/K (Calkin algebra). Then π(s) is normal
(π(pre0) = 0), however, π(s) has no lift to a normal operator: There is no
normal operator N such that s−N is compact.

(v) Let A = C([0, 1]), B = C ⊕ C, ϕ(f) = (f(0), f(1)). Then q = (0, 1) ∈
P(C ⊕ C). However, there are no nontrivial projections in C([0, 1]) (ϕ(p) = q
would mean p(0) = 1, p(1) = 0).

Exercise 12. Let A be a unital C*-algebra,

a =




1 a12 a13 . . . a1n

0 1 a23 . . . a2n

...
...

...
. . .

...
0 0 0 . . . an−1,n

0 0 0 . . . 1



∈Mn(A).

Show: a ∈ GLn(A), a ∼h 1 in GLn(A).
The first claim is immediate from Exercise 9 of Chapter 1. For the second

claim, write a = 1 + a0. Then at = 1 + ta0 is a curve connecting a and 1 in
GLn(A) (again by Exercise 9 of Chapter 1).

Exercise 13. Let A be a C*-algebra, p, q ∈ P(A). Write p⊥q if pq = 0. The
following are equivalent:

(i) p⊥q,

(ii) p+ q ∈ P(A),

(iii) p+ q ≤ 1.

(i) =⇒ (ii): p+ q is self-adjoint, and (p+ q)2 = p2 + pq + qp+ q2 = p+ q.
(ii) =⇒ (iii): 1− (p+ q) = 1− (p+ q)− (p+ q) + (p+ q)2 = (1− (p+ q))2.
(iii) =⇒ (i): Use the general implication a ≤ b =⇒ (c∗ac ≤ c∗bc, ∀c ∈ A)

to conclude p+ q ≤ 1 =⇒ p(p+ q)p ≤ p2 = p =⇒ p+ pqp ≤ p =⇒ pqp ≤ 0.
On the other hand, pqp = pqqp ≥ 0, thus pqqp = pqp = 0, which is equivalent
to pq = qp = 0.

More generally, for p1, . . . , pn ∈ P(A), the following are equivalent:

(i) pi⊥pj , for all i 6= j,

(ii) p1 + . . .+ pn ∈ P(A),

(iii) p1 + . . .+ pn ≤ 1.
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Chapter 3

The K0-Group for Unital
C*-algebras

3.1 The Grothendieck Construction

Lemma 3.1. Let (S,+) be an abelian semigroup. Then the binary relation ∼
on S × S defined by

(x1, y1) ∼ (x2, y2) ⇐⇒ ∃z ∈ S : x1 + y2 + z = x2 + y1 + z (3.1)

is an equivalence relation.

Proof. The relation ∼ is clearly symmetric and reflexive. Transitivity: Let
(x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3), i.e., x1 + y2 + z = x2 + y1 + z, x2 +
y3 + w = x3 + y2 + w for some z, w ∈ S. Then x1 + y3 + (y2 + z + w) =
x2 + y1 + z + y3 + w = x3 + y1 + (y2 + z + w), i.e., (x1, y1) ∼ (x3, y3).

Let G(S) := (S × S)/ ∼, and 〈x, y〉 denote the class of (x, y).

Lemma 3.2. The operation

〈x1, y1〉+ 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 (3.2)

is well-defined and yields an abelian group (G(S),+). Inverse and zero are given
by

− 〈x, y〉 = 〈y, x〉, 0 = 〈x, x〉. (3.3)

Proof. Straightforward.

The group (G(S),+) is called the Grothendieck group of S.
For y ∈ S, there is a map γ : S → G(S), x 7→ 〈x+y, y〉 (Grothendieck map).

It is independent of y and a homomorphism of abelian semigroups (additive).

Definition 3.3. An abelian semigroup (S,+) is said to have the cancellation
property if from x+ z = y + z follows x = y (x, y, z ∈ S).

Proposition 3.4. Let (S,+) be an abelian semigroup.

(i) If H is an abelian group, ϕ : S → H additive, then there is a unique group
homorphism ψ : G(S)→ H such that ϕ = ψ ◦ γ (universal property).
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(ii) If ϕ : S → T is a homomorphism (additive map) of abelian semigroups,
then there is a unique group homomorphism G(ϕ) : G(S) → G(T ) such
that γT ◦ ϕ = G(ϕ) ◦ γS (functoriality).

(iii) G(S) = {γS(x)− γS(y) | x, y ∈ S}.

(iv) For x, y ∈ S, γS(x) = γS(y) if and only if ∃z ∈ S such that x+ z = y+ z.

(v) Let (H,+) be an abelian group, ∅ 6= S ⊆ H. If S is closed under addition,
then (S,+) is an abelian semigroup with the cancellation property, and
G(S) is isomorphic to the subgroup H0 generated by S, with H0 = {x −
y | x, y ∈ S}.

(vi) The map γS : S → G(S) is injective if and only if S has the cancellation
property.

Proof. (iii): For 〈x, y〉 ∈ G(S) we have 〈x, y〉 = 〈x, y〉+ 〈x+ y, x+ y〉 = 〈x+x+
y, y + x+ y〉 = 〈x+ y, y〉+ 〈x, x+ y〉 = 〈x+ y, y〉 − 〈x+ y, x〉 = γS(x)− γS(y).
(iv): If x+ z = y + z, then by additivity of γS γS(x) + γS(z) = γS(y) + γS(z),
hence, since G(S) is a group, γS(x) = γS(y). Conversely, let γS(x) = γS(y), in
particular 〈x+ y, y〉 = 〈y+x, x〉, i.e., ∃w ∈ S : (x+ y) +x+w = (y+x) + y+w.
Thus x+ z = y + z, with z = x+ y + w.
(v): immediate from (iv).
(i): If ψ exists, it has to satisfy ψ(〈x, y〉) = ϕ(x) − ϕ(y), in order to have
ψ ◦ γS = ϕ. Then additivity of ψ follows from additivity of ϕ, and uniqueness
follows from (iii). To see that ψ exists, assume 〈x1, y1〉 = 〈x2, y2〉, i.e., ∃z ∈ S :
x1 + y2 + z = x2 + y1 + z. Then ϕ(x1) +ϕ(y2) +ϕ(z) = ϕ(x2) +ϕ(y1) +ϕ(z) in
H , by addivity of ϕ. Since H is a group, we have ϕ(x1)−ϕ(y1) = ϕ(x2)−ϕ(y2),
which shows that ψ is well-defined by ψ(〈x, y〉) = ϕ(x)− ϕ(y).
(ii): γT ◦ ϕ : S → G(T ) is an additive map into the group G(T ), thus by
(i) there is a unique group homomorphism G(ϕ) : G(S) → G(T ) such that
γT ◦ ϕ = G(ϕ) ◦ γS .
(vi): Any non-empty subset of an abelian group that is closed under addition
is an abelian semigroup with cancellation property. The inclusion ι : S → H
is additive and gives by (i) rise to a group homomorphism ψ : G(S) → H such
that ψ ◦γS = ι, i.e., ψ(γS(x)) = x for x ∈ S. By (iii), ψ(G(S)) = {x− y | x, y ∈
S} = H0. If ψ(γS(x) − γS(y)) = 0, then x = y and so γS(x) − γS(y) = 0, i.e.,
ψ is injective.

Examples:

• (N,+) is an abelian semigroup with cancellation property, whose
Grothendieck group is isomorphic to (Z,+).

• Let (N∪{∞},+) be the abelian semigroup whose addition is defined by the
usual addition in N and by x+∞ =∞ =∞+∞. Then (N∪{∞},+) does
not have the cancellation property, and the corresponding Grothendieck
group is {0}. Indeed, from x+∞ =∞+∞ it does not follow that x =∞,
and 〈x, y〉 = 〈x, x〉 for any x, y ∈ N∪{∞}, because x+x+∞ = y+x+∞ =
∞ ∀x, y ∈ N ∪ {∞}.
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3.2 Definition of the K0-group of a unital C*-

algebra

Definition 3.5. Let A be a unital C*-algebra. The K0(A) group is defined as
the Grothendieck group of the semigroup D(A):

K0(A)
def
= G(D(A)).

We also define a map [·]0 : P∞(A) → K0(A) by [p]0 = γD(A)([p]D) for
p ∈ P∞(A).

Remark 3.6. Formally, this definition could be made for non-unital C*-algebras
as well, but it would not be appropriate, since the resulting K0-functor would
not be half-exact.

3.2.1 Portrait of K0 — the unital case

We define a binary relation ∼s on P∞(A) as follows: p ∼s q iff there exists an
r ∈ P∞(A) such that p⊕ r ∼0 q⊕ r. The relation ∼s is called stable equivalence
and it is easy to verify that it is indeed an equivalence relation. Furthermore,
the relation can be defined equivalently as p ∼s q if and only if p⊕ 1n ∼0 q⊕ 1n
for some positive integer n. Indeed, if p ⊕ r ∼0 q ⊕ r for r ∈ Pn(A), then
p⊕ 1n ∼0 p⊕ r ⊕ (1n − r) ∼0 q ⊕ r ⊕ (1n − r) ∼0 q ⊕ 1n.

Proposition 3.7. Let A be a unital C*-algebra. Then

(i) K0(A) = {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N},

(ii) [p]0 + [q]0 = [p⊕ q]0 for p, q ∈ P∞(A), and if p and q are orthogonal then
[p]0 + [q]0 = [p+ q]0,

(iii) [0A]0 = 0,

(iv) if p, q ∈ Pn(A) and p ∼h q in Pn(A) then [p]0 = [q]0,

(v) [p]0 = [q]0 if and only if p ∼s q for p, q ∈ P∞(A).

Proof. Straightforward. As an example, we only verify (v). If [p]0 = [q]0 then
by part (iv) of Proposition [3.4] there is an r ∈ P∞(A) such that [p]D + [r]D =
[q]D + [r]D . Hence [p ⊕ r]D = [q ⊕ r]D . Thus p⊕ r ∼0 q ⊕ r and consequently
p ∼s r. Conversely, if p ∼s q then there is r ∈ P∞(A) such that p⊕ r ∼0 q ⊕ r.
Then [p]0 +[r]0 = [q]0 +[r]0 by part (ii) above and hence [p]0 = [q]0 since K0(A)
is a group.

3.2.2 The universal property of K0

Proposition 3.8. Let A be a unital C*-algebra, let G be an abelian group, and
let ν : P∞(A)→ G be a map satisfying the following conditions:

(i) ν(p⊕ q) = ν(p) + ν(q),

(ii) ν(0A) = 0,

(iii) if p ∼h q in Pn(A) then ν(p) = ν(q).
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Then there exists a unique homomorphism K0(A)→ G such that the diagram

P∞(A)

[·]0 �� ""EEEEEEEEE
K0(A) // G

is commutative.

Proof. At first we observe that if p, q ∈ P∞(A) and p ∼0 q then ν(p) = ν(q).
Indeed, let p ∈ Pk(A), q ∈ Pl(A). Take n ≥ max{k, l} and put p′ = p ⊕ 0n−k
and q′ = q ⊕ 0n−l. We have p′ ∼0 p ∼0 q ∼0 q′ and hence p′ ∼ q′. Thus
p′ ⊕ 03n ∼h q′ ⊕ 03n in P4n(A) by Proposition 2.2.9. Hence

ν(p) = ν(p) + (4n− k)ν(0) = ν(p′ ⊕ 03n) = ν(q′ ⊕ 03n) = ν(q),

as required. Consequently, the map D(A) → G, [p]D 7→ ν(p) is well-defined.
Clearly, this map is additive. The rest follows from the univesal property of the
Grothendieck construction (part (i) of Proposition 3.1.4).

3.2.3 Functoriality

Now we observe that K0 is a covariant functor from the category of unital
C*-algebras with (not necessarily unital) ∗-homomorphisms to the category of
abelian groups.

Let ϕ : A→ B be a (not necessarily unital) ∗-homomorphism between unital
C*-algebras. For each n it extends to a ∗-homomorphismϕn : Mn(A)→Mn(B),
and this yields a map ϕ : P∞(A) → P∞(B). Define ν : P∞(A) → K0(B) by
ν(p) = [ϕ(p)]0. Then ν satisfies the conditions of Proposition 3.8. Thus, there
is a homomorphsm K0(ϕ) : K0(A) → K0(B) such that K0(ϕ)([p]0) = [ϕ(p)]0.
That is, we have a commutative diagram

P∞(A)
ϕ //

[·]0 �� P∞(B)

[·]0 ��
K0(A)

K0(ϕ) // K0(B)

Proposition 3.9. Let ϕ : A → B, ψ : B → C be ∗-homomorphisms between
unital C*-algebras. Then

(i) K0(idA) = idK0(A),

(ii) K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ).

Proof. By definition, (i) and (ii) hold when applied to [p]0, p ∈ P∞(A). Then
use part (i) of Proposition 3.7.

3.2.4 Homotopy invariance

Let A,B be C*-algebras. Two ∗-homomorphisms ϕ, ψ : A → B are homotopic
ϕ ∼h ψ if there exist ∗-homomorphisms ϕt : A → B for t ∈ [0, 1] such that
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ϕ0 = ϕ, ϕ1 = ψ, and the map [0, 1] ∋ t 7→ ϕt(a) ∈ B is norm contnuous for each
a ∈ A.

C*-algebrasA andB are homotopy equivalent if there exist ∗-homomorphisms
ϕ : A→ B and ψ : B → A such that ψ ◦ ϕ ∼h idA and ϕ ◦ ψ ∼h idB. In such a

case we write A
ϕ→ B

ψ→ A.

Proposition 3.10. Let A,B be unital C*-algebras.

(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K0(ϕ) = K0(ψ).

(ii) If A is homotopy equivalent via A
ϕ→ B

ψ→ A then K0(ϕ) : K0(A)→ K0(ψ)
is an isomorphism with K0(ϕ)−1 = K0(ψ).

Proof. Part (i) follows from Proposition 3.7. Part (ii) follows from part (i) and
functoriality of K0 (Proposition 3.9).

3.3 Examples and Exercises

Example 3.11. K0(C) ∼= Z. Indeed, D(C) ∼= (Z+,+) and the Grothendieck
group of Z+ is Z.

Example 3.12. If H is an infinite dimensional Hilbert space then K0(B(H)) = 0.
Indeed, if H is separable then D(B(H)) ∼= Z+ ∪ {∞} with the addition in Z+

extended by m+∞ =∞+m =∞+∞ =∞. The Grothendieck group of this
semigroup is 0. The non-separable case is handled similarly.

Exercise 14. If X is a contractible compact, Hausdorff space then K0(C(X)) ∼=
Z. Hint: recall that X is contractible if there exists a point x0 ∈ X and a
continuous map α : [0, 1]×X → X such that α(0, x) = x and α(1, x) = x0 for
all x ∈ X , and use Proposition 3.10 and Example 3.3.1.

Example 3.13 (Traces). Let A be a unital C*-algebra. A bounded linear func-
tional τ : A → C is a trace if τ(ab) = τ(ba) for all a, b ∈ A. Hence τ(p) = τ(q)
if p, q are Murray-von Neumann equivalent projections. A trace τ is positive if
τ(a) ≥ 0 for all a ≥ 0. It is a tracial state if it is positive of norm 1.

A trace τ extends to a trace τn on Mn(C) by τn([ai,j ]) =
∑n

i=1 τ(ai). Thus
τ gives rise to a function τ : P∞(A)→ C. By the universal property of K0 this
yields a group homomorphism K0(τ) : K0(A)→ C such that K0(τ)([p]0) = τ(p).
If τ is positive then K0(τ) : K0(A)→ R and K0([p]0) ∈ R+ for p ∈ P∞(A).

Exercise 15. If n ∈ Z+ then K0(Mn(C)) ∼= Z, and the class of a minimal
projection is a generator. In fact, let Tr be the standard matrix trace. Then
K0(Tr) : K0(Mn(C))→ Z is an isomorphism.

Exercise 16. Let X be a connected, compact Hausdorff space. Show that there
exists a surjective homomorphism

dim : K0(C(X))→ Z

such that dim([p]0) = Tr(p(x)).
To this end, identify Mn(C(X)) with C(X,Mn(C)). For each x ∈ X the

evaluation at x is a positive trace and hence, by Example 3.3.4 gives rise to
a homomorphism from K0(C(X)) to R. If p ∈ P∞(C(X)) then the function
x 7→ Tr(p(x)) ∈ Z is continuous and locally constant, hence constant since X is
connected. Finally, the homomorhism is surjective since dim([1]0) = 1.
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Exercise 17. Let X be a compact Hausdorff space.

(1) By generalizing Exercise 3.3.6, show that there exists a surjective group
homomorphism

dim : K0(C(X))→ C(X,Z)

such that dim([p]0)(x) = Tr(p(x)).

(2) Given p ∈ Pn(C(X)) and q ∈ Pm(C(X)) show that dim([p]0) = dim([q]0) if
and only if for each x ∈ X there exists vx ∈Mm,n(C(X)) such that v∗xvx = p(x)
and vxv

∗
x = q(x). Note that in general one cannot choose vx so that the map

x 7→ vx be continuous.

(3) Show that if X is totally disconnected then the map dim is an isomorphism.
Recall that a space is totally disconnected if it has a basis for topology

consisting of sets which are simultaneously open and closed. To prove the claim
it sufficies (in view of part (1)) to show that dim is injective. To this end use
part (ii) and total disconnectedness of X to find a partition of X into open and
closed subsets X = X1 ∪ X2 ∪ . . . ∪ Xk and rectangular matrices v1, v2, . . . , vk
over C(X) such that ||v∗i vi − p(x)|| < 1 and ||viv∗i − q(x)|| < 1 for all x ∈ Xi.
From this deduce that p ∼0 q.

Exercise 18. Let A be a unital C*-algebra and let τ : A → C be a bounded
linear functional. Show that the following conditions are equivalent:

(i) τ(ab) = τ(ba) for all a, b ∈ A,

(ii) τ(x∗x) = τ(xx∗) for all x ∈ A,

(iii) τ(uyu∗) = τ(y) for all y ∈ A and all unitary u ∈ A.

(ii)⇒(iii) Suppose (ii) holds. At first consider a ≥ 0 and set x = u|a|1/2. Then
τ(uau∗) = τ(xx∗) = τ(x∗x) = τ(a). Then use the fact that every element of a
C*-algebra can be written as a linear combination of four positive elements.

(iii)⇒(i) Suppose (iii) holds. If b ∈ A and u is a unitary in A then τ(ub) =
τ(u(bu)u∗) = τ(bu). Then use the fact that every element of a unital C*-algebra
may be written as a linear combination of four untaries.

Example 3.14. Let Γ be a countable discrete group with infinite conjugacy
classes (an ICC group). Let λ : Γ → B(ℓ2(Γ)) be its left regular representa-
tion. Let W ∗(Γ) be the closure of the linear span of λ(Γ) in the strong operator
topology (that is, in the topology of pointwise convergence). It can be shown
that there exists a unique tracial state τ on W ∗(Γ), and that this trace has the
following properties:

(i) Two projections p, q are Murray-von Neumann equivalent in W ∗(Γ) iff
τ(p) = τ(q).

(ii) {τ(p) : p ∈ P(W ∗(Γ))} = [0, 1].

Deduce that K0(W ∗(Γ) ∼= (R,+). The conslusion of this example remains valid
if W ∗(Γ) is replaced by any factor von Neumann algebra of type II1.

Example 3.15 (Matrix stability of K0). Let A be a unital C*-algebra and let n
be a positive integer. Then

K0(A) ∼= K0(Mn(A)).
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More specifically, the ∗-homomorphism ϕ : A → Mn(A), a 7→ diag(a, 0n−1)
induces an isomorphism K0(ϕ) : K0(A)→ K0(Mn(A)).

Indeed, we construct inverse to K0(ϕ), as follows. For each k let γk :
Mk(Mn(A))→Mkn(A) be the isomorphism which ”erases parentheses”. Define
γ : P∞(Mn(A))→ K0(A) by γ(p) = [γk(p)]0 for p ∈ Pk(Mn(A)). The universal
property of K0 applied to γ yields a homomorphism α : K0(Mn(A)) → K0(A)
such that α([p]0) = [γ(p)]0.We claim that α = K0(ϕ)−1. To this end it sufficies
to show that

(i) ϕkn(γk(p)) ∼0 p in P∞(Mn(A)) for p ∈ Pk(Mn(A)), and

(i) γk(ϕk(p)) ∼0 p in P(A) for p ∈ Pk(A).

Proof of (i). exercise.

Proof of (ii). Let e1, . . . , ekn be the standard basis in Ckn and let u be a
permutation unitary such that uei = en(i−1)+1 for i = 1, 2, . . . , k. Then p ∼0

p⊕ 0(n−1)k = u∗γk(ϕk(p))u for all projections p in Pk(A).

Exercise 19. Two ∗-homomorphismsϕ, ψ : A→ B are orthogonal if ϕ(A)ψ(B) =
{0}. Show that if ϕ and ψ are orthogonal then ϕ+ψ is a ∗-homomorphism and
K0(ϕ+ ψ) = K0(ϕ) + K0(ψ).

Exercise 20 (Cuntz algebras). Let H be a Hilbert space, let n be a positive
integer bigger than 1, and let S1, . . . , Sn be isometries on H whose range pro-
jections add up to the identity. Let C∗(S1, . . . , Sn) be the C∗-subalgebra of
B(H) generated by {S1, . . . , Sn}. It was proved by Cuntz in [c-j77] that this
C*-algebra is independent of the choice of such isometries. That is, if T1, . . . , Tn
is another family of isometries whose range projections add up to the identity
then there is a ∗-isomorphism ϕ : C∗(S1, . . . Sn) → C∗(T1, . . . , Tn) such that
ϕ(Sj) = Tj for j = 1, . . . , n. Thus defined C*-algebra is denoted On and called
Cuntz algebra. It is a simple, unital, separable C*-algebra. Alternatively, On
may be defined as the universal C*-algebra generated by elements S1, . . . , Sn
subject to the relations:

(i) S∗i Si = I for i = 1, . . . , n,

(ii)
∑n

i=1 SiS
∗
i = I.

(1) Let u be a unitary in On. There exists a unique unit preserving injective
∗-homomorphism λu : On → On (i.e. an endomorphism of On) such that
λu(Sj) = uSj for j = 1, . . . , n. Moreover, if ϕ is an endomorphism of On then
ϕ = λu with u =

∑n
i=1 ϕ(Si)S

∗
i .

(2) Let σ be an endomorphism of On such that σ(x) =
∑n
i=1 sixs

∗
i (the shift

endomorphism). Then K0(σ) : K0(On) → K0(On) is the multiplication by n,
that is K0(σ)(g) = ng for all g ∈ K0(On). Hint: Use Exercise 3.3.11 and
the following fact. If v is an isometry in a unital C*-algebra A then the map
µ : A → A, µ(x) = vxv∗ is a ∗-homomorphism and K0(µ) = id. For the
latter observe that µk : Mk(A) → Mk(A) is given by µk(y) = vkyv

∗
k, where

vk = diag(v, . . . , v).

(3) Let w be a unitary in On such that σ = λw. Then w ∼h 1 in U(On) and
hence σ ∼h id. Consequently, K0(σ) = idK0(On). Hint: Note that w belongs
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to M = span{SiSjS∗kS∗m}, and that M is a C∗-subalgebra of On isomorphic to
Mn2(C).

(4) Combining (2) and (3) we get (n − 1) K0(On) = 0. Thus, in particular,
K0(O2) = 0. In fact, Cuntz showed in [c-j81] that K0(On) ∼= Zn−1 for all
n = 2, 3, . . .

Exercise 21 (Properly infinite algebras). Let A be a unital C*-algebra. A is
called properly infinite if there exist two projections e, f in A such that ef = 0
and 1 ∼ e ∼ f . For example, Cuntz algebras are properly infinite. For the
reminder of this exercise assume A is properly infinite.

(1) A contains isometries S1, S2 whose range projections are orthogonal.

(2) A contains an infinite sequence {tj} of isometries with mutually orthogonal
ranges. Hint: take Sk2S1 for k = 0, 1, 2, . . .

(3) For each natural number n let vn be an element of M1,n(A) with entries
t1, . . . , tn. Then v∗nvn = 1n and for p ∈ Pn(A) we have p ∼0 vnpv

∗
n, with vnpv

∗
n

a projection in A.

(4) Let p, q be projections in A. Set

r = t1pt
∗
1 + t2(1− q)t∗2 + t3(1− t1t∗1 − t2t∗2)t∗3.

Then r is a projection in A and [r]0 = [p]0 − [q]0.

Conclude that
K0(A) = {[p]0 : p ∈ P(A)}.

Exercise 22. If A is a separable, unital C*-algebra then K0(A) is countable.

Exercise 23. Show that condition (iii) of Proposition 3.8 may be replaced by
any of the following three conditions:

(i) ∀n∀p, q ∈ Pn(A) if p ∼u q then ν(p) = ν(q),

(ii) ∀p, q ∈ P∞(A) if p ∼0 q then ν(p) = ν(q),

(iii) ∀p, q ∈ P∞(A) if p ∼s q then ν(p) = ν(q).

Exercise 24. Let A be a unital C*-algebra and let a ∈ A be such that a ≥ 0
and ||a|| ≤ 1.

(1) Show that

p =

(
a

√
a− a2√

a− a2 1− a

)

is a projection in M2(A).

(2) Show that p ∼ diag(1, 0) in M2(A). Hint: consider

v =

( √
a
√

1− a
0 0

)

(3) Let B be another unital C*-algebra and let ϕ : A→ B be a unit preserving,
surjective ∗-homomorphism. Let q be a projection in B. Show that there is
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a ≥ 0 in A such that ||a|| ≤ 1 and ϕ(a) = q. Then use this a to define p as in
(1) above and show that

ϕ(p) =

(
q 0
0 1− q

)

Exercise 25 (Partial isometries). Show that for an element S of a C*-algebra
the following conditions are equivalent:

(i) S∗S is a projection,

(ii) SS∗ is a projection,

(iii) SS∗S = S.

(i)⇒(iii) Show (SS∗S − S)∗(SS∗S − S) = 0.
An element S satisfying these conditions is called partial isometry.

Exercise 26. Let A be a unital C*-algebra, a, b two elements of A, and p, q two
projections in A. Show the following.

(i) abb∗a∗ ≤ ||b||2aa∗.

(ii) p ≤ q if and only if pq = p.

(i) Since ||b||2 − bb∗ ≥ 0 there is x ∈ A such that ||b||2 − bb∗ = xx∗. Thus

||b||2aa∗ − abb∗a∗ = a(||b||2 − bb∗)a∗ = axx∗a∗ = (ax)(ax)∗ ≥ 0.

(ii) If p ≤ q then pqp−p = p(q−p)p ≥ 0, and hence pqp ≥ p. But pqp ≤ ||q||p = p
(by part (i)). Thus pqp = p. Hence

(pq − p)(pq − p)∗ = (pq − p)(qp− p) = pqp− pqp− pqp+ p = 0

and consequently pq − p = 0.

Exercise 27. Let A be a unital C*-algebra. Then the exact sequence

0 −→ A
ı−→ Ã

π−→ C −→ 0

is split exact, with a splitting map λ : C −→ Ã, and induces a split exact
sequence

0 −→ K0(A)
K0(ı)−→ K0(Ã)

K0(π)−→ K0(C) −→ 0,

with a splitting map K0(λ) : K0(C) −→ K0(Ã).

Hint: Let f = 1Ã − 1A, a projection such that Ã = A ⊕ Cf (direct sum of

C*-algebras). Let µ be the natural surjection from Ã onto A and let λ′ : C→ Ã
be defined by λ′(t) = tf . Then we have the following identities: idA = µ ◦ ı,
π ◦ ı = 0, π ◦ λ = idC, idÃ = ı ◦ µ + λ′ ◦ π, and the maps ı ◦ µ and λ′ ◦ π are
orthogonal to one another (see Exercise 3.3.11). The claim follows from these
identities and functoriality of K0.
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Example 3.16 (Algebraic definition of K0). Let R be a unital ring. Recall that
e ∈ R is an idempotent if e2 = e. We define I(R) = {e ∈ R : e2 = 2},
In(R) = I(Mn(R)), I∞(R) =

⋃∞
n=1 In(R). We define a relation ≈0 in I∞(R)

as follows. If e ∈ In(R) and f ∈ Im(R) then e ≈0 f if and only if there exist
a ∈Mn,m(R) and b ∈Mm,n(R) such that e = ab and f = ba. If this is the case
then taking a′ = aba and b = bab we may assume that a, b satisfy aba = a and
bab = b (this we always assume in what follows). Claim: ≈0 is an equivalence
relation. For transitivity, let e ≈0 f , f ≈0 g be idempotents and let c, d, x, y be
matrices such that e = cd, f = dc, f = xy, g = yx. Then (cx)(yd) = e and
(yd)(cx) = g, and hence e ≈0 g. Set V (R) = I∞(R)/≈0 , anddenote the class of
e by [e]V .

Define a binary operation ⊕ on I∞(R) by e⊕f = diag(e, f). This operation
is well-defined on equivalence classes of ≈0 and turns V (R) into an abelian
semigroup. DefineK0(R) as the Grothendieck group of (V (R),⊕).

Now suppose A is a unital C*-algebra. We show hat the two definitions of
K0(A) coincide. In fact, the two semigoups D(A) and V (A) are isomorphic.
The proof proceeds in three steps.

(1) If e ∈ I∞(A) ten there exists a p ∈ P∞(A) such that e ≈0 p. Indeed, let
e ∈Mn(A), and set h = 1n+ (e− e∗)(e− e∗)∗. Then h is invertible and satisfies
eh = ee∗e = he. Then p = ee∗h−1 is a projection. Since ep = p and pe = e,
e ≈0 p.

(2) If p, q ∈ P∞(A) then p ∼0 q if and only if p ≈0 q. Indeed, suppose (after
diagonalling adding zeros, if necessary) p, q ∈Mn(A) and a, b ∈Mn(A) are such
that p = ab, q = ba, a = aba (hence a = paq), b = bab (hence b = qbp). Then
b∗b = (bab)∗b = (ab)∗b∗b = pb∗b. It follows that b∗b belongs to the corner C*-
algebra pMn(A)p. Since p = (ab)∗ab = b∗(a∗a)b ≤ ||a||2b∗b, the element b∗b is
invertible in pMn(A)p. Set v = bp(b∗b)−1/2. We have p = v∗v (straightforward
calculation). In particular, v is a partial isometry. In fact, b = v|b| is the polar
decomposition of b in Mn(A). Hence bb∗ = vb∗bv∗.

It now suffices to show that q = vv∗. First note that v = qv (directly follows
from the definition of v). Thus

vv∗ = qvv∗q ≤ ||v||2q = q = baa∗b∗ ≤ ||a||2bb∗ = ||a||2vb∗bv∗ ≤ ||a||2||b||2vv∗.

That is, vv∗ and q are projections satisfying vv∗ ≤ q ≤ ||a||2||b||2vv∗. It follows
that vv∗ = q.

(3) The map D(A) → V (A) given by [p]D 7→ [p]V is a semigroup isomorphism.
(exercise)
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Chapter 4

K0-Group — the General
Case

4.1 Definition of the K0-Functor

Definition 4.1. Let A be a non-unital C*-algebra and let Ã be its minimal
unitization. We have a split-exact sequence

0 −→ A −→ Ã
π−→ C −→ 0.

Define K0(A) = ker(K0(π)), where K0(π) : K0(Ã)→ K0(C) is the map induced
by π.

Thus, by definition, K0(A) is a subgroup of K0(Ã) and hence an abelian
group. If p ∈ P∞(A) then [p]0 ∈ K0(Ã). But [p]0 ∈ ker K0(π) and hence [p]0 ∈
K0(A). Thus, just as in the unital case, we have a map [·]0 : P∞(A)→ K0(A).

If A is unital then we can still form direct sum (of C*-algebras) Ã = A⊕C.
Let π be the natural surjection from Ã onto C. As shown in Exercise 3.3.19, we
have K0(A) = ker(K0(π)). Thus, Definition 4.1 works equally well in the case
of a unital C*-algebra.

4.1.1 Functoriality of K0

Let ϕ : A→ B be a ∗-homomorphism. Then the diagram

A //
ϕ �� Ã

ϕ̃ �� // C
B // B̃ // C

commutes. Functoriality of K0 for unital C*-algebras yields a commutative
diagram

K0(A) //
K0(ϕ) �� K0(Ã)

K0(ϕ̃) �� // K0(C)

K0(B) // K0(B̃) // K0(C)
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and there exists exactly one map K0(ϕ) : K0(A)→ K0(B) which completes the
diagram. Note that we have K0([p]0) = [ϕ(p)]0 for p ∈ P∞(A).

Proposition 4.2. Let ϕ : A → B, ψ : B → C be ∗-homomorphsms between
C*-algebras. Then

(i) K0(idA) = idK0(A),

(ii) K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ).

Proof. Exercise — use functoriality of K0 for unital C*-algebras.

Moreover, it is immediate from the definitions that K0 of the zero algebra is
0 and K0 of the zero homomorphism is the zero map.

4.1.2 Homotopy invariance of K0

Proposition 4.3. Let A,B be C*-algebras.

(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K0(ϕ) = K0(ψ).

(ii) If A
ϕ−→ B

ψ−→ A is a homotopy then K0(ϕ) and K0(ψ) are isomorphisms
and inverses of one another.

Proof. (i) Since ϕ and ψ are homotopic so are they unital extensions ϕ̃ and ψ̃
to Ã, whence K0(ϕ̃) = K0(ψ̃) by Proposition 3.10. Then K0(ϕ) = K0(ψ) being
the restrictions of these maps to K0(A). Part (ii) follows from part (i) and
functoriality of K0.

4.2 Further Properties

4.2.1 Portrait of K0

Let A be a C*-algebra and consider the split-exact sequence

0 −→ A
ı−→ Ã

π−→ C −→ 0,

with the splitting map λ : C → Ã. Define the scalar map s = λ ◦ π : Ã → Ã,
so that s(a+ t1) = t1. Let sn : Mn(Ã) → Mn(Ã) be the natural extensions of
s. The image of sn is isomorphic to Mn(C), and its elements are called scalar
matrices. The scalar map is natural in the sense that for any ∗-homomorphism
ϕ : A→ B the diagram

Ã
s //

ϕ̃ �� Ã

ϕ̃��
B̃

s // B̃
commutes.

Proposition 4.4. Let A be a C*-algebra.

(i) K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(Ã)}.

(ii) If p, q ∈ P∞(Ã) then the following are equivalent:
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(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0,

(b) there are k, l such that p⊕ 1k ∼0 q ⊕ 1l in P∞(Ã),

(c) there are scalar projections r1, r2 such that p ⊕ r1 ∼0 q ∼0 r2 such
that p⊕ r1 ∼0 q ⊕ r2.

(iii) If p ∈ P∞(Ã) and [p]0 − [s(p)]0 = 0 then there is m such that p ⊕ 1m ∼
s(p)⊕ 1m.

(iv) If ϕ : A→ B is a ∗-homomorphism then K0(ϕ)([p]0 − [s(p)]0) = [ϕ̃(p)]0 −
[s(ϕ̃(p))]0 for each p ∈ P∞(Ã).

Proof. (i) It is clear that [p]0 − [s(p)]0 ∈ ker(K0(π)) = K0(A). Conversely, let
g ∈ K0(A), and let e, f be projections in Mn(Ã) such that g = [e]0 − [f ]0. Put

p =

(
e 0
0 1n − f

)
, q =

(
0 0
0 1n

)
.

We have [p]0 − [q]0 = [e]0 + [1n − f ]0 − [1n]0 = [e]0 − [f ]0 = g. As q = s(q)
and K0(π)(g) = 0, we also have [s(p)]0 − [q]0 = [s(p)]0 − [s(q)]0 = K0(s)(g) =
(K0(λ) ◦K0(π))(g) = 0. Hence g = [p]0 − [s(p)]0.

(ii) (a)⇒(c) If [p]0 − [s(p)]0 = [q]0 − [s(q)]0 then [p ⊕ s(q)]0 = [q ⊕ s(p)]0 and
hence p⊕ s(q) ∼s q⊕ s(p) in P∞(Ã). Thus there is n such that p⊕ s(q)⊕1n ∼0

q ⊕ s(p)⊕ 1n, and it suffices to take r1 = s(q)⊕ 1n and r2 = s(p)⊕ 1n.

(c)⇒(b) If r1, r2 are scalar projections in P∞(Ã) of rank k and l, respectively,
then r1 ∼0 1k and r2 ∼0 1l. Thus p⊕ 1k ∼0 q ⊕ 1l.

(b)⇒(a) We have [p⊕ 1k]0 − [s(p⊕ 1k)]0 = [p]0 + [1k]0 − [s(p)]0 − [1k]0 = [p]0 −
[s(p)]0 and likewise [q⊕1l]0− [s(q⊕1l)]0 = [q]0− [s(q)]0. Thus it suffices to show
that [p]0 − [s(p)]0 = [q]0 − [s(q)]0 whenever p ∼0 q. So let p = v∗v and q = vv∗.
Then s(v) is a scalar rectangular matrix and s(p) = s(v)∗s(v), s(q) = s(v)s(v)∗.
Thus s(p) ∼0 s(q). Consequently [p]0 = [q]0 and [s(p)]0 = [s(q)]0.

(iii) If [p]0− [s(p)]0 = 0 then p ∼s s(p) and hence there is m such that p⊕ 1m ∼
s(p)⊕ 1m.

(iv) K0(ϕ)([p]0−[s(p)]0) = K0(ϕ̃)([p]0−[s(p)]0) = [ϕ̃(p)]0−[ϕ̃(s(p))]0 = [ϕ̃(p)]0−
[s(ϕ̃(p))]0.

4.2.2 (Half)exactness of K0

In this section we proof that the K0 functor is half exact — a property of crucial
importence. To this end, we first proof the following technical lemma. Another
lemma we need is given in Exercise 4.4.5.

Lemma 4.5. Let ψ : A→ B be a ∗-homomorphism between two C*-algebras,
and let g ∈ ker(K0(ψ)).

(i) There is n, a projection p ∈ Pn(Ã), and a unitary u ∈Mn(B̃) such that

g = [p]0 − [s(p)]0 and uψ̃(p)u∗ = s(ψ̃(p)).

(ii) If ψ is surjective then there is a projection p ∈ P∞(Ã) such that

g = [p]0 − [s(p)]0 and ψ̃(p) = s(ψ̃(p)).

66



Part I Further Properties

Proof. (i) By virtue of Proposition 4.4, there is a projection p1 ∈ Pk(Ã) such
that g = [p1]0 − [s(p1)]0, and we have [ψ̃(p1)]0 − [s(ψ̃(p1))]0 = 0. Thus ψ̃(p1)⊕
1m ∼ s(ψ̃(p1)) ⊕ 1m for some m, again by Proposition 4.4. Put p2 = p1 ⊕ 1m.
Then g = [p2]0 − [s(p2)]0 and ψ̃(p2) = ψ̃(p1)⊕ 1m ∼ s(ψ̃(p1))⊕ 1m = s(ψ̃(p2)).
Put n = 2(k + m) and p = p2 ⊕ 0k+m ∈ Pn(Ã). Clearly, [p]0 − [s(p)]0 = g. By
Proposition 2.2.9, there is a unitary u in Mn(Ã) such that uψ̃(p)u∗ = s(ψ̃(p)).

(ii) By virtue of part (i), there is n, a projection p1 ∈ Pn(Ã), and a unitary
u ∈ Mn(Ã) such that g = [p]0 − [s(p)]0 and uψ̃(p1)u∗ = s(ψ̃(p1)). By Lemma
2.1.8, there exists a unitary v ∈ M2n(Ã) such that ψ̃(v) = diag(u, u∗). Put
p = v diag(p1, 0n)v∗. Then

ψ̃(p) =

(
u 0
0 u∗

)(
ψ̃(p1) 0

0 0

)(
u∗ 0
0 u

)
=

(
s(ψ̃(p1)) 0

0 0

)

is a scalar matrix. Thus s(ψ̃(p)) = ψ̃(p). Finally, g = [p]0 − [s(p)]0 since
p ∼0 p1.

Theorem 4.6. A short exact sequence of C*-algebras

0 −→ J
ϕ−→ A

ψ−→ B −→ 0 (4.1)

induces an exact sequence

K0(J)
K0(ϕ)−→ K0(A)

K0(ψ)−→ K0(B).

If the sequence (4.1) splits with a splitting map λ : B → A, then there is a
split-exact sequence

0 −→ K0(J)
K0(ϕ)−→ K0(A)

K0(ψ)−→ K0(B) −→ 0 (4.2)

with a splitting map K0(λ) : K0(B)→ K0(A).

Proof. Since the sequence (4.1) is exact, functoriality of K0 yields K0(ψ) ◦
K0(ϕ) = K0(ψ ◦ ϕ) = K0(0) = 0. Thus the image of K0(ϕ) is contained in
the kernel of K0(ψ). Conversely, let g ∈ ker(K0(ψ)). Then there is a projection
p in P∞(Ã) such that g = [p]0 − [s(p)]0 and ψ̃(p) = s(ψ̃(p)) by part (ii) of
Lemma 4.5. By part (ii) of Exercise 4.4.5, there is an element e in M∞(J̃) such
that ϕ̃(e) = p. Since ϕ̃ is injective (by part (i) of Exercise 4.4.5), e must be a
projection. Hence g = [ϕ̃(e)]0− [s(ϕ̃(e))]0 = K0(ϕ)([e]0− [s(e)]0) belongs to the
image of K0(ϕ).

Now suppose the sequence (4.1) is split-exact. The sequence (4.2) is exact
at K0(A) by part (i) above. Functoriality of K0 yields idK0(B) = K0(idB) =
K0(ψ) ◦ K0(λ) and hence the sequence is exact at K0(B). It remains to show
that K0(ϕ) is injective. Let g ∈ ker(K0(ϕ)). By part (i) of Lemma 4.5 there is
n, a projection p ∈ Pn(J̃), and a unitary u ∈Mn(Ã) such that g = [p]0− [s(p)]0
and uϕ̃(p)u∗ = s(ϕ̃(p)). Put v = (λ̃ ◦ ψ̃)(u∗)u, a unitary in Mn(Ã) such that
ψ̃(v) = 1n. By Exercise 4.4.5, there is an element w ∈Mn(J̃) such that ϕ̃(w) =
v. Since ϕ̃ is injective w must be unitary. We have

ϕ̃(wpw∗) = vϕ̃(p)v∗ = (λ̃ ◦ ψ̃)(u∗)s(ϕ̃(p))(λ̃ ◦ ψ̃)(u) = (λ̃ ◦ ψ̃)(u∗s(ϕ̃(p))u)

= (λ̃ ◦ ψ̃)(ϕ̃(p)) = s(ϕ̃(p)) = ϕ̃(s(p)).

Since ϕ̃ is injective, we conclude that wpw∗ = s(p). Thus p ∼u s(p) in Mn(J̃)
and hence g = 0.
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4.3 Inductive Limits. Continuity and Stability
of K0

4.3.1 Increasing limits of C*-algebras

Let {Ai}∞i=1 be a sequence of C*-algebras such that Ai ⊆ Ai+1. Then A∞ =⋃∞
i=1 An is a normed ∗-algebra satisfying all the axioms of a C*-algebra except

perhaps of completeness. Let A be the completion of A∞. Then A is a C*-
algebra, called the increasing limit of An.

4.3.2 Direct limits of ∗-algebras

Let Ai be an infinite sequence of ∗-algebras. Suppose that for each pair j ≤
i there is given a ∗-homomorphism Φij : Aj → Ai, and that the following
coherence condition holds: Φij = Φik ◦ Φkj whenever j ≤ k ≤ i, and Φii = id.
Let

∏
iAi be the product ∗-algebra, with coordinate-wise operations inherited

from Ai’s. Let
∑

iAi be the ∗-ideal of
∏
iAi consisting of sequences whose

all but finitely many terms are 0, and let π :
∏
iAi →

∏
iAi/

∑
iAi be the

canonical surjection. Set

A∞ = π

({
(ai) ∈

∏

i

Ai : ∃i0∀i : i ≥ i0 ⇒ ai = Φii0(ai0)

})
. (4.3)

A∞ is called direct limit of the directed system {Ai,Φij} and denoted lim
−→
{Ai,Φij}.

By definition, A∞ is a ∗-algebra, and there exist canonical morphisms Φi : Ai →
A∞ such that A∞ =

⋃
i Φi(Ai) and for all j ≤ i the following diagram com-

mutes:
Aj

Φj !!CCCCCCCC
Φij �� A∞

Ai

Φi

=={{{{{{{{
Indeed, for x ∈ Aj define Φj(x) = π((ai)), where ai = 0 if i < j and ai = Φij(x)
if i ≥ j.

The direct limit A∞ = lim
−→
{Ai,Φij} has the following universal property. If

B is a ∗-algebra and for each i there is a ∗-homomorphism Ψi : Ai → B such
that Ψi ◦Φij = Ψj for every j ≤ i, then there exists a unique ∗-homomorphism
Λ : A∞ → B such that the diagram

Aj

Φj !!CCCCCCCC Ψj ((PPPPPPPPPPPPPPPP
Φij �� A∞

Λ // B
Ai

Φi

=={{{{{{{{ Ψi
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commutes.
Everything from this section may be generalized to the case of directed sys-

tems of ∗-algebras over directed sets rather than merely sequences. Furthermore,
the same construction works for abelian groups (or even monoids) and their ho-
momorphisms rather than ∗-algebras and ∗-homomorphisms.

4.3.3 C*-algebraic inductive limits

Now suppose that each Ai is a C*-algebra rater than just a ∗algebra. By defini-
tion, the product

∏
iAi consists of sequences (ai) for which ||(ai)|| = sup{||ai||}

is finite. With this norm
∏
iAi is a C∗-alebra. Let

∑
iAi be the closure

of the ideal of sequences whose all but finitely many terms are 0, and let
π :
∏
iAi →

∏
iAi/

∑
iAi be the canonical surjection. We define

lim
−→
{Ai,Φij} =

the closure of π

({
(ai) ∈

∏

i

Ai : ∃i0∀i : i ≥ i0 ⇒ ai = Φii0 (ai0)

})
.

(4.4)

This definition is correct since ∗-homomorphisms between C*-algebras are norm-
decreasing. As before, there exist ∗-homomorphisms Φi : Ai → A∞ satisfing
(4.3.2), and the universal property (4.3.2) holds.

4.3.4 Continuity of K0

Theorem 4.7. Let {Ai,Φij} be an inductive sequence of C*-algebras and let
A = lim

−→
{Ai,Φij}. Then {K0(Ai),K0(Φij)} is a direct sequence of abelian groups

and
K0(A) = K0(lim

−→
{Ai,Φij}) ∼= lim

−→
{K0(Ai),K0(Φij)}.

Proof. W denote by Φi : Ai → A = limAi the canonical maps. Functoriality of
K0 implies that {K0(Ai),K0(Φij)} is a direct sequence of abelian groups. Let
ϕi : K0(Ai) → lim K0(Ai) be the canonical maps. Since for j ≤ i we have
K0(Φj) = K0(Φi) ◦ K0(Φij) by functoriality of K0, the universal property of
lim K0(Ai) yields a unique homomorphism ϕ : lim K0(Ai) → K0(A) such that
ϕi = ϕ ◦ ϕj for all j ≤ i.

K0(Aj)
ϕj //

K0(Φij) �� lim K0(Ai)

ϕ��
K0(Ai)

K0(Φi)
// K0(limAi)

We must show that ϕ is injective and surjective.

Injectivity of ϕ. Since lim K0(Ai) =
⋃
i ϕi(K0(Ai)), it suffices to show that

ϕ|ϕj(K0(Aj)) is injective for all j. That is we must show that if g ∈ K0(Aj) and
K0(Φj)(g) = (ϕ ◦ϕj)(g) = 0 in K0(A) then ϕj(g) = 0 in lim K0(Ai). So let g =

[p]0− [s(p)]0 for some p ∈ Pn(Ãj). Then 0 = K0(Φj)(g) = [Φ̃j(p)]0− [s(Φ̃j(p))]0
in K0(A). Hence there is m and a partial isometry w ∈Mn+m(Ã) such that

ww∗ = Φ̃j(p)⊕ 1m and w∗w = s(Φ̃j(p))⊕ 1m.
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By Exercise 34, there is i ≥ j and xi ∈Mn+m(Ãi) with Φ̃i(xi) close enough to
w to ensure that

||Φ̃i(xi)Φ̃i(xi)∗−Φ̃j(p)⊕1m|| < 1/2 and ||Φ̃i(xi)∗Φ̃i(xi)−s(Φ̃j(p))⊕1m|| < 1/2.

Since Φj = Φi ◦ Φij , Exercise 37 implies that there is k ≥ i such that

||xkx∗k − Φ̃kj(p)⊕ 1m|| < 1/2 and ||x∗kxk − s(Φ̃kj(p))⊕ 1m|| < 1/2,

where xk = Φ̃ki(xi). By part (ii) of Exercise 38, Φ̃kj(p) ⊕ 1m is equivalent to

s(Φ̃j(p))⊕ 1m in Mn+m(Ãm). Thus

K0(Φkj)(g) = [Φ̃kj(p)⊕ 1m]0 − [s(Φ̃j(p))⊕ 1m]0 = 0

in K0(Ak). Consequently, ϕj(g) = (ϕk ◦K0(Φkj))(g) = 0, as required.

Surjectivity of ϕ. Consider an element [p]0 − [s(p)]0 of K0(A), for some p ∈
Pk(Ã). Take a small ǫ > 0. By Exercise 34, there is n and bn ∈ Mk(Ãn) such
that ||Φ̃n(bn) − p|| < ǫ. Put an = (bn + b∗n)/2 and am = Φ̃mn(an) for m ≥ n.
Each am is self-adjoint and ||Φ̃m(am) − p|| < ǫ. We have ||Φ̃n(an − a2

n)|| <
ǫ(3 + ǫ) < 1/4 for sufficiently small ǫ. Thus, by Exercise 37, ||am − a2

m|| < 1/4
for sufficiently large m. By Exercise 38, there is a projection q in Mk(Ãm) such
that ||am − q|| < 1/2. We have ||Φ̃m(q) − p|| < 1/2 + ǫ < 1 and hence Φ̃m(q)
and p are equivalent. Thus

[p]0 − [s(p)]0 = [Φ̃m(q)]0 − [s(Φ̃m(q))]0 = K0(Φm)([q]0 − [s(q)]0).

Since K0(Φm) = ϕ ◦ ϕm, surjectivity of ϕ follows.

4.3.5 Stability of K0

Proposition 4.8. Let A be a C*-algebra, and let p be minimal projection in
K. The map ϕ : A → A ⊗ K such that ϕ(a) = a ⊗ p induces an isomorphism
K0(ϕ) : K0(A)→ K0(A⊗K).

Proof. For n ≥ m let Φnm : Mm(A) → Mn(A) be the imbedding Φnm(a) =
diag(a, 0n−m). By Exercise 36, A ⊗ K is isomorphic with the limit of the
inductive sequence {Mn(A),Φnm}. We have Φn1 = Φnm ◦ Φm1 and hence
K0(Φn1) = K0(Φnm) ◦ K0(Φm1). Moreover, all the mapsare isomorphism on
K0, by Exercise 4.4.7. Let ψn = K0(Φn1)−1. Then ψm = ψn ◦ K0(Φnm) for
all n ≥ m. Thus the universal property of direct limits yields a unique homo-
morphism Λ : lim

−→
{Mn(A),Φnm} ∼= K0(A ⊗ K) → K0(A) which fits into the

commutative diagram

K0(Mm(A))
K0(Φm)//

K0(Φnm) �� K0(A⊗K)

Λ��
K0(Mn(A))

ψn

// K0(A)

where Φn : Mn(A) → A ⊗ K are the canonical maps. It follows that Λ is an
isomorphism. Furthermore, Λ−1 = K0(ϕ), as required.
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4.4 Examples and Exercises

Example 4.9. Consider the exact sequence

0 −→ C0((0, 1)) −→ C([0, 1])
ψ−→ C⊕ C −→ 0.

We have K0(C ⊕ C) ∼= Z2 and K0(C([0, 1])) ∼= Z (since [0, 1] is contractible).
Thus K0(ψ) cannot be surjective.

Example 4.10. Let H be a separable Hilbert space,and let K be the ideal of
compact operators on H. There is an exact sequence

0 −→ K ı−→ B(H) −→ B(H)/K −→ 0.

We already know that K0(B(H)) = 0 and we will see later that K0(K) ∼= Z.
Thus K0(ı) cannot be injective.

Exercise 28. Let Q = B(H)/K be the Calkin algebra (corresponding to a sepa-
rable Hilbert space H), and let π : B(H)→ Q be the natural surjection. Show
the following.

(i) If p 6= 0 is a projection in Q then there is a projection p̃ in B(H) with
infinite dimensional range such that π(p̃) = p.

(ii) Any two non-zero projections in Q are Murray-von Neumann equivalent.

(iii) For each positive integer n we have B(H) ∼= Mn(B(H)), K ∼= Mn(K), and
Q ∼= Mn(Q).

(iv) The semigroup D(Q) is isomorphic to {0,∞}, with ∞+∞ =∞.

(v) K0(Q) = 0.

(i) Hint: If p is a projection in Q then there exists x = x∗ in B(H) such that
π(x) = p. Thus x2 − x is compact. Let x2 − x =

∑
n λnen be the spectral

decomposition (0 6= λn ∈ R, λn → 0, {en} mutually orthogonal projections of
finite rank, commuting with x). Correct each xen.

Example 4.11. In this example we argue why Definition 3.5 would not be appro-
priate for non-unital C*-algebras. Nameley, let A be a C∗-alebra (unital or not)
and define K00(A) as the Grothendieck group of D(A). Thus, if A is unital the
K00(A) = K0(A), but in the non-unital case these two groups may be different.
It can be shown that such defined K00 is a covariant functor. However, this
functor has a serious defect of not being half-exact. Indeed, consider an exact
sequence

0 −→ C0(R2) −→ C(S2) −→ C −→ 0.

We have K0(C) ∼= Z, and it can be shown that K0(S2) ∼= Z2 and K00(R2) = 0
(for the latter see Exercise 4.3.4 below). Thus K00 cannot be half-exact.

Exercise 29. If 0 −→ J
ϕ−→ A

ψ−→ B −→ 0 is an exact sequence of C*-algebras
then:

(i) ϕ̃n : Mn(J̃)→Mn(Ã) is injective,

(ii) a ∈Mn(Ã) is in the image of ϕ̃n if and only if ψ̃n(a) = sn(ψ̃n(a)).
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Exercise 30. Let X be a connected, locally compact but not compact Hausdorff
space. Then K00(C0(X)) = 0. To this end show that P∞(C0(X)) = {0}, as
follows. Identify Mn(C0(X)) with C0(X,Mn(C)), and let p be a projection in
Pn(C0(X)). As usual, let Tr be the standard trace on Mn(C). The function
x 7→ Tr(p(x)) belongs to C0(X,Z) and hence it is the zero function, since X is
connected and non-compact.

Exercise 31 (Matrix stability of K0). Let A be a C*-algebra and let n be a
positive integer. Then K0(A) ∼= K0(Mn(A)). More specifically, the map ϕA :
A→Mn(A), a 7→ diag(a, 0n−1) induces an isomorphism K0(ϕA)→ K0(Mn(A)).
Indeed, the diagram

0 // A //
ϕA �� Ã //

ϕÃ �� C //
ϕC �� 0

0 // Mn(A) // Mn(Ã) // Mn(C) // 0
commutes and has split-exact rows. Thus the diagram

0 // K0(A) //
K0(ϕA) �� K0(Ã) //

K0(ϕÃ) �� K0(C) //
K0(ϕC) �� 0

0 // K0(Mn(A)) // K0(Mn(Ã)) // K0(Mn(C)) // 0
commutes and has split-exact rows. Hence the Five Lemma (or an easy diagram
chasing) implies that K0(ϕA) is an isomorphism if both K0(ϕÃ) and K0(ϕC) are.
This reduces the proof to the unital case (see Exercise 3.3.10).

Exercise 32. Let A be a C*-algebra, and denote by Aut(A) the group of ∗-
automorphisms of A. If α ∈ Aut(A) then K0(α) is an automorphism of K0(A).

(i) If u is a unitary in Ã then Ad(u) : A→ A, a 7→ uau∗, is an automorphism
of A. Moreover, the map U(Ã) → Aut(A), u 7→ Ad(u) is a group homo-
morphism, and Inn(A) = {Ad(u) : u ∈ U(Ã)} is a normal subgroup of
Aut(A).

(ii) If α ∈ Inn(A) then K0(α) = id.

(iii) An α ∈ Aut(A) is approximately inner if and only if for any finite subset
F of A and any ǫ > 0 there is β ∈ Inn(A) such that ||α(x)− β(x)|| < ǫ for
all x ∈ F . The collection of all approximately inner automorphisms of A
is denoted Inn(A).

Show that if A is separable then α is approximately inner if and only if
there is a sequence βn ∈ Inn(A) such that βn(a)→ α(a) for each a ∈ A.

(iv) Inn(A) is a normal subgroup of Aut(A), and K0(α) = id for each α ∈
Inn(A).

(v) Give examples of automorphisms of C*-algebras which induce non-trivial
automorphisms on K0.
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Example 4.12. Let A be a C*-algebra. We define the cone CA and the suspen-
sion SA as follows:

CA = {f : [0, 1]→ A : f continuous and f(0) = 0},
SA = {f : [0, 1]→ A : f continuous and f(0) = f(1) = 0}.

There is a short exact sequence

0 −→ SA −→ CA
π−→ A −→ 0,

with π(f) = f(1). Furthermore, CA is homotopy equivalent to {0}. Indeed,
with t ∈ [0, 1] set ϕt : CA → CA as ϕt(f)(s) = f(st). Then for each f ∈ CA
the map t 7→ ϕt(f) is continuous, and ϕ0 = 0, ϕ1 = id. We conclude that

K0(CA) = 0.

Example 4.13 (Direct sums). For any two C*-algebras A,B we have

K0(A⊕B) ∼= K0(A)⊕K0(B).

More specifically, if iA and iB are the inclusions of A and B, respectively, into
A⊕B, then K0(iA)⊕K0(B) : K0(A)⊕K0(B)→ K0(A⊕B) is an isomorphism.
Indeed, let πA and πB be the surjections from A⊕B onto A and B, respectively.
The following diagram has exact rows (the bottom one by split-exactness of K0)
and commutes (since πB ◦ iA = 0 and πB ◦ iB = idB):

0 // K0(A)
α // K0(A)⊕K0(B)

β //
K0(iA)⊕K0(iB) �� K0(B) // 0

0 // K0(A)
K0(iA)

// K0(A⊕B)
K0(πB)

// K0(B) // 0
An easy diagram chasing (or the Five Lemma) implies that K0(iA)⊕K0(iB) is
an isomorphism.

Exercise 33. Let {Ai} be a sequence of C*-algebras, and let a = (ai) ∈
∏
iAi.

Then
||π(a)|| = lim||ai||.

In particular, a belongs to
∑

iAi if and only if lim
i→∞
||ai|| = 0.

Exercise 34. Let A = lim
−→
{Ai,Φij}. To each x ∈ A and ǫ > 0 there is an

arbitrarily large index i and xi ∈ Ai such that

||x− Φi(xi)|| < ǫ.

Example 4.14 (UHF algebras). Let {pn}∞n=1 be a sequence of integers pn ≥ 2.

For 1 ≤ j define Φj+1,j :
⊗j

n=1Mpn(C)→⊗j+1
n=1Mpn(C) by Φj+1,j(x) = x⊗ I.

These are unital, injectve ∗-homomorphisms. Then for 1 ≤ j ≤ i define Φij :⊗j
n=1Mpn(C) → ⊗i

n=1Mpn(C) by Φij = Φi,i−1 ◦ . . . ◦ Φj+1,j . The inductive
limit lim

−→
{Ai,Φij} is called the UHF algebra corresponding to the supernatural

number (p1p2 · · · ). These are simple, unital C*-algebras, equipped with a unique
tracial state. To learn much more about UHF algebras see [g-j60].
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Example 4.15 (AF -algebras). For n = 1, 2, . . . let An be a finite dimensional
C*-algebra. Thus, An is isomorphic to a direct sum of matrix algebras

An ∼= Mkn
1

(C)⊕ . . .⊕M
k

r(n)
n

(C).

For 1 ≤ j let Φj+1,j : Aj → Aj+1 be a ∗-homomorphism, and define Φij =
Φi,i−1 ◦ . . . ◦ Φj+1,j . The corresponding inductive limit lim

−→
{Ai,Φij} is called

an AF -algebra. To learn much more about AF -algebras and about Bratteli
diagrams which describe them see [b-o72].

Exercise 35 (The compacts). LetH be a separable (infinite dimensional) Hilbert
space. Denote by F the collection of all finite rank operators in B(H), and let
K be the norm closure of F (the C*-algebra of compact operators). Show the
following.

(i) F is a two-sided ∗-ideal of B(H), but F is not norm closed in B(H).

(ii) K is a norm closed, two-sided ∗-ideal of B(H), and K 6= B(H).

(iii) Let {ξn}∞n=0 be an orthonoral basis of H. For all i, j let Eij be an operator
defined by Eij(v) = 〈v, ξj〉ξi. Then each Eij is a rank one opeator with
domain Cξj and range Cξi. In particular, {Eii} are mutually orthogonal
projections of rank one whose sum of the ranges densely spans the entire
space H. Furthermore, for each i we have EiiKEii = CEii (a projection in
a C*-algebra with this property is called minimal). The following identities
hold:

EijEkn = δjkEin, E∗ij = Eji. (4.5)

(A collection of elements of a C*-algebra satisfying (4.5) is called a system
of matrix units.) Prove that the closed span of {Eij : i, j = 0, 1, . . .}
coincides with K.

(iv) Let H′ be another Hilbert space and let π : K → H′ be a nondegenerate
representation (i.e. a ∗-homomorphism such that π(K)H′ is dense in H′).
Show that there exists a Hilbert space H0 and a unitary operator U :
H′ → H⊗H0 such that for all x ∈ K we have

Uπ(x)U∗ = x⊗ IH0 .

The dimension of H0 is called the multiplicity of π. Show that π is ir-
reducible if and only if the multiplicity of π is one. Thus, in particular,
the compacts admit precisely one (up to unitary equivalence) irreducible
representation.

(v) K is the universal C*-algebra for the relations (4.5).

(vi) K is a simple C*-algebra, in the sense that the only closed, two-sided ∗-
ideals of K are {0} and K. (In fact, it can be shown that every norm
closed two-sided ideal of a C*-algebra is automatically closed under ∗).

(vii) For each j = 1, 2, . . . let Φj+1,j : Mj(C) → Mj+1(C) be an imbedding
into the upper-left corner, i.e. Φj+1,j(x) = diag(x, 0). As usual, let Φij =
Φi,i−1 ◦ . . . ◦ Φj+1,j for j ≤ i. Show that

K ∼= lim
−→
{Mn(C),Φij}.
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Exercise 36. Let A be a C*-algebra. For n ≥ m let Φnm : Mm(A) → Mn(A)
be the diagonal imbedding Φnm(a) = diag(a, 0n−m). Show that the inductive
limit of the drected sequence {Mn(A),Φnm} is isomorphic with A⊗K.

Exercise 37. Let {Ai,Φij} be an inductive sequence of C*-algebras and let
Φi : Ai → lim

−→
Ai be the canonical maps. Then for all n and a ∈ An we have

||Φn(a)|| = lim
m→∞

||Φmn(a)||.

Exercise 38. Let A be a C*-algebra.

(i) If a = a∗ in A and ||a − a2|| < 1/4 then there is a projection p ∈ A with
||a− p|| < 1/2.

(ii) Let p be a projection in A, and let a be a self-adjoint eleent in A. Put
δ = ||a− p||. Then

sp(a) ⊆ [−δ, δ] ∪ [1− δ, 1 + δ].

(iii) If p, q are projections in A such that there exists an element x ∈ A with
||x∗x− p|| < 1/2 and ||xx∗ − q|| < 1/2 then p ∼ q.

(i) Use Gelfand Theorem.

(ii) Recall that the spectrum of a self-adjoint element consists of real numbers,
and that the spectrum of a non-trivial projection is {0, 1}. Let t be a real
number whose distance d to the set {0, 1} is greater than δ. It suffices to show
that t− a is invertible in Ã. Indeed, for such a t the element t− p is invertible
in Ã and

||(t− p)−1|| = max{ 1

| − t| , :
1

|1− t| } =
1

d
.

Consequently,

||(t− p)−1(t− a)− 1|| = ||(t− p)−1(p− a)|| ≤ 1

d
δ < 1.

Thus (t− p)−1(t− a) is invertible, and so is t− a.

(iii) Let Ω = sp(x∗x) ∪ sp(xx∗). In view of part (ii) of this exercise, Ω is a
compact subset of [0, 1/2)∪ (1/2, 3/2). Let f : Ω→ R be a continuous function
which is 0 on Ω ∩ [0, 1/2) and 1 on Ω ∩ (1/2, 3/2). Then both f(x∗x) and
f(xx∗) are projections. We have ||f(x∗x)−p|| ≤ ||f(x∗x)−x∗x||+ ||x∗x−p|| <
1/2+1/2 = 1 and, likewise, ||f(xx∗)−q|| < 1. Thus f(x∗x) ∼ p and f(xx∗) ∼ q
by Proposition 2.2.5. So it suffices to show that f(x∗x) ∼ f(xx∗). To this end,
first note that xh(x∗x) = h(xx∗)x for every h ∈ C(Ω). Indeed, this is obviously
true for polynomials, and the general case follows from the Stone-Weierstrass
Theorem. Let g ∈ C(Ω), g ≥ 0 be such that tg(t)2 = f(t) for all t ∈ Ω. Set
w = xg(x∗x). Then

w∗w = g(x∗x)x∗xg(x∗x) = f(x∗x),

ww∗ = xg(x∗x)2x∗ = g(xx∗)2xx∗ = f(xx∗),

and the claim follows.

75



Part I Examples and Exercises

Example 4.16. Let A be a unital Banach algebra, and let a, b ∈ A. Then

sp(ab) ∪ {0} = sp(ba) ∪ {0}.

Indeed, let 0 6= λ 6∈ sp(ab) and let u = (λ− ab)−1. Then 1− λu+ uab = 0. Put
w = (1/λ)(1 + bua). We have

w(λ−ba) =
1

λ
(1+bua)(λ−ba) = 1− 1

λ
ba+bua− 1

λ
buaba = 1− 1

λ
b(1−λu+uab)a = 1.

Similarly (λ− ba)w = 1 and hence w = (λ− ba)−1. Thus λ 6∈ sp(ba).

Exercise 39. In the category of abelian groups, consider a direct sequenceAi = Z
with connecting maps Φj+1,j(1) = j. Show that the corresponding limit is
isomorphic to the additive group of Q.

Exercise 40 (Irrational rotation algebras). For an irrational number θ ∈ [0, 1)
define Aθ as the universal C*-algebra generated by two elements u, v, subject
to the relations

vu = e2πiθuv, uu∗ = u∗u = 1 = vv∗ = v∗v. (4.6)

Aθ is called the irrational rotation algebra corresponding to the angle θ. Show
the following.

(i) Let L2(T) be the Hilbert space of square integrable functions on the circle
group (with respect to the probability Haar measure dz). SetH = L2(T)⊗
L2(T), and define two operators U, V ∈ B(H) by

(Uξ)(z1, z2) = z1ξ(z1, z2), (V ξ)(z1, z2) = z2ξ(e
2πiθz1, z2).

Then U, V satisfy (4.6). Thus, there exists a representation π : Aθ → B(H)
such that π(u) = U and π(v) = V .

(ii) Let Aθ be the dense ∗-subalgebra of Aθ generated by u, v. Then each
element of Aθ has the form

∑

n,m∈Z

λn,mu
nvm, λn,m ∈ C.

(iii) Let ξ0 be the unit vector in H such that ξ0(z1, z2) = 1, and define
τ(a) = 〈π(a)ξ0, ξ0〉, a ∈ Aθ. Then τ(

∑
n,m∈Z λn,mu

nvm) = λ0,0 and
hence τ(aa∗) = τ(a∗a) for all a ∈ Aθ. Conclude that τ is a tracial state
on Aθ.

(iv) For f, g : T→ R let

p = f(u)v∗ + g(u) + vf(u)

be a self-adjoint element of Aθ. Use an approximation of f and g by
Laurent polynomials to show that

τ(p) =

∫

T

g(z)dz.
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(v) Let ϕ : T→ T be given by ϕ(z) = e2πiθz. Then vh(u) = (h ◦ϕ)(u)v for all
h ∈ C(T). Show that p = p2 if and only if

(f ◦ ϕ)f = 0, (g + g ◦ ϕ−1)f = f, g = g2 + f2 + (f ◦ ϕ)2. (4.7)

(vi) Let ǫ be such that 0 < ǫ ≤ θ < θ + ǫ ≤ 1, and set

g(e2πit) =





ǫ−1t, 0 ≤ t ≤ ǫ,
1, ǫ < t ≤ θ,
ǫ−1(θ + ǫ− t), θ < t ≤ θ + ǫ,

0, θ + ǫ < t ≤ 1,

for t ∈ [0, 1]. For such g one an find f such that (4.7) holds, and hence p is
a projection. Then τ(p) = θ. Thus, the homomorphism K0(τ) : K0(Aθ)→
R contains Z ∪ θZ in its image.

In fact, it can be shown that K0(τ) is an isomorphism of K0(Aθ) onto Z∪ θZ ∼=
Z2.

The definition of Aθ makes sense for rational θ as well. However, the struc-
ture of the rational rotation algebras is completely different from the irrational
ones. Namely, it can be shown that for an irrational θ the C*-algebra Aθ is
simple, while for a rational θ the C*-algebra Aθ contains many non-trivial ide-
als. In the case θ = 0 we have A0

∼= C(T2). Thus the rotation agebras Aθ are
considered noncommutative analogues of the torus.
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Chapter 5

K1-Functor and the Index
Map

5.1 The K1 Functor

5.1.1 Definition of the K1-group

Let A be a unital C*-algebra. We denote

U(A) = the group of unitary elements of A,

Un(A) = U(Mn(A)),

U∞(A) =

∞⋃

n=1

Un(A).

We define a relation ∼1 in U∞(A) as follows. For u ∈ Un(A) and v ∈ Um(A) we
have u ∼1 v if and only if there exists k ≥ max{n,m} such that diag(u, 1k−n) ∼h
diag(v, 1k−m). Then ∼1 is an equivalence relation in U∞(A) (exercise). We
denote by [u]1 the equivalence class of the unitary u ∈ U∞(A).

Lemma 5.1. Let A b a unital C*-algebra. Then

(i) [u]1[v]1 = [diag(u, v)]1 is a well-defined associative binary operation on
U∞(A)/∼1 ,

(ii) [u]1[v]1 = [v]1[u]1 for all u, v ∈ U∞(A),

(iii) [u]1[1n]1 = [1n]1[u]1 = [u]1 for all n and all u ∈ U∞(A),

(iv) if u, v ∈ Um(A) then [u]1[v]1 = [uv]1.

Proof. Exercise — use Lemma 2.1.6.

By the above lemma, U∞(A)/∼1 equipped with the multiplication [u]1[v]1 =
[diag(u, v)]1 is an abelian group, with [u]−1

1 = [u∗]1.

Definition 5.2. If A is a C*-algebra then we define

K1(A) = U∞(Ã)/∼1 ,

an abelian group with multiplication [u]1[v]1 = [diag(u, v)]1.
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When A is unital then K1(A) may be defined simply as U∞(A)/∼1 (see
Exercise 41. Also, instead of using equivalence classes of unitaries one could
define K1 with help of equivalence classes of invertibles (see Exercise 45). In
particular, the polar decomposition w = u|w| yields a well-defined map

[·]1 : GL∞(A)→ K1(A)

by [w]1 = [u]1 = [w|w|−1]1.

Proposition 5.3 (Universal property of K1). Let A be a C*-algebra, G an
abelian group, and ν : U∞(Ã)→ G a map such that:

(i) ν(diag(u, v)) = ν(u) + ν(v),

(ii) ν(1) = 0,

(iii) if u, v ∈ Un(Ã) and u ∼h v then ν(u) = ν(v).

Then there exists a unique homomorphism K1(A)→ G making the diagram

U∞(Ã)

[·]1 �� ν ""DDDDDDDDD
K1(A) // G

commutative.

Proof. Exercise.

5.1.2 Properties of the K1-functor

Let A,B be C*-algebras and let ϕ : A → B be a ∗-homomorphism. Then ϕ
extends to unital ∗-homomorphisms ϕ̃n : Mn(Ã) → Mn(B̃) and thus yields a
map ϕ̃ : U∞(Ã) → U∞(B̃). We define ν : U∞(Ã) → K1(B) by ν(u) = [ϕ̃(u)]1
and use the univesal property of K1 to conclude that there exists a unique
homomorphism K1(ϕ) : K1(A) → K1(B) such that K1([u]1) = [ϕ̃(u)]1 for u ∈
U∞(Ã).

Proposition 5.4 (Functoriality of K1). Let A,B,C be C*-algebras and let ϕ :
A→ B and ψ : B → C be ∗-homomorphisms. Then

(i) K1(idA) = idK1(A),

(ii) K1(ψ ◦ ϕ) = K1(ψ) ◦K1(ϕ).

Thus K1 is a covariant functor.

Proof. Exercise.

It is also clear from the definitions that K1 of the zero algebra and the zero
map are zero.

Proposition 5.5 (Homotopy invariance of K1). Let A,B be C*-algebras.

(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K1(ϕ) = K1(ψ).
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(ii) If A and B are homotopy equivalent then K1(A) ∼= K1(B). More specifi-

cally, if A
ϕ−→ B

ψ−→ A is a homotopy then K1(ϕ) and K1(ψ) are isomor-
phisms and inverses of one another.

Proof. Exercise.

Theorem 5.6 ((Half)exactness of K1). If

0 −→ J
ϕ−→ A

π−→ B −→ 0 (5.1)

is an exact sequence of C*-algebras then the sequence

K1(J)
K1(ϕ)−→ K1(A)

K1(π)−→ K1(B) (5.2)

is exact. If the sequence (5.1) is split-exact with a splitting map λ : B −→ A,
then the sequence

0 −→ K1(J)
K1(ϕ)−→ K1(A)

K1(π)−→ K1(B) −→ 0 (5.3)

is split-exact with a splitting map K1(λ) : K1(B) −→ K1(A).

Proof. K1(π) ◦ K1(ϕ) = K1(π ◦ ϕ) = K1(0) = 0 by functoriality of K1, and
hence im(K1(ϕ)) ⊆ ker(K1(π)). For the reverse inclusion, let u ∈ Un(Ã)
and K1(π)([u]1) = [1]1. Then there is m such that diag(π̃(u), 1n) ∼h 1n+m.
By Lemma 2.1.8, there is w ∈ Un+m(Ã) such that w ∼h 1n+m and π̃(w) =
diag(π̃(u), 1m). Thus [u]1 = [diag(u, 1n)w∗]1 and π̃(diag(u, 1n)w∗) = 1n+m. By
Exercise 4.4.5, there is v ∈ Un+m(J̃) such that ϕ̃(v) = diag(u, 1n)w∗. Thus
[u]1 ∈ im(K1(ϕ)) and consequently ker(K1(π)) ⊆ im(K1(ϕ)). This shows that
the sequence (5.2) is exact.

Now suppose that the sequence (5.1) is split-exact. Then the sequence (5.3)
is exact at K1(A) by the preceding argument. By functoriality of K1 we have
K1(π) ◦ K1(λ) = idK1(B), and hence (5.3) is exact at K1(B) (and K1(λ) is a

splitting map). It remains to show that K1(ϕ) is injective. So let u ∈ Un(J̃)
be such that K1(ϕ)([u]1) = [1]1. Then there is m such that diag(ϕ̃(u), 1m) ∼h
1n+m. Let t 7→ wt be a continuous path in Un+m(Ã) connecting diag(ϕ̃(u), 1m)
and 1n+m. We would like to apply ϕ̃−1 to wt to conclude that diag(u, 1m) is
homotopic to the identity. In general, this is impossible since some of wt may
lie outside the range of ϕ̃. However, in the presence of a splitting map λ we can
correct the path wt by setting vt = wt(λ̃ ◦ π̃)(w∗t ). Then vt is a continuous path
in Un+m(Ã) connecting diag(ϕ̃(u), 1m)(λ̃◦ π̃)(diag(ϕ̃(u∗), 1m)) and 1n+m. Since
π̃(vt) = 1n+m for all t, Exercise 4.4.5 implies that each vt is in the image of ϕ̃.
Thus ϕ̃−1(vt) is a continuous path in Un+m(J̃) connecting diag(u, 1m)ϕ̃−1((λ̃ ◦
π̃)(diag(ϕ̃(u∗), 1m))) and 1n+m. Since ϕ̃−1((λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m))) is a scalar
matrix, it is homotopic to the identity. Thus

[u]1 = [diag(u, 1m)]1 = [diag(u, 1m)ϕ̃−1((λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m)))]1 = [1]1,

and the map K1(ϕ) is injective.

Proposition 5.7 (Continuity of K1). Let A = lim
−→
{Ai,Φij} be the inductive

limit of a sequence of C*-algebras, and let Φi : Ai → A be the canonical maps.
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Let G = lim
−→
{K1(Ai),K1(Φij)} be the inductive limit of the corresponding se-

quence of abelian groups, and let ϕi : K1(Ai)→ G be the canonical maps. Then
there exists an isomorphism Λ : G→ K1(A) such that for all i ≥ j the diagram

K1(Aj)
ϕj //

K1(Φij) �� $$IIIIIIIII G

Λ��
K1(Ai)

K1(Φi)
// ::uuuuuuuuuu
K1(A)

(5.4)

is commutative.

Proof. The universal property of the direct limit G of the sequence
{K1(Ai),K1(Φij)} yields a unique homomorphism Λ : G → K1(A) making the
diagram (5.4) commutative. We must show that Λ is surjective and injective.

Surjectivity. Let u ∈ Un(Ã). By part (ii) of Exercise (48), there is i and
w ∈ Un(Ãi) such that ||u − Φ̃i(w)|| < 2. Thus u and Φ̃i(w) are homotopic in
Un(Ã) by Lemma 2.1.4. Hence

[u]1 = [Φ̃i(w)]1 = K1(Φi)([w]1) = (Λ ◦ ϕi)([w]1),

and Λ is surjective.

Injectivity. It suffices to show that for each j the restriction of Λ to the image of
ϕj is injective. So let u ∈ Un(Ãj) be such that (Λ ◦ ϕj)([u]1) = K1(Φj)([u]1) =

[Φ̃j(u)]1 = [1]1 in K1(A). We must show that ϕj([u]1) = 0 in G. Indeed,

there is m such that diag(Φ̃j(u), 1m) ∼h 1n+m in Un+m(Ã). By part (iii) of

Exercise (48), there is i ≥ j such that diag(Φ̃ij(u), 1m) is homotopic to 1n+m.

Thus [Φ̃ij(u)]1 = [diag(Φ̃ij(u), 1m)]1 = [1]1. Consequently, ϕj([u]1) = (ϕi ◦
K1(Φ̃ij))([u]1) = 0, and Λ is injective.

Proposition 5.8 (Stability of K1). Let A be a C*-algebra.

(i) For each n ∈ N we have

K1(A) ∼= K1(Mn(A)).

More specifically, let ψ : A → Mn(A) be such that ψ(a) = diag(a, 0n−1).
Then K1(ψ) : K1(A)→ K1(Mn(A)) is an isomorphism.

(ii) Let K be the C*-algebra of compact operators. Then

K1(A) ∼= K1(A⊗K).

More specfically, let p be a minimal projection in K and let ϕ : A→ A⊗K
be the map such that ϕ(a) = a⊗ p. Then K1(ϕ) : K1(A)→ K1(A⊗K) is
an isomorphism.

Proof. (i) Exercise.

(ii) Since
A⊗K ∼= A⊗ (limMn(C)) ∼= limMn(A),

the claim follows from part (i) and continuity of K1.
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5.2 The Index Map

5.2.1 Fredholm index

Let H be a separable, infinite dimensional Hilbert space. We denot by F the
algebra of finite rank operators on H (a two-sided ∗-ideal in B(H)), by K the
C*-algebra of compact operators on H (the norm closure of F and the only
non-trivial, norm closed, two-sided ideal of B(H)), by Q = B(H)/K the Calkin
algebra, and by π : B(H)→ Q the natural surjection.

Theorem 5.9 (Atkinson). If F ∈ B(H) then the following conditions are equiv-
alent.

(i) Both ker(F ) and coker(F ) are finite dimensional.

(ii) There exists an operator G ∈ B(H) such that both FG− 1 and GF − 1 are
compact.

(iii) The image π(F ) of F in the Calkin algebra Q is invertible.

Furthermore, if F satisfies the above conditions then the range of F is closed in
H.

Proof. Obviously, conditions (ii) and (iii) are equivalent.

(i)⇒(ii) We first observe that the image of F is a closed subspace of H. Indeed,
letH0 be a subspace ofH of smallest possible dimension such that im(F )+H0 =
H. Then n = dim(H0) is finite, since the cokernel of F is finite dimensional.
Then the restriction of F to the orthogonal complement of its kernel is a bijection
from ker(F )⊥ onto im(F ), and it extends to a linear bijection F̃ : ker(F )⊥ ⊕
Cn −→ im(F ) +H0 = H. By the Inverse Mapping Theorem, the inverse of F̃
is continuous. It follows that im(F ) = F̃ (ker(F )⊥) is closed in H.

By the preceding argument, F yields a continuous linear bijection from
ker(F )⊥ onto im(F ) — a closed subspace of H. Thus, by the Inverse Map-
ping Theorem, it has a continuous inverse G : im(F ) → ker(F )⊥. Extend G
to a bounded linear operator on H (still denoted G) by setting Gξ = 0 for
ξ ∈ im(F )⊥. Then both FG − 1 and GF − 1 are finite dimensional and (ii)
holds.

(ii)⇒(i) Let K be a compact operator such that GF = 1 + K. Then ker(F ) ⊆
ker(GF ) = ker(1 +K), and ker(1 +K) is the eigenspace of K corresponding to
eigenvalue −1. Since K is compact this eigenspace is finite dimensional and so
is the kernel of F . We also have im(F ) ⊇ im(FG) = im(1 + K). Since 1 + K
can be written as an invertible plus a finite rank operator, its range has finite
codimenson. Thus coker(F ) is finite dimensional.

A bounded operator satisfying the conditions of Theorem 5.9 is called Fred-
holm. In particular, any invertible operator in B(H) is Fredholm. It follows
immediately from Theorem 5.9 that if F, T are Fredholm and K is compact
then the operators F ∗, FT and F +K are Fredholm.

If F,G are Fredholm operators satisfying condition (ii) of Theorem 5.9, then
G is called parametrix of F .
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Definition 5.10 ( Fredholm index). Let F be a Fredholm operator. Then its
Fredholm index is an integer defined as

Index(F ) = dim(ker(F )) − dim(coker(F )).

Since dim(coker(F )) = dim(ker(F ∗)), we have Index(F ) = − Index(F ∗). If
F is Fredholm and V is invertible then clearly Index(FV ) = Index(V F ) =
Index(F ) and Index(V ) = 0.

Let {ξn : n = 0, 1, . . .} be an orthonormal basis ofH. The operator S ∈ B(H)
such that S(ξn) = ξn+1 is called unilateral shift. It is a Fredholm operator
with index −1. Thus for any positive integer k we have Index(Sk) = −k and
Index((S∗)k) = k.

In a finite dimensional Hilbert space all operators are compact and hence all
operators are Fredholm. The rank-nullity theorem of elementary linear algebra
may then be interpreted as saying that every Fredholm operator on a finite
dimensional Hilbert space has index 0.

Theorem 5.11 (Riesz). If F is Fredholm and K is compact then

Index(F +K) = Index(F ).

Proof. We first observe that if R is of finite rank then Index(1+R) = 0. Indeed,
let H0 = im(R) + ker(R)⊥. Then H0 is finite dimensional, and the restriction
of both R and R∗ to H⊥0 is zero. Thus the index of 1 + R coincides with the
index of its restriction to H0 and hence is 0.

Now let K be compact. Find R of finite rank such that ||K −R|| < 1. Then
V = 1 + (K −R) is invertible. Hence

Index(1 +K) = Index(V +R) = Index(V (1 + V −1R)) = 0.

Let F be a Fredholm operator of index 0. Then there is a finite rank operator
R such that R maps bijectively ker(F ) onto im(F )⊥ = ker(F ∗). Let V = F +R.
Then V is a continuous linear bijection of H onto itself and hence it is an
invertible operator. Thus if K is compact then

Index(F +K) = Index(V + (K −R)) = Index(V (1 + V −1(K −R))) = 0.

Finally, let F be an arbitrary Fredholm operator and let K be compact.
Then Index(F ⊕ F ∗) = 0 and hence Index((F + K) ⊕ F ∗) = 0. Consequenty,
Index(F +K) = − Index(F ∗) = Index(F ).

We showed in the course of the proof of Theorem 5.11 that if F is a Fredholm
operator with index 0 then there exists a finite rank operator R such that F +R
is invertible.

Corollary 5.12. If F, T are Fredholm operators then

Index(FT ) = Index(F ) + Index(G).

Proof. Suppose first that Index(F ) = 0, and let R be an operator of finite rank
such that F +R is invertible. Then

Index(FT ) = Index(FT +RT ) = Index((F +R)T ) = Index(T ).
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Now suppose that Index(F ) = k > 0, and let S be a unilateral shift on H. Then
Index(F ⊕ Sk) = 0 and hence

Index(FT ⊕ Sk) = Index((F ⊕ Sk)(T ⊕ 1)) = Index(T ⊕ 1) = Index(T ).

Consequently, we have

Index(FT ) = − Index(Sk) + Index(T ) = Index(F ) + Index(T ),

as required.

In particular, if G is a parametrix of F then Index(G) = − Index(F ).

Proposition 5.13. The index map is locally constant and continuous in norm.

Proof. Let F be a Fredholm operator and let G be its parametrix. Let K be
compact such that FG = 1 + K. It suffices to show that if T is a Fredholm
operator with ||T − F || < 1/||G|| then Index(F ) = Index(T ). Indeed, the
operator (T − F )G + 1 is invertible, since its distance from the identity is less
than 1. Thus

Index(T ) + Index(G) = Index(TG)

= Index((T − F + F )G)

= Index((T − F )G+ 1) +K) = 0.

Thus Index(T ) = − Index(G) = Index(F ).

If F, T are two Fredholm operators then we say that they are homotopic if
there exists a norm continuos path from F to T consisting of Fredholm operators.

Proposition 5.14. Two Fredholm operators are homotopic if and only if they
have the same index.

Proof. Let F and T be Fredholm operators.
Suppose that F and T are homotopic, and let t 7→ Vt be a continuous path

of Fredholm operators from F to T . Then the map t 7→ Index(Vt) is continuous
and hence constant.

To show the converse we first observe that every Fredholm operator V with
Index(V ) = 0 is homotopic to 1. Indeed, there is a finite rank operator such that
V + R is invertible. Then t 7→ V + tR is a path connecting V to an invertible
element, and in B(H) the group of invertibles is path-connected.

Now suppose that Index(F ) = Index(T ). Then both FT ∗ and T ∗T have
index 0 and thus are homotopic to 1. Consequently, the operators F , F (T ∗T ) =
(FT ∗)T and T are homotopic.

Let u be a unitary in Mn(Q) and let U ∈Mn(B(H)) be such that π̃(U) = u.
Then U is a Fredholm operator on ⊕nH. Define a map µ : U∞(Q) → Z by
µ(u) = Index(U). It follows from the properties of Fredholm operators that µ
satisfies conditions (i)–(iii) of the universal property of K1. Thus, there exists a
homomorphism Index : K1(Q) → Z such that Index([u]1) = µ(U) = Index(U).
It is not difficult to see that Index is an somorphism. Thus K1(Q) ∼= Z.

Since Q is properly infinite, there is no need to go to matrices over Q and we
have K1(Q) = {[u]1 : u ∈ U(Q)} (see Exercise 47). Furthermore, every unitary
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u in Q lifts to a partial isometry U in B(H) (Exercise 49). Thus dim(ker(U))
equals the rank of 1− U∗U and can be identified with the element [1− U∗U ]0
in K0(K). Likewise, dim(coker(U)) equals the rank of 1 − UU∗ and can be
identified with the element [1 − UU∗]0 in K0(K). Consequently, we can view
the index map as an isomorphism

Index : K1(Q)→ K0(K),

such that if U is a partial isometry lift of u then

Index([u]1) = [1− UU∗]0 − [1− UU∗]0.

5.2.2 Definition of the index map

Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0 (5.5)

be an exact sequence of C*-algebras. Let u ∈ Un(B̃). Then there exists a
unitary V in U2n(Ã) such that

ψ̃(V ) = diag(u, u∗). (5.6)

Then ψ̃(V diag(1n, 0)V ∗) = diag(1n, 0). Thus there exists a projection P in
P2n(J̃) such that

ϕ̃(P ) = V diag(1n, 0)V ∗. (5.7)

Since (ψ̃ ◦ ϕ̃)(P ) = diag(1n, 0), it follows that s(P ) = diag(1n, 0), where s is the
scalar map. Then there is a well-defined map

µ : U∞(B̃)→ K0(J) such that µ(u) = [P ]0 − [s(P )]0.

Indeed, suppose that W ∈ U2n(Ã) and Q ∈ P2n(J̃) are such that ψ̃(W ) =
diag(u, u∗) and ϕ̃(Q) = W diag(1n, 0)W ∗. We must show that [P ]0 − [s(P )]0 =
[Q]0 − [s(Q)]0 in K0(J). Indeed since ψ̃(VW ∗) = 12n there is Y ∈ U2n(J̃) such
that ϕ̃(Y ) = VW ∗. Since

ϕ̃(P ) = VW ∗ϕ̃(Q)(V W ∗)∗ = ϕ̃(Y QY ∗),

we have P = Y QY ∗ and the claim follows. That is, µ : U∞(B̃) → K0(J) is
well-defined.

This map µ satisfies conditions (i)–(iii) of Proposition 5.3. We only verify
(iii), leaving (i) and (ii) as exercise. So let u ∼h w ∈ Un(B̃), U,W ∈ U2n(Ã),
P,Q ∈ P2n(J̃) be such that ψ̃(U) = diag(u, u∗), ψ̃(W ) = diag(w,w∗), ϕ̃(P ) =
U diag(1n, 0)U∗ and ϕ̃(Q) = W diag(1n, 0)W ∗ (that is, {u, U, P} and {w,W,Q}
satisfy conditions (5.6) and (5.7), respectively). Then u∗w ∼h 1n ∼h uw∗

and thus there exist X,Y ∈ Un(Ã) such that ψ̃(X) = u∗w and ψ̃(Y ) = uw∗.
Put Z = U diag(X,Y ), a unitary in U2n(Ã). We have ψ̃(Z) = diag(w,w∗)
and ϕ̃(P ) = Z diag(1n, 0)Z∗. Thus, by the definition of µ, we have µ(w) =
[P ]0 − [s(P )]0 = µ(u). The universal property of K1 now implies that there
exists a homomorphism

∂1 : K1(B) −→ K0(J),

called the index map, such that

∂1([u]1) = [P ]0 − [s(P )]0.
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5.2.3 The exact sequence

Theorem 5.15. Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

be an exact sequence of C*-algebras. Then the sequence

K0(J)
K0(ϕ) // K0(A)

K0(ψ) // K0(B)

K1(B)

∂1

OO
K1(A)

K1(ψ)
oo K1(J)

K1(ϕ)
oo (5.8)

is exact everywhere.

Proof. By virtue of half-exactness of K0 and K1, it suffices to prove that
im(K1(ψ)) = ker(∂1) and im(∂1) = ker(K0(ϕ)).

1. We show im(K1(ψ)) ⊆ ker(∂1). Indeed, if U ∈ Un(Ã) then diag(ψ̃(U), ψ̃(U)∗)
lifts to a diagonal unitary V = diag(U,U∗) and ϕ̃(1n) = V diag(1n, 0)V ∗ =
diag(1n, 0). Thus ∂1(K1(ψ)([U ]1)) = ∂1([ψ̃(U)]1) = [1n]0 − [s(1n)]0 = 0.

2. We show im(K1(ψ)) ⊇ ker(∂1). To simplify notation, we identify J with its
image in A and thus put ϕ = id. Let u ∈ Un(B̃) be such that [u]1 ∈ ker(∂1).
By Exercise 53, there is a partial isometry U ∈M2n(Ã) such that

ψ̃(U) =

(
u 0
0 0

)

and
0 = ∂1([u]1) = [12n − U∗U ]0 − [12n − UU∗]0 in K0(J).

Thus there is k and w ∈M2n+k(J̃) such that

w∗w = (12n − U∗U)⊕ 1k and ww∗ = (12n − UU∗)⊕ 1k.

Hence

ψ̃(w∗w) = ψ̃(ww∗) =

(
0 0
0 1n+k

)

and ψ̃(w) is a scalar matrix, since w ∈M2n+k(J̃). Consequently,

ψ̃(w) =

(
0 0
0 z

)
,

with z a scalar unitary matrix in Mn+k(B̃). In particular, z is homotopic to
1n+k in Un+k(B̃). Set

V = w +

(
U 0
0 0k

)
,

an element of M2n+k(Ã). By Exercise 56, V is unitary. We have

ψ̃(V ) =

(
u 0
0 0

)
+

(
0 0
0 z

)
∼h

(
u 0
0 1n+k

)
.
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Thus [u]1 − [ψ̃(V )]1 = K1(ψ)([V ]1).

3. We show im(∂1) ⊆ ker(K0(ϕ)). Indeed, let u ∈ Un(B̃) and let V ∈ U2n(Ã),
P ∈ P2n(J̃) be such that (5.6) and (5.7) hold. Then we have

K0(ϕ)([P ]0 − [s(P )]0) = [ϕ̃(P )]0 − [1n]0 = [V diag(1n, 0)V ∗]0 − [1n]0 = 0.

4. We show im(∂1) ⊇ ker(K0(ϕ)). Let g ∈ ker(K0(ϕ)). By Lemma 4.5, there is
n, a projection p ∈ Pn(J̃) and a unitary w ∈ Un(Ã) such that

g = [p]0 − [s(p)]0 and wϕ̃(p)w∗ = s(p).

Set u0 = ψ̃(w(1n − ϕ̃(p))), a partial isometry in Mn(B̃). We have

u∗0u0 = 1n − ψ̃(ϕ̃(p)),

u0u
∗
0 = 1n − ψ̃(s(p)) = u∗0u0.

Thus u = u0 + (1n − u0u
∗
0) is unitary in Mn(B̃). We want to show that g =

∂1([u]1). To this end, we frst find a lift of diag(u, 0n) to a suitable partial
isometry in M2n(Ã). Take

V0 =

(
w(1n − ϕ̃(p)) 0

0 s(p)

)
,

a partial isometry in M2n(Ã) such that

ψ̃(V0) =

(
u0 0
0 s(p)

)
.

Set

Z =

(
1n − s(p) s(p)
s(p) 1n − s(p)

)
,

a self-adjoint, unitary scalar matrix, and put V = ZV0Z
∗. Then we have

ψ̃(V ) = Zψ̃(V0)Z∗ = Z

(
u0 0
0 s(p)

)
Z∗ =

(
u 0
0 0

)
.

Hence, by Exercise 53,

∂1([u]1) = [ϕ̃−1(12n − V ∗V )]0 − [ϕ̃−1(12n − V V ∗)]0
= [ϕ̃−1(12n − V ∗0 V0)]0 − [ϕ̃−1(12n − V0V

∗
0 )]0

=

∣∣∣∣
(
p 0
0 1n − s(p)

)]

0

−
∣∣∣∣
(
s(p) 0

0 1n − s(p)

)]

0

= [p]0 − [s(p)]0 = g.

That is, g = ∂1([u]1), as required.
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5.3 Examples and Exercises

Exercise 41. Let A be a unital C*-algebra. We have Ã = A ⊕ Cf , where
f = 1Ã−1A. Define a unital ∗-homomorphism µ : Ã→ A by µ(a+λf) = a. As

usual, for each n extend µ to a unital ∗-homomorphism Mn(Ã)→Mn(A) (still
denoted µ). This yields a map µ : U∞(Ã)→ U∞(A). Show that there exists an
isomorphism K1(A)→ U∞(A)/∼1 making the diagram

U∞(Ã)
µ //

[·]1 �� U∞(A)��
K1(A) // U∞(A)/∼1

commutative. To this end, show the following:

(i) µ(diag(u, v)) = diag(µ(u), µ(v)),

(ii) if u, v ∈ Un(Ã) then µ(u) ∼h µ(v) if and only if u ∼h v,

(iii) if u, v ∈ U∞(Ã) then µ(u) ∼1 µ(v) if and only if u ∼1 v.

(ii) Let µ(u) ∼h µ(v). By the definition of µ, there exist unitary u0, v0 ∈ Un(Cf)
such that u = µ(u)+u0 and v = µ(v)+v0. Since the unitary group of Mn(C) is
path-connected we have u0 ∼h v0 in Un(Cf). It follows that u ∼h v in Un(Ã).

Exercise 42. Show the following.

(i) K1(C) = 0.

(ii) For any two C*-algebras A,B we have K1(A⊕B) ∼= K1(A)⊕K1(B).

(iii) If A is an AF -algebra (see Example 4.4.14) then K1(A) = 0.

Example 5.16. If H is an infinite dimensional Hilbert space then K1(B(H)) = 0.
Indeed, since Un(B(H)) ∼= U(B(⊕nH)), it suffices to show that every unitary
in B(H) is homotopic to the identity. But this follows from the fact that for
every unitary u in B(H) there is a self-adjoint a ∈ B(H) such that u = exp(ia).
Indeed, one may take a = ϕ(u), where ϕ : T → [0, 2π) is a bounded Borel
function such that ϕ(eiθ) = θ.

Exercise 43. Let X be a compact Hausdorff space.

(i) For each n identify Mn(C(X)) with C(X,Mn(C)) and define the determi-
nant function det : Mn(C(X)) → C(X). Show that det maps U∞(C(X))
into U(C(X)).

(ii) Let 〈v〉 denote the class of v ∈ U(C(X)) in U(C(X))/U0(C(X)). Apply the
universal property of K1 to the map U∞(C(X)) ∋ u 7→ 〈det(u)〉 to show
that there exists a homomorphism D : K1(A)→ U(C(X))/U0(C(X)) such
that D([u]1) = 〈det(u)〉.

(iii) Show that the sequence

0 −→ ker(D) −→ K1(C(X))
D−→ U(C(X))/U0(C(X)) −→ 0

is split-exact, with a splitting map ω : U(C(X))/U0(C(X)) → K1(C(X))
given by ω(〈u〉) = [u]1.
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(iv) Let X = T. Recall that ϕ : R→ T, ϕ(x) = e2πix, is a covering map. Thus,
if u ∈ U(C(T)) then there exists a continuous function f : [0, 1] → R
such that u(e2πit) = e2πif(t). If f, g are two such functions then f − g is a
constant integer. Thus, there is a well-defined map µ : U(C(T))→ Z given
by µ(u) = f(1) − f(0) (the winding number of u). Show that µ induces
an isomorphism of U(C(T))/U0(C(T)) and Z such that 〈u〉 7→ µ(u).

(v) Conclude that there exists a surjective homomorphism from K1(C(T)) onto
Z. In fact, we will see later that K1(C(T)) ∼= Z.

Exercise 44. If A is a separable C*-algebra then K1(A) is countable.

Exercise 45. Let A be a unital C*-algebra. Replacing unitaries U∞(A) with
invertibles GL∞(A) one can repeat the constructions from Section 5.1.1 and
define an abelian group GL∞(A)/∼1 . Show that this group is isomorphic to
K1(A) = U∞(A)/∼1 (see Exercise 41). Hint: For w ∈ GL∞(A) let w = u|w| be
the polar decomposition. Define a map [·]1 : GL∞(A)→ K1(A) by [w]1 = [u]1 =
[w|w|−1]1 and use Proposition 2.1.10.

Exercise 46. Let A be a non-unital C*-algebra, and let s : Ã→ Ã be the scalar
map s(a+ t1) = t1. Define

U+(A) = {u ∈ U(Ã) : s(u) = 1},
U+
n (A) = {u ∈ U(Mn(Ã)) : sn(u) = 1n},

U+
∞(A) =

∞⋃

n=1

U+
n (A).

Proceeding as in Section 5.1.1, one can define an abelian group U+
∞(A)/∼1 . Show

that this group is isomorphic to K1(A).

Exercise 47. Let A be a unital C*-algebra.

(i) Let u be unitary and let s be an isometry in A. Then sus∗ + (1 − ss∗) is
unitary and we have

(
s 1− ss∗
0 s∗

)(
u 0
0 1

)(
s 1− ss∗
0 s∗

)∗
=

(
sus∗ + (1− ss∗) 0

0 1

)
.

Thus [sus∗ + (1− ss∗)]1 = [u]1.

(ii) Let u1, . . . , un be unitary elements of A and let s1, . . . , sn be isometries in
A with mutually orthogonal range projections. Then

u = s1u1s
∗
1 + . . .+ snuns

∗
n + (1− s1s∗1 − . . .− sns∗n)

is unitary. Use (i) to show that [u]1 = [u1]1[u2]1 . . . [un]1.

(iii) et s1, . . . , sn be isometres as in (ii). Put

V =




s1 s2 · · · sn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .
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hen V is an isometry in Mn(A). Show that for any unitary u ∈ Un(A)
there is a unitary w in A such that

V uV ∗ + (1n − V V ∗) = diag(w, 1n−1)

(iv) Let A be properly infinite (see Exercise 3.3.13). Show that

K1(A) = {[u]1 : u ∈ U(A)}.

Example 5.17. The K1-functor is not exact. Indeed, for a separable Hilbert
space H the sequence

0 −→ B(H)
π−→ B(H)/K −→ 0

of C*-algebras is exact. But K1(B(H)) = 0 and we will see later that
K1(B(H)/K) ∼= Z. Thus K1(π) cannot be surjective. Likewise, there is an exact
sequence

0 −→ C0((0, 1))
ϕ−→ C([0, 1]).

But K1(C([0, 1])) = 0 and we will see later that K1(C0((0, 1))) ∼= Z. Thus K1(ϕ)
cannot be injective.

Exercise 48. Let A = lim
−→
{Ai,Φij} be the inductive limit of a sequence of C*-

algebras, and let Φi : Ai → A be the canonical maps.

(i) For any invertible y ∈ Ã and any ǫ > 0 there is arbitrarily large i and
invertible z ∈ Ãi such that ||y − Φ̃i(z)|| < ǫ.

(ii) For any unitary u ∈ Ã and any ǫ > 0 there is arbitrarily large i and unitary
w ∈ Ãi such that ||u − Φ̃i(w)|| < ǫ.

(iii) If u is unitary in Ãj such that Φ̃j(u) ∼h 1 in Ã, then there is arbitrarily

large i such that Φ̃ij(u) ∼h 1 in Ãi.

(iv) Parts (i)–(iii) remain valid with Ã and Ãi replaced by Mn(Ã) and Mn(Ã),
respectively.

(i) First find k and x, x′ ∈ Ãk so that both ||Φ̃k(x) − y|| and ||Φ̃k(x′) − y−1||
are small. Thus both ||Φ̃k(xx′ − 1)|| and ||Φ̃k(x′x− 1)|| are small. Then, using
Exercise 37, take i large enough so that both ||Φ̃ik(xx′−1)|| and ||Φ̃ik(x′x−1)||
are small. Then z = Φ̃ik(x) is both left and right invertible, hence invertible,
and Φ̃i(z) approximates y.

(ii) This follows from part (i) and continuity of the polar decomposition (see
Proposition 2.1.10).

(iii) Let wt, t ∈ [0, 1], be a continuous path of unitaries in Ã connecting w0 =
Φ̃j(u) and w1 = 1. By compactness, there are 0 = t0 < t1 < . . . < tk+1 = 1
such that ||wtr+1 −wtr || < 2 for all r. Applying repeatedly part (ii), find m ≥ j
and unitary elements v1, . . . , vk in Ãi so close to wt1 , . . . , wtk , respectively, that
all the norms: ||Φ̃j(u) − Φ̃m(v1)||, ||Φ̃m(vk) − 1||, and Φ̃m(vr+1) − Φ̃m(vr)||
for r = 1, . . . , k − 1 are less than 2. Then by Exercise 37, there is arbitrarily
large i ≥ m such that all the norms ||Φ̃ij(u) − Φ̃im(v1)||, ||Φ̃im(vk) − 1||, and

Φ̃im(vr+1)− Φ̃im(vr)|| for r = 1, . . . , k−1 are less than 2. Now the claim follows
from Lemma 2.1.4.

(iv) Exercise.
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Exercise 49. Show that every unitary in the Calkin algebra Q lifts to a partial
isometry in B(H). In fact, it can be lifted to an isometry or a coisometry.

Exercise 50. Let ψ : A → B be a surjective ∗-homomorphism of C∗-alebras.
Show the following.

(i) For each b = b∗ ∈ B there is a = a∗ ∈ A such that ||a|| = ||b|| and ψ(a) = b.

(i) For each b ∈ B there is a ∈ A such that ||a|| = ||b|| and ψ(a) = b.

(i) Take any t ∈ A with ψ(t) = b and set x = 1/2(t + t∗). Then x = x∗ and
ψ(x) = b. Let f : R → R be a continuous function such that f(r) = r if
|r| ≤ ||b|| and |f(r)| = ||b|| if |r| ≥ ||b||. Put a = f(x). Then ψ(a) = ψ(f(x)) =
f(ψ(x)) = f(b) = b, and ||a|| ≤ ||b||. But ||b|| = ||ψ(a)|| ≤ ||a|| since ||ψ|| = 1.
Thus ||a|| = ||b||.
(ii) Consider ψ2 : M2(A)→M2(B), and put

y =

(
0 b
b∗ 0

)
.

Since y = y∗, there is x = x∗ ∈ M2(A) such that ψ2(x) = y and ||x|| = ||y|| =
||b||, by part (i). Let

x =

(
x11 x12

x21 x22

)
,

and set a = x12. Then ψ(a) = b and ||a|| ≤ ||x|| = ||b||. But ||b|| = ||ψ(a)|| ≤
||a|| since ||ψ|| = 1. Thus ||a|| = ||b||.
Exercise 51. Consider an exact sequence of C*-algebras

0 −→ J −→ A
ψ−→ B −→ 0,

in which we identify J with its image in A. Let u be a unitary in Un(B̃). By part
(ii) of Exercse 50, there is a ∈ Un(Ã) such that ψ̃(a) = u and ||a|| = ||u|| = 1.
Then for any continuous function f : R → C we have af(a∗a) = f(aa∗)a. Use
this to show that

V =

(
a (1n − aa∗)1/2

−(1n − a∗a)1/2 a∗

)

is a unitary in U2n(Ã). Then show that

ψ̃(V ) =

(
u 0
0 u∗

)

and

V

(
1n 0
0 0

)
V ∗ =

(
aa∗ −a(1n − a∗a)1/2

−(1n − a∗a)1/2a∗ 1n − a∗a

)
.

Then write explicitly ∂1([u]1).

Exercise 52. Consider an exact sequence of C*-algebras

0 −→ J −→ A
ψ−→ B −→ 0,

in which we identify J with its image in A. Suppose that u ∈ Un(B̃) is such that
there exists a partial isometry U ∈Mn(Ã) with ψ̃(U) = u. Show the following.
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(i) The element

V =

(
U 1n − UU∗

1n − U∗U U∗

)

is unitary in U2n(Ã) and ψ̃(V ) = diag(u, u∗).

(ii) Both 1n − U∗U and 1n − UU∗ are projections in Mn(J), and

∂1([u]1) = [1n − U∗U ]0 − [1n − UU∗]0.

Exercise 53. Consider an exact sequence of C*-algebras

0 −→ J −→ A
ψ−→ B −→ 0,

in which we identify J with its image in A. Let u ∈ Un(B̃), and let a ∈Mn(Ã)
be such that ψ̃(a) = u and ||a|| = ||u|| = 1. Put

U =

(
a 0

(1n − a∗a)1/2 0

)
.

Show that U∗U = diag(1n, 0), which entails that U is a partial isometry. Then
show that

ψ̃(U) =

(
u 0
0 0

)
.

Finally, show that

∂1([u]1) = [12n − U∗U ]0 − [12n − UU∗]0.

Exercise 54. Consider an exact sequence

0 −→ C0(R2) −→ C(D) −→ C(S1) −→ 0,

with the map C(D) → C(S1) given by the restriction. In the corresponding
exact sequence

K0(C0(R2)) // K0(C(D)) // K0(C(S1))

K1(C(S1))

∂1

OO
K1(C(D))oo K1(C0(R2))oo

we have K1(C(D)) = 0, since C(D) and C are homotopy equivalent. Show
that the map K0(C(D)) → K0(C(S1)) is injective, and conclude that ∂1 :
K1(C(S1)) −→ K0(C0(R2)) is an isomorphism. Then calculate ∂1([z]1) and
thus find a generator of K0(C0(R2)).

Exercise 55 (Naturality of the index map). Show that every commutative dia-
gram of C*-algebras, with exact rows,

0 // J1
//�� A1

//�� B1
//�� 0

0 // J2
// A2

// B2
// 0
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induces a commutative diagram of abelian groups, with exact rows:

0 // K1(J1) //�� K1(A1) //�� K1(B1)
∂1 //�� K0(J1) //�� K0(A1) //�� K0(B1) //�� 0

0 // K1(J2) // K1(A2) // K1(B2)
∂1 // K0(J2) // K0(A2) // K0(B2) // 0

Exercise 56. Show that if partial isometries v1, . . . , vn in a unital C*-algebra
satisfy

v1v
∗
1 + . . .+ vnv

∗
n = 1 = v∗1v1 + . . .+ v∗nvn

then u = v1 + . . .+ vn is unitary. Hint: use Exercise 2.4.3.
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Chapter 6

Bott periodicity and the
Exact Sequence of
K-Theory

6.1 Higher K-Groups

6.1.1 The suspension functor

Recall that the suspension SA of a C*-algebra A is defined as

SA = {f ∈ C([0, 1], A) : f(0) = f(1) = 0},

and is isomorphic to C0((0, 1), A) ∼= C0(R)⊗A (cf. Lemma 1.3.1). If ϕ : A→ B
is a ∗-homomorphism between two C*-algebras, then Sϕ : SA → SB, given
by (Sϕ(f))(t) = ϕ(f(t)) is a ∗-homomorphism between their suspensions. It is
not difficult to verif that this yields a covariant functor from the category of
C*-algebras into itself.

Proposition 6.1. The suspension functor S is exact. That is, if

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

is an exact sequence of C*-algebras then the sequence

0 −→ SJ
Sϕ−−→ SA

Sψ−−→ SB −→ 0

is exact.

Proof. Exercise.

6.1.2 Isomorphism of K1(A) and K0(SA)

Let A be a C*-algebra. We define a map

θA : K1(A) −→ K0(SA),
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as follows. By Exercise 57, each element of K1(A) is represented by a unitary
u ∈ Un(Ã) (for some n) such that s(u) = 1n. For such a u we can find a
continuous function v : [0, 1]→ U2n(Ã) such that v(0) = 12n, v(1) = diag(u, u∗)
and s(v(t)) = 12n for all t ∈ [0, 1]. We put

p = v

(
1n 0
0 0n

)
v∗,

a projection in P2n(S̃A) with s(p) = diag(1n, 0n). We set

θA([u]1) = [p]0 − [s(p)]0.

Theorem 6.2. For any C*-algebra A, the map

θA : K1(A) −→ K0(SA)

is an isomorphism. Furthermore, if B is a C*-algebra and ϕ : A → B is a
∗-homomorphism then the diagram

K1(A)
K1(ϕ) //

θA �� K1(B)

θB��
K0(SA)

K0(Sϕ)
// K0(SB)

is commutative.

Proof. Recall from Example 4.12 the exact sequence

0 −→ SA −→ CA
π−→ A −→ 0, (6.1)

where CA is the cone over A. Since CA is homotopy equivalent to {0} we
have K0(CA) = K1(CA) = 0. Let ∂1 : K1(A) → K0(SA) be the index map
associated with the extension (6.1). It follows from Theorem 5.15 that ∂1 is an
isomorphism. Thus, it suffices to identify ∂1 with θA (exercise).

6.1.3 The long exact sequence of K-theory

For each natural number n ≥ 2 we define inductively a covariant functor from
the category of C*-algebras t the category of abelian groups as follows. Kn(A) =
Kn−1(SA), and if ϕ : A → B is a ∗-homomorphism then Kn(ϕ) = Kn−1(Sϕ).
It is clear that such defined functor is half-exact.

Now suppose that

0 −→ J
ϕ−→ A

ψ−→ B −→ 0 (6.2)

is an exact sequence of C*-algebras. Then ∂1 : K1(B) → K0(J) is the index
map. We define higher index maps

∂n : Kn(B)→ Kn−1(J),

as follows. Applying n − 1 times the suspension functor to sequence (6.2), we
get an exact sequence

0 −→ Sn−1J
Sn−1ϕ−−−−→ Sn−1A

Sn−1ψ−−−−→ Sn−1B −→ 0. (6.3)
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Let ∂1 : K1(Sn−1B) → K0(Sn−1J) be the index map associated with (6.3).
By the definition of higher K-functors, we have Kn(B) = K1(Sn−1B) and
Kn−1(J) = K1(Sn−2J). By Theorem 6.2, there is an isomorphism θSn−2J :
K1(Sn−2J)→ K0(Sn−1J). We define

∂n = θ−1
Sn−2J ◦ ∂1.

Such defined higher index maps have naturality analogous to the one enjoyed
by the usual index (cf. Exercise 55).

Proposition 6.3. Every short exact sequence

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

of C*-algebras induces a long exact sequence on K-theory:

. . .
∂n+1−−−→ Kn(J)

Kn(ϕ)−−−−→ Kn(A)
Kn(ψ)−−−−→ Kn(B)

∂n−→ . . .

. . .
∂1−→ K0(J)

K0(ϕ)−−−−→ K0(A)
K0(ψ)−−−−→ K0(B).

Proof. Exercise.

This Proposition serves only as an intermediate step towards the fundamen-
tal 6-term exact sequence of K-theory. The point is that Kn+2

∼= Kn (as we
will see in the next section), and the apparently infinite sequence from Propo-
sition 6.3 shrinks to a much more useful finite one, which contains only K0 and
K1.

6.2 Bott Periodicity

In this section, we prove the fundamental result of Bott that K0(A) ∼= K1(SA)
for any C*-algebra A. Combined with Theorem 6.2, it says Kn+2(A) ∼= Kn(A)
— the Bott periodicity.

6.2.1 Definition of the Bott map

We begin by defining a Bott map

βA : K0(A) −→ K1(SA)

for unital C*-algebras A, and then reduce the general case to the unital one. So
let A be a unital C*-algebra. We use the obvious identification

SA = {f : T→ A : f continuous, f(1) = 0}.

Thus, elements of Mn(SA) may be identified with continuous loops f : T →
Mn(A) such that f(1) = 0. It follows that Mn(S̃A) may be identified with
continuous functions f : T→Mn(A) such that f(1) ∈Mn(C1A).

For any natural n and any projection p ∈ Pn(A) we define a projection loop
fp : T→ Un(A) by

fp(z) = zp+ (1n − p), z ∈ T.
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Clearly, we have fp ∈ Un(S̃A). By the universal property of K0 we get a
homomorphism βA : K0(A) −→ K1(SA) such that

βA([p]0) = [fp]1,

called the Bott map.
Now if ϕ : A→ B is a unital ∗-homomorphism, then S̃ϕ(fp)(z) = ϕ(fp(z)) =

fϕ(p)(z) for all z ∈ T. Hence the diagram is commutative. This is the naturality
of the Bott map.

Finally, suppose that A does not have a unit. Then we have a commutative
diagram

0 // K0(A) // K0(Ã) //
βÃ �� K0(C) //

βC �� 0

0 // K1(SA) // K1(SÃ) // K1(C) // 0 (6.4)

with split-exact rows. It follows that there is exactly one map βA : K0(A) →
K1(SA) which completes the diagram. By Exercise 58, we have

βA([p]0 − [s(p)]0) = [fpf
∗
s(p)]1.

6.2.2 The periodicity theorem

The following teorem is considered a central result of K-theory.

Theorem 6.4. For any C*-algebra A, the Bott map

βA : K0(A) −→ K1(SA)

is an isomorphism.

Proof. It suffices to prove the theorem for unital C*-algebras. Indeed, the gen-
eral case follows from the unital one and (6.4) through a diagram chase. Thus
assume A is unital. It will be convenient for us to use the description of K1(SA)

as the collection of suitable equivalence classes in GL∞(S̃A) (see Exercise 45).
We must show that the Bott map βA : K0(A) −→ K1(SA) is both surjective
and injective.

Surjectivity. We consider the following subsets of GL∞(S̃A):

GLn = {f : T→ GLn(A) : f continuous and f(1) ∈Mn(C1A)},
LLnm = {f ∈ GLn : f a Laurent polynomial in z with coefficients in

Mn(A) and deg(f) ≤ m},
PLnm = {f ∈ LLnm : f a polynomial},
PRLn = {fp : p ∈ Pn(A)}.

Elements of GLn, LLnm, PLnm and PLn1 are called invertible loops, Laurent loops,
polynomial loops and linear loops, respectively. We have

PRLn ⊆ PLn1 ⊆
⋃

m

PLnm ⊆
⋃

m

LLnm ⊆ GLn
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and K1(SA) = {[f ]1 : f ∈ GLn, n ∈ N}.
Step 1.

⋃
m LL

n
m is dense in GLn. Indeed, span{zk : k ∈ Z} is dense in

C(T) by the Stone-Weierstrass theorem. Hence span{zk : k ∈ Z} ⊗ A is dense
in C(T) ⊗ A, and this easily implies that Laurent loops are a dense subset of
invertible loops.

Step 2. By virtue of Step 1, it suffices to show that the range of βA contains
the equivalence classes of all Laurent loops. But each Laurent loop is a quotient
of two polynomal loops. Thus, it suffices to show that the range of βA contains
the classes of all polynomial loops. To this end, we show that for each n,m ∈ N
there is a continuous map

µnm : PLnm −→ PLmn+n
1

such that µnm(f) ∼h diag(f, 1mn) within PLmn+n
k for all f ∈ PLnk , k ≤ m.

Indeed, let f(z) =
m∑

j=0

ajz
j, with aj ∈ Mn(A) for all j = 0, . . . ,m. For each z,

we define

µ̃nm(f)(z) =




a0 a1 a2 . . . am−1 am
−z 1 0 . . . 0 0
0 −z 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −z 1



,

an element of Mm+1(Mn(A)). (In the above matrix we wrote 1 for 1n and z for
z1n.) Cleary, µ̃nm(f)(z) = T0 + T1z for some T0, T1 ∈Mmn+n(A), and the map
f 7→ µ̃nm(f) is continuous. We claim the following:

(i) µ̃nm(f)(z) is invertible for all z,

(ii) µ̃nm(f)(1) ∼h 1mn+n,

(iii) µ̃nm(f) ∼h diag(f, 1mn).

Once the properties (i)–(iii) are established, we obtain the desired map µnm by
setting µnm(f) = (µ̃nm(f)(1))−1µ̃nm(f).

In order to prove properties (i)–(iii), we consider matrices

Am =




1 0 0 . . . −am
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1


 ,

Am−1 =




1 0 . . . −(am−1 + amz) 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 0 1


 ,

. . .

A1 =




1 −(a1 + a2z + . . .+ amz
m−1) 0 . . . 0

0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1


 ,
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and matrices Bk having 1’s on the main diagonal, z in the entry in column k
and row k + 1, and 0’s elsewhere. Then we have

A1A2 · · ·Amµ̃nm(f)(z) =




f(z) 0 . . . 0 0
−z 1 . . . 0 0
...

...
...

...
0 0 . . . −z 1




and
A1A2 · · ·Amµ̃nm(f)(z)BmBm−1 · · ·B1 = diag(f(z), 1mn). (6.5)

Since f(z) and all of the matrices A1, . . . , Am, B1, . . . , Bm are invertible for
all z, (6.5) implies (i). Furthermore, each of the Aj and Bj matrices may
be continuously deformed to the identity within the set polynomial loops by
multiplying the sole off-diagonal entry with a parameter t ∈ [0, 1]. Thus (6.5)
implies (ii) and (iii).

Step 3. By virtue of Step 2, it suffices to show that the range of βA contains
the equivalence classes of all linear loops. This will follow if we show that there
exists a continuous retraction

ν : PLn1 −→ PRLn

such that ν(f) ∼h f within PLn1 for all f ∈ PLn1 . Indeed, let f(z) = a0 + a1z.
Then f(1) = a0 + a1 is an invertible element of Mn(C1A), and we can put
g = f(1)−1f . Then

g(z) = 1n + b(z − 1),

with b = (a0 + a1)−1a1. When z 6= 1 we can write

g(z) = (1 − z)

(
1

1− z 1n − b
)
,

and since g(z) is invertible for all z ∈ T we see that 1/(1−z) 6∈ sp(b) if z ∈ T\{1}.
Since the function z 7→ 1/(1−z) maps T\{1} onto the line {λ ∈ C : ℜ(λ) = 1/2},
we see that

sp(b) ⊆ C \ {λ ∈ C : ℜ(λ) = 1/2}.
For t ∈ [0, 1] consider a function

gt(z) =

{
tz if ℜ(z) < 1/2,
tz + (1− t) if ℜ(z) > 1/2.

Each function gt is holomorphic on an open neighbourhood of sp(b) and thus the
holomorphic function calculus (see Exercise 59) yields elements gt(b) ∈Mn(A),
which depend continuously on the parameter t. Since the image of gt(z) does
not intersect the line {λ ∈ C : ℜ(λ) = 1/2}, the elements

ht(z) = 1n + gt(b)(z − 1) = (1− z)

(
1

1− z 1n − gt(b)
)

are invertible. We have g1(z) = z and thus g1(b) = b. On the other hand,
g0(z)2 = g0(z) and thus e = g0(b) is an idempotent. Consequently, t 7→ ht is a
homotopy within PLn1 between g and the idempotent loop 1n + e(z − 1). Now
we can deform the idempotent e to a projection, as follows (cf. Exercise 3.16).
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Lemma 6.5. Let B be a unital C*-algebra. Recall that I(B) denotes the set
of idempotents in B and P(B) denotes the set of projections (i.e. self-adjoint
idempotents) in B. Then we have the following.

(i) For every idempotent e ∈ B the element

ρ(e) = ee∗(1 + (e− e∗)(e∗ − e))−1

is a projection.

(ii) The map ρ : I(B) → P(B), defined in (i), is a continuous retraction. In
particular, ρ(e) ∼h e in I(B) for every idempotent e.

(iii) If p, q ∈ P(B) and p ∼h q in I(B), then p ∼h q in P(B).

Proof. (i) Put w = 1 + (e− e∗)(e∗ − e). Then w is positive and invertible, thus
ρ(e) = ee∗w−1 is well-defined. A straightforward calculation yields ew = ee∗e =
we and e∗w = e∗ee∗ = we∗. Thus ee∗w = (ee∗)2 = wee∗ and ee∗w−1 = w−1ee∗.
This implies that ee∗w−1 is self-adjoint and that

ρ(e)2 = ee∗w−1ee∗w−1 = (ee∗)2w−2 = ee∗w−1 = ρ(e).

Whence ρ(e) is a projection.

(ii) Clearly, ρ is a continuous map and ρ(p) = p if p is a projection.
To see that ρ(e) ∼h e in I(B), set ut = 1 − t(e − ρ(e)) for t ∈ [0, 1]. Since

ρ(e)e = e an eρ(e) = ρ(e), we have (e − ρ(e))2 = 0. Therefore ut is invertible
with the inverse u−1

t = 1 + t(e − ρ(e)). Thus u−1
t eut is an idempotent for all

t ∈ [0, 1], and we have

e = u−1
0 eu0 ∼h u−1

1 eu1 = (1 + (e− ρ(e)))e(1 − (e− ρ(e))) = ρ(e).

(iii) If t 7→ et is a continuous path in I(B) from e0 = p to e1 = q, then t 7→ ρ(et)
is a continuous path in P(B) from ρ(e0) = p to ρ(e1) = q.

Let ρ : In(A)→ Pn(A) be the map defined in Lemma 6.5 (with B = Mn(A)).
Then ν(f) = 1n + ρ(e)(z − 1) yields the desired map ν : PLn1 −→ PRLn.

Injectivity. Let p, q ∈ Pn(A) and assume that βA([p]0 − [q]0) = [fpf
∗
q ]1 = [1]1

in K1(SA). Then, after increasing n if necessary, we have fp ∼h fq in GLn. It
suffices to show that there exists m ∈ N such that diag(p, 1m) ∼h diag(q, 1m) in
Pn+m(A).

As a first step, we observe that there exists a polygonal (i.e. piece-wise
linear) homotopy t 7→ ht from fp to fq such that all ht are Laurent loops with
a uniform bound on both positive and negative degrees. (This follows from the
density of Laurent loops in invertible loops via a routine compactness argument
— exercise.) Thus there are m, k ∈ N such that zmht ∈ PLnk for all k. Since
zmfp ∼h fdiag(p,1m) in PLm+n

m (exercise), we see that fdiag(p,1m) and fdiag(q,1m)

are homotopic in PLm+n
m+k . Let t 7→ et be such a homotopy. Then applying

the maps µm+n
m+k and ν, constructed in steps 2 and 3, respectively, of the proof

of surjectivity, we get a homotopy t 7→ ν(µm+n
m+k (et)) = fpt from fdiag(p,1m) to

fdiag(q,1m) in projection loops. Since the map fpt 7→ pt is continuous (exercise),
we finally see that diag(p, 1m) and diag(g, 1m) are homotopic via a path of
projections. Consequently, [p]0 = [q]0 in K0(A), as required.
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Combining Theorems 6.2 and 6.4 we get

Kj(SA) ∼= K1−j(A)

for any C*-algebra A and j = 0, 1. Thus, for any natural n we have

Kn+2(A) ∼= Kn(A).

Furthermore, naturality of the maps θ∗ and β∗ easily implies that the functors
Kn+2 and Kn are isomorphic.

6.3 The 6-Term Exact Sequence

6.3.1 The 6-term exact sequence of K-theory

With the Bott periodicity theorem at hand, we are now ready to present the
6-term exact sequence of K-theory — a tool of paramount importance in appli-
cations. Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

be an exact sequence of C*-algebras. Applying the suspension functor, we obtain
the exact sequence

0 −→ SJ
Sϕ−−→ SA

Sψ−−→ SB −→ 0.

Denote by ∂ : K1(SB) → K0(SJ) the corresponding index map. Let θJ :
K1(J) → K0(SJ) and βB : K0(B) → K1(SB) be the isomorphisms from
Therems 6.2 and 6.4, respectively. Then the exponential map

∂0 : K0(B) −→ K1(J)

is defined as the unique homomorphism making the diagram

K0(B)
∂0 //

βB �� K1(J)

θJ��
K1(SB)

∂
// K0(SJ)

commutative.

Theorem 6.6. Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

be an exact sequence of C*-algebras. Then the sequence

K0(J)
K0(ϕ) // K0(A)

K0(ψ) // K0(B)

∂0��
K1(B)

∂1

OO
K1(A)

K1(ψ)oo K1(J)
K1(ϕ)oo (6.6)

is exact everywhere.
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Proof. By virtue of Theorem 5.15, it suffices to show exactness at K0(B) and
K1(J). It turns out that at this stage this requires nothing more but a diagram
chase.

To prove exactness of (6.6) at K0(B), consider the commutative (due to
naturality of the Bott map) diagram

K0(A)
K0(ψ) //

βA �� K0(B)
∂0 //

βB �� K1(J)

θJ��
K1(SA)

K0(Sψ)
// K1(SB)

∂
// K0(SJ)

All the vertical arrows are isomorphisms, and the bottom row is exact by The-
orem 5.15. Thus the top row is exact.

To prove exactness of (6.6) at K1(J), consider the commutative (due to
naturality of the θ∗ map) diagram

K0(B)
∂0 //

βB �� K1(J)
K1(ϕ) //

θJ �� K1(A)

θA��
K1(SB)

∂
// K0(SJ)

K0(Sϕ)
// K0(SA)

All the vertical arrows are isomorphisms, and the bottom row is exact by The-
orem 5.15. Thus the top row is exact.

6.3.2 An explicit form of the exponential map

Proposition 6.7. Let 0 → J
ϕ−→ →A ψ−→ →B → 0 be exact and let ∂0 :

K0(B)→ K1(J) be the associated exponential map. Then

(i) If p ∈ Pn(B̃) and x = x∗ ∈ Mn(Ã) such that ψ̃(x) = p then ∃!u ∈ Un(J̃)
such that ϕ̃(u) = exp(2πix), and we have

∂0([p]0 − [s(p)]0) = −[u]1. (6.7)

(ii) Suppose that A is unital. If p ∈ Pn(B) and x = x∗ ∈ Mn(A) such that
ψ(x) = p, then ∃!u ∈ Un(J̃) such that ϕ̃(u) = exp(2πix), and we have

∂0([p]0) = −[u]1. (6.8)

Proof. Part (i) follows from (ii) by a diagram chase. So we prove (ii). For
simplicity, assume J ⊆ A and ϕ = id. Suppose A unital then and let p ∈
Pn(B). There is x = x∗ ∈ Mn(A) such that ψ(x) = p. Then ψ(exp(2πix)) =
exp(2πiψ(x)) = exp(2πip) = 1n, hence exp(2πix) ∈ Un(J̃). We must show that

θJ([exp(−2πix)]1) = (∂1 ◦ βB)([p]0), (6.9)

where ∂1 : K1(SB) → K0(SJ) is the index map corresponding to 0 → SJ →
SA→ SB → 0. We identify SB with {f ∈ C([0, 1], B)|f(0) = f(1) = 0}. Thus
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Mk(S̃B) = {f ∈ C([0, 1],Mk(B))|f(0) = f(1) ∈ Mk(C1B)}, and fp ∈ U(S̃B)

is fp(t) = e2πitp + 1n − p, t ∈ [0, 1]. Let v ∈ U2n(S̃A) be such that S̃ψ(v) =(
fp 0
0 f∗p

)
. Then v : [0, 1] → U2n(A) is a continuous map such that v(0) =

v(1) ∈ M2n(C1A), and ψ(v(t)) =

(
fp(t) 0

0 f∗p (t)

)
. As fp(0) = fp(1) = 1, we

have v(0) = v(1) = 12n. With x = x∗ ∈Mn(A) a lift of p, put z(t) = exp(2πitx)
for t ∈ [0, 1]. t 7→ z(t) ∈ Un(A) is continuous and ψ(z(t)) = f0(t). Hence

ψ

(
v(t)

(
z(t)∗ 0

0 z(t)

))
= 12n, s

(
v(t)

(
z(t)∗ 0

0 z(t)

))
= 12n. (6.10)

Thus w(t) = v(t)

(
z(t)∗ 0

0 z(t)

)
is a unitary element in U2n(J̃). We have

w(0) = 12n and w(1) =

(
exp(−2πix) 0

0 exp(2πix)

)
. Thus, by the definition

of θJ , we have

θJ([exp(−2πix)]1) =

[
w

(
1n 0
0 0

)
w∗
]

0

−
[(

1n 0
0 0

)]

0

. (6.11)

We also have

w(t)

(
1n 0
0 0

)
w(t)∗ = v(t)

(
1n 0
0 0

)
v(t)∗, (6.12)

and the unitary v was chosen so that

S̃ψ(v) =

(
fp 0
0 f∗p

)
. (6.13)

So, by the definition of the index map, we get

∂1([fp]1) = θJ([exp(−2πix]1). (6.14)

6.4 Examples and Exercises

Exercise 57. Let A be a C*-algebra. Show that every class in K1(A) contains a
unitary u ∈ Un(Ã) normalized so that s(u) = 1n, where s is the scalar map.

Exercise 58. Show that if A is a non-unital C*-algebra then for any p ∈ Pn(Ã)
we have

βA([p]0 − [s(p)]0) = [fpf
∗
s(p)]1.

Exercise 59 (Holomorphic function calculus). Let γ1, . . . , γn be a finite collection
of continuous and piece-wise continuously differentialble paths γk : [ak, bk]→ C.
We assume that each γk is closed, i.e. γk(ak) = γk(bk). A contour is a finite
collection Γ = {γ1, . . . , γn}. If f is a piece-wise continuous, complex function
defined on im(Γ) =

⋃
k γk([ak, bk]), then there is a well-defined integral

∫

Γ

f(z)dz =

∫

γ1

f(z)dz + . . .+

∫

γn

f(z)dz.
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If z0 6∈ im(Γ) then the index of z0 with respect to Γ is the integer defined as

IndΓ(z0) =
1

2πi

∫

Γ

dz

z − z0
.

Let K be a compact subset of an open set Ω ⊆ C. Then we say that Γ surrounds
K in Ω if im(Γ) ⊆ Ω \K and

IndΓ(z) =

{
1, z ∈ K,
0, z ∈ C \ Ω.

Let A be a unital C*-algebra. If a ∈ A and Γ is a contour surrounding sp(a)
in an open set Ω, then for every holomorphic function f : Ω → C there is a
well-defined Riemann integral

f(a) =
1

2πi

∫

Γ

f(z)(z1A − a)−1dz.

This integral yields a unique element f(a) of A such that for every continuous
functional ϕ : A→ C we have

ϕ(f(a)) =
1

2πi

∫

Γ

f(z)ϕ((z1A − a)−1)dz.

The mapping f 7→ f(a) is called the holomorphic function calculus for a. It has
the following properties (see [t-m79, m-gj90, p-g79]).

(i) The map f 7→ f(a) is a unital algebra homomorphism.

(ii) If g is a holomorphic function on f(Ω) then (g ◦ f)(a) = g(f(a)).

(iii) sp(f(a)) = f(sp(a)).

(iv) If fn is a sequence of holomorphic functions on Ω converging almost uni-
formly to a function g, then g is holomorphic on Ω and

||fn(a)− g(a)|| −→ 0.

Note that the holomorphic function calculus applies to an arbitrary element a of
a C*-algebra, not just a self-adjoint one. If a is self-adjoint then the holomorphic
function calculus is compatible with the continuous function calculus via the
Gelfand transform.

Exercise 60. By virtue of Theorems 6.2 and 6.4, we have

K0(C0(R2n)) ∼= K1(C0(R2n+1)) ∼= K0(C) ∼= Z,

K1(C0(R2n)) ∼= K0(C0(R2n+1)) ∼= K1(C) = 0,

for all n ∈ N.

Exercise 61. For each natural number n ≥ 1, find a split-exact sequence

0 −→ C0(Rn) −→ C(Sn) −→ C −→ 0.

Then use Exercise 60 and split-exactness of K∗ to determine the K-groups of
C(Sn) for all spheres Sn.
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Exercise 62. By Exercise 61, we have K0(C(T)) ∼= K1(C(T)) ∼= Z. Use the
isomorphism C(Tn+1) ∼= C(T)⊗ C(Tn) to find a split-exact sequence

0 −→ SC(Tn) −→ C(Tn+1) −→ C(Tn) −→ 0.

Then use split-exactness of K∗ to determine the K-groups of C(Tn) for all tori
Tn.

Exercise 63. Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

be an exact sequence of C*-algebras. Show that if every projection in P∞(B̃)
lifts to a projection in P∞(Ã) then ∂0 : K0(B)→ K1(J) is the zero map.

Exercise 64 (Toeplitz algebra). Let H be a separable Hilbert space with an
orthonormal basis {ξn : n = 0, 1, 2, . . .}. Let S ∈ B(H), S(ξn) = ξn+1 be the
unilateral shift. We define the Toeplitz algebra T as the C*-algebra generated
by S. It can be shown [c-l67] that T is the universal C*-algebra for the relation
S∗S = 1, and that if T is a proper isometry on a Hilbert space then there exists
a ∗-isomorphism T = C∗(S)→ C∗(T ) such that T 7→ S.

(i) Show that the closed two-sided ideal of T generated by 1 − SS∗ coincides
with the algebra K(H).

(ii) Let π : T → T /K be the natural surjection. Show that T /K is isomorphic
to C(S1) and π(S) may be identified with the generator z. There is an
exact sequence

0 −→ K −→ T π−→ C(S1) −→ 0.

(iii) By Exercise 61, K0(C(S1)) ∼= Z (with a generator [1]0) and K1(C(S1)) ∼= Z
(with a generator [z]1, the class of the identity map z 7→ z). Calculate
∂1([z]1) and show that the index map

∂1 : Z ∼= K1(C(S1)) −→ K0(K) ∼= Z

is an isomorphism.

(iv) Use (iii) and the exact sequence from Theorem 6.6 to show that

K0(T ) ∼= Z, K1(T ) = 0.

Find the generator of K0(T ).

Exercise 65. Let H be a separable Hilbert space, K = K(H) be the compact
operators on H, and let Sn ∈ B(H) be an isometry with cokernel of dimension
n, for some natural number n. Let C∗(Sn,K) be the C∗-subalgebra of B(H)
generated by Sn and K. Show that there exists an exact sequence

0 −→ K −→ C∗(Sn,K) −→ C(S1) −→ 0

and determine the K-theory of C∗(Sn,K).

Exercise 66. Let RP 2 be the real projective plane. Find an exact sequence

0 −→ C0(R2) −→ C(RP 2) −→ C(S1) −→ 0

and determine the K-theory of C(RP 2).
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Exercise 67. Find an exact sequence

0 −→ C(S1)⊗ C0(R2) −→ C(S3) −→ C(S1) −→ 0.

Then apply to it the 6-term exact sequence of K-theory and thus calculate in
an alternative way the K-groups of the 3-sphere (cf. Exercise 61).

Exercise 68. Let H be a separable Hilbert space. Consider two operators T, U ∈
B(H) such that T is a proper isometry (i.e. T ∗T = 1 6= TT ∗) and U is a partial
unitary on 1 − TT ∗ with full spectrum (i.e. U∗U = UU∗ = 1 − TT ∗ and
sp(U) = S1 ∪ {0}). Let A be a C∗-subalgebra of B(H) generated by T and S.

(i) Let J be the closed two-sided ideal of A generated by U . Show that J is
isomorphic to C(S1)⊗K, with K the C*-algebra of compact operators.

(ii) Let π : A→ A/J be the natural surjection. Show that A/J is generated (as
a C*-algebra) by the unitary element π(T ). Show that sp(π(T )) contains
the entire unit circle, and thus A/J is isomorphic to C(S1).

(iii) By (i) and (ii) above, there is an exact sequence

0 −→ C(S1)⊗K −→ A −→ C(S1) −→ 0.

Apply the 6-term exact sequence and calculate the K-theory of A.

Example 6.8. (Mirror-disc-type quantum two-spheres)
Consider, for p ∈]0, 1[, the ∗-algebra

O(Dp) := C〈x, x∗〉/J, (6.15)

where J is the ∗-ideal generated by x∗x−pxx∗−(1−p). This is called ∗-algebra
of the quantum disc (see [kl93], where a two-parameter family of such quantum
discs is considered). It is not hard to see that ‖ρ(x)‖ = 1 in any bounded
representation ρ, so that one can form the C∗-closureC(Dp) ofO(Dp). Moreover
O(Dp) is faithfully imbedded in C(Dp). (There is exactly one faithful irreducible
representation, up to unitary equivalence.) It is known that C(Dp) is isomorphic
to the Toeplitz algebra T , so all the C*-algebras C(Dp) are isomorphic. There is
a ∗-homomorphism ϕ : C(Dp)→ C(S1), sending the generator x to the unitary
generator u of C(S1). Consider for any q ∈]0, 1[ a second copy O(Dq), with
generator y.

Definition 6.9. Let α : O(S1) → O(S1) denote the ∗-automorphism defined by
u 7→ u∗. Define

O(S2
pq) := {(f, g) ∈ O(Dp)⊕O(Dq) | ϕ(f) = α ◦ ϕ(g)}. (6.16)

This is called the ∗-algebra of the mirror-disc-type quantum two-sphere.

Proposition 6.10.

O(S2
pq)
∼= C〈C,C∗, D,D∗, E,E∗〉/J, (6.17)
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where the ∗-ideal J is generated by the relations

C∗C = 1− pD − E,
CC∗ = 1−D − qE,
DC = pCD,

EC = q−1CE,

DE = 0,

D = D∗,

E = E∗.

The isomorphism is given by (x, y∗) 7→ C, (1−xx∗, 0) 7→ D, (0, 1−yy∗) 7→ E.

Proposition 6.11. The following is a complete list (up to unitary equivalence) of
irreducible ∗-representations of O(S2

pq) in some Hilbert space:

(i) ρ+, acting on a separable Hilbert space H with orthonormal basis e0, e1, . . .
according to

ρ+(C)ek =
√

1− pk+1ek+1,

ρ+(D)ek = pkek,

ρ+(E) = 0.

(ii) ρ−, acting on H by

ρ−(C)ek =
√

1− qkek−1,

ρ−(D)ek = 0,

ρ−(E)ek = qkek.

(iii) An S1-family ρµ, acting on C by

ρµ(C) = µ,

ρµ(D) = 0,

ρµ(E) = 0.

One can again show that there is a uniform bound on the norm of the gen-
erators for all bounded ∗-representations, so that one can form a C∗-closure
C(S2

pq) of O(S2
pq) using bounded ∗-representations. ρ+ ⊕ ρ− is a faithful rep-

resentation of O(S2
pq) as well as of C(S2

pq), so that O(S2
pq) is faithfully imbed-

ded in C(S2
pq). Moreover, the closed ideals JD, JE generated by D, E are

isomorphic to K (ρ+(JD) = K = ρ−(JE)), they have zero intersection, and
(ρ+ ⊕ ρ−)(JD + JE) = K ⊕K. Finally, there is an exact sequence

0→ K⊕K → C(S2
pq)

ψ−→→C(S1)→ 0, (6.18)

where ψ is defined by C 7→ u, D 7→ 0, E 7→ 0. This exact sequence can be used
to compute the K-theory of C(S2

pq):

Proposition 6.12. K0(C(S2
pq)
∼= Z⊕ Z, K1(C(S2

pq)) = 0.
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Proof. With K0(C(S1)) ∼= Z ∼= K1(C(S1)), K0(K) ∼= Z, K1(K) = 0, we obtain
from the standard six-term exact sequence corresponding to (6.18)

0→ K1(C(S2
pq)→ Z ∂−→→Z⊕ Z→ K0(C(S2

pq))
K0(ψ)−−−−→→Z→ 0. (6.19)

Let us compute the index map ∂. It is determined by its value on the generator
[u]1 ∈ K1(C(S1)),

∂([u]1) = [1− b∗b]0 − [1− bb∗]0, (6.20)

where b ∈ C(S2
pq) is any partial isometry with ψ(b) = u. Identify C(S2

pq)
∼=

(ρ+ ⊕ ρ−)(C(S2
pq). Then b = (s, s∗), s the one-sided shift, is a continuous

function of (ρ+ ⊕ ρ−)(C) such that

b− (ρ+ ⊕ ρ−)(C) ∈ K ⊕K
b = (ρ+(C)|ρ+(C)|−1, ρ−(C)|ρ−(C)|−)

with |ρ−(C)|−ek :=

{
0 k = 0

1√
1−qk

ek k > 0.

Then b∗b = (s∗s, ss∗) = 1 − p2, bb∗ = (ss∗, s∗s) = 1 − p1, where p2 = (pe0 , 0),
p1 = (0, pe0) can be considered as the generators (0, 1), (1, 0) of Z⊕Z ∼= K0(K⊕
K). Then ∂([u]1) = [p2]0 − [p1]0 = (0, 1)− (1, 0), so that ∂ is injective, and we
can conclude that K1(C(S2

pq)) = 0. We are left with the exact sequence

0→ Z ∂−→→Z⊕ Z
K0(j)−−−→→K0(C(S2

pq)
K0(ψ)−−−−→→Z→ 0. (6.21)

As Z is a free module over itself, this sequence splits, and K0(C(S2
pq))

∼=
im K0(j)⊕ Z. There remains the exact sequence

0→ Z ∂−→→Z⊕ Z
K0(j)−−−→→ im K0(j)→ 0. (6.22)

Here, K0(j) is determined by its values on (1, 0) and (0, 1), however, (1, 0) −
(0, 1) ∈ ker K0(j) = im ∂, i.e., K0(j)(1, 0) = K0(j)(0, 1), consequently im K0(j) =
{nK0(j)(1, 0)|n ∈ Z} ∼= Z. It follows that K0(C(S2

pq))
∼= Z⊕ Z.
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Chapter 7

Tools for the computation
of K-groups

7.1 Crossed products, the Thom-Connes isomor-
phism and the Pimsner–Voiculescu sequence

7.1.1 Crossed products

Let G be a locally compact abelian group. Then

Cc(G) = {f ∈ C(G)| supp(f) compact}

is a ∗-algebra with respect to

(f ∗ g)(s) =

∫

G

f(t)g(t− s)dt, (7.1)

f∗(s) = f(s−1), (7.2)

where the integration is with respect to the Haar measure. The universal norm
on Cc(G),

‖f‖ = sup{‖π(f)‖|π : Cc(G)→ B(H) a ∗-representation}, (7.3)

is well-defined since (one can show that)

‖f‖ ≤ ‖f‖1 =

∫

G

|f(t)|dt. (7.4)

The completion of Cc(G) with respect to ‖.‖ is the group C*-algebra C∗(G) of
G. By Gelfand’s theorem, since C∗(G) is abelian, there is a locally compact
Hausdorff space Ω such that C∗(G) ∼= C0(Ω). Ω may be identified with Ĝ =
{χ : G → T|χ continuous , χ(s + t) = χ(s)χ(t)}, the dual group of G. Ĝ is
equipped with the topology of almost uniform convergence. Every χ ∈ Ĝ yields
a multiplicative functional of C∗(G) by

ωχ(f) =

∫

G

χ(t)f(t)dt. (7.5)
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Thus we have C∗(G) ∼= C0(Ĝ) via the Gelfand transform. Now suppose that
A is a C*-algebra and α : G → Aut(A) is a homomorphism such that G ∋
t 7→ αt(x) ∈ A is continuous ∀x ∈ A. Then (A,G, α) is called a C∗-dynmaical
system. The vector space {f ∈ C(G,A)| supp(f) compact} becomes a ∗-algebra
with

(f ∗ g)(s) =

∫

G

f(t)αt(g(s− t))dt, (7.6)

f∗(s) = αs(f(s−1)∗). (7.7)

Note that even if both G and A are abelian, this algebra may be noncommutative
if the action α is nontrivial. The universal norm ‖.‖ on this ∗-algebra is defined
as the supremum over the norms in all ∗-representations. A⋊αG is by definition
the C*-algebraic closure of A ⊗ Cc(G) with respect to ‖.‖. If α : G → Aut(A)
is trivial, i.e., αt(x) = x, ∀x, then we have A⋊α G ∼= A⊗ C∗(G) ∼= A⊗ C0(Ĝ)
(C*-algebra isomorphisms). For a given action α : G → Aut(A) there exists a
canonical dual action α̂ : Ĝ→ Aut(A⋊α G) such that

α̂χ(f)(t) = 〈χ, t〉f(t) (7.8)

for f ∈ C(G,A) with compact support.

Theorem 7.1. (Takesaki-Takai duality)

(A⋊α G) ⋊α̂ Ĝ ∼= A⊗K, (7.9)

if G is infinite.

The dual acion is functorial in the follwoing sense: If α : G → Aut(A) and
β : G→ Aut(B) are actions and ρ : A→ B is a G-equivariant ∗-homomorphism,
then there exists a ∗-homomorphism ρ̂ : A⋊α G→ B ⋊β G such that

(ρ̂f)(s) = ρ(f(s)) (7.10)

for f : G→ A, and ρ is equivariant with respect to α̂ and β̂.

7.1.2 Crossed products by R and by Z

Theorem 7.2. (Connes) For any action α : R→ Aut(A), we have

Kj(A) ∼= K1−j(A⋊α R). (7.11)

In the special case of a trivial action, we have Kj(A) ∼= K1−j(A ⊗ C0(R)) (
Bott periodicity). Intuitively, the Connes-Thom isomorphism can be explained
as follows: “Any action of R may be continuously deformed to a trivial one.
Then the result follows from the Bott periodicity since K-theory is insensitive
to continuous deformations”. This can be made precise with the help of K-
equivalence.

Theorem 7.3. (Pimsner–Voiculescu) If α ∈ Aut(A), then there is an exact
sequence

K0(A)
id−K0(α−1)// K0(A)

i0 // K0(A⋊α)��
K1(A⋊α)

OO
K1(A)

i1
oo K1(A)

id−K1(α−1)

oo (7.12)
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where i0, i1 are the natural imbeddings.

Proof. (idea, Connes) Define Mα = {f ∈ C(R,M)|f(1) = α(f(0)} (mapping
torus of α). R acts on Mα by (βtf)(s) = f(s− t). By a result of Green,

A⋊α Z ≃Morita Mα ⋊β R. (7.13)

Hence, by the Connes-Thom isomorphism,

Kj(A⋊α Z) ∼= Kj(Mα ⋊β R) ∼= K1−j(Mα). (7.14)

Now, there is an exact sequence

0→ SA→Mα → A→ 0, (7.15)

and the 6-term exact sequence yields

K1(A) ∼= K0(SA) // K1(A⋊α Z) ∼= K0(Mα) // K0(A)

∂1��
K1(A)

∂0

OO
K0(A⋊α Z) ∼= K1(Mα)oo K1(sA) ∼= K0(A)oo

(7.16)
One can calculate the connecting maps as

∂∗ = id−K∗(α
−1). (7.17)

7.1.3 Irrational rotation algebras

Let us recall that, for θ ∈ R, the rotation algebra Aθ is defined to be the
universal C*-algebra C∗(u, v) generated by two unitaries u, v such that

vu = e2πiθuv. (7.18)

We have seen that there is a trace τ : Aθ → R, and that the image of K0(τ)
contains Z ∪ θZ. Notice that C∗(v) ∼= C(S1) and that αθ := Adv is an auto-
morphism of C(S1) such that

αθv = e2πiθv. (7.19)

It can be shown that
Aθ ∼= C(S1) ⋊αθ

Z. (7.20)

The Pimsner–Voiculescu sequence is

K0(C(S1))
id−K0(α

−1
θ )// K0(C(S1)) // K0(Aθ)��

K1(Aθ)

OO
K1(C(S1))oo K1(C(S1))

id−K1(α−
θ 1)

oo (7.21)
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K0(C(S1)) is generated by [1]0, hence id− K0(α−1
θ ) is the zero map. Likewise,

e2πiθu ∼h u, hence id − K1(α−1
θ ) is also the zero map. Consequently, since

Kj(C(S1)) ∼= Z, we get

K0(Aθ) ∼= Z2 ∼= K1(Aθ). (7.22)

Furthermore, [u]1, [v]1 are generators of K1(Aθ) and K0(τ) : K0(Aθ) ∼= Z2 →
Z ∪ θZ is an isomorphism.

7.2 The Mayer–Vietoris sequence

The Mayer–Vietoris sequence in the classical case of topological spaces concerns
relating the (co)homologies of a space that is glued from two (or more) subspaces
to the (co)homologies of the subspaces and the way they are glued together.
In the context of differential forms and De Rham cohomologies, it is natural
(due to differentiability) to consider open subspaces. In the purely topological
setting and in the realm of Gelfand theory for compact spaces, it seems to
be more natural (also easier) to consider closed subsets. Thus we are trying
to generalize the following situation to a noncommutative setting: There is a
compact Hausdorff space X that is the union of two compact subspaces, which
have a certain intersection. Diagrammatically:

X X1
oo

X2

OO
X1 ∩X2

oo OO (7.23)

where the maps are injections of sets.
Dually, by Gelfand theory there is the following diagram:

C(X) //�� C(X1)��
C(X2) // C(X1 ∩X2)

(7.24)

where the maps are the natural restriction maps. In fact, it is almost obvious
that C(X) ∼= {(f1, f2) ∈ C(X1)⊕C(X2) | f1|X1 ∩X2 = f2|X1 ∩X2}. Thus we
are led to consider the following commutative diagram of unital C*-algebras:

A
pr1 //

pr2 �� B1

π1��
B2 π2

// D (7.25)

where A = {(b1, b2) ∈ B1 ⊕ B2 | π1(b1) = π2(b2)}, with π1, π2 surjective ∗-
homomorphisms, pr1 and pr2 the restrictions of the natural projections B1 ⊕
B2 → B1 and B1 ⊕ B2 → B2 to the subspace A ⊆ B1 ⊕ B2. A is called the
pullback of B1 and B2 (over D), or the fiber product of B1 and B2 (over D),
and the diagram (7.25) is called a pull-back diagram. We have
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Theorem 7.4. Corresponding to (7.25), there is a six-term exact sequence

K0(A)
(K0(pr1),K0(pr2))// K0(B1)⊕K0(B2)

K0(π2)−K0(π1) // K0(D)

��
K1(D)

OO
K1(B1)⊕K1(B2)

K1(π2)−K1(π1)
oo K1(A))

(K1(pr1),K1(pr2))
oo

(7.26)

Proof. (partial, based on [bhms05], which is in turn based on ideas of Atiyah
and Hirzebruch, see [ah62]). Define Â ⊆ B1 ⊕B2 ⊕ C([0, 1], D) by

Â = {(b1, b2, ω | b1 ∈ B1, b2 ∈ B2, ω(0) = π1(b1), ω(1) = π2(b2)} (7.27)

Put
C0(]0, 1[, D) = {ω ∈ C((0, 1), D | ω(0) = ω(1) = 0}. (7.28)

Then the sequence

0→ C0(]0, 1[, D)→ Â→ B1 ⊕B2 → 0 (7.29)

is exact, where the map C0(]0, 1[, D) → Â is ω 7→ (0, 0, ω), and the map Â →
B1 ⊕B2 is (b1, b2, ω) 7→ (b1, b2). Exactness of this sequence at C0(]0, 1[, D) and
Â is obvious, at B1 ⊕ B2 it is due to the fact that ω ∈ C([0, 1], D) can have
any independent values ω(0), ω(1) ∈ D (any two elements in a vector space are
homotopic). As C0(]0, 1[, D) is just the suspension of D, we have

Kj(C0(]0, 1[, D) ∼= K1−j(D), j = 0, 1. (7.30)

We will show that
Kj(Â) ∼= Kj(A), j = 0, 1. (7.31)

Then (7.30) and (7.31) together allow to conclude that the 6-term exact sequence
corresponding to the exact sequence (7.29) has the form

K1(D) // K0(A) // K0(B1 ⊕B2))��
K1(B1 ⊕B2)

OO
K1(A)oo K0(D).oo (7.32)

which after a counter-clockwise rotation about one position gives just the claim
of the theorem. It remains to prove (7.31). Our goal is to show that the map
i : A→ Â, (b1, b2) 7→ (b1, b2, π1(b1)), where π1(b1) is the constant path at π1(b1),
is a K-isomorphism. Consider the ideal I1 := ker(pr1 : A → B1) = {(0, b2) ∈
A} = {(0, b2) ∈ B1 ⊕ B2 | π2(b2) = 0} ⊆ A, being also isomorphic to kerπ2

(I1 ∋ (0, b2) 7→ b2 ∈ kerπ2 being the isomorphism). The image of I1 under i in
A is Î1 = {(0, b2, 0) | π2(b2) = 0}. Î1 is isomorphic to I1, and is also an ideal in
Â. Thus we have a commutative diagram

0 // I1
j1 �� // A //

j �� A/I1

k �� // 0
0 // Î1 // Â // Â/Î1 // 0. (7.33)
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Here, j1 is an isomorphism, and both j and k are injective. Let us show that k
is a homotopy equivalence: First let us note that

Â/Î1 = {(b1, b2, ω) | ω = π1(b1), ω(1) = π2(b2)}/{(0, b2, 0) | π2(b2) = 0}
∼= {(b1, ω) | b1 ∈ B1, ω(0) = π1(b1)} =: B̂1.

The isomorphism is given by factorizing the map (b1, b2, ω) 7→ (b1, ω), Â→ B̂1,
whose kernel is {(0, b2, 0) | π2(b2) = 0}, and which is obviously surjective. Define

ϕ : B̂1 → B1
∼= A/I1, ψ : b1 → B̂1, (7.34)

by
ϕ(b1, ω) = b1, ϕ(b1) = (b1, π1(b1)). (7.35)

Then ϕ ◦ ψ = idB1 , ψ ◦ ϕ(b1, ω) = (b1, π1(b1)), and the homomorphisms ϕt :

B̂1 = Â/Î1 → B̂1 defined by ϕt(b1, ω) = (b1, (1− t)ω+ tπ1(b1)) satisfies ϕ0 = id,

ϕ1 = ψ ◦ϕ. This proves that A/I1 and Â/Î1 are homotopy equivalent and that
Kj(k) are isomorphisms. Thus from the above commutative diagram (7.33) we
obtain another commutative diagram by combining two 6-term exact sequences:

K0(I1)

K0(j1)&&MMMMMMMMMM // K0(A) //
K0(j)�� K0(A/I1)

K0(k)xxqqqqqqqqqq
��

K0(Î1) // K0(Â) // K0(Â/Î1)��
K1(Â/Î1)

OO
K1(Â)oo K1(Î1)oo

K1(A/I1)

OO
K1(k)

88qqqqqqqqqq
K1(A)oo K1(j)

OO
K1(I1)oo K1(j1)

ffMMMMMMMMMM
(7.36)

The diagram has two exact circles, and since Ki(j1) and Ki(k) are isomorphisms,
we obtain from the Five Lemma that also Ki(j) are isomorphisms. Thus we have
proved the desired isomorphism Ki(A) ∼= Ki(Â).

Let us describe the connecting morphisms. For the morphism K0(D) →
K1(A), let P ∈ Mn(D) be an idempotent. Choose P1 ∈ Mn(B1) and P2 ∈
Mn(B2) such that π1(P1) = P = π2(P2). (Here, π1 and π2 are the obvious
extensions to matrices, which are also surjective.) Then (e2πiP1 , e2πiP2) ∈ B1 ⊕
B2 is in fact in B1 ⊕D B2, because e2πiP1 7→ e2πiP = In + (1 − e2πi)P = In,
e−2πiP2 7→ e−2πiP = In + (1 − e−2πi)P = In. Thus we have constructed the
invertible element (e2πiP1 , e−2πiP2) ∈ Mn(A). The so-constructed map P 7→
(e2πiP1 , e−2πiP2) defines the desired morphism K0(D)→ K1(A). If P is assumed
to be selfadjoint, then P1 and P2 can be chosen to be selfadjoint (by Exercice
11 (ii)). Then the construction gives a unitary in Mn(A). Note that without
the minus sign on one side the resulting element (e2πiP1 , e2πiP2) = e2πi(P1,P2) ∈
Mn(A) is homotopic to the identity (by the homotopy [0, 1] ∋ t 7→ e2πi(tP1,tP2))
and leads to a trivial map K0(D)→ K1(A).

In order to construct the connecting morphism K1(D) → K0(A), let θ be
an invertible in Mn(D). Think of θ as acting on the right on D ⊕ D . . . ⊕ D.
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Part I The Künneth formula

Consider the set Mθ := {((v1, . . . , vn), (w1, . . . , wn)) ∈ B1⊕· · ·⊕B1⊕B2⊕· · ·⊕
B2 | (π1(v1), . . . , π1(v1))θ = (π2(w1), . . . , π2(wn))}. Mθ is a finitely generated
projective module over A. The connecting morphism we are looking for is now
[θ] 7→ [Mθ]−[n] : K1(D)→ K0(A), where [n] denotes the class of the free module
of rank n over A. (We make use of the correspondence between idempotents
and finitely generated projective modules.)

Example 7.5. Consider the circle S1 as a union of two closed intervals, S1 = I∪I.
Then we have a pull-back diagram

C(S1) //�� C(I)��
C(I) // C⊕ C

(7.37)

and a corresponding Mayer–Vietoris six-term exact sequence

K0(C(S1)) // K0(C(I)) ⊕K0(C(I)) // K0(C⊕ C))��
K1(C⊕ C)

OO
K1(C(I)⊕ C(I))oo K1(C(S1))oo (7.38)

Let us take for granted that K0(C) = Z = K0(C(I)) and K1(C) = 0 = K1(C(I)).
Then the above diagram is reduced to

0→ K0(C(S1))→ Z⊕ Z→ Z⊕ Z→ K1(C(S1))→ 0. (7.39)

We have to determine K0(π2)−K0(π1) : Z⊕Z→ Z⊕Z. π1 = π2 : C(I)→ C⊕C
is the map f 7→ (f(0), f(1)). The generator of K0(C(I)) is [1]0, so K0(π1) is
determined by K0(π1)([1]0) = ([1]0, [1]0) (where the 1 on the right is 1 ∈ C).
It follows that K0(π2) − K0(π1) has on the generators ([1]0, 0) and (0, [1]0) of
K0(C(I) ⊕ C(I)) the values −([1]0, [1]0) and ([1]0, [1]0). Thus im(K0(π2) −
K0(π1)) is the diagonal ∆ ⊆ Z ⊕ Z, and K1(C(S1)) ∼= Z ⊕ Z/∆ ∼= Z. On the
other hand, also ker(K0(π2)−K0(π1)) = ∆, because ([1]0, [1]0) 7→ −([1]0, [1]0)+
([1]0, [1]0) = 0 and (n[1]0,m[1]0) 7→ (m − n)([1]0, [1]0) 6= 0 for m 6= n. So ∆ is
the image of the injective map K0(C(S1))→ Z⊕ Z, i.e., K0(C(S1)) ∼= ∆ ∼= Z.

7.3 The Künneth formula

In classical cohomology theory, say for differential forms, the Künneth formula
states that the cohomology of a product of two manifolds is the (graded) tensor
product of the cohomologies of the two factors,

H∗(M ×N) ∼= H∗(M)⊗̂H∗(N). (7.40)

For C*-algebras, the product of noncommutative spaces corresponds to the ten-
sor product of the algebras, and the following theorem generalizes the classical
Künneth formula:

Theorem 7.6. Let A,B be C*-algebras, and assume that K∗(B) is torsion-free
and that A is separable and type I. Then

K∗(A⊗B) ∼= K∗(A)⊗̂K∗(B). (7.41)
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Part I The Künneth formula

Note that the formula (7.41) explicitly means

K0(A⊗B) ∼= (K0(A)⊗K0(B))⊕ (K1(A) ⊗K1(B)),

K1(A⊗B) ∼= (K0(A)⊗K1(B))⊕ (K1(A) ⊗K0(B)).

Note also that there is no question about the kind of tensor product A⊗B, be-
cause every separable type I C*-algebra is nuclear . Also, there are more general
statements without assumptions about torsion, but still assuming nuclearity of
at least one of the factors (see [b-b98].
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Chapter 8

K-theory of graph
C*-algebras

In this section, we briefly describe K-theory of graph algebras. Graph algebras
are a natural and far reaching generalization of Cuntz-Krieger algebras. As a
good introduction to general theory of graph algebras we recommend [r-i05].
Calculation of their K-theory presented below follows mainly [rs04]. A slightly
different argument is given in [dt02]. Both approaches are ultimately based
on and inspired by Cuntz’s calculation of K-theory of Cuntz-Krieger algebras
in [c-j81]. Closely related determination of K-groups of Cuntz-Krieger algebras
corresponding to infinite matrices (the so called Exel-Laca algebras) can be
found in [el00] and [s-w00]. Both these classes of C*-algebras may be realized
as Cuntz-Pimsner algebras (see [k-t03] and [s-w00]), and this allows for yet
another approach to their K-theory.

8.1 Universal graph C*-algebras

Let G be a directed graph with

G0 − vertices,

G1 − edges,

r, s : G1 → G0 − range and source of an edge.

Definition 8.1. The universal C*-algebra C∗(G) is given by generators

{pv | v ∈ G0}, {se | e ∈ G1},
with the following relations:

• pv are mutually orthogonal projections i.e. p2
v = p∗v = pv and pvpw = 0

for v 6= w,

• s∗ese = pr(e) and s∗esf = 0 for e 6= f ,

• if the set {e | s(e) = v} is nonempty (v is not a sink) and finite then

pv =
∑

{e | s(e)=v}
ses
∗
e,
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Part I Universal graph C*-algebras

• ses∗e 6 ps(e).

Example 8.2. Some known C*-algebras arise in this way.

1. If G is only one vertex, then there is one generator p = p2 = p∗. In this
case C∗(G) = C.

•v

Figure 8.1: C

2. G with one vertex and one edge (loop). Generators:

•v

e ��
Figure 8.2: C(S1)

p = p2 = p∗, s

relations:
s∗s = p = ss∗, sp = ps, s = ss∗s.

Then
C∗(G) = C∗(1, u) = C(S1), u− unitary.

3. G with two vertices and two edges like on the picture (8.3).

•v

•w

e ��
f��

Figure 8.3: Toeplitz algebra T

pv = p2
v = p∗v, pw = p2

w = p∗w

s∗ese = pv, s∗fsf = pw

pv = ses
∗
e + sfs

∗
f .

C∗(G) is isomorphic to the Toeplitz algebra - the universal C*-algebra for
the relation s∗s = 1. The isomorphism is given by s 7→ se + sf .
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•v

•w1 •w2

e ��
f1||xxxxxx f2 ""FFFFFF

Figure 8.4: C(S2
0∞)

4. G with three vertices and three edges like on a picture (8.4).

pv = p2
v = p∗v, pwi = p2

wi
= p∗wi

, i = 1, 2,

pvpwi = 0, pw1pw2 = 0,

s∗ese = pv = ses
∗
e + sf1s

∗
f1 + sf2s

∗
f2 ,

s∗f1sf1 = pw1 , s∗f2sf2 = pw2 .

C∗(G) is isomorphic to the quantum sphere

S2
0∞ : B∗B = 1−A2, A = A∗, BB∗ = 1, BA = 0

and the isomorphism is given by

A 7→ pw1 − pw2 ,

B 7→ s∗e + s∗f1 + s∗f2 .

We denote this graph by GS2
0∞

.

5. In the example (4) we glue the vertices w1, w2 into one w obtaining graph
G like on a picture (8.5).

•v

•w

e ��
f1 �� f2��

Figure 8.5: C(RP 2
q )

pv = p2
v = p∗v, pw = p2

w = p∗w,

pvpw = 0,

s∗ese = pv = s∗ese + sf1s
∗
f1 + sf2s

∗
f2 ,
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Part I Universal graph C*-algebras

s∗f1sf1 = pw = s∗f2sf2 .

Define Z2-action on the graph in the example (4).

se 7→ −se, sf1 7→ −sf2 , sf2 7→ −sf1
Then

pv 7→ pv, pw1 7→ pw2 , pw2 7→ pw1 .

This action corresponds to

A 7→ −A, B 7→ −B

under the identification

C∗(GS2
0∞

) ∼= C(S2
0∞).

If we take the quotient C(S2
0∞)/Z2 we obtain C(RP 2

q ) - quantum pro-
jective space. On the other hand the quotient of the graph C*-algebra
C∗(GS2

0∞
) by the defined action is the graph C*-algebra for our graph,

which we now can denote C∗(GRP 2
q

). The isomorphism is given by

pv 7→ pv, pw 7→ pw1 + pw2 ,

se 7→ sese, sf1 7→ se(sf1 + sf2), sf2 7→ sf1 − sf2 .
Note that this Z2 action is not induced from a graph automorphism.

6. G with one vertex and n edges like on the picture (8.6).

•v

e1 }}e2 xx
... vv
en

uu
Figure 8.6: Cuntz algebra On

r(ek) = s(ek) = v, k = 1, . . . , n,

p = s∗ek
sek

=
n∑

k=1

sek
s∗ek

,

s∗ek
sek′ = 0 for k 6= k′.

When p = 1 then C∗(G) is the Cuntz algebraOn - the universal C*-algebra
for the relations

s∗ksk = 1, k = 1, . . . n,

n∑

k=1

sks
∗
k = 1.
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•0 •1 •2 ... •n−1 •ne0 // e1 // e2 // en−2// en−1 //
Figure 8.7: Mn(C)

7. G with n vertices and (n − 1) edges in the straight segment as in the
picture (8.7).

s(ek) = k, r(ek) = k + 1 for k = 1, . . . , n− 1,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

for k = 1, . . . n− 1,

s∗ek
sek′ = 0 for k 6= k′.

C∗(G) is the algebra of complex matrices n× n, that is Mn(C).

8. Similarly to the previous example we take straight segment, but infinite
in both directions. Vertices are indexed by integers as in the picture (8.8).

... •−1 •0 •1 •2 ... •n−1 •n ...
e−2 // e−1 // e0 // e1 // e2 // en−2// en−1 // en //

Figure 8.8: Compact operators K

s(ek) = k, r(ek) = k + 1, k ∈ Z,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

,

s∗ek
sek′ = 0 for k 6= k′.

We obtain algebra of compact operators K, the limit of the algebras in
the preceeding example.

9. G with n vertices and n edges forming a cycle as in the picture (8.9).

•1 •2

•3•n

••n−1

••

••

e1 //
e2 ""FFFFFFen

<<xxxxxx
...��''''en

KK���� ������...

SS'''' ||xxxxxxxbbFFFFFFF oo
Figure 8.9: Mn(C(S1))
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s(ek) = k, r(ek) = k + 1 for k = 1, . . . , n− 1, r(en) = 1,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

,

s∗ek
sek′ = 0 for k 6= k′.

We obtain algebra of matrices over the algebra of functions on the circle,
C∗(G) = Mn(C(S1)).

10. G with two vertices with loops and connected by one edge.

•v1 •v2

e1 �� e2 ��
e12

//
Figure 8.10: C(SUq(2))

pvi = p∗vi
= p2

vi
, i = 1, 2, pv1pv2 = 0,

pv1 = s∗e11se11 = s∗e11se11 + se12s
∗
e11 ,

pv2 = s∗e22se22 = s∗e12se12 = se22s
∗
e22 ,

s∗e11se12 = 0, s∗e11se22 = 0, s∗e12se22 = 0.

We obtain C*-algebra for quantum SU(2), that is C(SUq(2)) ∼= C(SU0(2)),
which is generated by two elements a, b satisfying the relations

a∗a+ b∗b = 1, aa∗ + q2b∗b = 1,

ab = qba, ab∗ = qb∗a, b∗b = bb∗.

The isomorphism is given by

a 7→ s∗e11 + s∗e12 ,

b 7→ se22 .

11. The example (10) can be treated as the C*-algebra of the quantum sphere
S3
q . Now we present graph C*-algebra for the quantum sphere S7

q , which is
next generalized to arbitrary odd dimension. We take a graph G with four
vertices with loops and each vertex is connected with all vertices with the
greater index as in the picture (8.11). The C*-algebra for the quantum
sphere S7

q is generated by the four elements z1, z2, z3, z4 satisfying the
relations

zjzi = qzizj for i < j,

z∗j zi = qziz
∗
j for i 6= j,

z∗1z1 = z1z
∗
1 + (1− q2)(z2z

∗
2 + z3z

∗
3 + z4z

∗
4),

z∗2z2 = z2z
∗
2 + (1− q2)(z3z

∗
3 + z4z

∗
4),

z∗3z3 = z3z
∗
3 + (1− q2)z4z

∗
4 ,

z∗4z4 = z4z
∗
4 ,

z1z
∗
1 + z2z

∗
2 + z3z

∗
3 + z4z

∗
4 = 1.
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•v1 •v2 •v3 •v4

e11 �� e22 �� e33 �� e44 ��e12 // e23 // e34 //
e13

::
e24

::
e14

??
Figure 8.11: C(S7

q )

For q = 0 we have the isomorphism C∗(G) ∼= C(S7
0) given by

z1 7→ se11 + se12 + se13 + se14 ,

z2 7→ se22 + se23 + se24 ,

z3 7→ se33 + se34 ,

z4 7→ se44 .

12. As in the example (11) we take a graph with n vertices and edge between
vi and vj if and only if i 6 j as in the picture (8.12).

Figure 8.12: C(S2n−1
q )

v1, . . . , vn,

eij , j = i, . . . , n, s(eij) = vi, r(eij) = vj .

The C*-algebra for the quantum sphere S2n−1
q is generated by the n ele-
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Part I Universal graph C*-algebras

ments z1, . . . , zn satisfying the relations

zjzi = qzizj for i < j,

z∗j zi = qziz
∗
j for i 6= j,

z∗i zi = ziz
∗
i + (1 − q2)


∑

j>i

zjz
∗
j


 for i = 1, . . . , n,

n∑

i=1

ziz
∗
i = 1.

For q = 0 we have the isomorphism C∗(G) ∼= C(S2n−1
0 ) given by

zi 7→
n∑

j=i

seij , i = 1, . . . , n.

13. We take a similar graph G to the one in the example (11), but with
infinitely many paralell edges vi → vj for i < j.

Figure 8.13: C(CP 3
q )

14. We take a similar graph G to the one in the example (12), but with
infinitely many paralell edges vi → vj for i < j.

Figure 8.14: C(CPn−1
q )

15. If we modify the graph for the quantum sphere S5
q by adding two additional

vertices w1, w2 and edges from each vertex v1, v2, v3 to both of the added
ones, then we obtain graph for the sphere S6

q as in the picture (8.15).
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•v1

•w1

•v2 •v3

•w2

e11 �� e22 �� e33 ��
e13

::e12 // e23 //
g11 �� g32��g12 22g21||xxxxxxxxxxxxxxx g22 ""FFFFFFFFFFFFFFFg31ll

Figure 8.15: C(S6
q )

16. The example (15) can be generalized to arbitrary even dimension just by
adding two vertices w1, w2 to the graph of the sphere S2n−1

q . We have
n+ 2 vertices v1, . . . , vn and w1, w2. Edges eij are from vi to vj whenever
i 6 j and gik are between vi and wk for k = 1, 2. More precisely for
i = 1, . . . , n we have

s(eij) = vi, r(eij) = vj , j = i, . . . , n,

s(gik) = vi, r(gik) = wk, k = 1, 2.

Figure 8.16: C(S2n
q )

8.2 Computation of K-theory

The main tool for the computation of K-theory groups of the graph C*-algebras
is the following

Theorem 8.3. Let G be a directed graph and let G0
+ ⊂ G0 be the collection of

vertices that emit at least one and at most finitely many edges. Let ZG0
+ and
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ZG0 be the free abelian groups on free generators G0
+ and G0. Let AG : ZG0

+ →
ZG0 be the map defined by the formula

AG(v) :=


 ∑

e∈G1, s(e)=v

r(e)


 − v.

Then

K0(C∗(G)) ∼= cokerAG

K1(C∗(G)) ∼= kerAG

The proof of this theorem will be postponed to the section (8.3), and now we
compute the K-theory groups of the graph C*-algebras for the examples from
the Section 8.1.

Example 8.4. 1. K∗(C)

G0 = {v}
G0

+ = ∅

AG : ∅ → Z

In this case AG is from the empty set, but still we can write

K0(C) = cokerAG = Z
K1(C) = kerAG = 0

2. K∗(C(S1))

G0 = {v}
G0

+ = {v}

AG : Z→ Z

v 7→ v − v = 0

K0(C(S1)) = cokerAG = Z
K1(C(S1)) = kerAG = Z

3. K∗(T )

G0 = {v, w}
G0

+ = {v}

AG : Z→ Z⊕ Z

v 7→ v + w − v = w

K0(T ) = cokerAG = Z
K1(T ) = kerAG = 0
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4. K∗(C(S2
0∞))

G0 = {v, w1, w2}
G0

+ = {v}

AG : Z→ Z⊕ Z⊕ Z

v 7→ v + w1 + w2 − v = w1 + w2

K0(C(S2
0∞)) = cokerAG = Z⊕ Z

K1(C(S2
0∞)) = kerAG = 0

5. K∗(C(RP 2
q ))

G0 = {v, w}
G0

+ = {v}

AG : Z→ Z⊕ Z

v 7→ v + 2w − v = 2w

K0(C(RP 2
q )) = cokerAG = Z⊕ Z2

K1(C(RP 2
q )) = kerAG = 0

6. K∗(On)

G0 = {v}
G0

+ = {v}

AG : Z→ Z

v 7→ nv − v = (n− 1)v

K0(On) = cokerAG = Zn−1

K1(On) = kerAG = 0

7. K∗(Mn(C))

G0 = {v1, v2, . . . , vn−1}
G0

+ = {v1, v2, . . . , vn}

AG : Zn−1 → Zn

vi 7→ vi+1 − vi for i = 1, . . . , n− 1

K0(Mn(C)) = cokerAG = Z
K1(Mn(C)) = kerAG = 0
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8. K∗(K)

G0 = {vi | i ∈ Z}
G0

+ = {vi | i ∈ Z}

AG :
⊕

i∈Z

Z→
⊕

i∈Z

Z

vi 7→ vi+1 − vi for i ∈ Z

K0(K) = cokerAG = Z
K1(K) = kerAG = 0

Remark 8.5. If we take direct product instead of direct sum, then there
will be nontrivial kernel.

9. K∗(Mn(S1))

G0 = {v1, v2, . . . , vn}
G0

+ = {v1, v2, . . . , vn}
AG : Zn → Zn

vi 7→ vi+1 − vi for i = 1, . . . , n− 1,

vn 7→ v1 − vn
K0(Mn(S1)) = cokerAG = Z
K1(Mn(S1)) = kerAG = Z

10. K∗(C(SUq(2)))

G0 = {v1, v2}
G0

+ = {v1, v2}
AG : Z⊕ Z→ Z⊕ Z

v1 7→ v1 + v2 − v1 = v2,

v2 7→ v2 − v2 = 0

K0(C(SUq(2))) = cokerAG = Z
K1(C(SUq(2))) = kerAG = Z

11. K∗(C(S7
q ))

G0 = {v1, v2, v3, v4}
G0

+ = {v1, v2, v3, v4}
AG : Z4 → Z4

v1 7→ v1 + v2 + v3 + v4 − v1 = v2 + v3 + v4

v2 7→ v2 + v3 + v4 − v2 = v3 + v4

v3 7→ v3 + v4 − v3 = v4

v4 7→ v4 − v4 = 0

K0(C(S7
q )) = cokerAG = Z

K1(C(S7
q )) = kerAG = Z
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12. K∗(C(S2n−1
q ))

G0 = {vi | i = 1, . . . , n}
G0

+ = {vi | i = 1, . . . , n}
AG : Zn → Zn

vi 7→
∑

j>i

vj − vi =
∑

j>i

vj

K0(C(S2n−1
q )) = cokerAG = Z

K1(C(S2n−1
q )) = kerAG = Z

13. K∗(C(CP 3
q ))

G0 = {v1, v2, v3, v4}
G0

+ = ∅
AG : ∅ → Z4

K0(C(CP 3
q )) = cokerAG = Z4

K1(C(CP 3
q )) = kerAG = 0

14. K∗(C(CPn−1
q ))

G0 = {vi | i = 1, . . . , n}
G0

+ = ∅
AG : ∅ → Zn

K0(C(CPn−1
q )) = cokerAG = Zn

K1(C(CPn−1
q )) = kerAG = 0

15. K∗(C(S6
q ))

G0 = {v1, v2, v3, w1, w2}
G0

+ = {v1, v2, v3}
AG : Z3 → Z5

v1 7→ v1 + v2 + v3 + w1 + w2 − v1 = v2 + v3 + w1 + w2

v2 7→ v2 + v3 + w1 + w2 − v2 = v3 + w1 + w2

v3 7→ v3 + w1 + w2 − v3 = w1 + w2

K0(C(S6
q )) = cokerAG = Z⊕ Z

K1(C(S6
q )) = kerAG = 0

16. K∗(C(S2n
q ))

G0 = {v1, . . . , vn, w1, w2}
G0

+ = {v1, . . . , vn}
AG : Zn → Zn+2

vi 7→
∑

j>i

vj + w1 + w2 − vi =
∑

j>i

vj + w1 + w2

K0(C(S2n
q )) = cokerAG = Z⊕ Z

K1(C(S2n
q )) = kerAG = 0
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8.3 Idea of proof of the theorem (8.3)

There are seven steps in the proof, which we will sketch here.

1. Gauge action γ.

γ : U(1) = S1 → Aut(C∗(G))

γz(se) = zse,

γz(pv) = pv.

2. C∗(G) ⋊γ U(1) ∼= C∗(G× Z).

We construct the new graph G× Z

(G× Z)0 = G0 × Z,

(G× Z)1 = G1 × Z.

It has no loops and

s(e, n) = (s(e), n− 1), r(e, n) = (r(e), n).

Each loop is resolved in the infinite segment

3. C∗(G× Z) is AF.

It follows that K1(C∗(G× Z)) = 0.

4. Dual action γ̂.

γ̂ : Z→ Aut(C∗(G) ⋊γ U(1))

γ̂χ(f)(t) = 〈χ, t〉f(t), where f : U(1)→ C∗(G).

5. Takesaki-Takai duality.

(C∗(G) ⋊γ U(1)) ⋊γ̂ Z ∼= C∗(G) ×K.
From the stability of K∗ it follows that

K∗((C
∗(G) ⋊γ U(1)) ⋊γ̂ Z) ∼= K∗(C

∗(G)).
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6. Pimsner–Voiculescu sequence.

The Pimsner–Voiculescu sequence is as follows

K0((C∗(G) ⋊γ U(1))
id−K0(γ̂−1)// K0((C∗(G) ⋊γ U(1)) // K0((C∗(G) ⋊γ U(1)) ⋊γ̂ Z)��

K1((C∗(G) ⋊γ U(1)) ⋊γ̂ Z)

OO
K1((C∗(G) ⋊γ U(1))oo K1((C∗(G) ⋊γ U(1))

id−K1(γ̂
−1)oo

where the maps are given by the formulas

K∗(C
∗(G) ⋊γ U(1))

id−K∗(γ̂−1)−−−−−−−−→ K∗(C
∗(G) ⋊γ U(1)),

K∗(C
∗(G) ⋊γ U(1))

id−K∗(β−1)−−−−−−−−→ K∗((C
∗(G) ⋊γ U(1)) ⋊γ̂ Z),

and the map β : Z→ Aut(C∗(G× Z)) is given by

βm(p(v,n)) = p(v,n+m),

βm(s(e,n)) = s(e,n+m).

Using the preceding computations we can write the sequence as

K0(C∗(G× Z))
id−K0(γ̂

−1) // K0(C∗(G× Z))
1−K0(β−1) // K0(C∗(G))��

K1(C∗(G))

OO
0oo 0oo

7. Computation of the kernel and cokernel of 1−K0(γ̂−1).
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Chapter 1

Foliations

1.1 What is a foliation and why is it interesting?

Question 1 (H. Hopf). Is there a completely integrable plane field on S3? (Plane
field - two dimensional subbundle E ⊂ TS3).

Answer 1 (G. Reeb). Yes, it is a tangent bundle to a 2-dimensional Reeb folia-
tion of S3, described in the example (1.2(6)).

Question 2 (A. Haefliger). Given a plane subbundle E of TM is it homotopic
to an integrable one?

Answer 2 (R. Bott). There exists at least one obstruction; not every subbundle
has in its K-theory class as an integrable one.

Roughly speaking, a foliation is the decomposition of a manifold Mn into
disjoint family of submanifolds (immersed injectively) of dimension n−q, which
is locally trivial.

More precisely

Definition 1.1. A codimension q foliation of a manifold Mn is a family F =
{Lα}α∈I of (n − q)-dimensional connected, injectively immersed submanifolds
that satisfy

1.
Lα ∩ Lβ 6= ∅ iff. α = β and

⋃

α∈I
Lα = M.

2. For all p ∈M there exist open U ∋ p and a diffeomorphism

ϕ : U → Rn = Rn−q × Rq,

such that for all α ∈ I

ϕ((U ∩ Lα)conn. comp.) = { x;xn−q+1 = cn−q+1, . . . , xn = cn},

cj = constant, j = n− q + 1, . . . , n.

Example 1.2.

1. Fibrations.
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Part II What is a foliation and why is it interesting?

��

Figure 1.1: ϕ : U → Rn

1

0 1

Figure 1.2: Kronecker foliation of T

2. Surjective submersions.

3. The Kronecker foliation of T = S1×S1, S1 = R/Z. Solutions of differential
equation ∂

∂y = λ ∂
∂x with λ = tan(θ) fixed. If a slope is rational then we

get a closed curve – closed leaves of foliation. If λ /∈ Q then leaves are
dense – they are immersions of R which is not closed manifold.

Rough quotient space M/F . Two points are equivalent if and only if they
belong to the same leaf. In the Kronecker foliation, when leaves are dense,
we get a noncommutative torus.

4. The 1-dimensional Reeb foliation of T.

5. The 2-dimensional Reeb foliation of a solid torus D2 × S1.

In the universal cover D2 × R→ D2 × S1

We rotate these curves along vertical axis and define relation (x, y, z) ∼
(x, y, z + 1). We have one closed leaf (boundary) and rest are open leaves
(images of not closed manifolds).
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Part II Equivalent definitions

Figure 1.3: Translations of a curve

6. The 2-dimensional Reeb foliation of S3.

S3 = D2 × S1
∐

S1 ×D2/ ∼

S3 = { (x1, x2, x3, x4) ∈ R4
∣∣ x2

1 + x2
2 + x2

3 + x2
4 = 1}

The two tori in above decomposition are

{ x ∈ S3
∣∣ x2

1 + x2
2 6

1

2
}

{ x ∈ S3
∣∣ x2

1 + x2
2 >

1

2
}

We put on each torus Reeb’s foliation from preceeding example.

The notion of foliation is interesting for two reasons:

1. the definition is multifaceted

2. it gives rise to an interesting equivalence relation on M , which in turn
gives rise to an interesting quotient “space” M/F .

1.2 Equivalent definitions

Definition 1.3 (Manifold reformulation). There exists covering of M by charts
(Ui, ϕi) such that ϕ(Ui) = Vi ×Wi, where Vi and Wi are open subsets of Rn−q

and Rq, respectively, with the property that if Ui∩Uj 6= ∅ then the diffeomorphism

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is of the form

(x, y) 7→ (hij(x, y), gij(y)), gij : W ◦i →W ◦j .
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Part II Holonomy groupoid

Definition 1.4 (1-cocycle reformulation). There exists collection (Ui, fi, gij),
where (Ui) is a covering of M , fi : Ui → Wi are surjective submersions onto
open q-dimensional manifolds, gij : fj(Ui∩Uj)→ fi(Ui∩Uj) - diffeomorphisms
satisfying

fi = gij ◦ fj on Ui ∩ Uj and gij ◦ gjk = gik on Ui ∩ Uj ∩ Uk.

Definition 1.5. Let (M,F) be manifold with foliation. The tangent bundle to
F is

τF := {X ∈ TM
∣∣ X tangent to a leaf }.

Let Γ(τF) denote the space of smooth sections of this bundle. Clearly this
is an involutive subbundle, i.e.

[Γ(τF),Γ(τF)] ⊂ Γ(τF).

because this is local property, obvious on charts.
Conversely by theorem of Frobenius we can write

Proposition 1.6. Any involutive subbundle E ⊂ TM is the tangent bundle to
a unique foliation.

Equivalently we can say

Proposition 1.7. The ideal I(E) generated by the sections of

νF = {ω ∈ T ∗M
∣∣ ∀X ∈ τF ω(X) = 0}

is closed under d, i.e. I(E) is a differential ideal.

1.3 Holonomy groupoid

Let x, y ∈ L ⊂ M be points in a leaf of foliation, γ : [0, 1] → M - path from x
to y contained in L.

t t t pt p t
10 0 nn−11 2 == ...

p

p1

0

Figure 1.4: Path in the leaf L

Let W -transversal through x = ϕ−1(x1 = c1, . . . , xn−q = cn−q). If x′ is
close to x one can copy γ to γ′, at least for a while. By the compactness of γ,
there exists transversal Tx ⊂ W such that we reach transversal Ty through y,
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Part II How to handle “M/F”

starting from any x′ ∈ Tx, and such that x′ 7→ y′ = γ′(1) is a diffeomorphism
hγ . We define holonomy of path γ as

Hol(γ) := germ of hγ : germ of Tx → germ of Ty

Obviously if γ1 ∼ γ2 are homotopic, then Hol(γ1) = Hol(γ2), i.e. holonomy
factors through homotopy.

Recall that groupoid is a small category with all arrows invertible.

Definition 1.8. Holonomy groupoid

G(F) := { (x,Hol(γ), y)
∣∣ ∃ leaf L ∋ x, y, and path γ : [0, 1]→ L from x to y}

with objects
G0 = M

and composition

(y,Hol(δ), z) ◦ (x,Hol(γ), y) = (z,Hol(δ ◦ γ), z).

Interpretation:

• (x,Hol(const), x) “reflexibility” = unit,

• (x,Hol(γ), y) = (y,Hol(γ−1), x) “symmetry”= inverse,

• (y,Hol(δ), z) ◦ (x,Hol(γ), y) = (x,Hol(δ ◦ γ), z) “transitivity”= composi-
tion.

Let T be a complete transversal to F i.e. T is an immersed submanifold,
transverse to each leaf and intersecting each leaf at least once.

GT (F) = { (x,Hol(γ), y) ∈ G(F)
∣∣ x, y ∈ T },

C∞c (GT (F)) →֒ C∗(GT (F)),

(f ∗ g)(Hol(γ)) =
∑

Hol(γ1) Hol(γ2)=Hol(γ)

f(Hol(γ1))g(Hol(γ2)).

1.4 How to handle “M/F”

“M/F ′′ = groupoid G(F)

(A) “Homotopy quotient” approach, or equivalently via s. This is similar in
spirit to

“M/Γ′′ ↔M ×Γ E Γ→ B Γ,

where Γ is a group.

“M/F ′′ ∼ BG(F)→ B Γq

(B) “Topos” approach, by extending “duality”

Topological spaces↔ Sheaves of sets,

and associating a suitably defined topos to G(F).

(C) Connes noncommutative geometry approach, by extending the duality

Topological spaces↔ Commutative C*-algebras,

to include C∗(G), for G-groupoid.
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Part II Characteristic classes

1.5 Characteristic classes

All approaches produce cohomology groups for groupoids, equivalent for (A) &
(B), and cyclic homology HC∗ for (C), as well as characteristic maps. They are
all “huge” and not well understood. The ones which are best understood are
the “geometric” characteristic classes.

1. Bott construction a la .

2. Gelfand-Fuks realization.

3. Hopf–cyclic cohomological construction.

142



Chapter 2

Characteristic classes

2.1 Preamble: Chern–Weil construction of Pon-
tryagin ring

Definition 2.1. LetE → M be a real vector bundle. A connection on E is a
linear operator

∇ : Γ(E)→ Γ(T ∗M ⊗ E) = Ω1(M)⊗ Γ(E)

satisfying following rule

∇(fs) = df ⊗ s+ f∇(s).

A connection ∇ extends to a graded Ω(M)-module map

∇ : Ω∗(M)⊗ Γ(E)→ Ω∗(M)⊗ Γ(E) = Ω∗(M,E), by

∇(ω ⊗ s) = dω ⊗ s+ (−1)degωω∇(s).

We can view Ω∗(M,E) as a module over Ω∗(M) and then for any ζ ∈ Ω∗(M,E)
and any ω ∈ Ω∗(M) we have

∇2(ωζ) = ∇(dωζ + (−1)∂ωω∇(ζ))

= (−1)∂ω+1dω∇(ζ) + (−1)∂ωdω∇(ζ) + ω∇2(ζ)

= ω∇2(ζ).

It means that ∇2 is a local operator - multiplication by an element of the base
ring. It follows that

∇2(ζ) = R · ζ, R ∈ Ω2(M,End(E)).

Definition 2.2. We call R a curvature form, or curvature of connection ∇.

Explicit expression in terms of covariant derivative:

X − vector field ,∇X(s) = ∇s(X)

∇X : Γ(E)→ Γ(E).
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Part II Preamble: Chern–Weil construction of Pontryagin ring

Let {Xi} be basis of TM, i.e. linearly independent vector fields, {ωi} - its dual
basis of 1-forms. Then

∇(s) =
∑

i

ωi ⊗∇Xi(s), hence

∇2(s) =
∑

i

dωi ⊗∇Xi(s)−
∑

i

ωi∇(∇Xi (s))

=
∑

i

dωi ⊗∇Xi(s)−
∑

i,j

ωi ∧ ωj∇Xj∇Xis.

Where the second sum could be written as
∑

i,j

ωi ∧ ωj∇Xj∇Xis =
∑

i<j

ωi ∧ ωj[∇Xj ,∇Xi ]s.

Write
dωi =

∑

j<k

f ijkω
j ∧ ωk,

with f ijk = dωi(Xj , Xk) = −ωi([Xj , Xk]). With that, we can rewrite first sum
as

∑

i

dωi ⊗∇Xi(s) = −
∑

j<k

∑

i

ωi([Xj , Xk])ωj ∧ ωk ⊗∇Xi(s)

= −
∑

j<k

ωj ∧ ωk ⊗∇P
i ω

i([Xj ,Xk])Xi
(s)

= −
∑

j<k

ωj ∧ ωk ⊗∇[Xj ,Xk](s).

We just proved

Lemma 2.3.
∇2s =

∑

j<k

ωj ∧ ωkRXj ,Xk
(s) = R · s,where

RX,Y = [∇X ,∇Y ]−∇[X,Y ] ∈ End(E), and

R =
∑

j<k

RXj ,Xk
ωi ∧ ωk.

For any Lie algebra g of a Lie group G, we denote by I(g) set of polynomials
on g which are invariant under adjoint action AdG. For

P ∈ Sym(g∗ ⊗ . . .⊗ g∗)

it means that

P (Ad(g)x1, . . . ,Ad(g)xr) = P (x1, . . . , xr), where

Ad(g)(a) = gag−1.

Let gln(R) be the Lie algebra of GLn(R). The set I(gln) is in fact ring, and is
generated by elements

P2k(A) = P2k(A, . . . , A) = tr(Ak).
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Part II Preamble: Chern–Weil construction of Pontryagin ring

Theorem 2.4 (Chern–Weil). Let P ∈ I(gln(R)) be an invariant polynomial of
degree k, R - curvature of connection ∇ on real vector bundle E →M .

1. Then P (R) = P (R, . . . , R) ∈ Ω2k(M) is closed and its de Rham cohomol-
ogy class is independent of the connection.

2. More precisely, if ∇0, ∇1 are two connections, then

P (R1)− P (R0) = k · d
∫ 1

0

P (α,Rt, . . . , Rt)dt,

where α ∈ Ω1(M,End(E)) is the difference α = ∇1 − ∇0, and Rt is the
curvature of a connection ∇t = (1 − t)∇0 + t∇1.

Proof. It is based on the two lemmas.

Lemma 2.5. If deg(P ) is odd, then P (R) = 0 for any metric connection.

Proof. By hypothesis we have using Euclidean structure (E, 〈−,−〉)

X〈s, t〉 = 〈∇Xs, t〉+ 〈s,∇Xt〉.

This implies

XY 〈s, t〉 = X(〈∇Y s, t〉+ 〈s,∇Y t〉)
= 〈∇X∇Y s, t〉+ 〈∇Y s,∇Xt〉+ 〈∇Xs,∇Y t〉+ 〈s,∇X∇Y t〉,

and

[X,Y ]〈s, t〉 = 〈[∇X ,∇Y ]s, t〉+ 〈s, [∇X ,∇Y ]t〉
= 〈∇[X,Y ]s, t〉+ 〈s,∇[X,Y ]t〉.

We can write then
〈RX,Y s, t〉+ 〈s,RX,Y t〉 = 0, i.e.

R+Rt = 0, and P (R) = P (Rt, . . . , Rt) = (−1)kP (R).

Lemma 2.6. For ω ∈ Γ(M,End(E)) one has

d(trω) = tr[∇, ω].

Proof. Locally, on a chart U we have ∇ = d+ α, α ∈ Ω1(U,End(E)). Hence

[∇, ω] = [d+ α, ω] = dω + [α, ω], and

tr[∇, ω] = tr dω + tr[α, ω] = d(trω).

In particular (Bianchi’s identity)

d tr(Rk) = tr[∇, Rk] = tr[∇,∇2k] = 0.

This gives proof of the first part, because polynomials of the form tr(Rk) gen-
erate I(gln(R)).
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Part II Adapted connection and Bott theorem

For the second part, note that if ∇t = (1− t)∇0 + t∇1, we have

d

dt
(Rt) =

d

dt

(
∇2
t

)
=

d

dt
(∇t)∇t +∇t

d

dt
∇t =

=

[
d

dt
∇t,∇t

]
= [α,∇t] = [∇t, α],

where α = ∇1 −∇0. Now

d

dt
tr(Rkt ) = tr

(
d

dt
Rkt

)
= k tr

(
dRt
dt

Rk−1
t

)
=

= k tr
(

[∇t, α]∇2(k−1)
t

)
= k tr([∇t, α∇2(k−1)

t ]) = kd tr(αRk−1
t ).

2.2 Adapted connection and Bott theorem

Let E ⊂ TM be an involutive subbundle and let Q = TM/E with π : TM → Q
be the projection.

Definition 2.7. An adapted (or E-flat) connection on Q is a connection ∇
such that

∇Xπ(Z) = π([X,Z]), ∀X ∈ Γ(E).

This makes sense, since

∇fXπ(Z) = π([fX,Z]) = −π(Z(f)X) + fπ([X,Z]) = f∇Xπ(Z), and

∇X(fπ(Z)) = π([X, fZ]) = π(X(f)Z)+fπ([X,Z]) = X(f)π(Z)+f∇X(π(Z)).

To construct such a connection, take a decomposition TM = E ⊕Q and set

∇Xπ(Z) = ∇XEπ(Z) +∇X
E⊥

(Z) = π([XE , Z]) +∇X
E⊥

(Z)

where we take an arbitrary connection on E⊥.

Lemma 2.8. For any adapted connection

RX,Y = 0, ∀X,Y ∈ Γ(E).

Proof.
RX,Y π(Z) = (∇X∇Y −∇Y∇X −∇[X,Y ])(π(Z)) =

π([X, [Y, Z]]− [Y, [X,Z]]− [[X,Y ], Z]) = 0.

Theorem 2.9 ( Bott vanishing theorem). Given E ⊂ TM which is involutive,
we have for Q = TM/E, dimQ = q

Pont>2q(Q) = 0.
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Part II The Godbillon–Vey class

Proof. Let
P2k(A) := tr(Ak).

Then for
R =

∑

i<j

RXi,Xjω
i ∧ ωj

we have

P2k(R) = tr(Rk) =
∑

tr(RXi1 ,Xj1
, . . . , RXi2k

,Xj2k
)ωi1 ∧ ωj1 ∧ . . . ∧ ωi2k ∧ ωj2k .

If k > q, at least one pair belongs to E, otherwise

ωi1 ∧ . . . ∧ ωi2k = 0.

Remark 2.10.
Pont(Q) = Pont(TM ⊖ E),

hence the above is a restriction of [E] ∈ K0(M).

2.3 The Godbillon–Vey class

Let F be a codimension q foliation of Mn, E = τF , Q = TM/E. First, assume
that F is transversaly orientable i.e. ΛqQ has nowhere zero section (giving
trivialization ΛqQ ∼= M × R).

Lemma 2.11. Let Ω be nonvanishing section of ΛqQ. Then

dΩ = α ∧ Ω (2.1)

for some α ∈ Ω1(M,End(E)).

Proof. It suffices to prove (2.1) locally, then patch by partition of unity.
On a chart U , choose a basis ω1, . . . , ωq ∈ I(E) such that

Ω = ω1 ∧ . . . ∧ ωq,

dωi =

q∑

j=1

αij ∧ ωj

Then

dΩ =

q∑

i=1

(−1)iω1 ∧ . . . ∧ dωi ∧ . . . ∧ ωq =

=

q∑

i=1

(−1)iω1 ∧ . . . ∧




q∑

j=1

αij ∧ ωj


 ∧ . . . ∧ ωq

Only αii ∧ ωi can contribute to the sum, so

dΩ =

(
q∑

i=1

αii

)
∧Ω.
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Part II The Godbillon–Vey class

Lemma 2.12. For all α as above (dα)q+1 = 0.

Proof.

0 = d2Ω = dα ∧ ω − α ∧ dΩ = dα ∧ Ω + α ∧ α ∧ Ω = dα ∧ Ω.

Write dα using basis of 2-forms extending {ω1, . . . , ωq}

dα =
∑

16i<j6n

fijωi ∧ ωj .

Now take exterior product with Ω = ω1 ∧ . . . ∧ ωq
∑

16i<j6n

fijωi ∧ ωj ∧ ω1 ∧ . . . ∧ ωq = 0.

If at least one of i, j ∈ {1, . . . , q} then corresponding summand is 0. Hence

∑

q+16i<j6n

fijωi ∧ ωj ∧ ω1 ∧ . . . ∧ ωq = 0,

so
fij = 0 for q + 1 6 i < j 6 n.

Now we can write

dα =
∑

i<j; at least one 6q

fijωi ∧ ωj =

q∑

j=1

αj ∧ ωj ∈ Γ(E),

and

(dα)q+1 =
∑

fi1j1 . . . fiq+1jq+1ωi1 ∧ ωj1 ∧ . . . ∧ ωiq+1 ∧ ωjq+1 = 0.

We just proved that form η = α ∧ (dα)q is closed.

Lemma 2.13. The class
[η] ∈ H2q+1(M,R)

is independent on all choices involved in definition.

Proof. First assume that Ω′ = fΩ for f > 0 everywhere. Then

dΩ′ = fdΩ + dfΩ = fα ∧Ω + df ∧ Ω = α ∧Ω′ +
df

f
∧ Ω′ =

= (α+ d(log f)) ∧Ω′ = α′ ∧Ω′.

Hence

Ω′ ∧ (dΩ′)q = (α+ d(log f)) ∧ (dα)q = α ∧ (dα)+d(log(f)(dα)q),

so η and η′ = α′ ∧ (dα′) differ by boundary.
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Part II Nontriviality of Godbillon–Vey class

Now assume that dΩ = α′ ∧ Ω, β = α − α′ sucht that β ∧ Ω = 0. Hence
β ∈ Γ(E), and recall that also dα, dα′ ∈ Γ(E). Then we have

η′ = α′ ∧ (dα′)q = (α+ β) ∧ ((dα)q + dβ ∧ σ)

with

σ =

q−1∑

i=0

ci(dα
i) ∧ (dβ)q−i−1 ∈ Γ(E)q−1, and dσ = 0.

Then

α′ ∧ (dα′)q = α ∧ (dα)q + α ∧ dβ ∧ σ + β ∧ (dα)q + β ∧ dβ ∧ σ,
where the last two summands belong to Γ(E)q+1 = 0, so in fact we have

α′ ∧ (dα′)q = α ∧ (dα)q + α ∧ dβ ∧ σ =

= α ∧ (dα)q + α ∧ d(β ∧ σ) = α ∧ (dα)q − d(α ∧ β ∧ σ) + dα ∧ βσ,
where the last summand is from Γ(E)q+1 = 0. Again we see, that η′ − η is a
boundary.

Definition 2.14. The class gv(F) := [η] ∈ H2q+1(M ; R) is called the Godbillon-
Vey class of a manifold with foliation (M,F).

Remark 2.15. Nonorientable case. Lift F to F̃ in M̃ = orientable double cover-
ing with γ= the generator of Z/2. Replacing Ω̃ by 1

2 (Ω̃−γ∗Ω̃) 6= 0 if needed, we

can always assume γ∗(Ω̃) = −Ω̃. Then dΩ̃ = α̃∧Ω̃, and d(γ∗Ω̃) = γ∗(α̃)∧γ∗(Ω̃).

Hence dΩ̃ = γ∗(α̃) ∧ Ω̃, and 1
2 (α̃+ γ∗(α̃)) drops down to M.

2.4 Nontriviality of Godbillon–Vey class

On G = SL(2,R), with TG ∼= G× g, (g - Lie slgebra of G = traceless matrices)
take the foliation given by the subbundle E generated by the left invariant vector
fields corresponding to

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
,

with

[X,H ] =

(
0 −1
0 0

)
−
(

0 1
0 0

)
= −2X.

The third basis element is

Y =

(
0 0
1 0

)
,

with
[Y,H ] = 2Y, [X,Y ] = H.

Take the dual basis {ζ, η, χ} of g∗ and extend them as left-invariant 1-forms.
Then η defines F (i.e. E = ker η). One has

dχ = aχ ∧ ζ + bχ ∧ η + cζ ∧ η,
b = dχ(H,Y ) = −χ([H,Y ]) = 2χ(Y ) = 0,

c = dχ(X,Y ) = −χ([X,Y ]) = −χ(H) = −1,

a = dχ(H,X) = χ([X,H ]) = −2χ(X) = 0,
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Part II Foliations with rigid Godbillon-Vey class

hence

dχ = −ζ ∧ η,
dζ = −2χ ∧ ζ,
dη = 2χ ∧ η.

The last implies
α = 4χ ∧ dχ = −4χ ∧ ζ ∧ η.

The form α drops down to M = Γ \ G for any Γ cocompact giving a volume
form, hence

[αΓ] = generator of H3(M ; R).

More precisely, let Σg be the Riemann surface of genus g > 2. Then its universal
cover is the upper half plane

H = SL(2,R)/ SO(2),

on which Γ = π1(Σg) acts by Mobius transformation

Γ ⊂ PSL(2,R), z 7→ az + b

cz + d
.

Let Γ̃ be the double cover of Γ. Then Γ̃ is cocompact. Morover M ∼= S1Σg (unit
tangent bundle), hence

[αΓ]([M ]) = 4

∫

S1Σg

ζ ∧ η ∧ χ

= 4π

∫

Σg

ζ ∧ η = 4πArea(Σg)

= −4π

∫

Σg

Kdσ

= −8π2(2− 2g).

2.5 Foliations with rigid Godbillon-Vey class

Let F be a foliation of codimension one on a manifold X . It can be described

1. locally by the compatible system of submersions

X ⊃ Ui xi−→ R,

when the leaves are level sets of functions xi, or

2. globally by the nonvanishing 1-form ω0 with values in the orientation
sheaf (the sheaf of sections of the flat bundle associated by the sign of the
determinant) of the normal bundle Q of F , whose kernel is equal to the
tangent distribution F of F .

Definition 2.16. We say that F is given a transversal projective structure if
there are given functions xi as above, whose domains cover X and which are
related on intersections Ui ∩ Uj by fractional linear transformations

x 7→ ax+ b

cx+ d
.
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Part II Foliations with rigid Godbillon-Vey class

The Frobenius condition of integrability of F yields the existence of 1-form ω1

such that
dω0 = ω1 ∧ ω0.

Then the 3-form ω1 ∧ dω1 represents the Godbillon-Vey class gv(F) in the
De Rham cohomology of X . It is an invariant of C1-diffeomorphisms [r-g88],
the concordance equivalence of foliations and for oriented closed 3-folds the
Godbillon-Vey number is invariant under foliated cobordisms [t-w72]. However,
in contrast to primary characteristic classes, it can vary under continuous defor-
mations, which means that it is not a homotopy invariant [t-w72]. This suggests
that not being a robust invariant it can be related with more subtle geometric
structure of the foliation. First indication in this direction was the rigidity the-
orem [h-yxx],[t-w72] saying that under a deformation in the class of foliations
admitting a transversal projective structure the Godbillon-Vey class does not
change. The main result of [?] is the following generalization of that result
on deformations of foliations admitting a transversal projective structure, but
taken in the class of infinitesimal deformations with arbitrary singularities and
not necessarily satisfying the transversal projective structure assumption, and
somewhat surprising inversion of this generalization on closed oriented three-
folds.

Theorem 2.17. (Thm 4, [m-t99]) Let F be a foliation of codimension one on
a manifold X.

1. If F admits a transversal projective structure and the topological vector
space H3(X,R) is separated, then gv(F) is topologically rigid.

2. If X is closed oriented, the topological vector space H2(X, TX/F ) is sep-
arowalna and gv(F) is topologically rigid, then F admits a transversal
projective structure.

Intuitively, if one sees the Godbillon-Vey number as a function on the moduli
space of foliations of codimension one on a closed oriented threefold, then the
set of critical points of this function consists precisely of foliations admitting a
transversal projective structure. Proof of this theorem, and even its formulation,
needs some modification of the theory of deformations of foliations introduced
by Heitsch [h-lxx], Hamilton [h-r77] and developed by Desolneux-Moulis [dmxx],
so to take singular perturbation of a smooth foliation into account. They are
described by distributional sections of sheaves naturally related with a foliation.
Among such sheaves the following ones are important to us: the sheaf OX/F of
functions locally constant along the leaves of the foliation F , transversal tangent
sheaf TX/F , its OX/F -dual sheaf Ω1

X/F and their tensor products balanced over
OX/F . We denote sheaves of distributional sections of these sheaves using the

symbol (−), e.g. TX/F .

Example 2.18. Define the family F(t) of singular foliations on R2 defined by the
differentiable family of nonvanishing smooth 1-currents

ω0(t) := dx+

(∫ t

0

f(s, ·)ds
)
dy.

Then the value of ω0(t) at t = 0, ω0 := ω0(t) = dx is smooth, but the class of
its derivative, as a current depending on t, at t = 0 modulo ideal generated by
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Part II Foliations with rigid Godbillon-Vey class

ω0

δ(ω0) :=

(
d

dt
ω0(t)

) ∣∣
t=0

= f(·)dy mod (ω0)

can be arbitrarily singular. To illustrate this phenomenon, let us take

ω0(t)(x, y) := dx+

(∫ t

0

e−(y/s)2

√
πs

ds

)
dy.

Then leaves are level sets of the function

x(t) := x+

∫ t

0

(
1√
π

∫ y/s

0

e−u
2

du

)
ds.

One can see that

1. for t = 0 leaves are vertical lines

2. the common singular locus for all t 6= 0 is equal to S = {(x, y) ∈ R2 | y =
0} and singularities of leaves are cuspidal.

In this way we obtain a deformation of the foliation by vertical lines in the family
of singular foliations. Let jS be the current corresponding to the singular locus
S. Computing the first derivative of ω0(t) at t = 0 we obtain

δ(ω0) = jS mod (ω0).

This means that the infinitesimal variation of this smooth foliation in this family
describing adding microscopic cusps has distributional values. Note that topo-
logical type of the singular foliation is unchanged under this deformation. This
is an example of an infinitesimal singular deformation of a smooth foliation.

In general, infinitesimal topological deformation theory of smooth foliations
is described by means of sheaf cohomology [m-t99], where the sheaf in question
is the sheaf TX/F of distributional local sections of the transversal tangent sheaf
TX/F . Theory of infinitesimal singular deformations of foliations is based on the
following identifications.

Proposition 2.19. (Prop. 2, [m-t99]) There exist natural bijections:

1. between the space of global sections H0(X, TX/F ) and the space of infinites-
imal transversal singular automorphisms of F ,

2. between the cohomology space H1(X, TX/F ) and the space of infinitesimal
singular deformations F up to infinitesimal singular conjugations.

It turns out that the formal differential calculus analogical to that one from
the above example makes sense also for the Godbillon-Vey class in the De Rham
cohomology. This gives rise to the notion of the universal variation of the
Godbillon-Vey class under infinitesimal singular deformations, which is a con-
tinuous linear map

H1(X, TX/F )
δ gv(F)−→ H3(X,R)

between cohomology spaces equipped with appropriate canonical topologies
[m-t99]. We say that a given foliation has topologically rigid Godbillon-Vey
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Part II Foliations with rigid Godbillon-Vey class

class, if the universal variation of the Godbillon-Vey class under infinitesimal
topological deformations is zero. Sheaf cohomology can be used to study rela-
tions between characteristic classes of foliations and the transversal projective
structure because there exists a cohomological obstruction to the existence of
such a structure.

Theorem 2.20. (Thm 2, [m-t99]) There exists an invariant

i2(F) ∈ H1(X, (Ω1
X/F )⊗2),

which vanishes if and only if the foliation F admits a transversal projective
structure. If i2(F) = 0, then the set of transversal projective structures on F is
an affine space whose space of vectors equals H0(X, (Ω1

X/F )⊗2).

To proceed further, we will apply the following useful canonical nondegen-
erate pairings between cohomology with values in the above and other similar
sheaves.

Theorem 2.21. (Thm 1, [m-t99]) Let F be a foliation of dimension n and of
codimension m on a manifoldX. For every locally free OX/F -module E of finite
rank there exist natural nondegenerate pairings

Hk(X,HomOX/F
(E , ωX/F ))⊗Hn−k

c (X, E)→ R,

Hk
c (X,HomOX/F

(E , ωX/F ))⊗Hn−k(X, E)→ R.

Now, the following fact is crucial for the proof of the main theorem.

Theorem 2.22. (Thm 3, Prop. 3, [m-t99]) On a manifold X of dimension n+
1, the variation of the Godbillon-Vey class gv(F) of a foliation F of codimension
one

H1(X, TX/F )
δ gv(F)−→ H3(X,R)

and the Yoneda product with the obstruction i2(F) to the existence of a transver-
sal projective structure on F

Hn−1
c (X, (Ω1

X/F )⊗2 ⊗ orX)
i2(F)∪←− Hn−2

c (X, orX)

are (up to the factor (−1)n+1/2) adjoint one to each other with respect to
Poincaré duality

H3(X,R)⊗Hn−2
c (X, orX)→ R

and the duality

H1(X, TX/F )⊗Hn−1
c (X, (Ω1

X/F )⊗2 ⊗ orX)→ R.

The last theorem allows us to derive vanishing of one of these maps from
vanishing of the other one, provided appropriate topological cohomology spaces
are separated. Especially interesting in this context is separatedness of the space
H2(X, T X/F ), which is an analog of the space occuring in the Kodaira-Spencer
theory of deformations of complex structures as a receptor of obstructions to
deformations. The following theorem gives a sufficient criterion to separatedness
of H2(X, TX/F ). Denoting Hk(X) := Hk(X, TX/F ) we have
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Part II Naturality under transversality

Theorem 2.23. (Thm 5, [m-t99]) Let I be a linearly ordered set and let X =⋃
i∈I Xi be an open covering of the manifold X such that for all i < j < k

Xi ∩Xj ∩Xk = ∅

and for all i ∈ I spaces H2(Xi) are separated. If at least one of the conditions
below 1) H1(Xi) = 0 and H1(Xi ∩Xj) - separated, 2) H1(Xi ∩Xj) = 0,
is fulfilled for all i < j, then H2(X) is separated.

2.6 Naturality under transversality

Let φ : N → M , E ⊂ TM integrable subbundle, F - codimension q foliation,
τF = E. If V → M is a vector bundle, then for each invariant polynomial
P ∈ I(glq(R)) of degree k, we have a class P (V ) ∈ H2k(M ; R). It behaves
naturally with respect to pullback

φ∗(V ) //�� V

π��
N

φ // M
P (φ∗(V )) = φ∗(P (V )).

By Bott vanishing Theorem 2.9, all classes for Q = TM/E are 0 if k > q.
The Godbillon–Vey class gv(M,F) ∈ H2q+1(M ; R) is a nontrivial invariant.

Definition 2.24. We say that φ is transversal to E (or to F), φ ⋔ E, if for
each x ∈ N

Tφ(x)M = φ∗(TxN)⊕ Eφ(x).

Equivalently
π ◦ φ∗x : TxN → Tφ(x)M/E

is surjective.

Lemma 2.25. Ẽ := φ−1
∗ (E) is involutive, hence defining a foliation F̃ =

φ−1(F), whose leaves are the connected components of φ−1(L), L ⊂ F .

Proof. (Short) Let E = τF be given by a cocycle {(Ui, fi, gij)
∣∣ i, j ∈ I},

fi : Ui → Rq submersions, gij : fj(Ui ∩Uj)
∼=−→ fi(Ui ∩Uj). Then {(φ−1(Ui), fi ◦

φ, gij)
∣∣ i, j ∈ I} define F̃ .

Proof. (More useful) Any map φ can be decomposed as a composition

N
id×φ−−−→ N ×M prM−−−→M,

x 7→ (x, φ(x)); (x, y) 7→ y.

It is sufficient to prove the lemma for

(a) id× φ - injective immersion,

(b) prM - projection.
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Part II Transgressed classes

For each map in this composition the statement is obvious.

(a) Ẽ = E ∩ TN ,

(b) Ẽ = TN ⊕ E.

Definition 2.26. A characteristic class for foliation F is an assignment

(M,F) 7→ γ(M,F) ∈ H∗(M ; R)

such that if φ : N →M is transversal to F , then

γ(N,φ∗(F)) = φ∗(γ(M,F)).

Example 2.27. If (M,F) is transversally oriented, i.e. there exists nowhere zero
section Ω of ΛqQ, then we have Godbillon–Vey class. On local chart U

Ω = ω1 ∧ . . . ∧ ωq, {ω1, . . . , ωq} − generators of Γ(E
∣∣
U

),

dΩ = α ∧ Ω, gv(M,F) = [α ∧ (dα)q ] ∈ H2q+1(M ; R).

For φ : N →M , {φ∗(ω1), . . . , φ∗(ωq)} is the set of generators of for Γ(φ∗(E)
∣∣
φ−1(U)

)

and therefore
dφ∗(Ω) = φ∗(dΩ) = φ∗(α) ∧ φ∗(Ω),

and thus

gv(N,φ∗(F)) = φ∗(α) ∧ (dφ∗(α))q = φ∗(α ∧ (dα)q) = φ∗(gv(M,F)).

Example 2.28. Pontryagin classes are characteristic classes of for foliation, since
for P ∈ Ik(glq(R)) we have

P (φ∗(F)) = φ∗(P (F)),

where P (F) = P (Q) for Q = TM/τF .

2.7 Transgressed classes

Let (M,F) be a manifold with foliation,∇0,∇1 two connections on Q = TM/E,
E = τF . Then

∇1 −∇0 = α ∈ Ω1(M,End(E)).

Let ∇t := t∇1 + (1 − t)∇0 be linear homotopy between connections, and
R0, R1, Rt corresponding curvatures. Then by the theorem of (2.4) for P ∈
Ik(glq(R))

P (R1)− P (R0) = dTP (∇1,∇0), where

TP (∇1,∇0) := k

∫ 1

0

P (α,Rt, . . . , Rt)dt.

Let ∇1 = ∇♭ be the E-flat connection (or Bott connection) (Definition 2.7),
i.e.

∇♭X(π(Y )) = π([X,Y ]), ∀X ∈ Γ(E), π : TM → TM/E = Q.
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The corresponding curvature satisfies (Lemma 2.8)

R♭(X1, X2) = 0, ∀X1, X2 ∈ Γ(E).

As a second connection ∇0 we take metric (or Riemannian) connection ∇♯,
i.e.

X〈s1, s2〉 = 〈∇♯Xs1, s2〉+ 〈s1,∇♯Xs2〉,
for s1, s2 ∈ Γ(Q). Then

• P (R♭) = 0 if k > q, by Bott theorem (2.9),

• P (R♯) = 0 if k is odd, by lemma (2.5).

In particular for k > q odd form TP (∇♭,∇♯) is closed, dTP (∇♭,∇♯) = 0, so

TP (M,F) := [TP (∇♭,∇♯)] ∈ H2k−1(M,R).

Definition 2.29. We call TP (M,F) a transgressed class.

Proposition 2.30. For foliation F on a manifold M and P ∈ Ik(glq(R)),

k > q = dimTM/τF , class [TP (M,F)] ∈ H2k−1(M ; R) is independent of
choices ∇♭ and ∇♯, and therefore is an invariant of foliation.

Proof. Let i∇♭, i∇♯, i = 0, 1 be two different choices of connections, and let

t∇♭ := ψ(t)1∇♭ + (1− ψ(t))0∇♭,
t∇♯ := ψ(t)1∇♯ + (1− ψ(t))0∇♯,

where in both cases ψ : [0, 1]→ [0, 1] is a smooth function such that ψ ≡ 0 near
0 and ψ ≡ 1 near 1.

Now take the bundle Ẽ = E⊕R on M×R (as a integrable bundle of foliation

on M × R). On the quotient pr∗M (Q) we define the connections ∇̃♭ and ∇̃♯.

pr∗M (Q) T (M ⊕ R)/Ẽ�� Q = TM/τF��
M × R

prM // M
Sections of bundles over M × R can be represented as follows

Γ(T (M × R)) = {f(x, s)Y + g(x, s)
∂

∂s

∣∣ Y ∈ Γ(TM), f, g ∈ C∞(M × R)}.

Γ(pr∗M (Q)) = {f(x, s)π(Y )
∣∣ Y ∈ Γ(TM), π : TM → Q, f ∈ C∞(M × R)}

It suffices to define

∇̃(X, ∂
∂t )(π(Y )) :=s ∇X(π(Y )).

for ∇̃ = ∇̃♭ or ∇̃♯.
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We have

∇̃X(f(x, s)π(Y )) = X(f)π(Y ) + fs∇X(π(Y )),

∇̃ ∂
∂s

(f(x, s)π(Y )) =
∂f

∂s
π(Y ),

where s∇♭ = s0∇♭ + (1 − s)0∇♭, s∇♯ = s0∇♯ + (1 − s)0∇♯. Using inclusions
is : M →M × R, is(x) = (x, s), we can write

i∗0(R̃♭) =0 R♭, i∗1(R̃♭) =1 R♭

and analogously for ∇♯, R♯. Similarly

i∗0(α̃) =0 α, i∗1(α̃) =1 α

for corresponding differences 0α =0 ∇♭ −0 ∇♯ and 1α =1 ∇♭ −1 ∇♯. Hence

i∗0(TP (∇̃♭, ∇̃♯)) = TP (0∇♭,0∇♯), and

i∗1(TP (∇̃♭, ∇̃♯)) = TP (1∇♭,1∇♯).
Note that ∇̃♭ is Ẽ-flat, and ∇̃♯ is Riemannian for pr∗M (Q).

The proof is completed by the elementary lemma (homotopy invariance of
de Rham cohomology)

Lemma 2.31. Let ω ∈ Ωk(M × R), dω = 0. Then i∗1(ω)− i∗0(ω) is exact.

Proof. We can write

ω = π∗(α) ∧ f(x, t)dt+ g(x, t)π∗(β),

with α ∈ Ωk−1(M), β ∈ Ωk(M).
One has

L∂t(ω) = dι∂t + ι∂tdω = L∂t(ω) = d((−1)k−1f(x, t) pr∗M (α))

= (−1)k−1f(x, t)dpr∗M (α) + pr∗M (α) ∧ dxf + pr∗M (α) ∧ ∂tfdt,

where ∂t := ∂
∂t . On the other hand

L∂t

∣∣
s=t0

(ω) =
∂

∂s

∣∣
s=t0

(is(pr∗M (α) ∧ f(x, t)dt+ g(x, t) pr∗M (β)))

= ∂tf(x, t)
∣∣
t0

pr∗M (α) ∧ dt+ ∂tg(x, t)
∣∣
t0

pr∗M (β).

Comparing both sides one gets

∂tg(x, t) ∧ pr∗M (β) = (−1)k−1(f(x, t)dpr∗M (α) + dxf(x, t) ∧ pr∗M (α))

= (−1)k−1dx(f(x, t) pr∗M (α)).

Hence

g(x, 1) pr∗M (β)− g(x, 0) pr∗M (β) = (−1)k−1dx

(∫ 1

0

f(x, t)dt · pr∗M (α)

)
,

so

i∗1(ω)− i∗0(ω) = d

(
(−1)k−1

∫ 1

0

f(x, t)dt · α
)
.
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Proposition 2.32. For any P ∈ Ik(gln(R)) with k > q odd, TP (MF) is a
characteristic class.

Proof. It is sufficient to prove the naturality in two special cases

1. i : N →M is injective immersion,

2. p : N ×M →M a projection.

Case. 1 We have i∗(E) = E∩TN , i∗(Q) = Q
∣∣
N

, hence ∇♭, ∇♯ restrict to the same
kind of connections. Thus one has

TP (N, i∗(F)) = i∗(TP (M,F)).

Case. 2 We lift ∇♭, ∇♯ to the same kind of connections on N ×M . R̃t = p∗(Rt),
α̃ = p∗(α).

Definition 2.33. Two vector bundles E0, E1 ⊂ TM of codim = q are transver-
saly homotopic if there exists Ẽ ⊂ T (M × R) of codim = q, such that

1. Ẽ is involutive,

2. Ẽ is transversal to M × {0} and M × {1},

3. i∗0(Ẽ) = E0 and i∗1(Ẽ) = E1.

Proposition 2.34. The class TP (M,F) depends only on transverse homotopy
class of foliation F .

158



Chapter 3

Weil algebras

3.1 The truncated Weil algebras and character-
istic homomorphism

The set of invariant polynomials I(glq(R)) is generated by P2k(A) := tr(Ak),
A ∈ glq(R). Alternatively we have

det(I + tA) =

q∑

i=0

ci(A)ti.

Coefficients ci(A) are symmetric functions of eigenvalues. If

A ∼




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λq




then
det(I + tA) = (1 + tλ1)(1 + tλ2) . . . (1 + tλq) =

= 1 + t(λ1 + λ2 + . . .+ λq) + t2(
∑

λiλj) + . . .+ tqλ1λ2 . . . λq.

c(A) := det(I +A) = 1 + c1(A) + . . .+ cq(A),

c(A⊕B) = c(A)c(B).

The set I(glq(R)) can be presented as polynomial ring

I(glq(R)) = R[c1, . . . , cq].

For manifold with foliation (M,F), Q = TM/E, E = τF , we have

ck(R♭) = 0, ∀k > q.

Moreover for each P ∈ Rk[c1, . . . , cq], k > q

P (R♭) = 0 ∈ Ω2k(M).
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Part II The truncated Weil algebras and characteristic homomorphism

Define

R[c1, . . . , cq]q := R[c1, . . . , cq]/(weight > 2q), deg(ci) = 2i.

For any connection ∇ on E we have a map

λE(∇) : R[c1, . . . , cq]→ Ω•(M),

λE(∇)(P ) := P (∇2).

Proposition 3.1. 1. λE(∇♭) annihilates all polynomials of degree > q, so it
induces a map

λE(∇♭) : R[c1, . . . , cq]q → Ω•(M).

2. λE(∇♯) annihilates all polynomials of odd degree, in particular

λE(∇♯)(c2i−1) = 0.

3. There is a third map

TλE(∇♭,∇♯) : R[c1, . . . , cq]→ Ω∗(M)

satisfying

dTλE(∇♭,∇♯)(P ) = λE(∇♭)(P )− λE(∇♯)(P ).

In particular
dTλE(∇♭,∇♯)(c2i−1) = λ(∇♭)(c2i−1).

This can be summarized in the following cochain complex. First form a
differential graded algebra (DGA)

WOq := Λ〈u1, u3, . . . , u2l−1〉 ⊗ R[c1, . . . , cq]q,

where the first algebra in the tensor product is an exterior algebra generated
by elements u2i−1 of degree 4i− 3, and l is maximal integer such that 2l− 1 6

q. Generators of second algebra cj have degree 2j, and this is a quotient of
polynomial algebra by the ideal of polynomials of degree > q (weight > 2q).
Now define d : WOq → WOq as the differenital of degree 1 given on generators
by the formula

du2i−1 = c2i−1, 1 6 i 6 l,

dcj = 0, 1 6 i 6 q.

Definition 3.2. Define a map λE : WOq → Ω•(M) by

λE(u2i−1) := TλE(∇♭,∇♯)(c2i−1),

λE(cj) := λE(∇♭)(cj), 1 6 j 6 q.

Then λE : WOq → Ω•(M) is a map of DGA’s, hence it induces a map

λ∗E : H∗(WOq)→ H∗(M ; R)

of cohomology algebras.
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We call λ∗E a characteristic map in analogy to

χE : H∗(B GLn(R)) = I(gln(R))→ H∗(M ; R)

for a n-dimesional vector bundle E →M .

Theorem 3.3 (Bott). 1. λ∗E depends only on E, and not on the choice of
connections.

2. λ∗E is natural, i.e. for φ : N →M , φ ⋔ F , one has

λ∗φ∗(E) = φ∗ ◦ λ∗E .

3. λ∗E depends only on the transverse homotopy class of E (def. (2.33)).

Proof. Theorem has essentially been proved.

1. This has been proved in proposition (2.30).

2. This has been proved in proposition (2.32).

3. The same proof as in proposition (2.30) and lemma (2.31) with ∇̃t on
M × I inducing ∇0

t on E0 and ∇1
t on E1.

Example 3.4 (WO1 and Godbillon–Vey class). For q = 1 we have

WO1 = Λ〈u1〉 ⊗ R[c1]1,

hence {1, u1, c1, u1c1} form a R-basis and du1 = c1, dc1 = 0. Clearly

H0(WO1) = R · 1,

H1(WO1) = 0,

H2(WO1) = 0,

H3(WO1) = R · u1c1.

Let (M,E) be a manifold with codim = 1 foliation F , τF = E, and assume
that Q = TM/E is trivializable (i.e. E transversaly oriented).

λE(c1) = λE(∇♭)(c1),

λE(u1) = TλE(∇♭,∇♯)(c1).

Let Ω ∈ Ω1(M) be the orientation form of Q∗, so E = ker Ω. Let Z be a vector
field with Ω(Z) = 1, which gives trivialization of Q. Then

TM = E ⊕ RZ.

Let Ω be defined by
Ω(X) = 0, for X ∈ E,

Ω(Z) = 1.
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Then
dΩ = α ∧ Ω, α ∈ Ω1(M).

Form α defines a Bott connection by

∇♭(π(Z)) = −α⊗ π(Z),

∇♭X(π(Z)) = −α(X)(π(Z)) = π([X,Z]).

Indeed, one has for all X ∈ E

dΩ(X,Z) = −Ω([X,Z]) = −Ω(π([X,Z])), and

α ∧ Ω(X,Z) = α(X)Ω(Z)− α(Z)Ω(X) = α(X).

Thus
α(X) = −Ω(π([X,Z])).

Godbillon–Vey class is a class of α ∧ dα in H3(M ; R). One the other hand one
has

(∇♭)2(π(Z)) = ∇♭(−α⊗ π(Z)) = −dα⊗ π(Z) + α ∧ α⊗ π(Z) =

= dα⊗ π(Z),

hence
R♭ = dα, so

λE(c1) = dα.

Define a Riemannian connection on Q by

∇♯X(π(Z)) = 0, ∀X ∈ E,

∇♯Z(π(Z)) = 0, where ||Z|| = 1.

Then ∇♭ −∇♯ = −α ∈ Ω1(M,End(Q)) = Ω1(M), hence

λE(u1) = TλE(∇♭,∇♯)(c1) = −α.

This implies
λE(u1c1) = α ∧ dα = gv(M,F).

Proposition 3.5. If E = τF is of codim = q, transversally oriented, then

λE(u1c
q
1) = gv(E).

Proof. We have nonvanishing form Ω ∈ Γ((Q∗)q). Locally it can be written as

Ω = ω1 ∧ . . . ∧ ωq,

with {ω1, . . . , ωq}- generators of Γ(E). Write

dωi =
∑

j

αij ∧ ωj,
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and define ∇♭ : Γ(Q)→ Γ(T ∗M ⊗Q) by

∇♭(π(Zi)) = −
∑

j

αji ⊗ π(Zj),

where {Z1, . . . , Zq} is a dual basis to {ω1, . . . , ωq} on a complement of E. One
has for all X ∈ E

dωi(X,Zk) =
∑

j

(αij(X)ωj(Zk)− αij(Zk)ωj(X)).

But
dωi(X,Zk) = −ωi([X,Zk]) = π([X,Zk]),

and on the right hand side we have only αik(X), so

π([X,Zk]) =
∑

i

αik(X)π(Zi),

while
∇♭X(π(Zk)) = −

∑

j

αjk(X)π(Zj) = π([X,Zk]),

hence it is a Bott connection. Its curvature is

(∇♭)2(π(Zi)) = −
∑

j

∇♭(αij ⊗ π(Zj)) =

= −
∑

j

dαji ⊗ π(Zj) +
∑

j

αji(−
∑

k

αkj ⊗ π(Zk)) =

= −
∑

k

(dαki −
∑

j

αkj ∧ αji)π(Zk),

i.e.
R = dα− α ∧ α.

This implies

c1(R) = tr(dα) − tr(α ∧ α) = tr(dα) = d(trα),

hence
c1(R)q = d(trα)q.

Take Riemannian connection given by an orthogonal matrix form

∇♯(π(Zi)) =
∑

j

βij ⊗ π(Zj).

Now
(∇♭ −∇♯)(π(Zi)) =

∑

j

(αij + βij)⊗ π(Zj),

hence
∇♭ −∇♯ = −α− β, tr β = 0

so the transgressed form is

Tc1(α + β) = trα.

Now
gv(E) = [trα ∧ (tr(dα))q ] = [u1c1(R)q].
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3.2 Wq and framed foliations

Definition 3.6. Differential graded algebra Wq

Wq := Λ〈u1, . . . , uq〉 ⊗ R[c1, . . . , cq]q

dui = ci, dci = 0, ∀i = 1, . . . , q.

These algebras are useful for foliation (M,F) with Q trivializable, when one
can transgress to a flat Riemannian connection and get

µE : Wq → Ω•(M),

µE(ui) := TλE(∇♭,∇♯,0)(ci),

µE(ci) := λE(∇♭)(ci).
Notation: for i1 < . . . < ir︸ ︷︷ ︸

I

, j1 6 . . . 6 js︸ ︷︷ ︸
J

we denote

uIcJ = ui1 . . . uircj1 . . . cjr .

Proposition 3.7. The elements

(a)
1 ∪ { uIcJ

∣∣ |J | 6 q, i1 + |J | > q, i1 6 j1}
form a basis of H∗(Wq).

(b)

1∪{ uIcJ
∣∣ ik odd , |J | < q, i1+|J | > q, and

{
if r = 0 then all jk even,

if r 6= 0 then i1 6 minodd{jk}

}

form a basis of H∗(WOq).

Proof. (sketch)

Ad.(a)

d(uIcJ) =

r∑

k=1

(−1)k−1ui1 . . . duik . . . uircJ

=

r∑

k=1

(−1)k−1ui1 . . . ûik . . . uircikcJ = 0,

because deg cikcJ > 2(|J |+ i1) > 2q.

Ad.(b) If r = 0 then d(cJ ) = 0. The case r 6= 0 is treated as above.

Consequences of (a) for H∗(Wq).

1.

deg(uIcJ) = (2i1 − 1) + . . .+ (2ir − 1) + (2j1 + . . .+ 2js)

6 2(1 + . . .+ q)− q + 2|J | 6 q(q + 1)− q + 2q = q2 + 2q,

hence Hm(Wq) = 0, for m > q2 + 2q.
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2. On the other hand
deg(uIcJ) > 2|J | > 2q,

hence Hm(Wq) = 0, for 1 6 m < 2q. With a little more work we can
eliminate m = 2q which can occur only if |I| even.

3. The product structure is trivial.

4. In H2q+1(Wq) the classes u1c
α1

1 . . . cαk

k with
∑k

i=1 αi = q are linearly in-
dependent

Similar conclusions hold for H∗(WOq):

1. Hm(WOq) = 0, for m > q2 + 2q.

2. For m 6 2q one gets the Pontryagin classes

{1, p1, . . . , p[ q
2 ]}.

3. The product structure is trivial in “high degree”.

4. In H2q+1(WOq) the classes u1c
α1
1 . . . cαk

k with
∑k
i=1 αi = q are linearly

independent.
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Chapter 4

Gelfand-Fuks cohomology

4.1 Cohomology of Lie algebras

Recall the formula for the exterior derivation d : Ωp(M)→ Ωp+1(M)

dω(X0, . . . , Xp) =

p∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xp)

+
∑

i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).

H∗(Ω•(M), d) = H∗dR(M ; R).

We can view Ω•(M) as a C∞(M) linear homomorphisms

Ω•(M) ∼= HomC∞(M)(Λ
•VM , C

∞(M)),

where VM is a Lie algebra of vector fields on M with

[X,Y ] = XY − Y X.

More general context consists of

• g - a Lie algebra of finite dimension over a field k,

• A - g-module

• Cochains C•(g;A) := Homk(Λ•g, A) with differential

d : Cp(g;A)→ Cp+1(g;A),

given by the same formula as above.

• Cohomology
H∗(g;A) := H∗(C•(g;A), d).

Relative Lie algebra cohomology is defined as follows. Let h ⊂ g be the Lie
subalgebra. Define relative cochains as

C•(g, h;A) := {c ∈ C•(g;A)
∣∣ ιXc = 0 and ιXdc = 0 ∀X ∈ h}.
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By definition it is a subcomplex and its cohomology is

H∗(g, h;A) := H∗(C•(g, h;A), d).

Since
LX = dιX + ιXd, LXω = dιXω + ιXdω = 0,

alternatively we can put

C•(g, h;A) := {c ∈ C•(g;A)
∣∣ c basic i.e. ιXc = 0 and LXc = 0 ∀X ∈ h}.

One has
C•(g, h;A) = Homk(Λ•(g/h), A)h.

Slightly more generally, if H is a Lie group with h = Lie(H), acting on g and A
such that, the differential of the action on g is adg h, then

C•(g, H ;A) := {c ∈ HomH(Λ•g, A)
∣∣ ιXc = 0 ∀X ∈ h},

and its cohomology is
H∗(g, H ;A).

Example 4.1. Let g := gln(R). Its complexification is gC := gln(C). We have

H∗(gC) = H∗(g)⊗ C.

Also one has for un := Lie(U(n))

H∗(gln(R)) = H∗(un) = Λ〈u1, u3, . . . , u2l+1〉, l =
[n

2

]
.

Furthermore for g ∈ U(n) and k odd

d tr((g−1dg)k) = − tr((g−1dg)k+1) = 0.

The class uk := [tr((g−1dg)k)] is called a Chern-Simons class.

4.2 Gelfand-Fuks cohomology

Let VM be the algebra of vector fields on a manifold M , that is Γ(TM). C∞

topology on VM is given by C∞ convergence on compacta of the local compo-
nents (which are functions), and their derivatives.

X =

n∑

i=1

f i
∂

∂xi
, f i ∈ C∞(M).

Definition 4.2. Define the Gelfand-Fuks cohomology as the cohomology of the
algebra VM continuous with respect to the C∞ topology on VM

H∗GF (VM ) := H∗cont(VM ; R).
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Here C•cont(VM ; R) are continuous functionals on VM with respect to C∞

topology.
The remarkable fact [Gelfand-Fuks] is that H∗GF is finite dimensional. An

important step in the proof of this is played by an algebra of formal vector fields
on M

An :=

{
X =

n∑

i=1

f i
∂

∂xi

∣∣ f i ∈ R[[x1, . . . , xn]]

}
.

The dual algebra of vector fields

V ∗M := Homcont(VM ,R)

consists of distributions with compact support. The notion of support makes
sense for the cochains

C•cont(VM ,R) := Λ•V ∗M

and is preserved by
d : Λ•V ∗M → Λ•+1V ∗M .

In particular one can take for p0 ∈M the subcomplex

Λ•V ∗M,p0 := distributions supported at p0.

Then V ∗M,p0
is a real vector space spanned by ∇p0 and its partial derivatives

X =

n∑

i=1

f i
∂

∂xi

X 7→ (−1)|α|
∂|α|f i

∂xα
.

They only depend on the jet of X at p0. Thus we are dealing with the continuous
Lie algebra complex of

An :=

{
X =

n∑

i=1

f i
∂

∂xi
∣∣ f i ∈ R[[x1, . . . , xn]]

}
.

with the I-adic topology (since the elements of the dual depend on finite set).
In A∗n we have following forms

θi(X) := f i(0), 1 6 i 6 n,

θij(X) := − ∂f
i

∂xj

∣∣
x=0

, 1 6 i, j 6 n,

θijk(X) :=
∂2f i

∂xj∂xk

∣∣
x=0

, 1 6 i, j, k 6 n,

and generally for multiindex α = (α1, . . . , αn)

θiα := (−1)|α|
∂|α|

∂xα

∣∣
x=0

.

We make Λ•A∗n into a complex by defining the differential

dω(X0, . . . , Xn) :=
∑

i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn).
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1. The elements
{θiα

∣∣ 1 6 i 6 n, α ∈ (Z+)n}
span C1(An) = A∗n, hence generate all of

C•(An) =

∞⊕

k=0

ΛkA∗n.

Note that θiα = θiβ if α = β as an unordered sets.

2. The Lie derivative

L
(

∂

∂xj

)
θi = θij , and

L
(

∂

∂xj

)
L
(

∂

∂xk

)
θi = θijk, etc.

Indeed

L
(

∂

∂xj

)
θi(X) =

(
d

dt

∣∣
t=0

τ jt θ
i

)
(X)

= θi
(
d

dt

∣∣
t=0

τ j−t(X)

)

=
d

dt

∣∣
t=0

f i(x1, . . . , xj − t, . . . , xn)

= −∂f
i

∂xi

∣∣
x=0

= θij(X).

In general

L
(

∂

∂xj

)
θiα = θiα∪j

Since [
∂

∂xi
,
∂

∂xj

]
= 0,

we have [
L
(

∂

∂xi

)
,L
(

∂

∂xj

)]
= 0,

whence

3.

C1(An) ∼= R
[
∂

∂x1
, . . . ,

∂

∂xn

]{
θ1, . . . , θn

}

i.e. is a free module with n generators over the polynomial ring in n
generators.

Proposition 4.3. We have following identities in C•(An)

1.
dθi +

∑

j

θij ∧ θj = 0,
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2.
dθik +

∑

j

(
θijk ∧ θj + θij ∧ θjk

)
= 0,

3.
dθikl +

∑

j

(
θijkl ∧ θj + θijk ∧ θjl + θijl ∧ θjk + θij ∧ θjkl

)
= 0.

Proof.

dθi(X,Y ) = Xθi(Y )− Y θi(X)︸ ︷︷ ︸
=0

−θi([X,Y ]) = −θi([X,Y ]),

where X =
∑

j f
j ∂
∂xj , X =

∑
j g

k ∂
∂xk .

[X,Y ] =
∑

j,k

(
f j
∂gk

∂xj
∂

∂xk
− gk ∂f

j

∂xk
∂

∂xj

)

=
∑

k


∑

j

(
f j
∂gk

∂xj
− gj ∂f

k

∂xj

)
 ∂

∂xk
.

Hence

dθi(X,Y ) =
∑

j


f

j ∂g
i

∂xj
− gj ∂f

i

∂xj︸ ︷︷ ︸
=0

−f j ∂g
i

∂xj
+ gj

∂f i

∂xj
.




On the other hand

θij ∧ θj(X,Y ) = θij(X)θj(Y )− θij(Y )θj(X)

=
∑

j

(
− ∂f

i

∂xj
gj +

∂gi

∂xj
f j
)
.

This proves (1). To obtain (2) we apply L
(

∂
∂xk

)
, and applying L

(
∂
∂xl

)
to (2)

we obtain (3) etc. These equations completely determine differential d.

Denote
Rij := dθij +

∑

k

θik ∧ θkj ∈ C2(An) = Λ2A∗n.

Then equation (2) becomes

2’
Rij = −

∑

k

θijk ∧ θk.

Proposition 4.4.

1.
Rij ∧ θj = 0,

2.
dRij =

∑

k

(
Rik ∧ θkj − θik ∧Rkj

)
.
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Proof. From (2’)

Rij ∧ θj = −
∑

k

θijk ∧ θk ∧ θj = 0

since θijk = θikj .
From (2)

dRij =
∑

k

(
dθik ∧ θkj − θik ∧ dθkj

)

=
∑

k

(
−
∑

l

(θilk ∧ θl + θil ∧ θlk) ∧ θkj +
∑

l

θik ∧ (θklj ∧ θl + θkl ∧ θlj)
)

=
∑

k,l

(
Rik ∧ θkj − θil ∧ θlk ∧ θkj + θik ∧Rkj + θik ∧ θkl ∧ θlj

)

=
∑

k

(
Rik ∧ θkj − θik ∧Rkj

)
.

Corollary 4.5. The subalgebra W̃n := R{θij, Rij} is closed under d and finite
dimensional.

Proof. Finite dimension follows from (2’).

4.3 Some “soft” results

We describe the grading on an algebra An.

An =

{
X =

n∑

i=1

f i
∂

∂xi

∣∣ f i(x) =
∑

α

ciαx
α ∈ R[[x1, . . . , xn]], α = (α1, . . . , αn)

}
.

An = Rn ⊕ gln(R)⊕ . . .
One has

[xi
∂

∂xj
, xk

∂

∂xl
] = δkj x

i ∂

∂xl
− δilxk

∂

∂xj
,

To see grading we take E =
∑n

i=1 x
i ∂
∂xi ∈ An. Then

[E,X ] =
∑

j

∑

i

(
xi
∂f j

∂xi
− f j

)
∂

∂xj

and if f j = cjαx
α1
1 . . . xαn

n with |α| = r, then

[
E, cjαx

α ∂

∂xj

]
=

[∑

i

xi
∂

∂xi
, cjαx

α ∂

∂xj

]

=
∑

i

αix
α ∂

∂xj
−
∑

i

xαδij
∂

∂xi

= (|α| − 1)xα
∂

∂xj
.
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Thus each monomial is an eigenvector for E, and we can write An as a sum of
eigenspaces

LE(xα
∂

∂xj
) = (|α| − 1)xα

∂

∂xj
,

A(p)
n := {X ∈ An

∣∣ LE(X) = pX},

An =
∞⊕

p=−1

A(p)
n , E

∣∣
A

(p)
n

= p · Id.

It is a grading, i. e.
[A(p)
n ,A(q)

n ] ⊂ A(p+q)
n .

We have a dual grading on the Gelfand-Fuks complex C•(An) = Λ•A∗n. One
has the Lie derivative

LE : A∗n → A∗n.

LE = dιE + ιEd,

The dual grading on A∗n can be described as

(A∗n)(p) := {ω ∈ A∗n
∣∣ LE(ω) = −pω}.

This induces a grading on G-F complex

Cm(An)(p) = (ΛmA∗n)(p) =
⊕

Λk−1(A∗n)(−1) ⊗ Λk0(A∗n)(0) ⊗ . . .⊗ Λkr(A∗n)(r),

where
k−1 + k0 + . . . = m, −k−1 + k1 + 2k2 + . . .+ rkr = p.

We have LEd = dLE (so LE is a map of complexes). We can restrict to degree
p

LE
∣∣
C•(An)(p) = −p · Id

Proposition 4.6.
dim H∗GF (An) <∞, ∀n > 0,

Hm
GF (An) = 0, ∀m > n2 + 2n.

Proof. One has
LE(ω) = dιE(ω) + ιEdω

so any ω ∈ Cm(An)(p) with p 6= 0 such that dω = 0 is exact, since then

dιE(ω) = LE(ω) = −pω.

This gives on cohomology

Hm
GF (An) = Hm

GF (An)(0) := Hm(C•(An)(0)),

where

Cm(An)(0) = (ΛmA∗n)(0) =
⊕

Λk−1(A∗n)(−1) ⊗ Λk0(A∗n)(0) ⊗ . . .⊗ Λkr(A∗n)(r),

−k−1 + k1 + 2k2 + . . .+ rkr = 0,

k−1 + k0 + k1 + . . .+ kr = m.
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Since
dim A(−1)

n = dim Rn = n =⇒ k−1 6 n,

dim A(0)
n = n2 =⇒ k0 6 n2.

Furthermore
k1 6 n, k2 6

n

2
, . . . , kn 6 1.

Hence
dimCm(An)(0) <∞ for m > 0,

Cm(An)(0) = 0 for m > n2 + 2n.

Example 4.7. For n = 1 we have following

k1 + 2k2 + . . . kr = k−1,

k−1 + k0 + k1 + . . .+ kr 6 3.

This gives

k1 6 1, k2 6
1

2
etc. =⇒ k2 = . . . = kr = 0.

The dual algebra
A∗n ∼= Rθ1︸︷︷︸

deg=−1

⊕ Rθ11︸︷︷︸
deg=0

⊕ Rθ111︸︷︷︸
deg=1

⊕ . . .

If k−1 = 0 then k1 = k2 = . . . = 0 hence the only one allowed is

Λ•(A∗1)(0) = R⊕ Rθ11 .

For k−1 = 1 we have k1 = 1 and

Λ1(A∗1)(−1)

︸ ︷︷ ︸
=Rθ1

⊗Λ•(A∗1)(0)︸ ︷︷ ︸
=R⊕Rθ11

⊗Λ1(A∗1)(1)︸ ︷︷ ︸
=Rθ111

Thus we need only to look at the subcomplex

R{1, θ11, θ1 ∧ θ111, θ1 ∧ θ11 ∧ θ111︸ ︷︷ ︸
=θ11∧R1

1

}

because R1
1 = dθ11 = −θ111 ∧ θ1 6= 0, so the cohomology is

H∗GF = R︸︷︷︸
dim=0

⊕R(θ11 ∧R1
1)︸ ︷︷ ︸

dim=3

.

4.4 Spectral sequences

The algebra generated by {θij, Rij} is closed under the differential d, so we have
a subcomplex

(R{θij , Rij}, d) =: (W̃n, d) ⊂ (C•(An), d).

where
R{θij, Rij} ∼= Λ•gln(R)∗ ⊗ Sn(gln(R)∗)
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Part II Spectral sequences

Theorem 4.8. The inclusion

(W̃n, d) →֒ (C•(An), d)

is a quasi-isomorphism (induces isomorphism on cohomology).

The proof uses Hochschild–Serre spectral sequence, which we describe next.

4.4.1 Exact couples

Assume we have an exact sequence of the form

A
i // A

j��~~~~~~~
B

k

__�������
It is called an exact couple. Define

d : B → B, d := jk, d2 = jkjk = 0, and

H(B) := ker d/ im d.

Now we can form derived couple taking

A′
i′ // A′

j′||yyyyyyyy
B′

k′

``��������
H(B)

where

• A′ := i(A),

• B′ := H(B),

• i′(a′) = i(a′) = i(i(a)),

• j′(a′) = [j(a)] for a′ = i(a),

• k′([b]) = k(b).

Check this definitions for independence of representatives. The derived couple
is again exact couple.

4.4.2 Filtered complexes

Let (C•, d) be a filtered complex i.e. there is a sequence of subcomplexes

C• = C•0 ⊃ C•1 ⊃ C•2 ⊃ . . .

Let
A :=

⊕

p∈Z

Cp, B :=
⊕

p∈Z

Cp/Cp+1
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Part II Spectral sequences

Inclusions Cp+1 →֒ Cp induce exact sequence

0→ A
i−→ A

B−→→ 0,

a long exact sequence of homology

. . .H(A)
i∗−→ H(A)

j∗−→ H(B)
k∗−→ A→ . . . ,

and an exact couple

A1 := H(A)
i∗ // H(A)

j∗yyrrrrrrrrrr
H(B) =: B1

k∗

ggOOOOOOOOOOO
4.4.3 Illustration of convergence

Consider simple case, filtration of a complex H(C•)

. . . = C−2 = C−1 = C0 ⊃ C1 ⊃ C2 ⊃ 0 = . . .

. . . = C−2 = C−1 =xxrrrrr C0 ⊃yysssss C1 ⊃zzuuuuu C2 =zzuuuuu 0 ={{wwwww . . .

. . . = C−2 = C−1 = C0 ⊃ C1 ⊃ C2 = 0 = . . .

Here
B = . . .⊕ 0⊕ 0⊕ C0/C1 ⊕ C1/C2 ⊕ C2 ⊕ 0⊕ . . .

Taking homology we get sequences

H(C•) = H(C0)← H(C1)← H(C2)← 0← . . .

A1 :=
⊕

p∈Z

H(Cp)

H(C•) = H(C0) ⊃ i∗H(C1)← i∗H(C2)← 0← . . .

A2 :=
⊕

p∈Z

i∗H(Cp)

H(C•) = H(C0) ⊃ i∗H(C1) ⊃ i∗i∗H(C2)← 0← . . .

A3 :=
⊕

p∈Z

i∗i∗H(Cp).

When we reach the stage in wich all maps become inclusions, process is station-
ary i.e.

A3 = A4 = . . .

A3
i // A3

j||xxxxxxxxx
B3

k

``AAAAAAAA
H(A3)

where i is inclusion, im k = ker i = 0 so k = 0. This means that also

B3 = B4 = . . .

since d = kj = 0
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Part II Spectral sequences

4.4.4 Hochschild–Serre spectral sequence

Let h ⊂ g be a subalgebra of a Lie algebra g.

C•(g;M) = Hom(Λ•g,M), d : C•(g;M)→ C•+1(g;M)

dω(X0, X1, . . . , Xr) =
∑

i

(−1)iXiω(X0, . . . , X̂i, . . . , Xr)

+
∑

i<j

(−1)i+jω([Xi, Xj ], . . . , X̂i, . . . , X̂j , . . . , Xr).

Define the filtration on the above complex by

F pCp+q(g;M) := {ω ∈ Cp+q
∣∣ ιX1 . . . ιXqω = 0 ∀X1, . . . , Xq ∈ h}.

This means that we can associate with ω ∈ F pCp+q an element

φ(ω) ∈ Hom(Λqh,Hom(Λp(g/h),M))

given by the formula

φ(ω)(X1, . . . , Xq)(Ŷ1, . . . , Ŷp︸ ︷︷ ︸
classes

) = ω(X1, . . . , Xq, Y1, . . . , Yp).

Then
kerφ = F p+1Cp+q,

Hence there is a spectral sequence with

Ep,q0
∼= Cq(h; Hom(Λp(g/h),M)), d0 = d,

Ep,q1
∼= Hq(h; Hom(Λp(g/h),M)),

Ep,02
∼= Hp(g, h;M),

E∗∞ =⇒ H∗(g;M)

Now we are ready to prove that the inclusion

i : W̃n →֒ C•(An)

induces an isomorphism

H∗(W̃n, d) ∼= H∗GF (An)

that is theorem (4.8).

Proof. Both W̃n and C•(An) are filtered differential graded algebras, and their

associated spectral sequences converge to H∗(W̃n) and respectively to H∗GF (An).
On the other hand i induces isomorphism on the level of E1.

First W̃n is graded by

W̃n

p
=

⊕

r+2s=p

Λr〈θij〉 ⊗ Ssn[Rij ]

and then

F pW̃n

p+q
:= {ω ∈ W̃n

p+q ∣∣ ιX0 . . . ιXqω = 0 ∀X0, . . . , Xq ∈ A(0)
n }
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Part II Spectral sequences

Fact 4.9.

Ep,q0
∼=
{

0, p odd or p > 2n,

Cq(A
(0)
n ;S

p
2
n [Rij ]), p even and p 6 2n.

Ep,q1
∼=
{

0, p odd or p > 2n,

Hq
GF (A

(0)
n ;S

p
2
n [Rij ]), p even and p 6 2n.

The filtration on C•(An) =
⊕

pC
p(An) is the Hochschild–Serre filtration

relative to A
(0)
n .

F pCp+q(An) =

{
Cp+q(An), p 6 0

{ω ∈ Cp+q(An)
∣∣ ιX0 . . . ιXqω = 0 ∀X0, . . . , Xq ∈ A

(0)
n }, p > 0, q > 0.

Fact 4.10.
Ep,q1

∼= Hq
GF (A(0)

n ;F pCp(An)).

It is a filtration, so
[A(0)
n ,A(p)

n ] ⊂ A(p)
n

and we have an action of gln(R) = A
(0)
n on A

(p)
n for each p. Since A

(0)
n acts

semisimply on the coefficients one gets further

Ep,q1
∼= Hq

GF

(
A(0)
n ,
(

Λp(A(0)
n )
)∗) ∼= Hq

GF (A(0)
n ;Bp),

where
Bp := {ω ∈ Cp(An)

∣∣ ιXω = 0 = LXω ∀X ∈ A(0)
n }

are the basic elements with respect to A
(0)
n . Note that if Y = Y rs = Xr ∂

∂xs

ιY R
i
j = −ιY (θijk ∧ θk) = 0,

whence the map
Ep,q1 (W̃n)→ Ep,q1 (C•(An)).

Lemma 4.11. The inclusion i : W̃n →֒ C•(An) induces an isomorphism between

the A
(0)
n -basic elements of W̃n and C•(An).

Proof. Elementary invariance theory to eliminate the form θiα with |α| > 2.

Again let
Wn = Λ〈u1, . . . , un〉 ⊗ Sn[c1, . . . , cn]

deg(ui) = 2i− 1, deg(ci) = 2i, dui = ci, dci = 0.

W̃n = Λ〈θij〉 ⊗ Sn[Rij ]

Proposition 4.12. The map

ci 7→ ci(R), R = (Rij)

has an extension to a map of complexes Wn → W̃n. Any such extension induces
isomorphism in cohomology

H∗(Wn)
∼=−→ H∗(W̃n).
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Part II Spectral sequences

For example if n = 1 we have

c1 7→ c1(R) = R1
1,

u1 7→ θ11 .

Proof.
E0,2q−1

1 (W̃n) = H2q−1(gln(R); R) ∋ uj,
where uj is a generator for j = 1, . . . , n. Now each uj has a representative [wj ]
such that

wj ∈ F 0W̃n

2q−1
, dwj = cj ∈ F 2qW̃n

2q

thus giving a basic element of W̃n in

E2q,0
1
∼= Sq(Rij)inv .

The basic elements of Ŵn form an algebra isomorphic to R[c1, . . . , cn].
The extension is given by

uj 7→ wj ,

cj 7→ dωj.

Filtering Wn by the ideals F pWn generated by polynomials of degree at least
p in the ci’s one obtains a morphism of complexes compatible with filtrations,
which induces isomorphism on the level of E1.

In the relative case on ⊂ gln(R) = A
(0)
n gives actions of on on W̃n and

C•(An). Passing to the subalgebras of on-basic elements, then restricting the
filtrations one obtains isomorphisms

H∗(WOn) ∼= H∗(W̃n, on) ∼= H∗GF (An, on),

where
WOn = Λ〈u1, u3, . . . uk〉 ⊗ Sn[c1, . . . , cn],

du2j−1 = c2j , dcj = 0.

Corollary 4.13. Any class in H∗(An) (respectively H∗(An, on)) has a repre-
sentative which depends only on the second jet.
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Chapter 5

Characteristic maps and
Gelfand-Fuks cohomology

5.1 Jet groups

Definition 5.1. Let x ∈ Rn and let f : U → Rn be a C∞-function. Then jkx(f)
is an equivalence class with respect to

f ∼k g if and only if
∂|α|f
∂xα

∣∣
x

=
∂|α|g
∂xα

∣∣
x
, ∀|α| = α1 + . . .+ αn 6 k.

Then
Gk(n) := {jk0 (f)

∣∣ f local diffeomorphism of Rn, f(0) = 0}
is a Lie group under composition

jk0 (f) ◦ jk0 (g) := jk0 (f ◦ g).

Identifying with polynomial representatives

jk0 (f) ∼= {
∑

16|α|6k
ajαx

α ∈ Pk0 [x1, . . . , xn] | 1 6 j 6 n}

Then jk0 (f) ∈ Gk(n) means ajα ∈ GLn(R).
One has a sequence of projections

G∞(n) := . . .→ Gk+1(n)→ Gk(n)→ . . .→ G1(n).

If h = f ◦ g

hi(x1, . . . , xn) = f i(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))

cik :=
∂hi

∂xk

∣∣
0

=
∑

l

∂f i

∂xl

∣∣
0

∂gl

∂xk

∣∣
0

=
∑

l

ailb
l
k.

cijk :=
∂2hi

∂xj∂xk

∣∣
0

=
∑

l,s

∂2f i

∂xs∂xl

∣∣
0

∂gs

∂xj

∣∣
0

∂gl

∂xk

∣∣
0

+
∑

l

∂f i

∂xl

∣∣
0

∂2gl

∂xj∂xk

∣∣
0
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Part II Jet bundles

so
cijk =

∑

l,s

aislb
s
jb
l
k +

∑

l

ailb
l
jk

etc. In particular ker(G2(n)→ G1(n)) has multipllication

cijk = aijk + bijk.

In general
Nk(n) := ker(Gk(n)→ G1(n))

is a vector space equipped with a polynomial multiplication which implies that
Nk(n) is a nilpotent Lie subgroup, and

Gk(n) = G1(n) ⋉Nk(n).

gk(n) := Lie(Gk(n)) ∼= {jk0X | X =
∑

i

∂

∂xi
, X(0) = 0}

with the bracket
[jk0 (X), jk0 (Y )] = −jk0 ([X,Y ]).

5.2 Jet bundles

Definition 5.2. Let Mn be a C∞-manifold. The jet bundle on M

Jk(M) := {jk0 (f) | f : U ⊂ Rn →M local diffeomorphism at 0 ∈ U}.

It has a tautological C∞-structure modelled on

Jk(Rn) = Pk(n) ∼= polynomial jets

Again one has a sequence of natural projections

J∞(M) := . . .→ Jk+1(M)→ Jk(M)→ . . .→ J1(M)→M,

which are principal bundles with structure groups

G∞(n) := . . .→ Gk+1(n)→ Gk(n)→ . . .→ G1(n).

J1(M) = F (M)→M is a frame bundle with the structure group GLn(R) =
G1(n).

There is a natural (commuting with DiffM ) map

An
∼=−→ Tj∞0 (φ)J

∞(M)

For

X ∈ An, X =
∑

i

f i
∂

∂xi

and a 1-parameter family ψt of local diffeomorphism of Rn such that

ψt(0) = 0, ψ0 = Id, X = j∞0

(
dψt
dt

∣∣
t=0

)
,
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Part II Jet bundles

we have a curve in a manifold of jets j∞0 (ψt). For a local diffeomorphism
φ : Rq →Mn we have a curve passing through φ

j∞0

(
d

dt
(φ ◦ ψt)

∣∣
t=0

)

and

X =
d

dt
j∞0 (ψt)

∣∣
t=0

= j∞0

(
dψt
dt

∣∣
t=0

)
.

Let u = j∞0 (φ) ∈ J∞(M), and define

X̃u := j∞0

(
d

dt
φ ◦ ψt

∣∣
t=0

)
=

d

dt
(φ ◦ ψt)

∣∣
t=0
∈ TuJ∞(M), φ ◦ ψt

∣∣
t=0

= φ.

The map
An → TuJ

∞(M), X 7→ X̃u

is natural i.e. it commutes with the action of the diffeomorphisms

Tj∞0 (ρ◦φ)J
∞(M)

An
∼=//∼= 88rrrrrrrrrrr
Tj∞0 (φ)J

∞(M)

ρ∗

OO
Proposition 5.3. We have a natural isomorphism of differential graded alge-
bras

(C•(An), d)
∼=−→ (Ω•(J∞(M))DiffM ,−d).

Proof. We take for u = j∞0 (φ)

ω̃u(X̃u

1
, . . . , X̃u

p
) := ω(X1, . . . , X

p).

[X̃, Ỹ ] := −[̃X,Y ].

In particular if we set for a basis {θiα} of A∗n

θ̃iα(X̃u) =
∂|α|f i

∂xα

∣∣
x=0

= (−1)|α|θiα(X)

then they satisfy the same differential equations as θiα.

Example 5.4. In local coordinates (v1, . . . , vn) around u = j∞0 (φ)

{
vi
∣∣
u
, vij :=

∂(vi ◦ φ)

∂xj

∣∣
u
, vijk :=

∂2(vi ◦ φ)

∂xj∂xk

∣∣
u
, . . . , viα =

∂|α|(vi ◦ φ)

∂xα

∣∣
u

}

one has
dviα =

∑

β+γ=α

viβ[k]θ̃
k
γ , β[k] := (β1, . . . , βk + 1, . . . , βn).
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Part II Characteristic map for foliation

5.3 Characteristic map for foliation

Let (M,F) be a manifold with foliation, which we can describe by a 1-cycle
with values in Γq given by the following data

1. an open cover M =
⋃
α Uα,

2. ∀α there is a submersion fα : Uα → Vα ∈ Rq,

3. ∀x ∈ Uα ∩ Uβ there is a local diffeomorphism gαβ : Vα → Vβ (neighbour-
hoods of fα(x) and fα(x) rspectively) such that fβ = gβα ◦ fα near x.

Then
f∗α(J∞(Vα))→ Uα, and f∗β(J∞(Vβ))→ Uβ

can be identified over Uα ∩ Uβ via j∞0 (gβα), giving the principal Gk(q)-bundles
over M :

J∞(F) := . . .→ Jk+1(F)→ Jk(F)→ . . .→ J2(F)→ J1(F)→M.

This are jet bundles of “transverse local diffeomorphisms”. In particular J1(F)
is a principal GLq(R)-bundle associated to the transverse bundleQ(F) = TM/F
- bundle of transverse frames.

The forms θiκ on J∞(Vα) are invariant under Diff hence they also define
forms on J∞(F). They are the “canonical forms” on J∞(F).

The characteristic homomorphisms

χGF : C•(Aq)→ Ω•(J∞(F))

is defined by sending ω to the lift to M of the Diff-invariant forms ω̃α on Vα. It
is a homomorphism of DGA’s inducing

χ∗GF : H∗GF (Aq)→ H∗(J∞(F)) ∼= H∗(J1(F)).

Remark 5.5 ( Bott vanishing theorem revisited). Any E-flat (Bott) connection
(def. (2.7)) ∇♭ on Q is given by a gln(R)-valued form on J1(F) which is of

the form ωij = s∗(θ̃ij) for some GLn(R) -equivariant section s : J1(F)→ J2(F).
Then its curvature form

Ωij = s∗(Rij) =⇒ Ωij ∧ ωj = s∗(Rij ∧ θj) = 0

hence
Ωi1j1 ∧ . . . ∧ Ω

ip
jp

= 0, ∀p > q.

Assume the normal bundle Q = Q(F) is trivializable and choose a global
section s : M → F . Then the diagram

H∗GF (Aq)
s∗◦χ∗

GF // H∗(M)
pr∗

∼=
// H∗(J1(F))

H∗(Wq)

∼=

OO
µ∗

E

88qqqqqqqqqq
is commutative.
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Part II Characteristic map for foliation

Passing to the relative subcomplex one gets

χrelGF : C•(An, O(n))→ Ω•(J∞/O(n))

which induces

χrelGF : H∗(An, O(n))→ H∗(J1(F)/O(n))
∼=−→ H∗(M).

The isomorphism
σ∗ : H∗(J1(F)/O(n))→ H∗(M)

is implemented by a metric on Q (i.e. a section σ : M → J1(F)/O(n)). Then
the diagram

H∗(An, O(n))
χrel∗

GF // H∗(M)

H∗(WOn)

χ∗
E

99rrrrrrrrrrggOOOOOOOOOOO
is again commutative.
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Chapter 6

Index theory and
noncommutative geometry

6.1 Classical index theorems

Let (M, g) be a Riemannian manifold, g-metric. Index theorems describe prop-
erties of geometric elliptic operators in terms of topological characteristic classes.
For a selfadjoint elliptic operator D = D∗

Index(D) := dim kerD − dim cokerD ∈ Z

We will give a few examples of index theorems.
Take the de Rham complex Ω•(M) with

d : Ωi(M)→ Ωi+1(M)

and its adjoint
d∗ : Ωi(M)→ Ωi−1(M).

One has even/odd grading on forms (γ = (−1)deg), and the operator

d+ d∗ : Ωev → Ωodd

is selfadjoint elliptic operator. Furthermore

Index(d+ d∗)ev = dim ker(d+ d∗)ev − dim coker(d+ d∗)ev

and
ker(d+ d∗) = H∗dR(M ; R),

ker(d+ d∗)ev = Hev
dR(M ; R), coker(d+ d∗)odd = Hodd

dR (M ; R).

This means

Index(d+ d∗) = dim Hev(M ; R)− dim Hodd(M ; R) = χ(M)

- the Euler characteristic of a manifold M .
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Part II Classical index theorems

Theorem 6.1 (Gauss-Bonnet).

χ(M) = Index(d+ d∗)ev =

∫

M

Pf(R),

where Pf(M) is a Pffafian i.e. the square root of the determinant, and R - a
curvature.

This theorem gives topological constraints on Gaussian curvature, for if n =
2 one has Pf(R) = K. The right hand side depends on the metric, while on the
left we have topological invariant.

In the example above lets take different grading. Assume that dimM = 4n.
Take a Hodge star operator

∗ : Ωk(M)→ Ω4n−k.

One has ∗2 = (−1)k(4n−k) so it gives rise to another grading γ on Ω•(M). It
splits the complex into Ω−(M) and Ω+(M) (negative and positive eigenspaces).
Furthermore

Index(d+ d∗)+ = dim H2n(M)+ − dim H2n(M) = σ(M)

- the signature of M i.e. a signature of bilinear form

H2n(M)×H2n(M)→ R, (α, β) 7→
∫

M

α ∧ β.

On the other side

Theorem 6.2 (Hirzebruch signature thm.).

σ(M) = Index(d+ d∗) =

∫

M

L(R), L(R) := (det)
1
2

(
R
2

tanh R
2

)

as a formal series. L(R) is a L-genus of a manifold.

L(R) is a combination of Pontryagin classes which depends on a metric
structure of a manifold.

Let E be a holomorphic Hermitian bundle on a manifold M . One has an
operator ∂̄E ⊕ ∂̄∗E on Ω0,• ⊗ Γ(E). Its index

Index(∂̄E ⊕ ∂̄∗E) = χ(E)

- the Euler characteristic of a bundle E. On the other hand

Theorem 6.3 (Riemann-Roch-Hirzebruch).

χ(E) = Index(∂̄E ⊕ ∂̄∗E) =

∫

M

td(M) ch(E),

where the Todd class of M and Chern character of E are given by

td(M) = det
Rhol

eRhol − 1
, ch(E) = Tr(eFE ).
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The most general example one has for Dirac operator /D. One has a grading
/D

+
, /D
−

from Spin-bundle.

Index /D = dim ker /D − dim coker /D = S(M)

- the spinor number of a manifold M . On the other side

Theorem 6.4 (Atiyah-Singer).

S(M) = Index /D =

∫

M

Â(R), Â(R) := det
1
2

(
R
2

sinh R
2

)

Â(R) is another combination of Pontryagin classes. Together with Lich-
nerowicz theorem it gives constraints on scalar curvature.

We can summarize above theorems in the table

Elliptic operator and grading Analitic index Index formula

d+ d∗ on Ω∗(M)

γ = (−1)deg

Euler characteristic
χ(M)

Chern-Gauss-Bonnet
∫
M

Pf(R)

Pf(R) = det
1
2 (R)

Corollaries Topological constraints on Gaussian curvature

d+ d∗ on Ω∗(M)

γ = ∗? deg

Signature number

σ(M)

Hirzerbruch’s theorem
∫
M L(R)

L(R) = det
1
2

R/2
tanh(R/2)

Corollaries Homotopy invariance of L-genus

M spin-manifold,

/D Dirac operator on S(M)

γ from spin-bundle

Spinor number

S(M)

Atiyah-Singer theorem
∫
M

Â(R)

Â(R) = det
1
2

R/2
sinh(R/2)

Corollaries
Topological constraints on scalar curvature
(with Lichnerowicz theorem)

M Kähler manifold

E holomorphic bundle

∂̄E ⊕ ∂̄∗E on Ω0,∗(M)⊗ Γ(E)

Euler characteristic
χ(E)

Riemann-Roch-Hirzerbruch
theorem
∫
M td(M) ch(E)

td(M) = det Rhol

eRhol−1

ch(E) = Tr(eFE )

Corollaries
Dimension of space of holomorphic sections
(with Kodaira vanishing theorems)

6.2 General formulation and proto-index formula

Let A be a C*-algebra and A its dense subalgebra such that if a ∈ A has an
inverse a−1 ∈ A, then a−1 ∈ A
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Part II General formulation and proto-index formula

Example 6.5. M - closed manifold, A = C(M), A = C∞(M). Then

K∗(M) = K∗(C(M)) = K∗(C
∞(M)),

(via Serre-Swan theorem) where the right hand side has algebraic definition
(purely for ∗ = even and almost for ∗ = odd).

In general

K0(A) := Idemp(M∞(A))/ ∼ ∼= π1(GL∞(A)),

where ∼ is some equivalence relation,

K1(A) := GL∞(A)/GL∞(A)0 ∼= π0(GL∞(A)),

where GL∞(A)0 is a group of connected components. For the definition of
K1(A) we need a topology on A. We can replace GL∞(A) by U∞(A) (unitary
matrices). From Bott periodicity K2(A) = K0(A) and so on.

What is the dual (homology) theory ? K-homology.
Assume A ⊂ B(H) (bounded operators on Hilbert space H). Let F = F ∗ ∈

A, Fredholm operator, such that

[F,A] ⊂ K(H), (compact operators),

and moreover
[F,A] ⊂ Lp(H), (Schatten class)

for some p > 1. The triple (A,H, F ) is a p-summable Fredholm module. Together
with grading γ such that

γ2 = Id, γ = γ∗, γa = aγ ∀ a ∈ A,

γF + Fγ = 0,

the quadruple (A,H, γ, F ) is a K-cycle. The Hilbert space H decomposes into
positive and negative eigenspaces of γ

H = H+ ⊕H−

and there is a decomposition of F

F =

(
0 F+

F− 0

)
.

Lemma 6.6. Let F be bounded selfadjoint involution on H (i.e. F 2 = Id).
Then

1. If e2 = e ∈ A then
Fe := eFe

is a Fredholm operator.

2. If g ∈ GL1(A) and P = 1+F
2 then

Fg := PgP

is a Fredholm operator.

187



Part II General formulation and proto-index formula

Proof.

Ad. 1
F 2
e = eFeFe = e([F, e] + eF )Fe

which is a sum of e and compact operator on eHe.

Ad. 2
FgFg−1 = PgPg−1P = Pg([P, g−1] + g−1P )P

which is a sum of P and compact operator on PHP .

If e2 = e ∈MN (A) = A⊗MN(C) then we can form

HN := H⊗ CN , FN := F ⊗ Id.

For an idempotent e, assignment

(F, e) 7→ Index(F+
e ) ∈ Z

extends to a pairing
K0(A)×K0(A)→ Z.

Similarly for g ∈ GL1(A), assignment

(P, g) =

(
1 + F

2
, g

)
7→ Index(Fg) ∈ Z

extends to a pairing
K1(A)×K1(A)→ Z.

Lemma 6.7 (Well known). Let P,Q be bounded operators on a Hilbert space
H, such that

Id−QP, Id− PQ ∈ Lp.
Then P,Q are Fredholm operatos and

Index(P ) = Tr((Id−QP )n)− Tr((Id− PQ)n), ∀ n > p.

Proposition 6.8. Assume [F,A] ∈ Lp (that is (A,H, F ) is p-summable Fred-
holm module). Then

1. In the graded case, that is given γ : H → H, one has for all projections e

Index(F+
e ) = (−1)m Tr(γe[F, e]2m), ∀ 2m > p.

2. In the ungraded case one has for all g ∈ GL1(A)

Index(Fg) =
1

22m+1
Tr(g[F, g−1])2m+1, ∀ 2m > p.
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Part II General formulation and proto-index formula

Proof. In the graded case

Index(F+
e ) = Tr(γPkerFe) = Tr(γ(e− F 2

e )m) = Tr(γ(e− eFeFe)m)

for 2m = n > p. Now as above

e− eFeFe = −e[F, e]Fe
= −e[F, e]([F, e] + eF )

= −e[F, e][F, e]− e[F, e]e︸ ︷︷ ︸
=0

F

= −e[F, e]2 = [F, e]2e

since
[F, e] = [F, e2] = [F, e]e+ e[F, e].

Thus

Tr(γ(e− eFeFe)m) = (−1)m Tr(γ(e[F, e]2)m) = (−1)m Tr(γe([F, e])2m).

In the ungraded case one has

Index(Fg) = Tr((P − Pg−1PgP )m)− Tr((P − PgPg−1P )m)

for m sufficiently large. Furthermore

P − Pg−1PgP = P + P ([P, g−1]− Pg−1)gP

= P [P, g−1]gP

= −P [P, g−1]([P, g]− Pg)

= −P [P, g−1][P, g] + P [P, g−1]P︸ ︷︷ ︸
=0

g

because

P 2 = P =⇒ [g−1, P ]P + P [g−1, P ] = [g−1, P ] =⇒ P [P, g−1]P = 0.

Hence
Tr((P − Pg−1PgP )m) = (−1)m Tr(P ([P, g−1][P, g])m).

Writing again

[P, g−1] = P [P, g−1] + [P, g−1]P,

[P, g] = P [P, g] + [P, g]P

one has
P [P, g−1][P, g] = P [P, g−1][P, g]P = [P, g−1][P, g]P.

Therefore

Tr((P − Pg−1PgP )m) = (−1)m Tr(P ([P, g−1][P, g])m)

= (−1)m Tr

(
1 + F

2

(
1

2
[F, g−1]

1

2
[F, g]

)m)

=
(−1)m

22m+1

(
Tr(([F, g−1][F, g])m) + Tr(F ([F, g−1][F, g])m)

)
.
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Part II Multilinear reformulation: cyclic homology (Connes)

Changing g to g−1 one gets

Tr((P−PgPg−1P )m) =
(−1)m

22m+1

(
Tr(([F, g][F, g−1])m) + Tr(F ([F, g][F, g−1])m)

)
.

Noting that

[F, g−1][F, g] = (−g−1[F, g]g−1)(−g[F, g−1]g) = g[F, g][F, g−1]g

one has
Tr(([F, g−1][F, g])m) = Tr(([F, g][F, g−1])m).

Now

([F, g−1][F, g])m = (−g−1[F, g−1]g−1[F, g])m = (−1)m(g−1[F, g])2m,

hence

Index(Fg) =
1

22m+1
(Tr(F (g−1[F, g])2m)− Tr(F (g[F, g−1])2m)).

The second term can be written as

Tr(F (g[F, g−1])2m) = Tr(F ([F, g]g−1)2m)

= Tr(Fg(g−1[F, g]g−1g)2mg−1)

= Tr(g−1Fg(g−1[F, g])2m).

So the difference gives

Index(Fg) =
1

22m+1
Tr((F − g−1Fg)(g−1[F, g])2m)

=
1

22m+1
Tr(g−1[g, F ](g−1[F, g])2m)

=
1

22m+1
Tr((g−1[F, g])2m+1)

=
1

22m+1
Tr((g[F, g−1])2m+1).

6.3 Multilinear reformulation: cyclic homology
(Connes)

Observe that if T ∈ L1 then

Tr(γT ) =
1

2
Tr(γF [F, T ]).

Indeed
Tr(γF [F, T ]) = Tr(γ(T − FTF )) = Tr(γT ) + Tr(γT )

since Fγ + γF = 0.
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Part II Multilinear reformulation: cyclic homology (Connes)

Both formulas in proposition (6.8) can be obtained from multilinear forms
τ ∈ Hom(A⊗n+1,C).

τF (a0, a1, . . . , an) =

{
Tr(γF [F, a0][F, a1] . . . [F, an]) n even > p− 1,
Tr(F [F, a0][F, a1] . . . [F, an]) n odd > p− 1.

The first comes from (using graded commutators)

Tr(γF [F, a0[F, a1] . . . [F, an]]) = Tr(γF [F, a0][F, a1] . . . [F, an])

+

n∑

i=1

Tr(γFa0[F, a1] . . . [F, [F, ai]] . . . [F, an]),

where the terms in the sum are 0 because

[F, [F, a]] = F [F, a] + [F, a]F = a− FaF + FaF − a = 0.

For anti-commutation reasons, the first expression vanishes for n odd, while
the second expression vanishes for n even.

Element φ ∈ Hom(A⊗n+1,C) ic cyclic if

φ(an, a0, . . . , an−1) = (−1)nφ(a0, a1, . . . , an)

i. e. λnφ = Id for cyclic operator λn+1
n = Id. One has

bτF (a0, a1, . . . , an+1) =

n∑

i=0

τF (a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1τF (an+1a0, a1, . . . , an)

=

n∑

i=1

(−1)i Tr(F [F, a0] . . . [F, aiai+1] . . . [F, an])

+ (−1)n+1 Tr(F [F, an+1a0][F, a1] . . . [F, an]).

Now
[F, aiai+1] = [F, ai]ai+1 + ai[F, ai+1].

Because of the alternating signs, terms cancel pairwise if n+ 1 is even

Tr(F [F, a0]a1[F, a2] . . . [F, an+1])

+ Tr(Fa0[F, a1][F, a2] . . . [F, an+1])

−Tr(F [F, a0][F, a1]a2 . . . [F, an+1])

−Tr(F [F, a0]a1[F, a2] . . . [F, an+1])

+ . . .+

+(−1)n+1 Tr(F [F, an+1]a0[F, a1] . . . [F, an+1])

+(−1)n+1 Tr(Fan+1[F, a0][F, a1] . . . [F, an+1]).

Hence for odd n
bτF = 0.

For even n

Tr(γF [F, an][F, a1] . . . [F, an−1]) = Tr(F [F, an][F, a0] . . . [F, an−1]) =
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Part II Multilinear reformulation: cyclic homology (Connes)

−Tr(F [F, a0] . . . [F, an]).

This leads to the definition of cyclic cohomology, a homology of complex

(C•λ(A), b), Cnλ (A) = Homcont(A
⊗n+1,C)

for locally convex algebra A (with continuous multiplication).
The fact that n 7→ n + 2 leaves formulas in proposition (6.8) unchanged is

related to the periodicity operator

S : HCnλ(A) 7→ HCn+2
λ (A)

which in turn is an arrow in Connes long exact sequence

. . .
S−→ HCn

λ(A)
I−→ HHn(A)

B−→ HCn−1
λ (A)

S−→ HCn+1(A)
I−→ . . .

For A = C∞(M), ∂M = 0

τ(f0, f1, . . . , fn) =

∫

M

f0df1 ∧ . . . ∧ dfn

From Leibniz rule and Stokes theorem

bτ = 0, λ(τ) = τ.

If ω ∈ Ωn−k(M) then

τω(f0, . . . , fk) :=

∫

M

f0df1 ∧ . . . ∧ dfk ∧ ω, dω = 0.

If C-k-current

τC(f0, . . . , fk) = 〈C, f0df1 ∧ . . . ∧ dfk〉, dC = 0.

Theorem 6.9 (Connes).

HCqλ(A)
∼= //

S�� ker d+
q�� ⊕ HdR

q−2(M ; C)

∼=�� ⊕ HdR
q−4(M ; C)

∼=�� ⊕ . . .

HCq+2
λ (A)

∼= // ker d+
q+2 ⊕ HdR

q (M ; C) ⊕ HdR
q−2(M ; C) ⊕ . . .

where the inclusion kerd+
q →֒ HCqλ(A) is

C 7→ φC(f0, f1, . . . , f q) = 〈C, f0df1 ∧ . . . ∧ df q〉.

Compatibility considerations lead to the following normalization for the
Connes-Chern character of a K-cycle F over A of Schatten dimension p.

• For n odd > p− 1

τn(a0, a1, . . . , an) = (−1)
n−1

2
n

2

(n
2
− 1
)
. . .

1

2
Tr(F [f, a0][F, a1] . . . [F, an]),

Sτn = τn+2
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Part II Multilinear reformulation: cyclic homology (Connes)

• For n even > p− 1

τn(a0, a1, . . . , an) =
(n

2

)
!
1

2
Tr(γF [f, a0][F, a1] . . . [F, an]),

Sτn = τn+2

Homological Chern character is a homomorphism

ch∗ : K∗(M)→ HdR
∗ (M ; C)

It is a special case of the Connes- Chern character for an algebra

ch∗K∗(A)→ HP∗(A)

if one takes A = C∞(M). For a cocycle (A,H, F ) representing an element in
K-homology one has

ch∗(A,H, F ) := [φn],

where φn is the following cocycle

φn(a0, a1, . . . , an) = Tr(γa0[F, a0] . . . [F, an])

for n even.
S[φn] = [φn+2]

For a Dirac operator D we can take F = D|D|−1 and then

ch∗(D) = Â(M) = (det)
1
2

(
R
2

sinh R
2

)

If γ is a gradation on H i.e.

γ =

(
1 0
0 −1

)
, D =

(
0 D−

D+ 0

)

then
Index(D+) = Tr(γe−tD

2

), t > 0

D2 =

(
D−D+ 0

0 D+D−

)
.

For t→ 0+ function Tr(γe−tD
2

) has an expansion

c0 + c1t+ c2t
2 + . . . ,

where

c0 =

∫

M

ωδ(D)

and ωδ(D) is called the local index formula.
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Part II Connes cyclic homology

6.4 Connes cyclic homology

HC∗(A) is defined as the cohomology of a complex (Cλ(A), b). A cycle repre-
senting an element in HC∗(A) is a triple

(Ω, d,

∫
),

where (Ω, d) is a differential graded algebra

Ω0 d−→ Ω1 d−→ . . .
d−→ Ωn, d2 = 0, (finite length),

and
∫

is a closed graded trace
∫

Ωn → C i.e.

∫
ω1ω2 = (−1)|ω1||ω2|

∫
ω2ω1 (graded trace),

∫
dω = 0 (closed).

Using homomorphism ρ : A→ Ω0 we can write a character of (Ω, d,
∫

)

τ(a0, a1, . . . , an) =

∫
a0da1 . . . dan.

It is a cyclic cocycle.
Define a chain as a triple (Ω, ∂Ω,

∫
), where ∂Ω ⊂ Ω, dim Ω = n, dim ∂Ω =

n−1, and d preserves ∂Ω. There is given a surjective homomorphism r : Ω→ ∂Ω
of degree 0 (restriction to the boundary) and

∫
dω = 0, ∀ ω such that r(ω) = 0.

A boundary of such chain is a cycle (∂Ω, d,
∫ ′

), where for ω′ ∈ ∂Ωn−1

∫ ′
ω′ :=

∫
dω, for r(ω) = ω′.

Two cycles Ω1, Ω2 are cobordant, Ω1 ∼ Ω2 if and only if there exists a chain
(Ω, ∂Ω,

∫
) such that

∂Ω = Ω1 ⊕ Ω̃2

where (Ω̃2, d,
∫̃

) is a cycle in which
∫̃
ω = −

∫
ω.

Theorem 6.10.
Ω1 ∼ Ω2 iff. τ2 − τ1 = B0φ ∈ imB0

where the operator B0 is defined as follows.

B0φ(a0, a1, . . . , an) = φ(1, a0, . . . , an)− (−1)n+1φ(a0, . . . , an, 1).

The operator B is then equal to AB0, where A is the cyclic antisymmetriza-
tion

(Aφ)(a0, a1, . . . , an) :=

n∑

i=0

(−1)niφ(ai, ai+1, . . . , ai−1).
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Part II An alternate route, via the Families Index Theorem

The Connes exact sequence

. . .
B−→ HCn−2

λ (A)
S−→ HCnλ(A)

I−→ Hn(A)
B−→ HCn−1

λ (A)
S−→

starts with HC0
λ(A) = H0(A). Thus if there is an algebra homomorphism A→

A′ which induces isomorphism on Hochshild cohomology, then it also induces
isomorphism on cyclic homology.

We can form a bicomplex (Cn,m, b, B) with b2 = 0, B2 = 0, bB + Bb = 0,
and Cn,m = Cn−m(A) = A⊗n−m+1. The homology of the total complex is then
cyclic homology.

6.5 An alternate route, via the Families Index
Theorem

Set up: (A,H, D), D = D∗ unbounded with

[D,A] ⊂ B(H), (1 +D2) ∈ Lp

In fact we shall assume that D is invertible with D−1 ∈ Lp. The bounded
version of this K-cycle is given by (A,H, F ), where F = D|D|−1 is a phase.

On A one has a norm

|||a||| := ||a||+ ||[D, a]||, for a ∈ A.

Let V = V(A) be the span of ”vector potentials”, that is

V :=

{
A =

∑

i

ai[D, bi] | ai, bi ∈ A, A = A∗
}
.

Let U = U(A) be the gauge group, that is

U = U(A) := {u ∈ GL1(A) | u∗u = uu∗ = 1} ,

acting on V by (affine action)

u ·A := u[D,u∗] + uAu∗ = u(D +A)u∗ −D.

Denoting DA := D +A one has

Du·A = uDAu
∗.

Fact 6.11. DA has the same dimension as D and D∗A = DA. Also kerDA =
ker(Id +D−1A), hence is finite dimensional.

Let
Vinj := {A ∈ V | DA injective } ⊂ V

It is an open subset with respect to |||·|||. For A ∈ Vinj operator DA is invertible
with

D−1
A = (1 +D−1A)−1D−1 ∈ Lp.

Graded trivial vector bundle over Vinj

H̃± := Vinj ×H±.

195



Part II An alternate route, via the Families Index Theorem

Superconnection is an operator d+ D̃, where

D̃ : H̃ → H̃, is in the fiber D̃A = DA : H± → H±.

Curvature

R := (γd+ D̃)2 = γdD̃ + D̃d+ D̃2 = [γd, D̃]︸ ︷︷ ︸
=: eD′

+D̃2.

Explicit expression of D̃′ = [d, D̃] ∈ Ω1(Vinj , H̃):

d : Ωp(Vinj , H̃)→ Ωp+1(Vinj , H̃)

(dω)(X̃0, . . . , X̃p+1) =

p∑

i=0

X̃iω(X̃0, . . . ,
̂̃
Xi, . . . , X̃p)

(commutators vanish), where

X̃Af :=
d

dt

∣∣
t=0

f(A+ tX), X ∈ V .

One has with F : Vinj → B(H), F (A) := D +A

γd(D̃ω) = γdF ∧ ω,

Hence
D̃′(ω) = dF ∧ ω, dFA(X̃A) = X,

D̃′(ω)A(X0, . . . , Xp+1) =

r∑

i=0

(−1)i Xi︸︷︷︸
∈B(H)

ωA(X0, . . . , X̂i, . . . , Xp)︸ ︷︷ ︸
∈H

(Super) Chern form

Ω
(n)
t := Tr

(
γe−(teD′+t2 eD2)

)(n)

= Tr
(
γe−R

2
t

)(n)

=

= (−t)n
∫

∆n

Tr
(
e−s1t

2 eD2

D̃′e−(s1−s2)t2 eD2

D̃′ . . . e−(sn−sn−1)t
2 eD2

D̃′e−(1−sn)t2 eD2
)
ds,

where
ds := ds1ds2 . . . dsn,

and the integration is over a simplex

∆n := {0 6 s1 6 s2 6 . . . 6 sn 6 1 | s1 + s2 + . . .+ sn = 1}

One has
d

ds
(es(A+B)e−sB) = es(A+B)Ae−sB

eu(A+B) = euB +

∫ u

0

es(A+B)Ae(u−s)Bds.
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6.6 Index theory for foliations

Let (Mm,F) be a foliated manifold. To define an index in noncommutative
geometry we have to complete definitions of the following tasks

1. transverse coordinates,

2. analog of elliptic operator,

3. index pairing between K-theory and K-homology.

Foliation can be described using 1-cocycle (Vi, fi, gij), where

fi : Vi → Ui ⊂ Rn, n = codimF are surjective submersions,

and gij : fj(Vi ∩ Vj)→ fi(Vi ∩ Vj) are diffeomorphisms such that

gij ◦ gjk = gik.

Above cocycle gives a grupoid Γ = {gij} which leads to the algebra of foliation

AΓ := C∞c (FM) ⋊ Γ

fuφ · guψ = fgφ−1uφψ, φ, ψ ∈ Γ.

where FM = J1(M) is a frame bundle. This gives a transverse coordinates.
The advantage in working with frame bundle is that FM has a natural volume
form. It is paralelizable (i.e. TFM is trivial). One has a principal bundle

GLn(R)

π �� FM

M

One has vertical vector fields Y ji coming from the GLn(R) action, and when
chooses a connection, also horizontal vector fields Xk. Let {θk, ωij} be the dual
basis of differential forms. Then

Λωij ∧ Λθk

is an invariant volume form.
For our second task we have to give up ellipticity. Consider a quotient bundle

FM/ SO(n)

π �� PM

M

The fiber PMx is the space of all Euclidean structures on TxM

〈ζ, η〉 = 〈aζ, aη〉, a ∈ SO(n).

Section of PM are all Riemannian metrics on TM . Let

V ⊂ TPM = kerπ∗
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be the vertical subbundle (vectors tangent to the fibers). On the quotient
GLn(R)/ SO(n) there is a metric, and determines a metric on V .

TPM/V�� N

PM

The horizontal bundle N has a tautological Riemannian structure. Indeed,
p ∈ PM is an Euclidean structure for Tπ(p)M , and Np is identified with Tπ(p)M
by π∗.

The bundle TPM has a decomposition into vertical and horizontal part,
TPM = V ⊕N . The Hilbert space

L2(ΛT ∗PM,VolP )

where VolP is a volume form induced by canonical volume form on FM , de-
composes also as a tensor product of corresponding Hilbert spaces

L2(ΛT ∗PM) = L2(ΛV∗)⊗ L2(ΛN ∗).

On this two parts we have operators

• On L2(ΛV∗) with vertical differential dV

QV := i(dV + d∗V )(dV − d∗V ) = −i(dV d∗V + d∗V dV )

• On L2(ΛN ∗) with horizontal differential dH

QH := dH + d∗H

On the whole L2(ΛT ∗PM) we put Q = QV ⊕γVQH , where γV is the grading of
the vertical signature. Operator Q = Q∗ is called hypoeliptic signature operator.
We have a spectral triple (AΓ,H, D), where D is determined by the equation
Q = D|D|.

For a ∈ A [D, a] ∈ B(H) and (1+D2)−
1
2 ∈ Lp(H) for p = dimV+2n, where

dimM = n. The K-cycle (A,H, D) gives an element in K∗DiffM
(A) (DiffM -

equivariant K-cycle). Its character ch∗(D) ∈ HC∗(AΓ) can be expressed in
terms of residues of spectrally defined zeta-functions, and is given by a cocycle
{φn} in the (b, B)-bicomplex of AΓ whose components are of the following form

Ress=0 Tr(a0[a1, D](k1) . . . [an, D](kn)|D|−n−2|k|−s)

which we denote by

/

∫
Tr(a0[a1, D](k1) . . . [an, D](kn)|D|−n−2|k|−s)

φn(a0, . . . , an) =
∑

k

cn,k /

∫
a0[Q, a1](k1) . . . [Q, an](kn)|Q|−n−2|k|
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Chapter 7

Hopf–cyclic cohomology

7.1 Preliminaries

7.1.1 Cyclic cohomology in abelian category

Our task is to understand cup product for Hopf–cyclic cohomology with coeffi-
cients, that is mapping

HCmH(C;M)⊗HCnH(A;M)→ HCm+n(A;M).

Concider a category C, with finite sets [n] := {0, 1, . . . , n} for n ∈ N as
objects, and morphism which preserve order. To describe a cyclic structure we
introduce following morphisms

• Face
[n− 1]

δi−→ [n], 0 6 i 6 n,

- injection which misses i.

• Degeneracy

[n+ 1]
σj−→ [n], 0 6 j 6 n,

- surjection which sends both j and j + 1 to j.

• Cyclic operator
[n]

τn−→ [n]

- cyclic shift to the right.

The morphism above satisfy following identities, which we can group to
obtain succesive complications of our category.

• Presimplicial simplicial category.

Mor(C) := {δ(n)
i | 0 6 i 6 n, n ∈ N},

with
δjδi = δiδj , j > i.
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• Simplicial category.

Mor(C) := {δ(n)
i , σ

(m)
j | 0 6 i 6 n, 0 6 j 6 m, n,m ∈ N},

with additional identities

σjσi = σiσj+1, i 6 j,

σjδi =





δiσj−1, i < j,
id[n], i ∈ {j, j + 1},
δi−1σj , i > j + 1

• Precyclic category.

Mor(C) := {δ(m)
i , τn | 0 6 i 6 m, m, n ∈ N},

with the identities as for presimlicial category and

τn+1
n = id[n],

τnδi = δi−1τn−1, 1 6 i 6 n.

• Cyclic Category.

Mor(C) := {δ(m)
i , σ

(l)
j , τn | 0 6 i 6 m, 0 6 j 6 l, m, l, n ∈ N},

with all above identieties and

τnσ0 = σnτ
2
n+1,

τnσj = σj−1τn+1, 1 6 j 6 n.

Now, let A be an abelian category, and F : C→ A a functor. It means that
we have a sequence of objects, and morphisms

An
δi−→ An

τn−→ An
σi←− An+1.

Define

bn :=

n∑

i=0

(−1)iδi, b′n :=

n−1∑

i=0

(−1)iδi,

λn := (−1)nτn, n ∈ N.

These morphisms satisfy the following identities

bn+1bn = 0, (1− λn)bn = b′n(1− λn−1).

Consider a diagram

kern+1
// An+1

1−λn+1 // An+1

kern //bn+1

OO
An

1−λn //bn+1

OO
Anb

′
n+1

OO
kern−1

//bn

OO
An−1

1−λn−1//bn

OO
An−1b

′
n

OO
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The composition bn+1bn = 0, so we have a complex

kern−1
bn // kern

bn+1 // kern+1

ker coker bn
∃!φn //99ssssssssss

ker bn+1

ddHHHHHHHHH
Define the cyclic homology of the complex (A•, bn) as the cokernel of the unique
map φn

HCn(F ) := HCn(A•) := cokerφn.

Define another operator

Nn :=

n∑

i=0

(λn)i, n ∈ N.

Now one can form a bicomplex

...
...

...
...

...

A2

b3

OO
1−λ2 // A2

−b′3

OO
N2 // A2

b3

OO
1−λ2 // A2

−b3
OO

N2 // A2

b3

OO // . . .
A1

b2

OO
1−λ1 // A1

−b′2

OO
N1 // A1

b2

OO
1−λ1 // A1

−b′2

OO
N1 // A1

b2

OO // . . .
A0

b1

OO
1−λ0 // A0

−b′1

OO
N0 // A0

b1

OO
1−λ0 // A0

−b′1

OO
N0 // A0

b1

OO // . . .
Then the cohomology of the total complex is the cyclic homology of the

functor F : C → A
HCn(F ) = Hn(TotA••).

7.1.2 Hopf algebras

Summary of notations.

• Coalgebra (C,∆, ǫ)

C
∆ //

∆ �� C ⊗ C
∆⊗id��

C ⊗ C id⊗∆// C ⊗ C ⊗ C
C

∆ //
∆ �� id %%JJJJJJJJJJJ C ⊗ C

ǫ⊗id��
C ⊗ C id⊗ǫ // C
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• Comodule (M,∆R)

M
∆R //

∆R �� M ⊗ C
∆R⊗id��

M ⊗ C id⊗∆R// M ⊗ C ⊗ C
M

∆R //
id ##HHHHHHHHH M ⊗ C

ǫ⊗id��
M

• Bicomodule (M,∆L,∆R)

M
∆R //

∆L �� M ⊗ C
∆L⊗id��

M ⊗ C id⊗∆R// C ⊗M ⊗ C
• Hopf algebra (H,m, 1,∆, ǫ, S), where

– (H,m, 1) algebra,

– (H,∆, ǫ) coalgebra,

– ∆, ǫ are algebra homomorphisms,

– Convoloution product f ∗ g

f ∗ g : H
∆−→ H ⊗H f⊗g−−−→ H ⊗H m−→ H,

– Antipode S
S ∗ id = 1ǫ = id ∗ S.

Properties of S:

• if exists, it is unique,

• it is an antialgebra map: S(ab) = S(b)S(a),

• it is an anticoalgebra map: ∆ ◦ S = (S ⊗ S) ◦∆op,

• if there exists S−1, it has the above properties and satisfies

S−1 ∗cop id = 1ǫ = id ∗cop S−1.

Sweedler notation:

∆h =
∑

i

ai ⊗ bi =: h(1) ⊗ h(2).
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If we treat multiple tensor products as trees, then we can forget how the tree
was constructed.

∆2h = h(1)(1) ⊗ h(1)(2) ⊗ h(2)

= h(1) ⊗ h(2)(1) ⊗ h(2)(2)

= h(1) ⊗ h(2) ⊗ h(3).

∆R(m) = m(0) ⊗m(1), ∆L(m) = m(−1) ⊗m(0).

7.1.3 Motivation for Hopf–cyclic cohomology

If D is a Dirac operator, E idempotent, then there exists an index pairing

〈ch∗(D), ch∗(E)〉 =: Index(DE).

For the transverse geometry of a codim = n foliation

ch∗(D)(a0, . . . , am) = trδ(a0h1(a1) . . . hm(am)),

where hi ∈ Hn - the universal Hopf algebra for codim = n foliations, δ : H → k-
character, trδ - δ-invariant trace.

Hn ⊗A→ A

h(ab) = h(1)(a)h(2)(b), 1H(a) = a.

In particular

∆(g) = g ⊗ g (group-like element) =⇒ g(ab) = g(a)g(b),

∆x = x⊗ 1 + 1⊗ x (primitive element) =⇒ x(ab) = x(a)b + ax(b).

One has

trδ(a0h1(a1) . . . hm(am)) = (−1)m trδ(amh1(a0) . . . hm(am−1))

= (−1)m trδ(h1(a0) . . . hm(am−1)am).

In particular

trδ(h(a)) = δ(h) trδ(a),

trδ(h(a)b) = trδ(h
(1)(a)(h(2)S(h(3)))(b))

= trδ(h
(1)(a)h(2)(S(h(3)))(b)))

= trδ(h
(1)(aS(h(2))(b)))

= δ(h(1)) trδ(aS(h(2))(b))

= trδ(a(δ ∗ S)(h)(b)).

Hence

trδ(a0h1(a1) . . . hm(am)) = (−1)m trδ(a0(δ ∗ S)(h1)(h2(a1) . . . hm(am−1)am))

Denote

h1 ⊗ . . .⊗ hm = (−1)m(δ ∗ S)(h1)(h2 ⊗ . . . hm ⊗ 1) =: (−1)mτm(h1 ⊗ . . .⊗ hm).
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For an element σ ∈ Hn such that ∆σ = σ ⊗ σ, δ(σ) = 1

trσδ (ab) = trσδ (bσ(a))

which implies

τm(h1 ⊗ . . .⊗ hm) = (δ ∗ S)(h1)(h2 ⊗ . . .⊗ hm ⊗ σ)

(−1)m trδ(h1(a0)h2(a1) . . . hm(am−1)am︸ ︷︷ ︸
b

) = (−1)m trδ(a0 (δ ∗ S)(h1)︸ ︷︷ ︸
h̃

(h2(a1) . . . hm(am−1)am)) = (−1)m trδ(a0h̃(b)).

(−1)m(δ ∗ S)(h1)(h2 ⊗ . . .⊗ hm ⊗ 1) = λm(h1 ⊗ . . .⊗ hm).

Now one has to check that τm+1
m = id. For m = 1

τ2
1 (h) = τ1((δ ∗ S)(h)σ) = δ(h(1))(δ ∗ S)(S(h(2))σ)σ

= δ(h(1))δ(S(h(3)))σ−1S2(h(2))σ

= σ−1(δ ∗ S2 ∗ δ−1)(h)σ

= h

Denote
Sσδ (h) := (δ ∗ S)(h)σ.

Now from (τ1)2 = (Sσδ )2 = id one can deduce after computation that for all m
τm+1
m = id (Connes–Moscovici). This yields a new cyclic complex

(H⊗m, δi, σj , τm)m∈N

for any Hopf algebra H equipped with modular pair in involution (MPII) (δ, σ).
For example, if S2 = id, then (ǫ, 1) is a modular pair in involution.

Example 7.1. Let H = H1 be an universal algebra for codim = 1 foliations.
First take a Lie algebra h1 with generators X,Y, λn, n ∈ N satisfying

[Y,X ] = X,

[X,λn] = λn+1,

[Y, λn] = nλn,

[λn, λm] = 0 ∀ n,m > 1.

Then form an universal enveloping algebra H1 := U(h1). The coproduct on H1

id uniquely determined by

∆(X) = X ⊗ 1 + 1⊗X + λ1 ⊗ Y,
∆(Y ) = Y ⊗ 1 + 1⊗ Y,
∆(λ1) = λ1 ⊗ 1 + 1⊗ λ1.

The counit
ǫ(X) = ǫ(Y ) = ǫ(λ1) = 0.

The antipode

S(X) = −X + λ1Y,

S(Y ) = −Y,
S(λ1) = −λ1.
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Now take σ = 1,

δ(X) = 0,

δ(Y ) = −1,

δ(λ1) = 0.

One has to check that

δ(h(1))S2(h(2))δ(S(h(3))) = h.

On generators

Y (1) ⊗ Y (2) ⊗ Y (3) = Y ⊗ 1⊗ 1 + 1⊗ Y ⊗ 1 + 1⊗ 1⊗ Y,

δ(Y ) + S2(Y )− δ(Y ) = Y.

Similarly for λ1.
X(1) ⊗X(2) ⊗X(3) =

= X ⊗ 1⊗ 1 + 1⊗X ⊗ 1 + 1⊗ 1⊗X + 1⊗ λ1 ⊗ Y + λ1 ⊗ Y ⊗ 1 + λ1 ⊗ 1⊗ Y,
S2(X) + δ(S(X))︸ ︷︷ ︸

=0

−S2(λ1)δ(Y ) = S(−X + λ1Y ) + λ1

= X −λ1Y + S(Y )S(λ1)︸ ︷︷ ︸
=[Y,λ1]=λ1

+λ1

= X + λ1 − λ1 = X.

Thus (δ, 1) is a modular pair in involution.

7.1.4 Hopf–cyclic cohomology with coefficients

Motivation:

• Short proof of
τ2
1 = id =⇒ τn+1

n = id.

• Constructive common denominator for all known cyclic theories.

• Non-trivial coefficients are geometrically desired and occur in ”real life”
in the number theory work of Connes–Moscovici.

Simplicial structure in coalgebra case:

Cn(C,M) := M ⊗ C ⊗ C⊗n, n ∈ N,

C is an H-module coalgebra

∆(hc) = h(1)c(1) ⊗ h(2)c(2), ǫ(hc) = ǫ(h)ǫ(c).

M is a C-bimodule
∆R(m⊗ c) = (m⊗ c(1))⊗ c(2),

∆L(m⊗ c) = m(−1)c(1) ⊗ (m(0) ⊗ c(2)).
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The standard example yields

δi(m⊗ c0 ⊗ . . .⊗ cn−1) = m⊗ c0 . . .⊗ c(1)i ⊗ c
(2)
i ⊗ . . .⊗ cn−1,

δn(m⊗ c0 ⊗ . . .⊗ cn−1) = m(0) ⊗ c(2)0 ⊗ c1 ⊗ . . .⊗ cn−1 ⊗m(−1)c
(1)
0 ,

σi(m⊗ c0 ⊗ . . .⊗ cn+1) = m⊗ c0 ⊗ . . .⊗ ǫ(ci+1)⊗ . . .⊗ cn+1.

Simplicial structure in algebra case:

Cn(A,M) := Hom(M ⊗A⊗A⊗n, k), n ∈ N.

A is an H-module algebra

h(ab) = (h(1)a)(h(2)b), h1 = ǫ(h).

M is aleft H-comodule

Hom(M ⊗A⊗A⊗n, k) ∼= Hom(A⊗n,Hom(M ⊗A, k)).

M ⊗A is an A-bimodule

(m⊗ a)b = m⊗ ab, b(m⊗ a) = m(0) ⊗ (S−1(m(−1))b)a

The standard example yields

(δif)(m⊗ a0 ⊗ . . .⊗ an) = f(m⊗ a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an),

(δnf)(m⊗ a0 ⊗ . . .⊗ an) = f(m(0)(S−1(m(−1))an)a0 ⊗ . . .⊗ an−1),

(σif)(m⊗ a0 ⊗ . . .⊗ an) = f(m⊗ a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ an).

Paracyclic structures:
For {Cn(A,M)}n∈N

(τnf)(m⊗ a0 ⊗ . . .⊗ an) = f(m(0)(S−1(m(−1))an)⊗ a0 ⊗ . . .⊗ an−1).

For {Cn(C,M)}n∈N

τn(m⊗ c0 ⊗ . . .⊗ cn) = m(0) ⊗ c1 ⊗ . . .⊗ cn ⊗m(−1)c0.

Invariant complexes:

CnH(A,M) := HomH(M ⊗A⊗n+1, k),

M ∈H MH , (m⊗ ã)h = mh(1) ⊗ S(h(2))ã, k = kǫ

CnH(C,M) := M ⊗H C⊗n+1,

M ∈H MH , h(c0 ⊗ . . . cn) = h(1)c0 ⊗ . . .⊗ h(n+1)cn.

To describe cyclic structure we need

Definition 7.2. We say that a bimodule M ∈H MH is stable if and only if

∀ m ∈M m(0)m(−1) = m.

It is anti-Yetter-Drinfeld if and only if

∆L(mh) = S(h(3))m(−1)h(1) ⊗m(0)h(2), ∀ m,h.
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Theorem 7.3. If M is a stable anti-Yetter-Drinfeld module (SAYD), then the
formulas for δi, σi and τn define cyclic structures on CnH(A,M) and CnH(C,M).

Shortly

• anti-Yetter-Drinfeld =⇒ τn is well defined,

• stability =⇒ τn+1
n = id.

Proof. First we check that τn is well defined, that is

τn(mh⊗ c0 ⊗ . . .⊗ cn) = τn(m⊗ h(c0 ⊗ . . .⊗ cn)),

(mh)(0)⊗H (c1⊗. . .⊗cn⊗(mh)−1c0) = m(0)⊗H (h(2)(c1⊗. . .⊗cn)⊗m(−1)h(1)c0),

hence it suffices to prove the following identity

(mh)(0) ⊗H (1⊗ (mh)(−1)) = m(0) ⊗H (h(2) ⊗m(−1)h(1)).

Take
M ⊗H (H· ⊗H·) (diagonal structure)

and morphism

H· ⊗H· Φ−→ H· ⊗H (multiplication on the first term)

Φ(h⊗ k) = h(1) ⊗ S(h(2))k,

Φ−1(h⊗ k) = h(1) ⊗ h(2)k.

Now
Φ(−1)(l(h⊗ k)) = Φ−1(lh⊗ k) = lΦ−1(h⊗ k).

Consider

M ⊗H (H· ⊗H·) id⊗HΦ−−−−→M ⊗H (H· ⊗H) ∼= M ⊗H.

(mh)(0) ⊗ (mh)(−1) = m(0)h(2) ⊗ S(h(3))m(−1)h(1).

-anti-Yetter-Drinfeld condition.

τn+1
n (m⊗H c0 ⊗ . . .⊗ cn) = τnn (m(0) ⊗H c1 ⊗ . . .⊗ cn ⊗m(−1)c0)

= m(0) ⊗m(−1)(c0 ⊗ . . .⊗ cn)

= m(0)m(−1) ⊗ c0 ⊗ . . .⊗ cn
= m⊗H c0 ⊗ . . .⊗ cn,

where in the last equality we used stability of M .
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7.1.5 Special cases

1. Connes–Moscovici construction.

C = H, M =σ kδ

Then σkδ is SAYD iff. (δ, σ) is MPII. Let F be the isomorphism

F : k ⊗H (H· ⊗H⊗n· )
∼=−→ H⊗n.

Then for f̃ ∈ H⊗n

τn(h1 ⊗ . . . hn) = (F ◦ τ̃n ◦ F−1)(h̃)

= (F ◦ τ̃n)(1⊗H Φ̃−1(1⊗ h̃))

= F (1 ⊗H (h̃⊗ σ))

= 1⊗H Φ̃(h1 ⊗ . . .⊗ hn ⊗ σ)

= 1⊗H h
(1)
1 ⊗ S(h

(2)
1 )(h2 ⊗ . . .⊗ hn ⊗ σ)

= δ(h
(1)
1 )S(h2

1)(h2 ⊗ . . .⊗ hn ⊗ σ).

2. trσδ ∈ HC0
H(A;σ kδ)

3. Characteristic map of Connes–Moscovici

HCmH(H ;σ kδ)⊗HC0
H(A;σ kδ)→ HCm(A),

h1 ⊗ . . .⊗ hm 7→ ((a0 ⊗ . . .⊗ am) 7→ trσδ (a0h1(a1)⊗ hm(am)))

4. The n > 0 and dimM > 1 already applied in Connes–Moscovici work on
number theory.

5. HCmk (A; k) = HCm(A)

6. Twisted cyclic homology

HC∗k[σ,σ−1](A;σ kǫ).

Lemma 7.4.
σkδ is SAYD⇐⇒ (δ, σ) is MPII.

Proof.
m(0)m(−1) = m⇔ 1 · σ = δ(σ) = 1,

(mh)(−1) ⊗ (mh)(0) = S(h(3))m(−1)h(1) ⊗m(0)h(2)

σδ(h) = S(h(3))σh(1)δ(h(2))

L(h) = R(h)⇔ (L ∗op S−1)(h) = (R ∗op S−1)(h)

L(h(2))S(−1)(h(1)) = R(h(2))S(−1)(h(1))

S̃σδ (h) = σδ(h(2))S(−1)(h(1)) = S(h(2))σδ(h(1)) =: Sσδ (h)
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By direct computation

S̃σδ ◦ Sσδ = id = Sσδ ◦ S̃σδ , i.e.

S̃σδ = (Sσδ )−1.

Therefore
AYD⇔ (Sσδ )−1 = Sσδ

(Sσδ )2 = id (involution condition).

7.2 The Hopf algebra Hn

Let the manifold Mn be affine flat (the Rn or the disjoint union of Rn). The
frame bundle is then trivial with FM ∼= M ×GLn(R). In local coordinates (xµ)
for x ∈ U ⊂ M , we can view the frame coordinates xµ, yµj as a 1-jet of a map
φ : Rn → Rn

φ(t) = x+ yt, x, t ∈ Rn, y ∈ GLn(R),

where (yt)µ =
∑
i y
µ
i t
i for t = (ti) ∈ Rn.

We endow it with the trivial connection, given by the matrix-valued 1-form
ω = (ωij), where

ωij :=
∑

µ

(y−1)iµdy
µ
j = (y−1dy)ij

The corresponding basic horizontal fields on FM are

Xk =
∑

µ

yµk∂µ, k = 1, . . . , n, ∂µ =
∂

∂xµ
.

Denote by θk be the canonical form of the frame bundle

θk :=
∑

µ

(y−1)kµdx
µ = (y−1dx)k, k = 1, . . . , n.

Then let

Y ji =
∑

µ

yµi ∂
j
µ, i, j = 1, . . . , n, ∂jµ :=

∂

∂yµj

be the fundamental vertical vector fields associated to the standard basis of
gln(R) and generating the canonical right action of GLn(R) on FM . At each
point of FM , {Xk, Y

j
i } and {θk, ωij} form bases of the tangent and cotangent

space, dual to each other

〈ωij , Y lk〉 = δikδ
l
j, 〈ωij , Xk〉 = 0,

〈θi, Y lk〉 = 0, 〈θi, Xj〉 = δij .

The group of diffeomorphism DiffM = DiffRn acts on FM by the natural
lift of the tautological action to the frame level

ϕ̃(x, y) := (ϕ(x), ϕ′(x)y)
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where ϕ′(x) is Jacobi matrix ϕ′(x)ij = ∂ϕi

∂xj .
Viewing DiffM as a discrete group we form the crossed product algebra

AM := C∞c (FM) ⋊ DiffM

As a vector space, it is spanned by monomials of the form fu∗ϕ, where f ∈
C∞(FM) and u∗ϕ stands for ϕ−1. The product is given by

f1u
∗
ϕ1
· f2u∗ϕ2

= f1(f2 ◦ ϕ̃1)u∗ϕ2ϕ1
.

Since the right action of GLn(R) on FM commutes with the action of DiffM ,
at the Lie algebra level one has

uϕY
j
i u
∗
ϕ = Y ji .

This allows to promote the vertical vector fields to derivations of AM . Indeed,
setting

Y ji (fu∗ϕ) = Y ji (f)u∗ϕ

the extended operators satisfy the derivation rule

Y ji (ab) = Y ji (a)b+ aY ji (b), a, b ∈ AM .

We shall also prolong the horizontal vector fields to linear transformations Xk ∈
L(AM ) in similar fashion

Xk(fu∗ϕ) = Xk(f)u∗ϕ.

The resulting operators are no longer DiffM -invariant. They satisfy

uϕXku
∗
ϕ = Xk − γijk(ϕ−1)Y ji ,

where ϕ 7→ γijk(ϕ) is a group 1-cocycle on DiffM with values in C∞(FM).
Specifically

γijk(ϕ)(x, y) =
∑

µ

(y−1 · · ·ϕ′(x)−1 · ∂µ · y)ijy
µ
k

The above expression comes from the pull-back formula for the connection

ϕ̃∗(ωij) = ωij + γijk(ϕ)θk.

Now one uses the fact that {θk, (ϕ̃−1)∗(ωij)} is the dual basis to {uϕXku
∗
ϕ, Y

j
i }.

As a consequence, the operators Xk ∈ L(AM ) are no longer derivations of
AM , but satisfy a non-symmetric Leibniz rule

Xk(a, b) = Xk(a)b + aXk(b) + δijk(a)Y ji (b), a, b ∈ AM ,

where the linear operators δijk ∈ L(AM ) are defined by

δijk(fu∗ϕ) = γijkfu
∗
ϕ.

These are derivations, i.e.

δijk(ab) = δijk(a)b + aδijk(b).
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Part II The Hopf algebra Hn

The operators {Xk, Y
i
j } satisfy the commutation relations of the group of

affine transformations of Rn

[Y ji , Y
l
k ] = δjkY

l
i − δliY jk ,

[Y ji , Xk] = δjkXi,

[Xk, Xl] = 0.

The succesive commutators of the operators δijk with the Xl’s yield new gener-
ations of

δijk|l1...lr := [Xlr , . . . [Xl1 , δ
i
jk] . . .],

which involve multiplication by higher order jets of diffeomorphisms

δijk|l1...lr (fu∗ϕ) = γijk|l1...lrfu
∗
ϕ, where

δijk|l1...lr := Xlr . . .Xl1(γijk).

They commute among themselves

[δijk|l1...lr , δ
i′

j′k′|l′1...l′r ] = 0.

It can be checked that the order of {j, k} and {l1, . . . , lr} does not matter - in
any case we get the same operator.

The commutators between Y λµ ’s and δijk’s can be obtained from explicit
expression of the cocycle γ, by computing its derivatives in the direction of the
vertical vector fields. One obtains

[Y λµ , δ
i
jk] = δλj δ

i
µk + δλk δ

i
jµ − δiµδλjk

By induction

[Y λµ , δ
i
j1j2|j3...jr ] =

r∑

s=0

δλjsδ
i
j1j2|j3...js−iµjs+1...jr

− δiµδλj1j2|j3...jr .

Definition 7.5. Let Hn be the universal enveloping algebra of the Lie algebra
hn with basis

{Xλ, Y
µ
ν , δ

i
jk|l1...lr | 1 6 λ, µ, ν, i 6 n, 1 6 j 6 k 6 n, 1 6 l1 6 . . . 6 lr 6 n}

and the following presentation

[Xk, Xl] = 0,

[Y ji , Y
l
k ] = δjkY

l
i − δliY jk ,

[Y ji , Xk] = δjkXi,

[Xlr , δ
i
jk|l1...lr−1

] = δijk|l1...lr ,

[Y λν , δ
i
j1j2|j3...jr ] =

r∑

s=0

δλjsδ
i
j1j2|j3...js−iνjs+1...jr

− δiνδλj1j2|j3...jr ,

[δijk|l1...lr , δ
i′

j′k′|l′1...l′r ] = 0.
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Part II The Hopf algebra Hn

We shall endow Hn := U(hn) with a canonical Hopf structure, which is non-
commutative, and therefore different from the standard structure of a universal
enveloping algebra.

Proposition 7.6.

1. The formulae

∆Xk = Xk ⊗ 1 + 1⊗Xk + δijk ⊗ Y ji ,
∆Y ji = Y ji ⊗ 1 + 1⊗ Y ji ,
∆δijk = δijk ⊗ 1 + 1⊗ δijk,

uniquely determine a coproduct ∆: Hn → Hn ⊗ Hn, which makes Hn a
bialgebra with respect to the product m : Hn ⊗ Hn → Hn and the counit
ε : Hn → C inherited from U(hn).

2. The formulae

S(Xk) = −Xk + δijkY
j
i ,

S(Y ji ) = −Y ji ,
S(δijk) = −δijk,

uniquely determine an anti-homomorphism S : Hn → Hn, which provides the
antipode that turns Hn into a Hopf algebra.

The notation is justified while one proves that the subalgebra of L(AM )
generated by the linear operators {Xk, Y

i
j , δ

i
jk | i, j, k = 1, . . . , n} is isomorphic

to the algebra Hn. The action of Hn turns An into a left Hn-module algebra.
Morover to any element h1 ⊗ . . . ⊗ hp ∈ Hpn we can associate a multilinear
differential operator T acting on AM as follows

T (h1 ⊗ . . .⊗ hp)(a1, . . . , ap) = h1(a1) . . . hp(ap).

The linearization T : THpn → L(A⊗pM ,AM ) of this assignment is injective for each
p ∈ N.
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Chapter 8

Bott periodicity and index
theorem

8.1 Bott periodicity

In one of its forms the Bott periodicity theorem ([b-r59]) can be stated as

πj(GL(n,C)) =

{
0 j even,
Z j odd

for j = 0, 1, 2, . . . , 2n − 1. This is the original form of Bott theorem. It has
reformulation, for example in the language of topological K-theory or the K-
theory of C*-algebras where it gives an isomorphism

Kj(A) ∼= Kj(A⊗ C0(R2)).

The homotopy groups are constructed as follows. We take maps from the sphere

Sj
f−→ X

preserving base points p0 ∈ Sj , x0 ∈ X , i.e. f(p0) = x0. On the set of
homotopy classes of such maps we give a group structure by composing with
the map contracting the equator of the sphere Sj making it a wedge of two
copies of Sj .

Sj → Sj ∨ Sj f∨g−−→ X.

The sphere Sn can be described as

Sn = {(t1, t2, . . . , tn+1) ∈ Rn+1 | t21 + . . .+ t2n+1 = 1},

however if n is odd we can embed it in the complex space Cn

S2r−1 = {(λ1, λ2, . . . , λr) ∈ Cr |
r∑

j=1

λjλj = 1}.

For a map f : Sn → Sn define degree deg(f) ∈ Z as follows. On homology
f induces a map

f∗ : Hn(Sn; Z)→ Hn(Sn; Z) ∼= Z
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Part II Bott periodicity

Then for each u ∈ Hn(Sn; Z)

f∗(u) = deg(f)u.

We shall define for j = 1, 3, 5, . . . , 2n− 1 a homomorphism of abelian groups

β : πj(GL(n,C))→ Z.

First consider j = 2n− 1 and a map

f : S2n−1 → GL(n,C).

For p ∈ S2n−1

f(p) =




λ11(p) λ12(p) . . . λ1n(p)
λ21(p) λ22(p) . . . λ2n(p)

...
...

...
λn1(p) λn2(p) . . . λnn(p)




We take first column and divide it by the norm i.e.

f1(p) := (λ11(p), λ21(p), . . . , λn1(p))/(
n∑

j=1

λji(p)λji(p))
1
2 .

This gives a map f1 : S2n−1 → S2n−1. Now define

β(f) :=
deg(f1)

(n− 1)!
∈ Z.

It os a part of Bott theorem that this number actually is an integer.
For all n the unitary subgroup U(n) ∈ GL(n,C) is a maximal compact

subgroup, and the inclusion induces a homotopy equivalence. From the fibering

U(n− 1)→ U(n)→ S2n−1

and the homotopy exact sequence we get that for 0 < j < 2n− 1 the homotopy

πj(U(n− 1)) ∼= πj(U(n)).

Lemma 8.1. If j = 2r − 1 with 1 6 r < n, then

f : S2r−1 → GL(n,C)

is homotopic to a map
f̃ : S2r−1 → GL(n,C)

of the form

f̃(p) =




λ11(p) λ12(p) . . . λ1r(p) 0 0 . . . 0
λ21(p) λ22(p) . . . λ2r(p) 0 0 . . . 0

...
...

...
...

...
...

λr1(p) λr2(p) . . . λrr(p) 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 1
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Part II Elliptic operators

Define
f̃1 : S2r−1 → S2r−1

f̃1(p) := (λ11(p), λ21(p), . . . , λr1(p))/(

r∑

j=1

λji(p)λji(p))
1
2 .

and as before

β(f) :=
deg(f̃1)

(r − 1)!
∈ Z.

This number is an integer, which is part of the

Theorem 8.2. For j = 1, 3, 5, . . . , 2n− 1

β : πj(GL(n,C))→ Z

is an isomorphism.

8.2 Elliptic operators

Let X be a C∞-manifold (Hausdorff, second countable, finite dimensional, with-
out boundary), and E → X a complex C∞-vector bundle. For each p ∈ X , Ep
is a C-vector space with dimC Ep <∞.

By C∞(X,E) we denote a C-vector space of all C∞ sections of E,

dimC C
∞(X,E) =∞.

If E0, E1 are two vector bundles on X , then an elliptic differential operator (or
elliptic ψD0) is a C-linear map

D : C∞(X,E0) 7→ C∞(X,E1)

which is differential operator (or an ψD0) and which satisfies a condition called
ellipticity.

Example 8.3. Laplacian on X = Rn, E0 = E1 = X × C

D =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . .+
∂2

∂x2
n

.

This operator is elliptic of order 2, because polynomial

ξ21 + ξ22 + . . .+ ξ2n

has no real zeros except (0, 0, . . . , 0).

Example 8.4. Cauchy-Riemann operator on X = R2, E0 = E1 = X × C

D =
∂

∂x1
+ i

∂

∂x2
.

This operator is elliptic of order 1, because polynomial ξ1+iξ2 has no real zeroes
except (0, 0). If we denote

∂̄ =
1

2

(
∂

∂x1
+ i

∂

∂x2

)

then ∂̄f = 0 if and only if f is holomorphic.
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Part II Elliptic operators

Let
D : C∞(X,E0)→ C∞(X,E1)

be a differential operator of order r. To each p ∈ X and ξ ∈ T ∗pX = HomR(TpX,R)
we shall associate a map of C-vector spaces

σ(ξ,D) : E0
p → E1

p .

To do this, given v ∈ E0
p and ξ ∈ T ∗pX , choose

1. Section s ∈ C∞(X,E0) with s(p) = v,

2. C∞-function f : X → R with f(p) = 0 and (df)(p) = ξ.

Lemma 8.5. D(f rs)(p) depends only on D, ξ, v; and does not depend on the
choice of s and f .

Set
σ(ξ,D)v := D(f rs)(p),

σ(ξ,D) : E0
p → E1

p .

Definition 8.6. A differential operator of order r

D : C∞(X,E0)→ C∞(X,E1)

is elliptic if whenever p ∈ X and 0 6= ξ ∈ T ∗pX, then σ(ξ,D) : E0
p → E1

p is an
isomorphism of C-vector spaces.

Example 8.7. Let X be a manifold. We consider complex valued differential
forms on X i.e. elements of

Λj(T ∗CX), T ∗CX := T ∗X ⊗R C, j = 0, 1, 2, . . . .

The de Rham operator

C∞(X,Λj(T ∗CX))
d−→ C∞(X,Λj+1(T ∗CX))

is a differential operator of order 1. For p ∈ X , ξ ∈ T ∗pX , v ∈ (Λj(T ∗CX))p
choose a form ω such that

ω(p) = v.

Then choose a function f : X → R such that

(df)(p) = ξ.

We have
d(fω) = df ∧ ω + fdω

d(fω)p = (df ∧ ω)p because f(p) = 0,

and thus the map σ(ξ, d) is given by

v 7→ ξ ∧ v because (df)(p) = ξ.

This operator is not elliptic. However if we take

⊕

j

C∞(X,Λ2j(T ∗CX))
d+d∗−−−→

⊕

j

C∞(X,Λ2j−1(T ∗CX)),
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Part II Elliptic operators

where d∗ : Λj(T ∗CX)→ Λj−1(T ∗CX) is formal adjoint to d, then d+ d∗ is elliptic,
and σ(ξ, d + d∗) is given by

v 7→ ξ ∧ v + ι(ξ)v,

where ι(ξ) is a contraction of form by ξ.

Lemma 8.8. If X is compact and D is elliptic, then

dimC(kerD) <∞, and dimC(cokerD) <∞.
Definition 8.9. If X is compact and D is elliptic, then

Index(D) := dimC(kerD)− dimC(cokerD).

Theorem 8.10 (Atiyah-Singer). If X is compact and D is elliptic, then

Index(D) = (topological formula).

Example 8.11. Toeplitz operator

X = S1 = {(a1, a2) ∈ R2 | a2
1 + a2

2 = 1}
Take a trivial bundles E0 = E1 = S1 × C. Sections of these are just smooth
functions on S1

C∞(S1, E0) = C∞(S1, E0) = C∞(S1).

Any u ∈ C∞(S1), u : S1 → C, has a Fourrier series

u =

n=∞∑

n=−∞
ane

inθ, an ∈ C.

We have a decomposition

C∞(S1) = C∞+ (S1)⊕ C∞− (S1)

C∞+ (S1) =
{
u ∈ C∞(S1) | an = 0 ∀ n < 0

}

C∞− (S1) =
{
u ∈ C∞(S1) | an = 0 ∀ n > 0

}

Denote the projection
P : C∞(S1)→ C∞+ (S1),

P

(
n=∞∑

n=−∞
ane

inθ

)
=

n=∞∑

n=0

ane
inθ.

Fix a C∞ function α : S1 → C and define

Tα(u) = P (αu), α(u)(λ) = (αλ)u(λ), u ∈ C∞(S1), λ ∈ S1.

Define operator
Dα : C∞(S1)→ C∞(S1)

using decomposition C∞(S1) = C∞+ (S1)⊕ C∞− (S1)

Dα =

[
Tα 0
0 I

]

Dαu =

{
Tαu u ∈ C∞+ (S1)
u u ∈ C∞− (S1)
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Part II Elliptic operators

Proposition 8.12. 1. Dα : C∞(S1)→ C∞(S1) is a pseudo-differential opera-
tor (ψD0),

2. Dα is elliptic iff. α(λ) 6= 0 for all λ ∈ S1,

3. if α(λ) 6= 0 for all λ ∈ S1, then

Index(Dα) = −(winding number)(α) = − 1

2πi

∫

S1

dα

α
.

Remark 8.13. The winding number is also present in the Bott periodicity the-
orem. Indeed

π1(GL(n,C)) ∼= Z

and the isomorphism is given by winding number of

S1 7→ GL(n,C)
det−−→ C∗.

Example 8.14. Classical Riemann-Roch theorem. Let X be connected Riemann
surface, i.e compact connected complex analitic manifold with dimC X = 1. The
genus of X is a number of holes which is equal to

g =
1

2
rank H1(X ; Z).

Assume we are given a complex analitic line bundle L on X . For each p ∈ X ,
Lp is a C-vector space, dimC Lp = 1. The degree deg(L) of this bundle can be
defined as follows. Choose any meromorphic section u of L. Then the order of
u at p ∈ X is defined as

ordp(u) =





0 if p ∈ X is neither a zero nor a pole of u,
n if p ∈ X is a zero of order n of u,
n if p ∈ X is a pole of order n of u.

Then
deg(L) :=

∑

p∈X
ordp(u).

Lemma 8.15. deg(L) does not depend on the choice of meromorphic section u.

Remark 8.16. Another way to describe the degree is to evaluate first Chern class
of bundle L on the fundamental class of the base X

deg(L) = 〈c1(L), [X ]〉 ∈ Z.

Consider operator

∂̄ : C∞(X,L)→ C∞(X,L⊗ Λ0,1T ∗CX)

given for s = fα by

∂̄s =
∂f

∂z̄
⊗ dz̄

z = x+ iy, dz̄ = dx− idy, ∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
,

and C∞(X,L ⊗ Λ0,1T ∗CX) are complex valued 1-forms of type (0, 1). Then
u ∈ C∞(X,L) is holomorphic iff. ∂̄u = 0.

Theorem 8.17 (Riemann-Roch).

Index(∂̄) = deg(L)− g + 1.
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Part II Elliptic operators

8.2.1 Pseudodifferenital operators

When we consider non compact manifolds the Atiyah-Singer index theorem must
be stated using elliptic pseudodifferential operators.

Let U ∈ Rn be an open subset, m ∈ Z. Define a subspace

Sm(U) ⊂ C∞(U × Rn)

φ ∈ Sm(U), φ : U × Rn → C, (x, ξ) 7→ φ(x, ξ),

by the condition
Function φ ∈ Sm(U) if and only if for every compact subset ∆ ⊂ U and for

all multiindices α, β there exists constant Cφ,α,β,∆ with

∣∣∣Dβ
xD

α
ξ φ(x, ξ) 6 Cφ,α,β,∆(1 + |ξ|)m−|α|.

∣∣∣

Constant Cφ,α,β,∆ depends on φ, α, β,∆,

Dα
ξ =

(
1

i

∂

∂ξ1

)α1
(

1

i

∂

∂ξ2

)α2

. . .

(
1

i

∂

∂ξn

)αn

,

|α| =
n∑

j=1

αj .

Now define a subspace
Sm0 (U) ⊂ Sm(U)

Function φ ∈ Sm0 (U) if and only if

lim
λ→∞

φ(x, λ, ξ)

λm

exists.
For φ ∈ Sm(U) set

σφ(x, ξ) = lim
λ→∞

φ(x, λ, ξ)

λm
.

Then σφ is a C∞ function defined on U × (Rn × {0})

σφ : U × (Rn − {0})→ C

and σφ is homogeneous of degree m in ξ. We take it as a symbol of the following
operator

Pφ : C∞C (U)→ C∞C (U)

Pφ(x) =
1

2π

∫
φ(x, ξ)f̂ (ξ)e〈x,ξ〉dξ
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Part II Topological formula of Atiyah-Singer

8.3 Topological formula of Atiyah-Singer

Let X be compact hausdorff topological space, E C-vector bundle on X . To
describe the topological index formula one has to introduce Chern character
ch(E) and the Todd class td(E), both being elements of

⊕
j Hj(X ; Q).

For line bundle L→ X

ch(E) = ec1(L) = 1 + c1(L) +
c21(L)

2
+ . . .

For a sum of a line bundles E = L1 ⊕ L2 ⊕ . . .⊕ Ln

ch(L1 ⊕ L2 ⊕ . . .⊕ Ln) = ec1(L1) + ec1(L2) + . . .+ ec1(Ln)

= ch(L1) + ch(L2) + . . .+ ch(Ln).

General formula can be obtained using above and splitting principle. Just as
Chern character is based on a function ex, the Todd class is based on a function

x

1− e−x =
x

1− [1− x+ x2

2 − x3

3! + . . .]

=
1

1− α = 1 + α+ α2 + . . . .

Now for a line bundle L→ X we have

td(L) =
c1(L)

1− e−c1(L)

and for a sum of line bundles

td(L1 ⊕ L2 ⊕ . . .⊕ Ln) = td(L1) ∪ td(L2) ∪ . . . ∪ td(Ln).

Let E0, E1 → X be vector bundles on X , ψ : E0 → E1 a vector bundle map.

supp(ψ) := { p ∈ X | ψ : E0
p → E1

p is not an isomorphism of C-vector spaces}

Assume supp(ψ) is compact. Then

ch(ψ) ∈ H2j
c (X ; Q).

Example 8.18. Let M be a compact C∞-manifold with no boundary. For a pair
of vector bundles

E0 //!!BBBBBBBB E1}}||||||||
M

let
D : C∞(M,E0)→ C∞(M,E1)

be an elliptic operator. The cotangent bundle

π : T ∗M →M, π(T ∗pM) = p
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Part II Topological formula of Atiyah-Singer

induces pullback bundles on T ∗M

π∗E0, π∗E1 //�� E0, E1��
T ∗M

π // M
The symbol of D is a map of vector bundles

σ : π∗E0 → π∗E1

and σ has compact support. Then

ch(σ) ∈ H2j
c (T ∗M ; Q)

and
Index(D) = (ch(σ) ∪ π∗ td(TM ⊗R C))[T ∗M ].

In the proof of index theorem one uses

Lemma 8.19. Let A be an abelian group. Let ϕ : A → Z and τ : A → Z be
homomorphisms. Assume that ϕ is an isomorphism. Assume also that there
exists a ∈ A, with a 6= 0 and ϕ(a) = τ(a). Then ϕ = τ .

Now we shall describe apriopriate abelian group A.

Definition 8.20. A symbol datum is a 4-tuple (M,F 0, F 1, σ) such that

1. M is a C∞-manifold, finite dimensional, Hausdorff, second countable,
with π0(M) finite, and with no boundary,

2. F 0, F 1 are complex vector bundles on T ∗M ,

3. σ is a vector bundle map F 0 → F 1 with supp(σ) compact.

On a set of such 4-tuples we will define an equivalence relation ∼, and then
put

A := {(M,F 0, F 1, σ)}/ ∼
(M,F 0, F 1, σ) + (W,E0, E1, θ) = (M ∪W,F 0 ∪ E0, F 1 ∪ E1, σ ∪ θ).

Now the two homomorphisma which are mentioned in the Lemma 8.19 are as
follows

ϕ : A→ Z

ϕ(M,F 0, F 1, σ) := (ch(σ) ∪ π∗ td(TM ⊗R C))[T ∗M ],

τ : A→ Z

τ(M,F 0, F 1, σ) = Index(D),

where D is any elliptic operator on M whose symbol datum is (M,F 0, F 1, σ).

Remark 8.21. If M is non-compact then D will be an elliptic pseudodifferential
operator (ΨDO) on M which is trivial at infinity.

The equivalence relation ∼ betwen symbol data is described in five steps

1. isomorphism,

2. homotopy of σ,

3. direct sum - disjoint union,

4. excision,

5. vector bundle modification.
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Part II Topological formula of Atiyah-Singer

8.3.1 Isomorphism

.
4-tuples (M,F 0, F 1, σ) and (W,E0, E1, θ) are isomorphic

(M,F 0, F 1, σ) ∼= (W,E0, E1, θ)

if and only if there exists a diffeomorphism

h : M →W

such that one can assign in a continuous way, to each ξ ∈ T ∗W an isomorphisms
of vector spaces

η0
ξ : E0

ξ

∼=−→ F 0
h′ξ,

η1
ξ : E1

ξ

∼=−→ F 1
h′ξ,

with commutativity in the diagram

E0
ξ

η0
ξ //

θ �� F 0
h′ξ

σ��
E1
ξ

η1
ξ // F 1

h′ξ

where
h′ : T ∗W → T ∗M

is the map of cotangent bundles induced by h : M →W .

8.3.2 Homotopy of σ

.
We consider homotopies between symbol data (M,F 0, F 1, σ) such thatM,F 0, F 1

is fixed, and for 0 6 t 6 1 we have family of symbols σt. Then

(M,F 0, F 1, σ0) ∼ (M,F 0, F 1, σ1).

Furthermore the set of (σ, t) ∈ T ∗M × [0, 1] such that

σt(ξ) : F 0
ξ → F 1

ξ

is not an isomorphism of C-vector spaces, is compact.

8.3.3 Direct sum - disjoint union

.
Let (M,F 0, F 1, σ) and (M,E0, E1, θ) be two symbol data with the same M .

Then

(M,F 0, F 1, σ) ∪ (M,F 0, F 1, θ) ∼ (M,F 0 ⊕ E0, F 1 ⊕ E1, σ ⊕ θ).
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Part II Topological formula of Atiyah-Singer

8.3.4 Excision

. Let (M,F 0, F 1, σ) be a symbol data. Recall that

supp(σ) = { ξ ∈ T ∗M | σ(ξ) : F 0
ξ → F 1

ξ is not an isomorphism of C vector spaces}.

Denote by π the projection T ∗M →M . Let U ⊂M be an open set with

π(supp(σ)) ⊂ U.

Then
(M,F 0, F 1, σ) ∼ (U,F 0|T∗U , F

1|T∗U , σ|T∗U ).

8.3.5 Vector bundle modification

.
Let (M,F 0, F 1, σ) be a symbol data and E any C∞-vector bundle on M .

Then we describe another 4-tuples (E,−,−,−) which will be equivalent to the
given one. First we give a basic example of symbol datum.

Example 8.22. For each n = 1, 3, 5, . . . w shall define a symbol datum Rn∧. For
n = 1 we take

R1∧ = (R, (T ∗R)× C, (T ∗R)× C, ·)
One has

T ∗R = R× R = C

(t1, t2dx)↔ t1 + it2, t1, t2 ∈ R

and · denotes multiplication on the second coordinate

(λ1, λ2) 7→ (λ1, λ1 · λ2).

For n > 1 we put
Rn∧ := R1∧ × R1∧ × . . .× R1∧.

More explicitly

Rn∧ = (Rn, (T ∗Rn)× ΛevCn, (T ∗Rn)× ΛoddCn,∧+ ι),

where
T ∗Rn = Rn × Rn = Cn,

ΛevCn =
⊕

j

Λ2jCn, ΛoddCn =
⊕

j

Λ2j+1Cn

∧+ ι : Cn × ΛevCn → Cn × ΛoddCn

(v, w) 7→ (v, v ∧w + ι(v)w), v ∈ Cn, w ∈ ΛevCn.

Now in the special case of trivial bundle E = M × Rn we have

(M,F 0, F 1, σ) ∼ (M,F 0, F 1, σ)× Rn∧.
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Part II Topological formula of Atiyah-Singer

However this construction has enough naturality, so that it can be done even
when E is not trivial. Let E →M be smooth complex vector bundle. Then we
have

E�� T ∗E

ρ��
M T ∗M

and T ∗E is a C-vector bundle on T ∗M .
Set

Λev :=
⊕

j

Λ2j(T ∗E), Λodd :=
⊕

j

Λ2j+1(T ∗E)

and then form a symbol datum

(E, ρ∗[(F 0⊗̂Λev)⊕ (F 1⊗̂Λodd)], ρ∗[(F 1⊗̂Λev)⊕ (F 0⊗̂Λodd)], σ#(∧ + ι))

∼ (M,F 0, F 1, σ).

In the formula above we use external tensor product of vector bundles and
external tensor product of symbols, which we describe next. For a pair of
vector bundles E → X , F → Y their external tensor product is a bundle

E⊗̂F��
X × Y

with fiber
(E⊗̂F )(x,y) = Ex ⊗C Fy .

Then the external product of symbol data is defined as follows

(M,F 0, F 1, σ)× (W,E0, E1, θ) :=

M ×W, (F 0⊗̂E0)⊕ (F 1⊗̂E1), (F 1⊗̂E0)⊕ (F 0⊗̂E1), σ#θ)

T ∗(M ×W ) = T ∗M × T ∗W,

σ#θ =

[
σ⊗̂IE0 −IF 1⊗̂θ∗
IF 0⊗̂θ σ∗⊗̂IE1 ,

]

where I is the identity map.

supp(σ#θ) = supp(σ) ∪ supp(θ).

Now we can put
A := {(M,F 0, F 1, σ)}/ ∼ .

A is an abelian group with the addition defined as

(M,F 0, F 1, σ) + (W,E0, E1, θ) = (M ∪W,F 0 ∪ E0, F 1 ∪ E1, σ ∪ θ),
the inverse

−(M,F 0, F 1, σ) = (M,F 1, F 0, σ∗),

and the identity being any datum (M,F 0, F 1, σ) with supp(σ) = ∅, for example

(M,F, F, id).

Now we can state and proof the
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Part II Topological formula of Atiyah-Singer

Theorem 8.23 (Atiyah-Singer). Let E0, E1 →M be smooth C-vector bundles
on a smooth manifold M . For any elliptic pseudodifferential operator

D : C∞(M,E0)→ C∞(M,E1),

with symbol datum

(T ∗M,π∗E0, π∗E1, σ), π : T ∗M →M

Index(D) = (ch(σ) ∪ π∗ td(TM ⊗R C))[T ∗M ].

Remark 8.24. We do not assume that M is compact. If it is so, then one can
use elliptic differential operator D.

Proof. (An outline) By the lemma (8.19) it is sufficient to show that the two
maps

ϕ : A→ Z, τ : A→ Z

given by the formulas

ϕ(M,F 0, F 1, σ) := (ch(σ) ∪ π∗ td(TM ⊗R C))[T ∗M ],

τ(M,F 0, F 1, σ) = Index(D),

satisfy assumptions of the lemma, and therefore ϕ = τ . To do this we have to
check that each of them is

1. well defined, that is compatible with the equivalence relation ∼,

2. integer valued,

3. additive, that is homomorbism of abelian groups.

Moreover for ϕ we have to check that it is ”1-1” and ”onto”. Finally that there
exists nonzero element of A on which both agree.

It is easy to check that ϕ is well defined, additive, and ϕ(R1∧) = 1, that is
ϕ is onto. It follows from the naturality of the Chern character and the Todd
class used in the formula. The more difficult part is to check that it is integer
valued and one to one. To prove that it is so one needs a

Lemma 8.25. Any symbol datum (M,F 0, F 1, σ) is equivalent to a symbol da-
tum whose manifold is Rn

(M,F 0, F 1, σ) ∼ (Rn, G0, G1, η)

Proof. (An outline) Embed M into Rn for sufficiently large n in sauch way that
M is a closed subset and C∞ manifold of Rn.

Next step is to use the normal bundle ν of M in Rn and do vector bundle
modification by ν

(M,F 0, F 1, σ) ∼ (ν,−,−,−).

Now ν is an open subset of Rn and one can do excision ”in reverse”

(ν,−,−,−) ∼ (Rn,−,−,−).
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Part II Topological formula of Atiyah-Singer

Any vector bundle on T ∗Rn = Rn × Rn is trivial so we can assume that

(M,F 0, F 1, σ) ∼ (Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, η).

Furthermore we can assume that l > n, for if l < n let r := n− l, and then

(Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, η) ∼
(Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, η) ∪ (Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, id) ∼

(Rn, (T ∗Rn)× Cl+r, (T ∗Rn)× Cl+r, η ⊕ id).

Thus we can assume that

(M,F 0, F 1, σ) ∼ (Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, η), l > n.

T ∗Rn = Rn × Rn = R2n.

Mapping η can be considered as

η : Rn →Ml(C) = { l × l matrices [λij ] | λij ∈ C}.
There extist a compact set ∆ ∈ Rn with

η(ξ) ∈ GL(l,C) ∀ ξ ∈ R2n −∆.

Making an evident homotopy (if necessary) of η we may assume

η(ξ) ∈ GL(l,C) ∀ ||ξ|| > 1.

Then
η|S2n−1 : S2n−1 → GL(l,C), l > n.

ϕ((Rn, (T ∗Rn)× Cl, (T ∗Rn)× Cl, η)) = β(η|S2n−1 )

for β defined in section (8.1), and we have

β(η|S2n−1 ) ∈ Z,

so ϕ is integer valued.
Suppose now that

β(η|S2n−1) = 0,

then
[η|S2n−1 ] = 0 in π2n−1(GL(l,C)).

By making a homotopy of η w obtain

η̃ : R2n →Ml(C)

with
η̃(R2n) ∈ GL(l,C).

Such η̃ in an abelian group A is equal to 0, so this proves that ϕ is one to one.
Now for (M,F 0, F 1, σ) let D be any elliptic pseudodifferential operator

whose symbol (up to homotopy of σ) is σ.

τ(M,F 0, F 1, σ) = Index(D) = dim kerD − dim cokerD.

It is obvious that it is integer valued. Also it is easy to check that τ is a
homomorphism of abelian groups. The difficult part is to check that it is well
defined, that is index does not change, when we do any of five steps defining
equivalence relation ∼ on symbol data.
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Part II Index theorem for families of operators

8.4 Index theorem for families of operators

Let H be a Hilbert space, T : H → H a Fredholm operator (has finite di-
mensional kernel and cokernel). The space of Fredholm operators we denote
F(H) ⊂ B(H).

Theorem 8.26. For compact space X

[X,F(H)] ∼= K0(X).

We describe only a map from the homotoy classes [X,F(H)] to K0(X). Let
p ∈ X , f : X → F(H)

f(p) ∈ F(H)

Each f(p) has finite dimensional kernel and cokernel. Let N (f(p)) be the
nullspace of f(p) and R(f(p)) its range. Then we have mappings

p 7→ N (f(p)),

p 7→ R(f(p))⊥,

If the dimensions of spaces N (f(p)), R(f(p))⊥ are locally constant functions on
X , then we have two vector bundles N , R⊥ over X , both subbundles of infinite
dimensional vector bundle X×H. The formal difference of isomorphism classes

[N ]− [R⊥]

is an element of K-theory of X . The contruction needs to be modified if the
dimensions of N (f(p)) or R(f(p))⊥ are not locally constant functions on X .

Let W,X be smooth manifolds without boundary, X compact. Suppose we
are given submersion π : W → X and fibers of π are compact submanifolds.
Suppose also that we have an elliptic differential operator on each fiber. Then
we can form a kernel bundle and cokernel bundle which formal difference is an
element of K0(X). This element we call an index for a given family of operators.

We will give an idea of proof of the Bott periodicity theorem stated as

Theorem 8.27. There is an isomorphism

β : K0(X)→ K0(X × R2)

E0 //!!BBBBBBBB E1}}||||||||
M

⊗ R2 × C //##GGGGGGGGG R2 × C{{wwwwwwwww
R2

The map β is a multiplication by some element b ∈ K0(R2) ∼= K0(S2). There
is an isomorphism

K0(X × R2)→ K̃(X × S2)

(X is without distinguished point). Consider a complex vector bundle on X×S2

E��
X × S2
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Part II Index theorem for families of operators

For each p ∈ X we have a vector bundle on S2

Ep�� E|{p}×S2

S2

The Dirac operator on S2 can be represented as

D =

[
0 D−
D+ 0

]

We are interested only in

D+ : C∞(S2, L+)→ C∞(S2, L−)

Where L → S2 is a line bundle. We can tensor the Dirac operator with the
bundle E on S2 and obtain for each p ∈ X

D+ ⊗ Ep : C∞(S2, L+ ⊗ Ep)→ C∞(S2, L− ⊗ Ep).

This gives a family of elliptic operators parametrized by X . It has an index in
K0(X), so we have defined a map

α : K0(X × R2)→ K0(X).

It can be proved that it is an inverse of β.
We list properties of maps β and α.

β : K0(X)→ K0(X × R2)

1. it is functorial in X

2. it is K0(X)-module homomorphism

3. For X = pt
β : K0(pt)→ K0(R2) ∼= Z

β(1) = b.

α : K0(X × R2)→ K0(X).

1. it is functorial in X

2. it is K0(X)-module homomorphism

3. For X = pt
α : K0(R2)→ K0(pt) ∼= Z

α(b) = 1.

After proving above properties it is clear that β is an isomorphism and α is its
inverse.
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Chapter 9

Clifford algebras and Dirac
operators

9.1 The Dirac operator of Rn

First we consider n even. We shall construct matrices

E1, E2, . . . , En, n = 2r

each Ej being 2r × 2r matrix of complex numbers. In fact each entry will be in
{0, 1,−1, i,−i}.

Properties of Ej

1. E∗j = −Ej,

2. each Ej is block anti-diagonal

Ej =

[
0 ∗
∗ 0

]

and each block has size 2r−1 × 2r−1,

3. E2
j = −I2r ,

4. EjEk + EkEj = 0 for j 6= k,

5.

irE1E2 . . . En =

[
I2r−1 0

0 −I2r−1

]

We will proceed by induction on n even. For n = 2 we take

E1 =

[
0 −1
1 0

]
, E2 =

[
0 i
i 0

]

Suppose we have E1, E2, . . . , En of size 2r× 2r. Then we put first n matrices of
size 2r+1 × 2r+1 as

[
0 E1

E1 0

]
,

[
0 E2

E2 0

]
, . . . ,

[
0 En
En 0

]
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Part II The Dirac operator of Rn

and two additional matrices

[
0 −I2r

I2r 0

]
,




0 0 iI2r−1 0
0 0 0 iI2r−1

iI2r−1 0 0 0
0 iI2r−1 0 0


 .

Example 9.1. For n = 4 we have

E1 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 , E2 =




0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0


 ,

E3 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , E4 =




0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0




For n odd, n = 2r + 1, we define matrices E1, E2, . . . , Er satisfying

1. E∗j = −Ej,

2. E2
j = −I2r ,

3. EjEk + EkEj = 0 for j 6= k,

4. ir+1E1E2 . . . En = I2r .

First if n = 1 we set
E1 = [−i].

Then for n = 2r + 1 we use 2r matrices E1, E2, . . . , En−1 as for the even case
and as the last one we put

[
−iI2r−1 0

0 iI2r−1

]
.

From E1, E2, . . . , En we obtain:

1. The Dirac operator of Rn (described above)

2. The Bott generator vector bundle on Sn (n even)

3. The spin representation of Spinc(n)

9.1.1 Dirac operator

Now we can define the Dirac operator of Rn. For each n we set

D :=

n∑

j=1

Ej
∂

∂xj
.
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Part II The Dirac operator of Rn

Example 9.2. For n = 1 we have Dirac operator of R

D = −i ∂
∂x
.

For n = 2

D =

[
0 −1
1 0

]
∂

∂x1
+

[
0 i
i 0

]
∂

∂x2
.

For n = 2r and n = 2r+ 1 D is an unbounded operator on the Hilbert space

L2(Rn)⊕ L2(Rn)⊕ . . .⊕ L2(Rn)︸ ︷︷ ︸
2r

.

D is a first order elliptic differential operator on

C∞c (Rn)⊕ C∞c (Rn)⊕ . . .⊕ C∞c (Rn)︸ ︷︷ ︸
2r

With this domain D is symmetric (that is D is formally self-adjoint) and D is
essentially self-adjoint (that is D has unique self-adjoint extension). For n even

D =

[
0 D−
D+ 0

]

where D− is the formal adjoint of D+.
We will descirbe these notions in a general context. Let H be Hilbert space.

An unbounded operator on H is a pair (D, T ) such that

1. D ⊂ H is a vector subspace of H,

2. D is dense in H,

3. T : D → H is a C-linear map,

4. (D, T ) is closeable, i.e. the closure of graph(T ) in H⊕H is the graph of
a C-linear map

P (graph(T ))→ H
P (u, v) = u.

An unbounded operator (D, T ) is symmetric if and only if

〈Tu, v〉 = 〈u, T v〉 ∀ u, v ∈ D.
For an unbounded operator (D, T ) on H let

D(T ∗) := {u ∈ H | v 7→ 〈u, T v〉 extends from D to H extends

to be a bounded linear functional on H}
For u ∈ D(T ∗) and v ∈ H there exists

T ∗ : D(T ∗)→ H
such that

〈u, T v〉 = 〈T ∗u, v〉.
Now (D, T ) is self-adjoint if and only if

(D, T ) = (D(T ∗), T ∗).
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Remark 9.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint
operator is symmetric.

Example 9.4. Take C∞c (R) ⊂ L2(R) and

D =
{
u ∈ L2(R) | − idudx ∈ L2(R) in the distribution sense

}

= {u ∈ L2(R) | xû ∈ L2(R)},
where û is the Fourier transform of u and

x : R→ R, x(t) = t, ∀ t ∈ R.

Then (C∞c (R),−i ddx) has unique self-adjoint extension (D,−i ddx).

Let D be Dirac operator of Rn, n = 2r or 2r + 1.

Ω1(Rn) = {C∞ 1-forms on Rn}

= {f1dx1 + f2dx2 + . . .+ fndxn | fj : Rn → C, j = 1, 2, . . . , n}

Ω1(Rn) acts on
C∞c (Rn)⊕ C∞c (Rn)⊕ . . .⊕ C∞c (Rn)︸ ︷︷ ︸

2r

in the following way. Let

ω = f1dx1 + f2dx2 + . . .+ fndxn,

s = (s1, s2, . . . , s2r ), sl : Rn → C, l = 1, 2, . . . , 2r.

Then

ωs =
n∑

j=1

fjEjs.

There is following Leibniz rule for D

D(fs) = (df)s+ f(Ds),

f : Rn → C, f ∈ C∞(Rn), df =

n∑

j=1

∂f

∂xj
dxj .

If M is C∞-manifold, compact or non-compact, with or without boundary,
dimM = M , then the Dirac operator of M is an elliptic operator which is
locally like the Dirac operator of Rn.

9.1.2 Bott generator vector bundle

Let W be finite dimensional C-vector space,

T ∈ HomC(W,W ), T 2 = −I.
Then eigenvalues of T are ±i and there is decomposition

W = Wi ⊕W−i,

Wi = {v ∈W | Tv = iv}

W−i = {v ∈W | Tv = −iv}
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Assume that n is even, Sn ⊂ Rn+1

Sn = {(a1, a2, . . . , an+1) ∈ Rn | a2
1 + a2

2 + . . .+ a2
n+1 = 1}.

We have a map
Sn →M(2r,C)

(a1, a2, . . . , an+1) 7→ a1E1 + a2E2 + . . .+ an+1En+1 =: F.

From the properties of Ej we obtain

F 2 = (a1E1 + a2E2 + . . .+ an+1En+1)2

= (−a2
1 − a2

2 − . . .− a2
n+1)I

= −I

so the eigenvalues of F are ±i.
The Bott generator vector bundle β on Sn is given by

β(a1,a2,...,an+1) := i-eigenspace of F

= {v ∈ C2r | F (v) = iv}

For n even and Sn ⊂ Rn+1 there is an isomorphism

K0(Sn) = Z ⊕ Z

1 β

where 1 = Sn × C.

9.2 Spin representation and Spinc

Let G be a topological group, Hausdorff and paracompact, X topological space
Hausdorff and paracompact. A principal G-bundle on X is a pair (P, π) where

1. P is a Hausdorff and paracompact topological space with given continuous
(right) action of G

P ×G→ P

(p, g) 7→ pg

2. π : P → X is a continuous map, mapping P onto X

such that given any x ∈ X , there exists an open subset U of X with x ∈ U and
a homeomorphism

ϕ : U ×G→ π−1(U)

with
πϕ(u, g) = u ∀ (u, g) ∈ U ×G

ϕ(u, g1g2) = ϕ(u, g1)g2 ∀ (u, g1, g2) ∈ U ×G×G
Such ϕ : U ×G→ π−1(U) is referred to as a local trivialization.
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Part II Spin representation and Spinc

Two principal G-bundles (P, π) and (Q, θ) are isomorphic if there exists a
G-equivariant homeomorphism f : P → Q with commutativity in the diagram

P
f //

π ���������� Q

θ��~~~~~~~
X

Let G,H be two topological groups and let (P, π), (G, θ) be a principal G-
bundle and H-bundle on X . A homomorphism of principal bundles from (P, π)
to (Q, θ) is a pair (η, ρ) such that

1. ρ is a homomorphism of topological groups ρ : G→ H

2. P → Q is a continuous map with commutativity in the diagrams

P
f //

π ���������� Q

θ��~~~~~~~
X

and P ×G η×ρ //�� Q×H��
P

η // Q
πp = θ(ηp) η(pg) = (ηp)(ρg)

A homomorphism of principal bundles on X will be denoted η : P → Q and
ρ : G→ H will be referred to as homomorphism of topological groups underlying
η.

Lemma 9.5. Let η : P → Q be a homomorphism of principal bundles on X
with underlying homomorphism of topological groups ρ : G→ H. Then for any
x ∈ X there exists an open subset U of X with x ∈ U and local trivializations

ϕ : U ×G→ π−1(U)

ψ : U ×H → θ−1(U)

such that the diagram

U ×G ϕ //
IdU×η �� π−1(U)

η��
U ×H ψ // θ−1(U)

commutes.

Example 9.6. Let E be R-vector bundle on X , dimR(Ep) = n for all p ∈ X .
Denote

∆(E) := {(p, v1, v2, . . . , vn) | p ∈ X, v1, v2, . . . , vn form a vector space basis for Ep}

∆(E) is topologized by

∆(E) ⊂ E ⊕ E ⊕ . . .⊕ E︸ ︷︷ ︸
n

.
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Define an action
∆(E)×GL(n,R)→ ∆(E)

((p, v1, v2, . . . , vn), [aij ]) 7→ (p, w1, w2, . . . , wn),

wj =

n∑

i=1

aijvi, [aij ] ∈ GL(n,R)

and a map
θ : ∆(E)→ X,

θ(p, v1, v2, . . . , vn) = p.

Then (∆(E), θ) is a principal GL(n,R)-bundle on X .

For n > 3
π1(SO(n)) = Z/2Z

and Spin(n) is the unique non-trivial 2-fold cover of SO(n). It is a compact
connected Lie group.

Spin(n)��
SO(n) ⊂ GL(n,R)

There is an exact sequence

1→ Z/2Z→ Spin(n)→ SO(n)→ 1

The group Z/2Z embeds in the Spin(n) and S1 as the {1,−1}. We define

Spinc(n) := S1 ×Z/2Z Spin(n).

Then there is an exact sequence

1→ S1 → Spinc(n)→ SO(n)→ 1

Spinc(n) is a compact connected Lie group

Spin(n)��
Spinc(n)��
SO(n) ⊂ GL(n,R)

Example 9.7. For n = 1

Spin(1) = Z/2Z, SO(1) = 1

Spinc(1) = S1

ρ : S1 → pt.
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For n = 2
Spin(2) = S1 = SO(2)

Spin(2)→ SO(2)

ζ 7→ ζ2

and
Spinc(2) = S1 ×Z/2Z Spin(2)

ρ(λ, ζ) = ζ2.

Remark 9.8. Since SO(n) ⊂ GL(n,R) we can view the standard map Spinc(n)→
SO(n) as Spinc(n)→ GL(n,R).

Definition 9.9. A Spinc datum for an R-vector bundle E → X is a homomor-
phism of principal bundles

η : P → ∆(E),

where P is a principal Spinc(n)-bundle on X (n = dimR(Ep)) and the homo-
morphism of topological groups underlying η is the standard map

ρ : Spinc(n)→ GL(n,R).

Two Spinc data η : P → ∆(E), η′ : P ′ → ∆(E) are isomorphic if there
exists an isomorphism f : P → P ′ of principal Spinc(n)-bundles on X with
commutativity in the diagram

P
f //

η ""DDDDDDDD P ′

η′||yyyyyyyy
∆(E)

η = η′ ◦ f.

Two Spinc data η : P → ∆(E), η′ : P ′ → ∆(E) are homotopic if there exists a
principal Spinc(n)-bundle Q on X and a continuous map

Φ: Q× [0, 1]→ ∆(E)

such that

1. For t ∈ [0, 1] each
Φt = Φ(−, t) : Q→ ∆(E)

is a Spinc data.

2.
Φ0 : Q→ ∆(E) is isomorphic to η : P → ∆(E)

Φ1 : Q→ ∆(E) is isomorphic to η′ : P → ∆(E)

Definition 9.10. A Spinc(n)-structure for E is an equivalence class of Spinc(n)
data, where the equivalence relation is homotopy.
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Part II Spin representation and Spinc

A Spinc structure for an R-bundle E determines an orientation of E. Let
w1(E), w2(E), . . . be the Stiefel–Whitney classes of E, wj(E) Hj(X ; Z/2Z)-Cech
cohomology. Then E is orientable if and only if w1(E) = 0.

A spin manifold is a smooth manifoldM , dimM = n, for which the structure
group of the tangent bundle TM has been lifted from GL(n,R) to Spin(n). Such
lifting is possible if and only if

w1(M) = 0, w1(M) ∈ H1(M ; Z/2Z)
and

w2(M) = 0, w2(M) ∈ H2(M ; Z/2Z).

A Spinc manifold is a smooth manifold M , dimM = n, for which the struc-
ture group of the tangent bundle TM has been lifted from GL(n,R) to Spinc(n).
Such lifting is possible if and only if

w1(M) = 0, w1(M) ∈ H1(M ; Z/2Z)
and
w2(M) is in the image of H2(M ; Z)→ H2(M ; Z/2Z).

Various well known structures on a manifold M make M into Spinc manifold

(complex analitic)��
(symplectic) +3 (almost complex)��

(contact) +3 (stably almost complex)��
Spin +3 Spinc��

(oriented)

A Spinc manifold can be thought of as an oriented manifold with a slight extra
bit of structure. Most of the oriented manifolds which occur in practice are Spinc

manifolds. Spinc structures behave very much like orientations. For example, an
orientation on two of three R vector bundles in a short exact sequence determine
an orientation on the third vector bundle. Analogous assertions are true for
Spinc structures.

Lemma 9.11 (Two-out-of-Three Lemma). Let

0→ E′ → E → E′′ → 0

be an exact sequence of R vector bundles on X. If Spinc structures are given
for any two of E′, E,E′′ then a Spinc structure is determined for the third.

Corollary 9.12. If M is a Spinc manifold with boundary ∂M , then ∂M is in
canonocal way a Spinc manifold.
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Part II Spin representation and Spinc

Proof. There is an exact sequence

0→ T∂M → TM |∂M → ∂M × R→ 0

Remark 9.13. If E is orientable (w1(E) = 0), then the set of all possible ori-
entations of E is in 1-1 correspondence with H0(X ; Z/2Z). If E is Spinc-able
(w1(E) = 0 and w2(E) ∈ im(H2(X ; Z)→ H2(X ; Z/2Z))), then the set of all pos-
sible Spinc-structures for E is then in 1-1 correspondence with H0(X ; Z/2Z)×
H2(X ; Z).

9.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional R-vector space, 〈−,−〉 a positive defninite, sym-
metric, bilinear R-valued inner product on V . We can form a tensor algebra

T V := R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

with multiplication given by composing the tensors, and then define Clifford
algebra

Cl(V ) := T V/(v ⊗ v + 〈v, v〉 · 1)

where (v ⊗ v + 〈v, v〉 · 1) denotes the two-sided ideal in T V generated by all
elements of the form

v ⊗ v + 〈v, v〉 · 1, v ∈ V, 1 ∈ R.

As a vector space over R Cl(V ) is canonically isomorphic to the exterior algebra

Λ∗V = R⊕ V ⊕ Λ2V ⊕ . . .ΛnV, n = dimR V.

Let e1, e2, . . . , en be an orthonormal basis of V . The monomials

eǫ11 e
ǫ2
2 . . . eǫnn , ǫj ∈ {0, 1}

form a vector space basis of Cl(V ). The canonical isomorphism of R-vector
spaces

Cl(V )→ Λ∗V

is given by
eǫ11 e

ǫ2
2 . . . eǫnn 7→ eǫ11 ∧ eǫ22 ∧ . . . ∧ eǫnn .

This isomorphism does not depend on the choice of orthonormal basis of V .

dimR(Cl(V )) = 2n, n = dimR V.

In Cl(V ) we have following identities

e2j = −1, j = 1, 2, . . . , n,

eiej + ejei = 0, i 6= j.

We can introduce Z/2Z-grading on Cl(V ) in the following way

Cl(V ) = (Cl(V ))0 ⊕ (Cl(V ))1,
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Part II Spin representation and Spinc

where (Cl(V ))0 is an R-vector space spanned by eǫ11 e
ǫ2
2 . . . eǫnn with ǫ1 + ǫ2 +

. . .+ ǫn even, and (Cl(V ))1 is an R-vector space spanned by eǫ11 e
ǫ2
2 . . . eǫnn with

ǫ1 + ǫ2 + . . . + ǫn odd. This Z/2Z-grading does not depend on the choice of
orthonormal basis of V .

Take Rn with the usual inner product

Sn−1 ⊂ Rn ⊂ Cl(Rn).

The elements of Sn−1 are invertible in Cl(Rn). Let Pin(n) be the subgroup of
the invertible elements of Cl(Rn) generated by Sn−1. Then

Spin(n) = Pin(n) ∩ (Cl(Rn))0

ρ : Spin(n)→ SO(n)

(ρg)(x) = gxg−1, g ∈ Sn−1, x ∈ Rn.

For n > 3 this is the unique non-trivial 2-fold covering space of SO(n).
Consider complexification

Cl(V ) := C⊗R Cl(V ).

Then Cl(V ) is a C*-algebra with

v∗ = −v

for
v ∈ V ⊂ Cl(V ) ⊂ Cl(V ).

Let
Cl(Rn) := CR Cl(Rn),

Spinc(n) = S1 ×Z/2Z Spin(n) ⊂ Cl(Rn).

Then Spinc(n) is a subgroup of the group of unitary elements of the C*-algebra
Cl(Rn).

Let us now choose an orthogonal basis e1, e2, . . . , en for even-dimensional
R-vector space V , n = 2n = dimR(V ). Recall 2r × 2r matrices E1, E2, . . . , En
defined in the beginning of the chapter and then define a mapping

Cl(V )→M(2r,C)

ej 7→ Ej , j = 1, 2, . . . , n.

This gives an isomorphism of C*-algebras Cl(V ) and M(2r,C). For an odd
dimension n = 2r + 1 recall 2r × 2r matrices E1, E2, . . . , En and define two
mappings

ϕ+ : Cl(V )→M(2r,C)

ϕ+(ej) = Ej , j = 1, 2, . . . , n,

ϕ− : Cl(V )→M(2r,C)

ϕ−(ej) = −Ej , j = 1, 2, . . . , n.

Then
ϕ+ ⊕ ϕ− : Cl(V )→M(2r,C)⊕M(2r,C)

is an isomorphism of C*-algebras.
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Part II Spin representation and Spinc

Remark 9.14. This isomorphisms are non-canonical since they depend on the
choice of an orthonormal basis for V .

Let E be an R-vector bundle on X . Assume given an inner product 〈−,−〉
for E. Then define Cl(E) as a bundle of C*-algebras over X whose fiber at
p ∈ X is Cl(Ep).

Definition 9.15. An Hermitian module over Cl(E) is a complex vector bundle
F on X with a C-valued inner product (−,−) and a module structure

Cl(E)⊗ F → F

such that

1. (−,−) makes Fp into a finite dimensional Hilbert space,

2. for each p ∈ X, the module map

Cl(Ep)→ L(Fp)

is a unital homomorphism of C*-algebras.

Remark 9.16. Of course all structures here are assumed to be continuous. If X
is a smooth manifold then we could take everything to be smooth.

If E is oriented define a section ω of Cl(E) as follows. Given p ∈ X , choose
a positively oriented orthonormal basis e1, e2, . . . , en of Ep. For n even, n = 2r,
set

ω(p) = ire1e2 . . . e2r.

For n = 2r + 1 odd
ω(p) = ir+1e1e2 . . . e2r+1.

Then ω(p) does not depend on the choice of positively oriented orthonormal
basis. In Cl(Ep) we have

(ω(p))2 = 1.

If n is odd, then ω(p) is in the center of Cl(Ep). Note that to define ω, E must
be oriented. Reversing the orientation will change ω to −ω.

Definition 9.17. Let E be an R-vector bundle on X. A Spinor system for E
is a triple (ǫ, 〈−,−〉, F ) such that

1. ǫ is an orientation of E,

2. 〈−,−〉 is an inner product for E,

3. F is an Hermitian module over Cl(E) with each Fp an irreducible module
over Cl(Ep),

4. if n = dimR(Ep) is odd, then ω(p) acts identically on Fp.

Remark 9.18. The irreducibillity of Fp in (3) is equivalent to dimC(Fp) = 2r,
where n = 2r or n = 2r + 1. In (4) note that ω(p)2 = 1 so for n odd ω(p) is in
the center of Cl(Ep). Hence irreducibility of Fp implies that ω(p) acts either by
I or −I on Fp. Thus (4) normalizes the matter by requiring that ω(p) acts as
I. When n = dimR(Ep) is even no such normalization is made.
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Part II Spin representation and Spinc

If (ǫ, 〈−,−〉, F ) is a Spinor system for E, then F is referred to as the Spinor
bundle.

Suppose that n = dimR(Ep) is even. Let F+
p (F+

p ) be the +1 (−1) eigenspace
of ω(p). We have a direct sum decomposition

F = F+ ⊕ F−,

where F+, F− are 1
2 − Spin bundles. F+ (F−) is a vector bundle of positive

(negative) spinors.
Assume we have right and left actions of the group G on topological spaces

X,Y
X ×G→ X

G× Y → Y

Then
X ×G Y := X × Y/ ∼, (xg, y) ∼ (x, gy).

Example 9.19. Let E be an R-vector bundle on X . Then

∆(E)×GL(n,R)
∼= E

((p, v1, v2, . . . , vn), (a1, a2, . . . , an)) 7→ a1v1 + a2v2 + . . .+ anvn.

Let E be an R-vector bundle on X . A Spinc datum

η : P → ∆(E)

determines a Spinor system (ǫ, 〈−,−〉, F ) for E. For p ∈ X , given orientation ǫ,
and inner product 〈−,−〉, an R-basis v1, v2, . . . , vn of Ep is positively oriented
and orthonormal if and only if

(v1, v2, . . . , vn) ∈ im(η).

The Spinor bundle for n = 2r or n = 2r + 1

F = P ×Spinc(n) C2r

.

We have to describe how Spinc(n) acts on C2r

. For n odd Spinc(n) has an
irreducible representation known as its spin representation

Spinc(n)→ GL(2r,C), n = 2r + 1.

For n even Spinc(n) has two irreducible representations known as its 1
2 − Spin

representations
Spinc(n)→ GL(2r−1,C),

Spinc(n)→ GL(2r−1,C), n = 2r.

The direct sum

Spinc(n)→ GL(2r−1,C)⊕GL(2r−1,C) ⊂ GL(2r,C),

of these representations is the spin representation of Spinc(n).
Consider Rn with its usual inner product and usual orthonormal basis e1, e2, . . . , en

ϕ : Cl(Rn)→M(2r,C)
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Part II Spin representation and Spinc

ϕ(ej) = Ej , j = 1, 2, . . . , n.

There is a canonical inclusion

Spinc(n) ⊂ Cl(Rn)

and ϕ restricted to Spinc(n) maps Spinc(n) to 2r × 2r unitary matrices

Spinc(n)→ U(2r) ⊂ GL(n,C).

This is Spin representation of Spinc(n) and Spinc(n) acts on GL(2r,C) acts on
C2r

via this representation.
Let M be smooth manifold, possibly ∂M non-empty, TM the tangent bundle

of M . Then (
Spinc datum for TM
η : P → ∆(TM)

)

↓(
Spinor system for TM

(ǫ, 〈−,−〉, F )

)

↓(
Dirac operator

D : smoothc(M,F )→ smoothc(M,F )

)

where F is the Spinor bundle on M and smoothc(M,F ) are its smooth sections
with compact support.

The Dirac operator

D : smoothc(M,F )→ smoothc(M,F )

is such that

1. D is C-linear
D(s1 + s2) = Ds1 +Ds2,

D(λs) = λDs, s1, s2, s ∈ smoothc(M,F ), λ ∈ C.

2. If f : M → C is a smooth function, then

D(fs) = (df)s+ f(Ds).

3. If s1, s2 ∈ smoothc(M,F ) then

∫

M

(Ds1(x), s2(x))dx =

∫

M

(s1(x), Ds2(x))dx

4. If dimM is even, then D is off-diagonal

F = F+ ⊕ F−

D =

[
0 D−

D+ 0

]
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Part II Spin representation and Spinc

D : smoothc(M,F )→ smoothc(M,F ) is an elliptic first-order differential opera-
tor. It can be viewed as an unbounded operator on the Hilbert space L2(M,F )
with the scalar product

(s1, s2) :=

∫

M

(s1(x), s2(x))dx.

Moreover it is a symmetric operator.
One proves existence of D by constructing it locally and patching together

with a smooth partition of unity. The uniqueness of D is obtained by the fact
that if D0, D1 satisfy conditions (1)-(4) above, then

D0 −D1 : F → F

is a vector bundle map, hence D0, D1 differ by lower order terms.

Example 9.20. Let n be even, Sn ⊂ Rn+1, D-Dirac operator of Sn, F -Spinor
bundle of Sn, F = F+ ⊕ F−.

D : smoothc(S
n, F )→ smoothc(S

n, F )

D =

[
0 D−

D+ 0

]

D+ : smoothc(S
n, F+)→ smoothc(S

n, F−)

Then
Index(D+) := dimC(kerD+)− dimC(cokerD+).

Theorem 9.21.
Index(D+) = 0.

We can tensor D+ with the Bott generator vector bundle β from section
(9.1.2)

D+
β : smoothc(S

n, F+ ⊗ β)→ smoothc(S
n, F− ⊗ β).

Then we have

Theorem 9.22.
Index(D+

β ) = 1.
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Introduction and Overview

Noncommutative geometry asks: “What is the geometry of the Quantum World?”
Quantum field theory considers aggregates of “particles”, which are of two

general species, “bosons” and “fermions”. These are described by solutions of
(relativistic) wave equations:

• Bosons: Klein–Gordon equation, (� +m2)φ(x) = ρb(x) – “source term”;

• Fermions: Dirac equation, (i/∂ −m)ψ(x) = ρf (x) – “source term”;

where x = (t, ~x) = (x0, x1, x2, x3); � = −∂2/∂t2+∂2/∂~x2; and /∂ =
∑3

µ=0 γ
µ ∂/∂xµ.

In order that /∂ be a “square root of �”, we need (γ0)2 = −1, (γj)2 = +1 for
j = 1, 2, 3 and γµγν = −γνγµ for µ 6= ν. Thus, the γµ must be matrices; in fact
there are four (4× 4) matrices satisfying these relations.

Point-like measurements are often ruled out by quantum mechanics; thus
we replace points x ∈ M by coordinates f ∈ C(M). The metric distance on a
Riemannian manifold (M, g) can be computed in two ways:

dg(p, q) := inf{ length(γ : [0, 1]→M) : γ(0) = p, γ(1) = q }
= sup{ |f(p)− f(q)| : f ∈ C(M), ‖ /D, f‖ ≤ 1 },

where /D is a Dirac operator with positive-definite signature (all (γµ)2 = +1)
if it exists, so the Dirac operator specifies the metric. /D is an (unbounded)
operator on a Hilbert space H = L2(M,S) of “square-integrable spinors” and
C∞(M) also acts on H by multiplication operators with ‖[ /D, f ]‖ = ‖ gradf‖∞.

Noncommutative geometry generalizes (C∞(M), L2(M,S), /D) to a spectral
triple of the form (A,H, D), where A is a “smooth” algebra acting on a Hilbert
space H, D is an (unbounded) selfadjoint operator on H, subject to certain
conditions: in particular that [D, a] be a bounded operator for each a ∈ A. The
tasks of the geometer are then:

1. To describe (metric) differential geometry in an operator language.

2. To reconstruct (ordinary) geometry in the operator framework.

3. To develop new geometries with noncommutative coordinate algebras.

The long-term goal is to geometrize quantum physics at very high energy
scales, but we are still a long way from there.

The general program of these lectures is as follows.

(A) The classical theory of spinors and Dirac operators in the Riemannian
case.
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(B) The operational toolkit for noncommutative generalization.

(C) Reconstruction: how to recover differential geometry from the operator
framework.

(D) Examples of spectral triples with noncommutative coordinate algebras.
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Chapter 1

Clifford algebras and spinor
representations

Here are a few general references on Clifford algebras, in reverse chronological
order: [fgv01, 2001], [f-t00, 1997/2000], [bgv92, 1992], [lm89, 1989] and [abs64,
1964]. (See the bibliography for details.)

1.1 Clifford algebras

We start with (V, g), where V ∼= Rn and g is a nondegenerate symmetric bilinear
form. If q(v) = g(v, v), then 2g(u, v) = q(u + v) − q(u) − q(v). Thus g is
determined by the corresponding “quadratic form” q.

Definition 1.1. The Clifford algebra Cl(V, g) is an algebra (over R) generated
by the vectors v ∈ V subject to the relations uv + vu = 2g(u, v)1 for u, v ∈ V .

The existence of this algebra can be seen in two ways. First of all, let T (V )
be the tensor algebra on V , that is, T (V ) :=

⊕∞
k=0 V

⊗n. Then

Cl(V, g) := T (V )/ Ideal〈u⊗ v + v ⊗ u− 2g(u, v) 1 : u, v ∈ V 〉. (1.1)

Since the relations are not homogeneous, the Z-grading of T (V ) is lost, only a
Z2-grading remains:

Cl(V, g) = Cl0(V, g)⊕ Cl1(V, g).

The second option is to define Cl(V, g) as a subalgebra of EndR(Λ•V ) gen-
erated by all expressions c(v) = ε(v) + ι(v) for v ∈ V , where

ε(v) : u1 ∧ · · · ∧ uk 7→ v ∧ u1 ∧ · · · ∧ uk

ι(v) : u1 ∧ · · · ∧ uk 7→
k∑

j=1

(−1)j−1g(v, uj)u1 ∧ · · · ∧ ûj ∧ · · · ∧ uk.

Note that ε(v)2 = 0, ι(v)2 = 0, and ε(v)ι(u) + ι(u)ε(v) = g(v, u) 1. Thus

c(v)2 = g(v, v) 1 for all v ∈ V,
c(u)c(v) + c(v)c(u) = 2g(u, v) 1 for all u, v ∈ V.
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Part III The universality property

Thus these operators on Λ•V do provide a representation of the algebra (1.1).
Dimension count: suppose {e1, . . . , en} is an orthonormal basis for (V, g),

i.e., g(ek, ek) = ±1 and g(ej, ek) = 0 for j 6= k. Then the c(ej) anticommute
and thus a basis for Cl(V, g) is {c(ek1) . . . c(ekr ) : 1 ≤ k1 < · · · < kr ≤ n},
labelled by K = {k1, . . . , kr} ⊆ {1, . . . , n}. Indeed,

c(ek1) . . . c(ekr ) : 1 7→ ek1 ∧ · · · ∧ ekr ≡ eK ∈ Λ•V

and these are linearly independent. Thus the dimension of the subalgebra of
EndR(Λ•V ) generated by all c(v) is just dim Λ•V = 2n. Now, a moment’s
thought shows that in the abstract presentation (1.1), the algebra Cl(V, g) is
generated as a vector space by the 2n products ek1ek2 . . . ekr , and these are
linearly independent since the operators c(ek1) . . . c(ekr) are linearly indepen-
dent in EndR(Λ•V ). Therefore, this representation of Cl(V, g) is faithful, and
dim Cl(V, g) = 2n.

The so-called “symbol map”:

σ : a 7→ a(1) : Cl(V, g)→ Λ•V

is inverted by a “quantization map”:

Q : u1 ∧ u2 ∧ · · · ∧ ur 7−→
1

r!

∑

τ∈Sr

(−1)τ c(uτ(1))c(uτ(2)) . . . c(uτ(r)). (1.2)

To see that it is an inverse to σ, one only needs to check it on the products of
elements of an orthonormal basis of (V, g).

From now, we write uv instead of c(u)c(v), etc., in Cl(V, g).

1.2 The universality property

Chevalley [c-c54] has pointed out the usefulness of the following property of
Clifford algebras, which is an immediate consequence of their definition.

Lemma 1.2. Any R-linear map f : V → A (an R-algebra) that satisfies

f(v)2 = g(v, v) 1A for all v ∈ V
extends to an unique unital R-algebra homomorphism f̃ : Cl(V, g)→ A.

Proof. There is really nothing to prove: f̃(v1v2 . . . vr) := f(v1)f(v2) . . . f(vr)
gives the uniqueness, provided only that this recipe is well-defined. But observe
that

f̃(uv + vu− 2g(u, v)1) = f̃((u + v)2 − u2 − v2)− 2g(u, v) f̃(1)

= [q(u+ v)− q(u)− q(v)− 2g(u, v)] 1A = 0.

Here are a few applications of universality that yield several useful operations
on the Clifford algebra.

1. Grading: take A = Cl(V, g) itself; the linear map v 7→ −v on V extends
to an automorphism χ ∈ Aut(Cl(V, g)) satisfying χ2 = idA, given by

χ(v1 . . . vr) := (−1)r v1 . . . vr.

This operator gives the Z2-grading

Cl(V, g) =: Cl0(V, g)⊕ Cl1(V, g).

251



Part III The trace

2. Reversal : take A = Cl(V, g)op, the opposite algebra. Then the map v 7→
v, considered as the inclusion V →֒ A, extends to an antiautomorphism
a 7→ a! of Cl(V, g), given by (v1v2 . . . vr)

! := vr . . . v2v1.

3. Complex conjugation: the complexification of Cl(V, g) is Cl(V, g) ⊗R C,
which is isomorphic to Cl(V C, gC) as a C-algebra. Now take A to be
Cl(V, g) ⊗R C and define f : v 7→ v̄ : V C → V C →֒ A (a real-linear map).
It extends to an antilinear automorphism of A. Note that Lemma 1.2
guarantees R-linearity, but not C-linearity, of the extension even when A
is a C-algebra.

4. Adjoint : Also, a∗ := (ā)! is an antilinear involution on Cl(V, g)⊗R C.

5. Charge conjugation: κ(a) := χ(ā) : v1 . . . vr 7→ (−1)r v̄1 . . . v̄r is an antilin-
ear automorphism of Cl(V, g)⊗R C.

Notation. We write Cl(V ) := Cl(V, g)⊗R C to denote the complexified Clifford
algebra. Up to isomorphism, this is independent of the signature of the sym-
metric bilinear form g, because all complex nondegenerate bilinear forms are
congruent.

1.3 The trace

Proposition 1.3. There is an unique trace τ : Cl(V ) → C such that τ(1) = 1
and τ(a) = 0 for a odd.

Proof. If {e1, . . . , en} is an orthonormal basis for (V, g), then

τ(ek1 . . . ek2r ) = τ(−ek2 . . . ek2rek1) = −τ(ek1 . . . ek2r) = 0.

(Here we have moved ek1 to the right by anticommutation, and returned it to
the left with the trace property.) Thus, if a =

∑
K even ak1...k2r ek1 . . . ek2r lies

in Cl0(V ), then τ(a) = a∅. We will check that a∅ does not depend on the
orthonormal basis used. Suppose e′j =

∑n
k=1 hkj ej , with HtH = 1n, is another

orthonormal basis. Then

e′ie
′
j = (~hi · ~hj) 1 +

∑

k<l

cklij ekel,

but ~hi ·~hj = [HtH ]ij = 0 for i 6= j. Next, the matrix of ekel 7→ e′ie
′
j is H ∧H , of

size
(
n
2

)
, that is also orthogonal, so e′ie

′
je
′
re
′
s has zero scalar part in the ekelepeq-

expansion; and so on: the same is true for expressions e′j1 . . . e
′
j2r

by induction.
Thus τ(a) = a∅ does not depend on {e1, . . . , en}.

Remark 1.4. At this point, it was remarked that for existence of the trace,
one could use the restriction of the (normalized) trace on EndR(Λ•V ) ⊗R C =
EndC(Λ•V C), in which Cl(V ) is embedded. True enough: although one must
see why odd elements must have trace zero. For that, it is enough to note that
if a ∈ Cl1(V ), then c(a) takes even [respectively, odd] elements of the Z-graded
algebra EndC(V C) to odd [respectively, even] elements; thus, in any basis, the
matrix of c(a) will have only zeroes on the diagonal, so that tr(c(a)) = 0.
Nonetheless, Proposition 1.3 is useful in that it establishes the uniqueness of
the trace.
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Now Cl(V ) is a Hilbert space with scalar product

〈a | b〉 := τ(a∗b).

1.4 Periodicity

Write Clpq := Cl(Rp+q, g), where g has signature (p, q), and the orthonormal
basis is written as {e1, . . . , ep, ε1, . . . , εq}, where e21 = · · · = e2p = 1 and ε21 =
· · · = ε2q = −1. For example,

Cl10 = R⊕ R;

Cl01 = C, with ε1 = i;

Cl20 = M2(R), with e1 =

(
0 1
1 0

)
, e2 =

(
1 0
0 −1

)
, e1e2 =

(
0 −1
1 0

)
;

Cl02 = H, with ε1 = i, ε2 = j, ε1ε2 = k.

Lemma 1.5 (“(1,1)-periodicity”). Clp+1,q+1
∼= Clpq ⊗M2(R).

Proof. Take V = Rp+q+2, A = Clpq ⊗M2(R). Define f : V → A on basic vectors
by

f(er) := er ⊗
(

1 0
0 −1

)
, r = 1, . . . , p,

f(εs) := εs ⊗
(

1 0
0 −1

)
, s = 1, . . . , q,

f(ep+1) := 1⊗
(

0 1
1 0

)
,

f(εq+1) := 1⊗
(

0 −1
1 0

)
. (1.3)

Thus f(ek)2 = +1, f(εl)
2 = −1 in all cases, and all f(ek), f(εl) anticommute.

This entails that f extends by linearity to a linear map satisfying f(v)2 =
g(v, v) 1 for all v ∈ V . Hence there exists a homomorphism f̃ : Clp+1,q+1 → A,
which is surjective since the right hand sides of (1.3) generate A as an R-algebra.
It is an isomorphism, because the dimensions over R are equal.

Lemma 1.6. Cl0p+1,q
∼= Clqp.

Proof. Define f : Rq+p → Cl0p+1,q on basic vectors by

f(er) := εrep+1, r = 1, . . . , q,

f(εs) := esep+1, s = 1, . . . , p.

Then

f(er)
2 = εrep+1εrep+1 = −ε2re2p+1 = −ε2r = +1,

f(εs)
2 = esep+1esep+1 = −e2se2p+1 = −e2s = −1,

and all f(er), f(εs) anticommute. The rest of the proof is like that of the
previous Lemma.
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Lemma 1.7. Clp+4,q
∼= Clpq ⊗M2(H) ∼= Clp,q+4.

Proof. We will prove the first isomorphism. Take A = Clpq ⊗M2(H); define
f : Rp+4+q → A by

f(er) := er ⊗
(

0 −k
k 0

)
, r = 1, . . . , p,

f(εs) := εs ⊗
(

0 −k
k 0

)
, s = 1, . . . , q,

and on the remaining four basic vectors, define

f(ep+1) := 1⊗
(

0 −i
i 0

)
, f(ep+2) := 1⊗

(
0 −j
j 0

)
,

f(ep+3) := 1⊗
(

0 1
1 0

)
, f(ep+4) := 1⊗

(
1 0
0 −1

)
.

Corollary 1.8 (“(+8)-periodicity”). Clp+8,q
∼= Clpq ⊗M16(R) ∼= Clp,q+8.

Proof. This reduces to M2(H) ⊗R M2(H) ∼= M16(R), that in turn reduces to
H⊗R H ∼= M4(R), which is left as an exercise.

All Clpq are given, up to MN (R) tensor factors, by Clp0 for p = 1, . . . , 8:

Cl10 = R⊕ R

Cl20 = M2(R)

Cl30 = M2(C)

Cl40 = M2(H)

Cl50 = M2(H)⊕M2(H)

Cl60 = M4(H)

Cl70 = M8(C)

Cl80 = M16(R) (1.4)

Two algebras Cl10 and Cl50 are direct sums of simple algebras, and the others
are simple. We could also define Cl00 = R (the base field), so that Corollary 1.8
holds even when p = q = 0.

Those eight algebras Clp0 can be arranged on a “spinorial clock”, which is
taken from Budinich and Trautman’s book [bt88].

R⊕ R

R

0

\\C
7

nn
H

6||
H⊕H

5ÆÆ
H

4 ��
C

3 .. R
2

<< 1

NN
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Part III Chirality

If p−q ≡ m mod 8, then Clpq is of the form A⊗MN (R), where A is the diagram
entry at the head of the arrow labelled m. Moreover, Lemma 1.6 says that the
even subalgebra Cl0pq is of the same kind, where A is now the diagram entry at
the tail of the arrow labelled m. The matrix size N is easily determined from
the real dimension, in each case. In this way, the spinorial clock displays the
full classification of real Clifford algebras.

1.5 Chirality

From now on, n = 2m for n even, n = 2m + 1 for n odd. We take Cl(V ) ∼=
Cl(V, g)⊗R C with g always positive definite.

Suppose {e1, . . . , en} is an oriented orthonormal basis for (V, g). If e′k =∑n
j=1 hjk ej with HtH = 1n, then e′1 . . . e

′
n = (detH) e1 . . . en, and detH = ±1.

We restrict to the oriented case detH = +1, so the expression e1e2 . . . en is
independent of {e1, e2, . . . , en}. Thus

γ := (−i)me1e2 . . . en

is well-defined in Cl(V ). Now

γ∗ = imen . . . e2e1 = (−i)m(−1)m(−1)n(n−1)/2e1e2 . . . en = (−1)m(−1)n(n−1)/2γ,

and
n(n− 1)

2
=

{
m(2m− 1), n even

(2m+ 1)m, n odd

}
≡ m mod 2,

so γ∗ = γ. But also γ∗γ = (en . . . e2e1)(e1e2 . . . en) = (+1)n = 1, so γ is
“unitary”. Hence γ2 = 1, so 1+γ

2 , 1−γ
2 are “orthogonal projectors” in Cl(V ).

Since γej = (−1)n−1ejγ, we get that if n is odd, then γ is central in Cl(V );
and for n even, γ anticommutes with V , but is central in the even subalgebra
Cl0(V ). Moreover, when n is even and v ∈ V , then γvγ = −v, so that γ(·)γ =
χ ∈ Aut(Cl(V )).

Proposition 1.9. The centre of Cl(V ) is C1 if n is even; and it is C1⊕ Cγ if
n is odd.

Proof. Denote this centre by Z(Cl(V )).
Even case: a ∈ Z(Cl(V )) implies γaγ = aγ2 = a, so a lies in Cl0(V ).
If a =

∑
K even aK ek1 . . . ekr , then 0 = a−ejaej =

∑
K even, j∈K 2aKek1 . . . ekr ,

so aK = 0 if j ∈ K. Since this holds for any j, we conclude that a = a∅ 1 =
τ(a) 1. Therefore Z(Cl(V )) ∼= C1 when n is even.

Odd case: If a = a0 + a1 (even + odd) lies in Z(Cl(V )), then

0 = [a, v] = [a1, v]︸ ︷︷ ︸
even

+ [a0, v]︸ ︷︷ ︸
odd

for all v ∈ V,

so [a0, v] = [a1, v] = 0 for all v ∈ V . In particular, a0 ∈ Z(Cl0(V )) ∼= C1, and
thus a0 = τ(a) 1.

Also, a1γ is even and central, so a1γ = τ(aγ) 1 and a1 = τ(aγ) γ. Thus
Z(Cl(V )) = C1⊕ Cγ when n is odd.
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1.6 Spinc and Spin groups

Let v be a unit vector, g(v, v) = 1. Then v2 = 1 in Cl(V, g), so v = v∗ and
v∗v = vv∗ = 1 in Cl(V ). If w = λv ∈ V C with |λ| = 1, then ww∗ = w∗w = 1 in
Cl(V ) also. Now

〈wa | wb〉 = τ(a∗w∗wb) = τ(a∗b) = 〈a | b〉,
〈aw | bw〉 = τ(w∗a∗bw) = τ(ww∗a∗b) = τ(a∗b) = 〈a | b〉,

so a 7→ wa, a 7→ aw are unitary operators in L(Cl(V )).
[[ Exercise: Conversely, if u ∈ Cl(V ) and a 7→ ua and a 7→ au are both

unitary, then u∗u = uu∗ = 1. ]]
If v, x ∈ V , with g(v, v) = 1, then

−vxv−1 = −vxv = (xv − 2g(v, x))v = x− 2g(v, x)v ∈ V .

This is a reflection of x in the hyperplane orthogonal to v. For w = λv, |λ| = 1
we also get −wxw−1 = −λλ̄vxv−1 = −vxv−1, which is the same as above. If
a = w1 . . . wr is a product of unit vectors in V C, then

χ(a)xa−1 = (−1)rw1 . . . wrxw
−1
r . . . w−1

1

is a product of r reflections of x ∈ V . If r = 2k is even, and a = w1 . . . w2k, then
axa−1 ∈ V after k rotations. Thus φ(a) : x 7→ axa−1 lies in SO(V ) = SO(V, g).

Definition 1.10. The set of all even products of unitary vectors,

Spinc(V ) := { u = w1 . . . w2k : wj ∈ V C, w∗jwj = 1, k = 0, 1, . . . ,m },

is a group included in Cl0(V ), and φ : Spinc(V )→ SO(V ) is a group homomor-
phism.

The inverse of u = w1 . . . w2k is u−1 = u∗ = w̄2k . . . w̄1.
Suppose u ∈ kerφ, which means that uxu−1 = x for all x ∈ V . Thus

kerφ ⊂ Z(Cl(V )) for n even, and kerφ ⊂ Z(Cl0(V )) for n odd; in both cases,
u lies in C1. It follows that kerφ ∼= {λ ∈ C : |λ| = 1 } = T = U(1). Therefore,
there is a short exact sequence (SES) of groups:

1→ T→ Spinc(V )
φ−→ SO(V )→ 1. (1.5)

If u = w1 . . . w2k ∈ Spinc(V ) with wj = λjvj where λj ∈ T and vj ∈ V ,
then u! = w2k . . . w1, and u!u = λ2

1λ
2
2 . . . λ

2
n ∈ T. Thus, u!u is central, so

(u1u2)!u1u2 = u!
2u

!
1u1u2 = u!

1u1u
!
2u2, so that u 7→ u!u is a homomorphism

ν : Spinc(V ) → T, which restricts to T ⊂ Spinc(V ) as λ 7→ λ2. The combined
(φ, ν) : Spinc(V )→ SO(V )× T is a homomorphism with kernel {±1}.

Definition 1.11. Spin(V ) := ker ν ≤ Spinc(V ).

Indeed Spin(V ) is included in (the even part of) the real Clifford algebra
Cl0(V, g):

u∗u = 1, u!u = 1 =⇒ u∗ = u! =⇒ ū = u =⇒ u ∈ Cl0(V, g).
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Part III The Lie algebra of Spin(V )

The SES (1.5) now becomes

1→ {±1} → Spin(V )
φ−→ SO(V )→ 1, (1.6)

so that φ is a double covering of SO(V ). Furthermore, Spinc(V ) ∼= Spin(V )×Z2

T.

Example 1.12. Case n = 2: We write Spin(n) ≡ Spin(Rn). It is easy to check
that

Spin(V ) = {α+ βe1e2 : α, β ∈ R, α2 + β2 = 1 }

= { u = cos
ψ

2
+ sin

ψ

2
e1e2 : −2π < ψ ≤ 2π } ∼= T.

We compute

ue1u
−1 =

(
cos

ψ

2
+ sin

ψ

2
e1e2

)
e1

(
cos

ψ

2
− sin

ψ

2
e1e2

)
= (cosψ) e1 − (sinψ) e2,

ue2u
−1 =

(
cos

ψ

2
+ sin

ψ

2
e1e2

)
e2

(
cos

ψ

2
− sin

ψ

2
e1e2

)
= (sinψ) e1 + (cosψ) e2,

so that

φ(u) =

(
cosψ − sinψ
sinψ cosψ

)
∈ SO(2),

which is (nontrivial) double covering of the circle.

Example 1.13. Spin(3) ∼= SU(2) = {unit quaternions} in Cl030
∼= Cl02 ∼= H, and

φ : SU(2)→ SO(3) is the adjoint representation of SU(2).

Example 1.14. Spin(4) ∼= SU(2) × SU(2) in Cl040
∼= Cl03 ∼= H ⊕ H. If u = (q, p)

with q, p ∈ SU(2), then φ(u) becomes x 7→ qxp−1 for x ∈ H ∼= R4, and this map
lies in SO(4). If φ(u) = 1H, then 1 7→ qp−1, so p = q, and x 7→ qxq−1 = x, so q
is central; hence p = q = ±1 and φ is indeed a double covering of SO(4).

1.7 The Lie algebra of Spin(V )

Recall the linear isomorphism Q : Λ•V → Cl(V, g), inverse to σ : a 7→ c(a)1.
Write

b = Q(u ∧ v) = 1
2 (uv − vu) = uv + g(u, v) 1 ∈ Cl0(V, g).

Note in passing that b! = 1
2 (vu − uv) = −b.

Although the algebra Cl(V, g) is not Z-graded, it is Z-filtered : we may write
Cl≤k(V, g) to denote the vector subspace generated by products of at most k
vectors from V . With that notation, the subspaceQ(Λ2V ) may also be described
as the set of all even elements b ∈ Cl≤2(V, g) with τ(b) = 0.

For x ∈ V , we compute

[b, x] = [uv, x] = uvx+ uxv − uxv − xuv = 2g(v, x)u − 2g(u, x)v ∈ V ,

so ad b : V → V . Also

[b, b′] = 1
2 [b, u′v′ − v′u′] = 1

2 [b, u′]v′ + 1
2u
′[b, v′]− 1

2 [b, v′]u′ − 1
2v
′[b, u′]
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so that [b, b′] ∈ Cl≤2(V, g) with τ([b, b′]) = 0. Hence [b, b′] ∈ Q(Λ2V ), and this
is a Lie algebra. Next,

g(y, [b, x]) = 2g(v, x)g(y, u)− 2g(u, x)g(y, v) = −g([b, y], x),

so that ad b is skewsymmetric: thus ad b ∈ so(V ). By the Jacobi identity,

[[b, b′], x] = [b, [b′, x]]− [b′, [b, x]] for all x ∈ V,

and so ad([b, b′]) = [ad b, ad b′]. Thus, ad: Q(Λ2V ) → so(V ) is a Lie algebra
homomorphism.

If ad b = 0, so that [b, x] = 0 for all x ∈ V , then b ∈ Z(Cl0(V )) ∼= C1. But
τ(b) = 0 then implies b = 0, so ad is injective. Since dim Λ2V = n(n− 1)/2 =
dim so(V ), we see that ad: Q(Λ2V )→ so(V ) is a Lie algebra isomorphism.

There is an important formula for the inverse of ad. For A ∈ so(V ), define

µ̇(A) =
1

4

n∑

j,k=1

g(ej, Aek) ejek =
1

2

∑

j<k

g(ej, Aek) ejek. (1.7)

Since τ(µ̇(A)) = 0, we get µ̇(A) ∈ Q(Λ2V ). Also

[µ̇(A), er] =
1

4

∑

j,k

g(ej , Aek)
(
ej {ek, er}︸ ︷︷ ︸

δkr

−{ej, er}︸ ︷︷ ︸
δjr

ek
)

=
1

2

∑

j

g(ej , Aer) ej −
1

2

∑

k

g(er, Aek) ek =
∑

j

g(ej , Aer) ej

= Aer,

where we have used the anticommutator notation {X,Y } := XY + Y X . Hence
ad(µ̇(A)) = A ∈ so(V ).

Now consider u = exp b := 1+
∑
k≥1

1
k! b

k ∈ Cl0(V, g) for b ∈ Q(Λ2V ). Then

u∗u = u!u = exp(−b) exp b = 1 since b! = −b. Also, u is unitary and even, and
if x ∈ V then

uxu−1 =
∑

k,l≥0

1

k!l!
bkx(−b)l

=
∑

r≥0

1

r!

r∑

k=0

(
r

k

)
bkx(−b)r−k

=
∑

r≥0

1

r!
(ad b)r(x) ∈ V ,

and thus u = exp(b) lies in Spin(V ). When b = µ̇(A), we get φ(exp(b)) =
exp(ad b) = exp(A), and it is known that exp: so(V ) → SO(V ) is surjective (a
property of compact connected matrix groups).

Now exp(Q(Λ2V )) is a subset of Spin(V ) covering all of SO(V ). If we can
show that −1 = exp c for some c, then − exp b = (exp b)(exp c) = exp(b + c),
provided that c, b commute. If b = µ̇(A), we can express the skewsymmetric

258



Part III Orthogonal complex structures

matrix A as a direct sum of 2×2 skewsymmetric blocks in a suitable orthonormal
basis:

A =




0 ∗
∗ 0

0 ∗
∗ 0

. . .

0 ∗
∗ 0

. . .




.

That is, we can choose the (oriented) orthonormal basis {e1, . . . , en} so that

b = 1
2g(e1, Ae2) e1e2 + 1

2g(e3, Ae4) e3e4 + · · ·+ 1
2g(e2r−1, Ae2r) e2r−1e2r

with r ≤ m. Now this particular e1e2 commutes with b: (e1e2)b = b(e1e2); take
c := πe1e2. Then exp c = exp(πe1e2) = cosπ + sinπe1e2 = −1. We have shown
that exp: Q(Λ2V )→ Spin(V ) is surjective.

Note that t 7→ exp(te1e2), for 0 ≤ t ≤ π, is a path in Spin(V ) from +1
to −1. Since π1(SO(V )) ∼= Z2 for n ≥ 3, the double covering Spin(V )→ SO(V )
is nontrivial. We get an important consequence.

Corollary 1.15. Spin(n) is simply connected, for n ≥ 3.

1.8 Orthogonal complex structures

Suppose that n = 2m is even, V ∼= R2m. Then V can be identified with Cm,
but not canonically.

Definition 1.16. An operator J ∈ EndR V is called an orthogonal complex
structure, written J ∈ J (V, g), if

(a) J2 = −1 in EndR V ;

(b) g(Ju, Jv) = g(u, v) for all u, v ∈ V .

Then also g(Ju, v) = −g(Ju, J2v) = −g(u, Jv), so that J is skewsymmetric
with respect to g: J t = −J . Note that (b) says that J tJ = 1.

We can now make V a C-module by setting iv := Jv, that is,

(α+ iβ)v := αv + βJv for all α, β ∈ R.

We define a hermitian scalar product on V by

〈u | v〉J := g(u, v) + i g(Ju, v)

Note that 〈Ju |v〉J = −i〈u |v〉J and 〈u |Jv〉J = +i〈u |v〉J (check it!). We denote
the resulting m-dimensional complex Hilbert space by VJ .

If {u1, . . . , um} is an orthonormal basis for VJ := (V, 〈· | ·〉J ), then

{u1, Ju1, . . . , um, Jum}

is an orthonormal oriented basis for V (over R). The orientation may or may
not be compatible with the given one on V .
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Exercise 1.17. If 2m = 4, show that all such J can be parametrized by two
disjoint copies of S2, one for each orientation.

If J2 = −1, J tJ = 1 and if h ∈ O(n) = O(V, g) is an orthogonal linear
transformation, then K := hJh−1 is also an orthogonal complex structure. In
that case,

〈hu | hv〉K = g(hu, hv) + i g((hJh−1)hu, hv)

= g(u, v) + i g(Ju, v) = 〈u | v〉J ,

so that h : VJ → VK is unitary. Thus hJh−1 = J if and only if h ∈ U(VJ ) ∼=
U(m). In short: O(n) = O(2m) acts transitively on J (V, g) with isotropy
subgroups isomorphic to U(m). Hence, as a manifold,

J (V, g) ≈ O(2m)/U(m).

Those J which are compatible with orientation on V form one component (of
two), homeomorphic to SO(2m)/U(m).

We may complexify V to get V C = V ⊗R C = V ⊕ iV . Take

WJ := { v − iJv ∈ V C : v ∈ V } = 1
2 (1− iJ)V = PJV.

This is an isotropic subspace for the symmetric bilinear form gC on V C.

g(u− iJu, v − iJv) = g(u, v)− ig(u, Jv)− ig(Ju, v)− g(Ju, Jv) = 0.

The conjugate subspace

W J = { v + iJv : v ∈ V } = 1
2 (1 + iJ)V = PJV

satisfies WJ ⊕ W J
∼= V C, an orthogonal direct sum for the hermitian scalar

product
〈〈w | z〉〉 := 2 g(w̄, z) for w, z ∈ V C.

Note that P 2
J = PJ and PJ = P ∗J with respect to this product. We say that WJ

is a polarization of V C. Also PJ : VJ →WJ is an unitary isomorphism.
Conversely: given a splitting V = W ⊕W , orthogonal with respect to 〈〈· | ·〉〉,

write w =: u − iv for w ∈ W , with u, v ∈ V ; then JW : u 7→ v lies in J (V, g),
and WJW = W (exercise). Thus the correspondence J ↔WJ is bijective.

1.9 Irreducible representations of Cl(V )

We continue to suppose that n = 2m is even.

Definition 1.18. The (fermionic) Fock space corresponding to J ∈ J (V, g) is
defined as

FJ(V ) := Λ•WJ ,

with hermitian scalar product given by

〈〈w1 ∧ · · · ∧ wk | z1 ∧ · · · ∧ zl〉〉 := δkl det
[
〈〈wi | zj〉〉

]
. (1.8)
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Part III Irreducible representations of Cl(V )

This is a complex Hilbert space of dimension 2m. Choose and fix a unit
vector Ω ∈ Λ0WJ : it is unique up to a factor λ ∈ T. For w ∈ WJ (so that
w̄ ∈W J = W⊥J ), we write

ε(w) : z1 ∧ · · · ∧ zk 7→ w ∧ z1 ∧ · · · ∧ zk,

ι(w̄) : z1 ∧ · · · ∧ zk 7→
k∑

j=1

(−1)k−1〈〈w | zj〉〉 z1 ∧ · · · ∧ ẑj ∧ · · · ∧ zk.

For v ∈ V , write w = 1
2 (v − iJv) = PJv ∈WJ and define

cJ(v) := ε(w) + ι(w̄) = ε(PJv) + ι(P−Jv).

Then
c2J(v) := 〈〈w | w〉〉 1 = 〈v | v〉J 1 = g(v, v) 1,

so that cJ : V → EndC(FJV ) ≡ L(FJV ). That is to say, cJ is a representation
of Cl(V ) on the Hilbert space FJV .

Note that we complexify the representation of Cl(V, g), given by universality.
One can check that

cJ (w) = ε(w) if w ∈ Wj ; cJ(z̄) = ι(z̄) if z̄ ∈ W J .

From (1.8) and the properties of determinants, it is easy to check that the
operators ε(w) and ι(w̄) are adjoint to one another, that is, ε(w)† = ι(w̄) for
w ∈ WJ ; in particular, cJ(v)† = cJ(v) for v ∈ V . (This is a consequence of
our choice of g to have positive definite signature: were we to have taken g to
be negative definite, as in done in many books, then the operators cJ(v) would
have been skewadjoint.) More generally, we get cJ (a)† = cJ (a∗) for a ∈ Cl(V ):
we say that cJ is a selfadjoint representation of the ∗-algebra Cl(V ) on the Fock
space FJ(V ).

Now, if T ∈ L(FJ (V )) commutes with cJ(V C), then in particular ι(z̄)TΩ =
T ι(z̄)Ω = T (0) = 0 for z̄ ∈W J . Therefore TΩ ∈ Λ0WJ , i.e., TΩ = tΩ for some
t ∈ C. Now

T (w1 ∧ · · · ∧ wk) = Tε(w1) . . . ε(wk)Ω = ε(w1) . . . ε(wk)TΩ = t w1 ∧ · · · ∧ wk

for w1, . . . , wk ∈ WJ . Thus T = t 1 ∈ L(Λ•WJ ). By Schur’s lemma, the
representation cJ is irreducible.

Suppose K ∈ J (V, g) with K = hJh−1 for h ∈ O(2m). Then hJ = Kh,
hP±J = P±Kh, and so cK(hv) = (Λ•h) cJ(v). By universality again, we get
cK ◦ Λ•h = Λ•h ◦ cJ , so that the irreducible representations cK and cJ are
equivalent.

The Fock space is Z2-graded as ΛevenWJ ⊕ ΛoddWJ . What operator de-
termines its Z2-grading? In fact, this operator is cJ(γ). To see that, write
γ = (−1)me1e2 . . . e2m, where e2j = Je2j−1 for j = 1, . . . ,m. If z1 := PJe1 =
1
2 (e1 − ie2) we get

z̄1z1 − z1z̄1 = 1
4 (e1 + ie2)(e1 − ie2)− 1

4 (e1 − ie2)(e1 + ie2) = −e1e2.

With zj := PJe2j−1 = 1
2 (e2j−1 − ie2j), this gives

γ = (z̄1z1 − z1z̄1) . . . (z̄mzm − zmz̄m) in Cl0(V ).
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Part III Representations of Spinc(V )

Now cJ(z̄jzj − zj z̄j) = ι(z̄j)ε(zj)− ε(zj)ι(z̄j) is the operator

zk1 ∧ · · · ∧ zkr 7−→
{
−zk1 ∧ · · · ∧ zkr if j ∈ K
+zk1 ∧ · · · ∧ zkr if j /∈ K.

Thus cJ (γ) acts as (−1)k on ΛkWJ : this is indeed the Z2-grading operator.

Finally, the odd case is treated as follows. Let U := R- span{e1, . . . , e2m} ≤
V . Then Cl(U) ∼= Cl0(V ) via u 7→ i ueem+1, extended to Cl(U). Now FJ(U)
is an irreducible Cl0(V )-module, while Z(Cl(V )) = C1⊕ Cγ. Since γ2 = 1, we
can extend the action of Cl0(V ) on FJ(U) to the full Cl(V ) by setting either
cJ(γ) := +1 or c′J(γ) := −1 on FJ(U).

These representations cJ , c′J are inequivalent, since T (1) = (−1)T is not pos-
sible unless T = 0, using Schur’s lemma again. Thus Cl(V ) has two irreducible
Fock representations of dimension 2m in the odd case.

Proposition 1.19. The Fock representations yield all irreducible representa-
tions of Cl(V ). If dimR V = 2m, the irreducible representation is unique up to
equivalence; if dimR V = 2m+ 1, there are exactly two such representations.

Proof. We have already described and classified the Fock representations. It
remains to show that this list is complete.

We have seen that up to tensoring with a matrix algebra MN (R), the real
Clifford algebras occur in eight species. The periodicity of complex Clifford
algebras is much simpler, and may be obtained from (1.4) by complexifying
each algebra found there. Since C ⊗R C ∼= C ⊕ C and H ⊗R C ∼= M2(C), we
obtain directly that

Cl(R2m) ∼= M2m(C) and Cl(R2m+1) ∼= M2m(C)⊕M2m(C). (1.9)

From this it is clear that, when dimV is even, Cl(V ) is a simple matrix algebra
and therefore all irreducible representations are equivalent and arise from matrix
multiplication on a minimal left ideal, whose dimension is 2m. Similar arguments
in the odd case show that there are at most two inequivalent representations
of Cl(V ). Thus the Fock representations we have constructed account for all of
them: there are no others.

1.10 Representations of Spinc(V )

We obtain representations of the group Spinc(V ) by restriction of the irreducible
representations of Cl(V ).

Spinc(V ) = {w1w2 . . . w2k : wi ∈ V C, w∗iwi = 1 }.

We have to check whether these restrictions are irreducible or not.

Even case, n = 2m: γ belongs to Spinc(V ) and is central there, so cJ(γ)
commutes with cJ(Spinc(V )). Thus the group representation reduces over
Λ•WJ = ΛevenWJ ⊕ ΛoddWJ : there are two subrepresentations. Since

w1 ∧ · · · ∧ w2k = ε(w1) . . . ε(w2k) = cJ(w1) . . . cJ(w2k) Ω,
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Part III Representations of Spinc(V )

we get at once that cJ(Spinc(V )) Ω = ΛevenWJ : the “even” subrepresentation
is irreducible.

If w1, w2 ∈WJ are unit vectors, then

cJ (w2w̄1)w1 = ε(w2)ι(w̄1)w1 = ε(w2) Ω = w2.

From there we soon conclude that cJ(Spinc(V ))w1 = ΛoddWJ : the “odd” sub-
representation is also irreducible.

Are these subrepresentations equivalent? No: for suppose R : ΛevenWJ →
ΛoddWJ intertwines both subrepresentations. Then in particular RcJ(γ) =
cJ(γ)R means that R(+1) = (−1)R : ΛevenWJ → ΛoddWJ , so that R = 0.

Conclusion: The algebra representation cJ of Cl(V ) restricts to a group rep-
resentation cJ of Spinc(V ) which is the direct sum of two inequivalent irreducible
subrepresentations, if dimV is even.

Odd case, n = 2m+1: There are two irreducible representations cJ and c′J of
Cl(V ) on FJ(U), but they coincide on Cl0(V ): in this case, γ is odd. Declaring
cJ(γ) to be, say, +1 on F(U), we get for w1, . . . , w2k+1 ∈WJ :

w1 ∧ · · · ∧ w2k = cJ (w1 . . . w2k) Ω,

w1 ∧ · · · ∧ w2k+1 = cJ (w1 . . . w2k+1γ) Ω,

so that in this case, Λ•WJ is an irreducible representation if dim V is odd.
Conclusion: The two algebra representations cJ and c′J of Cl(V ) restrict to

the same group representation cJ of Spinc(V ) which is already irreducible, if
dimV is odd.
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Chapter 2

Spinor modules over
compact Riemannian
manifolds

2.1 Remarks on Riemannian geometry

Let M be a compact C∞ manifold without boundary, of dimension n. Compact-
ness is not crucial for some of our arguments (although it may be for others),
but is very convenient, since it means that the algebras C(M) and C∞(M)
are unital : the unit is the constant function 1. For convenience we use the
function algebra A = C(M) —a commutative C*-algebra— at the beginning.
We will change to A = C∞(M) later, when the differential structure becomes
important.

Any A-module (or more precisely, a “symmetric A-bimodule”) which is
finitely generated and projective is of the form E = Γ(M,E) for E → M a
(complex) vector bundle. Two important cases are

X(M) = Γ(M,TCM) = (continuous) vector fields on M ;

A1(M) = Γ(M,T ∗CM) = (continuous) 1-forms on M.

These are dual to each other: A1(M) ∼= HomA(X(M), A), where HomA means
“A-module maps” commuting with the action of A (by multiplication).

Definition 2.1. A Riemannian metric on M is a symmetric bilinear form

g : X(M)× X(M)→ C(M)

such that:

1. g(X,Y ) is a real function if X,Y are real vector fields;

2. g is C(M)-bilinear: g(fX, Y ) = g(X, fY ) = f g(X,Y ), if f ∈ C(M);

3. g(X,X) ≥ for X real, with g(X,X) = 0 =⇒ X = 0 in X(M).
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Part III Clifford algebra bundles

The second condition entails that g is given by a continuous family of symmetric
bilinear maps gx : TC

xM×TC
xM → C or gx : TxM×TxM → R; the latter version

is positive definite.

Fact 2.2. Riemannian metrics always exist (in abundance).

Since each gx is positive definite, there are “musical isomorphisms” between
X(M) and A1(M), as A-modules

X(M)
X→X♭ // A1(M)
α♯←α

oo given by

{
X♭(Y ) := g(X,Y ),

α(Y ) =: g(α♯, Y ).

They are mutually inverse, of course. In fact, they can be used to transfer the
metric form X(M) to A1(M):

g(α, β) := g(α♯, β♯), for α, β ∈ A1(M).

One should perhaps write g−1(α, β) —as is done in [fgv01]— since in local
coordinates gij := g(∂/∂xi, ∂/∂xj) and grs := g(dxr, dxs) have inverse matrices:
[grs] = [gij ]

−1.
If f ∈ C1(M), the gradient of f is gradf := (df)♯, so that

g(gradf, Y ) = df(Y ) := Y f.

2.2 Clifford algebra bundles

More generally a real vector bundle E → M is a Euclidean bundle if, with
E = Γ(M,EC), there is a symmetric A-bilinear form g : E × E → A = C(M)
such that

1. g(s, t) ∈ C(M ; R) when s, t lie in Γ(M,E) —the real sections;

2. g(s, s) ≥ 0 for s ∈ Γ(M,E), with g(s, s) = 0 =⇒ s = 0.

By defining (s | t) := g(s∗, t), we get a hermitian pairing with values in A:

• (s | t) is A-linear in t;

• (t | s) = (s | t) ∈ A;

• (s | s) ≥ 0, with (s | s) = 0 =⇒ s = 0 in E ;

• (s | ta) = (s | t) a for all s, t ∈ E and a ∈ A.

These properties make E a (right) C∗-module over A, with C∗-norm given by

‖s‖E :=
√
‖(s | s)‖A for s ∈ E .

For each x ∈ M , we can form Cl(Ex) := Cl(Ex, gx) ⊗R C. Using the linear
isomorphisms σx : Cl(Ex) → (Λ•Ex)C, we see that these are fibres of a vector
bundle Cl(E) → M , isomorphic to (Λ•E)C → M as C-vector bundles (but not
as algebras!). Under (κλ)(x) := κ(x)λ(x), the sections of Cl(E) also form an
algebra Γ(M,Cl(E)). It has an A-valued pairing

(κ | λ) : x 7→ τ(κ(x)∗λ(x)).

By defining ‖κ‖ := supx∈M ‖κ(x)‖Cl(Ex), this becomes a C*-algebra.
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Part III The existence of Spinc structures

Lemma 2.3. If g, h are two different “metrics” on E = A1(M), the correspond-
ing C∗-algebras

Bg := Γ(M,Cl(T ∗M, g)⊗R C) and Bh := Γ(M,Cl(T ∗M,h)⊗R C)

are isomorphic.

Proof. We compose α 7→ α♯g : A1(M)→ X(M) andX 7→ X♭h : X(M)→ A1(M)
to get an A-linear isomorphism ρ : A1(M)→ A1(M). Now

h(ᾱ, ρ(α)) = ᾱ(α♯g ) = g(ᾱ, α) ≥ 0, for all α ∈ A1(M). (2.1)

At each x ∈M , the C-vector space TC
x (M) may be regarded as a Hilbert space

with scalar product 〈αx | βx〉h := hx(ᾱx, βx), and now (2.1) says that each
ρx ∈ EndC(TC

xM) is a positive operator with a positive square root σx: we
thereby obtain an A-linear isomorphism σ : A1(M)→ A1(M) such that ρ = σ2.
We may regard σ as an injective A-linear map from A1(M) into the algebra Bh;
when α ∈ A1(M) is real, we get

σ(α)2 = h(σ(α), σ(α)) 1 = h(α, ρ(α)) 1 = g(α, α) 1.

By a now familiar argument, applied to each σx separately, we may extend
σ to an A-linear unital *-algebra homomorphism σ̃ : Bg → Bh. Exchanging
g and h gives an inverse homomorphism σ̃−1 : Bh → Bg. Since any unital ∗-
homomorphism between C*-algebras is automatically norm-decreasing and thus
continuous, we conclude that σ̃ : Bg → Bh is an isomorphism of C*-algebras.

Definition 2.4. A Clifford module over (M, g) is a finitely generated projective
A-module, with A = C(M), of the form E = Γ(M,E) for E a (complexified) Eu-
clidean bundle, together with an A-linear homomorphism c : B → Γ(M,EndE),
where B := Γ(M,Cl(T ∗M)) is the Clifford algebra bundle generated by A1(M),
such that

(s | c(κ)t) = (c(κ∗)s | t) for all s, t ∈ E , κ ∈ B.

Example 2.5. Take E = A•(M) = Γ(M, (Λ•T ∗M)C) —all differential forms on
M— with c(α) : ω 7→ ε(α)ω+ ι(α♯)ω for ω ∈ A•(M) and α ∈ A1(M) real. Then
E is indeed a Clifford module, but it is a rather large one: it may have nontrivial
submodules. The goal of the next subsection is top explore how some minimal
submodules may be constructed.

2.3 The existence of Spinc structures

Suppose n = 2m + 1 = dimM is odd. Then the fibres of B are semisimple
but not simple: Cl(T ∗xM) ∼= M2m(C) ⊕M2m(C). We shall restrict to the even
subalgebras, Cl0(T ∗xM) ∼= M2m(C), by demanding that c(γ) act as the identity
in all cases. Then we may adopt the convention that

c(κ) := c(κγ) when κ is odd.

Notice here that κγ is even; and c(γ) = c(γ2) = +1 is required for consistency
of this rule.
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Part III The existence of Spinc structures

We take A = C(M), but for B we now take

B :=

{
Γ(M,Cl(T ∗M)), if dimM is even,

Γ(M,Cl0(T ∗M)), if dimM is odd.
(2.2)

The fibres of these bundles are central simple algebras of finite dimension 22m

in all cases.
We classify the algebras B as follows. Taking

B :=

{
{Bx = Cl(T ∗xM) : x ∈M }, if dimM is even

{Bx = Cl0(T ∗xM) : x ∈M }, if dimM is odd

to be the collection of fibres, we can say that B is a “continuous field of simple
matrix algebras”, which moreover is locally trivial. There is an invariant

δ(B) ∈ H3(M ; Z)

for such fields, found by Karrer [k-g63] and in more generality —allowing the
compact operators K as an infinite-dimensional simple matrix algebra— by
Dixmier and Douady [d-j69].

Here is a (rather pedestrian) sketch of how δ(B) is constructed:
If x ∈M , take px ∈ Bx to be a projector of rank one, that is,

px = p∗x = p2
x and tr px = 1.

On the left ideal Sx := Bxpx, we introduce a hermitian scalar product

〈axpx | bxpx〉 := tr(pxa
∗
xbxpx). (2.3)

Notice that the recipe

|axpx〉〈bxpx| : cxpx 7→ (axpx)(bxpx)∗(cxpx) = (axpxb
∗
x)(cxpx)

identifies L(Sx) —or K(Sx) in the infinite-dimensional case— with Bx, since
the two-sided ideal span{ axpxb∗x : ax, bx ∈ Bx } equals Bx by simplicity.

By local triviality, this can be done locally with varying x. If {Ui} is a “good”
open cover1 of M , we get local fields Si = {Si,x : x ∈ Ui } with isomorphisms
θi : L(Si) → B

∣∣
Ui

of fields of simple C*-algebras. On nonempty intersections

Uij := Ui ∩ Uj , we get ∗-algebra isomorphisms θ−1
i θj : L(Sj)→ L(Si), so there

are fields of unitary maps uij : Sj → Si such that θ−1
i θj = uij(·)u−1

ij .
On Uijk := Ui ∩ Uj ∩ Uk, we see that (Aduij)(Ad ujk) = Aduik, and so

uijujk = λijkuik,

where λijk : Uijk → T are scalar maps. We may now check that λjklλ
−1
iklλijl =

λijk on Uijkl. Thus λ is a Čech 2-cocycle, and its Čech cohomology class lies

in Ȟ2(M ; T) ∼= H3(M ; Z). We may go one more step in order to exhibit this

1The word good has a precise technical meaning: namely, that all nonempty finite inter-
sections of open sets of the cover are both connected and simply connected. On Riemannian
manifolds, good open covers may always be formed using geodesically convex balls.

267



Part III Morita equivalence for (commutative) unital algebras

isomorphism: if we write λijk = exp(2πif
ijk

) —we can take logarithms since

Uijk is simply connected— then

aijkl := f
ijk
− f

ijl
+ f

ikl
− f

jkl

takes values in Z (and since each Uijkl is connected, these will be constant
functions); thus, these aijkl form a Z-valued 3-cocycle, a. Finally, one may
check that its class [a] ∈ H3(M ; Z) is independent of all choices made so far.
We define δ(B) := [a], which is called the Dixmier–Douady class of B.

Suppose now that the Hilbert spaces Sx ∼= C2m

can be chosen globally for
x ∈M —not just locally for x ∈ Ui— that is, they are fibres of a vector bundle
S → M (that may b gifted with a Hermitian metric) such that L(Sx) ∼= Bx,
for x ∈ M , via a single field of isomorphisms θ : L(S) → B such that θi = θ

∣∣
Ui

for each Ui. Then uij = θ−1
i θj = id over Uij , and so λijk = 1 over Uijk, and

aijkl = 0 over each Uijkl; hence δ(B) = [a] = 0 in H3(M ; Z).
Conversely if δ(B) = 0, so that [λ] is trivial in Ȟ2(M ; T), i.e., λ is a 2-

coboundary, then there are maps νij : Uij → T such that λijk = νijν
−1
ik νjk

on Uijk. Setting vij := ν−1
ij uij , we get local fields of unitaries such that vijvjk =

vik on each Uijk. These vij : Sj → Si are therefore transition functions for a

(Hermitian) vector bundle S → M such that S
∣∣
Ui

∼= Si for each Ui. Let

S := Γ(M,S) denote the A-module of sections of this bundle. Now the pointwise
isomorphisms Bx ∼= EndSx, for each x ∈ M , imply that B ∼= EndA S as A-
modules, and indeed as C*-algebras. We summarize all this in the following
Proposition.

Proposition 2.6. Let (M, g) be a compact Riemannian manifold. With A =
C(M) and B the algebra of Clifford sections given by (2.2), the Dixmier–Douady
class vanishes, i.e., δ(B) = 0, if and only if there is a finitely generated projective
A-module S, carrying a selfadjoint action of B by A-linear operators, such that
EndA(S) ∼= B.

2.4 Morita equivalence for (commutative) uni-
tal algebras

Definition 2.7. If A, B are unital C-algebras, we say that they are Morita
equivalent if there is a B-A-bimodule E and an A-B-bimodule F , such that
E ⊗A F ∼= B as B-B-bimodules and F ⊗B E ∼= A as A-A-bimodules. We say
that such an E is an “equivalence bimodule”.

In general, we may choose F ∼= E♯ := HomA(E , A) to be the “dual” right
A-module with a specified action of B. We can then identify EndA E ∼= B.

Fact 2.8. EndA E ∼= B whenever E is an equivalence B-A-bimodule.

Fact 2.9. Since A, B are unital, each E is finitely generated and projective (and
full).

Remark 2.10. There is a C*-version, due to Rieffel, whereby all bimodules are
provided with compatible A-valued and B-valued Hermitian pairings. This
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Part III Morita equivalence for (commutative) unital algebras

becomes nontrivial in the more general context of nonunital algebras. The
full story is told in [rw98]. We shall not need this machinery in the unital case:
remember that M is taken to be compact.

Notation. For isomorphism classes [E ] of bimodules, we form the set

Mrt(B,A) := { [E ] : E is a B-A-equivalence bimodule }.
In the case B = A, we write Pic(A) := Mrt(A,A); this is called the “Picard
group” of A.

We call an A-bimodule E symmetric if the left and right actions are the
same: a ⊲ x = x ⊳ a for x ∈ E and a ∈ A. When A is commutative, a symmetric
A-A-bimodule can be called, more simply, an “A-module” —as we have already
been doing. Even when A is commutative, an A-A-equivalence bimodule E need
not be symmetric. Indeed, suppose φ, ψ ∈ Aut(A). Then we define φEψ to be
the same vector space E , but with the bi-action of A on E twisted as follows:

a1 ⊲ a0 ⊳ a2 := φ(a1) a0 ψ(a2)

For φ = ψ = id, this is the original A-A-bimodule (when either φ = id or ψ = id,
we shall not write that subscript). In particular, we can apply this twisting to
E = A itself.

Lemma 2.11. If A is a unital algebra, there exists an A-A-bimodule isomor-
phism θ : A→ φA if and only if φ is inner.

Proof. If θ : A→ φA is an A-bimodule isomorphism, then

φ(a)θ(1) = θ(a) = θ(1)a

so that φ(a) = uau−1, where u = θ(1) is invertible.

Thus the “outer automorphism group” Out(A) := Aut(A)/ Inn(A) classifies
the asymmetric A-bimodules. When A is commutative, so that Inn(A) is trivial,
this is just Aut(A).

Recall that

Aut(C(M)) ∼= Homeo(M), Aut(C∞(M)) ∼= Diff(M),

where φ(f) : x 7→ f(φ−1x) for f ∈ C(M). We shall write PicA(A), follow-
ing [bw04], to denote the isomorphism classes of symmetric A-bimodules. (This
repairs an oversight in [fgv01, Chap. 9], which did not distinguish between
Pic(A) and PicA(A), as was pointed out to me by Henrique Bursztyn.)

Fact 2.12. Pic(A) ∼= PicA(A) ⋊ Aut(A) as a semidirect product of groups, with
product given by ([E ], φ) · ([F ], ψ) = ([ψEψ ⊗A F ], φ ◦ φ).

The proof is not difficult, but we refer to the paper [bw04].

Lemma 2.13. For A = C(M) or C∞(M), PicA(A) ∼= H2(M ; Z).

Proof. Since invertible A-modules L are given by L = Γ(M,L) —either con-
tinuous or smooth sections, respectively— where L → M are C-line bundles;
and these are classified by the first Chern class c1(L) ∈ H2(M ; Z), obtained

from [λ] = [λij ] ∈ Ȟ
1
(M ; T) ∼= H2(M ; Z). Indeed, here L♯ = Γ(M,L∗), where

L∗ →M is the dual bundle and L⊗AL♯ = Γ(M,L⊗L∗) ∼= Γ(M,M×C) ∼= C(M)
or C∞(M), respectively.

The group operation in PicA(A) is [L1] · [L2] = [L1⊗AL2]: since L1⊗AL2
∼=

Γ(M,L1 ⊗ L2), it is again a module of sections for a C-line bundle.
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2.5 Classification of spinor modules

In this section, A = C(M) and as before, B = Γ(M,Cl(T ∗M)) or B =
Γ(M,Cl0(T ∗M)), according as the dimension of M is even or odd.

Consider now the set Mrt(B,A) of isomorphism classes of B-A-bimodules:
we have seen that δ(B) = 0 if and only if Mrt(B,A) is nonempty. We shall
assume from now on that indeed δ(B) = 0, so that there exists at least one
B-A-bimodule S = Γ(M,S) —continuous sections, for the moment— such that
at each x ∈ M , Sx is an irreducible representation of the simple algebra Bx.
Therefore, any such S has a partner S♯ = HomA(S, A) such that S ⊗A S♯ ∼= B
and S♯ ⊗B S ∼= A: in other words, S is an equivalence B-A-bimodule, and its
isomorphism class [S] is an element of Mrt(B,A).

Since S♯ ∼= Γ(M,S∗) where S∗ → M is the dual vector bundle to S → M ,
we can write this equivalence fibrewise: Sx ⊗C S∗x = EndC(Sx) ∼= Bx and then
S∗x ⊗Bx Sx ∼= C, for x ∈M .

Lemma 2.14. Mrt(B,A) is a principal homogeneous space for the group PicA(A),
when δ(B) = 0.

Proof. There is a right action of PicA(A) on Mrt(B,A), given by [S] · [L] :=
[S ⊗A L]. We say that the spinor module S is “twisted” by the invertible A-
module L.

If S ⊗A S♯ ∼= B and S♯ ⊗B S ∼= A, then for S1 := S ⊗A L we get

S1 ⊗A S♯1 = S ⊗A L ⊗A L♯ ⊗A S♯ ∼= S ⊗A A⊗A S♯ ∼= S ⊗A S♯ ∼= B,

S♯1 ⊗B S1 = L♯ ⊗A S♯ ⊗B S ⊗A L ∼= L♯ ⊗A A⊗A L ∼= L♯ ⊗A L ∼= A.

Thus S1 is again an equivalence B-A-bimodule. Moreover, under the natural
isomorphism

HomB(S′,S)⊗A L ∼= HomB(S′,S ⊗A L) : F ⊗ l 7→ [s′ 7→ F (s′)⊗ l],
we see that HomB(S,S ⊗AL) ∼= S♯⊗B S ⊗AL ∼= A⊗A L = L, so that the right
action of PicA(A) is free. On the other hand, the identification

S ⊗HomB(S,S′) ∼= HomB(EndA(S),S′) : s⊗ F 7→ [G 7→ (F ◦G)(s)]

yields, for L := HomB(S,S′), the isomorphism

S ⊗A L ∼= HomB(B,S′) ∼= S′,
so that the action of PicA(A) is transitive.

To proceed, we explain how B acts on S♯ = HomA(S, A). The spinor module
S carries an A-valued hermitian pairing (2.3) given by the local scalar products
defined in the construction of S, that may be written

(ψ | φ) : x 7→ 〈ψx | φx〉, for x ∈M. (2.4)

We can identify elements of S♯ with “bra-vectors” 〈ψ| using this pairing, namely,
we define 〈ψ| to be the map φ 7→ (ψ |φ) ∈ A. Since A is unital, there is a “Riesz
theorem” for A-modules showing that all elements of S♯ are of this form. Now
the left B-action is defined by

b 〈ψ| := 〈ψ| ◦ χ(b!).

Recall that b 7→ χ(b!) is a linear antiautomorphism of B.
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Remark 2.15. In these notes, there are many inner products. As a convention,
angle brackets 〈· | ·〉 take values in C —we shall call them scalar products to
emphasize this— while round brackets (· | ·) take values in an algebra A —we
use the word pairing to signal that.

Lemma 2.16. Let LS := HomB(S♯,S) be the A-module for which S♯ ⊗A LS ∼=
S. Then LS⊗AL ∼= LS ⊗A L ⊗A L, so that the twisting [S] 7→ [S ⊗A L] on
Mrt(B,A) induces a translation by [L⊗A L] = 2[L] on PicA(A).

Proof. First observe that, since L is an invertible A-module, the dual of S ⊗AL
is isomorphic to S♯ ⊗A L♯. The commutativity of the group PicA(A) the shows
that

(S ⊗A L)♯ ⊗A (LS ⊗A L ⊗A L) ∼= S♯ ⊗A L♯ ⊗A (L ⊗A LS ⊗A L)

∼= S♯ ⊗A LS ⊗A L ∼= S ⊗A L,

and the freeness of the action now implies the result.

Thus, the “mod 2 reduction” j∗[LS ] ∈ H2(M ; Z2), coming from the short

exact sequence of abelian groups 0 → Z ×2−−→ Z
j−→ Z2 → 0, is independent of

[S]. Indeed, it defines an invariant κ[B] ∈ H2(M ; Z). This is clear, when one
takes into account the corresponding long exact sequence in Čech cohomology
and the governing assumption that δ(B) = 0:

· · · → H1(M ; Z2)
∂−→ H2(M ; Z)

(×2)∗−−−−→ H2(M ; Z)
j∗−→ H2(M ; Z2)

∂−→ H3(M ; Z)→ · · ·
(2.5)

Remark 2.17. It can be shown that κ(B) = w2(TM) = w2(T ∗M), the familiar
second Stiefel–Whitney class of the tangent (or cotangent) bundle. See, for
instance, the original papers of Karrer [k-g63] and Plymen [p-rj86], and the
lecture notes by Schröder [s-h00].

What is the meaning of the condition κ(B) = 0? It means that, by replacing
any original choice of S by a suitably twisted S ⊗A L, we can arrange that LS
is trivial, i.e. LS ∼= A, or better yet, that

S♯ ∼= S as B-A-bimodules.

We now reformulate this condition in terms of a certain antilinear operator C;
later on, in the context of spectral triples, we shall rename it to J .

Proposition 2.18. There is a B-A-bimodule isomorphism S♯ ∼= S if and only
if there is an antilinear endomorphism C of S such that

(a) C(ψ a) = C(ψ) ā for ψ ∈ S, a ∈ A;

(b) C(b ψ) = χ(b̄)C(ψ) for ψ ∈ S, b ∈ B;

(c) C is antiunitary in the sense that (Cφ |Cψ) = (ψ |φ) ∈ A, for φ, ψ ∈ S;

(d) C2 = ±1 on S whenever M is connected.
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Proof. Ad (a): We provisionally define C by C(ψ) := T 〈ψ|, where T : S♯ →
S is the given B-A-bimodule isomorphism. Now since 〈ψa| = 〈ψ| ā because
(ψ a | φ) = ā (ψ | φ) = (ψ | φ) ā = (ψ | φ ā) —since A is commutative— we get
C(ψ a) = T (〈ψ| ā) = T 〈ψ| ā = C(ψ) ā.

Ad (b): The formula for the B-action on S♯, and the relation (bψ | φ) =
(ψ | b∗φ) give

C(b ψ) = T 〈b ψ| = T (〈ψ| ◦ b∗) = T (χ(b!) 〈ψ|) = χ(b̄)T 〈ψ|.

Ad (c): The pairing (φ|Cψ) is antilinear (and bounded) in both φ and ψ, and
thus of the form (ψ |χ) for some χ ∈ S, by the aforementioned “Riesz theorem”.
Thus we get an adjoint map to C, namely the antilinear map C† : φ 7→ χ
—obeying the rule for transposing antilinear operators, i.e., (ψ | C†φ) = (φ |
Cψ). Next, notice that C†C is an A-linear bijective endomorphism of S, that
commutes with each b ∈ B:

(φ | C†Cbψ) = (Cbψ | Cφ) = (χ(b̄)Cψ | Cφ)

= (Cψ | χ(b!)Cφ) = (Cψ | Cb∗φ)

= (b∗φ | C†Cψ) = (φ | bC†Cψ).

Therefore C†C ∈ EndB(S) ∼= A, i.e. there is an invertible a ∈ A such that

C†C = a1S . If a 6= 1, we can now redefine C 7→ a−
1
2C, keeping (a) and (b),

so with the redefinition C(ψ) := a−
1
2 T 〈ψ|, we get C†C = 1, i.e., (Cφ | Cψ) =

(ψ | C†Cφ) = (ψ | φ).
Ad (d): Finally, C2 is A-linear, and C2 b = C χ(b̄)C = b C2 for b ∈ B, so

C2 = u1S with u ∈ A. From the relations

uC = C3 = Cu = ūC by antilinearity of C,

ūu 1S = (C†)2C2 = C−2C2 = 1S ,

we get u = ū and hence u2 = 1. Thus u ∈ A = C(M) takes the values ±1 only,
so u = ±1 when M is connected. (More generally, C2 lies in H0(M,Z2).)

The antilinear operator C : S → S, which becomes an antiunitary operator
on a suitable Hilbert-space completion of S, is called the charge conjugation. It
exists if and only if κ(B) = 0.

What, then, are spinc and spin structures on M? We choose on M a metric
(without losing generality), and also an orientation ε, which organizes the action
of B, in that a change ε 7→ −ε induces c(γ) 7→ −c(γ), which either

(i) reverses the Z2-grading of S = S+ ⊕ S−, in the even case; or

(ii) changes the action on S of each c(α) to −c(α), for α ∈ A1(M), in the odd
case —recall that c(α) := c(αγ) in the odd case.

Definition 2.19. Let (M, ε) be a compact boundaryless orientable manifold,
together with a chosen orientation ε. Let A = C(M) and let B be specified as
before (in terms of a fixed but arbitrary Riemannian metric on M). If δ(B) =
0 in H3(M ; Z), a spinc structure on (M, ε) is an isomorphism class [S] of
equivalence B-A-bimodules.

If δ(B) = 0 and if κ(B) = 0 in H2(M ; Z2), a pair (S, C) give data for a spin
structure, when S is an equivalence B-A-bimodule such that S♯ ∼= S, and C is a
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charge conjugation operator on S. A spin structure on (M, ε) is an isomorphism
class of such pairs.

Remark 2.20. There is an alternative treatment, given in many books, that
defines spinc or spin structures using principal G-bundles for G = Spinc(Rn) or
G = Spin(Rn) respectively. The equivalence of the two approaches is treated
in [p-rj86] and [s-h00].

Atiyah, Bott and Shapiro [abs64] called a spinc structure a “K-orientation”,
for reasons which may be obvious to K-theorists. At any rate, it is a finer
invariant than the orientation class [ε], provided it exists.

In the long cohomology exact sequence there is a boundary homomorphism

H2(M ; Z2)
∂−→ H3(M ; Z).

By examining the definitions of the various Čech cocycles that we have obtained
so far, one can show that δ(B) = ∂(κ(B)).

Remark 2.21. It is known that δ(B) = 0 for dimM ≤ 4: manifolds of dimensions
1, 2, 3, 4 always carry spinc structures. There are 5-dimensional manifolds for
which δ(B) 6= 0; the best-known is the homogeneous space SU(3)/ SO(3). A
homotopy-theoretic proof of the obstruction for this example in given in [f-t00].

A complex manifold has a natural orientation and a natural spinc structure
coming from its complex structure. Thus CPm come with a spinc structure, for
all m. However, it is known that CPm admits spin structures if and only if m
is odd: therefore, CP 2 is a 4-dimensional manifold without spin structures.

2.6 The spin connection

We now leave the topological level and introduce differential structure. Thus we
replace A = C(M) by A = C∞(M), and continuous sections Γcont by smooth
sections Γsmooth. Thus S = Γ(M,S) will henceforth denote the A-module of
smooth spinors.

Our treatment of Morita equivalence of unital algebras passes without change
to the smooth level. We can go back with the functor − ⊗C∞(M) C(M), if de-
sired.

Definition 2.22. A connection on a (finitely generated projective) A-module
E = Γ(M,E) is a C-linear map ∇ : E → A1(M) ⊗A E = Γ(M,T ∗M ⊗ E) ≡
A1(M,E), satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f ∇s.

It extends to an odd derivation of degree +1 on A•(M)⊗A E = Γ(M,Λ•T ∗M ⊗
E) ≡ A•(M,E) with grading inherited from that of A•(M), leaving E trivially
graded, so that ∇(ω∧σ) = dω∧σ+(−1)|ω|ω∧∇σ for ω ∈ A•(M), σ ∈ A•(M,E).

Employing the usual contraction of vector fields with forms in A•(M),
namely,

ιXω(Y1, . . . , Yk) := ω(X,Y1, . . . , Yk) for ω ∈ Ak+1(M),
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extended to A•(M)⊗A E as ιX ⊗ idE —but still written ιX— we get operators
∇X on A•(M,E) of degree 0 by defining

∇X := ιX ◦ ∇+∇ ◦ ιX .

This is A-linear in X . Moreover, if ω ∈ A•(M) and s ∈ E , one can check that
∇X(ω ⊗ s) = LXω ⊗ s + ω∇Xs, where LX = ιX d + d ιX is the Lie derivative
of forms with respect to X .

Exercise 2.23. Verify that ∇X(ιY σ) = ιY (∇Xσ) + ι[X,Y ]σ for σ ∈ A•(M,E).

Exercise 2.24. If E = X(M) = Γ(M,TM), then show that

∇XY −∇YX − [X,Y ] = ιY ιX∇θ,

where θ ∈ A1(M,TM) is the fundamental 1-form defined by ιXθ := X. We say
that ∇ is torsionfree if ∇θ = 0 in A2(M,TM).

Exercise 2.25. Show that ιY ιX∇2 = ∇X∇Y − ∇Y∇X − ∇[X,Y ], where the
degree +2 operator ∇2 on A•(M,E) is the curvature of ∇.

We mention two natural constructions for connections, on tensor products of
A-modules and on dual A-modules. Firstly, if ∇′ : F → A1(M)⊗AF is another
connection in another A-module, then

∇̃(s⊗ t) := ∇s⊗ t+ s⊗∇′t

(extended by linearity, as usual) makes ∇̃ a connection on E ⊗A F .
Next, if E♯ = HomA(E ,A), then the dual connection ∇♯ on E♯ is determined

by

d(ζ(s)) =: (∇♯ζ)(s) + ζ(∇s) in A1(M); or equivalently

X(ζ(s)) =: (∇♯Xζ)(s) + ζ(∇Xs) in A, for X ∈ X(M),

whenever ζ ∈ E♯ and s ∈ E .

Definition 2.26. If E an A-module equipped with an A-valued Hermitian pair-
ing, we say that a connection ∇ on E is Hermitian if

(∇s | t) + (s | ∇t) = d (s | t), or, in other words,

(∇Xs | t) + (s | ∇Xt) = X (s | t), for any real X ∈ X(M).

If ∇,∇′ are connections on E , then ∇′ − ∇ is an A-module map: (∇′ −
∇)(fs) = f(∇′−∇)s, so that locally, over U ⊂M for which E

∣∣
U
→ U is trivial,

we can write
∇ = d+ α, where α ∈ A1(U,EndE).

Fact 2.27. On X(M) = Γ(M,TM) there is, for each Riemannian metric g, a
unique torsion-free connection that is compatible with g:

g(∇X,Y ) + g(X,∇Y ) = d(g(X,Y )) for X,Y ∈ X(M), or

g(∇ZX,Y ) + g(X,∇ZY ) = Z(g(X,Y )) for X,Y, Z ∈ X(M).
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The explicit formula for this connection is

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y ))

+ g(Y, [Z,X ]) + g(Z, [X,Y ])− g(X, [Y, Z]). (2.6)

It is called Levi-Civita connection associated to g. (The proof of existence
consists in showing that the right hand side of this expression is A-linear in Y
and Z, and obeys a Leibniz rule with respect to X , so it gives a connection;
and uniqueness is obtained by checking that metric compatibility and torsion
freedom make the right hand side automatic.)

The dual connection on A1(M) will also be called the “Levi-Civita connec-
tion”. At the risk of some confusion, we shall use the same symbol ∇ for both
of these Levi-Civita connections.

Local formulas From now on, we assume that U ⊂ M is an open chart
domain over which the tangent and cotangent bundles are trivial. Local coordi-
nates are functions x1, . . . , xn ∈ C∞(U), and we denote ∂j := ∂/∂xj ∈ X(M)

∣∣
U

for the local basis of vector fields; by definition, their Lie brackets vanish:
[∂i, ∂j ] = 0. We define the Christoffel symbols Γkij ∈ C∞(U) by

∇∂i∂j =: Γkij ∂k, or ∇∂j =: Γkij dx
i ⊗ ∂k.

The explicit expression (2.6) for the Levi-Civita connection reduces to a local
formula over U , namely

Γkij := 1
2g
kl(∂igjl + ∂jgil − ∂lgij); here [grs] = [gij ]

−1. (2.7)

Notice that Γkji = Γkij ; this is because of torsion freedom.

Dually, the coefficients of the Levi-Civita connection on 1-forms are −Γkij
(note the change of sign):

∇∂i(dx
k) = −Γkij dx

j , or ∇(dxk) = −Γkij dx
i ⊗ dxj .

Since the Riemannian metric gives a concept of (fibrewise) orthogonality on
the tangent and cotangent bundles, we can select local orthonormal bases :

{E1, . . . , En} for X(M)
∣∣
U

= Γ(U, TM) : g(Eα, Eβ) = δαβ ;

{θ1, . . . , θn} for A1(M)
∣∣
U

= Γ(U, T ∗M) : g(θα, θβ) = δαβ .

We rewrite the Christoffel symbols in these local bases:

∇Eα =: Γ̃βiα dx
i ⊗ Eβ , ∇θβ = −Γ̃βiα dx

i ⊗ θα.

Metric compatibility means that, for each fixed i, the Γ̃•i• are skewsymmetric
matrices :

Γ̃βiα + Γ̃αiβ = −g(∇∂iθ
β , θα)− g(θβ ,∇∂iθ

α) = −∂i(δαβ) = 0.

Thus Γ̃ lies in A1(U, so(T ∗M)) ∼= A1(U)⊗R so(Rn).
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Definition 2.28. On a spinor module S = Γ(M,S), a spinc-connection is any
Hermitian connection ∇S : S → A1(M)⊗AS which is compatible with the action
of B in the following way:

∇S(c(α)ψ) = c(∇α)ψ + c(α)∇Sψ for α ∈ A1(M), ψ ∈ S; or

∇SX(c(α)ψ) = c(∇Xα)ψ + c(α)∇SXψ for α ∈ A1(M), ψ ∈ S, X ∈ X(M),
(2.8)

where ∇α and ∇Xα refer to the Levi-Civita connection on A1(M).
If (S, C) are data for a spin structure, we say ∇S is a spin connection if,

moreover, each ∇X : S → S commutes with C whenever X is real.

Before discussing existence, let us look first at local formulas. We thus write
“∇ = d − Γ̃ locally” for the Levi-Civita connection, with an implicit choice of
local orthonormal bases of 1-forms. We recall that there are isomorphisms of
Lie algebras

µ̇ : so(T ∗xM)→ Q(Λ2T ∗xM) ≡ spin(T ∗xM)

with the property that ad(µ̇(A)) = A for A ∈ so(T ∗xM); in other words,
[µ̇(A), v] = Av for v ∈ T ∗xM —this is a commutator for the Clifford prod-

uct in Cl(T ∗xM, gx). On the chart domain U , we can apply µ̇ to Γ̃ fibrewise; this
means that

[µ̇(Γ̃), c(α)] = c(Γ̃α)

for α ∈ A1(M) with support in U , Γ̃ ∈ Γ(U,EndT ∗M) is mapped to µ̇(Γ̃) ∈
Γ(U,EndS), and c(α) again denotes the Clifford action action of α on S

∣∣
U

=
Γ(U, S).

In this way we get the local expression of a connection,

∇S := d− µ̇(Γ̃), acting on S
∣∣
U
. (2.9)

Suppose we take α ∈ A1(M) with support in U , and ψ ∈ S
∣∣
U

. Then

∇S(c(α)ψ) = d(c(α)ψ) − µ̇(Γ̃)c(α)ψ

= c(dα)ψ + c(α) dψ − µ̇(Γ̃)c(α)ψ

= c(α)(dψ − µ̇(Γ̃)ψ) + (c(dα) − [µ̇(Γ̃), c(α)]ψ)

= c(α)∇Sψ + c(dα− Γ̃α)ψ

= c(∇α)ψ + c(α)∇Sψ. (2.10)

Thus ∇S := d − µ̇(Γ) provides a local solution to the existence of ∇S : S →
A1(M)⊗A S satisfying the Leibniz rule:

∇S(c(α)ψ) = c(∇α)ψ + c(α)∇Sψ.

Physicists like to write γα := c(θα) for a given local orthonormal basis of
A1(M) —so that the γα are fixed matrices. For convenience, we also write
γβ = δαβ γ

α also (in the Euclidean signature, which we are always using here);
in other words, γβ = γβ but with its index lowered for use with the Einstein
summation convention. Thus the Clifford relations are just

γαγβ + γβγα = 2δαβ, for α, β = 1, . . . , n.
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The formula (1.7) for µ̇ can now be rewritten as

µ̇(Γ̃) = − 1
4 Γ̃β•α γ

αγβ .

A more sensible notation arrives by introducing matrix-valued functions
ω1, . . . , ωn ∈ Γ(U,EndT ∗M) as follows:

ωi := − 1
4 Γ̃βiα γ

αγβ .

Let us look at the calculation (2.10) again, after contracting with a vectorfield
X . We get

[∇SX , c(α)]ψ = [LX −X iµ̇(ωi), c(α)]ψ

=
(
c(LXα) −X i c(ωiα)

)
ψ = c(∇Xα)ψ.

Thus the local coefficients of ∇SX are − 1
4X

iΓ̃βiα γ
αγβ, for X ∈ X(M).

Now suppose S comes from a spin structure on M . Since C(ψa) = (Cψ)ā
for a ∈ A = C∞(M), the operator C acts locally (as a field of antilinear
conjugations Cx : Sx → Sx); and since C(b) = χ(b̄)C for b ∈ B, we get, for
α, β = 1, . . . , n:

Cγαγβ = Cc(θα)c(θβ) = c(θα)c(θβ)C = γαγβC.

Thus ∇SXC − C∇SX vanishes over U , provided X
∣∣
U

is real.

Suppose that ∇′ is another local connection defined on S
∣∣
U

and satisfying
the Leibniz rule (2.10) there. Then

∇′ −∇S = β ∈ A1(U,EndS)

and c(κ)βψ = βc(κ)ψ for all κ ∈ B
∣∣
U

. Thus βx is a scalar matrix in End(Sx), for

each x ∈ U . To fix β, we ask that both ∇′ and ∇S be Hermitian connections;
this entails that each βx is skew-hermitian:

〈βxφx | ψx〉+ 〈φx | βxψx〉 = 0 for x ∈ U,

so this scalar is purely imaginary. On the other hand, if ∇′X , like ∇SX , commutes
with C whenever the coefficients X i of X are real functions, then this scalar
must be purely real. Therefore, β = 0.

Proposition 2.29. If (S, C) are data for a spin structure on M , then there is
a unique Hermitian spin connection ∇S : S → A1(M)⊗A S, such that

∇S(c(α)ψ) = c(∇α)ψ + c(α)∇Sψ, for α ∈ A1(M), ψ ∈ S,

and such that ∇SXC = C∇SX for X ∈ X(M) real.

Proof. We have shown that ∇S exists locally with the recipe (2.9) on any chart

domain. This recipe gives a local Hermitian connection since µ̇(Γ̃) is skewadjoint
—because the representation c is selfadjoint— and it commutes with C. Any
other local connection with these properties must coincide with (2.9) over U .

Furthermore, on overlaps U1∩U2 of chart domains, we have shown that β :=
∇S |U1 −∇S |U2 ∈ A1(U1 ∩U2,EndS) vanishes. Therefore, the local expressions
can be assembled into a globally defined spin connection.
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Remark 2.30. If S is only a spinor module for a spinc structure, then the unique-
ness argument for the local spin connection fails. We can only conclude that
∇S |U1 − ∇S |U2 = i(α1 − α2) ⊗ 1EndS , where α1 ∈ A1(U1) and α2 ∈ A1(U2)
are real 1-forms. We may be able to patch these “gauge potentials” to get a
connection ∇ of a line bundle L♯ = Γ(M,L∗). Then one can show that on S⊗L,
there is a connection ∇S,α that satisfies the Leibniz rule above, and hermiticity.
These are “spinc connections” for the twisted spinc structures.

If ∇ is any connection on an A-module E = Γ(M,E), then

∇2(fs) = ∇(df ⊗ s+ f ∇s) =
(
d(df)⊗ s− df ∇s

)
+
(
df ∇s+ f ∇2s

)
= f ∇2s,

for f ∈ A, so that ∇2 is tensorial: ∇s = Rs for a certain 2-form R ∈
A2(M,EndE), the curvature of ∇. For the Levi-Civita connection, a local
calculation gives

∇2α = (d− Γ̃)(dα − Γ̃α) = −d(Γ̃α) − Γ̃ dα+ Γ̃(Γ̃α) = (−dΓ̃ + Γ̃ ∧ Γ̃)α,

which yields the local expression for the Riemannian curvature tensor:

R
∣∣
U

= −dΓ̃ + Γ̃ ∧ Γ̃ ∈ A2(U, so(T ∗M)).

Likewise, the curvature RS of the spin connection is locally given by

µ̇(R) = −dµ̇(Γ̃) + µ̇(Γ̃) ∧ µ̇(Γ̃) ∈ A2(U,EndS).

One can check these formulas to get more familiar expressions by computing
R(X,Y ) = ιY ιXR and likewise RS(X,Y ), for X,Y ∈ X(M).

2.7 Epilogue: counting the spin structures

A spin structure on (M, ε) is an equivalence class of pairs (S, C), but what can
be said about the equivalence relation?

First, S has a class [S] ∈ Mrt(B,A): these are classified by H2(M ; Z).

If (S1, C1) is another spin structure, then C1 : S♯1 → S1 comes from a B-A-
bimodule isomorphism T1 : S1 → S1. But now S1

∼= S ⊗ L for some L, where
[L] ∈ H2(M ; Z) is well defined. Thus we get

S♯

T �� −⊗AL♯ // S♯ ⊗A L♯
T1�� (S ⊗A L)♯

S −⊗AL // S ⊗A L
and therefore (S1, C1) ∼ (S, C) if this diagram commutes. Now

S1
∼= S♯1 ⊗A HomB(S♯1,S1) ∼= S♯1 ⊗A HomB(S♯ ⊗A L♯,S ⊗A L)

∼= S♯1 ⊗A L ⊗A HomB(S♯,S)⊗A L ∼= S♯1 ⊗A L ⊗A L,
since HomB(S♯,S) is trivial: the existence of T shows that [S♯] = [S] in

Mrt(B,A). The conclusion is that S1
∼= S♯1 ⊗A L⊗A L. Thus S1 is also selfdual

if and only if L ⊗A L is trivial: (×2)∗[L] = 0 in H2(M ; Z). But, using the long
exact sequence (2.5), we find that ker(×2)∗ = im{∂ : H1(M ; Z2)→ H2(M ; Z)}.

Conclusion: Those [S ⊗A L] ∈Mrt(B,A) for which L⊗A L is trivial, but L
is not, i.e., the distinct spin structures on (M, ε), are classified by H1(M,Z2).
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Part III Epilogue: counting the spin structures

Remark 2.31. The group H1(M,Z2) is known to classify real line bundles overM .
If a twist by L exchanges the spinor modules for two spin structures, there is
an antilinear automorphism of L which matches the two charge conjugation op-
erators, and the part of L fixed by this automorphism comprises the sections of
the corresponding R-line bundle over M .
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Chapter 3

Dirac operators

Suppose we are given a compact oriented (boundaryless) Riemannian manifold
(M, ε) and a spinor module with charge conjugation (S, C), together with a
Riemannian metric g, so that the Clifford action c : B → EndA(S) has been
specified. We can also write it as ĉ ∈ HomA(B ⊗A S,S) by setting ĉ(κ⊗ ψ) :=
c(κ)ψ.

Definition 3.1. Using the inclusion A1(M) →֒ B —where in the odd dimen-
sional case this is given by c(α) := c(αγ), as before— we can form the compo-
sition

/D := −i ĉ ◦ ∇S (3.1)

where

S ∇
S

−−→ A1(M)⊗A S ĉ−→ S,
so that /D : S → S is C-linear. This is the Dirac operator associated to (S, C)
and g.

The (−i) is included in the definition to make /D symmetric (instead of
skewsymmetric) as an operator on a Hilbert space, because we have chosen g
to be positive definite, that is, γαγβ + γβγα = +2 δαβ. Historically, /D was
introduced as −iγµδµ = γµpµ where the pµ are components of a 4-momentum,
but in the Minkowskian signature.

Using local (coordinate or orthonormal) bases for X(M) and A1(M), we get
nicer formulas:

/Dψ = −i ĉ(∇Sψ) = −i c(dxj)∇S∂j
ψ = −i γα∇SEα

ψ. (3.2)

The essential algebraic property of /D is the commutation relation:

[ /D, a] = −i c(da), for all a ∈ A = C∞(M). (3.3)

Indeed,

[ /D, a]ψ = −i ĉ(∇S(aψ)) + ia ĉ(∇Sψ)

= −i ĉ(∇S(aψ)− a∇Sψ)

= −i ĉ(da⊗ ψ) = −i c(da)ψ, for ψ ∈ S.
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Part III The metric distance property

3.1 The metric distance property

As an operator, we can make sense of [ /D, a] by conferring on S the structure of
a Hilbert space: if we write det g := det[gij ] for short, then

νg :=
√

det g dx1 ∧ dx2 ∧ · · · ∧ dxn ∈ An(M)

is the Riemannian volume form (for the given orientation ε and metric g). In
the notation, we assume that all local charts are consistent with the given orien-
tation, which just means that det[gij ] > 0 in any local chart. The scalar product
on S is then given by

〈φ | ψ〉 :=

∫

M

(φ | ψ) νg for φ, ψ ∈ S.

On completion in the norm ‖ψ‖ :=
√
〈ψ | ψ〉, we get the Hilbert space H :=

L2(M,S) of L2-spinors on M .
Using the gradient grada := (da)♯ ∈ X(M), we can compute

‖[ /D, a]‖2 = ‖c(da)‖2 = sup
x∈M
‖cx(da(x))‖2

= sup
x∈M

gx(dā(x), da(x)) with gx on (T ∗xM)C

= sup
x∈M

gx
(
grad ā

∣∣
x
, grada

∣∣
x

)
using the dual gx on (TxM)C

=: sup
x∈M

∥∥grada
∣∣
x

∥∥2
=: ‖ grada‖2∞.

Classically, we compute distances on a (connected) Riemannian manifold by the
formula

d(x, y) := inf{ length(γ) : γ : [0, 1]→M ; γ(0) = x, γ(1) = y },

with the infimum taken over all piecewise-smooth paths γ in M from x to y.
For a ∈ C∞(M), we then get

a(y)− a(x) = a(γ(1))− a(γ(0)) =

∫ 1

0

d

dt
[a(γ(t))] dt

=

∫ 1

0

γ̇(a)
∣∣
γ(t)

dt =

∫ 1

0

da(γ̇)
∣∣
γ(t)

dt =

∫ 1

0

daγ(t)(γ̇(t)) dt

=

∫ 1

0

gγ(t)

(
grada

∣∣
γ(t)

, γ̇(t)
)
dt,

and we can estimate this difference by

|a(y)− a(x)| ≤
∫ 1

0

∣∣grada
∣∣
γ(t)

∣∣ |γ̇(t)| dt

≤ ‖ grada‖∞
∫ 1

0

|γ̇(t)| dt = ‖ grada‖∞ length(γ)

= ‖[ /D, a]‖ length(γ).
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Part III Symmetry of the Dirac operator

Thus

sup{ |a(y)− a(x)| : a ∈ C(M), ‖[ /D, a]‖ ≤ 1 } ≤ inf
γ

length(γ) =: d(x, y). (3.4)

In this supremum, we can use a ∈ C(M) not necessarily smooth; a need only
be continuous with grada (ν-essentially) bounded. Since we have obtained
|a(y) − a(x)| ≤ ‖ grada‖∞d(x, y), we see that a need only be Lipschitz on M
—with respect to the distance d— with Lipschitz constant ≤ ‖ grada‖∞. In
fact, this is the best general Lipschitz constant: fix x ∈ M , and set ax(y) :=
d(x, y). This function lies in C(M), and |ax(y)−ax(z)| ≤ d(y, z) by the triangle
inequality for d. Since ‖ gradax‖∞ = 1 by a local geodesic calculation, we see
that a = ax makes the inequality in (3.4) sharp:

d(x, y) = sup{ |a(y)− a(x)| : ‖ grada‖∞ ≤ 1 }
= sup{ |a(y)− a(x)| : a ∈ C(M), ‖[ /D, a]‖ ≤ 1 }, (3.5)

so that /D determines the Riemannian distance d, which in turn determines the
metric g. (The Myers–Steenrod theorem of differential geometry says that g is
uniquely determined by its distance function d.)

Example 3.2. Take M = S1 (n = 1, m = 0, 2m = 1). The trivial line bundle is
a spinor bundle, with S = C∞(S1) = A, and C is just the complex conjugation
K of functions. With the flat metric on S1 ∼= R/Z, we can identify S with the
set of smooth 1-periodic functions on R, so both ∇ and ∇S are trivial since
Γ1

11 = 0. Therefore,

/D = −i d
dθ

is the Dirac operator in this case. Thus [ /D, f ] = −if ′ for f ∈ A, and for
α, β ∈ [0, 1], we get

|f(β)− f(α)| =
∣∣∣∣
∫ β

α

f ′(θ) dθ

∣∣∣∣ ≤
∫ β

α

|f ′(θ)| dθ ≤ |β − α| whenever ‖f ′‖∞ ≤ 1.

Using fα(β) := |β − α| for α − 1
2 ≤ β ≤ α + 1

2 wrapped around R/Z, we get a
Lipschitz function making the inequality sharp. Thus d(α, β) = |β−α| provided
|β − α| ≤ 1

2 : this is just the arc length on the circle of circumference 1.
More generally, the formula for d(x, y) yields the length of the minimal

geodesic from x to y, provided y is closer to x, than the “cut-locus” of x.

3.2 Symmetry of the Dirac operator

We now regard /D as an operator on L2(M,S), defined initially on the dense
domain S = Γsmooth(M,S).

Proposition 3.3. /D is symmetric: that is, whenever φ, ψ ∈ S, the following
equality holds:

〈 /Dφ | ψ〉 = 〈φ | /Dψ〉.
Proof. We compute the pairings ( /Dφ | ψ) and (φ | /Dψ), which take values in
A = C∞(M). We need a formula for the divergence of a vector field: LXνg =:
(divX) νg, so that

∫

M

(divX) νg =

∫

M

LX(νg) =

∫

M

ιX(dνg) + d(ιXνg) =

∫

M

d(ιXνg) = 0
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Part III Selfadjointness of the Dirac operator

by Stokes’ theorem (remember that M has no boundary). This formula is

divX = ∂jX
j + ΓjjkX

k = dxj(∇∂jX),

as can easily be checked; on the right hand side we use the Levi-Civita connection
on X(M). Now we abbreviate cj := c(dxj) ∈ Γ(U,EndS), for j = 1, . . . , n. Then
we compute the difference of A-valued pairings:

i(φ | /Dψ)− i( /Dφ | ψ) = (φ | cj ∇S∂j
ψ) + (cj ∇S∂j

φ | ψ)

= (φ | ∇S∂j
cj ψ)− (φ | c(∇∂j dx

j)ψ) + (∇S∂j
φ | cj ψ)

= ∂j(φ | cj ψ)− (φ | c(∇∂j dx
j)ψ).

Here we have used the Leibniz rule for ∇S , the selfadjointness of cj since dxj is
a real local 1-form, and the hermiticity of ∇S .

By duality, the map α 7→ (φ | c(α)ψ), which takes 1-forms to functions,
defines a vector field Zφψ —because X(M) = EndC∞(M)(A1(M), C∞(M))— so
the right hand side becomes

∂j(dx
j(Zφψ))− (∇∂j dx

j)(Zφψ) = dxj(∇∂jZφψ) = divZφψ,

where we have used the Leibniz rule for the dual Levi-Civita connections on
A1(M) and on X(M), respectively. Thus

(φ | /Dψ)− ( /Dφ | ψ) = −i divZφψ

which has integral zero.

3.3 Selfadjointness of the Dirac operator

If T is a densely defined operator on a Hilbert space H, its adjoint T ∗ has
domain

DomT ∗ := {φ ∈ H : ∃χ ∈ H with 〈Tψ | φ〉 = 〈ψ | χ〉 for all ψ ∈ DomT }

and then T ∗φ := χ, of course, so that the formula 〈Tψ | φ〉 = 〈ψ | T ∗φ〉 holds.
If T is symmetric, then clearly DomT ⊆ DomT ∗ with T ∗ = T on DomT : that
is, T ∗ is an extension of T to a larger domain.

The second adjoint T ∗∗ =: T is called the closure of T (symmetric operators
always have this closure), where the domain of the closure is

DomT := {ψ ∈ H : ∃φ ∈ H and a sequence {ψn} ⊂ DomT,

such that ψn → ψ and Tψn → φ in H}

In other words, the graph of T in H⊕H is the closure of the graph of T . And
then, of course, we put Tψ := φ. When T is symmetric, we get

DomT ⊆ DomT ⊆ DomT ∗.

Definition 3.4. We say that T is selfadjoint if T = T ∗; thus T is symmetric
and closed. Otherwise, we say that T is essentially selfadjoint if it is symmetric
and its closure T is selfadjoint.
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Part III The Schrödinger–Lichnerowicz formula

Remark 3.5. Selfadjoint operators have real spectra: sp(T ) ⊆ R. This is crucial:
an unbounded operator that is merely symmetric may have non-real elements
in its spectrum. Moreover, selfadjoint operators obey the spectral theorem:
T =

∫
R
λdET (λ), where ET is a “projector-valued measure” on Borel subsets

of R with support in sp(T ).

The main result of this chapter is that the Dirac operator on a compact
Riemannian spin manifold is essentially selfadjoint. This was proved by Wolf
in 1973; he actually showed the result also for noncompact manifolds which are
complete with respect to the Riemannian distance given by the metric [w-ja73].
In his proof, completeness is needed to establish that closed geodesic balls are
compact; that proof is also given in the book by Friedrich [f-t00]. For simplicity,
we deal here only with the compact case.

Theorem 3.6. Let (M, g) be a compact boundaryless Riemannian spin mani-
fold. The Dirac operator /D is essentially selfadjoint on its original domain S.
Proof. There is a natural norm on Dom /D

∗
, given by

|||ψ|||2 := ‖ψ‖2 + ‖ /D∗ψ‖2.
We claim that S = Γsmooth(M,S) is dense in Dom /D

∗
for this norm. Using

a finite partition of unity f1 + · · · + fr = 1 with each fi ∈ A supported in a
chart domain Ui over which S|Ui → Ui is trivial, it is enough to show that any
fiφ, with φ ∈ Dom /D

∗
, can be approximated in the |||·|||-norm by elements of

Γsmooth(Ui, S). Thus we can suppose that suppφ ⊂ Ui, and regard φ ∈ L2(Ui, S)
as a 2m-tuple of functions φ = {φk} with each φk ∈ L2(Ui, νg).

Previous formulas now show that

〈 /D∗φ | ψ〉 = 〈φ | /Dψ〉 =

∫

M

(φ | cj ∇S∂j
ψ) =

∫
(cjφ | ∇S∂j

ψ)

=

∫ [
∂j(c

j φ | ψ)− (∇S∂j
cjφ | ψ)

]
νg

=

∫

M

[
−(cjφ | ψ) (div ∂j)− (∇S∂j

cjφ | ψ)
]
νg

after an integration by parts, so that /D
∗

is given by the formula /D
∗

= −(∇S∂j
+

div ∂j) c(dx
j), as a vector-valued distribution on Ui; in particular, it is also a

differential operator (the difference /D
∗ − /D will soon be seen to vanish).

Now, if {hr} is a smooth delta-sequence, then for large enough r we can
convolve both φ and /D

∗
φ with hr, while remaining supported in Ui —the con-

volution is defined after pulling back functions on the chart domain Ui to an
fixed open subset of Rn. Thus we find that φ ∗ hr → φ and /D

∗
(φ ∗ hr)→ /D

∗
φ

in L2(Ui, νg)
2m

, so that |||φ ∗ hr − φ||| → 0. But the spinors φ ∗ hr are smooth

since the hr are smooth, so we conclude that S is |||·|||-dense in Dom /D
∗
.

But now /D
∗
(φ ∗ hr) = /D(φ ∗ hr) since S = Dom /D, so we have shown that

φ lies in Dom /D and that /Dφ = /D
∗
φ. Thus Dom /D = Dom /D

∗
, and it follows

that /D = /D
∗∗

= /D
∗

: which establishes that /D is selfadjoint.

3.4 The Schrödinger–Lichnerowicz formula

If E → M is any smooth vector bundle with connection ∇E on E = Γ(M,E),
we can consider not only ∇E : E → A1(M)⊗AE , but also the connection ∇E′

:=
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Part III The Schrödinger–Lichnerowicz formula

∇⊗ 1 + 1⊗∇E on the tensor product bundle E ′ = A1(M)⊗A E ; here ∇ is once
again the Levi-Civita connection on A1(M). Their composition is an operator
∇E′ ◦ ∇E from E to A1(M)⊗A A1(M)⊗A E ; using the metric g on A1(M) we
can take the trace over the first two factors, ending up with a Laplacian:

∆E := −Trg(∇E
′ ◦ ∇E) : E → E . (3.6)

The minus sign is a convention to yield a positive operator (instead of a negative
one) [bgv92]. Locally, this means:

∆E = −gij(∇E∂i
∇E∂j
− Γkij ∇E∂k

).

Definition 3.7. In particular, when E = M × C is the trivial line bundle, we
get the “scalar Laplacian”

∆ = −gij(∂i ∂j − Γkij ∂k), (3.7)

also known as the “Laplace–Beltrami operator” on A = C∞(M). Likewise,
when E = S, we get the spinor Laplacian for a spin manifold.

Before examining the relation between the Dirac operator and the spinor
Laplacian, we collect a few well-known formulas for the Riemann curvature
tensor, R. These can be found in many places, for instance [bgv92]; perhaps
the best reference is Milnor’s little book [m-jw63].

The square of the Levi-Civita connection on X(M) is C∞(M)-linear, so it is
given by ∇2X = R(X), where R ∈ A2(M,EndTM). In local coordinates, its
components are Rijkl := g(∂i, R(∂k, ∂l) ∂j).

Taking a trace over the first and third indices, we get the Ricci tensor,
whose components are Rjl := gikRijkl . The trace of the Ricci tensor is the
scalar curvature (or “curvature scalar”) s := gjlRjl = gjlgikRijkl ∈ C∞(M).
Under exchange of indices, R has the following skewsymmetry and symmetry
relations:

Rijkl = −Rjikl = −Rijlk; Rijkl = Rklij .

The (first) Bianchi identity says that the cyclic sum over three indices vanishes:

Rijkl +Riljk +Riklj = 0.

Moreover, the Ricci tensor is symmetric: Rjl = Rlj .

The formula in the next Proposition is generally attributed to Lichnerow-
icz [l-a63, 1963], but was anticipated by Schrödinger in a little-known pa-
per [s-e32, 1932].

Proposition 3.8. Let (M, g) be a compact Riemannian spin manifold with
spinor module S. Then

/D
2

= ∆S + 1
4s (3.8)

as an operator on S,
Proof. It is enough to prove the equality when applied to spinors ψ supported in
a chart domain, so we may use local coordinate formulas. Since /D = −i cj∇S∂j

,
we get

/D
2

= −ci∇S∂i
cj ∇S∂j

= −cicj∇S∂i
∇S∂j
− cic(∇∂i dx

k)∇S∂k

= −cicj (∇S∂i
∇S∂j
− Γkij ∇S∂k

),
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Part III The Schrödinger–Lichnerowicz formula

and from Γkij = Γkji (torsion freedom) and the Clifford relation cicj+cjci = 2gij,
we get

/D
2

= −gij(∇S∂i
∇S∂j
− Γkij ∇S∂k

)− 1
2c
icj [∇S∂i

,∇S∂j
]

= ∆S − 1
2c
icj [∇S∂i

,∇S∂j
].

Since [∂i, ∂j ] = 0, the commutator [∇S∂i
,∇S∂j

] is a spin-curvature term:

[∇S∂k
,∇S∂l

] = RS(∂k, ∂l) = 1
4Rijkl c

icj ,

because the curvature RS of ∇S is given by µ̇(R). Hence,

/D
2 −∆S = − 1

8Rijkl c
kclcicj = 1

8Rjikl c
kclcicj . (3.9)

Since Rjikl has cyclic sum zero in the indices i, k, l, we can also skewsymmetrize
ckclci = c(dxk) c(dxl) c(dxi). It is a simple exercise to check that

ckclci = Q(dxk ∧ dxl ∧ dxi) + glick − gkicl + gklci,

If we now skewsymmetrize the right hand side of (3.9) in the indices i, k, l —
which does not change its value— the Q-term contributes zero to the result.
Also, the term gklcicj = glkcicj contributes zero, while glickcj and −gkiclcj
contribute equally. Thus,

/D
2 −∆S = 1

4Rijklg
ikclcj = 1

4Rjlc
lcj = 1

8Rjl(c
lcj + cjcl)

= 1
4Rjlg

jl = 1
4s.

One consequence of the formula (3.8) is a famous “vanishing theorem” of
Lichnerowicz.

Corollary 3.9. If s(x) ≥ 0 for all x ∈M , and s(x0) > 0 at some point x0 ∈M ,
then ker /D = {0}.
Proof. Suppose that ψ ∈ S satisfies /Dψ = 0. Then

0 = ‖ /Dψ‖2 = 〈ψ | /D2
ψ〉 = 〈ψ |∆Sψ〉+

∫

M

1
4s (ψ | ψ) νg. (3.10)

Now it is easy to check that, after an integration by parts over M and discarding
a divergence term,

〈ψ |∆Sψ〉 = gij 〈∇S∂i
ψ | ∇S∂j

ψ〉. (3.11)

Since the matrix [gij ] is positive definite, this (by the way) shows that ∆S is a
positive operator; and since s ≥ 0, both terms on the right hand side of (3.10)
are nonnegative; so they must both vanish, since their sum is zero.

Moreover, (3.11) shows that 〈ψ |∆Sψ〉 = 0 implies ∇Sψ = 0. This in turn
implies that ∂j (ψ | ψ) = (∇S∂j

ψ | ψ) + (ψ | ∇S∂j
ψ) vanishes for each j, so that

k := (ψ | ψ) is a constant function. But now (3.10) reduces to 0 = k
∫
M
s νg,

which entails k = 0 and then ψ = 0.

We saw by example (Appendix A.2) that on S2, the Dirac operator for the
round metric has spectrum sp( /D) = N \ {0}: here s ≡ 2 and ker /D = {0}. Thus
there are no “harmonic spinors” on S2.
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Part III The spectral growth of the Dirac operator

3.5 The spectral growth of the Dirac operator

Since /D
2

= ∆S + 1
4s, and ∆S is closely related to the Laplacian ∆ on the

(compact, boundaryless) Riemannian manifold (M, g), the general features of
sp( /D) may be deduced from those of sp(∆).

We require two main properties of Laplacians on compact Riemannian man-
ifolds without boundary. Recall that

∆ = −Trg(∇T
∗M⊗T∗M ◦ ∇T∗M ) = −gij (∂i ∂j − Γkij ∂k)

is the local expression for the Laplacian (which depends on g through the Levi-
Civita connection and gij). Thus ∆ is a second order differential operator on
C∞(M).

Fact 3.10. The Laplacian ∆ extends to a positive selfadjoint operator on L2(M, νg)
—also denoted by ∆— and (1 + ∆) has a compact inverse.

To make ∆ selfadjoint, we must complete C∞(M) to a larger domain, by
defining

|||f |||2 := 〈f | (1 + ∆)f〉 = ‖f‖2 + gij 〈∂if | ∂jf〉,
where 〈f | f〉 :=

∫
M |f |2 νg. Taking Dom ∆ := { f ∈ L2(M, νg) : |||f ||| < ∞},

∆ becomes selfadjoint and (1 + ∆)−1 : L2(M, νg) → (Dom ∆, |||·|||) is bounded.
Then one shows that the inclusion (Dom ∆, |||·|||) →֒ L2(M, νg) is a compact op-
erator (by Rellich’s theorem); and (1+∆)−1, as a bounded operator on L2(M, νg),
is then the composition of these two, so it is also compact.

Corollary 3.11. ∆ has discrete (point) spectrum of finite multiplicity.

Proof. Since (1 + ∆)−1 is compact, its spectrum —except for 0— consists only
of eigenvalues of finite multiplicity. Therefore, the same is true of 1 + ∆, and of
∆ itself. Indeed,

sp((1 + ∆)−1) =

{
1

1 + λ0
,

1

1 + λ1
,

1

1 + λ2
, . . .

}

with λ0 ≤ λ1 ≤ λ2 ≤ · · · being the list of eigenvalues of ∆ in increasing order.
These are counted with multiplicity: an eigenvalue of multiplicity r appears
exactly r times on the list. This λk →∞, since (1 + λk)−1 → 0, as k →∞.

As a convention, when A is a compact positive operator, we write λk(A) to
denote the k-th eigenvalue of A in decreasing order (with multiplicity): λ0(A) ≥
λ1(A) ≥ · · · ; on the other hand, if A is an unbounded positive selfadjoint
operator with compact inverse, we write the eigenvalues in increasing order, as
we did for ∆.

Fact 3.12 (Weyl’s theorem). The counting function for sp(∆) is

N∆(λ) := #{λk(∆) : λk(∆) ≤ λ }.

For large λ, the following asymptotic estimate holds:

N∆(λ) ∼ Cn Vol(M)λn/2 as λ→∞,
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Part III The spectral growth of the Dirac operator

where n = dimM , and Vol(M) =
∫
M νg is the total volume of the manifold M .

The constant Cn, that depends only on the dimension n, is

Cn =
Ωn

n(2π)n
=

1

(4π)n/2Γ(n2 + 1)
,

where Ωn = Vol(Sn−1) = 2 πn/2/Γ(n2 ).

We shall not prove Weyl’s theorem, in particular why the number of eigen-
values (up to λ) is proportional to Vol(M), but we shall compute the constant
by considering an example. For a simple and clear exposition of the proof, we
recommend Higson’s ICTP lectures [h-n04].

Example 3.13. Take M = Tn = Rn/bZn to be the n-torus with unit volume.
Identify C∞(Tn) with the smooth periodic functions on the unit cube [0, 1]n.
For the flat metric on Tn, and local coordinates t = (t1, . . . , tn), we get

∆ = −
(
∂

∂t1

)2

−
(
∂

∂t2

)2

− · · · −
(

∂

∂tn

)2

.

Thus we find eigenfunctions, labelled by r = (r1, . . . , rn) ∈ Zn:

φr := e2πir·t, for t ∈ [0, 1]n.

Since {φr : r ∈ Zn } is an orthonormal basis for L2(Tn), these are a complete
set of eigenfunctions, and therefore

sp(∆) = { 4π2 |r|2 : r ∈ Zn }.

If B(0;R) is the ball of radius R, centered at 0 ∈ Rn, then

N∆(λ) = #{ r ∈ Zn : 4π2|r|2 ≤ λ }

∼ Vol(B(0;
√
λ/4π2)) =

(
λ

4π2

)n/2
Vol(B(0; 1))

=
λn/2

(2π)n
Ωn
n

=
Ωn

n(2π)n
λn/2, as λ→∞,

using

Vol(B(0; 1)) =

∫

B(0;1)

dx1 ∧ · · · ∧ dxn

=

∫ 1

0

(∫

Sn−1

ν

)
rn−1 dr

= Ωn

∫ 1

0

rn−1 dr =
Ωn
n
.

For the spinor Laplacian ∆S , a similar estimate holds, but with Cn replaced
by 2mCn (recall that in the flat torus case with untwisted spin structure, S ∼=
C∞(Tn) ⊗ C2m

). Now by Lichnerowicz’ formula, /D
2

differs from ∆S by a
bounded multiplication operator 1

4s, thus N /D2(λ) ∼ N∆S (λ) as λ→∞, hence

N /D2(λ) ∼ 2m Ωn
n(2π)n

Vol(M)λn/2, as λ→∞.
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Consider the positive operator | /D| := ( /D
2
)1/2; remember that µ is an eigenvalue

for | /D| if and only if µ2 is an eigenvalue for /D
2

(with the same multiplicity).
We arrive at the following estimate.

Corollary 3.14.

N| /D|(λ) ∼ 2m Ωn
n(2π)n

Vol(M)λn, as λ→∞.

Example 3.15. For M = S2, with n = 2, we have seen (in Appendix A.2) that

sp( /D) = {±(l+ 1
2 ) : l + 1

2 ∈ N + 1
2 }, with multiplicities 2l + 1

= {±k : k = 1, 2, 3, . . .}, with multiplicities 2k.

Therefore

N| /D|(λ) =
∑

1≤k≤λ
4k = 2⌊λ⌋(⌊λ⌋+ 1) ∼ 2λ(λ+ 1) ∼ 2λ2, as λ→∞.

Now C2 =
Ω2

2(2π)2
=

2π

8π2
=

1

4π
and 2C2 =

1

2π
for spinors. Therefore

2C2 Area(S2)λ2 = 2λ2, so

Area(S2) =
1

C2
= 4π.

In other words, Weyl’s theorem allows us to deduce the area of the 2-sphere S2

from (the knowledge of the circumference of the circle Ω2 = 2π and) the growth
of the spectrum of the Dirac operator on S2.
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Chapter 4

Spectral Growth and
Dixmier Traces

4.1 Definition of spectral triples

We start with the definition of the main concept in noncommutative geometry.

Definition 4.1. A (unital) spectral triple (A,H, D) consists of:

• an algebra A with an involution a 7→ a∗, equipped with a faithful repre-
sentation on:

• a Hilbert space H; and also

• a selfadjoint operator D on H, with dense domain DomD ⊂ H, such that
a(DomD) ⊆ DomD for all a ∈ A,

satisfying the following two conditions:

• the operator [D, a], defined initially on DomD, extends to a bounded
operator on H, for each a ∈ A;

• D has compact resolvent: (D − λ)−1 is compact, when λ /∈ sp(D).

For now, and until further notice, all spectral triples will be defined over uni-
tal algebras. The compact-resolvent condition must be modified if A is nonuni-
tal: as well as enlarging A to a unital algebra, we require only that the products
a(D − λ)−1, for a ∈ A and λ /∈ sp(D), be compact operators.

Example 4.2. Let (M, ε) be an oriented compact boundaryless manifold which is
spin, i.e. admits spin structures, and (S, C) be data for a specific spin structure.
Choose a Riemannian metric g on M (which allows us to define ∇ and ∇S)
and let /D = −i ĉ ◦ ∇S be the corresponding Dirac operator, extended to be
a selfadjoint operator on L2(M,S). Then (C∞(M), L2(M,S), /D) is a spectral
triple. Here [ /D, a] = −i c(da) is a bounded operator on spinors, with ‖[ /D, a]‖ =

‖ grada‖∞, for a ∈ C∞(M). We know by now that ( /D
2

+1)−1 = ( /D− i)−1( /D+
i)−1 is compact, so ( /D ± i)−1 is compact. We refer to these spectral triples as
“standard commutative examples”.
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Part III Logarithmic divergence of spectra

Note that, if λ, µ /∈ sp(D), then (D − λ)−1 − (D − µ)−1 = (λ − µ)(D −
λ)−1(D − µ)−1 —this is the famous “resolvent equation”— since

(D − λ)
(
(D − λ)−1 − (D − µ)−1

)
(D − µ) = (D − µ)− (D − λ) = λ− µ.

Thus (D−λ)−1 is compact if and only if (D−µ)−1 is compact, so we need only
to check this condition for one value of λ. In the same way, we get the following
useful result.

Lemma 4.3. D has compact resolvent if and only if (D2 + 1)−1 is compact.

Proof. We may take λ = −i, since the selfadjointness of D implies that ±i /∈
sp(D). Thus, D has compact resolvent if and only if (D+ i)−1 is compact. Let
T = (D+ i)−1; then the proof reduces to the well-known result that a bounded
operator T is compact if and only if T ∗T is compact.

By the spectral theorem (D2 + 1)1/2 − |D| = f(D), where f : R → R is the
continuous function f(λ) :=

√
λ2 + 1 − |λ| = 1√

λ2+1+|λ| ; and 0 < f(λ) ≤ 1

for all λ ∈ R, so that ‖f(D)‖ ≤ 1. Or more precisely: the operator f(D) :=
(D2 + 1)1/2 − |D|, defined initially on DomD, extends to a bounded operator
on H, of norm at most 1.

In many arguments to come, we shall employ |D| and |D|−1 as if we knew
that kerD = {0}. However, even if kerD 6= {0}, we can always replace |D| by
(D2 + 1)1/2 and |D|−1 by (D2 + 1)−1/2, at the cost of some extra calculation.

4.2 Logarithmic divergence of spectra

If A is a positive selfadjoint operator with compact resolvent, let {λk(A) : k ∈
N } be its eigenvalues listed in increasing order, λ0(A) ≤ λ1(A) ≤ λ2(A) ≤ · · ·
(an eigenvalue of multiplicity r occurs exactly r times in the list). The counting
function NA(λ), defined for λ > 0, is the number of eigenvalues not exceeding λ:

NA(λ) := #{ k ∈ N : λk(A) ≤ λ }.
If A is invertible (i.e., if λ0(A) > 0), we can define the “zeta function”

ζA(s) := TrA−s =
∑

k≥0

λk(A)−s, for s > 0,

where we understand that ζA(s) = +∞ when A−s is not traceless. For real s,
ζA(s) is a nonnegative decreasing function.

It is actually more useful to consider finite partial sums.

Notation. If T ∈ K(H) is any compact operator, and if k ∈ N, let sk(T ),
called the k-th singular value of T , be the k-th eigenvalue of the compact
positive operator |T | := (T ∗T )1/2, where these are listed in decreasing order,
with multiplicity. Thus s0(T ) ≥ s1(T ) ≥ s2(T ) ≥ · · · and each singular value
occurs only finitely many times in the list, namely, the finite multiplicity of the
that eigenvalue of |T |; therefore, sk(T )→ 0 as k →∞. Note that s0(T ) = ‖T ‖
since s0(T )2 is the largest eigenvalue of T ∗T , so that s0(T )2 = ‖T ∗T ‖ = ‖T ‖2.
For each N ∈ N, write

σN (T ) :=

N−1∑

k=0

sk(T ).
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Part III Logarithmic divergence of spectra

We shall see later that for many spectral triples, the counting function of
the positive (unbounded) operator |D| has polynomial growth: for some n, one
can verify an asymptotic relation N|D|(λ) ∼ C′nλ

n. In that case we can take
A := |D|−n, which is compact. Then the number of eigenvalues of A that are
≥ ε equals N|D|(λ) for λ = 1/ε. This suggests heuristically that for N close
to N|D|(1/ε), the N -th eigenvalue is roughly C/ε for some constant C, so that
σN (|D|−n) = O(logN). We now check this condition in a few examples.

Example 4.4. We estimate σN (| /D|−s) for s > 0, where /D is the Dirac operator
on the sphere S2 with its spin structure and its rotation-invariant metric. We
know that the eigenvalues of | /D| are k = 1, 2, 3, . . . with respective multiplicities
2(2k) = 4, 8, 12, . . . . For r = 1, 2, 3, . . . , let

Nr :=

r∑

k=1

4k = 2r(r + 1) ∼ 2r2 as r →∞,

so that logNr ∼ 2 log r as r →∞. Next,

σNr(| /D|−s) =

r∑

k=1

4k(k−s) = 4

r∑

k=1

k1−s,

and thus

σNr (| /D|−s)
logNr

∼ 4

2 log r

r∑

k=1

k1−s ∼ 2

log r

∫ r

1

t1−s dt as r →∞,

by the “integral test” of elementary calculus. There are three cases to consider:

• If s < 2, then
2

log r

∫ r

1

t1−s dt =
r2−s − 1

2− s diverges as r →∞;

• if s > 2, then
2

log r

∫ r

1

t1−s dt→ 0 as r →∞; while

• if s = 2, then
σNr(| /D|−s)

logNr
∼ 2 log r

logr
→ 2.

Finally, note that if Nr−1 ≤ N ≤ Nr, then

σNr−1(| /D|−s)
logNr

≤ σN (| /D|−s)
logN

≤ σNr(| /D|−s)
logNr−1

,

while logN ∼ logNr−1 ∼ logNr ∼ 2 log r as r→∞. Thus

lim
N→∞

σN (| /D|−s)
logN

= lim
r→∞

σNr (| /D|−s)
logNr

=





+∞ if s < 2,

2 if s = 2,

0 if s > 2.

We express this result by saying that for s = 2, “the spectrum of | /D|−2 diverges
logarithmically”. There is precisely one exponent, namely s = 2, for which this
limit is neither zero nor infinite.

Exercise 4.5. Do the same calculation for /D on the torus Tn, whose spectrum
we know: show that the spectrum of | /D|−s diverges logarithmically if and only
if s = n = dim Tn.
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4.3 Some eigenvalue inequalities

Let H be a separable (infinite-dimensional) Hilbert space, and denote by B(H)
the algebra of bounded operators on H. Let K = K(H) be the ideal of compact
operators on H. Each T ∈ K has a polar decomposition T = U |T |, where
|T | = (T ∗T )1/2 ∈ K, and U ∈ B(H) is a partial isometry. This factorization is
unique if we require that U = 0 on ker |T |, since U must map the range of |T |
isometrically onto the range of T .

The spectral theorem yields an orthonormal family {ψk} in H, such that

|T | =
∑

k≥0

sk(T ) |ψk〉〈ψk|, T =
∑

k≥0

sk(T ) |Uψk〉〈ψk|.

(If |T | is invertible, this is an orthonormal basis for H. Otherwise, we can adjoin
an orthonormal basis for ker |T | to the family {ψk}.) Since φk := Uψk gives
another orthonormal family, any T ∈ K has an expansion of the form

T =
∑

k≥0

sk(T ) |φk〉〈ψk|, (4.1)

for some pair of orthonormal families {φk}, {ψk}.
If V1, V2 are unitary operators on H, we can then write

V1TV2 =
∑

k≥0

sk(T ) |V1φk〉〈V ∗2 ψk|,

and conclude that sk(V1TV2) = sk(T ) for each k, and hence that

σN (V1TV2) = σN (T ).

Therefore, any norm |||T ||| that is built from the sequence { sk(T ) : k ∈ N } is
unitarily invariant, that is, |||V1TV2||| = |||T ||| for V1, V2 unitary.

Example 4.6. If ‖T ‖ is the usual operator norm on K, then

‖T ‖ = ‖T ∗T ‖1/2 = ‖ |T | ‖ = sup
k≥0

sk(T ) = s0(T ).

A compact operator T is called trace-class, and we write T ∈ L1 = L1(H), if
the following series converges:

‖T ‖1 := Tr |T | =
∑

k≥0

sk(T ) = lim
N→∞

σN (T ).

For 1 < p < ∞, there are Schatten classes Lp = Lp(H) consisting of operators
for which the following norm is finite:

‖T ‖p =

(∑

k≥0

sk(T )p
)1/p

.

There are strict inclusions L1 ⊂ Lr ⊂ Lp ⊂ K for 1 < r < p <∞.
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Soon, we shall introduce a “Dixmier trace class” L1+(H), with yet another
norm built from singular values, such that L1 ⊂ L1+ ⊂ Lp for p > 1.

Much is known about the singular values of compact operators. For instance,
the following relation holds, for T ∈ K:

sk(T ) = inf{ ‖T (1− P )‖ : P = P 2 = P ∗, dimP (H) ≤ k }. (4.2)

This comes from a well-known minimax principle: see [rs72], for instance. The
infimum is indeed attained at the projector Q of rank k whose range is Q(H) :=
span{ψ0, . . . , ψk−1}, when T is given by (4.1), since T (1 − Q) = T − TQ =∑

j≥k sj(T )|φj〉〈ψj | is an operator with norm ‖T − TQ‖ = sk(T ).

Lemma 4.7. If T ∈ K, then

σN (T ) = sup{ ‖TP‖1 : P = P 2 = P ∗, rankP = N }. (4.3a)

If A is a positive compact operator, then it is also true that

σN (A) = sup{Tr(PAP ) : P = P 2 = P ∗, rankP = N }. (4.3b)

Proof. If P is a projector of finite rank N , then (TP )∗(TP ) = PT ∗TP and thus

|TP | has finite rank ≤ N , so ‖TP‖1 =
∑N−1
k=0 sk(TP ) = σN (TP ). From the

formula (4.2), it follows that 0 ≤ A ≤ B in K implies sk(A) ≤ sk(B) for each
k ∈ N, and in particular, since 0 ≤ PT ∗TP ≤ T ∗T , we get sk(TP ) ≤ sk(T ).
Thus σN (TP ) ≤ σN (T ) also. We conclude that the right hand side of (4.3a) is
≤ σN (T ).

If we write T in the form (4.1) and then choose Q, as before, to be the

projector with range span{ψ0, . . . , ψk−1}, then |TQ| = ∑k−1
j=0 sj(T ) |ψj〉〈ψj | and

thus ‖TQ‖1 = σN (T ).
When A ∈ K is positive, and P is a projector of rank n, then Tr(PAP ) =

Tr(AP ) ≤ ‖AP‖1 ≤ σN (A). To see that the supremum in (4.3b) is attained,
we can write A =

∑
k≥0 sk(A) |ψk〉〈ψk| and note that QA = AQ = QAQ, so

that AQ is also a positive operator. It then follows that Tr(QAQ) = Tr(AQ) =
‖AQ‖1 = σN (A).

Corollary 4.8. Each σN is a norm on K: σN (S + T ) ≤ σN (S) + σN (T ) for
S, T ∈ K.

Proof. This follows from ‖SP + TP‖1 ≤ ‖SP‖1 + ‖TP‖1 for P = P 2 = P ∗,
rankP = N .

Lemma 4.9. If T ∈ K, then

σN (T ) = inf{ ‖R‖1 +N ‖S‖ : R,S ∈ K with R+ S = T }.

Proof. If T = U |T |, then |T | = U∗T (by the details of polar decomposition,
this is true even though U might not be unitary), so T = R+ S implies U∗T =
U∗R+ U∗S; thus, we can suppose that T ≥ 0.

If we now split T =: R+S, then σN (T ) ≤ σN (R) +σN (S) ≤ ‖R‖1 +σN (S),
while

σN (S) =
∑

0≤k<N
sk(S) ≤

∑

0≤k<N
s0(S) = N ‖S‖.
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For T =
∑

k≥0 sk(T ) |ψk〉〈ψk|, we consider the special splitting into positive
operators,

R̃ :=
∑

0≤k<N
(sk(T )− sN (T )) |ψk〉〈ψk|, S̃ := T − R̃.

Then ‖R̃‖1 = σN (T )−N sN(T ), while ‖S̃‖ = sN (T ) by inspection.

The triangle inequality in Corollary 4.8 is not good enough for our needs:
our goal is get an additive functional, rather than just a subadditive one. The
next step is to extract from (4.3b) a sort of “wrong-way triangle inequality”, at
least for positive compact operators.

Lemma 4.10. If A ≥ 0, B ≥ 0 are positive compact operators, and if M,N ∈ N,
then

σM+N (A+B) ≥ σM (A) + σN (B).

Proof. From (4.3b) we obtain σM (A) = sup{Tr(PAP ) : P = P 2 = P ∗, rankP =
M } and σN (B) = sup{Tr(P ′BP ′) : P ′ = P ′2 = P ′∗, rankP ′ = N }. Now
rank(P + P ′) = dim(PH + P ′H) ≤ M + N , so if P ′′ is any projector of rank
M+N whose range includes the subspace PH+P ′H, then P ≤ P ′′ and P ′ ≤ P ′′
as operators. Therefore,

Tr(PAP ) + Tr(P ′BP ′) ≤ Tr(P ′′AP ′′) + Tr(P ′′BP ′′) = Tr(P ′′(A+B)P ′′),

so that σM (A)+σN (B) ≤ supP ′′ Tr(P ′′(A+B)P ′′) ≤ σ2N (A+B). (Notice how
this argument requires additivity of the trace: it would not have worked with
‖ · ‖1 instead of Tr, hence the restriction to the case of positive operators.)

Corollary 4.11. If A,B ∈ K with A ≥ 0, B ≥ 0, then

σN (A+B) ≤ σN (A) + σN (B) ≤ σ2N (A+B).

We see that the functional A 7→ σN (A)/ logN is not far from being additive
functional on the positive cone K+. But to get a truly additive functional, we
must try to take the limit N →∞, and here things become more interesting.

4.4 Dixmier traces

It is a bit awkward to deal with the index N of σN (A) as a discrete variable,
but we can fix this by a simple linear interpolation.

If N ≤ λ ≤ N + 1, so that λ = N + t with 0 ≤ t ≤ 1, we put

σλ(A) := (1− t)σN (A) + tσN+1(A).

Note that σλ(A + B) ≤ σλ(A) + σλ(B) now holds for all λ ≥ 0: every σλ is a
norm on K.

Exercise 4.12. Check that σλ(A + B) ≤ σλ(A) + σλ(B) ≤ σ2λ(A + B), for
A,B ≥ 0 in K, also holds for all λ ≥ 0.
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Definition 4.13. The Dixmier ideal L1+ = L1+(H) = L1,∞(H) is defined to
be

L1+ :=

{
T ∈ K : sup

λ≥e

σλ(T )

logλ
<∞

}
.

(The e here is by convention: any constant > 1 would do. Also, the notation
L1+ is not universally accepted: some authors prefer the clumsier notation L1,∞,
or even L(1,∞), which comes from the historical origin of these operator ideals
in real interpolation theory: see [c-a94, IV.C] for that.)

Since each σλ is a norm on K, so also is this supremum whenever it is finite.
Thus L1+ has a natural (¡unitarily invariant!) norm

‖T ‖1+ := sup
λ≥e

σλ(T )

logλ
for T ∈ L1+.

As stated, the norm depends on the chosen constant e, but the ideal L1+(H)
does not.

Note that T ∈ K is traceclass if and only if σλ(T ) is bounded (by ‖T ‖1, for
instance) without need for the factor (1/ logλ). Thus L1(H) ⊂ L1+(H).

Remark 4.14. If the bounded function σλ(T )/ logλ is actually convergent as
λ→∞, or equivalently, if σN (T )/ logN converges as N →∞, then clearly

lim
N→∞

σN (T )

logN
= lim
λ→∞

σλ(T )

logλ
≤ ‖T ‖1+.

We get an additive functional defined on L1+ in three more steps. First, we
dampen the oscillations in σλ(T )/ logλ by taking a Cesàro mean with respect to
the logarithmic measure on an interval [λ0,∞) for some λ0 > e. For definiteness,
we choose λ0 = 3. Our treatment closely follows the appendix of the local-index
paper of Connes and Moscovici [c-m95].

Definition 4.15. For λ ≥ 3, we set

τλ(T ) :=
1

logλ

∫ λ

3

σu(T )

log u

du

u
, for T ∈ L1+(H). (4.4)

Exercise 4.16. Check the triangle inequality τλ(S + T ) ≤ τλ(S) + τλ(T ) for
λ ≥ 3.

Lemma 4.17 (Connes–Moscovici). If A ≥ 0, B ≥ 0 in L1+(H), then

τλ(A) + τλ(B)− τλ(A+B) = O

(
log logλ

logλ

)
as λ→∞.

Proof. First of all, it is clear that
σu(A+B)

log u
≤ ‖A‖1++‖B‖1+ for λ ≥ e. Next,

τλ(A) + τλ(B)− τλ(A+B) ≤ 1

logλ

∫ λ

3

(
σ2u(A+B)

log u
− σu(A+B)

log u

)
du

u

=
1

logλ

∫ 2λ

6

(
σu(A+B)

log(u/2)
− σu(A+B)

log u

)
du

u

− 1

logλ

(∫ λ

3

−
∫ 2λ

6

)
σu(A+B)

log u

du

u
.
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The second term can be rewritten as

1

logλ

(∫ 6

3

−
∫ 2λ

6

)
σu(A+B)

log u

du

u
.

Since
∫ 6

3
du
u =

∫ 2λ

λ
du
u = log 2, we get an estimate of 2 log 2

log λ ‖A + B‖1. For the
first term, we compute

1

logλ

∫ 2λ

6

σu(A+B)

log u

(
log u

log(u/2)
− 1

)
du

u
≤ ‖A+B‖1+

logλ

∫ λ

3

(
log 2u

log u
− 1

)
du

u

=
‖A+B‖1+

logλ
log 2

∫ λ

3

du

u logu
<
‖A+B‖1+

logλ
log 2 (log logλ).

Since the failure of additivity of τλ vanishes as λ → ∞, the second step
is to quotient out by functions vanishing at infinity. For that we consider the
“corona” C*-algebra

B∞ :=
Cb([3,∞))

C0([3,∞)
.

The function λ 7→ τλ(A), for A ≥ 0 in L1+, lies in Cb([3,∞)), and its image
τ(A) in B∞ defines an additive map, that is,

τ(A +B) = τ(A) + τ(B) for A ≥ 0, B ≥ 0 in L1+.

The final step is to compose this map with a state on B∞.

Definition 4.18. For A ≥ 0 in L1+, let τ(A) ∈ (B∞)+ denote the image, under
the quotient map Cb([3,∞)) → B∞, of the bounded function λ 7→ τλ(A). This
yields an additive map between positive cones, τ : (L1+)+ → (B∞)+. Since the
“four positive parts” of any operator in L1+ also lie in L1+, as is easily checked,
this map extends in the obvious way to a positive linear map τ : L1+ → B∞.
Moreover, τ is invariant under unitary conjugation, i.e., τ(UAU∗) = τ(A) for
each unitary U ∈ B(H).

For each state ω : B∞ → C, we can now define a Dixmier trace Trω on
L1+(H) by

Trω T := ω(τ(T )).

Since Trω(UAU∗) = Trω(A) for positive A ∈ L1+(H) and unitary U ∈ B(H),
each such positive linear functional on L1+(H) is indeed a trace.

This definition has a drawback : since B∞ is a non- separable C*-algebra,
there is no way to exhibit even one such state. However, Dixmier traces are still
computable in a special case: if limλ→∞ τλ(T ) exists, then τ(T ) coincides with
the image of a constant function in B∞, and since the state ω is normalized,
ω(1) = 1, the value ω(τ(T )) equals this limit:

Trω T = lim
λ→∞

τλ(T )

is independent of ω, provided that the limit exists. Such operators are called
measurable. When this happens, we shall suppress the label ω and write Tr+ T
for the common value of all Dixmier traces.

The use of the Cesàro mean (4.4) simplifies the original definition that
Dixmier [d-j66] gave of these traces. A detailed analysis of these (and other

297



Part III Dixmier traces

related) functionals was made recently by Lord, Sedaev and Sukochev [lss05],
who called them “Connes–Dixmier traces”. As an unexpected consequence of
their work, they have shown that a positive operator A ∈ L1+(H) is measur-
able if and only if the original sequence { σN (A)/ logN : N ∈ N } is already
convergent. Thus it is not necessary to compute τλ(A), since

Tr+A = lim
N→∞

σN (A)

logN
for positive, measurable A ∈ L1+.
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Chapter 5

Symbols and Traces

5.1 Classical pseudodifferential operators

In order to develop a symbol calculus for Dirac operators and their powers, we
shall temporarily restrict our attention to a single chart domain U ⊂ M , over
which the cotangent bundle is trivial: T ∗M

∣∣
U
∼= U ×Rn. If P is an operator on

C∞(M), or more generally, on a space of sections Γ(M,E) of a vector bundle
E → M , and if {φ1, . . . , φm} is a finite partition of unity in C∞(M), then
P (f) =

∑m
i,j=1 φiP (φjf), so we may as well consider operators which are defined

on a single chart domain of M . At some later stage, we must ensure that the
important properties of such operators are globally defined, independently of
the choice of local coordinates.

We will work, then, in local coordinates (x1, . . . , xn) over a chart domain U ;
the local coordinates of the cotangent bundle T ∗M

∣∣
U

are

(x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn), where ξ ∈ T ∗xM.

Let E →M be a vector bundle of rank r. We assume (without loss of generality)
that the vector bundle E is also trivial over U , so we can identify Γ(U,EndE)
with U ×Mr(C).

A differential operator acting on (smooth) local sections f ∈ Γ(U,E) is an
operator P of the form

P =
∑

|α|≤d
aα(x)Dα, with aα ∈ Γ(U,EndE),

where we use the notation Dα := Dα1
1 . . . Dαn

n , and Dj := −i ∂/∂xj, the positive
integer d is the order of P .

The local coordinates allow us to identify U with an open subset of Rn. The
coefficients aα are matrix-valued functions U →Mr(C).

By a Fourier transformation, we can write, for f ∈ C∞c (U,Rr),

Pf(x) = (2π)−n
∫

Rn

eixξ p(x, ξ) f̂(ξ) dnξ

= (2π)−n
∫∫

R2n

ei(x−y)ξ p(x, ξ) f(y) dny dnξ, (5.1)
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Part III Classical pseudodifferential operators

where p(x, ξ) is a polynomial of order d in the ξ-variable, called the (complete)
symbol of P . (Clearly, this symbol depends on the choice of local coordinates.)
Here

Kp(x, y) := (2π)−n
∫

Rn

ei(x−y)ξ p(x, ξ) f(y) dnξ (5.2)

is the kernel of P , as an integral operator: the inverse Fourier transform of
p(x, ξ).

For the Dirac operator /D, we can use the local expression of the spin connec-
tion to write /D = −i c(dxj)∇S∂j

= −i c(dxj)(∂j + ωj(x)), so the corresponding
symbol is

p(x, ξ) = c(dxj)(ξj − i ωj(x)). (5.3)

This is a first-order polynomial in the ξj variables, so that /D is a first order
differential operator. The leading term in p(x, ξ) —the part that is homogeneous
in ξj of degree one— is c(dxj)ξj = c(ξj dx

j) = c(ξ), where ξ = ξj dx
j can be

regarded as an element of A1(U).
More generally, a pseudodifferential operator P is given locally by an integral

of the form (5.1), where the symbol p(x, ξ) need no longer be a polynomial. In
that case, we must specify certain classes of symbols for which these integrals
make sense.

Definition 5.1. The vector space Sd(U) of (scalar) symbols of order ≤ d,
consists of functions p ∈ C∞(U × Rn) such that, for any compact K ⊂ U , and
any multiindices α, β ∈ Nn, there exists a constant CKαβ such that

|Dβ
xD

α
ξ p(x, ξ)| ≤ CKαβ(1 + |ξ|2)

1
2 (d−|α|) for all x ∈ K, ξ ∈ R. (5.4)

Here Dβ
x and Dα

ξ denote derivatives in the xi variables and in the ξj variables,

respectively. We use (1 + |ξ|2)
1
2 instead of |ξ| to avoid problems at ξ = 0.

In the same way, we define matrix-valued symbols of order ≤ d as smooth
functions p : U × Rn → Mr(C) satisfying the same norm estimates, but with
the absolute value | · | on the left hand side of (5.4) replaced by a matrix norm
in Mr(C). By a small abuse of notation, we shall write p ∈ Sd(U) also in the
matrix-valued case.

When p(x, ξ) is a polynomial in ξ, of order at most d, we can isolate its
homogeneous parts:

p(x, ξ) =
d∑

j=0

pd−j(x, ξ), where pd−j(x, tξ) = td−j pd−j(x, ξ) for t > 0.

Definition 5.2. More generally, an element p ∈ Sd(U) is called a classical
symbol if we can find a sequence of terms pd(x, ξ), pd−1(x, ξ), pd−2(x, ξ),. . . ,
with pd−j(x, tξ) = td−j pd−j(x, ξ) for t > 0, such that for each k = 0, 1, 2, . . . ,

p−
k−1∑

j=0

pd−j ∈ Sd−k(U).

When this is possible, we write

p(x, ξ) ∼
∞∑

j=0

pd−j(x, ξ), (5.5)
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Part III Classical pseudodifferential operators

and regard this series as an asymptotic development of the symbol p. This ex-
pansion does not determine p(x, ξ) uniquely: a symbol in

⋂
k∈N S

d−k(U) is called
“smoothing”, and smoothing symbols are exactly those symbols whose asymptotic
expansion is zero.

Definition 5.3. A classical pseudodifferential operator of order d, over U ⊂
Rn, is an operator P defined by (5.1), for which p(x, ξ) is a classical symbol in
Sd(U) whose leading term pd(x, ξ) does not vanish. This leading term is called
the principal symbol of P , and we also denote it by σP (x, ξ) := pd(x, ξ).

We need a formula for the symbol of the composition of two classical pseu-
dodifferential operators (“classical ΨDOs”, for short). It is not clear a priori
when and if two such operators are composable: we remit to [t-me96], for in-
stance, for the full story on compositions (and adjoints) of classical pseudodif-
ferential operators, and for the justification of the following formula.

If P is a classical ΨDOs of order d1 with symbol p ∈ Sd1(U), and if Q is a
classical ΨDO of orders d2 with symbol p ∈ Sd2(U), then the symbol p ◦ q of
the composition PQ lies in Sd1+d2(U) and its asymptotic development is given
by

(p ◦ q)(x, ξ) ∼
∑

α∈Nn

i|α|

α!
Dα
ξ p(x, ξ)D

α
x q(x, ξ). (5.6)

To find the terms (p ◦ q)d1+d2−j(x, ξ) of the symbol expansion, one must sub-
stitute (5.5) for both p and q into the right hand side of (5.6) and rearrange a
finite number of terms. For the case j = 0, one need only use α = 0 —since
Dα
ξ lowers the order by |α|— and in particular, the principal symbols compose

easily:
(p ◦ q)d1+d2(x, ξ) = pd1(x, ξ) qd2(x, ξ).

The composition formula is valid for both scalar-valued and matrix-valued sym-
bols, provided the matrix size r is the same for both operators.

Exercise 5.4. If P and Q are classical ΨDOs with scalar-valued symbols, show
that the principal symbol of [P,Q] = PQ − QP is −i {σP , σQ}, where {·, ·} is
the of functions:

−i {σP (x, ξ), σQ(x, ξ)} = −i
n∑

j=1

∂σP

∂ξj

∂σQ

∂xj
− ∂σQ

∂ξj

∂σP

∂xj
.

Conclude that the order of [P,Q] is ≤ d1 + d2 − 1. What can be said about the
order of [P,Q] if P and Q have matrix-valued symbols of size r > 1?

Suppose U and V are open subsets of Rn and that φ : U → V is a diffeomor-
phism. If P is a ΨDO over U , then φ∗P : f 7→ P (φ∗f) ◦ φ−1 is a ΨDO over V ,
as can be verified by an explicit change-of-variable calculation. If P is classical,
then so also is φ∗P . If pφ denotes the symbol of φ∗P , we find that the principal
symbols are related by

pd(x, ξ) = pφd(φ(x), φ′(x)−tξ),

where φ′(x)−t is the contragredient matrix (inverse transpose) to φ′(x).
This is the change-of-variable rule for the cotangent bundle. The conclusion

is that, for any scalar ΨDO P that we may be able to define over a compact

301



Part III Homogeneity of distributions

manifold M , the complete symbol p(x, ξ) will depend on the local coordinates
for a given chart of M , but the leading term pd = σP will make sense as an
element of C∞(T ∗M) —i.e., a function on the total space of the cotangent
bundle. (The subleading terms pd−j(x, ξ), for j ≥ 1, will not be invariant under
local coordinate changes.)

When P is defined on sections of a vector bundle E → M of rank r, the
principal symbol σP becomes a section of the bundle π∗(EndE) → T ∗M , i.e.,
the pullback of EndE →M via the cotangent projection π : T ∗M →M .

For the Dirac operator /D, which is a first-order differential operator on
Γ(M,S), we get σ /D ∈ Γ(T ∗M,π∗(EndS)). From (5.3), we get at once

σ /D(x, ξ) = c(ξj dx
j) = c(ξ).

Since taking the principal symbol is a multiplicative procedure, we also obtain

σ /D
2

(x, ξ) = (σ /D(x, ξ))2 = c(ξ)2 = g(ξ, ξ) 12m .

(Here we use the handy notation 1r for the r × r identity matrix.) Notice that

the principal symbol of ∆S is also g(ξ, ξ) 12m , since /D
2 − ∆S = 1

4s is a term

of order zero (it is independent of the ξj variables), thus /D
2

and ∆S have the
same principal symbol.

Note that σ /D
2

(x, ξ) only vanishes when ξ = 0, that is, on the zero section
of T ∗M .

Definition 5.5. A ΨDO P is called elliptic if σP (x, ξ) is invertible when ξ 6= 0,
i.e., off the zero section of T ∗M .

In particular, /D, /D
2
, ∆, ∆S are all elliptic differential operators.

5.2 Homogeneity of distributions

We now wish to pass from the symbol p of a classical ΨDO, with a given symbol
expansion

p(x, ξ) =

N−1∑

j=0

pd−j(x, ξ) + rN (x, ξ), rN ∈ Sd(U).

to the operator kernel (5.2), by taking an inverse Fourier transform. However,
the terms in this expansion may give divergent integrals when y = x. Therefore,
we first need to look more closely at the inverse Fourier transforms of negative
powers of |ξ|.

Assume that n ≥ 2, for the rest of this section.

Definition 5.6. Let λ ∈ R. A function φ : Rn \ {0} → C is homogeneous of
degree λ, or “λ-homogeneous”, if

φ(t ξ) = tλ φ(ξ) for all t > 0, ξ 6= 0.

Thus if ξ = rω with r = |ξ| > 0 and ω = ξ/|ξ| ∈ Sn−1, we can write φ(ξ) =
rλ ψ(ω) for some ψ : Sn−1 → C.
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Part III Homogeneity of distributions

We can extend this definition to (tempered) distributions on Rn. Write φt
for the dilation of φ by the scale factor t, that is, φt(ξ) := φ(tξ), so that the
λ-homogeneity condition can be written as φt = tλ φ for t > 0.

The change-of variables formula for functions,

∫

Rn

u(tξ)φ(ξ) dnξ =

∫

Rn

t−n u(η)φ(η/t) dnη,

suggests the following definition of homogeneity.

Definition 5.7. Let u ∈ S′(Rn) be a tempered distribution on Rn. For t > 0,
the dilation ut of u by the scale factor t is defined by

〈ut, φ〉 := t−n〈u, φ1/t〉, for φ ∈ S(Rn).

We say that u is homogeneous of degree λ if ut = tλ u for all t > 0.

Example 5.8. The Dirac δ is homogeneous of degree −n, since for all φ ∈ S(Rn),

〈δt, φ〉 = t−n 〈δ, φ1/t〉 = t−n φ1/t(0) = t−n φ(0) = t−n 〈δ, φ〉.

Suppose now that u is a smooth function on Rn \ {0}, such that

u(ξ) = rλ v(ω), for ξ = rω, r = |ξ| > 0, ω ∈ Sn−1.

We would like to extend it to a (tempered) distribution on the whole Rn. There
are several cases to consider.

Case 1 If λ > 0, then just put u(0) := 0. In this case, u extends to Rn as a
homogeneous function.

Case 2 If −n < λ ≤ 0, then u(0) may not exist, but u(ξ) is locally integrable
near 0, so 〈u, φ〉 is defined. Indeed, if B = B(0; 1) and 1B is its indicator
function, and if σ denotes the usual volume form on Sn−1, then

〈u, 1B〉 :=

∫

B

u(ξ) dnξ =

∫

Sn−1

v(ω)σ

∫ 1

0

rλ(rn−1 dr)

= C

∫ 1

0

rλ+n−1 dr <∞, since λ+ n− 1 > −1.

Case 3 Suppose λ = −n, and that
∫

Sn−1 v(ω)σ = 0.
We define a distribution Pu by the following trick. Let f : [0,∞)→ R be a

cutoff function, such that:

f(t) :=

{
1 if 0 ≤ t ≤ 1

2 ,

0 if t ≥ 1,

and f decreases smoothly from 1 to 0 on [ 12 , 1]. Replace the test function φ by
φ(ξ) − φ(0)f(|ξ|), and put

〈Pu, φ〉 :=

∫

Rn

u(ξ)
(
φ(ξ)− φ(0) f(|ξ|)

)
dnξ. (5.7)
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If g(t) is another cutoff function with the same properties, the right hand side
of this formula changes by

∫

Rn

u(ξ)φ(0)
(
f(r) − g(r)

)
dnξ = φ(0)

∫

Sn−1

v(ω)σ

∫ 1

1/2

(
f(r) − g(r)

) dr
r

= 0,

since u(ξ) dnξ = r−nv(ω)σ rn−1 dr = v(ω)σ dr/r by homogeneity. Thus 〈Pu, φ〉
is independent of the cutoff chosen. Indeed, since

∫

|ξ|>ε
u(ξ)f(|ξ|) dnξ =

∫ 1

ε

f(r)
dr

r

∫

Sn−1

v(ω)σ = 0,

for any ε > 0, we get another formula for Pu:

〈Pu, φ〉 = lim
ε↓0

∫

|ξ|>ε
u(ξ)φ(ξ) dξ.

Therefore, Pu is just the “Cauchy principal part” of u at ξ = 0.

Lemma 5.9. When u is a (−n)-homogeneous function on Rn \ {0} whose in-
tegral over Sn−1 vanishes, its principal-part extension Pu is a homogeneous
distribution of degree (−n).

Proof. For each t > 0, we observe that

〈(Pu)t, φ〉 = t−n〈Pu, φ1/t〉 = t−n lim
ε↓0

∫

|ξ|>ε
u(ξ)φ(ξ/t) dξ

= t−n lim
ε↓0

∫

|η|>ε/t
u(η)φ(η) dη = t−n〈Pu, φ〉.

Case 4 Consider the function u(ξ) := |ξ|−n for ξ 6= 0. (By averaging v(ω)
over Sn−1, one can see that any smooth (−n)-homogeneous function on Rn \{0}
is a linear combination of |ξ|−n and a function in Case 3.

We can try the cutoff regularization, anyway. Let Rfu be given by the recipe
of (5.7):

〈Rfu, φ〉 :=

∫

Rn

u(ξ)
(
φ(ξ) − φ(0) f(|ξ|)

)
dnξ. (5.8)

However, in the present case, Rfu is not homogeneous!

Lemma 5.10. If δ : φ 7→ φ(0) is the Dirac delta, and if u(ξ) := |ξ|−n for ξ 6= 0,
then

(Rfu)t − t−nRfu = (Ωn t
−n log t) δ. (5.9)

Proof. We compute 〈(Rfu)t − t−nRfu, φ〉 for φ ∈ S(Rn). Since u(ξ) := |ξ|−n
and f(|ξ|) are both rotation-invariant, we can first integrate over Sn−1, so we
may suppose that φ is radial: φ(ξ) = ψ(|ξ|) for some ψ : [0,∞)→ C. Then

〈Rfu, φ〉 =

∫

Rn

r−n(ψ(r) − ψ(0) f(r))σ rn−1 dr

= Ωn

∫ ∞

0

(
ψ(r) − ψ(0) f(r)

) dr
r

= Ωn

∫ ∞

0

(
ψ
(r
t

)
− ψ(0) f

(r
t

)) dr

r
, for any t > 0.
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Therefore,

〈(Rfu)t − t−nRfu, φ〉 = t−n〈Rfu, φ1/t − φ〉

= Ωnφ(0) t−n
∫ ∞

0

(
f
(r
t

)
− f(r)

)
dr

r

= Ωnφ(0) t−n
∫ ∞

0

∫ r/t

r

f ′(s) ds
dr

r

= Ωnφ(0) t−n
∫ ∞

0

∫ s

st

dr

r
f ′(s) ds

= Ωnφ(0) t−n(− log t)

∫ 1

1/2

f ′(s) ds = Ωnφ(0) t−n log t.

The extra log t-term measures the failure of homogeneity of the regulariza-
tion Rfu.

Case 5 u(ξ) = |ξ|−n−j for j = 1, 2, 3, . . . .
Any cutoff function f gives a regularization by “Taylor subtraction”, as

follows:

〈R̃fu, φ〉 :=

∫

Rn

|ξ|−n−j
(
φ(ξ)−

∑

|α|≤j

iα

α!
Dαφ(0)ξα f(|ξ|)

)
dnξ.

Again one finds that R̃fu is not homogeneous, by a straightforward calculation
along the lines of the previous Lemma. This can be simplified a little by the
following observation [fgv01]. One can find constants cα for |α| ≤ j, such

that the modified regularization Rfu := R̃fu−
∑
|α|<j cαD

αδ has a “failure of
homogeneity” of the form

(Rfu)t − t−n−j Rfu = t−n−j log t

(∑

|α|=j
cαD

αδ

)
.

That completes our study of the extensions of homogeneous functions to
distributions on Rn. We need a remark about their Fourier transforms. Recall
that the Fourier transformation F preserves the Schwartz space S(Rn), and by
duality it also preserves S′(Rn). If u is a λ-homogeneous function on Rn \ {0},
its Fourier transform is Fu(ξ) :=

∫
Rn e

−ixξ u(x) dnx, thus

(Fu)t(ξ) =

∫

Rn

eitxξ u(x) dnx = t−n
∫

Rn

e−iyξ u(y/t) dny = t−n−λ Fu(ξ).

It follows that F , and also the inverse transformation F−1, take homogeneous
functions (or distributions) of degree λ to homogeneous functions (or distribu-
tions) of degree (−n− λ).

5.3 The Wodzicki residue

Now we return to the symbol expansion of a classical ΨDO P , of integral order
d ∈ Z, with

p(x, ξ) =

N−1∑

j=0

pd−j(x, ξ) + rN (x, ξ),
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where rN ∈ Sd−N(U), and pd−j(x, tξ) = td−j pd−j(x, ξ). Now apply F−1
2 , the

inverse Fourier transform in the second variable, to this sum, to get the integral
kernel

kP (x, y) =

N−1∑

j=0

hj−d−n(x, x − y) + (F−1
2 rN )(x, x − y).

If N > n + d, then rN ∈ Sd−N(U) is integrable in ξ, so the term F−1
2 rN (x, z)

is bounded as z → 0. For the terms hj−d−n(x, z), there are 3 cases, which
may give singularities. So before applying F−1

2 to pd−j(x, ξ), we must regularize
pd−j(x, ξ) to Rfpd−j(x, ξ) by using a suitable cutoff:

p(x, ξ) =
N−1∑

j=0

Rfpd−j(x, ξ) + sN (x, ξ),

with sN integrable. Now take hj−d−n := F−1
2 (Rfpd−j).

Case 1 Suppose d − j > −n. Then k := j − d − n < 0, and Rfpd−j(x, ξ) is
homogeneous of degree greater than −n, so hk(x, z) is homogeneous of degree k.
These terms have no failure of homogeneity.

Before examining the other two cases, we return to the context of functions
on Rn \ {0}, and look first at w0(z) := (2π)nF−1(Rf |ξ|−n). Since (5.9) holds
with u(ξ) = |ξ|−n for ξ 6= 0, and since (2π)nF−1(δ) = 1, we get

t−nw0(z/t)− t−nw0(z) = Ωn t
−n log t for t > 0,

or more simply,
w0(z/t)− w0(z) = Ωn log t. (5.10)

Notice that C = w0(z/|z|) is a constant, because w0 is rotation-invariant. Sub-
stituting t := |z| in (5.10) gives

w0(z) = C − Ωn log |z|, (5.11)

so that w0 “diverges logarithmically”. We can suppress the constant term if we
replace Rf |ξ|−n by Rf |ξ|−n −Cδ, since we must then subtracting the constant
C from the inverse Fourier transform.

For j = 1, 2, . . . , we define wj(z) := (2π)nF−1(Rf |ξ|−n−j). A similar anal-
ysis shows that wj(z) = qj(z)− rj(z) log |z|, where both qj and rj are homoge-
neous of degree j > 0. In this case, wj(z) remains bounded as z → 0.

We now return to the examination of the terms hj−d−n in the integral kernel
k(x, y).

Case 2 Suppose d − j < −n. Then k = j − d − n > 0, and we find that
hj−d−n(x, z) remains bounded as z → 0.

Case 3 Consider the case d− j = −n. Then we get h0(x, z) = −u0(x) log |z|,
after possibly subtracting a term depending only on x. We have proved the
following result.
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Proposition 5.11. If P is a classical pseudodifferential operator of integral
order d, then its kernel has the following form near the diagonal:

kP (x, y) =
∑

−d−n≤k<0

hk(x, x− y)− u0(x) log |x− y|+O(1), (5.12)

where each hk(x, ·) is homogeneous of negative degree k, u0(x) is independent
of x− y, and O(1) stands for a term which remains bounded as y → x.

To compute u0(x), the coefficient of logarithmic divergence, we change co-
ordinates by a local diffeomorphism ψ(x). Note that

log |ψ(x)− ψ(y)| ∼ log |ψ′(x) · (x− y)| ∼ log |x− y| as y → x,

while kP (x, y) 7→ kP (ψ(x), ψ(y))L(x, y), where L(x, y) → | detψ′(x)| as y →
x, by the change of variables formula for |dny|. (We use a 1-density, not an
oriented volume form, to do integration; however, if we agree to fix an orientation
on M and use only coordinate changes that preserve the orientation, for which
detψ′(x) > 0 at each x, then we need not make this distinction). Thus the
log-divergent term transforms as follows:

−u0(x) log |x− y| 7→ −u0(ψ(x))| detψ′(x)| log |x− y|.

For the case of scalar pseudodifferential operators, this is all we need. In the
general case of operators acting on sections of a vector bundle E → M , we
replace u0(x) ∈ EndEx by its matrix trace tr u0(x) ∈ C. The previous formula
then says that the 1-density tr u0(x) |dnx| is invariant under local coordinate
changes.

Now, when we regularize p−n(x, ξ) to obtain this 1-density after applying
F−1

2 , we can first subtract the homogeneous “principal part”, at each x ∈ U ,
since this will not change the coefficient of logarithmic divergence. This sub-
traction is done by replacing p−n(x, ξ) by its average over the sphere |ξ| = 1 in
the cotangent space T ∗xM . That is to say, we get the same u0(x) if we replace
p−n(x, ξ) by Ω−1

n |ξ|−n
∫
|ω|=1 p−n(x, ω)σ. On applying (5.11) (with C = 0) at

each x, we conclude that

tr u0(x) =

∫

|ω|=1

tr p−n(x, ω)σ.

Definition 5.12. The Wodzicki residue density of a classical ΨDO P , acting
on sections of a vector bundle E →M , is well defined by the local formula

wresx P :=

(∫

|ω|=1

tr p−n(x, ω)σ

)
|dnx|, at x ∈M.

The Wodzicki residue of P is the integral of this 1-density:

WresP :=

∫

M

wresx P =

∫

M

(∫

|ω|=1

tr p−n(x, ω)σ

)
|dnx|.

We shall now show that Wres is a trace on the algebra of classical pseudod-
ifferential operators on M acting on a given vector bundle.
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Part III The Wodzicki residue

We begin with another important property of homogeneous functions on
Rn \ {0}. We shall make use of the Euler vector field on this space:

R =
n∑

j=1

ξj
∂

∂ξj
= r

∂

∂r
.

Notice that h is λ-homogeneous if and only if Rh = λh, since Rh(rω) =
r ∂∂r (rλ h(ω)) = λrλ h(ω) = λh(rω).

Lemma 5.13. If λ 6= −n, any λ-homogeneous function h on Rn \{0} is a finite
sum of derivatives.

Proof. It is enough to notice that

n∑

j=1

∂

∂ξj
(ξj h(ξ)) = nh(ξ) +Rh(ξ) = (n+ λ)h(ξ),

which implies h = 1
n+λ

∑n
j=1

∂
∂ξj

(ξj h).

Lemma 5.14. If h : Rn \ {0} → C is (−n)-homogeneous, with n > 1, then h is
a finite sum of derivatives if and only if

∫
Sn−1 hσ = 0.

Proof. Suppose first that
∫

Sn−1 hσ = 0. Since h(ξ) = r−n h(ω), h is determined
by its restriction to Sn−1, and the hypothesis says that 〈1|h〉 = 0 in L2(Sn−1, σ).
Thus h ∈ (C1)⊥ = (ker ∆)⊥ = im ∆, where ∆ is the Laplacian on the sphere
Sn−1 (which is a Fredholm operator on the Hilbert space L2(Sn−1, σ), with
closed range). Thus the equation h = ∆g has a unique (and C∞, since ∆ is
elliptic) solution g on Sn−1. Extend g to Rn\{0} by setting g(rω) := r−n+2 g(ω)
for 0 < r < +∞. Since the Laplacian on Rn is

∆Rn =
1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
+

1

r2
∆,

we get ∆Rng = h, and thus h =
∑n
j=1

∂
∂ξj

(
− ∂g
∂ξj

)
is a finite sum of derivatives.

Suppose instead that h(ξ) = ∂f
∂ξ1

for ξ 6= 0, where f is (−n+1)-homogeneous.

Let σ′ be the volume form on Sn−2, and notice that
∫

Sn−2

∫

R

∂f

∂ξ1
(ξ1, ω

′) dξ1 ∧ σ′ =

∫

Sn−2

[f(+∞, ω′)− f(−∞, ω′)]σ′ = 0

since f(ξ1, ω
′)→ 0 as ξ1 → ±∞, by homogeneity. Thus we must show that

∫

Sn−1

hσ =

∫

R×Sn−2

h dξ1 ∧ σ′.

By Stokes’ theorem, we must show that the difference is the integral of the zero
n-form on the tube T , whose oriented boundary is (R× Sn−2)− Sn−1. (Picture
a ball stuck in a cylinder of radius 1; T is the region inside the cylinder but
outside the ball.) Consider the (n− 1)-form

σ̃ =

n∑

j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξn ∈ An−1(Rn \ {0}).
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Part III The Wodzicki residue

If i : Sn−1 → Rn \ {0} is the inclusion, then σ = i∗σ̃. Now σ̃ = ιRν, where
ν = dξ1∧· · ·∧dξn, and R is the Euler vector field on Rn \{0}. Since Rh = −nh
by homogeneity, we find that

d(hσ̃) = dh ∧ σ̃ + h dσ̃ = dh ∧ σ̃ + nh ν

= dh ∧ ιRν − (Rh) ν = dh ∧ ιRν − ιR(dh)ν

= −ιR(dh ∧ ν) = ιR(0) = 0.

Thus hσ̃ is a closed form on Rn \ {0}, that restricts to hσ on Sn−1 and to
h dξ1 ∧ σ′ on R× Sn−2, therefore

∫

Sn−1

hσ −
∫

R×Sn−2

h dξ1 ∧ σ′ =

∫

∂T

hσ′ =

∫

T

d(hσ̃) = 0,

by Stokes’ theorem. Thus
∫

Sn−1 hσ = 0, as required.

Proposition 5.15. Wres is a trace on the algebra of classical pseudodifferential
operators acting on a fixed vector bundle E →M .

Proof. We must show that Wres([P,Q]) = 0, for all classical pseudodifferential
operators P , Q on M . First we consider the scalar case, where E = M . Let
p(x, ξ), q(x, ξ) be the complete symbols of P , Q respectively, in some coordinate
chart of M . Then if r(x, ξ) is the complete symbol of [P,Q], we know that

r(x, ξ) ∼
∑

α∈Nn

i|α|

α!
(Dα

ξ pD
α
x q −Dα

ξ q D
α
xp). (5.13)

In particular, the principal symbol of R = [P,Q] comes from the terms with
|α| = 1 in this expansion:

σR(x, ξ) = −i
n∑

j=1

(
∂p

∂ξj

∂q

∂xj
− ∂q

∂ξj

∂p

∂xj

)
= −i

n∑

j=1

∂

∂ξj

(
p
∂q

∂xj

)
− ∂

∂xj

(
p
∂q

∂ξj

)
.

In like manner, when αj = 2 and the other αi = 0, we get the terms

−1

2

(
∂2p

∂ξ2j

∂2q

∂(xj)2
− ∂2q

∂ξ2j

∂2p

∂(xj)2

)

= −1

2

∂

∂ξj

(
∂p

∂ξj

∂2q

∂(xj)2
− p ∂3q

∂ξj∂(xj)2

)
− 1

2

∂

∂xj

(
∂p

∂xj
∂2q

∂ξ2j
− p ∂3q

∂ξ2j ∂xj

)
.

By induction, all terms in the expansion (5.13) that contribute to r−n(x, ξ) are
finite sums of derivatives.

In the general case, if p(x, ξ) = [pkl(x, ξ)] and q(x, ξ) = [qkl(x, ξ)] are square
matrices, the same argument applies to the sums

∑

k,l

(Dα
ξ pklD

α
x qlk −Dα

ξ qlkD
α
xpkl), for each α ∈ Nn,

that contribute to the expansion of tr r−n(x, ξ). Thus, tr r−n(x, ξ) is a finite
sum of derivatives in the variables xj and ξj . Write

tr r−n(x, ξ) =

n∑

j=1

∂fj
∂xj

+
∂gj
∂ξj

,
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Part III The Wodzicki residue

where fj(x, ξ), gj(x, ξ) vanish outside K×Rn for some compact subset K ⊂ U of
a coordinate chart of M . (This can be guaranteed by first writing P =

∑
r ψrP

and Q =
∑
r ψrQ for a suitable partition of unity {ψr} on M .) Then

Fj(x) :=

∫

|ξ|=1

fj(x, ξ)σξ

has suppFj ⊂ K, so that

∫

|ξ|=1

∂fj
∂xj

σ =
∂Fj
∂xj

, and

∫

U

∂Fj
∂xj
|dnx| = 0.

By construction, tr r−n(x, ξ), and each
∂gj

∂ξj
(x, ξ) also, are (−n)-homogeneous

in ξ. Lemma 5.14 now implies that

Wres([P,Q]) =

∫

M

(∫

|ξ|=1

( n∑

j=1

∂gj
∂ξj

)
σ

)
dnx = 0.

To show that the trace is unique (up to constants) when n > 1, let T be any
trace on the algebra of classical pseudodifferential operators. Again we suppose
that all symbols are supported in a coordinate chart U ⊂M , and we note that
the formulas for composition of symbols give the commutation relations

[xj , f ] = i
∂f

∂ξj
, [ξj , f ] = −i ∂f

∂xj
.

By Lemmas 5.13 and 5.14, T (P ) thus depends only on the homogeneous term
tr p−n(x, ξ), of degree −n, and moreover T (P ) = 0 if

∫
|ξ|=1

tr p−n(x, ξ)σ = 0.

We can replace tr p−n(x, ξ) with |ξ|−n
∫
|ξ|=1

tr p−n(x, ξ)σ, without changing

T (P ). Now f 7→ T (f(x) |ξ|−n) is a linear functional on C∞c (U) that kills deriva-
tives with respect to each xj , so it is a multiple of the Lebesgue integral:

T (f) = C

∫

U

f(x) |dnx| for some C ∈ C.

Therefore,

T (P ) = C

∫

U

∫

|ξ|=1

tr p−n(x, ξ)σ |dnx| = C Wres(P ).

Example 5.16. If (M, g) is a compact Riemannian spin manifold with Dirac
operator /D, then

Wres | /D|−n = 2m Ωn Vol(M).

Proof. Recall that the principal symbol of | /D| is σ /D(x, ξ) = c(ξ), and that of

/D
2

(or of ∆S) is σ /D
2

(x, ξ) = c(ξ)2 = g(ξ, ξ) 12m . (Recall that 12m means the
identity matrix of size 2m, which is the rank of the spinor bundle.) Thus the

principal symbol of | /D|−n is σ| /D|
−n

(x, ξ) = g(ξ, ξ)−n/2 12m . This is homoge-
neous of degree −n, so that p−n(x, ξ) is actually the principal symbol when
P = | /D|−n. Therefore, tr p−n(x, ξ) = 2m g(ξ, ξ)−n/2.

Now g(ξ, ξ) = gij ξiξj in local coordinates on T ∗M . To compute its integral
over the Euclidean sphere |ξ| = 1 [rather than over the ellipsoid g(ξ, ξ) = 1],

310



Part III Dixmier trace and Wodzicki residue

we make a change of coordinates x 7→ y = ψ(x), and we note that (x, ξ) 7→
(y, η) where ξ = ψ′(x)t η. We can choose ψ such that ψ′(x) = [gij(x)]1/2, a
positive-definite n × n matrix, in which case gij(x) ξiξj = δkl ηkηl = |η|2. Now
tr p−n(y, η) = 2m |η|−n, so

∫
|η|=1

tr σ−n(y, η) = 2m Ωn, and the Wodzicki residue

density is

wresx | /D|−n = 2m Ωn |dny| = 2m Ωn detψ′(x) |dnx|.

But detψ′(x)) =
√

det g(x) by construction, so we arrive at

wresx | /D|−n = 2m Ωn
√

det(gx) |dnx| = 2m Ωn νg.

Integrating this over M gives Wres | /D|−n = 2m Ωn Vol(M), as claimed.

What we have gained? We no longer need the full spectrum of the Dirac
operator: its principal symbol is enough to give the Wodzicki residue.

5.4 Dixmier trace and Wodzicki residue

There is a third method of computing the logarithmic divergence of the spec-
trum of /D, by means of residue calculus applied to powers of pseudodifferential
operators. We shall give (only) a brief outline of what is involved.

Suppose that H is an elliptic pseudodifferential operator on Γ(M,E) that
extends to a positive selfadjoint operator (also denoted here byH) on the Hilbert
space L2(M,E), which is defined as the completion of { s ∈ Γ(M,E) :

∫
M

(s |
s) νg <∞} in the norm ‖ψ‖ :=

√
〈ψ | ψ〉, where

〈φ | ψ〉 :=

∫

M

(φ | ψ) νg

is the scalar product introduced in Section 3.1. We have in mind the example

H = | /D| = ( /D
2
)1/2 or else H = ( /D

2
+ 1)1/2, in case ker /D 6= {0}.

Since M is compact, the operator H on L2(M,E) is known to be Fred-
holm [t-me96], thus kerH is finite dimensional. We can define its powers H−s,
for s ∈ C, by holomorphic functional calculus:

H−s :=
1

2πi

∮

Γ

λ−s(λ−H)−1 dλ

where Γ is a contour that winds once anticlockwise around the spectrum of H ,
excluding 0 to avoid the branch point of λ−s. (We define H−sψ := 0 for ψ ∈
kerH .)

By applying the same Cauchy integrals to the complete symbol of H , one
can show that H−s is pseudodifferential, and obtain much information about
its integral kernel. This was first done by Seeley [s-rt67]. He found that the
following properties hold.

• If H has order d > 0, then for ℜs > n/d, H−s is traceless and ζH(s) :=
TrH−s is holomorphic on this open half-plane.

• For x 6= y, the function s 7→ KH−s(x, y) extends from the half-plane
ℜs > n/d to all of C, as an entire function.
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Part III Dixmier trace and Wodzicki residue

• For x = y, the function s 7→ KH−s(x, x) can be continued to a meromor-
phic function on C, with possible poles only at { s = (n − k)/d : k =
0, 1, 2, . . .}.

• The residues at these poles are computed by integrating certain symbol
terms over the sphere |ξ| = 1 in T ∗xM .

Later on, Wodzicki [w-m84] made a deep study of the spectral asymptotics of
these operators, and in particular found that at s = n/d, the operator H−n/d is
of order (−n), and the residue at this pole depends only on its principal symbol;
in fact,

Ress=n/dKH−s(x, x) |dnx| = 1

d(2π)n
wresxH

−n/d.

Corollary 5.17. If A is a positive elliptic ΨDO of order (−n) = − dimM on
L2(M,E), then s 7→ TrAs is convergent and holomorphic on { s ∈ C : ℜs >
−1 }, it continues meromorphically to C with a (simple) pole at s = 1, and

Ress=1(TrAs) =
1

n(2π)n
WresA.

(For the proof, one applies Seeley’s theory to H = A−1.)

A basic result in noncommutative geometry is Connes’ trace theorem of
1988 [c-a88], which shows that this residue is actually a Dixmier trace.

Theorem 5.18 (Connes). If A is a positive elliptic ΨDO of order (−n) =
− dimM on H = L2(M,E), the operator A lies in the Dixmier trace class
L1+(H), it is “measurable”, i.e., Trω A =: Tr+A is independent of ω, and the
following equalities hold:

Tr+A = Ress=1(TrAs) =
1

n(2π)n
WresA.

We omit the proof, but a few comments can be made. In view of what was
already said, it is enough to establish the first equality. The elliptic operator
H = A−1, of order n, has compact resolvent [t-me96], so that A itself is compact
(we ignore any finite-dimensional kernel). If the eigenvalues of A are λk = sk(A)
(listed in decreasing order), the first equality reduces to the following known
theorem on divergent series:

Proposition 5.19 (Hardy). Suppose that λk ↓ 0 as k →∞, that
∑∞

k=1 λ
s
k <∞

for s > 1, and that lims↓1(s− 1)
∑∞
k=1 λ

s
k = C exists. Then 1

logN

∑N
k=1 λk → C

as N →∞.

For a proof of the Proposition, see [fgv01, pp. 294–295].
Next note that both Tr+A and WresA are bilinear in A, so we can weaken

the positivity hypothesis when comparing them. (There are other zeta-residue
formulas available which are bilinear in A, but we do not go into that here.)

Corollary 5.20. If A is a linear combination of positive elliptic pseudodiffer-
ential operators of order (−n), then A ∈ L+, A is measurable, and Tr+A =

1
n(2π)n WresA.
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Chapter 6

Spectral triples: General
Theory

6.1 The Dixmier trace revisited

Let (A,H, D) be a spectral triple, whose algebra A is unital. We continue to
assume, for convenience, that kerD = {0}, so that D−1 is a compact operator
on H. Suppose now that |D|−p ∈ L1+, for some p ≥ 1. Then the functional
on A given by a 7→ Trω(a |D|−p), for some particular ω, is our candidate for a
“noncommutative integral”. To see why that should be so, we first examine the
commutative case.

Proposition 6.1. If M is a compact boundaryless n-dimensional spin manifold,
with Riemannian metric g and Dirac operator /D, then for each a ∈ C∞(M) the
operator a | /D|−n is measurable, and

Tr+(a | /D|−n) = Cn

∫

M

a νg,

where Cn is a constant depending only on n, namely,

Cn =
2m Ωn
n(2π)n

, that is,





C2m =
1

m!(2π)m
if n = 2m,

C2m+1 =
1

(2m+ 1)!!πm+1
if n = 2m+ 1.

Proof. We know that | /D|−n is a ΨDO with principal symbol σ| /D|
−n

(x, ξ) =
gx(ξ, ξ)−n/2 12m , a scalar matrix of size 2m × 2m. As a multiplication operator
on L2(M,S), a is a ΨDO of order 0, with principal symbol σa(x, ξ) = a(x) 12m .

Thus a| /D|−n is of order −n, with trσa| /D|
−n

(x, ξ) = 2m a(x) gx(ξ, ξ)−n/2.
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Now by the trace theorem, we find, using the calculation in Example 5.16,

Tr+(a| /D|−n) =
1

n(2π)n
Wres(a| /D|−n)

=
2m

n(2π)n

∫

M

a(x)

(∫

|ξ|=1

gx(ξ, ξ)−n/2 σ

)
|dnx|

=
2m Ωn
n(2π)n

∫

M

a(x)
√

det gx |dnx|

=
2m Ωn
n(2π)n

∫

M

a(x) νg.

Therefore, the functional a 7→ Tr+(a | /D|−n) is just the usual integral with
respect to the Riemannian volume form, expect for the normalization constant.
Therefore, it can be adapted to more general spectral triples as a “noncommu-
tative integral”.

However, in the noncommutative case, it is not obvious that a 7→ Tr+(a | /D|−n)
will be itself a trace. Why should Tr+(ab | /D|−n) be equal to Tr+(ba | /D|−n) =
Tr+(a | /D|−n b)? To check this tracial property of the noncommutative integral,
we need the Hölder inequality for Dixmier traces.

Fact 6.2 (Horn’s inequality). If T, S ∈ K and n ∈ N, then

σn(TS) ≤
n−1∑

k=0

sk(T ) sk(s). (6.1)

Proposition 6.3. (a) If T ∈ L1+ and S is a bounded operator on H, then for
any Dixmier trace Trω, the following inequality holds:

Trω |TS| ≤ (Trω |T |) ‖S‖. (6.2a)

(b) Let 1 < p <∞ and q = p/(p− 1), so that 1
p + 1

q = 1, and let T, S ∈ K be

such that |T |p, |S|q ∈ L1+. Then for any Trω, we get

Trω |TS| ≤ (Trω |T |p)1/p (Trω |T |q)1/q. (6.2b)

Proof. Ad (a): By the minimax formula (4.2) for singular values, we find, for
each k ∈ N,

sk(TS) = inf{ ‖(1− P )TS‖ : P = P 2 = P ∗, rankP ≤ k }
≤ inf{ ‖(1− P )T ‖ ‖S‖ : P = P 2 = P ∗, rankP ≤ k } = sk(T ) ‖S‖,

Summing over k = 0, 1, . . . , n− 1, we get σn(TS) ≤ σn(T ) ‖S‖. Thus

σn(TS)

logn
≤ σn(T )

logn
‖S‖ for all n ≥ 2,

and linear interpolation gives the same relation with N replaced by and real
λ ≥ 2. Using the definition (4.4) of τλ and integrating over λ ≥ 3, we get

τλ(TS) ≤ τλ(T ) ‖S‖ for all λ ≥ 3,

and therefore Trω |TS| ≤ (Trω |T |)‖S‖ for all ω.
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Ad (b): From (6.1) and the ordinary Hölder inequality in Rn, we get

σn(TS) ≤
( ∑

0≤k<n
sk(T )p

)1/p( ∑

0≤k<n
sk(S)q

)1/q

= σn(|T |p)1/p σn(|S|q)1/q.

If n ≤ λ < n + 1 with λ = n + t, then, with an := σn(|T |p)1/p and bn :=
σn(|S|q)1/q,

σλ(TS) = (1− t)σn(TS) + tσn+1(TS)

≤ (1− t)anbn + tan+1bn+1

≤
(
(1 − t)apn + tapn+1

)1/p(
(1− t)aqn + taqn+1

)1/q

= σλ(|T |p)1/p σλ(|S|q)1/q for all λ ≥ 2,

where we have used the Hölder inequality in R2. Again we employ (4.4) and

use the Hölder inequality for the integral 1
log λ

∫ λ
3 (·) duu . This gives

τλ(TS) ≤ τλ(|T |p)1/p τλ(|T |q)1/q, for λ ≥ 3.

Thus τ(|TS|) ≤ τ(|T |p)1/p τ(|T |q)1/q as positive elements of the corona C*-
algebra B∞. Finally, we use the Hölder inequality for the state ω of this com-
mutative C*-algebra, namely

ω
(
τ(|T |)p)1/p τ(|S|q)1/q

)
≤ ω(τ(|T |)p)1/p ω(τ(|S|q)1/q,

and the result (6.2b) follows at once.

Proposition 6.4. Let (A,H, D) be any spectral triple whose operator D is
invertible, and let a ∈ A. Then the commutator [|D|r, a] is a bounded operator
for each r such that 0 < r < 1.

We postpone the proof of this Proposition until later. It is a crucial property
of spectral triple that this bounded commutator property is not automatic for
the case r = 1, that is, the commutators [|D|, a] need not be bounded in general.

Theorem 6.5. If (A,H, D) is a spectral triple such that |D|−p ∈ L1+(H) for
some p ≥ 1, then for each a ∈ A and any T ∈ B(H), the following tracial
property holds:

Trω(aT |D|−p) = Trω(Ta |D|−p) for all ω. (6.3)

Proof. Note that aT |D|−p and Ta |D|−p lie in L1+ since L1+ is an ideal in
B(H). Also the Hölder inequality (6.2a) gives

∣∣Trω([a, T ] |D|−p)
∣∣ =

∣∣Trω(T [|D|−p, a])
∣∣ ≤ ‖T ‖ Trω

∣∣[|D|−p, a]
∣∣,

so we must show that Trω
∣∣[|D|−p, a]

∣∣ = 0 for all a ∈ A. We have not supposed
that p ∈ N, so write p = kr with k ∈ N, 0 < r < 1, and let R := |D|−r, a
positive compact operator. Then

[|D|−p, a] = [Rk, a] =

k∑

j=1

Rj−1 [R, a]Rk−j = −
k∑

j=1

Rj [|D|r, a]Rk−j+1.
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Applying Hölder’s inequality to each term, we get

Trω
∣∣Rj [|D|r, a]Rk−j+1

∣∣ ≤ ‖[|D|r, a]‖ (TrωR
jpj )1/pj (Trω R

(k−j+1)qj )1/qj ,

where qj = pj/(pj − 1) and the number pj > 1 must be chosen so that all Rjpj

and all R(k−j+1)qj are trace-class: for that, we need rjpj > p and r(k−j+1)qj >
p. This will happen if we take

pj :=
p

r(j − 1
2 )
, qj :=

p

r(k − j + 1
2 )
,

and then 1
pj

+ 1
qj

= 1, since rk = p. Since Trω vanishes on L1(H), we need only

to check that

|D|−p ∈ L1+(H) =⇒ |D|−s ∈ L1(H) for all s > p. (6.4)

This is a consequence of the next lemma.

Lemma 6.6. If A ∈ L1+(H) and A ≥ 0, then As ∈ L1(H) for s > 1.

Proof. We need the following result on sequence spaces. If E is a Banach space,
we denote by E∗ the dual Banach space of continuous linear forms on E.

Fact 6.7. If s := { (s0, s1, . . . ) ∈ CN : (s0 + · · · + sn−1)/ logn is bounded }, if
s0 is the closure of the finite sequences in s, and if t := { (t0, t1, . . . ) ∈ CN :∑

k≥0 |tk|/(k + 1) < ∞}, then s0, s and t are complete in the obvious norms,
and under the standard duality pairing 〈s, t〉 :=

∑
k≥0 sktk, there are isometric

isomorphisms s∗0 ≃ t and t∗ ≃ s.

Now let K− := {T ∈ K : {sk(T )}k≥0 ∈ t }, and let L1+
0 be the closure of the

finite-rank operators in L1+. Then (L1+
0 )∗ ≃ K− and (K−)∗ ≃ L1+ as Banach

spaces.
For T ∈ Lq with 1 < q <∞, the Hölder inequality for sequences gives

∑

k≥0

sk(T )

k + 1
≤
(∑

k≥0

sk(T )q
)1/q(∑

k≥0

1

(k + 1)p

)1/p

= ‖T ‖q ζ(p)1/p <∞,

so that Lq ⊂ K− for all 1 < q < ∞. Since (Lq)∗ ≃ Lp with p = q/(q − 1), we
conclude that L1+ ⊂ Lp for all p > 1. (This is why we employ the notation
L1+, of course.)

Now if A ∈ L1+ with A ≥ 0, then As ∈ Lp/s(H) whenever 1 < s ≤ p. In
particular, when p = s, we see that

‖As‖1 =
∑

k≥0

sk(As) =
∑

k≥0

λk(As) =
∑

k≥0

λk(A)s = (‖A‖s)s < +∞,

since A ∈ L1+ implies A ∈ Ls.

This establishes (6.4) and concludes the proof of Theorem 6.5.

Corollary 6.8. If A ≥ 0 is in L1+, and Tr+A > 0, then Tr+As = 0 for s > 1.

To establish Proposition 6.4, we use the following commutator estimate, due
to Helton and Howe [hh73].
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Lemma 6.9. Let D be a selfadjoint operator on H, and let a ∈ B(H) with
a(DomD) ⊆ DomD be such that [D, a] extends to a bounded operator on H.
Suppose also that g : R → R is smooth, with Fourier transform is a function ĝ
such that t 7→ t ĝ(t) is integrable on R. Then [g(D), a] extends to a bounded
operator on H, such that

‖[g(D), a]‖ ≤ 1

2π
‖[D, a]‖

∫

R

|t ĝ(t)| dt.

Proof. We may define

g(D) :=
1

2π

∫

R

ĝ(t)eitD dt

for any smooth function g, since ĝ has compact support. Now

〈φ | [eitD, a]ψ〉 =

∫ 1

0

d

ds
〈φ | eistD a ei(1−s)tDψ〉 ds

= it

∫ 1

0

d

ds

(
〈De−istDφ | aei(1−s)tDψ〉 − 〈φ | eistDaDei(1−s)tDψ〉

)
ds

for φ, ψ ∈ DomD, and thus
∣∣〈g(D)φ | aψ〉 − 〈φ | ag(D)ψ〉

∣∣

=
1

2π

∣∣∣∣
∫

R

tĝ(t)

∫ 1

0

d

ds

(
〈De−istDφ | aei(1−s)tDψ〉 − 〈φ | eistDaDei(1−s)tDψ〉

)
ds dt

∣∣∣∣

≤ ‖[D, a]‖
2π

‖φ‖ ‖ψ‖
∫

R

|t ĝ(t)| dt,

so that [g(D), a] extends to a bounded operator, and the required estimate
holds.

Proof of Proposition 6.4. We want to apply Lemma 6.9, using |x|r instead of
g(x), x ∈ R. But x 7→ |x|r is not smooth at x = 0 (although it is homogeneous
of degree r), so we modify it near x = 0 to get a smooth function g(x) such that
g(x) = |x|r for |x| ≥ δ, for some δ > 0. Thus g(x) = |x|r +h(x), where supph ⊂
[−δ, δ]. We can write its derivative as a sum of two terms, g′(x) = u(x) + h′(x),
where supph′ ⊂ [−δ, δ] and u is homogeneous of negative degree r − 1. Taking

Fourier transforms on R, we get it ĝ(t) = û(t) + ĥ′(t), where ĥ′(t) is analytic
and û is homogeneous of degree −1 − (r − 1) = −r, with −1 < −r < 0. Thus
tĝ(t) is locally integrable near t = 0, and tĝ(t) → 0 rapidly for large t, since g′

is smooth. We end up with an estimate

‖[|D|r, a]‖ ≤ Cr‖[D, a]‖+ ‖[h(D), a]‖,

where Cr := (2π)−1
∫

R
|tĝ(t)| dt is finite, and ‖[h(D), a]‖ is finite since h(D) is

a bounded operator.

6.2 Regularity of spectral triples

The arguments of the previous section are not applicable to determine whether
[|D|, a] is bounded, in the case r = 1. This must be formulated as an assump-
tion. In fact, we shall ask for much more: we want each element a ∈ A, and
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each bounded operator [D, a] too, to lie in the smooth domain of the following
derivation.

Notation. We denote by δ the derivation on B(H) given by taking the commu-
tator with |D|. It is an unbounded derivation, whose domain is

Dom δ := {T ∈ B(H) : T (Dom |D|) ⊆ Dom |D|, [|D|, T ] is bounded }.

We write δ(T ) := [|D|, T ] for T ∈ Dom δ.

Definition 6.10. A spectral triple (A,H, D) is called regular, if for each a ∈ A,
the operators a and [D, a] lie in

⋂
k∈N Dom δk.

The regularity condition does not depend on the invertibility of D (that is,
the condition kerD = {0}) which we have been assuming, to simplify certain
calculations. One can always replace |D| by 〈D〉 := (D2+1)1/2 in the definition,
since f(D) := 〈D〉 − |D| is bounded. If δ′ denotes the derivation δ′(T ) :=
[〈D〉, T ] = δ(T ) + [f(D), T ], then clearly Dom δ′ = Dom δ, and it is easy to
show by induction that Dom δ′k = Dom δk for each k ∈ N, so one may instead
define regularity using δ′. This is the approach taken in the work of Carey
et al [cprs04], who use the term “QC∞” instead of “regular” for this class of
spectral triples.

Definition 6.11. Suppose that (A,H, D) is a regular spectral triple, with D
invertible. For each s ≥ 0, consider the operator |D|s defined by functional
calculus. Define also Hs := Dom |D|s for s ≥ 0, with the Hilbert norm ‖ξ‖s :=√
‖ξ‖2 + ‖|D|sξ‖2. Their intersection H∞ =

⋂
s≥0 Dom |D|s =

⋂∞
k=0 Dom |D|k

is the smooth domain of the positive selfadjoint operator |D|. Its topology is
defined by the seminorms ‖ · ‖k, for k ∈ N. Each Hs (and thus also H∞) is
complete, since the operators |D|s are closed, thus H∞ is a Fréchet space.

Since a ∈ A implies a ∈ Dom δ, we see that a(H1) ⊆ H1, and then we can
write a(|D|ξ) = |D|(aξ)− [|D|, a] ξ for ξ ∈ H1. Also,

‖aξ‖21 = ‖aξ‖2 + ‖|D|aξ‖2

= ‖aξ‖2 + ‖a|D|ξ + δ(a)ξ‖2

≤ ‖aξ‖2 + 2‖δ(a)ξ‖2 + 2‖a|D|ξ‖2

≤ max{‖a‖2 + 2‖δ(a)‖2, 2‖a‖2} ‖ξ‖21,

where we have used the parallelogram law ‖ξ+ η‖2 + ‖ξ− η‖2 = 2‖ξ‖2 + 2‖η‖2.
Therefore, a extends to a bounded operator on H1. If (A,H, D) is regular,
then by induction we find that a(Hk) ⊂ Hk continuously for each k, so that
a(H∞) ⊂ H∞ continuously, too.

Definition 6.12. If r ∈ Z, let OprD be the vector space of linear maps T : H∞ →
H∞ for which there are constants Ck, for k ∈ N, k ≥ r, such that

‖Tξ‖k−r ≤ Ck ‖ξ‖k for all ξ ∈ H∞.

Every such T extends to a bounded operator from Hk to Hk−r, for each k ∈ N.
Note that |D|r ∈ OprD for each r ∈ Z. If T ∈ OprD and S ∈ OpsD, then
ST ∈ Opr+sD .
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Suppose (A,H, D) is regular. Then A ⊂ Op0
D and [D,A] := { [D, a] : a ∈

A} ⊂ Op0
D, too. Moreover, if a ∈ A, then

[D2, a] = [|D|2, a] = |D| [|D|, a] + [|D|, a] |D|
= |D|δ(a) + δ(a)|D| = 2|D|δ(a)− [|D|, δ(a)]

= 2|D|δ(a)− δ2(a),

so that [D2, a] ∈ Op1
D. Also [D2, [D, a]] ∈ Op1

D in the same way.
If b lies the subalgebra of B(H) generated by A and [D,A], we introduce

L(b) := |D|−1 [D2, b] = 2δ(b)− |D|−1 δ2(b),

R(b) := [D2, b] |D|−1 = 2δ(b) + δ2(b) |D|−1. (6.5)

If b ∈ ⋂k≥0 Dom δk, then L(b) and R(b) lie in Op0
D. The operations L and R

commute: indeed,

L(R(b)) = |D|−1 [D2, [D2, b] |D|−1] = |D|−1 [D2, [D2, b] |D|−1 = R(L(b)).

Note also that L2(b) = |D|−2 [D2, [D2, b]].

Proposition 6.13. If D is invertible, then
⋂
k,l≥0 Dom(LkRl) =

⋂
m≥0 Dom δm ⊂

B(H).

Proof. We use the following identity for |D|−1, obtained from the spectral the-
orem:

|D|−1 =
2

π

∫ ∞

0

(D2 + µ2)−1 dµ, (6.6)

in order to compute the commutators. We shall show that DomL2 ∩DomR ⊂
Dom δ.

Indeed, if b ∈ DomL2 ∩ DomR implies b ∈ Dom δ, then b ∈ DomL4 ∩
DomL2R∩DomR2 implies δb ∈ DomL2∩DomR, so b ∈ Dom δ2. By induction,⋂
k,l≥0 Dom(LkRl) ⊂ ⋂m≥0 δ

m. The converse inclusion is clear, from (6.5).

Take b ∈ DomL2 ∩DomR, and compute [|D|, b] as follows:

[|D|, b] = [D2|D|−1, b] = [D2, b] |D|−1 +D2 [|D|−1, b]

=
2

π

∫ ∞

0

(
[D2, b](D2 + µ2)−1 +D2[(D2 + µ2)−1, b]

)
dµ

=
2

π

∫ ∞

0

(
[D2, b](D2 + µ2)−1 −D2(D2 + µ2)−1[D2 + µ2, b](D2 + µ2)−1

)
dµ

=
2

π

∫ ∞

0

(1−D2(D2 + µ2)−1)[D2, b](D2 + µ2)−1 dµ

=
2

π

∫ ∞

0

µ2(D2 + µ2)−1[D2, b](D2 + µ2)−1 dµ

=
2

π

∫ ∞

0

(
[D2, b](D2 + µ2)−2 + [(D2 + µ2)−1, [D2, b]](D2 + µ2)−1

)
µ2 dµ

=
2

π

∫ ∞

0

(
R(b)|D|(D2 + µ2)−2 − (D2 + µ2)−1D2L2(b)(D2 + µ2)−2

)
µ2 dµ
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Now R(b) and D2

D2+µ2L
2(b) are bounded, by hypothesis. Also

2

π

∫ ∞

0

xµ2 dµ

(x2 + µ2)2
=

2

π

∫ ∞

0

t2 dt

1 + t2
=

2

π

∫ π/2

0

sin2 θ dθ =
1

2
,

while
∫ ∞

0

(D2 + µ2)−2µ2 dµ =

∫ 1

0

(D2 + µ2)−2µ2 dµ+

∫ ∞

1

(D2 + µ2)−2µ2 dµ

is bounded by
∫ 1

0

‖D−4‖µ2 dµ+

∫ ∞

0

µ−2 dµ =
1

3
‖D‖−4 + 1.

Thus [|D|, b] is bounded with the estimate

‖[|D|, b]‖ ≤ 1

2
‖R(b)‖+

(
1

3
‖D‖−4 + 1

)
2

π
‖L2(b)‖.

Hence b ∈ Dom δ, as desired.

Corollary 6.14. The standard commutative example (C∞(M), L2(M,S), /D) is
a regular spectral triple.

Proof. We need one more fact from the theory of ΨDOs (see [t-me96], for ex-
ample): over a compact manifold M , with a hermitian vector bundle E, a ΨDO
of order zero is bounded as an operator on L2(M,E). Thus we need only show
that, if b = a or b = [ /D, a] = −i c(da), then LkRl is a ΨDO of order ≤ 0, for
each k, l ∈ N.

For k = l = 0, note that ψ 7→ aψ and ψ 7→ [ /D, a]ψ = −i c(da)ψ are bounded
multiplication and Clifford-action operators. Their (principal) symbols are

σa(x, ξ) = a(x) 12m ,

σ[ /D,a](x, ξ) = −i
n∑

j=1

∂ja(x)cj = −i {c(ξ), a(x)} = −i c(da).

For k + l > 0, we use LkRl = | /D|−k(ad /D
2
)k+l(·)| /D|−l. Now /D

2
is a second-

order ΨDO, with σ
/D2

2 (x, ξ) = g(ξ, ξ) 12m , so that when P is of order d then

[ /D
2
, P ] is of order ≤ d + 1. Hence, if a ∈ C∞(M), then (ad /D

2
)k+l(a) is of

order ≤ k + l, and thus LkRl is of order ≤ 0. The same is true if a is replaced
by −i c(da). Thus LkRl(b) is bounded, if b ∈ A or b ∈ [ /D,A].

This example also shows why regularity is defined using the derivation δ =
[|D|, · ] instead of the apparently simpler derivation [D, · ]. Indeed, we have
just seen that for a ∈ C∞(M), the operator [| /D|, [ /D, a]] has order zero (and
therefore, it lies in Op0

/D. On the other hand, [ /D, [ /D, a]] is in general a ΨDO of

order 1 (and so it lies in Op1
/D). Indeed, the first-order terms in its symbol are

[σ /D, σ[ /D,a]](x, ξ) = [cjξj ,−i ck ∂ka(x)] = −i [cj, ck] ξj ∂ka(x)

which need not vanish since cj , ck do not commute. In contrast, the principal
symbol of | /D| is a scalar matrix, which commutes with that of [ /D, a], and the
order of the commutator drops to zero.
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6.3 Pre-C*-algebras

If any spectral triple (A,H, D), the algebra A is a (unital) ∗-algebra of bounded
operators acting on a Hilbert space H [or, if one wishes to regard A abstractly,
a faithful representation π : A → B(H) is given]. Let A be the norm closure of
A [or of π(A)] in B(H): it is a C*-algebra in which A is a dense ∗-subalgebra.

A priori, the only functional calculus available for A is the holomorphic one:

f(a) :=
1

2πi

∮

Γ

f(λ)(λ1 − a)−1 dλ, (6.7)

where Γ is a contour in C winding (once positively) around sp(a), and sp(a)
means the spectrum of a in the C*-algebra A. To ensure that a ∈ A implies
f(a) ∈ A, we need the following property:

If a ∈ A has an inverse a−1 ∈ A, then in fact a−1 lies in A (briefly: A∩A× =
A×, where A× is the group of invertible elements of A). If this condition holds,
then 1

2πi

∮
Γ
f(λ)(λ1− a)−1 dλ is a limit of Riemann sums lying in A. To ensure

convergence in A (they do converge in A), we need only ask that A be complete
in some topology that is finer than the C∗-norm topology.

Definition 6.15. A pre-C*-algebra is a subalgebra of A of a C*-algebra A,
which is stable under the holomorphic functional calculus of A.

Remark 6.16. This condition appears in Blackadar’s book [b-b98] under the
name “local C*-algebra”. However, one can wonder how such a property could
be checked in practice. Consider the two conditions on a ∗-subalgebra A of a
unital C*-algebra A:

(a) A is stable under holomorphic functional calculus; that is, a ∈ A implies
f(a) ∈ A, according to (6.7).

(b) A is spectrally invariant in A [s-lb92], that is,

a ∈ A and a−1 ∈ A =⇒ a−1 ∈ A. (6.8)

In particular, (6.8) implies spA(a) = spA(a), for all a ∈ A.

Question: If A is known to have a (locally convex) vector space topology under
which A is complete (needed for convergence of the Riemann sums defining the
contour integral) and such that the inclusion A →֒ A is continuous, are (a) and
(b) equivalent?

Ad (a) =⇒ (b): This is clear: if a ∈ A, a−1 ∈ A, use f(λ) := 1/λ outside
spA(a).

Ad (b) =⇒ (a): To prove that the integral converges in A, because A is
complete, we need to show that the integrand is continuous. Note that since the
inclusion i : A →֒ A is continuous, then A× = { a ∈ A : a−1 ∈ A} = A ∩A× =
i−1(A×) is open in A. But we still need to show that a 7→ a−1 : A× → A× is
continuous. This will follow if A is a Fréchet algebra [s-lb92].

Corollary 6.17 (Schweitzer). If A is a unital Fréchet algebra, and if ‖ · ‖A is
continuous in the topology of A, then Conditions (a) and (b) are equivalent.
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If A is a nonunital algebra, we can always adjoin a unit in the usual way,
and work with Ã := C ⊕ A whose unit is (1, 0), and with its C∗-completion

Ã := C⊕A. Since the multiplication rule in Ã is (λ, a)(µ, b) := (λµ, µa+λb+ab),

we see that 1 + a := (1, a) is invertible in Ã, with inverse (1, b), if and only if
a+ b+ ab = 0.

Lemma 6.18. If A is a unital, Fréchet pre-C*-algebra, then so also is Mn(A) =
Mn(C)⊗A.

Sketch proof. It is enough to show that a ∈ Mn(A) is invertible for a close to
the identity 1n in the norm of Mn(A). But for a close to 1n, the procedure of
Gaussian elimination gives matrix factorization a =: ldu, where

l =




1 0 . . . 0
∗ 1 . . . 0
...

...
. . . 0

∗ ∗ . . . 1


 , d =




d1 0 . . . 0
0 d2 . . . 0
...

...
. . . 0

0 0 . . . dn


 , u =




1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . . ∗

0 0 . . . 1


 ,

with dj ∈ A such that ‖dj − 1‖A < 1, for j = 1, . . . , n. Thus d−1 exists, and
a−1 = u−1d−1l−1 ∈Mn(A).

For n = 2, we get explicitly

a =

(
1 0

a21a
−1
11 1

)(
a11 0
0 a22 − a21a

−1
11 a12

)(
1 a−1

11 a12

0 1

)
,

provided ‖1 − a11‖A < 1. For larger n, if ‖1n − a‖Mn(A) < δ for δ small
enough, we can perform (n − 1) steps of Gaussian elimination (without any
exchanges of rows or columns) and get the factorization a = ldu in Mn(A) with
d invertible.

Lemma 6.19. The Schwartz algebra S(Rn) is a nonunital pre-C*-algebra.

Proof. We represent S(Rn) by multiplication operators on L2(Rn). Its C∗-
completion is C0(Rn). Note that C1 ⊕ C0(Rn) ≃ C(Sn). Suppose f ∈ S(Rn),
and that there exists g ∈ C0(Rn) such that (1+f)(1+g) = 1. Then f+g+fg = 0,
and 1 + g = 1/(1 + f) in C(Sn). Now, since f is C∞, then in particular g is
smooth on Rn and all derivatives ∂αg are bounded. This entails that fg ∈ S(Rn)
also.

Finally, g = −f − fg lies in S(Rn), so that (1 + g) = (1 + f)−1 lies in
C1⊕ S(Rn), as required.

Example 6.20. If M is compact boundaryless smooth manifold, then C∞(M) is
a unital Fréchet pre-C*-algebra. The topology on C∞(M) is that of “uniform
convergence of all derivatives”:

fk → f in C∞(M) if and only if ‖X1 . . .Xrfk−X1 . . .Xrf‖∞ → 0 as k →∞,

for each finite set of vector fields {X1, . . . , Xr} ∈ X(M). This makes C∞(M)
a Fréchet space. If f ∈ C∞(M) is invertible in C(M), then f(x) 6= 0 for any
x ∈ X , and so 1/f is also smooth. Thus C∞(M)× = C∞(M) ∩ C(M)×.

We state, without proof, two important facts about Fréchet pre-C*-algebras.
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Fact 6.21. If A is a Fréchet pre-C*-algebra and A is its C∗-completion, then
Kj(A) = Kj(A) for j = 0, 1. More precisely, if i : A → A is the (continuous,
dense) inclusion, then i∗ : Kj(A) → Kj(A) is an surjective isomorphism, for
j = 0 or 1.

This invariance of K-theory was proved by Bost [b-j90]. For K0, the spectral
invariance plays the main role. For K1, one must first formulate a topological
K1-theory is a category of “good” locally convex algebras (thus whose invertible
elements form an open subset and for which inversion is continuous), and it is
known that Fréchet pre-C*-algebras are “good” in this sense.

Fact 6.22. If (A,H, D) is a regular spectral triple, we can confer on A the
topology given by the seminorms

qk(a) := ‖δk(a)‖, q′k(a) := ‖δk([D, a])‖, for each k ∈ N. (6.9)

The completion Aδ of A is then a Fréchet pre-C*-algebra, and (Aδ,H, D) is
again a regular spectral triple.

These properties of the completed spectral triple are due to Rennie [r-a03].
We now discuss another result of Rennie, namely that such completed algebras
of regular spectral triples are endowed with a C∞ functional calculus.

Proposition 6.23. If (A,H, D) is a regular spectral triple, for which A is
complete in the Fréchet topology determined by the seminorms (6.9), then A
admits a C∞-functional calculus. Namely, if a = a∗ ∈ A, and if f : R → C is
a compactly supported smooth function whose support includes a neighbourhood
of sp(a), then the following element f(a) lies in A:

f(a) :=
1

2π

∫

R

f̂(s) exp(isa) ds. (6.10)

Remark 6.24. One may use the continuous functional calculus in the C*-algebraA
to define the one-parameter unitary group s 7→ exp(isa), for s ∈ R. Then the
right hand side of (6.10) coincides with the element f(a) ∈ A defined by the
continuous functional calculus in A.

Proof. The map δ = ad |D| : A → B(H) is a closed derivation [br87] since |D|
is a selfadjoint operator. To show that f(a) ∈ Dom δ and that

δ(f(a)) =
1

2π

∫

R

f̂(t) δ(exp(ita)) dt, (6.11)

we need to show that the integral on the right hand side converges. Indeed, by
the same token, the formula

δ(exp(ita)) = it

∫ 1

0

exp(ista) δ(a) exp(i(1− s)ta) ds

shows that exp(ita) ∈ Dom δ because

∣∣∣∣it
∫ 1

0

exp(ista) δ(a) exp(i(1− s)ta) ds

∣∣∣∣ ≤ |t|
∫ 1

0

‖δ(a)‖ ds = |t| ‖δ(a)‖,
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and dominated convergence of the integral follows. Plugging this estimate into
(6.11), we get

1

2π

∫

R

|f̂(t)| ‖δ(exp(ita))‖ dt ≤ 1

2π
‖δ(a)‖

∫

R

|tf̂(t)| dt < +∞,

since f ∈ C∞c (R) implies f̂ ∈ S(R). Thus f(a) ∈ Dom δ, and (6.11) holds.
Now let Am, for m ∈ N, be the completion of A in the norm

a 7→
m∑

k=0

qk(a) + q′k(a) =

m∑

k=0

‖δk(a)‖ + ‖δk([D, a])‖.

For m = 0, we get

‖f(a)‖+ ‖[D, f(a)]‖ ≤ 1

2π

∫

R

(|f̂(t)|+ ‖[D, a]‖ |tf̂(t)|) dt

by replacing |D| by D in the previous argument.

Therefore, f(a) = 1
2π

∫
R
f̂(s) exp(isa) ds is a limit of Riemann sums con-

verging in the norm q0 + q′0, so that f(a) ∈ A0. Next, since δ and (adD) are
commuting derivations (on A), we get [D, f(a)] ∈ Dom δ, with

∥∥δ([D, f(a)])
∥∥ ≤ 1

2π

∫

R

|f̂(t)| ‖δ([D, exp(ita)])‖ dt

≤ 1

2π

∫

R

(
|tf̂(t)| ‖δ([D, a])‖ + |t2f̂(t)| ‖δ(a)‖ ‖[D, a]‖

)
dt,

since tf̂(t) and t2f̂(t) lie in S(R). We conclude that δ extends to a closed
derivation from A0 to B(H).

By an (ugly) induction on m, we find that for k = 0, 1, . . . ,m f(a) and
[D, f(a)] lie in Dom δk, and that δ extends to a closed derivation from Am to
B(H), and that f(a) ∈ Am. By hypothesis, A =

⋂
m∈NAm, and thus f(a) ∈

A.

Before showing how this smooth functional calculus can yield useful results,
we pause for a couple of technical lemmas on approximation of idempotents
and projectors, in Fréchet pre-C*-algebras. The first is an adaptation of a
proposition of [b-j90].

Lemma 6.25. Let A be an unital Fréchet pre-C*-algebra, with C∗-norm ‖ · ‖.
Then for each ε with 0 < ε < 1

8 , we can find δ ≤ ε such that, for each v ∈ A
with ‖v− v2‖ < δ and ‖1− 2v‖ < 1 + δ, there is an idempotent e = e2 ∈ A such
that ‖e− v‖ < ε.

Proof. Consider the holomorphic function

f : {λ ∈ C : |λ| < 1
4 } → C defined by f(λ) := 1

2

(
1−
√

1 + 4λ
)
,

where we choose the branch of the square root for which
√

1 = +1. Note that
f(0) = 0, and that (1− 2f(λ))2 = 1 + 4λ, so that

f(λ)2 − f(λ) = λ for |λ| < 1
4 .
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If x ∈ A with ‖x‖ < 1
8 , then (1 + 4x)−1 exists since ‖1− (1 + 4x)‖ < 1

2 , and

‖x(1 + 4x)−1‖ ≤ ‖x‖ ‖(1 + 4x)−1‖

≤ ‖x‖
∞∑

k=0

‖(−4x)k‖

≤ ‖x‖
∞∑

k=0

‖4x‖k

=
‖x‖

1− 4‖x‖ <
1

4
,

since
t

1− 4t
increases from 0 to 1

4 for 0 ≤ t ≤ 1
8 .

Now let x := v2 − v, (thus ‖x‖ < 1
8 ), and let y := −x(1 + 4x)−1 = (v −

v2)(1−2v)−2, for which ‖y‖ < 1
4 . Note that ‖x‖ → 0 implies ‖y‖ → 0, which in

turn implies ‖f(y)‖ → 0, so that for each ε ∈ (0, 1
8 ), we can choose δ ≤ ε such

that ‖1− 2v‖‖f(y)‖ < ε whenever ‖1− 2v‖ < 1 + δ and ‖v − v2‖ = ‖x‖ < δ.
Finally, let vt := v + (1 − 2v)f(ty) for 0 ≤ t ≤ 1, and take e := v1. Since

f(0) = 0, we get v0 = v. Our estimates show that ‖e− v‖ = ‖(1−2v)f(y)‖ < ε.
By holomorphic functional calculus, v ∈ A implies that x, y, vt, e all lie in A,
too. We compute

v2
t − vt = (v + (1 − 2v)f(ty))2 − (v + (1− 2v)f(ty))

= v2 − v − (1− 2v)2f(ty) + (1− 2v)2f(ty)2

= v2 − v + (1− 2v)2
(
f(ty)2 − f(ty)

)

= v2 − v + (1− 2v)2ty = (v2 − v)(1 − t),

and in particular e2 − e = 0, as required.

Lemma 6.25 says that in a unital Fréchet pre-C*-algebra A, an “almost
idempotent” v ∈ A that is not far from being a projector (since ‖1−2v‖ is close
to 1) can be retracted to a genuine idempotent in A. The next Lemma says
that projectors in the C∗-completion of A can be approximated by projectors
lying in A.

Lemma 6.26. Let A be an unital Fréchet pre-C*-algebra, whose C∗-completion
is A. If q̃ = q̃2 = q̃∗ is a projector in A, then for any ε > 0, we can find a
projector q = q2 = q∗ ∈ A such that ‖q − q̃‖ < ε.

Proof. For a suitable δ ∈ (0, 1), to be chosen later, we can find v ∈ A such that
v∗ = v and ‖v − q̃‖ < δ, because A is dense in A. Now

‖v2 − v‖ ≤ ‖v2 − q̃2 + q̃ − v‖ ≤ (‖v + q̃‖+ 1)‖v − q̃‖ < (3 + δ)δ < 4δ,

and
‖1− 2v‖ ≤ ‖1− 2q̃‖+ 2‖q̃ − v‖ < 1 + 2δ.

Lemma 6.25 now provides an idempotent e = e2 ∈ A such that ‖e− v‖ < ε/4,
for δ small enough (in particular, we must take δ < ε/4). To replace e by a

325



Part III Pre-C*-algebras

projector q, we may use Kaplansky’s formula (in the C*-algebra A: see [fgv01,
p. 88], for example) to define

q := ee∗(ee∗ + (1− e∗)(1− e))−1.

Indeed, ee∗+ (1− e∗)(1− e) = 1 + (e− e∗)(e∗− e) ≥ 1 in A, so it is invertible in
A, and thus also in A because A is a pre-C*-algebra. Thus q ∈ A. One checks
that q∗ = q and q2 = q. Note also that eq = q.

If A is represented faithfully on a Hilbert space H, we can decompose H as
qH⊕ (1 − q)H. With respect to this decomposition, we can write

q =

(
1 0
0 0

)
, e =

(
1 T
0 0

)
, v =

(
R V
V ∗ S

)
,

where R = R∗ ∈ L(qH), S = S∗ ∈ L((1 − q)H), and V, T : (1 − q)H → qH are
bounded.

Now ‖e− v‖ < ε/4, so ‖(v − e)∗(v − e)‖ < ε2/16; it follows that

‖(R− 1)2 + V V ∗‖ < ε2

16
, ‖(V − T )∗(V − T ) + S2‖ < ε2

16
.

Thus ‖V V ∗‖ < ε2/16, i.e., ‖V ‖ < ε/4, and likewise ‖V − T ‖ < ε/4. Therefore,
‖q − e‖ = ‖T ‖ < ε/2. Finally,

‖q − q̃‖ ≤ ‖q − e‖+ ‖e− v‖ + ‖v − q̃‖ < ε

2
+
ε

4
+ δ ≤ ε.

Theorem 6.27. Suppose (A,H, D) is a regular spectral triple, in which A is
a unital Fréchet pre-C*-algebra; and assume that A is commutative. Let X =
M(A) be the character space of A, a compact Hausdorff space such that A ∼=
C(X). Then, for each finite open cover {U1, . . . , Um} of X, we can choose a
subordinate partition of unity {φ1, . . . , φm}:

φk ∈ C(X), 0 ≤ φk ≤ 1, suppφk ⊂ Uk, φ1 + · · ·+ φm = 1,

in such a way that φk ∈ A for k = 1, 2, . . . ,m.

Remark 6.28. By definition, X = M(A) is the set of all nonzero ∗-homomorphisms
φ : A → C. Note that if φ ∈ M(A), then φ(1)2 = φ(1) implies φ(1) = 1.
Gelfand’s theorem provided a ∗-isomorphism of unital C*-algebras from A onto
C(X), so that we can regard elements of A as continuous functions on X .

Now let φ ∈ M(A). Recall that spA(a) = spA(a) for all a ∈ A, since A is
a pre-C*-algebra. Because (a − λ1)b = 1 in A implies (φ(a) − λ)φ(b) = 1, we
see that λ /∈ spA(a) =⇒ λ 6= φ(a); therefore, φ(a) ∈ spA(a) for all φ ∈ M(A).
Thus |φ(a)| ≤ r(a) ≤ ‖a‖A, where r(a) is the spectral radius of a, so that φ
extends to A by continuity. This means that M(A) = M(A) = X , so that we
can regard X as the character space of the pre-C*-algebra A.

Proof of Theorem 6.27. We first choose a partition of unity {φ̃1, . . . , φ̃m} in
C(X) = A subordinate to {U1, . . . , Um}. Let q̃ ∈ Mm(A) be the matrix whose

(j, k)-entry is
√
φ̃j φ̃k. Then q̃ = q̃2 = q̃∗. Choose ε ∈ (0, 1/m). We apply

Lemma 6.26 to the pre-C*-algebra Mm(A) ⊂ Mm(A), to get q = q2 = q∗ ∈
Mm(A), with ‖q − q̃‖ < ε.
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Let ψi := qij ∈ A for j = 1, . . . ,m. Then ψ1 + · · · + ψm = tr q, and
‖ tr q − tr q̃‖ ≤∑m

j=1 ‖qjj − q̃jj‖ ≤ mε < 1, so that tr q = tr q̃, because q̃ 7→ tr q̃
is an integer-valued function on X (and tr q̃ is the rank of the vector bundle
corresponding to the projector q̃). Thus,

ψ1 + · · ·+ ψm = tr q = tr q̃ = φ1 + · · ·+ φm = 1.

Furthermore, 0 ≤ ψk ≤ 1 since ψk is the (k, k)-element of q = q∗q ∈ Mm(A),
and thus {ψ1, . . . , ψm} is a partition of unity with elements in A. We can modify
{ψk} to get {φk} that will be subordinated to {Uk}, as follows.

Let g : R → [0, 1] be smooth with supp g ⊆ [ε, 1 + ε], and g(t) > 0 for
ε < t ≤ 1. Now Vk := { x ∈ X : ψk(x) > ε } ⊂ Uk, since ‖ψk − φk‖ < ε.
Let χk := g ◦ ψk. By the smooth functional calculus, we find that χk ∈ A, for
k = 1, . . . ,m, and

∑m
j=1 χj(x) > 0 for all x ∈ X , since otherwise

∑m
j=1 ψj(x) ≤

mε < 1, impossible. Therefore, χ1+· · ·+χm is invertible in C(X) = A, and thus
also in A, so we can take φk := χk(χ1 + · · ·+χm)−1 ∈ A, having suppφk ⊂ Uk.
Now {φ1, . . . , φm} is the desired partition of unity.

6.4 Real spectral triples

Recall that a spin structure on an oriented compact manifold (M, ε) is repre-
sented by a pair (S, C), where S is a B-A-bimodule and, according to Proposi-
tion 2.18, C : S → S is an antilinear map such that C(ψ a) = C(ψ) ā for a ∈ A;
C(b ψ) = χ(b̄)C(ψ) for b ∈ B; and, by choosing a metric g on M , which deter-
mines a Hermitian pairing on S, we can also require that (Cφ|Cψ) = (ψ |φ) ∈ A
for φ, ψ ∈ S. S may be completed to a Hilbert space H = L2(M,S), with scalar
product 〈φ | ψ〉 =

∫
M (φ | ψ) νg. It is clear that C extends to a bounded anti-

linear operator on H such that 〈Cφ | Cψ〉 = 〈ψ | φ〉 by integration with respect
to νg, so that (the extended version of) C is antiunitary on H. Moreover, the
Dirac operator is /D = −iĉ ◦∇S , where by construction the spin connection ∇S
commutes with C: that is, ∇SX commutes with C, for each X ∈ X(M).

The property C(ψa) = C(ψ) ā shows that, for each x ∈ X , ψ(x) 7→ C(ψ)(x)
is an antilinear operator Cx on the fibre Sx of the spinor bundle, which is a Fock
space with dimC Sx = 2m. Thus, to determine whether C commutes with /D or
not, we can work with the local representation /D = −iγα∇SEα

. Here γα = c(θα),
for α = 1, . . . , n, is a local section of the Clifford algebra bundle Cl(T ∗M)→M ,
and the property C(bψ) = χ(b̄)C(ψ) says that C(γαψ) = −γαC(ψ) whenever
ψ is supported on a local chart domain.

However, replacing b by γα ∈ Γ(U,Cl1(T ∗M)) is only allowed when the
dimension n is even. In the odd case, B consists of sections of the bundle
Cl0(T ∗M), and we can only write relations like C(γαγβψ) = γαγβ C(ψ) for
ψ ∈ Γ(U, S). But since C is antilinear, in the even case we get

C /Dψ = C(−iγα∇SEα
ψ) = iC(γα∇SEα

ψ) = −iγαC(∇SEα
ψ) = /DCψ.

Thus [ /D,C] = 0 on H, when n = 2m is even.
What happens in the odd-dimensional case? Consider what happens on a

single fibre Sx, which carries a selfadjoint representation of Bx = Cl0(T ∗xM).
Recall that we use the convention that c(ω) := c(ωγ) to extend the action
of B to all of Γ(M,Cl(T ∗M)), where γ = (−i)mθ1 . . . θ2m+1 is the chirality
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element. For ω = θα, then gives C c(ω)C−1 = C c(ωγ)C−1 = c(χ(ωγ)) = c(ωγ)
since ωγ is even for ω odd, and ωγ = im θαθ1 . . . θ2m+1 = (−1)mωγ. We
conclude that C c(ω)C−1 = (−1)m c(ω) for ω ∈ A1(M) real, and therefore
C /D = (−1)m+1 /DC by antilinearity of C. We sum up:

C /D =

{
+ /DC, if n 6≡ 1 mod 4,

− /DC, if n ≡ 1 mod 4.

In the even case, B = Γ(M,Cl(T ∗M)) contains the operator Γ = c(γ) which
extends to a selfadjoint unitary operator on H. Recall from Definition 1.18 that
cJ(γ) is the Z2-grading operator on the Fock space Λ•WJ , the model for Sx.
If H± = L2(M,S±) denotes the completion of S± in the norm of H, then
H = H+ ⊕ H−, with Γ being the Z2-grading operator. Now γ is even and
γ̄ = (−1)m γ as before, so that CΓ = (−1)mΓC whenever n = 2m.

When M is a connected manifold, there is a third sign associated with C,
since we know that C2 = ±1. Once more, the sign can be found by examining
the case of a single fibre Sx, so we ask whether an irreducible representation S
of Cl(V ) admits an antiunitary conjugation C : S → S such that C cJ (v)C−1 =
±cJ(v) for v ∈ V (plus sign if dimV = 1 mod 4) and either C2 = +1 or
C2 = −1. By periodicity of the Clifford algebras, the sign depends only on
n mod 8, where n = dimV .

Note that if {γ1, . . . , γn} generate Cln,0, then {−iγ1, . . . ,−iγn} generate
Cl0,n = Cl(Rn, g) with g negative-definite. Thus one can equally well work
with Cl0,q, for q = 0, 1, . . . , 7. Since Clp,0⊗RMN (R) ∼= Cl0,8−p⊗RMN ′(R) for
p = 0, 1, . . . , 7 and suitable matrix sizes N,N ′, we get, from our classification
(1.4) of the Clifford algebras Clp,0:

• for q ≡ 0, 6, 7 mod 8, Cl0,q is an algebra over R,

• for q ≡ 1, 5 mod 8, Cl0,q is an algebra over C,

• for q ≡ 2, 3, 4 mod 8, Cl0,q is an algebra over H.

On a case-by-case basis, using this classification, one finds that C2 = −1 if and
only if n = 2, 3, 4, 5 mod 8.

Exercise 6.29. Find five matrices ε1, . . . , ε5 ∈ M4(C), generating a represen-
tation of Cl05, and an antiunitary operator C on C4 such that C εj C

−1 = −εj
for j = 1, . . . , 5. Show that C is unique up to multiples C 7→ λC with λ ∈ C
and |λ| = 1; and that C2 = −14.

Summary: There are two tables of signs

n mod 8 0 2 4 6

C2 = ±1 + − − +

C /D = ± /DC + + + +

CΓ = ±ΓC + − + −

n mod 8 1 3 5 7

C2 = ±1 + − − +

C /D = ± /DC − + − +

There is a deeper reason why only these signs can occur, and why they
depend on n mod 8: the data set (A,H, /D,C,Γ) determines a class in the “Real”
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KR-homology KR•(A), and KRj+8(A) ∼= KRj(A) by Bott periodicity. We leave
this story for Prof. Brodzki’s course. (But see [fgv01, Sec. 9.5] for a pedestrian
approach.)

“Real” KR-homology is a theory for algebras with involution: in the com-
mutative case, we may just take a 7→ a∗, and we ask that C aC−1 = a∗ i.e.,
that C implement the involution. This is trivial for the manifold case, since
C(ψa) = C(ψ)ā =: a∗C(ψ), the a∗ here being multiplication by ā.

In the noncommutative case, the operator Ca∗C−1 would generate a second
representation of A, in fact an antirepresentation (that is, a representation of
the opposite algebra Aop) and we should require that this commute with the
original representation of A.

Definition 6.30. A real spectral triple is a spectral triple (A,H, D), together
with an antiunitary operator J : H → H such that J(DomD) ⊂ DomD, and
[a, Jb∗J−1] = 0 for all a, b ∈ A.

Definition 6.31. A spectral triple (A,H, D) is even if there is a selfadjoint
unitary operator Γ on H such that aΓ = Γa for all a ∈ A, Γ(DomD) = DomD,
and DΓ = −ΓD. If no such Z2-grading operator Γ is given, we say that the
spectral triple is odd.

We have seen that in the standard commutative example, the even case
arises when the auxiliary algebra B contains a natural Z2-grading operator, and
this happens exactly when the manifold dimension is even. Now, the manifold
dimension is determined by the spectral growth of the Dirac operator, and this
spectral version of dimension may be used for noncommutative spectral triples,
too. To make this more precise, we must look more closely at spectral growth.

6.5 Summability of spectral triples

Definition 6.32. For 1 < p < ∞, there is an operator ideal Lp+(H) =
Lp,∞(H), defined as follows:

Lp+(H) := {T ∈ K(H) : σN (T ) = O(N (p−1)/p) as N →∞},
with norm ‖T ‖p+ := supN≥1 σN (T )/N (p−1)/p.

For instance, if A ≥ 0 with sk(A) :=
1

(k + 1)1/p
, then A ∈ Lp+ by the

integral test:

σN (A) ∼
∫ N

1

t−1/p dt ∼ p

p− 1
N (p−1)/p, as N →∞.

Indeed, since p > 1, T ∈ Lp+ implies sk(T ) = O((k + 1)−1/p). To see that,
recall that s0(T ) + · · · + sk(t) = σk+1(T ); since {sk(T )} is decreasing, this
implies (k+ 1)sk(T ) ≤ σk+1(T ), and thus sk(T ) ≤ 1

k+1 σk+1(T ) ≤ C(k+ 1)−1/p

for some constant C.
Therefore, T ∈ Lp+ implies sk(T p) = O( 1

k+1 ) and then σN (T p) = O(logN),

so that T p ∈ L1+, which serves to justify the notation Lp+. It turns out,
however, that there are, for any p > 1, positive operators B ∈ L1+ such that
B1/p /∈ Lp+, so the implication “T ∈ Lp+ =⇒ T p ∈ L1+” is a one-way street.
For an example, see [fgv01, Sec. 7.C].
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Definition 6.33. A spectral triple (A,H, D) is p+-summable for some p with
1 ≤ p < ∞ if (D2 + 1)−1/2 ∈ Lp+(H). If D is invertible, this is equivalent to
requiring |D|−1 ∈ Lp+(H).

Definition 6.34. Let p ∈ [1,∞). A spectral triple (A,H, D) has spectral di-
mension p if it is p+-summable and moreover

0 < Trω((D2 + 1)−p/2) <∞ for any Dixmier trace Trω .

If D is invertible, this is equivalent to 0 < Trω(|D|−p) <∞ for any Trω.

For positivity of all Dixmier traces, it suffices that lim infN→∞ 1
logN σN ((D2+

1)−p/2) > 0. Note that, in view of Corollary 6.8, this can happen for at most
one value of p.

Proposition 6.35. If (A,H, D) is a p+-summable spectral triple, with D in-
vertible, let

F := D |D|−1 (6.12)

be the phase of the selfadjoint operator D. Then, for each a ∈ A, the commu-
tator [F, a] lies in Lp+(H).

Proof. First we show that [F, a] ∈ K(H), using the spectral formula (6.6) for
|D|−1. Indeed,

[F, a] = [D |D|−1, a] = [D, a] |D|−1 +D [|D|−1, a]

=
2

π

∫ ∞

0

(
[D, a] (D2 + µ)−1 +D [(D2 + µ)−1, a]

)
dµ

=
2

π

∫ ∞

0

(
[D, a] (D2 + µ)−1 −D(D2 + µ)−1 [D2, a] (D2 + µ)−1

)
dµ

(6.13)

=
2

π

∫ ∞

0

(
µ2(D2 + µ)−1 [D, a] (D2 + µ)−1 −D(D2 + µ)−1 [D, a]D(D2 + µ)−1

)
dµ.

In the integrand, [D, a] is bounded by the hypothesis that (A,H, D) is a
spectral triple. Next, (D2 + µ)−1 = (D − iµ)−1(D + iµ)−1 ∈ K(H) and

D(D2 + µ)−1 = D(D2 + µ)−
1
2

︸ ︷︷ ︸
∈B(H)

(D2 + µ)−
1
2

︸ ︷︷ ︸
∈K(H)

is also compact. Thus the integrand lies in K(H) for each µ, hence [F, a] ∈ K(H),
that is, the integral converges in the norm of this C*-algebra.

Next to show that [F, a] ∈ Lp+(H), we may assume that a∗ = −a, since

i [F, a] = [F, i2 (a∗ + a)]− i [F, 1
2 (a∗ − a)].

Note that this assumption implies that the bounded operators [F, a] and [D, a]
are selfadjoint.
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If we replace the term [D, a] by its norm ‖[D, a]‖ on the right hand side of
(6.13), this integral changes into

2

π

∫ ∞

0

(
µ2(D2 + µ)−1 ‖[D, a]‖ (D2 + µ)−1 −D(D2 + µ)−1 ‖[D, a]‖D(D2 + µ)−1

)
dµ

=
2

π
‖[D, a]‖

∫ ∞

0

(
(µ2(D2 + µ)−2 + D2(D2 + µ)−2)

)
dµ

≤ 2

π
‖[D, a]‖

∫ ∞

0

(
(µ2(D2 + µ)−2 + D2(D2 + µ)−2)

)
dµ

=
2

π
‖[D, a]‖

∫ ∞

0

(D2 + µ)−1 dµ = ‖[D, a]‖ |D|−1,

where these are inequalities among selfadjoint elements of the C*-algebra K(H).
Therefore, if we plug in the order relation

−‖[D, a]‖ ≤ [D, a] ≤ ‖[D, a]‖

among selfadjoint elements of B(H) into the right hand side of (6.13), we obtain
the operator inequalities

−‖[D, a]‖ |D|−1 ≤ [F, a] ≤ ‖[D, a]‖ |D|−1.

Thus the singular values of [F, a] are dominated by those of |D|−1. We now
conclude that |D|−1 ∈ Lp+ implies [F, a] ∈ Lp+, for all a ∈ A.

The assumption that D is invertible in the statement of Proposition 6.35 is
not essential (though the proof does depend on it, of course). With some extra
work, we can modify the proof to show that (D2 + 1)−1/2 ∈ Lp+ implies that
all [F, a] ∈ Lp+, where F is redefined to mean F := D (D2 + 1)−1/2, in contrast
to (6.12). This is proved in [cprs04], in full generality.
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Chapter 7

Spectral triples: Examples

7.1 Geometric conditions on spectral triples

We begin by listing a set of requirements on a spectral triple (A,H, D), whose
algebra A is unital but not necessarily commutative, such that (A,H, D) pro-
vides a “spin geometry” generalization of our “standard commutative example”
(C∞(M), L2(M,S), /D). Again we shall assume, for convenience, that D is in-
vertible.

Condition 1 (Spectral dimension). There is an integer n ∈ {1, 2, . . .}, called
the spectral dimension of (A,H, D), such that |D|−1 ∈ Ln+(H), and 0 <
Trω(|D|−n) <∞ for any Dixmier trace Trω.

When n is even, the spectral triple (A,H, D) is also even: that is, there
exists a selfadjoint unitary operator Γ ∈ B(H) such that Γ(DomD) = DomD,
satisfying aΓ = Γa for all a ∈ A, and DΓ = −ΓD.

Remark 7.1. It is useful to allow the case n = 0 as a possible spectral dimension.
There are two cases to consider:

• H is an infinite-dimensional Hilbert space, but the spectrum of the opera-
tor D has exponential growth, so that N|D|(λ) = O(λε) as λ→∞, for any
exponent ε > 0. This is what happens in the example by Da̧browski and
Sitarz [ds03] of a spectral triple on the standard Podleś sphere S2

q with
0 < q < 1, where the operator D has the same eigenvalue multiplicities as
the Dirac operator on S2 (see Section 8.2), but the eigenvalue ±(l+ 1

2 ) is

replaced by ±(q−l−
1
2 − ql+ 1

2 )/(q−1 − q), for l = 1
2 ,

3
2 , . . . .

• H is finite-dimensional, A is a finite-dimensional matrix algebra, and D
is a hermitian matrix. In this case, we assign to (A,H, D) the spectral
dimension n = 0, and replace the Dixmier traces Trω by the ordinary
matrix trace tr.

Condition 2 (Regularity). For each a ∈ A, the bounded operators a and [D, a]
lie in the smooth domain

⋂
k≥1 Dom δk of the derivation δ : T 7→ [|D|, T ].

Moreover, A is complete in the topology given by the seminorms qk : a 7→
‖δk(a)‖ and q′k : a 7→ ‖δk([D, a])‖. This ensures that A is a Fréchet pre-C*-
algebra.
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Part III Geometric conditions on spectral triples

Condition 3 (Finiteness). The subspace of smooth vectors H∞ :=
⋂
k∈N DomDk

is a finitely generated projective left A-module.
This is equivalent to saying that, for some N ∈ N, there is a projector

p = p2 = p∗ in MN(A) such that H∞ ∼= ANp as left A-modules.

Condition 4 (Real structure). There is an antiunitary operator J : H → H
satisfying J2 = ±1, JDJ−1 = ±D, and JΓ = ±ΓJ in the even case, where the
signs depend only on n mod 8 (and thus are given by the table of signs for the
standard commutative examples). Moreover, b 7→ Jb∗J−1 is an antirepresenta-
tion of A on H (that is, a representation of the opposite algebra Aop), which
commutes with the given representation of A:

[a, Jb∗J−1] = 0, for all a, b ∈ A.

Condition 5 (First order). For each a, b ∈ A, the following relation holds:

[[D, a], Jb∗J−1] = 0, for all a, b ∈ A.

This generalizes, to the noncommutative context, the condition that D be a first-
order differential operator.

Since
[[D, a], Jb∗J−1] = [[D, Jb∗J−1], a] + [D, [a, Jb∗J−1]︸ ︷︷ ︸

=0

],

this is equivalent to the condition that [a, [D, Jb∗J−1]] = 0.

Condition 6 (Orientation). There is a Hochschild n-cycle

c =
∑
j(a

0
j ⊗ b0j)⊗ a1

j ⊗ · · · ⊗ anj ∈ Zn(A,A⊗Aop),

such that

πD(c) ≡∑j a
0
j(Jb

0∗
j J
−1) [D, a1

j ] . . . [D, a
n
j ] =

{
Γ, if n is even,

1, if n is odd.
(7.1)

In many examples, including the noncommutative examples we shall meet in
the next two sections, one can often take b0j = 1, so that c may be replaced, for

convenience, by the cycle
∑
j a

0
j ⊗a1

j⊗· · ·⊗anj ∈ Zn(A,A). In the commutative
case, where Aop = A, this identification may be justified: the product map
m : A⊗A → A is a homomorphism.

The data set (A,H, D; Γ or 1, J, c) satisfying these six conditions constitute
a “noncommutative spin geometry”. In the fundamental paper where these
conditions were first laid out [c-a96], Connes added one more nondegeneracy
condition (Poincaré duality in K-theory) as a requirement. We shall not go into
this matter here.

To understand the orientation condition in the standard commutative ex-
ample, we show that c arises from a volume form on the oriented compact
manifold M . Choose a metric g on M and let νg be the corresponding Rie-
mannian volume form. Furthermore, let {(Uj, aj)} be a finite atlas of charts
on M , where aj : Uj → Rn, and let {fj} be a partition of unity subordinate
to the open cover {Uj}; then for r = 1, . . . , n, each fja

r
j lies in C∞(M) with
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Part III Geometric conditions on spectral triples

supp(fja
r
j) ⊂ Uj. Over each Uj , let {θ1j , . . . , θnj } be a local orthonormal basis of

1-forms (with respect to the metric g). Then

νg
∣∣
Uj

= θ1j ∧ · · · ∧ θnj = hj da
1
j ∧ · · · ∧ danj ,

for some smooth functions hj : Uj → C. We write a0
j := (−i)m fjhj ∈ C∞(M),

where as usual, n = 2m or n = 2m+ 1. With that notation, we get

(−i)m νg = (−i)m∑j fj
(
νg
∣∣
Uj

)
=
∑

j a
0
j da

1
j ∧ · · · ∧ danj .

Now we define

c :=
1

n!

∑

σ∈Sn

(−1)σ
∑

j

a0
j ⊗ aσ(1)

j ⊗ · · · ⊗ aσ(n)
j . (7.2)

Exercise 7.2. Show that the Hochschild boundary bc of the chain (7.2) is zero
because A is commutative.

Therefore, c is a Hochschild n-cycle in Zn(A,A), for A = C∞(M). Its
representative as a bounded operator on H is

1

n!

∑

σ∈Sn

(−1)σ
∑

j

a0
j [ /D, a

σ(1)
j ] . . . [ /D, a

σ(n)
j ] =

1

n!

∑

σ∈Sn

(−1)σ
∑

j

a0
j c(da

σ(1)
j ) . . . c(da

σ(n)
j )

=
(−i)m
n!

∑

j

fj
∑

σ∈Sn

(−1)σc(θ
σ(1)
j ) . . . c(θ

σ(n)
j )

=

(∑

j

fj

)
(−i)m c(θ1j ) . . . c(θnj )

= c(γ) = Γ or 1,

since c(γ) = Γ for n = 2m, and c(γ) = 1 for n = 2m+ 1.
This calculation shows that the elements a1

j , . . . , a
n
j occurring in the cycle c

are local coordinate functions for M . An alternative approach would be to
embed M in some RN and take the arj to be some of the cartesian coordinates

of RN , regarded as functions on M . This is illustrated in the following example.

Example 7.3. By regarding the sphere S2 as embedded in R3,

S2 = { (x, y, z) ∈ R3 : x2 + y2 + z2 = 1 },
we can write down its volume form for the rotation-invariant metric g as

ν = xdy ∧ dz + y dz ∧ dx + z dx ∧ dy.
The corresponding Hochschild 2-cycle is

c := − i
2

∑

cyclic

(x⊗ y ⊗ z − x⊗ z ⊗ y),

summing over cyclic permutations of the letters x, y, z.
If /D is the Dirac operator on S2 for this “round” metric and the unique spin

structure on S2 compatible with its usual orientation (see Section 8.2), then

− i
2

∑

cyclic

(
x [ /D, y] [ /D, z]− x [ /D, z] [ /D, y]

)
= Γ =

(
1 0
0 −1

)

on H = H+ ⊕H−, which is the completion of the spinor module S = S+ ⊕S−.
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Part III Isospectral deformations of commutative spectral triples

Consider the following element of M2(A), with A = C∞(S2):

p :=
1

2

(
1 + z x+ iy
x− iy 1− z

)
. (7.3)

Note that tr(p − 1
2 ) = 0, where tr(a) := a11 + a22 means the matrix trace

tr : M2(A)→ A.

Exercise 7.4. Show that, if A is any ∗-algebra and p ∈M2(A) is given by (7.3),
then the projector relations p = p∗ = p2 are equivalent to the following relations
among x, y, z ∈ A:

x∗ = x, y∗ = y, z∗ = z,

[x, y] = [x, z] = [y, z] = 0,

x2 + y2 + z2 = 1.

Exercise 7.5. Check that tr(p dp ∧ dp) = − i
2 ν.

If we replace − i
2 ν by the Hochschild 2-cycle c, the same calculation that

solves the previous exercise also shows that πD(c) = Γ.
This computation has a deeper significance. One can show that the left A-

module M2(A) p is isomorphic to E1 in our classification ofA-modules of sections
of line bundles over S2; and we have seen in Section 8.3 that E1 ∼= Γ(S2, L) where
L → S2 is the tautological line bundle. The first Chern class c1(L) equals (a
standard multiple of) [ν] ∈ H2

dR(S2). One can trace a parallel relation between
spinc structures on S2 defined, via the principal U(1)-bundle SU(2) → S2, on
associated line bundles, and the Chern classes of each such line bundle. For
that, we refer to [bhms07].

7.2 Isospectral deformations of commutative spec-

tral triples

To some extent, one can recover the sphere S2 from spectral triple data alone.
Thus, if A is a ∗-subalgebra of some C*-algebra containing elements x, y, z, and
if the matrix

p =
1

2

(
1 + z x+ iy
x− iy 1− z

)
∈M2(A)

is a projector, i.e., p = p∗ = p2, then by Exercise 7.4, the elements x, y, z
commute, they are selfadjoint, and they satisfy x2 + y2 + z2 = 1. Thus, the
commutative C*-algebra A generated by x, y, z is of the form C(X), where X ⊆
S2 is a closed subset. If A is now a pre-C∗-subalgebra of A containing x, y, z,
and is the algebra of some spectral triple (A,H, D), then the extra condition
πD(c) = Γ can only hold if X is the support of the measure ν. This means that
X = S2.

A similar argument can be tried, to obtain an “algebraic” description of
S4. What follows is a heuristic motivation, following [cl01]. One looks for a
projector p ∈M4(A), of the form

p =




1 + z 0 a b
0 1 + z −b∗ a
a∗ −b 1− z 0
b∗ a∗ 0 1− z


 =

(
(1 + z)12 q

q∗ (1− z)12

)
, where q =

(
a b
−b∗ a

)
.
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Part III Isospectral deformations of commutative spectral triples

Then p = p∗ only if z = z∗, and then p2 = p implies that −1 ≤ z ≤ 1 in

the C∗-completion A of A,
[(
z 0
0 z

)
, q
]

= 0, and qq∗ = q∗q =

(
1− z2 0

0 1− z2

)
.

From that, one finds that a, a∗, b, b∗, z commute, and aa∗ + bb∗ = 1− z2. Thus
A = C(X) with X ⊆ S4. Again, it can be shown that the equality X = S4 is
reached by some extra conditions, namely,

tr(p− 1
2 ) = 0,

tr((p− 1
2 ) dp dp) = 0 in Ω2(A),

πD((p− 1
2 ) dp dp dp dp) = Γ in B(H).

However, if one takes instead q :=

(
a b
−λ̄b∗ a∗

)
with λ = e2πiθ, then there

is another, noncommutative, solution [cl01]: now A is the C*-algebra generated
by a, b and z = z∗, where z is central, and the other relations are

ab = e−2πiθba, a∗b = e2πiθba∗,

aa∗ = a∗a, bb∗ = b∗b, aa∗ + bb∗ = 1− z2. (7.4)

To find a solution to these relations, where the central element z is taken to be
a scalar multiple of 1, we substitute

a = u sinψ cosφ

b = v sinψ cosφ

z = (cosψ) 1

with −π ≤ ψ ≤ π and −π < φ ≤ π, say. In this way, the commutation relations
(7.4) reduce to

uu∗ = u∗u = 1, vv∗ = v∗v = 1, vu = e2πiθuv.

These are the relations for the unitary generators of a noncommutative 2-torus:
see Section 8.4. Thus, by fixing values of φ, ψ with ψ 6= ±π and φ /∈ π

2 Z, we
get a homomorphism from A to C(T2

θ), the C*-algebra of the noncommutative

2-torus with parameters Θ =

(
0 θ
−θ 0

)
∈M2(A).

We look for a suitable algebra A, generated by elements satisfying the above
relations, by examining a Moyal deformation of C∞(S4). One should first note
that S4 ⊂ R5 = C× C× R carries an obvious action of T2, namely,

(t1, t2) · (α, β, z) := (t1α, t2β, z), for |t1| = |t2| = 1,

which preserves the defining relation αᾱ+ ββ̄ + z2 = 1 of S4. The action is not
free: there are two fixed points (0, 0,±1), and for each t with −1 < t < 1 there
are two circular orbits, namely { (α, 0, t) : αᾱ = 1 − t2 } and { (β, 0, t) : ββ̄ =
1− t2 }. The remaining orbits are copies of T2. The construction which follows
will produce a “noncommutative space” S4

θ that can be thought of as the sphere
S4 with each principal orbit T2 replaced by a noncommutative torus T2

θ, while
the S1-orbits and the two fixed points remain unchanged.
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In quantum mechanics, the Moyal product of two functions f, h ∈ S(Rn) is
defined as an (oscillatory) integral of the form

(f ⋆ h)(x) := (πθ)−n
∫

Rn

∫

Rn

f(x+ s)h(x+ t) e−2is(Θ−1t) ds dt. (7.5)

Here n = 2m is even, Θ = −Θt ∈Mn(R) is an invertible skewsymmetric matrix,
and det Θ = θn with θ > 0. In the next section, we shall interpret this formula
in a precise manner (see Definition 7.17 below), and show that f ⋆h lies in S(Rn)
also. Formally, at any rate, one can rewrite it as an ordinary Fourier integral:

(f ⋆ h)(x) := (2π)−n
∫

Rn

∫

Rn

f(x− 1
2Θu)h(x+ t) e−iut du dt,

with the advantage that now Θ need not be invertible (so that n need no longer
be even). It was noticed by Rieffel [r-ma93] that one can replace the translation
action of Rn on f, h by any (strongly continuous) action α of some Rl on a
C*-algebra A. Then, given Θ = −Θt ∈Ml(R), one can define

a ⋆ b :=

∫

Rl

∫

Rl

α 1
2 Θu(a)α−t(b) e

2πiut du dt,

provided that the integral makes sense. In particular, if α is periodic action of
Rl, i.e., αt+r = αt for r ∈ Zn, so that α is effectively an action of Tn = Rn/Zn,
then one can describe the Moyal deformation as follows.

Definition 7.6. Let A be a unital C*-algebra, and suppose that there is an
action α of Tl on A by ∗-automorphisms, which is strongly continuous. For
each r ∈ Zl, let A(r) be the spectral subspace

A(r) := { a ∈ A : αt(a) = tra for all t ∈ Tl }, where tr := tr11 . . . trn
n ∈ T.

Let A := { a ∈ A : t 7→ αt(a) is smooth } be the “smooth subalgebra” for
the action of Tl. It can be shown that A is a Fréchet pre-C*-algebra, and each
a ∈ A can be written as a convergent series a =

∑
r∈Zl ar, where ar ∈ A(r) and

‖ar‖ → 0 rapidly as |r| → ∞.

Definition 7.7. Fix Θ = −Θt ∈ Ml(R). The Moyal product of two elements
a, b ∈ A, with a =

∑
r ar and b =

∑
s bs, is defined as a⋆b :=

∑
r,s ar ⋆bs, where

ar ⋆ bs := σ(r, s) arbs, with σ(r, s) := exp
{
−πi∑l

j,k=1 rjθjksk
}
. (7.6)

For actions of Tl, Rieffel [r-ma93] showed that the integral formula and the
series formula for a ⋆ b are equivalent, when a, b belong to the smooth subalge-
bra A.

Definition 7.8. Let M be a compact Riemannian manifold, carrying a contin-
uous action of Tl by isometries {σt}t∈Tl . Then αt(f) := f ◦ σt is a strongly
continuous action of Tl. Given Θ = −Θt ∈ Ml(R), Rieffel’s construction pro-
vides a Moyal product on C∞(MΘ) := (C∞(M), ⋆), whose C∗-completion in a
suitable norm is C(MΘ) := (C(M), ⋆). In particular, for M = S4 with the round

metric and Θ =

(
0 θ
−θ 0

)
, these are the algebras C∞(S4

θ) and C(S4
θ) introduced

by Connes and Landi [cl01].
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Part III Isospectral deformations of commutative spectral triples

To deform the spectral triple (C∞(M), L2(M,S), /D), we need a further step.
Since each σt is an isometry of M , it defines an automorphism of the tangent
bundle TM (with TxM → Tσt(x)M), and of the cotangent bundle T ∗M (with
T ∗σt(x)

M → T ∗xM), preserving the orientation and the metric on each bundle.

But the group SO(T ∗xM, gx) does not act directly on the fibre Sx of the spinor
bundle. Instead, the action of the Clifford algebra B on H = L2(M,S) yields a
homomorphism Spin(T ∗xM, gx) → End(Sx) for each x ∈ M , and we know that
there is a double covering Adx : Spin(T ∗xM, gx)→ SO(T ∗xM, gx) by conjugation.

It turns out [cd02] that one can lift the isometric action α : Tl → SO(T ∗M)

to an action of another torus τ : T̃l → Aut(S), where there is a covering map

π : T̃l → Tl such that π(±1) = 1, making the following diagram commute:

T̃l
τt //

π �� Aut(S)

Ad��
Tl

αt // SO(T ∗M)

Fact 7.9. One can find a covering of Tl by a torus T̃l, and a representation
t̃ 7→ τt̃ of T̃l on Aut(S) such that Ad(τt̃) = αt if π(t̃) = t ∈ Tl. For f ∈ A =
C∞(M) and φ, ψ ∈ S = Γ(M,S), this implies that

τt̃(fψ) = αt(f) τt̃ψ, (7.7)

(τt̃φ | τt̃ψ) = αt(φ | ψ). (7.8)

Integrating over M , and recalling that σt is an isometry, we get 〈τt̃φ | τt̃ψ〉 =

〈φ | ψ〉, so that τ extends to a unitary representation of T̃l on H = L2(M,S).

We can regard Tl as Rl/(Zl + Ẑl), where Ẑl = Zl + (1
2 ,

1
2 , . . . ,

1
2 ). With

this convention, one can show that the set of commuting selfadjoint operators
P1, . . . , Pl on H which generate the unitary representation of T̃l, i.e.,

τt̃ =: exp(it1P1 + · · ·+ itnPn),

have half-integer spectra: sp(Pj) ⊆ 1
2Z.

Now define a family of unitary operators { σ(r, P ) : r ∈ Zl } by

σ(r, P ) := exp
(
−πi∑j,k rjθjk Pk

)
,

that is, we substitute sk by Pk in the cocycle formula σ(r, s) of (7.6).

Exercise 7.10. Show that, since the action α is isometric, the unitary operator
τt̃ commutes with /D and with the charge conjugation operator C, for each t̃ ∈ T̃l.

It follows that each σ(r, P ) commutes with /D, too. However, the operators
σ(r, P ) need not commute with the multiplication operators ψ 7→ fψ, for f ∈
C∞(M). Indeed, (7.7) implies that τt̃fτ−t̃ = αt(f) for each t̃ ∈ T̃l.

Exercise 7.11. If hs ∈ A(s) and r ∈ Zl, show that σ(r, P )hs = hs σ(r, P + s).

We are now ready to exhibit the isospectral deformation of the standard
commutative example for a spin manifold M carrying an isometric action of Tl,
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with respect to a fixed matrix Θ of deformation parameters. The deformation
is called isospectral for the simple reason that the operator D of the deformed
spectral triple is the same Dirac operator of the undeformed case, so it is no
surprise that its spectrum does not change. What does change is the algebra: in
fact, the underlying vector space of A is unchanged, but the product operation
is deformed, and consequently its representation on H changes, too.

Theorem 7.12. If AΘ = (C∞(M), ⋆), H = L2(M,S) and D = /D, then there
is a representation of AΘ by bounded operators on H, such that (AΘ,H, /D)
is a spectral triple with the same Dirac operator as the standard commutative
example (C∞(M),H, /D). Moreover, the charge conjugation operator C is a real
structure on (AΘ,H, /D), and the first order property holds.

Proof. If f ∈ A, write f =
∑

r∈Zl fr as a decomposition into spectral subspaces,

where αt(fr) = trfr for t ∈ Tl, r ∈ Zl. Define

L(f) :=
∑

r

fr σ(r, P ) ∈ B(H).

Then f 7→ L(f) is a representation of the algebra AΘ:

L(f)L(h) =
∑

r,s

fr σ(r, P )hs σ(s, P )

=
∑

r,s

frhs σ(r, P + s)σ(s, P )

=
∑

r,s

frhs σ(r, s)σ(r + s, P )

=
∑

r,s

fr ⋆ hs σ(r + s, P ) = L(f ⋆ h).

The last equality follows because fr ∈ A(r), hs ∈ A(s) imply that both frhs and
fr ⋆ hs lie in A(r+s) —these products differ only by the phase factor σ(r, s)—
and therefore (f ⋆ h)p =

∑
r+s=p fr ⋆ hs.

Since αt(f
∗
r ) = αt(fr)

∗ = t−rf∗r , we see that (f∗)s = (f−s)∗ for s ∈ Zl. Thus
L(f)∗ =

∑
r f
∗
r σ(−r, P ) =

∑
r(f
∗)−r σ(−r, P ) = L(f∗), so that L is actually a

∗-representation.
Since /D commutes with each σ(r, P ), we get

[ /D,L(f)] =
∑

r

[ /D, fr]σ(r, P ) =: L([ /D, f ]), (7.9)

where we remark that τt̃ [ /D, fr] τ−t̃ = [ /D, τt̃frτ−t̃] = tr [ /D, fr], so that the op-
erators [ /D, f ], for f ∈ A, decompose into spectral subspaces under the action
t 7→ Ad(τt̃) by automorphisms of B(H), which extends t 7→ αt by automor-
phisms of A.

Next, since the antilinear operator C commutes with all unitaries σ(r, P ),
we deduce that CPjC

−1 = −Pj for j = 1, 2, . . . , l. Therefore, we can define an
antirepresentation of AΘ on H by

R(f) := C L(f)∗C−1 =
∑

r

σ(r, P )∗ CfrC
−1 =

∑

r

σ(−r, P ) fr =
∑

r

fr σ(−r, P ).
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Part III The Moyal plane as a nonunital spectral triple

Notice that σ(r, P )∗ = σ(−r, P ) commutes with fr in view of Exercise 7.11 and
the relation σ(−r, r) = 1.

The left and right multiplication operators commute, since

[L(f), R(h)] :=
∑

r,s

[σ(r, P ) fr, hs σ(−s, P )]

=
∑

r,s

[fr, hs]σ(r, s)σ(r − s, P ) = 0,

where [fr, hs] = 0 because, with its original product. A is commutative. The
same calculation shows also that

[[ /D,L(f)], R(h)] =
[
L([ /D, f ]), R(h)

]
=
∑

r,s

[[ /D, fr], hs]σ(r, s)σ(r − s, P ) = 0,

since ([ /D, f ])r = [ /D, fr] for each r and [[ /D, fr], hs] = 0 by the first-order prop-
erty of the undeformed spectral triple (C∞(M),H, /D).

When dimM is even, and Γ is the Z2-grading operator Γ on the spinor
space H, we should note that the orientation condition π /D(c) = Γ says, among
other things, that Γ appears in the algebra generated by the operators f and
[ /D, f ], for f ∈ A. The representation L of AΘ extends to this algebra of
operators by using (7.9) as a definition of L([ /D, f ]). In the formula (7.1) for
π /D(c), if we replace all terms arj by L(arj), then we obtain L(π /D(c)) = L(Γ) =
Γ. Thus c may also be regarded as a Hochschild n-cycle over AΘ, and the
orientation condition π /D(c) = Γ is unchanged by the deformation. In odd
dimensions, the same is true, with Γ replaced by 1.

In conclusion: the isospectral deformation procedure of Connes and Landi
yields a family of noncommutative spectral triples that satisfy all of our stated
conditions for a noncommutative spin geometry. (Moreover [cl01], Poincaré
duality in K-theory is stable under deformation, too.)

7.3 The Moyal plane as a nonunital spectral triple

In order to extend the notion of spectral triple (A,H, D) to include the case
where the algebra A may be nonunital, we modify Definition 4.1 as follows.

Definition 7.13. A nonunital spectral triple (A,H, D) consists of a nonunital
∗-algebra A, equipped with a faithful representation on a Hilbert space H, and a
selfadjoint operator D on H with a(DomD) ⊆ DomD for all a ∈ A, such that

• [D, a] extends to a bounded operator on H, for each a ∈ A;

• a (D2 + 1)−1/2 is a compact operator, for each a ∈ A.

In general, D may have continuous spectrum, so that the operator (D2 +
1)−1/2 will usually not be compact. But it is enough to ask that it become
compact when mollified by any multiplication operator in A. An equivalent
condition is that a(D − λ)−1 be compact, for all λ /∈ sp(D). In the nonunital
case, there is no advantage in supposing that D be invertible, so it is better to
work directly with (D2 + 1)1/2 instead of |D|.
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Part III The Moyal plane as a nonunital spectral triple

Remark 7.14. The simplest commutative example of a nonunital spectral triple
is given by

A = C∞0 (Rn), H = L2(Rn)⊗ C2m

, /D = −i γj ∂

∂xj
,

describing the noncompact manifold Rn with trivial spinor bundle Rn×C2m →
Rn and flat metric: as always, n = 2m or n = 2m+1. Here C∞0 (Rn) is the space
of smooth functions that vanish at infinity together with all derivatives: it is a
∗-algebra under pointwise multiplication and complex conjugation of functions.

Here sp( /D) = R and ( /D
2

+ 1)−1/2 is not compact. However, it is known [s-b79]

that if f ∈ Lp(Rn) with p > n, then f ( /D
2

+ 1)−1/2 ∈ Lp(H).

The simplest noncommutative, nonunital example is an isospectral defor-
mation of this commutative case, where we use the same Dirac operator /D =
−i γj ∂/∂xj on the same spinor space H = L2(Rn) ⊗ C2m

, but we change the
algebra by replacing the ordinary product of functions by a Moyal product.

Before giving the details, we summarize the effect of this nonunital isospec-
tral deformation on the conditions given in Section 7.1 to define a “noncommu-
tative spin geometry”.

• The reality and first-order conditions are unchanged: we use the same
charge conjugation operator C as in the undeformed case.

• The regularity condition is essentially unchanged: all that is needed is to

replace the derivation δ : T 7→ [|D|, T ] by the derivation δ1 : T 7→ [( /D
2

+

1)1/2, T ], because Dom δk1 = Dom δk for each k ∈ N since ( /D
2

+1)1/2−|D|
is a bounded operator.

• For the orientation condition, the Hochschild n-cycle will not lie in Zp(A,A⊗
Aop) but rather in Zp(Ã, Ã⊗ Ãop), where Ã is a unitization of A, that is,
a unital ∗-algebra in which A is included as an essential ideal.

• For the finiteness condition, we ask that H∞ = ANp, for some projector
p = p2 = p∗ lying in MN (Ã). Thus H∞ can be regarded as the pullback,

via the inclusionA →֒ Ã, of the finitely generated projective left Ã-module
ÃNp.

• To define the integer n as the spectral dimension, we would like to be able
to assert that a (D2 + 1)−1/2 lies in Ln+(H) for each a ∈ A, and that
0 < Trω(a (D2 + 1)−n/2) < ∞ whenever a is positive and nonzero. It
turns out that we can only verify this for a belonging to a certain dense
subalgebra of A, in the Moyal plane example: see below.

Exercise 7.15. Check the assertion on regularity: show that Dom δ1 = Dom δ
and that Dom δk1 = Dom δk for each k ∈ N, by induction on k.

Exercise 7.16. Show that Proposition 6.13 holds without the assumption that D
is invertible. Namely, if L1(b) := (D2 +1)−1/2 [D2, b] and R1(b) := [D2, b] (D2+
1)−1/2, show that

⋂
k,l≥0 Dom(Lk1R

l
1) =

⋂
m≥0 Dom δm1 by adapting the proof of

Proposition 6.13.
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Part III The Moyal plane as a nonunital spectral triple

In what follows, we will sketch the main features of the Moyal plane spectral
triple. A complete treatment can be found in Gayral et al [ggisv04], on which
this outline is based. Our main concern here is to identify the “correct” algebra
A and its unitization Ã so that the modified spin-geometry conditions will hold.

We now recall the Moyal product over Rn, discussed in the previous Sec-
tion. It depends on a real skewsymmetric matrix Θ ∈ Mn(R) of “deformation

parameters”. For n = 2, such a matrix is of the form

(
0 θ
−θ 0

)
for some θ ∈ R;

and for n = 2m or n = 2m+ 1, Θ is similar to a direct sum of m such matrices
with possibly different values of θ (so Θ cannot be invertible if n is odd). For
convenience, we now take n to be even, and we shall suppose that all values of θ
are the same. (In applications to quantum mechanics, where the Moyal product
originated [m-je49], θ = ~ is the Planck constant.) Thus, we choose

Θ := θ S ∈M2m(R), with S :=

(
0 1m
−1m 0

)
, θ > 0. (7.10)

Note that det Θ = θ2m > 0.

Definition 7.17. Let n = 2m be even, let θ > 0, and let f, h ∈ S(Rn). Their
Moyal product f ⋆θ h ∈ S(Rn) is defined as follows:

(f ⋆θ h)(x) := (πθ)−n
∫

Rn

∫

Rn

f(x+ s)h(x+ t) e2is(St)/θ ds dt

= (2π)−n
∫

Rn

∫

Rn

f(x− 1
2θSu)h(x+ t) e−iut du dt

= (2π)−n
∫

Rn

f(x− 1
2θSu) ĥ(u) eiux du. (7.11)

Here ĥ(u) :=
∫

Rn h(t) e−iut dt is the Fourier transform. Since h 7→ ĥ preserves
the Schwartz space S(Rn), the third integral is a twisted version of the usual

convolution of f and ĥ, and one can check that this integral converges to an
element of S(Rn).

The first or second integral in (7.11) can also be regarded as defining the
Moyal product f ⋆θ h, where f and h need not be Schwartz functions, pro-
vided that the integrals are understood in some generalized sense. Thus Ri-
effel [r-ma93], for instance, considers them as oscillatory integrals. Here we
shall extend the Moyal product by duality, as follows. It is easy to see that
‖f ⋆θ h‖∞ ≤ (πθ)−n‖f‖1 ‖h‖1, from the first integral in (7.11). By applying
similar estimates to the functions xα ∂β (f ⋆θ h), for α, β ∈ Nn, one can ver-
ify that the product (f, h) 7→ f ⋆θ h is a jointly continuous bilinear map from
S(Rn)× S(Rn) to S(Rn).

Here are some elementary properties of the Moyal product that are easy to
check formally; they can be verified rigorously by some work with oscillatory
integrals: see [r-ma93].

1. The Moyal product is associative: (f ⋆θ g) ⋆θ h = f ⋆θ (g ⋆θ h).

2. The Leibniz rule holds: ∂j(f ⋆θ h) = ∂jf ⋆θ h+ f ⋆θ ∂jh for j = 1, . . . , n.

3. Complex conjugation is an involution: f ⋆θ h = h̄ ⋆θ f̄ .
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Part III The Moyal plane as a nonunital spectral triple

4. Integration over Rn is a trace for the Moyal product:

∫

Rn

(f ⋆θ h)(x) dx =

∫

Rn

(h ⋆θ f)(x) dx =

∫

Rn

f(x)h(x) dx. (7.12)

We denote Sθ := (S(Rn), ⋆θ). It is a Fréchet ∗-algebra, with the usual
topology of S(Rn).

The trace property gives us a (suitably normalized) bilinear pairing:

〈f, h〉 := (πθ)−m
∫

Rn

(f ⋆θ h)(x) dx.

Together with associativity, this gives the relation

〈f ⋆θ g, h〉 = 〈f, g ⋆θ h〉 = (πθ)−m
∫

Rn

(f ⋆θ g ⋆θ h)(x) dx,

valid for f, g, h ∈ S(Rn). Now, if T ∈ S′(Rn) is a tempered distribution, and if
f ∈ S(Rn), we can define T ⋆θ f, f ⋆θ T ∈ S′(Rn) by the continuity of the Moyal
product:

〈T ⋆θ f, h〉 := 〈T, f ⋆θ h〉, 〈f ⋆θ T, h〉 := 〈T, h ⋆θ f〉.

In this way, S′(Rn) becomes a bimodule over Sθ. Inside this bimodule, we can
identify a multiplier algebra in the obvious way.

Definition 7.18. The Moyal algebra Mθ = Mθ(Rn) is defined as the set of
(left and right) multipliers for S(Rn) within S′(Rn):

Mθ := {R ∈ S′(Rn) : R ⋆θ f ∈ S(Rn), f ⋆θ R ∈ S(Rn) for all f ∈ S(Rn) }.

This is a ∗-algebra, and S′(Rn) is an Mθ-bimodule, under the operations

〈T ⋆θ R, f〉 := 〈T,R ⋆θ f〉, 〈R ⋆θ T, f〉 := 〈T, f ⋆θ R〉.

This Moyal algebra is very large: for instance, it contains all polynomials
on Rn. However, because it contains many unbounded elements, it cannot serve
as a coordinate algebra for a spectral triple. Even so, it is a starting point
for a second approach, developed in [gv88]. Consider the quadratic polynomials
Hr := 1

2 (x2
r+x

2
m+r) for r = 1, . . . ,m. In the quantum-mechanical interpretation,

these are Hamiltonians for a set of m independent harmonic oscillators; but for
now, it is enough to know that they belong to Mθ. It turns out that the left
and right Moyal multiplications by these Hr have a set of joint eigenfunctions
{ fkl : k, l ∈ Nm } belonging to the Schwartz space S(Rn), with the following
properties:

• The eigenvalues are half-integer multiples of θ, namely,

Hr ⋆θ fkl = θ(kr + 1
2 )fkl, fkl ⋆θ Hr = θ(lr + 1

2 )fkl.

• The eigenfunctions form a set of matrix units for the Moyal product:
fkl ⋆θ frs = δlrfks and f̄kl = flk for all k, l, r, s ∈ Nm.
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Part III The Moyal plane as a nonunital spectral triple

• Any f ∈ S(Rn) is given by a series f = (2πθ)−m/2
∑

kl αkl fkl, converging
in the topology of S(Rn), such that αkl → 0 rapidly.

• The subset { (2πθ)−m/2fkl : k, l ∈ Nm } of S(Rn) is an orthonormal basis
for L2(Rn).

For example, when n = 2 and k = l ∈ N, fkk is given by

fkk(x1, x2) := 2 (−1)k e−(x2
1+x

2
2)/θ L0

k(2
θ (x2

1 + x2
2)),

where L0
k is the Laguerre polynomial of order k.

Because of these properties, we can extend the Moyal product to pairs of
functions in L2(Rn). If f = (2πθ)−m/2

∑
k,l αkl fkl and h = (2πθ)−m/2

∑
k,l βkl fkl,

we define
f ⋆θ h := (2πθ)−m

∑

k,r,l

αkrβrl fkl. (7.13)

The Schwarz inequality for sequences shows that

‖f ⋆θ h‖22 = (2πθ)−2m

∥∥∥∥
∑

k,r,l

αkrβrl fkl

∥∥∥∥
2

2

= (2πθ)−m
∑

k,l

∣∣∣∣
∑

r

αkrβrl

∣∣∣∣
2

≤ (2πθ)−m
∑

k,r

|αkr |2
∑

r,l

|βrl|2 = (2πθ)−m‖f‖22 ‖h‖22. (7.14)

This calculation guarantees that the series (7.13) converges whenever f, h ∈
L2(Rn); and that the operator L(f) : h 7→ f ⋆θ h extends to a bounded operator
in L(L2(Rn)) whenever f ∈ L2(Rn). Moreover, it gives a bound on the operator
norm:

‖L(f)‖ ≤ (2πθ)−m/2 ‖f‖2.
Now the Schwartz-multiplier algebraMθ can be replaced by an L2-multiplier

algebra. By duality in sequence spaces, any T ∈ S′(Rn) can be given an expan-
sion in terms of the {fkl} basis, and in this way one can define an algebra

Aθ := {R ∈ S′(Rn) : R ⋆θ f ∈ L2(Rn) for all f ∈ L2(Rn) }.

This is actually a C*-algebra, with operator norm ‖L(R)‖ := sup{ ‖R⋆θf‖2/‖f‖2 :
f 6= 0 }.

There is a unitary isomorphism W : L2(Rn) → L2(Rm) ⊗ L2(Rm) (tensor
product of Hilbert spaces), such that W L(f)W−1 = σ(f) ⊗ 1, where σ is the
(irreducible) Schrödinger representation; that is to say, f 7→ L(f) is equivalent
to the Schrödinger representation with infinite multiplicity. One can show that
Aθ = W−1L(L2(Rm))W , whereas the norm closure of the ∗-algebra (S(Rn), ⋆θ)
is W−1K(L2(Rm))W . For the details, consult [gv88] and [ggisv04].

The analogue of Lemma 6.19 holds, too: Sθ is a nonunital pre-C*-algebra. As
in the proof of Lemma 6.19, if f ∈ Sθ, suppose the equation (1+f)⋆θ (1+g) = 1
has a solution g in the unital C*-algebra Aθ. We may also write

f + g + f ⋆θ g = 0 and f + g + g ⋆θ f = 0, (7.15)

and we wish to show that g ∈ Sθ. Since g = −f − f ⋆θ g, it is enough to show
that f ⋆θ g ∈ Sθ. Now, left-multiplying the second equation in (7.15) by f gives
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Part III The Moyal plane as a nonunital spectral triple

f ⋆θ f + f ⋆θ g+ f ⋆θ g ⋆θ f = 0, so it is enough to check that f ⋆θ g ⋆θ f ∈ S(Rn)
whenever f ∈ S(Rn) and g ∈ Aθ. This turns out to be true: the necessary norm
estimates are given in [gv88].

However, the algebra Sθ is not the best candidate for the coordinate algebra
of the Moyal spectral triple. We now introduce a better algebra.

Definition 7.19. Consider the following space of smooth functions on Rn:

DL2(Rn) := { f ∈ C∞(Rn) : ∂αf ∈ L2(Rn) for all α ∈ Nn },

introduced by Laurent Schwartz in his book on distributions [s-l66]. It is a
Fréchet space, under the norms pr(f) :=

∑
|α|≤r ‖∂αf‖2, for r ∈ N. The Leibniz

rule for the Moyal product and the inequality (7.14) show that if f, h ∈ DL2(Rn),
then

‖∂α(f ⋆θ h)‖2 ≤
∑

0≤β≤α
‖∂βf ⋆θ ∂α−βh)‖2

≤ (2πθ)−m/2
∑

0≤β≤α

(
α

β

)
‖∂βf‖2 ‖∂α−βh‖22,

so that DL2(Rn) is actually an algebra under the Moyal product; and that this
product is continuous for the given Fréchet topology. Moreover, since complex
conjugation is an isometry for each norm pr, it is a ∗-algebra with a continuous
involution. We write Aθ := (DL2(Rn), ⋆θ) to denote this Fréchet ∗-algebra.

It does not matter whether these derivatives ∂αf are taken to be distribu-
tional derivatives only, since arguments based on Sobolev’s Lemma show that if
f and all its distributional derivatives are square-integrable, then f is actually
a smooth function.

The algebra Aθ is nonunital. Next, we introduce the preferred unitization
of Aθ.
Definition 7.20. Another space of smooth functions on Rn is found also in [s-l66]:

B(Rn) := { f ∈ C∞(Rn) : ∂αf is bounded on Rn, for all α ∈ Nn }.

It is also a Fréchet space, under the norms qr(f) := max|α|≤r ‖∂αf‖∞, for
r ∈ N.

We shall soon prove that B(Rn) is also a ∗-algebra under the Moyal product;

we denote it by Ãθ := (DL2(Rn), ⋆θ).

It is proved in Schwartz’ book that DL2(Rn) ⊂ B(Rn), and that the inclusion
is continuous for the given topologies. (This is not as obvious as it seems,
because in general square-integrable functions on Rn need not be bounded.)
Combining this with knowledge of the Moyal multiplier algebras, we end up
with the following inclusions [ggisv04]:

Sθ ⊂ Aθ ⊂ Ãθ ⊂ Aθ ∩Mθ.

The inclusion Ãθ ⊂ Aθ is a consequence of the Calderón–Vaillancourt theorem,
which says that a pseudodifferential operator of order zero on Rn, whose symbol
is differentiable to a high enough order, gives a bounded operator on L2(Rn); we
may notice that the second integral in (7.11) says that L(f) is pseudodifferential,
with symbol p(x, ξ) = f(x− 1

2θSξ).
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Proposition 7.21. B(Rn) is a Fréchet ∗-algebra under the Moyal product.

Proof. If f, h ∈ B(Rn) and if s ∈ N, we shall find estimates of the form

qs(f ⋆θ h) ≤ Crs qr(f) qr(h) whenever r ≥ s+ n+ 2. (7.16)

This shows that f ⋆θ h lies in B(Rn) whenever f, h ∈ B(Rn), and that (f, h) 7→
f ⋆θ h is a jointly continuous bilinear operation on B(Rn). Since complex con-
jugation is clearly isometric for each qr, the involution is continuous, too.

To justify the estimates (7.16), we first notice that, for any k ∈ N,

(∂βf ⋆θ ∂
γh)(x) =

= (πθ)−n
∫∫

∂βf(x+ y)

(1 + |y|2)k
∂γh(x+ z)

(1 + |z|2)k
(1 + |y|2)k(1 + |z|2)k e2iy(Sz)/θ dy dz

= (πθ)−n
∫∫

∂βf(x+ y)

(1 + |y|2)k
∂γh(x+ z)

(1 + |z|2)k
Pk(∂y, ∂z)

[
e2iy(Sz)/θ

]
dy dz

= (πθ)−n
∫∫

e2iy(Sz)/θ Pk(−∂y,−∂z)
[
∂βf(x+ y)

(1 + |y|2)k
∂γh(x+ z)

(1 + |z|2)k

]
dy dz,

where Pk is a certain polynomial of degree 2k in both yj and zj variables, and
for the third line we integrate by parts. It is not hard to find constants such
that |∂α((1 + |x|2)−k)| ≤ C′αk(1 + |x|2)−k for each k ∈ N, α ∈ Nn. Thus, we get
estimates of the form

|(∂βf ⋆θ ∂γh)(x)| ≤
∑

|µ|,|ν|≤2k

C′′µν

∫∫ |∂β+µf(x+ y)| |∂γ+νh(x+ z)|
(1 + |y|2)k (1 + |z|2)k

dy dz

≤ C′′′kr qr(f) qr(h)

∫

Rn

dy

(1 + |y|2)k

∫

Rn

dz

(1 + |z|2)k
,

provided r ≥ |β|+ |γ|+ 2k; and we need k > n/2 so that the right hand side is
finite. For |β| + |γ| ≤ s, we only need to choose k so that n < 2k ≤ r − s, and
this is always possible for r ≥ s+ n+ 2.

Rieffel, in [r-ma93], showed that Ãθ is the space of smooth vectors for the

action of Rn (by translations) on its C∗-completion; this entails that Ãθ is a
pre-C*-algebra.

Now, the inclusion Ãθ ⊂ Aθ means that ‖∂αf ⋆θ ∂βh‖2 is finite, whenever

f ∈ Ãθ and h ∈ Aθ; therefore, f ⋆θ h lies in Aθ also. A similar argument shows
that h ⋆θ f lies in Aθ. Thus, Aθ is an ideal in Ãθ. (In fact, it is an essential
ideal; that is to say, if f ⋆θ h = 0 for all h ∈ Aθ, then f = 0; this can be seen by
taking h = fkl for any k, l ∈ Nn and checking that f must vanish.)

Lemma 7.22. Aθ is a nonunital pre-C*-algebra.

Proof. Since Aθ is Fréchet, we only need to show that it is spectrally invariant.
In the nonunital case, this means that if f ∈ Aθ, and the equations f+g+f⋆θg =
f + g + g ⋆θ f = 0 have a solution g in the C∗-completion of Aθ, then g lies in
Aθ. Now since f ∈ Ãθ and Ãθ is already a pre-C*-algebra, we see that g ∈ Ãθ.
But Aθ is an ideal in Ãθ, and thus f ⋆θ g ∈ Aθ. This implies that g = −f−f ⋆θ g
lies in Aθ, too.

346



Part III A geometric spectral triple over SUq(2)

An important family of elements in Ãθ that do not belong to Aθ are the
plane waves :

uk(x) := e2πikx, for each k ∈ Rn.

It is immediate from the formulas (7.11) that

uk ⋆θ ul = e−πiθk(Sl) uk+l, for all k, l ∈ Rn.

In particular, by taking k, l ∈ Zn to be integral vectors, we get an inclusion
C∞(TnθS) →֒ Ãθ: the smooth algebra of the noncommutative n-torus, for Θ =

θS, can be identified with a subalgebra of periodic functions in Ãθ.
In particular, the Hochschild n-cycle c representing the orientation of this

noncommutative torus can also be regarded as an n-cycle over Ãθ. We can
write uk = vk11 ⋆θ · · · ⋆θ vkn

n where vj = uej for the standard orthonormal basis
{e1, . . . , en} of Rn. The expression for c is

c =
1

n! (2πi)n

∑

σ∈Sn

(−1)σ(vσ(1)vσ(2) . . . vσ(n))
−1 ⊗ vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n).

(When θ = 0, we can write vj = e2πitj , and the right hand side reduces to
dt1∧· · ·∧dtn, the usual volume form for either Rn or the flat torus Tn = Rn/Zn.)

We refer to [ggisv04] for the discussion of the spectral dimension properties of
the triple (Aθ, L2(Rn)⊗C2m

, /D). Briefly, the facts are these. If π(f) := L(f)⊗
12m denotes the representation of Aθ on the spinor space H by componentwise
left Moyal multiplication, then one can show that, for any f ∈ Aθ, we get

π(f) ( /D
2

+ 1)−1/2 ∈ Lp(H), for all p > n.

In particular, these operators are compact, so this triple is indeed a nonunital
spectral triple. However, this is not quite enough to guarantee that

π(f) ( /D
2

+ 1)−1/2 ∈ Ln+(H), (7.17)

for every f ∈ Aθ. Instead, what is found in [ggisv04] is that (7.17) holds for f
lying in the (dense) subalgebra Sθ. The key lemma which makes the proof work
is a “strong factorization” property of Sθ, proved in [gv88]: namely, that any
f ∈ Sθ can be expressed (without taking finite sums) as a product f = g ⋆θ h,
with g, h ∈ Sθ. This factorization property fails for the full algebra Aθ.

Once (7.17) has been established, one can proceed to compute its Dixmier

trace. It turns out that Trω(π(f) ( /D
2

+ 1)−1/2) is unchanged from its value
when θ = 0, namely (2m Ωn/n (2π)n)

∫
Rn f(x) dx. The end result is that the

spectral dimension condition for nonunital spectral triples is the expected one,
but that Dixmier-traceability as in (7.17) should only be required for a dense
subalgebra of the original algebra.

7.4 A geometric spectral triple over SUq(2)

In this section, we outline the construction of a geometric spectral triple whose
algebra is the coordinate algebra of the quantum group SUq(2). As a first
step, we consider the corresponding classical case, namely the commutative
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spectral triple for the 3-sphere S3, with its unique spin structure (for the usual
orientation) and its rotation-invariant metric.

The spectrum of the Dirac operator for S3 with the round metric can be ob-
tained explicitly. The earliest reference is probably the 1974 paper of Hitchin [h-n74];
Cahen and Gutt [cg88, 1988] studied spin structures on compact symmetric
spaces, and Bär [b-c92, 1992] laid out the theory for Dirac operators on homo-
geneous spin manifolds; see also [t-a95]. A description of the eigenspinors was
rather late in coming: Camporesi and Higuchi [ch96, 1996] treated the case of
Sn with generalized spherical coordinates. The best treatment for S3 is that of
Homma [h-y00, 2000], who gives both eigenvalues and eigenspinors in complete
detail.

There are two keys to finding the Dirac spectrum for S3 (with multiplicities,
of course). The first is that if M = G/H is a homogeneous space of a compact
Lie group G, with a G-invariant metric, and if M is also spin, so that one can
find a G-invariant Dirac operator, then the spinor space H = L2(M,S) can
be decomposed as a direct sum H =

⊕
σ∈ bGHσ of finite-dimensional subspaces,

where G acts onHσ as a multiple of the irreducible representation σ ∈ Ĝ. (Some
of these “isotypical components” may be trivial.) Thus /D reduces to a direct
sum of finite-dimensional hermitian matrices acting on the subspaces Hσ, and
one can then decompose each Hσ into eigenspaces of /D.

The second key is that S3 is the manifold underlying the compact Lie group
SU(2), so its spinor bundle is trivial (one can just translate the fibre at the
identity around the group manifold), namely S ≈ S3 × C2, and thus its spinor
space is just H = L2(SU(2))⊗ C2. Therefore, the above decomposition follows
at once from the Peter–Weyl decomposition of L2(SU(2)), and there is no need
to examine the general theory of compact group representations.

The symmetry of the sphere S3 is obtained from

S3 ≈ SO(4)

SO(3)
≈ Spin(4)

Spin(3)
≈ SU(2)× SU(2)

SU(2)
=:

G

H

where we regard H = SU(2) as the diagonal subgroup of G = SU(2)× SU(2).
The quotient map π : G → G/H is given by π(p, q) := pq−1, for p, q ∈ SU(2).
We can trivialize the principal SU(2)-bundle G ≈ S3 ×H by (p, q) 7→ (pq−1, p).
The associated spinor bundle S = Spin(4) ×H C2 is trivialized by [(p, q), ξ] 7→
(pq−1, id(p)ξ), where id is the fundamental representation of SU(2) on C2 —
namely, the inclusion SU(2) →֒M2(C).

We may recall that the irreducible representations of SU(2) are given by
{ πj : j ∈ 1

2Z }; for each j = 0, 1
2 , 1,

3
2 , . . . there is a unique representation space

Vj ∼= C2j+1. Here π0 is the trivial representation, and π 1
2

is the fundamental
representation. One can make these representations unitary by introducing a
suitable hermitian scalar product on each Vj . The contragredient representation
on V ∗j is equivalent to πj on Vj since there is only one representation for each
dimension: this result is a special property of the group SU(2). Therefore, the
Peter–Weyl decomposition is

L2(SU(2)) ∼=
∞⊕

2j=0

EndVj ∼=
∞⊕

2j=0

Vj ⊗ V ∗j ∼=
∞⊕

2j=0

Vj ⊗ Vj . (7.18)

When we tensor this with C2 = V 1
2
, we apply the Clebsch–Gordan isomorphism
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Vj ⊗ V 1
2

∼= Vj+ 1
2
⊕ Vj− 1

2
to the first leg only of (7.18) to get

( ∞⊕

2j=0

Vj⊗Vj
)
⊗V 1

2
≃ V 1

2
⊕
∞⊕

2j=1

(Vj+ 1
2
⊗Vj)⊕(Vj− 1

2
⊗Vj) =: W ↑0 ⊕

∞⊕

2j=1

W ↑j ⊕W ↓j .

These are the building blocks of the spinor space for SU(2):

W ↑j := Vj+ 1
2
⊗ Vj , dimW ↑j = (2j + 1)(2j + 2), for j = 0, 1

2 , 1,
3
2 , . . . ,

W ↓j := Vj− 1
2
⊗ Vj , dimW ↓j = 2j(2j + 1), for j = 1

2 , 1,
3
2 , . . . . (7.19)

These are in fact eigenspaces of the classical Dirac operator /D for the “round
metric” on S3, i.e., the Riemannian metric that is invariant under both left and
right translations of the group SU(2). See, for instance, [h-y00] for full details
on computing the eigenvalues and eigenspaces. One finds that

• Each W ↑j is an eigenspace of /D with positive eigenvalue d↑j = 2j + 3
2 ;

• Each W ↓j is an eigenspace of /D with negative eigenvalue d↓j = −(2j + 1
2 ).

Since these eigenspaces exhaust H, this is the full spectrum of /D. Notice that
the spectrum is symmetric about 0, and that /D has trivial kernel.

Consequently, the positive operator | /D| has eigenvalues (2j + 3
2 ) on W ↑j ⊕

W ↓
j+ 1

2

, whose dimension is 2(2j + 1)(2j + 2). Now we can compute the metric

dimension (which we know must be 3). Let

NR :=

R∑

2j=0

2(2j + 1)(2j + 2) = 2
3 (R3 + 6R2 + 11R),

so that logNR ∼ 3 logR, as R→∞. Therefore,

σNR(| /D|−s) =

R∑

k=0

2(k+1)(k+2)(k+ 3
2 )−s ∼ 2

R∑

k=0

(k+ 3
2 )−s+2 ∼ 2

∫ R+ 3
2

3
2

t2−s dt,

so the critical exponent is indeed s = 3 where the estimate simplifies to 2 logR ∼
2
3 logNR. Thus we find that | /D|−3 ∈ L1+ with Tr+ | /D|−3 = 2

3 .
On the other hand, we already know that

Tr+ | /D|−3 =
1

3(2π)3
Wres | /D|−3 =

2(4π)

3(2π)3
Vol(S3) =

2

3

1

2π2
Vol(S3),

which leads to the well-known formula Vol(S3) = 2π2.

Now we turn to the “ quantum group” SUq(2) and its symmetries. This is a
very well known object, starting from the seminal papers of Woronowicz [w-sl87]
and it can be found in textbooks, e.g., [ks97]. However, to fix notations, we
summarize some details here.

Definition 7.23. Let q be a real number with 0 < q < 1, and let A = O(SUq(2))
be the ∗-algebra generated by two elements a and b, subject to the following
commutation rules:

ba = qab, b∗a = qab∗, bb∗ = b∗b,

a∗a+ q2b∗b = 1, aa∗ + bb∗ = 1. (7.20)
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This is a Hopf ∗-algebra under the coproduct

∆a := a⊗ a− q b⊗ b∗,
∆b := b⊗ a∗ + a⊗ b;

counit ε(a) = 1, ε(b) = 0; and antipode Sa = a∗, Sb = −qb, Sb∗ = −q−1b∗,
Sa∗ = a.

A quick way to remember all these formulas is to consider the “fundamental
matrix”

U =

(
a b
−qb∗ a∗

)
∈M2(A),

which is “formally grouplike”: ∆(U) = U ⊗̇ U , ε(U) = 12, S(U) = U−1

under fairly obvious entrywise extensions of these operations to matrices overA.
Note also that the commutation relations (7.20) amount to the matrix U being
unitary, that is, U∗U = UU∗ = 12.

When q = 1, the matrix U becomes the fundamental representation of
SU(2), the entries a and b are functions on SU(2), and since all unitary ir-
reducible representations of SU(2) can be recovered from the fundamental one
by a Clebsch–Gordan decomposition, the ∗-algebra O(SU(2)) generated by a
and b is linearly spanned by the “matrix elements” of all such irreducible rep-
resentations. We caal it, for short, the polynomial algebra of the compact Lie
group SU(2). By analogy, O(SUq(2)) may be thought of as the polynomial al-
gebra over a (non-existent) “compact group” SUq(2). Such bad habits become
ingrained because of the Gelfand correspondence.

The symmetries of the algebra A = O(SUq(2)) can be expressed by means
of another Hopf ∗-duality, that has a separating duality with A.

Definition 7.24. Let U = Uq(su(2)) be the algebra generated by elements e, f, k,
with k invertible, satisfying the commutation relations

ek = qke, kf = qfk, k2 − k−2 = (q − q−1)(fe− ef), (7.21)

with the coproduct ∆ is given by

∆k = k ⊗ k, ∆e = e⊗ k + k−1 ⊗ e, ∆f = f ⊗ k + k−1 ⊗ f,

and counit ǫ, antipode S and star structure ∗ given respectively by

ǫ(k) = 1, Sk = k−1, k∗ = k,

ǫ(f) = 0, Sf = −qf, f∗ = e,

ǫ(e) = 0, Se = −q−1e, e∗ = f.

Morover, let ϑ be the following algebra automorphism, and coalgebra antiauto-
morphism, of U :

ϑ(k) := k−1, ϑ(f) := −e, ϑ(e) := −f.

The duality between U and A is given by the bilinear pairing determined by
the following matchings of algebra generators:

〈k, a〉 = q
1
2 , 〈k, a∗〉 = q−

1
2 , 〈e,−qb∗〉 = 〈f, b〉 = 1,
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with all other couples of generators pairing to 0. With this duality pairing,
we obtain the standard left and right convolution actions of U on A, given
respectively by

h ⊲ x := x(1) 〈h, x(2)〉,
x ⊳ h := 〈h, x(1)〉x(2),

for all h ∈ U , x ∈ A.

Since h 7→ S−1(ϑ(h)) is both an algebra antiautomorphism and a coalgebra
automorphism of U , we find that

h · x := x ⊳ S−1(ϑ(h))

is a left Hopf action of U on A, distinct from the action ⊲ of left convolution.
These two left actions commute: h1 · (h2 ⊲ x) = h2 ⊲ (h1 · x), so that together
they define a left Hopf action of U ⊗ U on A.

When q = 1, this combined Hopf action of U(su(2))⊗U(su(2)) on O(SU(2))
reduces to the infinitesimal action of su(2)⊕su(2) = spin(4) on S3, coming from
the action of the group Spin(4) on S3.

Definition 7.25. Let λ and ρ be two commuting representations of the Hopf
algebra U on a finite-dimensional vector space V . A ∗-algebra representation π
of A on V is said to be (λ, ρ)-equivariant if, for all h ∈ U , x ∈ A, ξ ∈ V :

λ(h)π(x)ξ = π(h(1) · x)λ(h(2))ξ,

ρ(h)π(x)ξ = π(h(1) ⊲ x) ρ(h(2)ξ. (7.22)

(Taken together, λ, ρ and π yield a representation of the crossed product algebra
(U ⊗ U) ⋉A on V .)

The irreducible representations of Uq(su(2)) are well known, see, for in-
stance, [ks97]. They are “deformed” versions of the Lie algebra representations
of su(2). We first mention the standard notation for a “q-integer”,

[n] :=
q−n − qn
q−1 − q .

Then, for each l = 0, 1
2 , 1,

3
2 , . . . , we take the vector space Vl = C2l+1, with a

basis { |lm〉 : m = −l,−l + 1, . . . , l − 1, l } which we declare to be orthonor-
mal, thereby making Vl a finite-dimensional Hilbert space. It carries the ∗-
representation σl, defined on generators by

σl(k) |lm〉 = qm |lm〉,
σl(f) |lm〉 =

√
[l −m][l+ m+ 1] |l,m+ 1〉,

σl(e) |lm〉 =
√

[l +m][l−m+ 1] |l,m− 1〉.

To get equivariant representations, we take tensor products Vl ⊗ Vl and
consider their algebraic direct sum:

V :=

∞⊕

2l=0

Vl ⊗ Vl, |lmn〉 := |lm〉 ⊗ |ln〉,
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LetHψ be the Hilbert-space completion of V , for which { |lmn〉 : l ∈ 1
2N; m,n =

−l, . . . , l } is an orthonormal basis. We introduce representations λ, ρ of Uq(su(2))
on V by declaring the respective restrictions λl, ρl to the subspaces Vl ⊗ Vl to
be

λl(h) := σl(h)⊗ idVl
, ρl(h) := idVl

⊗ σl(h).

Fact 7.26. The polynomial algebra A = O(SUq(2)) is linearly spanned by ele-
ments tlmn with the same indices l,m, n that label this orthonormal basis, such
that

t000 = 1, t
1
2
1
2 ,

1
2

= a, t
1
2
1
2 ,− 1

2

= b, and ∆tlmn =
l∑

k=−l
tlmk ⊗ tlkn.

The multiplication on A is determined by the relations

tjrst
l
mn =

j+l∑

k=|j−l|
Cq

(
j l k
r m r +m

)
Cq

(
j l k
s n s+ n

)
tkr+m,s+n,

where the Cq(−) factors are q-Clebsch–Gordan coefficients [ks97].

The algebra can be completed to a noncommutative C*-algebra C(SUq(2)),
on which there is a faithful Haar state ψ determined by ψ(1) = 1 and ψ(tlmn) = 0
for l > 0. The involution on A and also on C(SUq(2)) satisfies

(tlmn)∗ = (−1)2l+m+nqn−m tl−m,−n. (7.23)

The GNS representation πψ acts on the aforementioned Hilbert space Hψ,
and there is an injective linear GNS map ηψ : C(SUq(2)) → Hψ such that
πψ(x)ηψ(y) = ηψ(xy), satisfying

‖ηψ(tlmn)‖ = ψ((tlmn)∗ tlmn)1/2 =
q−m√
[2l + 1]

.

Thus, concretely, the standard orthonormal basis for Hψ is given by

|lmn〉 := qm
√

[2l + 1] ηψ(tlmn). (7.24)

In particular, |000〉 = ηψ(1) is a cyclic (and separating) vector for the represen-
tation πψ .

Before turning to the detailed form of the equivariant representations of A,
which involves much shifting of half-integer indices, we pause to introduce a
small notational dodge:

l± := l ± 1
2 , m± := m± 1

2 , n± := n± 1
2 .

Proposition 7.27. Any (λ, ρ)-equivariant ∗-representation π of O(SUq(2)) on
V is given by

π(a) |lmn〉 = A+
lmn|l+m+n+〉+A−lmn|l−m+n+〉,

π(b) |lmn〉 = B+
lmn|l+m+n−〉+B−lmn|l−m+n−〉, (7.25)

with constants A±lmn, B
±
lmn determined up to phase factors depending only on l.

352



Part III A geometric spectral triple over SUq(2)

Sketch proof. We use the equivariance relations (7.22), step by step, and then
the algebra relations (7.20) to pin the down how π(a) and π(b) act on basis
vectors and then to obtain the coefficients.

(1) First take h = k. Then k · a = k ⊲ a = q
1
2 a shows that

λ(k)π(a) |lmn〉 = π(q
1
2 a)λ(k) |lmn〉 = qm+ 1

2 π(a) |lmn〉,
ρ(k)π(a) |lmn〉 = π(q

1
2 a)ρ(k) |lmn〉 = qn+ 1

2π(a) |lmn〉,

and thus π(a) |lmn〉 must lie in span{ |l′m+n+〉 : l′ ∈ 1
2N }. Similarly,

k · b = q
1
2 b, k ⊲ b = q−

1
2 b gives π(b) |lmn〉 ∈ span{ |l′m+n−〉 : l′ ∈ 1

2N }.
(2) Take h = f , x = a; then f · a = 0 implies that

λ(f)π(a)ξ = π(f · a)λ(k)ξ + π(k−1 · a)λ(f)ξ = q−
1
2 π(a)λ(f)ξ,

and thus,
λ(f)rπ(a) = q−r/2π(a)λ(f)r for any r ∈ N, (7.26)

Therefore λ(f)rπ(a) |lmn〉 ∝ π(a) |l,m+ r, n〉 = 0 for m + r > l; but on
the other hand, λ(f)r |l′m+n+〉 ∝ |l′,m+ 1

2 + r, n+〉 6= 0 for m+ 1
2 +r ≤ l′.

Thus, if l′ > l+ 1
2 , the basis vector |l′m+n+〉 cannot appear in π(a) |lmn〉.

This yields l′ ≤ l + 1
2 .

A similar argument, with (f, a) replaced by (e, a∗), using e · a∗ = 0, gives
l′ ≥ l − 1

2 . Also, since l −m and l′ − (m+ 1
2 ) are both integers, the case

l′ = l is excluded. Thus l′ = l ± 1
2 only, and we have reached the form

(7.25) of π(a).

(3) To find the coefficients, we use (7.26) again. If we apply both sides to
the vector |lmn〉 for r = 1 and compare the results, we get a recurrence
relation for the index m:

q−
1
2A+

l,m+1,n[l +m+ 1]
1
2 = A+

lmn[l +m+ 2]
1
2 .

Using k ⊲ a = q
1
2 a and f ⊲ a = 0, the second relation in (7.22) gives

ρ(f)π(a) = q
1
2π(a) ρ(f), that leads to a similar recurrence relation for the

index n:
q−

1
2A+

lm,n+1[l + n+ 1]
1
2 = A+

lmn[l + n+ 2]
1
2 .

These recurrence relations are solved by

A+
lmn = q

1
2 (m+n)[l +m+ 1]

1
2 [l + n+ 1]

1
2 a+

l

for some constants a+
l ; and similar expressions are found for A−lmn ∝ a−l ,

B+
lmn ∝ b+l and B−lmn ∝ b−l .

(4) Now we use the equivariance relation

ρ(e)π(a) = π(e ⊲ a)ρ(k) + π(k−1 ⊲ a)ρ(e) = π(b)ρ(k) + q−
1
2 π(a)ρ(e)

to find that b+l = qla+
l and b−l = −q−l−1a−l . The relation

λ(e)π(b) = π(e · b)λ(k) + π(k−1 · b)λ(e) = q−1π(a∗)λ(k) + q−
1
2π(b)λ(e)

then yields (a−
l+ 1

2

)⋆ = q2l+
3
2 a+

l , se we need only determine the parameters

a+
l . All equivariance relations have now been used.
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(5) Next, the commutation relation ba = qab implies that π(b)π(a) = qπ(a)π(b);
comparing the matrix element 〈l,m+ 1, n | (·) | lmn〉 for both these oper-
ators, we find the recurrence relation

q[2l + 2] |a+
l |2 = [2l] |a+

l− 1
2

|2.

This determines all |a+
l | once |a+

0 | is known. For that, note that b+0 = a+
0

and use the relation a∗a+ q2b∗b = 1 to get

(1 + q2) |a+
0 |2 = 〈000 | π(a∗a+ q2b∗b) | 000〉 = 1.

The phase factors a+
l /|a+

l | remain undetermined. We are free to fix them by
demanding that all a+

l be positive (in the quantum theory of angular momen-
tum, this requirement is called the Condon–Shortley phase convention.) Actu-
ally, any other assignment of phases to the a+

l coefficients determines a unitary
equivalence between π and another (λ, ρ)-equivariant representation of A.

Having thus determined the existence, and uniqueness up to equivalence,
of a (λ, ρ)-equivariant representation of O(SUq(2)) on V , we may realize that
we have in fact given an explicit presentation of the left regular representation
of C(SUq(2)), which is just the GNS representation for the Haar state on the
Hilbert space Hψ.

The point of this rather bare-handed approach to the regular representation
is that the spin representation can be constructed in just the same way. In-
deed, with some last-minute choice of phase factors, this will be an equivariant
representation of O(SUq(2)) on V ⊕V , and also of C(SUq(2)) on H = Hψ⊕Hψ.

The crucial extra step in constructing this spin representation is the good
choice of a spinor basis. The spinor subspaces W ↑j , W ↓j of (7.19) will be used,
just as in the q = 1 case, but the isomorphisms Vj ⊗ V 1

2
≃ Vj+ 1

2
⊕ Vj− 1

2
now

depend on certain q-Clebsch–Gordan coefficients, as follows:

• for j = 1
2 , 1,

3
2 , . . . ; µ = −j, . . . , j and n = −j−, . . . , j−, let

|jµn↓〉 := Cjµ |j−µ+n〉 ⊗ |12 ,− 1
2 〉+ Sjµ |j−µ−n〉 ⊗ |12 ,+ 1

2 〉;

• for j = 0, 1
2 , 1,

3
2 , . . . ; µ = −j, . . . , j and n = −j+, . . . , j+, let

|jµn↑〉 := −Sj+1,µ |j+µ+n〉 ⊗ |12 ,− 1
2 〉+ Cj+1,µ |j+µ−n〉 ⊗ |12 ,+ 1

2 〉,

• where in both cases the coefficients are

Cjµ := q−(j+µ)/2 [j − µ]
1
2

[2j]
1
2

, Sjµ := q(j−µ)/2 [j + µ]
1
2

[2j]
1
2

.

It is easy to check that C2
jµ + S2

jµ = 1.
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We now modify the representations λ, ρ of Uq(su(2)) on V to get analogous
representations on V ⊕ V = V ⊗ C2. If h ∈ Uq(su(2)), we set

λ′(h) := (λ⊗ σ 1
2
)(∆h) = λ(h(1))⊗ σ 1

2
(h(2)),

ρ′(h) := (ρ⊗ (ε⊕ ε))(∆h) = ρ(h)⊗ 12.

Exercise 7.28. Show that |jµn↑〉 and |jµn↓〉 are eigenvectors for λ′(Cq), with
eigenvalue q2j+1 + q2j−1, where Cq is the q-Casimir,

Cq = qk2 + q−1k−2 + (q − q−1)2ef,

which is a central element of Uq(su(2)). Are these also eigenvectors for ρ′(Cq)?

Proposition 7.29. If we write |jµn〉〉 :=

(
|jµn↑〉
|jµn↓〉

)
to denote a pair of basis

elements of V —the lower component is 0 for j = 0 or n = ±(j + 1
2 )—, then

the representation π′ := π⊗12 on V ⊗C2 is (λ′, ρ′)-equivariant, and is given by

π′(a) |jµn〉〉 = α+
jµn|j+µ+n+〉〉+ α−jµn|j−µ+n+〉〉,

π′(b) |jµn〉〉 = β+
jµn|j+µ+n−〉〉+ β−jµn|j−µ+n−〉〉,

where α±jµn and β±jµn are certain triangular 2× 2 matrices, shaped like this:

α+
jµn, β

+
jµn =

(
∗ 0
∗ ∗

)
, α−jµn, β

−
jµn =

(
∗ ∗
0 ∗

)
. (7.27)

They are determined up to phase factors depending only on j.

We omit the proof, which consists of running the steps of the proof of Propo-
sition 7.27 with 2× 2 matrices. The details are given in [dlsv05]. We refer to π′

as the spin representation of the algebra O(SUq(2)).
In the classical case q = 1, the above procedures give exactly the eigenspace

decomposition of the spinor space of the Dirac operator /D, with the correct
multiplicities. The basis vectors |jµnl〉, for each fixed j, can be regarded as
orthonormal bases for the eigenspaces, yielding the following diagonalization of
/D when q = 1:

/D|jµn↑〉q=1 = (2j + 3
2 ) |jµn↑〉q=1, /D|jµn↓〉q=1 = −(2j + 1

2 ) |jµn↓〉q=1.

We now define the Dirac operator on SUq(2), for 0 < q < 1, to be the diagonal
operator given by the same formulas on the q-spinor basis:

D|jµn↑〉 = (2j + 3
2 ) |jµn↑〉, D|jµn↓〉 = −(2j + 1

2 ) |jµn↓〉. (7.28)

In other words, D is an isospectral deformation of the classical Dirac operator
/D, since D = U /DU∗ by the obvious unitary map U that matches the respective
spinor bases.

Fact 7.30. The commutators [D,π′(a)] and [D,π′(b)], defined initially on V ⊕
V , extend to bounded operators on H.
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The proof of this fact is not hard, but needs the exact values of the matrices
α±jµn and β±jµn. The boundedness is certainly true when q = 1, and one can
check that the diagonal elements of these matrices differ from their q → 1 limits
by terms that are uniformly bounded as j →∞; and moreover the off-diagonal
elements are small: they are O(q2j) as j →∞.

Thus with A = O(SUq(2)), H = Hψ ⊕Hψ and D given by (7.28), we have
constructed a spectral triple for SUq(2). Since it is isospectral to the classical
case, the metric dimension is 3. Our painstaking construction now yields an
extra bonus [dlssv06].

Proposition 7.31. The triple (O(SUq(2)),H, D) is a regular spectral triple.

Proof. Since |D| |jµn〉〉 =

(
2j + 3

2 0
0 2j + 1

2

)
|jµn〉〉, we obtain

[|D|, π′(a)] |jµn〉〉 =

=

{(
2j + 5

2 0
0 2j + 3

2

)
α+
jµn − α+

jµn

(
2j + 3

2 0
0 2j + 1

2

)}
|j+µ+n+〉〉

−
{(

2j + 1
2 0

0 2j − 1
2

)
α−jµn − α−jµn

(
2j + 3

2 0
0 2j + 1

2

)}
|j−µ+n+〉〉,

and the triangularity (7.27) of the matrices α+
jµn and α−jµn means that the off-

diagonal terms cancel exactly! This happens because of the precise form of the
eigenvalues of D, since 2j+ + 1

2 = 2j + 3
2 , and so on.

Thus [|D|, π′(a)] is just

(
1 0
0 −1

)
times the diagonal part of π′(a) on each

of the two-dimensional subspaces spanned by the pair |jµn〉〉; from which we
obtain ‖δ(π′(a))‖ ≤ ‖π′(a)‖. Similarly for π′(b).

Next, in computing [|D|, [D,π′(a)]] = [D, [|D|, π′(a)]], over each two-dimensional
subspace, we must subtract two diagonal matrices, and the diagonal entries are
preserved up to a possible change of sign. It follows that ‖δ([D,π′(a)])‖ ≤
‖π′(a)‖ also. By induction the same estimate holds for all ‖δk(π′(a))‖ and
‖δk([D,π′(a)])‖, too. Thus both π′(a) and [D,π′(a)] lie in the domain of δk

for all k ∈ N. Similarly for π′(b), and indeed for the whole ∗-algebra π′(A)
generated by π′(a) and π′(b).

We come now to the matter of the charge conjkugation J , to get a real
structure on (A,H, D). Guided by the example of noncommutative tori (in
dimensions 2 and 3), we may guess that J = Jψ ⊕ Jψ, where Jψ is a Tomita
conjugation operator on the GNS representation spaceHψ . We pause to describe
this operator.

The involutive antilinearity operator Tψ : ηψ(x) 7→ ηψ(x∗) on Hψ —usually
called Sψ in books on Tomita–Takesaki theory [t-m02] is defined, in view of
(7.23) and (7.23), by

Tψ |lmn〉 = (−1)2l+m+nqm+n |l,−m,−n〉,

extended by antilinearity to all of O(SUq(2)). The antilinear adjoint T ∗ψ satisfies

〈η | T ∗ψξ〉 = 〈ξ | Tψη〉 and thus T ∗ψ |lmn〉 = (−1)2l−m−nq−m−n |l,−m,−n〉. The
Tomita modular operator ∆ψ thus has O(SUq(2)) ⊆ Dom ∆ψ and ∆ψ |lmn〉 =
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Part III A geometric spectral triple over SUq(2)

T ∗ψTψ |lmn〉 = q2(m+n) |l,−m,−n〉. The defining relation Tψ =: Jψ∆
1/2
ψ yields

the action of Jψ on basis vectors:

Jψ |lmn〉 = (−1)2l+m+n |l,−m,−n〉.

Recall that l + m and l + n may be any nonnegative integers, so the sign may
be even or odd.

Exercise 7.32. Show that Tψλ(h)T−1
ψ = λ((Sh)∗) for h ∈ Uq(su(2)) —it is

enough to let h be a generator and to check the identities on basis vectors— and
similarly with ρ replacing λ. This shows that the Tomita operator Tψ implements
the involution h 7→ (Sh)∗ in the “dual” Hopf algebra.

It turns out that the Tomita conjugation for the spin respresentation, namely
Jψ ⊕ Jψ (since π′ and π⊕ π are equivalent on H = Hψ ⊕Hψ), does not become
diagonal in the spinor basis {|jµnl〉}, so it does not commute withD as we might
have expected. We need JDJ−1 = +D for a real structure in dimension 3. So
instead we define J directly, and we guarantee the commutation relation by
ensuring that J preserves the eigenspaces of D.

Definition 7.33. The conjugation operator J is the antiunitary operator on H
determined by the following action on the spinor basis:

J |jµn↑〉 := i2(2j+µ+n) |j,−µ,−n, ↑〉,
J |jµn↓〉 := i2(2j−µ−n) |j,−µ,−n, ↓〉.

It is immediate that J2 = −1, since each 2j ± (µ + n) is the sum of an integer
and a half-integer.

This allows to define a “spin representation from the right” of A on H by
setting

π′R(x) := J π′(x)J−1.

It turns out, however, that this obvious right action ofA onH does not commute
with the left action coming from the representation π′, and the first order prop-
erty is also broken. That is to say, the commutation relations [π′(x), π′R(y)] = 0
and [[D,π′(x)], π′R(y)] = 0 do not hold for general elements x, y ∈ A.

Since these relations do hold in the limit q → 1, we may conjecture that
they may hold “approximately” in O(SUq(2)). The precise result is as follows:
see [dlsv05].

Definition 7.34. Define the operator Lq on H by

Lq|jµnl〉 := qj |jµnl〉.

This is a positive trace-class operator commuting with D. Indeed, one easily
sees that TrLq = 2 +

∑∞
2j=1 2(2j + 1)(2j + 2)qj < ∞. Let Kq be the ideal of

compact operators generated by Lq (it is not closed in any norm, since there are
trace-class operators not in Kq).

Exercise 7.35. If T ∈ Kq show that k1/psk(T )→ 0 as k →∞, for any p ∈ N.
That is to say, T is an “infinitesimal of arbitrarily high order”.
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Because of the exponentially fast decrease of the off-diagonal matrix elements
(7.27) of π′(a) and π′(b), one can show that

[π′(x), π′R(y)] ∈ Kq, and [[D,π′(x)], π′R(y)] ∈ Kq for all x, y ∈ A.

Clearly, it is enough to check this for x, y ∈ {a, a∗, b, b∗}, which may be done by
long but straightforward computations [dlsv05].

The conclusion is that, up to allowable infinitesimal corrections in Kq, the
reality and first-order properties of the spectral triple (O(SUq(2)),Hψ⊕Hψ, D)
hold. The regularity property holds, on the nose. If desired, one can also
complete O(SUq(2)), keeping regularity, to a Fréchet pre-C*-algebra. In this
way, one reaches the noncommutative spin geometry on the quantum group
SUq(2).
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Chapter 8

Exercises

8.1 Examples of Dirac operators

8.1.1 The circle

Let M := S1, regarded as S1 ∼= R/Z; that is to say, we parametrize the circle
by the half-open interval [0, 1) rather than [0, 2π), say. Then A = C∞(S1) can
be identified with periodic smooth functions on R with period 1:

A ∼= { f ∈ C∞(R) : f(t+ 1) ≡ f(t) }.
Since Cl(R) = C1⊕Ce1 as a Z2-graded algebra, we see that B = A in this case;
and since n = 1, m = 0 and 2m = 1, there is a “trivial” spin structure given by
S := A itself. The charge conjugation is just C = K, where K means complex
conjugation of functions. With the flat metric on the circle, the Dirac operator
is just

/D := −i d
dt
.

Exercise 8.1. Show that its spectrum is

sp( /D) = 2πZ = { 2πk : k ∈ Z },
by first checking that the eigenfunctions ψk(t) := e2πikt form an orthonormal
basis for the Hilbert-space completion H of S – using Fourier series theory.

The point is that the closed span of these eigenvectors is all of H, so that
sp( /D) contains no more than the corresponding eigenvalues.

Next, consider

S′ := {φ ∈ C∞(R) : φ(t + 1) ≡ −φ(t) },
which can be thought of as the space of smooth functions on the interval [0, 1]
“with antiperiodic boundary conditions”.

Exercise 8.2. Explain in detail how S′ can be regarded as a B-A-bimodule, and
how C = K acts on it as a charge-conjugation operator. Taking /D := −i d/dt
again, but now as an operator with domain S′ on the Hilbert-space completion
of S′, show that its spectrum is now

sp( /D) = 2π(Z + 1
2 ) = { π(2k + 1) : k ∈ Z },
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Part III Examples of Dirac operators

by checking that φk(t) := eπi(2k+1)t are a complete set of eigenfunctions.

The circle S1 thus carries two inequivalent spin structures: their inequiva-
lence is most clearly manifest in the different spectra of the Dirac operators.
Notice that 0 ∈ sp( /D) for the “untwisted” spin structure where S = A, while
0 /∈ sp( /D) for the “twisted” spin structure whose spinor module is S′. There
are no more spin structures to be found, since H1(S1,Z2) = Z2.

8.1.2 The (flat) torus

On the 2-torus T2 := R2/Z2, we use the Riemannian metric coming from the
usual flat metric on R2. Thus, if we regard A = C∞(T2) as the smooth periodic
functions on R2 with f(t1, t2) ≡ f(t1 + 1, t2) ≡ f(t1, t2 + 1), then (t1, t2) define
local coordinates on T2, with respect to which all Christoffel symbols are zero,
namely Γkij = 0, and thus ∇ = d represents the Levi-Civita connection on
1-forms.

In this case, n = 2, m = 1 and 2m = 2, so we use “two-component” spinors;
that is, the spinor bundles S → T2 are of rank two. There is the “untwisted”
one, where S is the trivial rank-two C-vector bundle, and S ∼= A2. The Clifford
algebra in this case is just B = M2(A). Using the standard Pauli matrices:

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
,

we can write the charge conjugation operator as

C = −i σ2K

where K again denotes (componentwise) complex conjugation.

Exercise 8.3. Find three more spinor structures on T2, exhibiting each spinor
module as a B-A-bimodule, with the appropriate action of C. (Use T2 = S1×S1.)

Exercise 8.4. Check that

/D = −i (σ1 ∂1 + σ2 ∂2) =

(
0 −∂2 − i∂1

∂2 − i∂1 0

)

where ∂1 = ∂/∂t1 and ∂2 = ∂/∂t2, is indeed the Dirac operator on the un-

twisted spinor module S = A2. Compute sp( /D
2
) by finding a complete set of

eigenvectors. Then show that

sp( /D) = {±2π
√
r21 + r22 : (r1, r2) ∈ Z }

by finding the eigenspinors for each of these eigenvalues. What can be said of
the multiplicities of these eigenvalues? and what is the dimension of ker /D?

Notice that σ3 does not appear in the formula for /D; its role here is to give
the Z2-grading operator: c(γ) = σ3 —regarded as a constant function with
values in M2(C)— in view of the relation σ3 = −i σ1σ2 among Pauli matrices.

On the 3-torus T3 := R3/Z3, where now n = 3, m = 1 and again 2m = 2, we
get two-component spinors. Again we may use a flat metric and an untwisted
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spin structure with S = A2. The charge conjugation is still C = −i σ2K on S,
so that C2 = −1 also in this 3-dimensional case. The Dirac operator is now

/D = −i (σ1 ∂1 + σ2 ∂2 + σ3 ∂3) =

(
−i ∂3 −∂2 − i∂1

∂2 − i∂1 i ∂3

)
.

Exercise 8.5. Compute sp( /D
2
) and sp( /D) for this Dirac operator on T3.

8.1.3 The Hodge–Dirac operator on S2

If M is a compact, oriented Riemannian manifold that has no spinc structures,
can one define Dirac-like operators on an B-A-bimodule E that is not pointwise
irreducible under the action of B? It turns out that one can do so, if E carries
a “Clifford connection”, that is, a connection ∇E such that

∇E(c(α)s) = c(∇α) s+ c(α)∇Es,

for α ∈ A1(M), s ∈ E , and which is Hermitian with respect to a suitable A-
valued sesquilinear pairing on E . For instance, we may take E = A•(M), the
full algebra of differential forms on M , which we know to be a left B-module
under the action generated by c(α) = ε(α) + ι(α♯). The Clifford connection is
just the Levi-Civita connection on all forms, obtaining by extending the one on
A1(M) with the Leibniz rule (and setting ∇f := df on functions). The pairing
(α | β) := g(ᾱ, β) extends to a pairing on A•(M); by integrating the result
over M with respect to the volume form νg, we get a scalar product on forms,
and we can then complete A•(M) to a Hilbert space.

If {E1, . . . , En} and {θ1, . . . , θn} are local orthonormal sections for X (M)
and A1(M) respectively, compatible with the given orientation, so that c(θj) =
ε(θj) + ι(Ej) locally, then

⋆ := c(γ) = (−i)m c(θ1) c(θ2) . . . c(θn)

is globally well-defined as an A-linear operator taking A•(M) onto itself, such
that ⋆2 = 1. This is the Hodge star operator, and it exchanges forms of high
and low degree.

Exercise 8.6. If {1, . . . , n} = {i1, . . . , ik} ⊎ {j1, . . . , jn−k}, show that locally,

⋆(θi1 ∧ · · · ∧ θik ) = ±im θj1 ∧ · · · ∧ θjn−k ,

where the sign depends on i1, . . . , ik. Conclude that ⋆ maps Ak(M) onto An−k(M),
for each k = 0, 1, . . . , n.

(Actually, our sign conventions differ from the usual ones in differential ge-
ometry books, that do not include the factor (−i)m. With the standard con-
ventions, ⋆2 = ±1 on each Ak(M), with a sign depending on the degree k.)

The codifferential δ on A•(M) is defined by

δ := −⋆d⋆.

This operation lowers the form degree by 1. The Hodge–Dirac operator is
defined to be −i(d + δ) on A•(M). One can show that, on the Hilbert-space
completion, the operators d and −δ are adjoint to one another, so that −i(d+δ)
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extends to a selfadjoint operator. (With the more usual sign conventions, d and
+δ are adjoint, so that the Hodge–Dirac operator is written simply d+ δ.)

Now we take M = S2, the 2-sphere of radius 1. The round (i.e., rotation-
invariant) metric on S2 is written g = dθ2 + sin2 θ dφ2 in the usual spherical
coordinates, which means that {dθ, sin θ dφ} is a local orthonormal basis of 1-
forms on S2. The area form is ν = sin θ dθ ∧ dφ. The Hodge star is specified by
defining it on 1 and on dθ:

⋆(1) := −i ν, ⋆(dθ) := i sin θ dφ.

To find the eigenforms of the Hodge–Dirac operator, it is convenient to use
another set of coordinates, obtained form the Cartesian relation (x1)2 + (x2)2 +
(x3)2 = 1 by setting ζ := x1 + ix2 = eiφ cos θ, along with x3 = cos θ; the pair
(ζ, x3) can serve as coordinates for S2, subject to the relation ζζ̄ + (x3)2 = 1.
(The extra variable ζ̄ gives a third coordinate, extending S2 to R3.)

Exercise 8.7. Check that in the (ζ, x3) coordinates, the Hodge star is given by

⋆(ζ) = −i dζ ∧ dx3, ⋆(dζ) = x3 dζ − ζ dx3.

Exercise 8.8. Consider the (complex) vectorfields on R3 given by

L+ := 2ix3 ∂

∂ζ̄
+ iζ

∂

∂x3
, L− := 2ix3 ∂

∂ζ
− iζ̄ ∂

∂x3
, L3 := iζ̄

∂

∂ζ̄
− iζ ∂

∂ζ
.

Verify the commutation relations [L+, L−] = −2i L3, [L3, L−] = i L− and
[L3, L+] = −i L+.

These commutation relations show that if L± =: L1 ± i L2, then L1, L2, L3

generate a representation of the Lie algebra of the rotation group SO(3). One
obtains representation spaces of SO(3) by finding functions f0 (“highest weight
vectors”) such that L3f0 is a multiple of f0, L+f0 = 0, and { (L−)rf0 : r ∈ N }
spans a space of finite dimension. To get spaces of differential forms with these
properties, one extends each vector field Lj to an operator on A•(S2), namely
its Lie derivative Lj , just by requiring that Lj d = dLj . Since the Hodge star
operator is unchanged by applying a rotation to an orthonormal basis of 1-
forms, one can also show that Lj⋆ = ⋆Lj , so that the Hodge–Dirac operator
−i(d+ δ) commutes with each Lj . This gives a method of finding subspaces of
joint eigenforms for each eigenvalue of the Hodge–Dirac operator.

We introduce the following families of forms:

φ+
l := iζl(1− iν), l = 0, 1, 2, 3, . . . ;

φ−l := iζl(1 + iν), l = 0, 1, 2, 3, . . . ;

ψ+
l := ζl−1(dζ + ⋆(dζ)), l = 1, 2, 3, . . . ;

ψ−l := ζl−1(dζ − ⋆(dζ)), l = 1, 2, 3, . . . .

Clearly, ⋆(φ±l ) = ±φ±l and ⋆(ψ±l ) = ±ψ±l . Thus φ+
l and ψ+

l are even, while φ−l
and ψ−l are odd, with respecting to the Z2-grading on forms given by A•(S2) =
A+(S2)⊕A−(S2), where A±(S2) := 1

2 (1± ⋆)A•(S2).
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Exercise 8.9. Show that

−i(d+ δ)φ±l = lψ∓, for l = 0, 1, 2, . . .

−i(d+ δ)ψ±l = (l + 1)φ∓, for l = 1, 2, 3, . . .

and conclude that each of φ+
l , φ−l , ψ+

l and ψ−l is an eigenvector for (−i(d +
δ))2 = −(dδ+ δd) with eigenvalue l(l+ 1). Find corresponding eigenspinors for
−i(d+ δ) with eigenvalues ±

√
l(l + 1).

Exercise 8.10. Show that L3(ζl) = −il ζl, L+ζ
l = 0, and that (L−)k(ζl) is

a linear combination of terms (x3)k−2r ζ̄rζl−k+r that does not vanish for k =
0, 1, . . . , 2l, and that (L−)2l+1(ζl) = 0. Check that L+(L−)k(ζl) is a multiple of
(L−)k−1(ζl), for k = 1, . . . , 2l.

Exercise 8.11. Show that

L3φ
±
l = −il φ±l , L+φ

±
l = 0; L3ψ

±
l = −il ψ±l , L+ψ

±
l = 0;

for each possible value of l. Conclude that the forms Lk−(φ±l ) and Lk−(ψ±l ) vanish
if and only if k ≥ 2l + 1. What can now be said about the multiplicities of the
eigenvalues of −i(d+ δ)?

With some more works, it can be shown that all these eigenforms span a
dense subspace of the Hilbert-space completion of A•(S2), so that these eigen-
values in fact give the full spectrum of the Hodge–Dirac operator.

8.2 The Dirac operator on the sphere S2

8.2.1 The spinor bundle S on S2

Consider the 2-dimensional sphere S2, with its usual orientation, S2 = C∪{∞} ∼=
CP 1. The usual spherical coordinates on S2 are

p = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2.

The poles areN = (0, 0, 1) and S = (0, 0,−1). Let UN = S2\{N}, US = S2\{S}
be the two charts on S2. Consider the stereographic projections p 7→ z : UN →
C, p 7→ ζ : US → C given by

z := e−iφ cot
θ

2
, ζ := e+iφ tan

θ

2
,

so that ζ = 1/z on UN ∩ US . Write

q := 1 + zz̄ =
2

1− cos θ
, and q′ := 1 + ζζ̄ =

q

zz̄
.

The sphere S2 has only the “trivial” spin structure S = Γ(S2, S), where
S → S2 has rank two. Now S = S+ ⊕ S−, where S± → S2 are complex line
bundles, and these may be (and are) nontrivial. We argue that S+ → S2 is the
“tautological” line bundle coming from S2 ∼= CP 1. We know already that

S♯ ∼= S ⇐⇒ S∗ ∼= S ⇐= (S+)∗ ∼= S−
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and the converse S∗ ∼= S =⇒ (S+)∗ ∼= S− will hold provided we can show
that S± → S2 are nontrivial line bundles. (Otherwise, S+ and S− would each
be selfdual, but we know that the only selfdual line bundle on S2 is the trivial
one, since H2(S2,Z) ∼= Z.)

Consider now the (tautological) line bundle L→ S2, where

Lz := { (λz0, λz1) ∈ C2 : λ ∈ bC }, if z =
z1
z0
, L∞ := { (0, λ) ∈ C2 : λ ∈ C }.

In other words, Lz is the complex line through the point (1, z), for z ∈ C. A

particular local section of L, defined over UN , is σN (z) := (q−
1
2 , zq−

1
2 ), which is

normalized so that (σN | σN ) = q−1(1 + z̄z) = 1 on UN : this hermitian pairing
on Γ(S2, L) comes from the standard scalar product on C2 —each Lz is a line
in C2.

Let also σS(ζ) := (ζq′−
1
2 , q′−

1
2 ), normalized so that (σS | σS) = 1 on US .

Now if z 6= 0, then

σS(z−1) =

(
1

z
√
q′
,

1√
q′

)
= (z̄/z)1/2

(
1√
q
,
z√
q

)
= (z̄/z)1/2 σN (z).

To avoid ambiguity, we state that (z̄/z)1/2 means e−iφ, and also (z/z̄)1/2 will
mean e+iφ.

A smooth section of L is given by two functions ψ+
N (z, z̄) and ψ+

S (ζ, ζ̄) sat-
isfying the relation ψ+

N (z, z̄)σN (z) = ψ+
S (ζ, ζ̄)σS(ζ) on UN ∩US . Thus we argue

that
ψ+
N (z, z̄) = (z̄/z)1/2ψ+

S (z−1, z̄−1) for z 6= 0,

and ψ+
N , ψ+

S are regular at z = 0 or ζ = 0 respectively. Likewise, a pair of
smooth functions ψ−N , ψ

−
S on C is a section of the dual line bundle L∗ → S2 if

and only if
ψ−N (z, z̄) = (z/z̄)1/2ψ−S (z−1, z̄−1) for z 6= 0.

We claim now that we can identify S+ ∼= L and S− ∼= L∗ = L−1 —here
the notation L−1 means that [L−1] is the inverse of [L] in the Picard group
H2(S2,Z) that classifies C-line bundles— so that a spinor in S = Γ(S2, S) is
given precisely by two pairs of smooth functions

(
ψ+
N (z, z̄)

ψ−N (z, z̄)

)
on UN ,

(
ψ+
S (ζ, ζ̄)

ψ−S (ζ, ζ̄)

)
on US ,

satisfying the above transformation rules. (The nontrivial thing is that the
spinor components must both be regular at the south pole z = 0 and the north
pole ζ = 0, respectively.)

Since S ⊗A S∗ ∼= EndA(S) ∼= B ∼= A•(S2) as A-module isomorphisms (we
know that B ∼= A•(S2) as sections of vector bundles), it is enough to show that,
as vector bundles,

A•(S2) ∼= L0 ⊕ L2 ⊕ L−2 ⊕ L0,

where L2 = L⊗L, L−2 = L∗⊗L∗, and L0 = S2×C is the trivial line bundle. It is
clear that A0(S2) = C∞(S2) = A = Γ(S2, L0); and furthermore, A2(S2) ∼= A =
Γ(S2, L0) since Λ2T ∗S2 has a nonvanishing global section, namely the volume
form ν = sin θdθ ∧ dφ.
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With respect to the “round” metric on S2, namely,

g := dθ2 + sin2 θ dφ2 =
4

q2
(dx1 ⊗ dx1 + dx2 ⊗ dx2),

the pairs of 1-forms

{
dz

q
,
dz̄

q

}
and

{
−dζ
q′
,−dζ̄

q′

}
are local bases for A1(S2),

over UN and US respectively.

Exercise 8.12. Write, for α ∈ A1(S2),

α =: fN(z, z̄)
dz

q
+ gN(z, z̄)

dz̄

q
on UN ,

=: −fS(ζ, ζ̄)
dζ

q′
− gS(ζ, ζ̄)

dζ̄

q′
on US .

Show that

fN (z, z̄) = (z̄/z) fS(z−1, z̄−1)

gN (z, z̄) = (z/z̄) gS(z−1, z̄−1)

on UN ∩ US, and conclude that A1(S2) ∼= Γ(S2, L2 ⊕ L−2).

Note that the last exercise now justifies the claim that the half-spin bundles
were indeed S+ ⊕ S− ∼= L⊕ L∗.

8.2.2 The spin connection ∇S over S2

Given any local orthonormal basis of 1-forms {E1, . . . , En}, we can compute

Christoffel symbols with all three indices taken from this basis, by setting Γ̂βµα :=

(Eµ)iΓ̃βiα, or equivalently, by requiring that

∇EµEα =: Γ̂βµα Eβ

for µ, α, β = 1, 2, . . . , n. (This works because the first index is tensorial).

Exercise 8.13. On UN , take z =: x1 + ix2. Compute the ordinary Christoffel
symbols Γkij in the (x1, x2) coordinates for the round metric g = (4/q2)(dx1 ⊗
dx1 + dx2 ⊗ dx2), and then show that

Γ̂βµα = δµαx
β − δµβxα for µ, α, β = 1, 2.

This yields the local orthonormal bases E1 := 1
2q ∂/∂x

1, E2 := 1
2q ∂/∂x

2 for
vector fields, and dually θ1 = (2/q) dx1, θ2 = (2/q) dx2 for 1-forms. However,
since S2 = CP 1 is a complex manifold, it is convenient to pass to “isotropic”
bases, as follows. We introduce

E+ := E1 − iE2 = q
∂

∂z
, θ+ := 1

2 (θ1 + iθ2) =
dz

q
,

E− := E1 + iE2 = q
∂

∂z̄
, θ− := 1

2 (θ1 − iθ2) =
dz̄

q
.
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Exercise 8.14. Verify that the Levi-Civita connection on A1(S2) is given, in
these isotropic local bases, by

∇E+

(
dz

q

)
= z̄

dz

q
, ∇E−

(
dz

q

)
= −z dz

q
,

∇E+

(
dz̄

q

)
= −z̄ dz̄

q
, ∇E−

(
dz̄

q

)
= z

dz̄

q
.

The Clifford action on spinors is given (over UN , say) by γ1 := σ1 =

(
0 1
1 0

)

and γ2 := σ2 =

(
0 −i
i 0

)
. The Z2-grading operator is given by

χ := (−i)σ1σ2 = σ3 =

(
1 0
0 −1

)
.

The spin connection is now specified by

∇SE±
:= E± − 1

4 Γ̂β±α γ
αγβ .

Exercise 8.15. Verify that, over UN , ∇S is determined by

∇SE+
= q

∂

∂z
+ 1

2 z̄ χ, ∇SE−
= q

∂

∂z̄
− 1

2z χ.

Conclude that the Dirac operator /D = −iσ1∇SE1
− iσ2∇SE2

is given, over UN ,
by

/D = −i
(

0 q ∂∂z − 1
2 z̄

q ∂∂z̄ − 1
2z 0

)
.

A similar expression is valid over US, by replacing z, z̄, q by ζ, ζ̄, q′ respec-
tively, and by changing the overall (−i) factor to (+i). This formal change of
sign is brought about by the local coordinate transformation formulas induced
by ζ = 1/z. (Here is an instance of the “unique continuation property” of
/D: the local expression for the Dirac operator on any one chart determines
its expressions on any overlapping chart, and then by induction, on the whole
manifold.)

Exercise 8.16. By integrating spinor pairings with the volume form ν = sin θdθ∧
dφ = 2iq−2 dz∧dz̄, check that /D is indeed symmetric as an operator on L2(S2, S)
with domain S.

Exercise 8.17. Show that the spinor Laplacian ∆S is given in the isotropic
basis by

∆s = − 1
2

(
∇SE+

∇SE−
+∇SE−

∇SE+
− z∇SE+

− z̄∇SE−

)
,

and compute directly that /D
2

= ∆S + 1
2 . This is consistent with the value s ≡ 2

of the scalar curvature of S2, taking into account how the metric g is normalized.
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8.2.3 Spinor harmonics and the Dirac operator spectrum

Newman and Penrose (1966) introduced a family of special functions on S2 that
yield an orthonormal basis of spinors, in the same way that the conventional
spherical harmonics Ylm yield an orthonormal basis of L2-functions. For func-
tions, l and m are integers, but the spinors are labelled by “half-odd-integers”
in Z + 1

2 . When expressed in our coordinates (z, z̄), they are given as follows.
For l ∈ { 1

2 ,
3
2 ,

5
2 , . . . } = N + 1

2 , and m ∈ {−l,−l+ 1, . . . , l − 1, l}, write

Y +
lm(z, z̄) := Clm q

−l ∑

r−s=m− 1
2

(
l − 1

2

r

)(
l + 1

2

s

)
zr(−z̄)s,

Y −lm(z, z̄) := Clm q
−l ∑

r−s=m+ 1
2

(
l + 1

2

r

)(
l − 1

2

s

)
zr(−z̄)s,

where r, s are integers with 0 ≤ r ≤ l∓ 1
2 and 0 ≤ s ≤ l ± 1

2 respectively; and

Clm = (−1)l−m
√

2l+ 1

4π

√
(l +m)!(l −m)!

(l + 1
2 )!(l − 1

2 )!
.

Exercise 8.18. Show that Y ±lm are half-spinors in S±, by applying the trans-
formation laws under z 7→ z−1 and checking the regularity at the poles.

Then define pairs of full spinors by

Y ′lm :=
1√
2

(
Y +
lm

iY −lm

)
, Y ′′lm :=

1√
2

(
−Y +

lm

iY −lm

)
.

These turn out to be eigenspinors for the Dirac operator.

Exercise 8.19. Verify the following eigenvalue relations:

/DY ′lm = (l + 1
2 )Y ′lm, /DY ′′lm = −(l + 1

2 )Y ′′lm.

Goldberg et al (1967) showed that these half-spinors are special cases of
matrix elements Dlnm of the irreducible group representations for SU(2), namely,

Y ±lm(z, z̄) =

√
2l+ 1

4π
Dl∓ 1

2 ,m
(−φ, θ,−φ),

By setting h±lm(θ, φ, ψ) := e∓
1
2 (φ+ψ)Y ±lm(z, z̄), we get an orthonormal set of

elements of L2(SU(2)), such that
∫
SU(2)

|h±lm(g)|2 dg = (1/4π)
∫

S2 |Y ±lm|2 ν. The

Plancherel formula for SU(2) can then be used to show that these are a complete
set of eigenvalues for /D. Thus we have obtained the spectrum:

sp( /D) = {±(l+ 1
2 ) : l ∈ N + 1

2 } = {±1,±2,±3, . . .} = N \ {0},

with respectively multiplicities (2l + 1) in each case, since the index m in Y ±lm
takes (2l+ 1) distinct values.
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Postscript: Since s ≡ 2 and /D
2

= ∆S + 1
2 , we also get

sp(∆S) = { (l+ 1
2 )2 − 1

2 = l2 + l − 1
4 : l ∈ N + 1

2 }

with multiplicities 2(2l + 1) in each case. Note that

sp( /D
2
) = { (l + 1

2 )2 = l2 + l + 1
4 : l ∈ N + 1

2 }.

The operator C given by C := ∆S + 1
4 = /D − 1

4 has spectrum

sp(C) = { l(l+ 1) : l ∈ N + 1
2 },

with multiplicities 2(2l + 1) again. This C comes from the Casimir element in
the centre of U(su(2)), represented on H = L2(S2, S) via the rotation action of
SU(2) on the sphere S2. There is a general result for compact symmetric spaces
M = G/K with aG-invariant spin structure, namely that /D = CG+ 1

8s, or ∆S =
CG − 1

8s. This is a nice companion result, albeit only for homogeneous spaces,
to the Schrödinger–Lichnerowicz formula. Details are given in Section 3.5 of
Friedrich’s book.

8.3 Spinc Dirac operators on the 2-sphere

We know that finitely generated projective modules over the C*-algebra A =
C(S2) are of the form pAk, where p = [pij ] is an k × k matrix with elements
in A, such that p (= p2 = p∗) is an orthogonal projector, whose rank is tr p =
p11 + · · · + pkk. To get modules of sections of line bundles, we impose the
condition that tr p = 1, so that pAk is an A-module “of rank one”. It turns out
that it is enough to consider the case k = 2 of 2× 2 matrices.

Exercise 8.20. Check that any projector p ∈M2(C(S2)) is of the form

p =
1

2

(
1 + n3 n1 − in2

n1 + in2 1− n3

)
,

where n2
1 + n2

2 + n2
3 = 1, so that ~n = (n1, n2, n3) is a continuous function from

S2 to S2.

After stereographic projection, we can replace ~n by f(z) :=
n1 − in2

1− n3
. where

z = e−iφ cot θ2 is allowed to take the value z = ∞ at the north pole. Then f
is a continuous map from the Riemann sphere C ∪ {∞} = CP 1 into itself. If
two projectors p and q are homotopic —there is a continuous path of projectors
{ pt : 0 ≤ t ≤ 1 } with p0 = p and p1 = q— then they give the same class
[p] = [q] in K0(S2); and this happens if and only if the corresponding maps ~n,
or functions f(z), are homotopic.

Exercise 8.21. Consider, for each m = 1, 2, 3, . . . , the maps

z 7→ fm(z) := zm and z 7→ f−m(z) := z̄m

of the Riemann sphere into itself. Can you describe the corresponding maps ~n
of S2 into itself? Can you show that any two of these maps are not homotopic?
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Let E(m) = pmA
2 and E(−m) = p−mA2, where

pm(z) =
1

1 + zmz̄m

(
zmz̄m zm

z̄m 1

)
, p−m(z) =

1

1 + zmz̄m

(
zmz̄m z̄m

zm 1

)
,

with the obvious definition (what is it?) for z =∞.

Exercise 8.22. Show that E(1) is isomorphic to the space of sections of the
tautological line bundle L → CP 1 [hint: apply p1 to any element of A2 and
examine the result]. Show also that E(−1) gives the space of sections of the dual
line bundle L∗ → CP 1.

Exercise 8.23. For m = 2, 3, . . . , show that E(m)
∼= E(1)⊗A· · ·⊗AE(1) (m times)

by examining the components of elements of pmA
2. What is the analogous result

for E(−m)?

For m ∈ Z, m 6= 0, we redefine E(m) := pmA2 with A = C∞(S2); so that
E(m) now denotes smooth sections over a nontrivial line bundle on S2. We can
identify each element of E(m) with a smooth function fN : UN → C for which
there is another smooth function fS : US → C, such that

fN(z) = (z̄/z)m/2 fS(z−1) for all z 6= 0. (m)

Here, as before, (z̄/z) means eiφ in polar coordinates.

Exercise 8.24. Writing E+ := q ∂/∂z and E− := q ∂/∂z̄ as before, where
q = 1 + zz̄, show that when the operators

∇(m)
E+

= q
∂

∂z
+ 1

2mz̄, ∇(m)
E−

= q
∂

∂z̄
− 1

2mz,

are applied to functions fN that satisfy (m), the image also satisfies (m). Thus
they are components of a connection ∇(m) on E(m).

To get all the spinc structures on S2, we twist the spinor module S for the
spin structure, namely S = E(1) ⊕ E(−1), by the rank-one module E(m). On the
tensor product S ⊗A E(m) we use the connection

∇S,m := ∇S ⊗ 1E(m)
+ 1S ⊗∇(m).

Exercise 8.25. Show that the Dirac operator /Dm := −i ĉ ◦ ∇S,m, that acts on
S ⊗A E(m), is given by

/Dm ≡
(

0 /D
−
m

/D
+
m 0

)
= −i

(
0 q ∂∂z + 1

2 (m− 1) z̄

q ∂∂z̄ − 1
2 (m+ 1) z 0

)
.

Check also that

/D
+
m = −i q(m+3)/2 ∂

∂z̄
q−(m+1)/2 and /D

−
m = −i q−(m−3)/2 ∂

∂z
q(m−1)/2,

where these powers of q are multiplication operators on suitable spaces on func-
tions on UN .
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Exercise 8.26. If m < 0, show that any element of ker /D
+
m is of the form

a(z) q(m+1)/2 where a(z) is a holomorphic polynomial of degree < |m|. Also, if

m ≥ 0, show that ker /D
+
m = 0.

Exercise 8.27. If m > 0, show that any element of ker /D
−
m is of the form

b(z̄) q−(m−1)/2 where b(z̄) is an antiholomorphic polynomial of degree < m.

Also, if m ≤ 0, show that ker /D
−
m = 0. Conclude that the index of /Dm equals

−m in all cases.

The sign of a selfadjoint operator D on a Hilbert space is given by the
relation D =: F |D| = F (D2)1/2, where we put F := 0 on kerD. Thus F is a
bounded selfadjoint operator such that 1−F 2 is the orthogonal projector whose
range is kerD. When kerD is finite-dimensional, 1−F 2 has finite rank, so it is
a compact operator.

An even Fredholm module over an algebra A is given by:

1. a Z2-graded Hilbert space H = H0 ⊕H1;

2. a representation a 7→ π(a) =

(
π0(a) 0

0 π1(a)

)
of A on H by bounded

operators that commute with the Z2-grading;

3. a selfadjoint operator F =

(
0 F−

F+ 0

)
on H that anticommutes with the

Z2-grading, such that F 2 − 1 and [F, π(a)] are compact operators on H,
for each a ∈ A.

We can extend the twisted Dirac operator /Dm to a selfadjoint operator on
H = H0 ⊕ H1, where H0 and H1 are two copies of the Hilbert space L2(S2, ν)
where ν = 2i q−2 dz dz̄. We define π0(a) = π1(a) to be the usual multiplication
operator of a function a ∈ C∞(S2) on this L2-space.

Exercise 8.28. Show that /Dm, given by the above formulas on its original
domain, is a symmetric operator on H.

Exercise 8.29. Check that the sign Fm of the twisted Dirac operator /Dm de-
termines a Fredholm module over C∞(S2).

8.4 A spectral triple on the noncommutative torus

To define a spectral triple over a noncommutative algebra, we introduce the
so-called noncommutative torus. In fact, there are many such tori, labelled by
a dimension n and by a family of parameters θij forming a real skewsymmetric
matrix Θ = −Θt ∈Mn(R).

Fix an integer n ∈ {2, 3, 4, . . .}. In the algebra A0 := C(Tn), one can write
down Fourier-series expansions:

f(φ1, . . . , φn)←→
∑

r∈Zn

cr e
2πir·φ, cr :=

∫

[0,1]n
e−2πir·φ f(φ) dnφ ∈ C,

where r·φ := r1φ1+· · ·+rnφn, as usual. To ensure that this series converges uni-
formly and represents f(φ), we retreat to the dense subalgebra A0 := C∞(Tn),
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in which the coefficients cr decrease rapidly to zero as |r| → ∞. On the space
of multisequences c := {cr}r∈Zn , we introduce the seminorms

pk(c) :=

(∑

r∈Zn

(1 + r · r)k|cr|2
)1/2

, for all k ∈ N.

We say that “cr → 0 rapidly” if pk(c) <∞ for every k. Notice that pk+1(c) ≥
pk(c) for each k; these seminorms induce, on rapidly decreasing sequences, the
topology of a Fréchet space, which indeed coincides with the usual Fréchet
topology on C∞(Tn), i.e., the topology of uniform convergence of the functions
and of all their derivatives.

We can think of A0 as the C*-algebra generated by n commuting unitary
elements, namely the functions uj defined by uj(φ1, . . . , φn) := e2πiφj , for j =
1, . . . , n.

Noncommutativity appears when we choose a real skewsymmetric matrix
Θ ∈ Mn(R), and introduce the (universal) C*-algebra AΘ generated by uni-
tary elements u1, . . . , un which no longer commute: instead, they satisfy the
commutation relations

uk uj = e2πiθjk uj uk, for j, k = 1, . . . , n.

(In quantum mechanics, these are called “Weyl’s form of the canonical commu-
tation relations”.) To form polynomials with these generators, we introduce a
Weyl system of unitary elements { ur : r ∈ Zn } in AΘ, by defining

ur := exp
{
πi
∑
j<k rjθjkrk

}
ur11 u

r2
2 . . . urn

n .

Exercise 8.30. Show that (ur)∗ = u−r for r ∈ Zn, and that

ur us = σ(r, s)ur+s, where σ(r, s) := exp
{
−πi∑j,k rjθjksk

}
.

Verify directly that

σ(r, s+ t)σ(s, t) = σ(r, s)σ(r + s, t), for r, s, t ∈ Zn.

Notice that σ(r,±r) = 1 by skewsymmetry of Θ.
We now define AΘ =: C∞(TnΘ) to be the dense ∗-subalgebra of AΘ consisting

of elements of the form
a =

∑

r∈Zn

ar u
r

where ar ∈ C for each r, and ar → 0 rapidly.

Exercise 8.31. Check that this series converges in the norm of AΘ, by consid-
ering the series

∑
r(1 + r · r)−k for large enough k.

There is an action of the abelian Lie group Tn by ∗-automorphisms on the
C*-algebra AΘ, given by

z · ur := zr11 z
r2
2 . . . zrn

n ur for r ∈ Zn,

or, more simply, z · uj = zj uj , where z = (z1, . . . , zn) ∈ Tn. This action is
generated by a set of n commuting derivations δ1, . . . , δn, namely,

δj(a) :=
d

dt

∣∣∣∣
t=0

e2πitφj · a,
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whose domain is the set of all a ∈ A for which the map t 7→ e2πitφj · a is
differentiable.

Exercise 8.32. Show that ur ∈ Dom δj, and that δj(u
r) = 2πirj u

r for all r ∈
Zn and j = 1, . . . , n. Conclude that the common smooth domain

⋂
m∈Zn Dom(δm1

1 . . . δmn
n )

is equal to the subalgebra AΘ.

The result of the previous exercise shows that AΘ is just the “smooth subal-
gebra” of the C*-algebra AΘ with respect to the action of Tn. It is known that
any such smooth subalgebra, under a continuous action of a compact Lie group
on a C*-algebra, is actually a pre-C*-algebra.

Exercise 8.33. Define a linear operator E : AΘ → AΘ by averaging over the
orbits of this Tn-action:

E(a) :=

∫

[0,1]n
(e−2πiφ1 , . . . , e−2πiφn) · a dφ1 . . . dφn.

Check that E(1) = 1, that E(a∗) = E(a)∗, that E(a∗a) ≥ 0 and ‖E(a)‖ ≤ ‖a‖
for all a ∈ AΘ; where “x ≥ 0” means that x is a positive element of AΘ. Then
show the “conditional expectation” property:

E
(
E(a) bE(c)

)
= E(a)E(b)E(c) for all a, b, c ∈ AΘ.

By considering b = a− E(a), show also that E(a∗a) ≥ E(a)∗E(a) for a ∈ AΘ.

Exercise 8.34. If a =
∑

r ar u
r ∈ AΘ, check that E(a) = a0 1. Conclude that

the range of E is the ∗-subalgebra C 1, and that

τ(a) 1 := E(a)

defines a trace on AΘ; by continuity, it is enough to check the trace property on
the dense subalgebra AΘ.

Exercise 8.35. If instead we only consider the action of a subgroup Tk of Tn,
we can define a conditional expectation

Ek(a) :=

∫

[0,1]k
(e−2πiφ1 , . . . , e−2πiφk , 1, . . . , 1) · a dφ1 . . . dφk.

In this case the range of Ek will be isomorphic to a C*-algebra AΦ where Φ is a
certain real skewsymmetric matrix in Mn−k(R). Compute the matrix Φ in terms
of the matrix Θ. In particular, what is the range of Ek for the case k = n− 1?

We now define Hτ to be the completion of AΘ in the norm

‖a‖2 :=
√
τ(a∗a).

We remark that ‖a‖2 ≤ ‖a‖ for all a, so that the inclusion map ητ : AΘ → Hτ
is continuous. It is convenient to write a := ητ (a) to denote the element a ∈
AΘ regarded as a vector in Hτ . It turns out that the trace τ is faithful, so
that Hτ is just the Hilbert space of the “GNS representation” πτ of AΘ. This
representation is defined —first on ητ (AΘ), then extended by continuity— by

πτ (a) : b 7→ ab : Hτ → Hτ , for each a ∈ AΘ.
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Exercise 8.36. Define an antilinear operator J0 : Hτ → Hτ by setting

J0(a) := a∗, for a ∈ ητ (AΘ).

Show that J0 is an isometry on this domain, so that it extends to all of Hτ ;
and show that the extended J0 is an antiunitary operator on Hτ . For b ∈ AΘ,
consider the operator

π′τ (b) := J0πτ (b∗)J0.

Check that π′τ (b) : c 7→ cb for c ∈ AΘ. Conclude that [πτ (a), π′τ (b)] = 0 for all
a, b ∈ AΘ.

The analogue of the L2-spinor space for the noncommutative torus is just
the tensor product H := Hτ ⊗ C2m

, where as usual, n = 2m or n = 2m + 1
according as n is even or odd. (In the commutative case Θ = 0, this means
that we are using the spinor module for the untwisted spin structure on Tn.)
Recall that we can regard C2m

as a Fock space Λ•Cm, carrying an irreducible
representation of the matrix algebra B = Cl(Rn) if n is even, or B = Cl0(Rn)
if n is odd. In the even case, there is a Z2-grading operator Γ := 1Hτ ⊗ c(γ),
satisfying Γ2 = 1 and Γ∗ = Γ.

The charge conjugation on B, that we have written b 7→ χ(b̄), is imple-
mented by an antiunitary operator on C2m

of the form C0K, where K is
complex conjugation and C0 is a certain 2m × 2m matrix: this means that
(C0K) b (C0K)−1 = χ(b̄) as operators on C2m

.

For instance, if n = 2 or 3, then C0 = i σ2 =

(
0 −1
1 0

)
.

Now let J := J0 ⊗ C0. This is an antiunitary operator on H, such that
J2 = ±1 according as C2

0 = ±1.

Exercise 8.37. Show that δj(a
∗) = (δj(a))∗ and that τ(δj(a)) = 0 for all

a ∈ AΘ. Conclude that the densely defined operator δj : a 7→ δj(a), with domain

ητ (AΘ), is skewsymmetric in the sense that

〈δj(a) | b〉 = −〈a | δj(b)〉, for all a, b ∈ Dom δj .

The closure of this operator, still denoted by δj , is then an unbounded
skewadjoint operator on H.

Let γ1, . . . , γn be the generators of the action of the Clifford algebra Cl(Rn)
on C2m

: they are a set of 2m × 2m matrices such that γjγk + γkγj = 2δjk for
j, k = 1, . . . , n. The operator C0K is determined by the relations

(C0K) γj (C0K)−1 = −γj for j = 1, . . . , n.

We can now define the Dirac operator on H by

D := −i
n∑

j=1

δj ⊗ γj .

Exercise 8.38. Show that JDJ−1 = ±D on the domain AΘ.

Exercise 8.39. If { sα : α = 1, . . . , 2m } is an orthonormal basis of C2m

, de-
fine ψrα := ur ⊗ sα ∈ H. Show that {ψrα : r ∈ Zn, α = 1, . . . , 2m } is an
orthonormal basis of H that diagonalizes D2, by checking that

D2ψrα = 4π2(r · r)ψrα for each r, α.
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What is the spectrum (with its multiplicities) of |D|? What is the spectrum of
D itself?

Exercise 8.40. We can invert D on the orthogonal complement of the finite-
dimensional space kerD = span{ψ0α : α = 1, . . . , 2m }. Show that, for each
s > 0, the expression

Tr+ |D|−s := lim
N→∞

σN (|D|−s)
logN

either exists as a finite limit, or diverges to +∞. (Show that we may use a
subsequence where N = NR := #{ r ∈ Zn : r · r ≤ R2 } for some R > 0.) Verify
that the 0 < Tr+ |D|−s < +∞ if and only if s = n; and compute the value of
Tr+ |D|−n.

Exercise 8.41. If a ∈ AΘ, show that both a and [D, a], considered as bounded
operators on H, lie in the smooth domain of the operator T 7→ [|D|, T ].
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Chapter 1

Poisson Geometry

1.1 Poisson algebra

Definition 1.1. A Poisson algebra is an associative algebra A (over a field K)
with a linear bracket {·, ·} : A⊗A→ A such that

1. {f, g} = −{f, g} (antisymetry),

2. {f, gh} = g{f, h}+ {f, g}h (Leibniz rule),

3. {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0 (Jacobi identity),

for all f, g, h ∈ A.

Remarks 1.2.

• The first and third axiom tells us that the bracket is a Lie bracket. The
second one is a compatibility relation between the associative and Lie
products.

• The algebra A does not need to be commutative (and this explains the way
in which the Leibniz rule is written). Non commutative Poisson algebras
were studied in [x-p94] (see also [f-d95] for some algebraic theory). In
what follows, however we will tacitly assume A to be commutative unless
otherwise stated.

• Every associative algebra A can be made into a Poisson algebra by setting
{f, g} ≡ 0.

• When A is unital we get from the assumptions

{f, g} = {f, g · 1} = {f, g} · 1 + g · {f, 1},

so {f, 1} = 0 for all f ∈ A.

A natural source of examples of commutative Poisson algebras is a specific
subclass of associative algebras, the so–called almost commutative algebras.
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Part IV Poisson algebra

Exercise 1.3. Let U be an almost commutative algebra, i.e. filtered associative
algebra, U0 ⊆ U1 ⊆ . . ., U i · U j ⊆ U i+j, such that gr(U) =

⊕∞
i=0 U

i/U j is
commutative. Let [x] ∈ gr(U) be the class of x ∈ U i, and define

{[x], [y]} := [xy − yx] ∈ gr(U).

Prove that it is a Poisson algebra.

Definition 1.4. A Poisson morphism (A, {}A)
ϕ−→ (B, {}B) is a morphism of

associative algebras such that

ϕ({f, g}A) = {ϕ(f), ϕ(g)}B, for all f, g ∈ A.

Exercise 1.5. Prove that Poisson algebras together with Poisson morphisms
form a category.

Definition 1.6. Let (A, {}A) be a Poisson algebra. A Poisson subalgebra is a
subalgebra B closed with respect to {}A.A Poisson ideal I ⊆ A is an ideal with
respect to the associative product, such that {f, i}A ∈ I for all f ∈ A, i ∈ I.

Exercise 1.7. For any Poisson morphism ϕ : A → B, prove that kerϕ is a
Poisson ideal in A, imϕ is a Poisson subalgebra in B, and there is an exact
sequence of Poisson algebras

0→ kerϕ→ A→ imϕ→ 0.

Definition 1.8. Let A be Poisson algebra. An element f ∈ A is called a Casimir
if {f, g} = 0 for all g ∈ A.

Definition 1.9. A linear endomorphism X ∈ End(A) is called canonical if it
is a derivation with respect to both the associative product and the bracket, i.e.
for every f, g ∈ A

1. X(fg) = (Xf)g + f(Xg)

2. X{f, g} = {Xf, g}+ {f,Xg}

The set of all Casimir elements in A, which is the center of the Lie algebra
(A, {}A), will be denoted by Cas(A); the set of canonical endomorphisms will
be denoted by Can(A).

Proposition 1.10. Let A be Poisson algebra. For every f ∈ A, Xf : g 7→ {f, g}
is a canonical endomorphism.

Proof. From Leibniz rule it follows:

Xf (gh) = {f, gh} = {f, g}h+ g{f, h} = (Xfg)h+ g(Xfh)

From Jacobi identity it follows:

Xf ({g, h}) = {f, {g, h}} = {{f, g}, h}+ {g, {f, h}} = {Xfg, h}+ {g,Xfh}

Definition 1.11. Canonical endomorphisms of the form Xf are called hamil-
tonian and the set of hamiltonian enodomorphism is denoted by Ham(A).
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Part IV Poisson algebra

Let Der(A) be the set of derivations of the associative algebra A. We have
the following chain of inclusions.

Ham(A) ⊆ Can(A) ⊆ Der(A).

Recall that Der(A) has a natural Lie algebra bracket given by the commutator of
endomorphisms. Can(A) is a Lie subalgebra of Der(A). One may naturally ask
whether such spaces are equal. In the trivial case we easily have 0 = Ham(A) 6=
Can(A) = Der(A). We will see further examples later on where all such spaces
are different.

Proposition 1.12. Ham(A) is a Lie ideal in Can(A) and a Lie subalgebra of
Der(A).

Proof. Let X ∈ Can(A), Xf ∈ Ham(A). Then

[X,Xf ](g) = X(Xf(g))−Xf (X(g))

= X{f, g} − {f,X(g)}
= {X(f), g}+ {f,X(g)} − {f,X(g)}
= XX(f)(g),

so [X,Xf ] = XX(f) ∈ Ham(A). To prove that Ham(A) is a subalgebra of
Der(A), one computes

([Xf , Xg]−X{f,g})h = Xf (Xgh)−Xg(Xfh)−X{f,g}h
= {f, {g, h}} − {g, {f, h}} − {{f, g}, h}
= − Jac(f, g, h) = 0.

Therefore [Xf , Xg] = X{f,g}, hence Ham(A) is closed under commutator.

Exercise 1.13. Let A = C[X,Y ]. After having proven that there exists a unique
on A such that {X,Y } = X try to describe the sets Ham(A), Can(A), Der(A).

Proposition 1.14. Let (A, {·, ·}A) and (B, {·, ·}B) be Poisson algebras. Then
their tensor product A⊗ B has a natural structure of Poisson algebra given by

{a1 ⊗ b1, a2 ⊗ b2} = {a1, a2}A ⊗ b1b2 + a1a2 ⊗ {b1, b2}B.

The maps A→ A⊗B, a 7→ a⊗1, B 7→ A⊗B, b 7→ 1⊗B are Poisson morphisms
and {a⊗ 1, 1⊗ b} = 0 for all a ∈ A, b ∈ B.

Definition 1.15. Poisson module structure on a left A-module M over a Pois-
son algebra A is a linear map

{·, ·}M : A⊗M →M

such that

1. {{f, g}A,m}M = {f, {g,m}M}M − {g, {f,m}M}M ,

2. {fg,m}M = f · {g,m}M + g · {f,m}M ,

3. {f, g ·m}M = {f, g}A ·m+ g{f,m}M
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Remark 1.16. This definition turns into a flat connection condition when M is
the module of sections of a vector bundle and A is an algebra of functions on
the base. Indeed, if we let

T : M → HomK(A,M), m 7→ Tm := {·,m}M

then

1. ⇐⇒ Tm({f, g}A) = {f, Tm(g)}M − {g, Tm(f)}M
(that is Tm ∈ Der((A, {·, ·}A);M)),

2. ⇐⇒ Tf ·m = f · Tm(g) + {f, g}A ·m = f · Tm(g) +Xf (g) ·m,

3. ⇐⇒ Tm(fg) = fTm(g) + gTm(f) (that is Tm ∈ Der((A, ·);M)).

One may ask whether this is a reasonable definition of Poisson module. It
is, in a sense, the categorical notion of Poisson bimodule as it verifies the so-
called square-zero construction which can be summarized as follows: let A be
a Poisson algebra and M Poisson A-module; define a Poisson algebra structure
on A⊕M using formulas

(f +m) · (f1 +m1) := ff1 + (f ·m1 + f1 ·m),

{f +m, f1 +m1} := {f, f1}A + {f,m1}M − {f1,m}M .

Proposition 1.17. A⊕M is a Poisson algebra if and only if M is a Poisson
module. Furthermore the projection A⊕M → A is a map of algebras, M2 = 0
and M is an ideal.

1.2 Poisson manifolds

Definition 1.18. A smooth Poisson manifold M is a smooth manifold together
with a on C∞(M).

An affine algebraic Poisson variety M is an affine algebraic variety such that
A = K[M ] (algebra of regular functions) is a Poisson algebra over K.

An algebraic Poisson variety M is an algebraic variety such that the sheaf
of regular functions is a sheaf of Poisson algebras.

In what follows we will mainly restrict ourselves to the smooth case and most
of what we say can be easily adapted to the algebraic one. We will try to signal
out the main point where this does not happen. This somewhat ambiguous
approach is due to one fact; while the geometric theory of Poisson manifolds is
usually simpler to describe then its algebraic counterpart, the quantization is
better suited for regular functions (here we are thinking at the high obstacles in
chracterizing the algebra of smooth functions on a manifold inside the category
of commutative algebras).

Definition 1.19. A morphism of Poisson manifolds is a differentiable function
ϕ : M → N such that ϕ∗ is a morphism of Poisson algebras, i.e.

ϕ∗{f, g}M = {f, g}M ◦ ϕ = {f ◦ ϕ, g ◦ ϕ}N = {ϕ∗f, ϕ∗g}N

for f, g ∈ C∞(M).
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Part IV Poisson manifolds

Let us now translate the definitions of Casimir, hamiltonian and canonical maps
to this setting. The significant remark is that the map f 7→ Xf takes values in
Der(C∞(M)) = X1(M). Thus we can write

Cas(M) = {f ∈ C∞(M) : {f, g} = 0 ∀g ∈ C∞(M)} = ker(f 7→ Xf ),

Ham(M) = Hamiltonian vector fields = im(f 7→ Xf ),

Can(M) = canonical vector fields{X ∈ X1(M) : X(Xfg) = XXfg +Xf (Xg)}.

Hamiltonian vector fields fit into the short exact sequence

0→ Cas(M)→ C∞(M)→ Ham(M)→ 0.

Remark 1.20. The Cartesian product of Poisson manifolds is a Poisson manifold.
In fact consider

C∞(M1 ×M2) ⊃ C∞(M1)⊗ C∞(M2).

There is an easily defined Poisson structure on C∞(M1) ⊗ C∞(M2) which
uniquely extends to C∞(M1 ×M2) by

{f(x1, x2), g(x1, x2)} = {fx2 , gx2}2(x1) + {fx1, gx1}1(x2), where

fx1 : x2 7→ f(x1, x2), fx1 ∈ C∞(M2),

fx2 : x1 7→ f(x1, x2), fx2 ∈ C∞(M1).

Examples 1.21.

1. Each manifold is a Poisson manifold with trivial bracket {·, ·}.

2. Let (M,ω) be a symplectic manifold i.e. ω ∈ Ω2(M), dω = 0, ω non-
degenerate (ωx =

∑
k<j ωij(x)dxi ∧ dxj , where [ωij ] is an antisymmetric

matrix of maximal rank). Define Xf by ω(Xf ,−) = 〈−df, −〉, that is
iXf

ω = −df , ω(Xf , Y ) = −〈df, Y 〉 = −Y f . Now

{f, g} := −ω(Xg, Xf ) = ω(Xf , Xg) = −{g, f}.

Indeed, {·, ·} is bilinear:

{f, g} = iXf
dg, d(g1 + g2) = dg1 + dg2

〈X, dg1 + dg2〉 = 〈X, dg1〉+ 〈X, dg2〉,
Xf+g = Xf +Xg, ω(Xf+g,−) = ω(Xf ,−) + ω(Xg,−),

{·, ·} satisfies Leibniz identity:

{f, gh} = iXf
d(gh)

= iXf
(gdh+ hdg)

= giXf
dh+ hiXf

dg

= g{f, h}+ h{f, g}.
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{·, ·} satisfies Jacobi identity:

0 = dω(Xf , Xg, Xh) = Xfω(Xg, Xh)−Xgω(Xf , Xh) +Xhω(Xf , Xg)

− ω([Xf , Xg], Xh) + ω([Xf , Xh], Xg)− ω([Xg, Xh], Xf )

= Xf{g, h} −Xg{f, h}+Xh{f, g}
− [Xf , Xg](h)− [Xg, Xh](f)− [Xh, Xf ](g)

= {f, {g, h}}− {g, {f, h}}+ {h, {f, g}}
− [Xf , Xg](h)− [Xg, Xh](f)− [Xh, Xf ](g)

= Jac(f, g, h)−Xf (Xgh) +Xg(Xfh)−Xg(Xhf)

+Xh(Xgf)−Xh(Xfg) +Xf(Xhg)

= Jac(f, g, h).

Here we used

dη(X1, . . . , Xk+1) =

=
k+1∑

i=1

(−1)i+1Xi · η(X1, . . . , X̂i, . . . , Xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jη([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

(with the usual hat notation to denote missing terms) and

ω([Xf , Xg], Xh) = (iXh
ω)([Xf , Xg])

= −〈dh, [Xf , Xg]〉
= −[Xf , Xg](h).

Thus every symplectic manifold is a Poisson manifold.

Consider a special case of the previous example, the standard symplec-
tic manifold (R2n, ω =

∑
dpi ∧ dqi). Let us remark that Darboux’s theorem

(see [cw04]) every symplectic manifold is locally symplectomorphic to this one
1

Exercise 1.22. Prove by applying definitions that if M = R2n, ω =
∑n

i=1 dqi∧
dpi, then {f, g} =

∑n
i=1−∂pif∂qig + ∂qif∂pig.

Let f := f(pi, qi), ω(Xf , Y ) = −Y f . Then for Y = ∂qi and Y = ∂pi we have
respectively

−i∂qi
ω = ω(−, ∂qi) = −dpi

−i∂pi
ω = ω(−, ∂pi) = −dqi

Xf =

n∑

i=1

ai∂qi + bi∂pi .

1but that does not mean that this is unique symplectic structure on R2n ! On the contrary
the problem of classifying symplectic forms on, say, R4 is far from being trivial.
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Now ω(Xf , ∂qi) = −bi, ω(Xf , ∂pi) = −ai and

Xf =

n∑

i=1

−∂pif∂qi + ∂qif∂pi ,

{f, g} = Xf (g) =

n∑

i=1

−∂pif∂qig + ∂qif∂pig.

Exercise 1.23. In the setting of the previous exercise derive the canonical Pois-
son relations.

{qi, pj} = δij ,

{qi, qj} = 0,

{pi, pj} = 0.

Proposition 1.24. On every Poisson manifold there is a unique bivector field
Π ∈ Γ(Λ2TM) such that

{f, g} = 〈Π, df ∧ dg〉.

Proof. We need to show that {f, g}(x) depends only on dxf and dxg. Consider
f fixed

{f, g}(x) = (Xfg)(x) = 〈Xf (x), dxg〉.
Similarly for g fixed

{f, g}(x) = −〈Xg(x), dxf〉.
Furthermore f 7→ dxf , C∞(M,R) → T ∗xM is surjective, therefore there exists
Π(x) bilinear, skewsymmetric on T ∗xM such that

{f, g}(x) = Π(x)(dxf, dxg).

Fix on M a coordinate chart (U ;x1, . . . , xn). Then the bivector Π is locally
given by

ΠU =
∑

i<j

Πij∂xi ∧ ∂xj

where the coefficients Πij are functions on U explicitely given by Πij = {xi, xj}.
Therefore Π is determined once you know brackets of local coordinate functions

{f, g} =

n∑

i,j=1

{xi, xj}∂xif∂xjg.

Let Π :=
∑

i<j Πij∂xi ∧ ∂xj be a bivector field, where Πij = {xi, xj}. In many

examples a Poisson structure on R2n will be given simply by lifting brackets of
coordinates.

Exercise 1.25. Prove that the Jacobi identity

Jac(xi, xj , xk) =
∑

cyclic

{{xi, xj}, xk} = 0
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is equivalent to

n∑

k=1, i<j<l

∂Πij

∂xk
Πkl +

∂Πjl

∂xk
Πki +

∂Πli

∂xk
Πkj = 0. (1.1)

Let V be a real n-dimensional vector space. Consider coordinates x1, . . . , xn.
Then

∑
i<j Πij∂xi ∧ ∂xj is Poisson tensor if and only if (1.1) holds.

Example 1.26. Special cases.

1. dimV = 1 =⇒ Π = 0

2. dimV = 2 =⇒ Π = Π12∂x1 ∧ ∂x2 . In R2 every bivector defines Π =
f(x, y)∂x ∧ ∂y, {x, y} = f(x, y).

3. dimV = 3 - Write explicitely identity 1.1. Find conditions on f ∈ C∞(R3)
such that Π = y∂x ∧ ∂y + z∂x ∧ ∂z + f∂y ∧ ∂z is a .

4. Say Πij are linear functions in x1, . . . , xn,

Πij =

n∑

k=1

ckijxk.

Therefore
∂Πij

∂xk
= ckij , identity 1.1 rewrites as:

0 =

n∑

k=1

ckijc
h
klxh + ckjlc

h
kixh + cklic

h
kjxh

=

n∑

k=1

(ckijc
h
kl + ckjlc

h
ki + cklic

h
kj)xh

⇔
n∑

k=1

(ckijc
h
kl + ckjlc

h
ki + cklic

h
kj) = 0,

for all i, j, l, h. Thus ckij are forced to be structure constants of a Lie
algebra. Therefore for any given Lie algebra we have a linear Poisson
structure.

Let us describe this last example in another way. Take a Lie algebra g, and let
V = g∗ be the linear functionals on g. We want to put a on this vector space V .
If one knows the bracket between elements of a basis of g∗, then, by linearity,
he knows it on V . Let X1, . . . , Xn be a basis of g, [Xi, Xj] =

∑n
k=1 c

k
ijXk.

Let ξ1, . . . , ξn be the dual basis of g∗. Say α ∈ g∗, f, g ∈ C∞(g∗). Then
dαf ∈ (g∗)∗ = g and

{f, g}(α) = 〈α, [dαf, dαg]〉.
For example if f ≃ Xi, g ≃ Xj , Xi(ξj) = δij

{Xi, Xj}(ξk) = 〈ξk, [Xi, Xj ]〉

= 〈ξk,
n∑

h=1

chijXh〉

= ckij ,

{Xi, Xj} = ckijXk.
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Thus Π =
∑n

k=1 c
k
ijXi ∧Xj is a linear Poisson tensor on g∗. In conclusion the

dual of a Lie algebra has always a canonically defined Poisson tensor.
Let us now list some specific examples of Poisson manifolds. In Poisson

geometry, usually, rather then being at lack of examples one has to face the
opposite problem, that of being ablo to select the relevant ones. All the brackets
appearing in this list appeared at some point connected to specific quantization
issues, and this is the reason for our interest in them.

Example 1.27. Consider

M = SU(2) =

{(
α β
−β̄ ᾱ

)
: |α|2 + |β|2 = 1

}
.

Then

{α, ᾱ} = −i|β|2,
{β, β̄} = 0,

{α, β} = 1
2 iαβ

{α, β̄} = 1
2αβ̄

defines uniquely a on su(2). Are you able to find Casimir functions? We will
say more on this Poisson structure in the chapter on Poisson–Lie groups.

Example 1.28. Let ϕ be a smooth function on R3. Define

{x, y} := ∂zϕ

{y, z} := ∂xϕ

{z, x} := ∂yϕ.

Then for any ϕ these formulas define a . In fact

{x, {y, z}}+ {z, {x, y}}+ {y, {z, x}} = {x, ∂xϕ}+ {z, ∂zϕ} + {y, ∂yϕ}
= ∂zϕ(∂y∂xϕ)− ∂yϕ(∂z∂xϕ)

− ∂xϕ(∂y∂zϕ) + ∂yϕ(∂x∂zϕ)

− ∂zϕ(∂x∂yϕ) + ∂xϕ(∂z∂yϕ)

= 0

Example 1.29. Let S4 = {(α, β, t) ∈ C× C× R : |α|2 + |β|2 = t(1− t)}. Then

Π = αβ∂α ∧ ∂β − αβ∗∂α ∧ ∂β∗ − α∗β∂α∗ ∧ ∂β + α∗β∗∂α∗ ∧ ∂β∗

is Poisson tensor. Can you find conditions for f to be a Casimir function?
Hint: t is a Casimir function; use spherical coordinates on its level sets. This
Poisson structure can be deduced to be the underlying (in a sense to be specified
in the last chapters) of Connes–Landi–Matsumoto non commutative 4–spheres
(see [?, m-o95]).

Example 1.30. The following family of Poisson structures is taken from [kp00].
Let V be a real vector space of dimension n, and U , Pj , j = 1, . . . , n − 2
polynomials in variables x1, . . . , xn. Define

J(h1, . . . , hn) := det

[
∂

∂hi
xj

]
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Prove that
{f, g} = UJ(f, g, P1, . . . , Pn−2)

defines a . These brackets are called Jacobian s ([kp00]).

Example 1.31. On R4 with coordinates x0, x1, x2, x3 take real constants J12, J23, J31

and define

{xi, xj} := 2Jijx0xk

{x0, xi} := −2xjxk, where (i, j, k) = (1, 2, 3) or cyclic permutation.

Find the conditions on Jij that implies this is a . These are called Sklyanin
Poisson algebras ([s-e82]). Can you find Casimir functions? Hint: two quadratic
polynomials.

1.3 The sharp map

Let M be a manifold, and Π a Poisson bivector on M .

Definition 1.32. For every Poisson manifold (M,Π) we define its sharp map

#Π : T ∗M → TM

#Π,x(x, αx) := (x, (iαxΠ)(x)), αx ∈ T ∗xM.

Remark 1.33. We have (iαxΠ)(βx) = 〈Π, βx ∧αx〉 = Πx(αx, βx) for all αx, βx ∈
T ∗xM .

Let us list its properties:

• The sharp map #Π is a bundle map on M . It is also called the anchor of
(M,Π).

• Being a bundle map it induces a map on sections (which will be denoted
by the same symbol)

#Π : Ω1(M)→ X(M), α 7→ iαΠ

• When restricted to exact 1-forms the sharp map recovers hamiltonians
#Π(df) = Xf . In fact

〈#Π(df), dg〉 = Π(df, dg) = {f, g} = 〈Xf , dg〉.
The equality then follows remarking that a vector field is uniquely deter-
mined by its contractions with exact 1-forms (locality of vector fields).

• An easy consequence of the previous statement is that the image of the
sharp map is im #Π,x = Hamx(M) - vector subspace of TxM .

• The sharp map has the following local expression

#Π

(
n∑

i=1

aidxi

)
=

n∑

i,j=1

Πijai∂xj

#Π(dxj) = Π

(
n∑

i=1

aidxi, dxj

)
=

n∑

i=1

Π(aidxi, dxj) =
n∑

i=1

aiΠij .

If Πij are smooth, then so is #Π.
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The assignment of a vector subspace Sx of TxM for every x ∈ M is called a
(generalized) distribution. A distribution is differentiable if for all x0 ∈ M and
v0 ∈ Sx0 there exists a neighbourhood U of x0 and a smooth vector field on U
such that X(y) ∈ Sy for all y ∈ U and X(x0) = v0. The word generalized refers
to the fact that we do not require dimSxM to be constant in x.

Definition 1.34. The image of the sharp map im #Π is locally generated by
Hamiltonian vector fields and, thus, a differentiable distribution. It will be called
the characteristic distribution of the Poisson manifold (M,Π).

Exercise 1.35. On (im #Π)x it is possible to define a natural antisymmetric
non-degenerate bilinear product. Let v, w ∈ (im #Π)x and choose αx, βx such
that v = #Π(αx), w = #Π(βx),

(v, w) = 〈Πx, αx ∧ βx〉.

Prove that it is well defined, and its properties.

Definition 1.36. Let ρ(x) := dim im #Π,x. We call it the rank of the Poisson
manifold (at the point x).

Remark 1.37. • The reason for the name is that in local coordinates

ρ(x) = rank(Πij(x)) = rank({Xi, Xj}(x)).

• The rank is a map ρ : M → Z; from the differentiability of the distribution
it follows that ρ(x) is a lower semicontinuos function of x, i.e. it cannot
decrease in a neghbourhood of x. Indeed, take v1, . . . , vr to be a basis of
(im #Π)x0 and take X1, . . . , Xr to be the corresponding local vector fields,
then X1(x), . . . , Xr(x) are linearly independent in a neighbourhood of x0.

Exercise 1.38. Show that ρ(x) ∈ 2Z (is always even).

Definition 1.39. If ρ(x) = k ∈ Z for all x ∈ M the Poisson manifold (and
also the characteristic distribution) is called regular. If x0 ∈ M is such that
ρ(y) = ρ(x0) for all y in a neighbourhood Ux0 of x0, then x0 is called a regular
point of M . It is called a singular point otherwise (i.e. if for all neighbourhoods
U of x0, there is y ∈ U such that ρ(y) > ρ(x)).

Remark 1.40.

• The set of regular points is open and dense, but not necessarily connected.
That it is open is obvious from definition. Let x0 be a singular point. Take
U ⊂ Ux0 , there exists y ∈ U such that ρ(y) > ρ(x0). We want to prove that
y is regular. Say it is not, then there exists y1 ∈ U (also neighbourhood of
y) such that ρ(y1) > ρ(y). If y1 is not regular repeat. Find a seqence {yn}
in U such that ρ(yi+1) > ρ(yi). If it admits a converging subsequence we
are done: the limit point will be regular. The existence of this converging
subsequence follows from the fact that M is locally compact: this allows
us to choose U such that U is compact.

• If in M there are singular points then im #Π is not a vector subbundle of
TM . This is a general fact (and follows by the very definition of subbun-
dle): the image of a bundle map is a subbundle if and only if its rank is
constant.
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Examples 1.41.

1. Let M = R2n+p with coordinates (q1, . . . , qn, p1, . . . , pn, y1, . . . , yp). Let
Π =

∑n
i=1 ∂qi ∧ ∂pi . Then (M,Π) is regular and ρ(x) = 2n. Here im #Π

are tangent spaces to linear subspaces parallel to y1 = . . . = yp = 0.

2. Let Π = (x2 + y2)∂x ∧ ∂y in M = R2. Then

(im #Π)(0,0) = {0},
(im #Π)(x,y) ≃ R2 if (x, y) 6= (0, 0).

(0, 0) is singular, (x, y) 6= (0, 0) is regular. More generally for f(x, y)∂x∧∂y
if Γf = {(x, y) : f(x, y) = 0} then the set of singular points is ∂Γf .

Proposition 1.42. Let (M,Π) be a Poisson manifold. It is the Poisson mani-
fold associated to a symplectic manifold if and only if it is regular, of dimension
2n and rank 2n, i.e. if and only if #Π is an isomorphism.

Proof. (sketchy) M symplectic implies im #Π = TM . In fact locally on U ⊂M
ω|U =

∑n
i=1 dqi ∧ dpi and the corresponding Poisson bivector is

Π|U =

n∑

i=1

∂qi ∧ ∂pi .

Therefore #Π(dqi) = ∂pi , #Π(dpi) = −∂qi and #Π is isomorphism.
Let #Π be an isomorphism (i.e. ∀ x ∈ M #Π,x : T ∗xM → TxM is an

isomorphism). Define ♭x : TxM → T ∗xM , ♭x := #−1
Π,x. Define Ωx ∈ Λ2T ∗xM

as Ωx(v, w) = Πx(♭xv, ♭xw). Prove that Ωx is a 2-form such that {f, g} =
Ω(Xf , Xg) and therefore Jac(f, g, h) = dΩ(Xf , Xg, Xh).

1.4 The symplectic foliation

Definition 1.43. Let S be a distribution on a manifold M . An integral of
S is a pair (N, h) of a connected differential manifold N and an immersion
h : N →M 2 such that

Tx(h(N)) ⊂ Sx.
An integral is said to be maximal if

Tx(h(N)) = Sx.

An integral submanifold of S is a connected immersed submanifold N of M
such that (N, iN) is an integral.

Remark 1.44. Integral manifolds are immersed submanifolds but not necessarily
embedded submanifolds3. In particular integral submanifolds are not necessarily
closed.

2i.e. an injective map with injective tangent map dhx : TxN → Th(x)(M)
3An immersion i : N →֒ M is an embedding if it is an immersion and a homeomorphism

from N to i(N) (equipped with the topology induced by M).
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Definition 1.45. A distribution is fully integrable if for every x ∈ M there
exists a maximal integral (N, h) of S such that x ∈ h(N) (maximal at each
point).

Let us recall the Frobenius theorem: a constant rank differentiable distribution
is fully integrable if and only if it is involutive, i.e. for all X,Y -sections of S,
[X,Y ] ∈ S.

For a regular Poisson manifold (M,Π) of rank 2n, the characteristic distribu-
tion is of constant rank, and also involutive, due to [Xf , Xg] = X{f, g}. Therefore
it is fully integrable. Each regular Poisson manifold thus, comes equipped with
a regular foliation.

Furthermore on the tangent space to the leaf (im #Π)x it is always possible
to define a natural antisymmetric nondegenerate bilinear product.

Computations similar to those of proposition 1.42, allow to prove that if
(N, h) is the maximal integral containing x, then there is a symplectic 2-form
ωN on N such that ωN = h∗ωΠ, where (ωΠ)x ∈ Λ2(im #Π)∗x is determined by
the above bilinear product.
We will call this foliation the symplectic foliation of M . Our purpose in the
following will be to understand how this generalizes to the non regular case.

Example 1.46. Let’s go back to the first example in 1.41: M = R2n+p, Π =∑n
i=1 ∂qi ∧ ∂pi . The leaves are

Sc1...cp := {y1 = c1, . . . , yn = cn} - linear subspaces.

On each leaf ω =
∑n

i=1 dqi ∧ dpi.
Remark 1.47. Not every foliation is a symplectic foliation. In fact, first of all
leaves need to carry a symplectic structure, a condition which already puts
some topological restriction (e.g. you cannot have symplectic structure on S2n

if n > 1). But also a foliation into given symplectic manifolds has some more
delicate obstructions depending on how the symplectic forms vary from leaf to
leaf (see [b-m01] for the regular case).

Now we want to generalize this statement to non regular Poisson manifolds.

Theorem 1.48 (Weinstein’s splitting theorem). Let (M,Π) be a Poisson mani-
fold. Let x0 ∈M , ρΠ(x0) = 2n. Then there exists a coordinate neighbourhood U
of x0 with coordinates (q1, . . . , qn, p1, . . . , pn, y1, . . . , yp) (dimM = 2n+ p = m)
such that

Π(x) =

n∑

i=1

∂qi ∧ ∂pi +

p∑

i<j=1

ϕij(x)∂yi ∧ ∂yj ∀x ∈ U,

and such that ϕij(x) depends only on coordinates y1, . . . , yk and ϕij(x0) = 0.

Proof. The theorem is proved by induction on the semirank n, ρΠ(x0) = 2n. If
n = 0 there is nothing to prove. Say the theorem holds for semirank equal to
n− 1 6= 0. Certainly there exists f, g ∈ C∞(M) such that

{f, g}(x0) 6= 0.

Let p1 = g. Then Xp1(f)(x0) 6= 0, so Xp1(x0) is a nonzero vector field. By
the rectifying theorem for vector fields there exists a coordinate neighbourhood
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centered at x0 such that −Xp1 = ∂q1 , hence {q1, p1} = −Xp1q1 = 1. Remark
that Xp1 and Xq1 are linearly independent (if Xq1 = λXp1 then {q1, p1} =
Xq1(p1) = λXp1(p1) = −λ∂q1p1 = 0). Furthermore [Xq1 , Xp1 ] = X{q1,p1} =
X−1 = 0. Therefore locally around x0 these two vector fields span a regular
involutive distribution, which is integrable due to Frobenius theorem.

As a consequence there are local coordinates (y1, . . . , ym) centered at x0 such
that

Xq1 = ∂y1

Xp1 = ∂y2

{q1, yi} = Xq1yi = 0 ∀ i 6= 1

{p1, yi} = Xp1yi = 0 ∀ i 6= 2.

Lemma 1.49 (Poisson theorem).

{p1, {yi, yj}} = 0 ∀ i, j ≥ 3,

{q1, {yi, yj}} = 0 ∀ i, j ≥ 3.

Proof. (of lemma) Simply apply Jacobi identity.

Remark 1.50. The reason for giving these equalities the dignity of a separate
statement is due to the fact that historically this is the first form in which Jacobi
identity was stated.

Now (q1, p1, y3, . . . , ym) is a new coordinate system forM , because (y1, . . . , ym)
is a local coordinate system and the map Φ: (y1, . . . , ym) 7→ (q1, p1, y3, . . . , ym)
has Jacobian 


0 1
−1 0

∗
0 I




In these new coordinates the Poisson bivector has local expression

Π = ∂q1 ∧ ∂p1 +
∑

3≤i<j≤m
Π′ij(y3, . . . , ym)∂yi ∧ ∂yj .

The right summand locally defines a Poisson bivector on M of rank 2(n − 1).
Applying the induction hypothesis to it proves the theorem.

In the symplectic case this theorem recovers a well-known result:

Corollary 1.51 (Darboux theorem). Let (M,ω) be a symplectic manifold and
x0 ∈M . Then there exists a coordinate neighbourhood (U ; q1, . . . , qn, p1, . . . , pn)
of x0 such that

ω|U =
n∑

i=1

dqi ∧ dpi.

In analogy with this last statement coordinates generated by the splitting
theorem are also called Darboux coordinates centered at x0.

Example 1.52. Let g∗ be the dual of a Lie algebra g and Π =
∑
ckijXk∂i ∧ ∂j .

Then these are Darboux coordinates centered at the origin in which there is no
symplectic term and all functions ϕij are linear.
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Definition 1.53. Let (M,Π) be a Poisson manifold. A hamiltonian path on
M is a smooth curve γ : [0, 1] → M such that each tangent vector γ̇t at γ(t)
belongs to im #Π,γ(t) for all t ∈ [0, 1]. Let x, y ∈ M . We say that x and y are
in hamiltonian relation if there exists a piecewise Hamiltonian curve γ on M
connecting x to y.

Lemma 1.54. Hamiltonian relation is an equivalence relation.

Proof. This is left as an exercise. Consider the following hints. Reflexive -
trivial; symmetric - change backwards the time parametrization; transitive -
concatenation of Hamiltonian paths is an Hamiltonian path.

Definition 1.55. Equivalence classes of this relation are called symplectic leaves
of (M,Π).

Proposition 1.56. Each symplectic leaf is a maximal integrable submanifold
of (M,Π).

Proof. (sketchy) Let F be a leaf, x ∈ F , TxF ⊂ im #Π,x because all paths on F
exiting from x are Hamiltionian paths.

Let X ∈ X(M) such that X(x) ∈ im #Π,x. Consider the flow of X starting
at x. This is a curve expx(tX) : (−ε, ε) → M which is an Hamiltonian path.
Therefore each point of this curve is in F , so X(x) ∈ TxF . Thus TxF = im #Π,x.

Fix Darboux coordinates centered at x ∈ F .

im #Π,x = 〈∂q1 , . . . , ∂qn , ∂p1 , . . . , ∂pn〉

F is locally given by y1 = . . . = yp = 0 therefore F is an immersed submanifold.

Proposition 1.57. Let (M,Π) be a Poisson manifold. On each symplectic
leaf F there is a well defined symplectic structure such that the inclusion map
i : F →M is a Poisson map.

Proof. Let x ∈ F and fix Darboux coordinates centered at x in a neighbourhood
U . This implies that (q1, . . . , qn, p1, . . . , pn) are local coordinates for F around
x. Define

ωx =

n∑

i=1

dxqi ∧ dxpi, x ∈ U.

Check that this defines a symplectic structure on F . To verify that i : F →M is
Poisson, it is enough to check it preserves brackets of coordinate functions.

Examples 1.58.

1. Each symplectic manifold is a symplectic leaf of itself.

2. (R2, f(x, y)∂x ∧ ∂y). Each point of Γf = {(x, y) : f(x, y) = 0} is a 0-
dimensional symplectic leaf. Each connected component of R2 \ Γf is a
2-dimensional symplectic leaf.

3. M = g∗. By the Leibniz rule

im #Π,x = span{Xf(x) : f linear }
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Let f, g ∈ C∞(g∗) be linear i.e. f, g ∈ g. Fix α ∈ g∗

{f, g}(α) = α([f, g]) = 〈α, adf g〉 = −〈ad∗f α, g〉

Xf(α) = (−ad∗f )(α), where ad∗f is an infinitesimal coadjoint action i.e.
fundamental vector field of the adjoint action. Symplectic leaves are coad-
joint orbits. Therefore each coadjoint orbit in g∗ carries a naturally defined
symplectic form, called the Kirillov-Kostant-Souriau form (KKS).

Proposition 1.59. Let (M,Π) be a Poisson manifold. Casimir functions are
constant along the leaves (therefore leaves are contained in connected compo-
nents of level sets of Casimirs).

Proof. Let F be a leaf, f a Casimir function. We want to prove that f |F is
constant. This is equivalent to Xf = 0 for all X ∈ TF (vector fields tangent to
F, locally). But locally X(F ) = im #Π = Ham(M) and

Xgf = {g, f} = 0 ∀ g ∈ C∞(M).

Proposition 1.60. Let (M,Π) be a Poisson manifold, dimM = m. Let x0 ∈M
be such that rankΠ(x0) = ρΠ(x0) = m. Then the symplectic leaf through x0 is
open in M .

Proof. Around x0 rank is constant and equal dimM . Therefore (im #Π)x0 =
TxM and due to lower semicontinuity the same holds for any y in an open
neighbourhood U of x0. Thus every path on M exiting x0 is locally Hamiltonian,
hence the thesis.

Proposition 1.61. Let (M,Π) be a Poisson manifold. Let f1, . . . , fp be Casimir
functions on M . Let

Γi,c := {x ∈M : fi(x) = c}
If Γ1,c ∩ . . . ∩ Γp,c has dim = rank Π0 and is smooth, then its connected compo-
nents are symplectic leaves.

Remark 1.62. It may happen that Γ1,c ∩ . . . ∩ Γp,c may have dim 6= rank Π0

and, thus, leaves are not just level sets of Casimir. As an example consider the
case in which there is an open dense leaf. Casimirs, by continuity, will be forced
to be constants; their level sets are the whole manifold which, nontheless may
have a non trivial foliation.

Let us consider a general polynomial on Rn, i.e. a such that {xi, xj} =
Pij(x1, . . . , xn). A function f ∈ C∞(Rn) is a Casimir function if and only if
{xi, f} = 0 for any i = 1, . . . , n. This can be rewritten as

∑
j Pij∂xjf = 0.

Therefore f has to be a smooth solution of a system of linear first order PDE’s.
If, as in this case, we are considering a linear Poisson structure the system has
constant coefficients (which are the structural constant of the Lie algebra) and
its solutions can be explicitly determined.

Example 1.63. Consider su(2)∗ ∼= R3. Its Lie-Poisson bivector is

Π(x1, x2, x3) = x1∂x2 ∧ ∂x3 + x2∂x3 ∧ ∂x1 + x3∂x1 ∧ ∂x2 .
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Find the symplectic foliation.

#Π(dx1) = −x2∂x3 + x3∂x2 ,

#Π(dx2) = x1∂x3 − x3∂x1 ,

#Π(dx3) = −x1∂x2 + x2∂x1 .

Thus

Πij(x1, x2, x3) =




0 −x3 x2

x3 0 −x1

−x2 x1 0




Compute rank Πij(x1, x2, x3).
If (x1, x2, x3) = (0, 0, 0) then ρΠ((0, 0, 0)) = 0, and if (x1, x2, x3) 6= (0, 0, 0) then
ρΠ((x1, x2, x3)) = 2 (always 2 × 2 minor 6= 0). Therefore we have everywhere
rank 2, except at origin, which is an isolated 0-dimensional symplectic leaf.
Remark that x2

1 + x2
2 + x2

3 is a Casimir function

{x1,−} = 2x2{x1, x2}+ 2x3{x1, x3} = 2x2x3 − 2x3x2 = 0,

{x1,−} = 2x1{x2, x1}+ 2x3{x2, x3} = 2x1x3 − 2x3x1 = 0,

{x1,−} = 2x1{x3, x1}+ 2x2{x3, x2} = 2x1x2 − 2x2x1 = 0.

Thus symplectic leaves are contained in spheres x2
1 + x2

2 + x2
3 = r2 (with the

singular case of a 0-dim. leaf at r = 0) . Each leaf is a connected open 2-manifold
in S2, so each leaf is homeomorphic to S2.

It is easily checked that the corresponding symplectic structure is the unique
SU(2) invariant volume form on the sphere of radius r.

Exercise 1.64. Describe the symplectic foliation of the linear Poisson structure
on sl(2; R):

Π(ξ1, ξ2, ξ3) = ξ1∂ξ2 ∧ ∂ξ3 − ξ2∂ξ3 ∧ ∂ξ1ξ3∂ξ1 ∧ ∂ξ2 .

Exercise 1.65. Consider the constant Poisson structure on R3 given by

Π(x1, x2, x3) = (∂x1 + α1∂x2) ∧ (∂x2 + α2∂ξ3)

where α1, α2 ∈ R. This bivector projects onto a Poisson bivector on the torus
T3. Describe the sharp map and the symplectic foliation both in space and on
the torus. Check that when (1, α1, α2) is rationally independent each leaf is two
dimensional and dense on the torus.

Example 1.66. (Natsume-Olsen Poisson sphere)

S2 ⊂ C× R, ζζ̄ + z2 = 1

The following s on S2 were introduced in [no03]

{ζ, z} = i(1− z2)ζ,

{ζ̄, z} = −i(1− z2)ζ̄ ,

{ζ, ζ̄} = −2i(1− z2)z.

Therefore

Π = (1− z2)[iζ∂ζ ∧ ∂z − iζ̄∂ζ̄ ∧ ∂z − 2iz∂z ∧ ∂ζ̄ ] = (1− z2)Π0.
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Part IV The symplectic foliation

where Π0 is the standard rotation invariant symplectic (i.e. volume) form on
S2. The sharp map #Π is given by:

dz 7→ (z2 − 1)i(ζ∂ζ − ζ̄∂ζ̄),
dz 7→ (1 − z2)i(ζ∂z − 2z∂ζ̄),

dz 7→ (1 − z2)i(−ζ̄∂z + 2z∂ζ).

so that in the obvious basis it is represented by the matrix:




0 (1− z2)iζ −i(1− z2)ζ̄
(z2 − 1)iζ 0 2i(1− z2)z
−i(z2 − 1)ζ̄ 2i(z2 − 1)z 0




Such matrix has rank = 0 if ζ = ζ̄ = 0, that is if 1 − z2 = 0. This happens in
two points

ζ = ζ̄ = 0, z = −1 south pole,

ζ = ζ̄ = 0, z = 1 north pole.

The complement is an open symplectic manifold diffeomorphic to the punctured
plane. There are no non constant Casimir functions for this manifold. Quite
generally, in fact, whenever there exists a dense symplectic leaf one can apply
Proposition 1.61 to deduce that Casimirs are constant on a dense subset and
thus, by continuity, everywhere. Show that infinitesimal rotations around the
z-axis are given by a vector field which is Poisson but not Hamiltonian.

Exercise 1.67. Let g be a real Lie algebra, and let ξ : ∧2g → R a linear map.
For any two linear functions on g∗, f, g ∈ (g∗)∗ ≃ g define

{f, g}(α) = α([f, g]) + ξ(f, g), ∀α ∈ g∗

Find conditions on ξ granting this to be a . Such brackets are called affine s.

Exercise 1.68. Try to describe the sharp map and the corresponding symplectic
foliation for the examples given at the end of the previous section.
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Chapter 2

Schouten-Nijenhuis bracket

2.1 Lie-

Let (M,Π) be a Poisson manifold.

Theorem 2.1. There exists a unique R-linear skewsymmetric bracket

[−,−]Π : Ω1M × Ω1M → Ω1M

such that

1. [df, dg] = d{f, g} for all f, g ∈ C∞(M),

2. [α, fβ] = f [α, β] + (#Π(α)f)β for all α, β ∈ Ω1M , f ∈ C∞(M).

Such bracket is given by.

[α, β] = L#Π(α)β − L#Π(β)α− d(Π(α, β)). (2.1)

Furthermore [−,−]Π is a Lie bracket and #Π : Ω1M → X(M) is a Lie algebra
homomorphism:

[#Π(α),#Π(β)] = #Π([α, β]Π).

Before going into the proof let us explicitely describe this bracket for the canon-
ical , i.e. (M,Π) = (R2n,

∑n
i=1 ∂qi ∧ ∂pi). The bracket between exact 1–forms,

due to the first property, is easily described: all brackets between exact forms
are zero. Still the brackets between 1–forms can be non trivial, due to the second
property which reflects the behaviour w.r. to the C∞(M)- module structure.
As an example

[dpi,
∑

j

ajdpj + bjdqj ] =
∑

j

[dpi, ajdpj ] + [dpi, bjdqj ]

=
∑

j

aj [dpi, dpj] + ♯(dpi)ajdpj + bj[dpi, dqj ] + ♯(dpi)bjdqj

= −
∑

j

∂qiajdpj + ∂qibjdqj .

At this point all other brackets can be easily computed along the same lines.
What this computation shows is that the first property fixes the value of the
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Part IV Lie-

bracket on exact forms. Exact forms are generators for the C∞(M)– module
of all forms and the second property allows to obtain formulas for all brackets
from the knowledge of the one on exact ones (plus the sharp map).

Proof.

Step 1 If it exists, such [−,−]Π should be a local operator i.e. if β1|U = β2|U in a
neighbourhood U of x0, then [α, β1]Π(x0) = [α, β2]Π(x0) (the value at the
point depends only on values of forms in a neighbourhood of that point)
. To prove it let’s take a compact neighbourhood Vx0 ⊂ U of x0 and take
f ∈ C∞(M) such that f = 1 on Vx0 , f |M\U = 0. Then

[α, fβ1](x0) = f(x0)︸ ︷︷ ︸
=1

[α, β1]Π(x0) + (#Π(α)f︸ ︷︷ ︸
=0

)(x0)β1(x0)

[α, fβ1](x0) = f(x0)︸ ︷︷ ︸
=1

[α, β2]Π(x0).

Step 2 Applying twice property 2. one has the following:

Lemma 2.2. For every pair of functions h, f ∈ C∞(M)

[hα, fβ]Π = (hf)[α, β] + h(#Π(α)f)β − f(#Π(β)h)α.

Step 3 Locality implies that the bracket can be computed in local coordinates. Af-
ter fixing a coordinate neighbourhood (U, x1, . . . , xn) (and a corresponding
local expression for Π) take α =

∑
αidxi, β =

∑
βidxi, Π =

∑
Πij∂xi ∧

∂xj . Then a bracket verifying the requested properties should be computed
as:

[α, β]Π =
∑

i,j

[αidxi, βjdxj ]Π

=
∑

i,j

αiβj [dxi, dxj ]Π + αi(#Π(dxi)βj)dxj − βj(#Π(dxj)αi)dxi

=
∑

i,j

(
αiβjd{xi, xj}+

∑

k

(αiΠik∂kβjdxj − βjΠjk∂kαidxi)

)

= d


∑

i,j

Πijαiβj


−

∑

i,j

Πijβjdαi −
∑

i,j

Πijαidβj

= d〈Π, α ∧ β〉+ i#Π(α)dβ − i#Π(β)dα.

Since this last expression does not depend on the choice of local coor-
dinates, we have the existence and unicity of [−,−]Π verifying 1. and
2.

Step4 The Jacobi identity is proved locally on a triple of 1–forms adf , bdg, cdh,
by using the explicit formulae seen so forth.

Step5 Recall Cartan’s magic formula:

LX = diX + iXd
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Using it we get that the bracket defined by (2.1) verifies:

[df, dg]Π = L#Π(df)dg − L#Π(dg)df − dΠ{df, dg}
= LXf

dg − LXgdf − d{f, g}
= d iXf

dg︸ ︷︷ ︸
Xf (g)

−d iXgdf︸ ︷︷ ︸
Xg(f)

−d{f, g}

= d{f, g}+ d{f, g} − d{f, g}
= d{f, g} ,

and furthermore

[α, fβ]Π = d〈Π, α ∧ fβ〉+ i#Π(α)d(fβ) − i#Π(fβ)dα

= d(f〈Π, α ∧ β〉) + i#Π(α)d(fβ).

Due to unicity, then, bracket (2.1) is exactly the one we were looking for.

Step5 We want to prove that ♯Π induces a Lie algebra homomorphism. This is
easily checked on exact 1–forms:

[♯Π(df), ♯Π(dg)] = [Xf , Xg] = X{f,g} = ♯Π(d{f, g}) = ♯Π([df, dg]) .

But then both maps [, ]1Π = ♯Π ◦ [, ] and [, ]2Π = [, ]◦ (♯Π⊗ ♯Π) are R-bilinear,
local, skewsymmetric operations satisfying

[α, fβ]1,2Π = f [α, β]1,2Π + (♯Π(α)f)♯Π(β) .

Considerations as before allow to prove that such a map is forcedly unique
and therefore [, ]1Π = [, ]2Π, i.e. ♯Π is a Lie algebra homomorphism.

Exercise 2.3. Compute the bracket on 1–forms for linear s on g∗ (e.g. for the
dual Lie algebra su(2)∗). Prove that this bracket induces the original one on
g ≃ (g∗)∗.

The existence of a bracket between 1–forms can be seen as a property of the
cotangent bundle of a Poisson manifold. This bracket, furthermore, as stated
in the theorem is Lie homomorphic to the natural bracket on vector fields. All
of this may be summarized as a special case of the following definition.

Definition 2.4. Let M be a manifold, E →M vector bundle. Then E is called
a Lie algebroid if there exists a bilinear bracket

[−,−] : Γ(E)× Γ(E)→ Γ(E)

and a bundle map, called the anchor, ρ : E → TM (ρ : Γ(E)→ X(M)) such that

1. (Γ(E), [−,−]) is a Lie algebra,

2. ρ is a Lie algebra homomorphism,

3. [v, fw] = f [v, w] + (ρ(v)f)w for all v, w ∈ Γ(E), f ∈ C∞(M).

Remarks 2.5.
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Part IV Schouten-Nijenhuis bracket

• Given any Lie algebroid, the image of the anchor is always a generalized
integrable distribution; its maximal integrable submanifolds are called or-
bits of the Lie algebroid.

• The tangent bundle TM to a manifold is always a Lie algebroid with the
trivial anchor map ρ = id.

• Theorem 2.1 proves that for any Poisson manifold M , its cotangent bundle
T ∗M is a Lie algebroid with anchor the sharp map. The orbits of this
algebroid are the symplectic leaves of M

Most of the theory of Poisson manifolds can be adapted to more general
Lie algebroids (this applies, for example, to the (co)homology theories we will
describe later on and to the corresponding invariants). Much work on this gener-
alization was produced around year 2000. Here we will just refer to the original
papers [c-m03, elw99, h-j99] for a taste of this topic and to the book [m-k05] for
an (almost) comprehensive list of the many deep interrelations between Poisson
and Lie algebroid geometry.

2.2 Schouten-Nijenhuis bracket

Let M be a smooth manifold of dimension M . Let us fix the following notations

Ωp(M) = Γ(ΛpT ∗M) differential p-forms, p ≥ 1,

Xp(M) = Γ(ΛpTM) p-multivector fields, p ≥ 1,

Ω0(M) = X0(M) = C∞(M),

Ω•(M) =
⊕

p

Ωp(M),

X•(M) =
⊕

p

Xp(M) graded vector spaces.

External product gives both spaces a structure of graded, associative algebra,
Z2-commutative (supercommutative) i.e.

P ∧Q = (−1)degQ degPQ ∧ P.

The natural duality pairing between TxM and T ∗xM extends to a natural pairing
between Ω•(M) and X•(M) as follows: on 1–forms and vectors we have:

〈α, X〉x := 〈α(x)︸︷︷︸
∈T∗

xM

, X(x)︸ ︷︷ ︸
∈TxM

〉 for α ∈ Ω1(M), X ∈ X1(M);

on homogeneous decomposable higher degree forms and (multi)vectors we have

〈ω, P 〉 =





0 p 6= q,

det(〈αi, Xj〉) p = q for ω = α1 ∧ · · · ∧ αq, P = X1 ∧ · · · ∧Xp,

αi ∈ Ω1(M), Xj ∈ X1(M).

(2.2)
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Part IV Schouten-Nijenhuis bracket

Now let us remark that 〈ω, P 〉(x) depends only on ω(x), P (x). Being locally
every q-form (resp. p-vector field) decomposable the formula (2.2) above defines
a C∞(M)-bilinear pairing on the whole space of forms and multivectors on M .

Another operation, commonly appearing in differential geometry, that we
woud like to recall here is the inner product (extended to the case of multivector
fields). Given P ∈ X•(M) and ω ∈ Ω•(M) the inner product is given by:

〈iPω, Q〉 = 〈ω, P ∧Q〉 ∀ Q ∈ X•(M).

This operation is the left transpose of the external (wedge) product.
The C∞(M)-module of vector fields X1(M) is, as already remarked, a Lie

algebra with bracket [X,Y ] = XY − Y X of vector fields. We now want to
extend this operation to the whole graded space of multivectors. Let us begin
with an easy case (corresponding to multivectors at one point). Let g be a Lie
algebra over a field K.

Proposition 2.6. There is a unique bracket on Λ•g which extends the Lie
bracket on g and such that if A ∈ Λag, B ∈ Λbg, C ∈ Λcg then:

1. [A,B] = −(−1)(a−1)(b−1)[B,A];

2. [A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C];

3.
(−1)(a−1)(c−1)[A, [B,C]] + (−1)(b−1)(c−1)[B, [C,A]]

+(−1)(c−1)(b−1)[C, [A,B]] = 0;

4. The bracket of an element in Λ• with an element in Λ0g = K is 0.

Remark 2.7. It is not correct to say that Λ•g is a graded Lie algebra. In fact
in a graded Lie algebra the 0-component should be a Lie subalgebra, therefore
the 0-component should be g. Λ•+1g is a graded Lie algebra.

Proof. Start from property 2 to prove

[A,B1∧· · ·∧Bn] =

n∑

i=1

(−1)i(a−1)B1∧· · ·∧ [A,Bi]∧· · ·∧Bn ∀A ∈ Λag, Bi ∈ g

Property 1 allows to prove a similar formula for [B1 ∧ · · · ∧Bn, A]. This can be
extended by K-linearity to sum of decomposables and shows that such a bracket
exists and is unique. To verify Jacobi identity we remark that it is enough to
show it holds on decomposables.

Proposition 2.8. Let M be a manifold. Then there exists a unique R-bilinear
bracket [−,−] : X•(M)× X•(M)→ X•(M) such that

1. [−,−] is of degree -1;

2. For all X ∈ X1(M) and Q ∈ X•(M)

[X,Q] = LXQ.

In particular the bracket coincides with the usual Lie bracket of vector
fields on X1(M);
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Part IV Schouten-Nijenhuis bracket

3. For all P ∈ Xp(M) and Q ∈ Xq(M)

[P,Q] = −(−1)(p−1)(q−1)[Q,P ]

4. For all P ∈ Xp(M), Q ∈ Xq(M), R ∈ X•(M)

[P,Q ∧R] = [P,Q] ∧R+ (−1)(p−1)qQ ∧ [P,R].

Such bracket will be called the Schouten-Nijenhuis bracket of multivector fields
(or SN bracket for short). It will furthermore satisfy the graded Jacobi identity:

5. For all P ∈ Xp(M), Q ∈ Xq(M), R ∈ Xr(M)

(−1)(p−1)(r−1)[P, [Q,R]] + (−1)(q−1)(p−1)[Q, [R,P ]]

+(−1)(r−1)(q−1)[R, [P,Q]] = 0.

Proof. Again the first step is to prove that such bracket, if it exists. has to
be a local operation, i.e. for all U open in M , [P,Q]|U depends only on P |U ,
Q|U . The proof of this fact is similar to the analogous proof in theorem 2.1.
Due to the graded antisymmetry required as property 3, it is enough to show
that if Q1|U = Q2|U then [P,Q1](x0) = [P,Q2](x0) for a neighbourhood U of
x0. To prove this take a bump function f ∈ C∞(M), f = 0 outside U , f = 1
in a compact neighbourhood of x0 contained in U . Then fQ1 = fQ2 on M .
Applying property 4. with Q = f ∈ X0M we get

[P, fR] = [P, f ] ∧R− f [P,R] = (LP f)R− f [P,R].

Now show that

[P, fQ1](x0) = [P,Q1](x0)

[P, fQ2](x0) = [P,Q2](x0)

The crucial property of locality allows us to work in a coordinate chart. P and
Q can therefore be taken as finite sums of exterior products of vector fields.
Remark that from property 4. we get

[X,Q1 ∧ · · · ∧Qn] =
n∑

i=1

(−1)∗Q1 ∧ · · · ∧ [X,Qi] ∧ · · · ∧Qn,

[P1 ∧ · · · ∧ Pn, Q1 ∧ · · · ∧Qm] =

=
∑

i<j

(−1)∗[Pi, Qj ] ∧ P1 ∧ · · · ∧ P̂i ∧ · · · ∧ Pn ∧Q1 ∧ · · · ∧ Q̂j ∧ · · · ∧Qm.

Now
[P1 ∧ · · · ∧ Pn, fQ1 ∧ · · · ∧Qm] =

= [P1 ∧ · · · ∧ Pn, f ]︸ ︷︷ ︸
=(−1)n[f,P1∧···∧Pn]

∧Q1 ∧ · · · ∧Qm + (−1)mf [P1 ∧ · · · ∧ Pn, Q1 ∧ · · · ∧Qm]

and

(−1)n[f, P1 ∧ · · · ∧ Pn] = (−1)n
n∑

i=1

LPi(f)P1 ∧ · · · ∧ P̂i ∧ · · · ∧ Pn.
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These fixes all values and thus proves unicity. Finally one has to prove the
independence of local coordinates - on the overlapping coordinate domains you
have the same result. This implies existence. All other properties, in particular
the graded Jacobi identity, are proved by direct (lengthy) computations.

Definition 2.9. A Gerstenhaber algebra is a triple (A,∧, [−,−]) such that

1. A is a N-graded vector space, A = A0 ⊕ A1 ⊕ . . .;

2. ∧ is an associative, supercommutative multiplication of degree 0 on A (i.e.
Ai ∧ Aj ⊂ Ai+j);

3. [−,−] is a super Lie algebra structure of degree (−1) on A (i.e. [Ai,Aj ] ⊂
Ai+j−1) satisfying

[a, b ∧ c] = [a, b] ∧ c+ (−1)(|a|−1)|b|b ∧ [a, c].

Examples 2.10.

• Multivector fields on a manifold M are a Gerstenhaber algebra with re-
spect to Schouten-Nijenhuis bracket.

• Differential forms on Poisson manifold are a Gerstenhaber algebra (simply
by a natural graded extension of the Lie bracket on 1–forms defined in 2.1,
see also [bv88] for more on the subject).

• From any Lie algebra g it is easy to construct a Gerstenhaber algebra Λ•g
following the construction of Porposition 2.6.

• Similarly from any Lie algebroid E there is a natural construction of Ger-
stenhaber algebra on Γ(Λ•E) generalizing the costruction of the Schouten-
Nijenhuis bracket ( just remark that the proof of proposition 2.8 uses
exactly the fact that TM is a Lie algebroid with anchor ρ = id).

• Hochschild cohomology has a Gerstenhaber algebra structure (given by in-
sertion) (coefficients in the given algebra). Hochschild-Kostant-Rosenberg
map

φHKR : HH•cont(C
∞(M))→ X•(M)

fails to be a Gerstenhaber algebra morphism. This is what leads to L∞-
algebra structures and Kontsevich formality.

Let (A,∧, [−,−]) be a Gerstenhaber algebra. An operator D : A• → A•−1 is
said to generate the Gerstenhaber algebra if for all a ∈ Ai, b ∈ A

[a, b] = (−1)i(D(a ∧ b)−Da ∧ b− (−1)ia ∧Db).

If D2 = 0 we say that our Gerstenhaber algebra is exact or Batalin-Vilkovisky
algebra.

We will show that the Gerstenhaber algebra of differential forms on a Poisson
manifold is a Batalin-Vilkovisky algebra. Its generating operator will be called
Poisson (or canonical or Brylinski) differential.
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2.2.1 Schouten-Nijenhuis bracket computations

The following section is a brief description of the interesting approach to Schouten-
Nijenhuis bracket that appeared recently in [dzxx]. Fix a system of local coor-
dinates and consider two vector fields

X =
∑

i

ai∂xi , Y =
∑

i

bi∂xi , X, Y ∈ X(M), x1, . . . , xn coordinates

[X,Y ] =
∑

i

ai


∑

j

∂bj
∂xi

∂xj


−

∑

i

bi


∑

j

∂aj
∂xi

∂xj


 .

Let ζi = ∂xi and consider it as an odd formal variable

ζiζj = −ζjζi (∂xi ∧ ∂xj = −∂xj ∧ ∂xi).

Then
X :=

∑

i

aiζi, Y :=
∑

i

biζi

[X,Y ] =
∑

i

(
∂X

∂ζi

∂Y

∂xi
− ∂Y

∂ζi

∂X

∂xi

)

=

(∑

i

∂ζi ∧ ∂xi

)
(X ⊗ Y ).

Extend this idea to multivector fields

P ∈ Xp(M), P =
∑

i1<...<ip

∂xi1
∧ . . . ∧ ∂xip

=
∑

i1<...<ip

Pii...ipζi1 . . . ζip .

Fix the following differentiation rule

∂ζip
(ζi1 . . . ζip ) = ζi1 . . . ζip−1

∂ζik
(ζi1 . . . ζip ) = (−1)p−kζi1 . . . ζ̂ik . . . ζip−1 .

Then we claim that

[P,Q]SN =
∑

i

∂ζiP ∂xiQ− (−1)(p−1)(q−1)∂ζiQ∂xiP.

2.2.2 Lichnerowicz formula

Lichnerowicz defined the Schouten-Nijenhuis bracket implicitly through the fol-
lowing formula.

Proposition 2.11. For all P ∈ XpM , Q ∈ XqM , ω ∈ Ωp+q−1M

〈ω, [P,Q]〉 = (−1)(p−1)(q−1)〈d(iQω), P 〉−〈d(iPω), Q〉+(−1)p〈dω, P∧Q〉 (2.3)

406



Part IV Schouten-Nijenhuis bracket

With respect to our explicit construction this formula has the advantage of
being well adapted and easy to use in ”global type” computations.

Look at what happens, for example, when X,Y ∈ X1(M), ω ∈ Ω1M

〈ω, [X,Y ]〉 = 〈d(iY ω), X〉 − 〈d(iXω), Y 〉 − 〈dω, X ∧ Y 〉

which can be rewritten as

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

which gives the formula for the differential of a 1–form.
In our approach Lichnerowicz formula needs a proof. The easiest track here

is to show that the bracket implicitely defined by (2.3) has the same algebraic
properties as the Schouten-Nijenhuis bracket. The unicity statement of theorem
2.8 then implies the claim.

Exercise 2.12. Let us prove property 2. for the Lichnerowicz bracket (we will
denote it by [, ]L. We need to show that

[X,Q]L = LXQ ∀X ∈ X1M, ∀Q ∈ XqM .

Now, let ω ∈ ΩqM :

〈ω, [X,Q]〉 = 〈d(iQω), X〉 − 〈d(iXω), Q〉 − 〈dω, X ∧Q〉

On the other hand:

〈ω, LXQ〉 =LX〈ω, Q〉 − 〈LXω, Q〉
=(iXd+ diX)iQω − 〈diXω + iXdω, Q〉
=〈d(iQω), X〉+ d(iX iQω)− 〈d(iXω), Q〉 − 〈iXdω, Q〉

Now the second summand is zero for dimension reasons (iXiQω ∈ X−1M) and
the last summand is equal to −〈dω, X ∧ Q〉 by definition of the contraction
operator.

2.2.3 Jacobi condition and Schouten-Nijenhuis bracket

The SN bracket allows to express the Jacobi condition for a Poisson bivector in
short form. Let Π be a bivector on M , so that [Π,Π] ∈ X3M . Let ω be a 3-form
on M . Then 〈ω, [Π,Π]〉 is a function and, by use of (2.3)

〈ω, [Π,Π]〉 = −〈d(iΠω), Π〉 − 〈d(iΠω), Π〉+ 〈dω, Π ∧Π〉.

Let ω = df ∧ dg ∧ dh. As usual let {f, g} = 〈df ∧ dg, Π〉. Remark that

〈iΠω, X〉 = 〈df ∧ dg ∧ dh, Π ∧X〉

for all X ∈ X1M . Since d(df ∧ dg ∧ dh) = 0 we have

〈ω, [Π,Π]〉 = −2〈d(iΠω), Π〉.

Lemma 2.13.
〈df ∧ dg ∧ dh, [Π,Π]〉 = 2 Jac(f, g, h)
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Proof.
〈df ∧ dg ∧ dh, [Π,Π]〉 = −2〈d(iΠ(df ∧ dg ∧ dh)), Π〉 =

= −2〈d({g, h}df − {f, h}dg + {f, g}dh), Π〉 =

= −2〈d{g, h} ∧ df − d{f, h} ∧ dg + d{f, g} ∧ dh, Π〉 =

= −2({{g, h}, f} − {{f, h}, g}+ {{f, g}, h}) =

= 2 Jac(f, g, h).

Corollary 2.14. A bivector Π ∈ X2M is Poisson if and only if [Π,Π] = 0.

The first easy consequence of the characterization [Π,Π] = 0 is that if
dimM = 2, then any bivector Π ∈ X2M is Poisson. Indeed [Π,Π] ∈ X3M = 0.

Let us give another application of corollary (2.14); consider a Lie algebra
g, a manifold M and an infinitesimal action of g on M i.e. a Lie algebra
homomorphismξ : g → X(M) . Then ξ extends uniquely to a degree 0 map on
higher exterior powers:

∧ξ : Λ•g→ X•(M)

x1 ∧ · · · ∧ xn 7→ ξ(x1) ∧ · · · ∧ ξ(xn) .

Such map preserves the graded brackets:

∧ξ[α, β] = [∧ξ(α),∧ξ(β)]SN .

This last statement is a simple consequence of the fact that both brackets are
determined by their values in degree 0 and 1.

Let now G be a connected Lie group such that Lie(G) = g (not necessar-
ily simply connected), with identity element e. Let us denote the translation
operators by

lg : G→ G, h 7→ gh,

rg : G→ G, h 7→ hg.

We will use the following notations for the corresponding tangent maps

lg,∗ : ThG→ TghG rg,∗ : ThG→ ThgG

l∧g,∗ : Λ•TeG→ Λ•TgG r∧g,∗ : Λ•TeG→ Λ•TgG

Let now α ∈ Λ•g. We will denote with αL (resp. αR) the left (resp. right)
invariant multivector field on G whose value at e ∈ G (identity of G) is α i.e.

αL(g) := l∧g,∗α, (resp. αR(g) := r∧g,∗α)

In the same way we consider αR to be the right invariant multivector field on
G whose value at e is α.

Proposition 2.15. For any γ ∈ Λ2g the following are equivalent

1. γL is a left invariant Poisson structure.

2. γR is a right invariant Poisson structure.
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3. [γ, γ] = 0 (bracket in Λ•g)

Proof. The map lg,∗ : g→ X(G) is an infinitesimal action of g on G. Therefore
it preserves brackets

[γL, γL]SN (g) = [L∧∗,gγ, L
∧
∗,gγ](g) = L∧∗,g[γ, γ],

so the left hand side is zero if and only if the right hand side is zero. But the
vanishing of the left hand side [γL, γL]SN = 0 is exactly the condition for γL to
be Poisson, which is therefore equivalent to condition 3 in the proposition. The
computation for right invariant bivectors is exactly the same.

The condition [γ, γ] = 0 is called classical Yang-Baxter equation. The above
proposition can be therefore stated as follows:

Corollary 2.16. There is a one to one correspondence between left (resp. right)
invariant Poisson structures on a Lie group G and solutions of the classical
Yang-Baxter equation on Lie(G).

As last application of corollary 2.14 let us discuss the problem of compatible
pairs. Given two Poisson bivectors Π1, Π2 on M it is rather reasonable to ask
under which conditions is Π1 + Π2 a Poisson bivector on M ,
If this is the case we will say that they are compatible Poisson tensors.

Proposition 2.17. Π1 and Π2 are compatible if and only if [Π1,Π2] = 0.

In this case aΠ1 + bΠ2 is Poisson for all a, b ∈ R and {aΠ1 + bΠ2 : a, b ∈ R}
is called a Poisson pencil.

Proof.
[Π1 + Π2,Π1 + Π2] = [Π1,Π1]︸ ︷︷ ︸

=0

+ [Π2,Π2]︸ ︷︷ ︸
=0

+2[Π1,Π2],

so [Π1 + Π2,Π1 + Π2] = 0 if and only if [Π1,Π2] = 0.
Furthermore

[aΠ1 + bΠ2, aΠ1 + bΠ2] = 2ab[Π1,Π2].

Poisson pencils appear quite frequently in the theory of integrable systems
(under the name of bihamiltonian formalism). Such pencils also naturally arise
in some specific families of Poisson homogeneous spaces of Poisson–Lie groups
to be discussed in later chapters.

2.2.4 Koszul’s formula

Theorem 2.18 (Koszul formula). Let P ∈ XpM , Q ∈ XqM . Then

i[P,Q] = (−1)(p−1)(q−1)iPdiQ − iQdiP + (−1)piP∧Qd+ (−1)qdiP∧Q (2.4)

Remark 2.19. Koszul formula implies Lichnerowicz formula (2.3) after contract-
ing with (p+ q − 1)-form.

Exercise 2.20. ( Proof of Koszul formula) Try to prove the Koszul formula
alonf the following lines. 1. Use induction on degP (start with degP = 0, i.e.
P is a function). 2. Use the Leibniz rule to increase the degree of P .
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This formula can be also memorized as

i[P,Q] = [[iP , d], iQ]

but with graded commutators on the right !

2.3 Poisson homology

Definition 2.21. Canonical (or Brylinski) operator

∂Π := iΠd− diΠ : ΩkM → Ωk+1M

Proposition 2.22. The following identities are verified

1. d∂Π + ∂Πd = 0.

2. ∂ΠiΠ − iΠ∂Π = 0.

3. ∂2
Π = 0.

Proof.

1. d∂Π = diΠd = −∂Πd.

2. Apply Koszul’s formula to see that

0 = i[Π,Π] = [[iΠ, d], iΠ] = [∂Π, iΠ].

3. ∂ΠiΠ = iΠ∂Π as a consequence of Koszul formula. Thus

2iΠdiΠ = i2Πd− di2Π.

Apply d on the left
2diΠdiΠ = di2Πd.

Apply d on the right
2iΠdiΠd = di2Πd.

Therefore diΠdiΠ = −iΠdiΠd and

∂2
Π = (iΠd− diΠ)(iΠd− diΠ)

= iΠdiΠd− diΠiΠd+ diΠdiΠ

= 2iΠdiΠd− diΠiΠd = 0.

Definition 2.23. The homology of the complex (Ω•, ∂Π) is called Poisson (or
canonical) homology and it is denoted by HΠ

k (M).

Poisson homology was first defined by Brylinski ([b-j98], but see also [m-o95,
p-g00, ?] for additional material on the subject). The first property of the
previous proposition also tells us that d and ∂Π together form a mixed complex
(mixed here refers to the fact that they have opposite degrees) and thus define
a cyclic homology theory ([k-cxx]). The corresponding homology of the total
complex will be called cyclic Poisson homology.
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Chapter 3

Poisson maps

3.1 Poisson maps

We already mentioned that if (M1,Π1), (M2,Π2) are two Poisson manifolds
then a map ϕ : M1 →M2 is a Poisson map if the pull-back map ϕ∗ : C∞(M2)→
C∞(M1);ϕ∗ : f 7→ f ◦ ϕ verifies

ϕ∗{f, g}M2 = {ϕ∗f, ϕ∗g}M1

for all f, g ∈ C∞(M2).
Recall also from differential geometry that having a map ϕ : M → N , you

can pull-back forms, but in general you cannot push-forward vector fields. As a
substitute of the notion of push-forward, there is the relatedness. Let us explain
what we mean by this: if X ∈ X(M) and Y ∈ X(N) are two vector fields then
they are said to be ϕ-related if

ϕ∗,x(Xx) = Yϕ(x) , ∀x ∈M .

Here ϕ∗,x : TxM → Tϕ(x)N is the tangent map. This is indeed a relation and
not a map. In fact there may be more than one vector field on N related to a
given vector field on M . (Think of ϕ : R2 → R2, ϕ(x, y) = (x, 0). Then saying
that Y is ϕ-related to X says something only about values of Y along the line
(x, 0).) It may also happen that there are none (In the example as before if
X(x,0) and X(x,t) have different projections on imϕ∗,x for some t). Of course
this relation can be easily extended to a relation on multivectors, simply by
considering ϕ∧∗,x.

If ϕ is a diffeomorphism, however, then none of the above mentioned be-
haviours arise and indeed there is a well defined map ϕ∗ : X(M) → X(N). Re-
mark that you can define ϕ-relation on multivectors

Proposition 3.1. Let (M1,Π1), (M2,Π2) be two Poisson manifolds and let
ϕ : M1 →M2 be a smooth map. The following are equivalent.

1. ϕ is Poisson map.

2. Xϕ∗f ∈ Ham(M1) and Xf ∈ Ham(M2) are ϕ-related for all f ∈ C∞(M2)
i.e.

ϕ∗,x(Xϕ∗f (x)) = Xf (ϕ(x))

for all x ∈M .
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3. Let tϕ∗,x : T ∗ϕ(x)M2 → T ∗xM1 be the cotangent map. Then the sharp map
intertwines the tangent and cotangent map, i.e.

#Π2,ϕ(x) = ϕ∗,x ◦#Π1,x ◦t ϕ∗,x

4. The bivectors Π1, Π2 are ϕ-related i.e.

〈Π2,ϕ(x), α ∧ β〉 = 〈Π1,x,
tϕ∗,xα ∧t ϕ∗,xβ〉

for all α, β ∈ T ∗ϕ(x)M2 and all x ∈M1.

Proof. (3)⇐⇒ (4) by definitions.
(1)⇐⇒ (4) using

{f, g}(x) = 〈Πx, dxf ∧ dxg〉
and the fact that for all α ∈ T ∗ϕ(x)M2 there exists f ∈ C∞(M2) such that
dϕ(x)f = α.
(1)⇐⇒ (2) using

{f, g} = Xfg = 〈Xf , dg〉.

Remark 3.2. From property (3) of a Poisson map we can deduce the following
relation between ranks:

ρΠ1(x) ≥ ρΠ2(ϕ(x))

because (im #Π2)ϕ(x) ⊆ ϕ∗,x(im #Π1,x). This fact has remarkable, though easy
consequences.

• Let x0 ∈ M1 be a 0-dimensional symplectic leaf. Then its image ϕ(x0)
is again a 0-dimensional symplectic leaf. Thus for example there is no
Poisson map ϕ : g∗ →M if M is symplectic and g is a Lie algebra.

• Let ϕ : M1 → M2 be a Poisson immersion, i.e. a Poisson map such that
ϕ∗,x is injective. Then rankΠ1(x) = rankΠ2(x). This in particular holds if
ϕ is a Poisson (local) diffeomorphism (even more so for Poisson automor-
phisms, of course).

• Let ϕ : M1 → M2 be a Poisson map between two symplectic manifolds.
Then

ρΠ1(x)︸ ︷︷ ︸
dimM1

≥ ρΠ2(ϕ(x))︸ ︷︷ ︸
dimM2

and ϕ has to be a submersion i.e. ϕ∗,x surjective, because imϕ∗,x is
forced to be Tϕ(x)M2 for all x ∈ M1. So the only Poisson maps between
symplectic manifolds are submersions.

This last remark shows that being a Poisson map between symplectic mani-
folds is very different from being a symplectic map (which means ϕ : M1 →M2,
ϕ∗ω2 = ω1). This difference is made explicit by the following two examples.
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Example 3.3. Let R2n be considered with the standard symplectic structure and
consider the map

i : R2 → R4,

(q1, p1) 7→ (q1, p1, 0, 0),

ω1 = dq1 ∧ dp1,

ω2 = dq1 ∧ dp1 + dq2 ∧ dp2.

Then i is a symplectic map but it is not a Poisson map:

{q2, p2} ◦ i︸ ︷︷ ︸
=1

6= {q2 ◦ i, p2 ◦ i}︸ ︷︷ ︸
=0

.

Example 3.4. In the same setting as before consider the map

ψ : R4 → R2,

(q1, p1, q2, p2) 7→ (q1, p1),

ω1 = dq1 ∧ dp1 + dq2 ∧ dp2,

ω2 = dq1 ∧ dp1.

Then ψ is a Poisson map:, e.g.

{q2, p2} ◦ ψ︸ ︷︷ ︸
=1

= {q2 ◦ ψ, p2 ◦ ψ}︸ ︷︷ ︸
=1

but it is not symplectic:

ψ∗(dq1 ∧ dp1) = dq1 ∧ dp1 6= dq1 ∧ dp1 + dq2 ∧ dp2.

This difference between morphisms in the Poisson and symplectic categories
implies, obviously, that related concepts such as subobjects and quotients have
different behaviours. We will see later an example of this issue when referring
to submanifolds.

Proposition 3.5. Let (Mi,Πi), i = 1, 2, 3 be Poisson manifolds. Let ϕ : M1 →
M2 and ψ : M2 →M3 be smooth maps.

1. If ϕ and ψ are Poisson, then ψ ◦ ϕ is Poisson.

2. If ϕ and ψ ◦ ϕ are Poisson, and ϕ is surjective, then ψ is Poisson.

3. If ϕ is Poisson and a diffeomorphism, then ϕ−1 is Poisson.

Proof.

1. Obvious.

2. Take y ∈M2, y = ϕ(x).

#Π3,ψ(y) = (ψ ◦ ϕ)∗,x ◦#Π1,x ◦t (ψ ◦ ϕ)∗,x

= ψ∗,y ◦ ϕ∗,x ◦#Π1,x ◦t ϕ∗,x ◦t ψ∗,y
= ψ∗,y ◦#Π2,x ◦t ψ∗,y.
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3. Follows immediately from (2).

Examples 3.6.

1. Let φ : h → g be a Lie algebra morphism. Prove that φ∗ : g∗ → h∗ is a
Poisson map. Is the converse true?

2. Any Poisson map from M to a connected symplectic manifold S, ϕ : M →
S is a submersion.

Proof.
ϕ(TxM) ⊆ TxS

It is a submersion if and only if equality holds. Say there is no equality.

ϕ∗,x(ΠM (x))︸ ︷︷ ︸
=ΠS(x)

⊆ ϕ∗,xΛ2TxM.

But then choose ξ ∈ T ∗xS such that ξ ∈ ϕ∗,x(TxM)⊥, ξ 6= 0. Then
〈ξ, ΠS(x)〉 = 0 contradicting nondegeneracy of ΠS .

3. Any Poisson map ϕ : M → N such that M is symplectic is called a sym-
plectic realization of (N,ΠN ). It can be proven that any Poisson manifold
admits a surjective symplectic realization. Note that surjectivity of ϕ im-
plies that functions in C∞(N) are faithfully represented as vector fields
on M by f 7→ Xϕ∗f .

4. Let G be a Lie group, g = Lie(G). Consider T ∗G with the standard
symplectic structure. Let L : T ∗G→ g∗ be defined by (g, p) 7→ (Lg)

∗p for
L∗g : T ∗gG→ T ∗eG = g∗. Then L is always symplectic realization.

5. Let g be a Lie algebra and endow g∗ with its linear Poisson structure. Any
Poisson map µ : M → g∗ is called a moment map. In fact the existence of
such a map implies thatthe composition

g →֒ C∞(g∗)
µ∗

−→ C∞(M)→ XHam(M)

is a Lie algebra homomorphism. Therefore M carries an infinitesimal g-
action by hamiltonian vector fields; µ is the moment map for this action
(see [dzxx, lm87, v-i94] for more on Hamiltonian actions).

Definition 3.7. Let (M,Π) be a Poisson manifold. A Poisson vector field
X ∈ X(M) (or infinitesimal Poisson automorphism) is a vector field such that
its flow ϕ induces for all t ∈ R a local Poisson morphism ϕt : M →M .

We will denote the set of Poisson vector fields on a Poisson manifold (M,π)
as Xπ(M).

Proposition 3.8. Let (M,Π) be a Poisson manifold, and X ∈ X(M). The
following are equivalent:

1. X is a Poisson vector field
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2. X is a canonical derivation i.e.

X{f, g} = {Xf, g}+ {f,Xg}

3. X preserves the Poisson bivector, i.e. LXΠ = 0.

Proof. We have

LX(Π(df, dg)) = (LXΠ)(df, dg) + Π(LXdf, dg) + Π(df, LXdg)

= (LXΠ)(df, dg) + Π(dLXf, dg) + Π(df, dLXg),

because LXd = dLX . Now rewriting this with brackets we get

X{f, g} − {Xf, g} − {f,Xg} = (LXΠ)(df, dg).

so 2) ⇐⇒ 3).
Let X ∈ X(M), and let ϕt be its flow. Let f, g ∈ C∞(M,R).

d

dt
ϕ∗−t{ϕ∗t f, ϕ∗t g}|t=t0

︸ ︷︷ ︸
d
dt{f◦ϕt,g◦ϕt}◦ϕ−t

=

= −ϕ∗−t0(X{ϕ∗t0f, ϕ∗t0g}) + ϕ∗−t0({Xϕ∗t0f, ϕ∗t0g}) + ϕ∗−t0({ϕ∗t0f,Xϕ∗t0g})

Now 1) ⇐⇒ left hand side is 0, and 2) ⇐⇒ right hand side is 0.

Remark 3.9.

1. From L[X,Y ] = [LX , LY ] it immediately follows that the bracket of Poisson
vector fields is a Poisson vector field.

2. Let X be a Poisson vector field. Then the rank ρΠ(x) is constant along the
flow of X , but the flow of X need not be contained in a single leaf. This, as
a flow property, is the difference between Poisson and Hamiltonian vector
fields (which preserve leaves by definition).

3. Any Hamiltonian vector field is a Poisson vector field, but the opposite is
false. For example on (M,Π = 0) every vector field is Poisson (LX0 = 0),
but only the 0 vector field is hamiltonian (it has to stabilize every point!).
For (R2n, std) we have Ham(M) == Xπ(M) = X(M).

This difference between Poisson and Hamiltonian vector fields has to be
thought as analogous to the difference between algebra automorphisms and
inner automorphisms (we will see in the last chapter some setting in which this
analogy turns into a theorem). As in this last case suche difference is measured
by a suitable cohomology, first introduced in [].

Definition 3.10. Let dΠ : Xk(M)→ Xk+1(M), Π 7→ [Π, P ]. Then dΠ is called
the Lichnerowicz coboundary.

Remark 3.11. If Π is Poisson, then d2
Π = 0. In fact [Π, [Π, P ]] = 1

2 [[Π,Π], P ]
from the Jacobi identity of the Schouten bracket.

Definition 3.12. The cohomology of the complex (X•(M), dΠ) is called Poisson
(Lichnerowicz) cohomology of (M,Π) and is denoted by Hk

Π(M).

We have H0
Π(M) = Cas(M), [Π, f ] = Xf , and H1

Π(M) = Poiss(M)/Ham(M).
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3.2 Poisson submanifolds

As we just said a map ϕ : M1 → M2 between two Poisson manifolds (M1,Π1),
(M2,Π2) is Poisson if and only if ϕ∧2

∗,x(Π1(x)) = Π2(ϕ(x)) for all x ∈M1.
Recall that a submanifold of M can be described as a pair (N, i) where N

is a manifold and i : N →֒M is an injective immersion.

Definition 3.13. Let (M,ΠM ) be a Poisson manifold. Then (N, i) is is a
Poisson submanifold if N has a Poisson structure ΠN such that i is a Poisson
map.

Remark 3.14. If i is an immersion, then i∧2
∗,x is injective at every x and

i∧2
∗,x(ΠN (x)) = ΠM (i(x))

uniquely determines ΠN to be Poisson diffeomorphic to the restriction of ΠM

to i(N). The symplectic leaves of a Poisson manifold are a natural example of
Poisson submanifolds.

Proposition 3.15. Every open subset U of (M,ΠM ) is an open Poisson sub-
manifold. A closed submanifold N of (M,ΠM ) is Poisson if and only if it is a
union of symplectic leaves.

Proof. From Π being Poisson we have Π|U is Poisson for all open U ⊆M .
Let (N, i) be a closed submanifold. The question is whether ΠN is a Poisson

bivector on N . This is true if and only if ΠN is tangent to N at any of its points,
which locally, around x, means exactly that the leaf through N is contained in
N . Now apply the usual open-closed argument.

What this last proposition tells us is that the property of being a Pois-
son submanifold is indeed a very restictive one. As an example consider the
Natsume–Olsen sphere introduced in example ??. There the only non trivial
closed submanifolds are {N}, {S} and {N,S}. Try, as an exercise, to list closed
Poisson submanifolds in the examples mentioned in the first chapter.

Example 3.16. When M is a symplectic manifold the only Poisson submanifolds
are open subsets (and there are no nontrivial closed Poisson submanifolds). This
is in contrast with what happens for symplectic submanifolds (think again at the
case R2 →֒ R4). To relax this rigidity the notion of Poisson–Dirac submanifold
of a Poisson manifold was recently introduced (see [cf04, x-p03]).

An interesting way to construct a Poisson manifold with prescribed Poisson
submanifolds is that of gluing together some symplectic structures on given
symplectic leaves. The following theorem (see [v-i94], page 26, for its proof)
gives a characterization for such construction. Let us remark that in general
using topological constructions (like gluing, surgery, etc.) in the differential
geometrical setting of Poisson manifold is, at the same time, an interesting
and difficult procedure, related to what is called flexibility of the geometrical
structure. A construction of suspension of Poisson structures on spheres was
realized in [bct03]. For other constructions and some general consideration
see [im03, cf05].

Proposition 3.17. Let M be a differentiable manifold and let F be a gener-
alized foliation on M such that every leaf F ∈ F is endowed with a symplectic
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structure ωF . For any f ∈ C∞(M) define Xf (x) = #ω−1
F

(dxf). If all Xf ’s are

differentiable vector fields then there exists a unique Poisson structure on M
having symplectic (F, ωF ) as symplectic leaves.

Example 3.18. (The following example was raised in class discussions) Let D =
D(0, 1) be the disc and let Π1, Π2 be Poisson structures on D going to zero at
the boundary. Then we would like to construct a (unique) Poisson structure Π
on S2 such that

i+ : D → S2

sending D to the upper hemisphere is a Poisson submanifold (D,Π1),

i− : D → S2

sending D to the lower hemisphere is a Poisson submanifold (D,Π2),

i0 : S1 → S2

sending S1 to the equator is a Poisson submanifold (S1, 0). We could of course
consider also the higher dimensional analogue whith S2n written as a gluing of
two copies of the 2n–dimensional disk along S2n−1.

There exists a uniquely determined bivector Π on S2 with such properties.
The question is whether this bivector is Poisson and smooth. Due to dimension
reasons here [Π,Π] = 0 is trivially verified (in a similar higher dimensional
problem one could say the following: it is a local condition, it certainly holds
true at any point of the lower and upper hemisphere therefrore if Π is smooth,
[Π,Π] is everywhere zero by continuity). So smoothness is the only real issue
here.

If the Poisson structures on disks are both zero in an open neighbourhood
of the boundary there is not much to be proved, everything is ok.

Let us limit ourselves to the case of rotation invariant Poisson structures on
the disks. Being only interested in what happens around the boundary we can
certainly use polar coordinates. Let Π1 = f(ρ)∂ρ ∧ ∂θ and Π2 = g(ρ)∂ρ ∧ ∂θ.
As an exercise write conditions on f and g under which such structures can be
smoothly glued.

The reason for being interested in this kind of example is understanding the
Poisson geometry underlying some quantum algebras recently studied (see [hms06]).

3.3 Coinduced Poisson structures

Let ϕ : M1 → M2 be a surjective map. Then if we want it to be Poisson, then
Π2 is uniquely determined by Π1.

Definition 3.19. A surjective mapping from a Poisson manifold can be Poisson
for at most one Poisson structure on M2. If this is the case we will say that the
Poisson structure on M2 is coinduced via ϕ from that on M1.

Proposition 3.20. Let (M1,Π1) be a Poisson manifold. If ϕ : (M1,Π1)→M2

is a surjective differentiable map, then M2 has a coinduced Poisson structure if
and only if

{ϕ∗f, ϕ∗g}M1

is constant along the fibers of ϕ for all f, g ∈ C∞(M).
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Proof. If {ϕ∗f, ϕ∗g}M1 is constant then define

{f, g}M2(ϕ(x)) := {ϕ∗f, ϕ∗g}M1(x).

This is well defined, i.e. it does not depend on x but only on ϕ(x) (and it
is defined everywhere, because ϕ is surjective). That it is Poisson is an easy
consequence of {−, −}M1 being Poisson (remark that here you are using again
surjectivity of ϕ).

Conversely, let Π2 exists. Then

{ϕ∗f, ϕ∗g}M1(ϕ−1(y)) = {f, g}(y)

and the right hand side does not depend on ϕ, hence the left hand side is
constant along fibers.

Example 3.21. Let us apply the previous proposition to example 3.18 to give
a Poisson structure on the projective plane. This has to be considered as the
Poisson counterpart of the algebraic gluing-projecting procedure of [hms03].

Consider S2 ϕ−→ RP 2 the projection being given by identification of antipodal
points (x,−x) 7→ [x]. There exists a coinduced Poisson bivector on RP 2 if and
only if for any given pair of functions on RP 2

{ϕ∗f, ϕ∗g}D2(x) = {ϕ∗f, ϕ∗g}(−x).

So if we identify C∞(RP 2) →֒ C∞(S2)Z2 , the previous equality states that maps

f̂ , ĝ belonging to C∞(S2)Z2 have to satisfy

〈Π(x), dxf̂ ∧ dxĝ〉 = {f̂ , ĝ}(x) = {f̂ , ĝ}(−x) = 〈Π(−x), dxf̂ ∧ dxĝ〉.
for all x ∈ S2. Choosing functions giving you a basis of the cotangent space this
implies

Π(x) = Π(−x).

In particular if Π on S2 is constructed by gluing this implies Π1(x) = Π2(−x)
where now x ∈ D. This does not say that for any surjective map ϕ : S2 → RP 2

you have the same condition.

Proposition 3.22. Let (M1,Π1) be a Poisson manifold. Let ϕ : M1 → M2 be
a surjective submersion with connected fibers. If

kerϕ∗,x ⊆ #Π,x(M1)

is locally spanned by hamiltonian vector fields, then M2 has coinduced Poisson
structure.

Proof. Take f, g ∈ C∞(M2). We want to prove that {ϕ∗f, ϕ∗g}M1 is constant
along the fibers. Because ϕ is a submersion fibers are submanifolds. Since
kerϕ∗,x ⊆ #Π,x(M1) it is enough to prove that for all λ ∈ C∞(M1) if λ ∈ kerϕ∗
then Xλ({ϕ∗f, ϕ∗g}M1) = 0 (because kerϕ∗ is the tangent space to the fibers).
But this follows from Jacobi identity. In fact

Xλ{ϕ∗f, ϕ∗g}M1 = {ϕ∗f, Xλ(ϕ∗g)}M1 + {Xλ(ϕ∗f), ϕ∗g}M1 .

But ϕ∗f and ϕ∗g are constant along the fibers (by definition) and therefore

Xλ(ϕ∗g) = Xλ(ϕ∗f) = 0,

from which
Xλ({ϕ∗f, ϕ∗g}M1) = 0

hence thesis.
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3.4 Completeness

Let ϕ : M → N be a Poisson map and F a leaf in M . One could ask whether
ϕ brings symplectic leaves of M into symplectic leaves of N . This is easily seen
not to be the case. Let us take ϕ : R2 → R, ϕ(x, y) = x is Poisson with respect
to the standard Poisson structure in R2 and zero structure in R. But ϕ(R2) is
a union of leaves. From this example one could guess that in general φ(F ) is a
union of leaves. Even this turns out to be wrong, though for a subtler reason.
Consider U ⊆ R2n open set and i : U → R2n with the standard Poisson bivector
Π on R2n and Π|U on U . The image of the leaf U is not a whole leaf but just
an open set in the leaf. Why is it so?

Consider now ϕ(F ) and take ϕ(x) ∈ S, where S is a leaf through ϕ(x) in N .
Take y ∈ S and a piecewise Hamiltonian curve from y to ϕ(x). We would like
to lift this curve from N to M . Say the first Hamiltonian piece is the flow of
Xh. Even if Xh is complete Xϕ∗h is not necessarily complete.

Definition 3.23. A complete Poisson map is a Poisson map ϕ : M → N such
that Xh complete implies Xϕ∗h complete.

Then we immediately have

Proposition 3.24. Let (M1,Π1) and (M2,Π2) be Poisson manifolds and ϕ : M1 →
M2 a complete Poisson map. Take F to be a leaf of M1. Then ϕ(F ) is a union
of symplectic leaves in M2.

Remark 3.25.

• Let M1 be compact. Then any Poisson map ϕ : M1 →M2 is complete.

• Let ϕ : M1 →M2 be a proper Poisson map. Then it is complete.

Remark that also when we consider algebraic smooth Poisson varieties and
algebraic maps between them, properness, in the algebraic sense, implies com-
pleteness. This is often used when dealing with algebraic Poisson groups.
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Chapter 4

Poisson cohomology

Let us recall the definition of Poisson cohomology. Let (M,Π) be a Poisson
manifold. Consider the cochain complex (Xk(M), dΠ), where

dΠ : Xk(M)→ Xk+1(M), P 7→ [Π, P ], (4.1)

where [−,−] is the Schouten bracket. Then d2
Π = 0 as a consequence of the

graded Jacobi identity together with [Π,Π] = 0. Remark that the Poisson
tensor itself always defines a 2–cocycle and, thus, a Poisson cohomology class.
When [Π] = 0 the Poisson manifold is said to be exact. We would like now to
give a different, more explicit expression for this coboundary operator.

Proposition 4.1. In the above hypothesis, for all P ∈ Xk(M) and for all
αi ∈ Ωk(M), i = 0, . . . , k

(dΠP )(α0, . . . , αk) =

k∑

i=0

(−1)i+1#Π(αi)P (α0, . . . , α̂i, . . . , αk) + (4.2)

∑

0≤i<j≤k
(−1)i+j−1P ([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αk).

Proof. Let us first remark that the formula is true for k = 0, 1

k = 0 (dΠf)(α) = #Π(α)f,

k = 1 (dΠX)(df, dg) = X{f, g}+ {g, Xf} − {f, Xg}.

Let now P be a decomposable k-vector and prove (4.2) by induction on k. Due
to the graded Leibniz identity for the Schouten bracket

dΠP = [Π, P1 ∧ · · · ∧Pk] = [Π, P ]∧ (P2 ∧ · · · ∧Pk) + (−1)1P1 ∧ [Π, P2 ∧ · · · ∧Pk].
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Part IV Poisson cohomology

Therefore

(dΠP )(α0, . . . , αk) =

= [Π, P ] ∧ (P2 ∧ · · · ∧ Pk)(α0, . . . , αk)

− P1 ∧ [Π, P2 ∧ · · · ∧ Pk](α0, . . . , αk)

=
∑

0≤i<j≤k
[Π, P1](αi, αj)P2 ∧ · · · ∧ Pk(α0, . . . , α̂i, . . . , α̂j , . . . , αk)

−
k∑

i=0

P1(αi)dΠ(P2 ∧ · · · ∧ Pk)(α0, . . . , α̂i, . . . , αk).

We have thus proven our claim on all decomposable k–vector fields. Due to
locality of the Schouten–Nijenhuis bracket (together with the fact that locally
any k-vector field is decomposable) tha claim holds true for all k–vector fields.

Remark 4.2. From this expicit expression it would be tempting to say that
the Poisson cohomology is some sort of Lie algebra cohomology, and precisely
the Lie algebra cohomology of (C∞(M), {−, −}). This is not precise, be-
cause we do not have an identification between cochains (which are linear
maps ΛkC∞(M)→ C∞(M)) with multivectors. Multivectors are exactly those
cochains which are differentiable in each argument. From this remark one can
construct a homomorphism

j∗ : Hk
Π(M)→ Hk

Lie(C
∞(M), {−, −}).

Computations of the cohomology on the right hand side are even harder than
those for Poisson cohomology. This is one of the reasons why such cohomology
is seldom considered.

Remark 4.3. Let f be a Casimir function for (M,Π). Let P ∈ Xk(M). Then
dΠ(fP ) = [Π, f ] ∧ P + f [Π, P ] = f [Π, P ] = fdΠP . Hence we can define a
product f · [P ] = [fP ]. So there is a structure of H0

Π(M) = Cas(M)-module on
each Hk

Π(M).

Proposition 4.4. The external product of multivector fields induces an asso-
ciative and super commutative product in Poisson cohomology.

∧ : Hk
Π(M)×Hl

Π(M)→ Hk+l
Π (M).

this product will be called the Poisson product.

Proof.
[Π, P ∧Q] = [Π, P ] ∧Q+ (−1)p−1P ∧ [Π, Q]

Therefore if [Π, P ] = [Π, Q] = 0 also [Π, P ∧Q] = 0, hence the product of two
cocycles is a cocycle

[−,−] : ZkΠ × ZqΠ → Zp+q−1
Π .

This product descends to cohomology. Define [P ] ∧ [Q] := [P ∧Q]. This is well
defided, because

[P + [Π, R]] ∧ [Q] = [(P + [Π, R]) ∧Q]

= [P ∧Q] + [[Π, R] ∧Q]

= [P ∧Q] + (−1)p−2[P,R ∧ [Π, Q]︸ ︷︷ ︸
=0

] + [P, [Π, R ∧Q]].
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Part IV Poisson cohomology

The algebraic properties are a trivial consequence of analogous properties of
∧.

Remark 4.5. In a similar way it is easy to verify that also the Schouten bracket
descends to cohomology via

[[P ], [Q]] := [[P,Q]].

Here the key property is connected to the Jacobi identity for [[Π,Π], Q].

Remark 4.6. Hk
Π is not functorial. In fact given a Poisson map ϕ : M1 → M2

you do not have a corresponding map on chains ϕ∗ : Xk(M1)→ Xk(M2), where
as we remarked already, only the weaker notion of ϕ∗-relatedness survive.

Theorem 4.7. Let (M,Π) be a Poisson manifold. The sharp map intertwines
the Poisson and de Rham cochain complexes, i.e.

#Π : Ωk(M)→ Xk(M), #Π ◦ d = dΠ ◦#Π,

and therefore induces a homomorphism

#Π : Hk
dR(M)→ Hk

Π(M).

This morphism is an algebra morphism with respect to cup products. Further-
more, if M is symplectic then #Π is an isomorphism.

Proof. Here #Π is extended to k-forms as

(#Πω)(α1, . . . , αk) = ω(#Π(α1), . . . ,#Π(αk)).

Let ω ∈ Ωk(M) and α0, . . . , αk ∈ Ω1(M). Then

(dΠ(#Π(ω)))(α0, . . . , αk) =

=

k∑

i=0

(−1)i+1#Π(αi)(#Π(ω))(α0, . . . , α̂i, . . . , αk)

+
∑

i<j

(−1)i+j−1#Π(ω)([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αk)

=

k∑

i=0

(−1)i+1#Π(αi)ω(#Π(α0), . . . , #̂Π(αi), . . . ,#Π(αk))

+
∑

i<j

(−1)i+j−1ω([#Π(αi),#Π(αj)],#Π(α0), . . . , #̂Π(αi),

. . . , #̂Π(αj), . . . ,#Π(αk))

= dω(#Π(α0), . . . ,#Π(αk))

= #Π(dω).

The fact that the sharp map respects cup product is obvious from definitions
already at the chain level

#Π(ω1 ∧ ω2) = #Π(ω1) ∧#Π(ω2).

Lastly if M is symplectic, #Π is invertible at the chain level and therefore it
remains such on cohomology.
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Proposition 4.8. Let g be a Lie algebra, and g∗ the dual vector space with the
Lie-. Then

Hk
Π(g∗) ∼= Hk

L(g)⊗ Cas(g∗),

where on the left Hk
L is the Lie algebra cohomology of g.

Remark 4.9. To complete the list of basic examples consider that if (M, 0) is
considered as a Poisson manifold then Hk

Π(M) = Xk(M). Therefore the Poisson
cohomology has a huge variety of behaviours and is in general likely to be infinite
dimensional over R. We will see in examples that even the weaker property of
being finitely generated as H0

π(M)–modules is not always satisfied by Poisson
cohomology groups.

Theorem 4.10 ( Mayer–Vietoris sequence for Poisson cohomology). Let (M,Π)
be a Poisson manifold. Let U and V be open subsets of M , considered as Poisson
manifolds under restriction of the bivector (U,Π|U ), (V,Π|V ). Then there is a
long exact sequence

. . .→ Hk−1
Π (U ∩ V )

∂−→ Hk
Π(U ∪ V )→ Hk

Π(U)⊕Hk
Π(V )→ Hk

Π(U ∩ V )
∂−→ . . .

Proof. Here one basically recalls how the proof of Mayer–Vietoris theorem goes
on forms.

Given two open sets U and V , let P ∈ Xk(U), Q ∈ Xk(V ), R ∈ Xk(U ∪ V ).
Then R 7→ R|U , R 7→ R|V are maps to Xk(U) and Xk(V ) respectively. Being the
Shouten bracket a local operator one has [Π|U , R|U ] = [Π, R]|U and [Π|V , R|V ] =
[Π, R]|V . Therefore restriction induces a map on chains, trivially injective. Now
start from P and Q. We want a vector field on U ∩ V . We can of course
consider P − Q|U∩V . If [Π|U , P ] = 0 = [Π|V , Q] then [Π, P − Q|U∩V ] = 0. So
again we have a cochain map. This map is surjective. Indeed, given a vector
field S on U ∩ V we may extend, by the usual trick of smoothing function, to
P on U and Q on V such that. P − Q = S on U ∩ V . Therefore we have a
short exact sequence of cochain complexes. This induces as usual a long exact
sequence in cohomology. Given S ∈ Xk(U ∩ V ), [Π, S] = 0 consider (P,Q) as
before such that P − Q = S. Being [Π, (P,Q)] = ([Π|U , P ], [Π|V , Q]) we have
[Π|U , P ]− [Π|V , Q] = [Π|U∩V , P −Q] = 0. Therefore there exists T ∈ X(U ∪ V )
such that P = T |U , Q = T |V . Define ∂[S] := [T ]. The usual arguments, based
on the snake lemma, prove the theorem.

4.1 Modular class

Let (M,Π) be a Poisson manifold. Let us assume, for simplicity that M is
orientable. Let Ω be a volume form on Ω. Consider for any f ∈ C∞(M),
LXf

Ω ∈ ΩnM . There exists a function φΩ(f) such that LXf
Ω = φΩ(f)Ω.

Fact 4.11. φΩ is a vector field.

Proof. We have to prove φΩ(fg) = φΩ(f)g + fφΩ(g). But Xfg = gXf + fXg

(from {fg, h} = g{f, h}+ f{g, h}). Therefore

LXfg
Ω = LgXf +fXg Ω

= gLXf
Ω +Xf (g)Ω + fLXg Ω +Xg(f)Ω

= gφΩ(f)Ω + fφΩ(g)Ω
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Part IV Modular class

hence thesis.

Definition 4.12. φΩ is called the modular vector field of (M,Π) with respect
to Ω.

Fact 4.13. The modular vector field is an infinitesimal Poisson field.

Proof. We have seen that this is equivalent to φΩ ∈ Der(C∞(M), {−, −}). Now

LX{f, g}
= L[Xf ,Xg ]Ω

= [LXf
, LXg ]Ω

= LXf
(φΩ(g)Ω)− LXg (φΩ(f)Ω)

= φΩ(g)LXf
Ω + {f, φΩ(g)}Ω− φΩ(f)LXg Ω− {g, φΩ(f)}Ω

= φΩ(g)φΩ(f)Ω + {f, φΩ(g)}Ω + φΩ(f)φΩ(g)Ω + {φΩ(f), g}Ω,

so
φΩ({f, g}) = {φΩ(f), g}+ {f, φΩ(g)}.

Fact 4.14. LφΩΩ = 0.

Proof.
LφΩΩ = diφΩΩ + iφΩdΩ = diφΩΩ = d(diΠΩ),

because diΠΩ = iφΩΩ.

Take another volume form Ω′ = aΩ. Then

LXf
Ω′ = φΩ′(f)Ω′ = φΩ′ (f)aΩ

LXf
(aΩ) = aLXf

Ω +Xf (a)Ω = aφΩ(f) +Xf (a)

Furtermore
aφΩ′(f) = aφΩ(f) +Xf (a),

φΩ′ (f) = φΩ(f) +
1

a
Xf (a),

and
1

a
Xf (a) =

1

a
{f, a} = {f, log |a|} = −{log |a|, f}

Hence the modular vector fields with respect to different volume forms differ for
a hamiltonian vector field.

φΩ′ = φΩ +X− log |a|.

Definition 4.15. The vector field φΩ defines a class [φΩ] ∈ H1
Π(M). This class

is independent of Ω, and is called the (Poisson) modular class.

Definition 4.16. Let (M,Π) be a Poisson manifold such that [φΩ] = 0. Then
(M,Π) is called unimodular.

Exercise 4.17. On (R2, f(x, y)dx ∧ dy) compute the modular class.

Examples 4.18.
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1. Let (M,ω) be a compact symplectic manifold, Π = ω−1. Then the modu-
lar class is 0. In fact the volume form ωn

n! is invariant under all Hamiltonian
vector fields.

2. Let (M,Π) = (g∗,Πlin). Then M is unimodular if and only if g is unimod-
ular as Lie algebra, i.e. tr(adX) = 0 for all X ∈ g.

3. Let (M,Π) be a regular Poisson structure. It can be proved that there
exists an injective map

H1(M) →֒ H1
Π(M)

sending Reeb class [Reeb] to [φΩ]. The Reeb class is an obstruction to the
existence of a volume form of the usual bundle invariant for vector fields
tangent to leaves [ab03].

Let (M,Π) be compact unimodular Poisson manifold. Then there exists Ω
such that LφΩΩ = 0. Then

∫

M

{f, g}Ω =

∫

M

(Lxf
g)Ω

=

∫

M

LXf
(gΩ)−

∫

M

gLXf
Ω

=

∫

M

d(iXf
gΩ)

︸ ︷︷ ︸
=0 by Stokes theorem

+ iXf
d(gΩ)︸ ︷︷ ︸
=0

−
∫

M

gLXf
Ω

= −
∫

M

gφΩ(f)Ω.

This is called also infinitesimal KMS condition. Being (M,Π) unimodular, we
can choose a volume form Ω such that φΩ ≡ 0, so

∫
M
{f, g}Ω = 0, i.e.

∫

M

Ω: C∞(M)→ R

is a Poisson trace.

4.2 Computation for Poisson cohomology

Let us consider the quadratic Poisson structure on R2

Π0(x, y) = (x2 + y2)∂x ∧ ∂y.

We want to prove the following

Proposition 4.19 (Ginzburg). The Poisson cohomology of (R2,Π0) is given
by

H0
Π0

(R2) = R,

H1
Π0

(R2) = R〈x∂x + y∂y, y∂x − x∂y〉,
H2

Π0
(R2) = R〈∂x ∧ ∂y,Π0〉.
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Proof. To make computations easier let us identify R2 ≃ C, z = x+iy, z̄ = z−iy,
∂z = ∂z − i∂y, ∂z̄ = ∂x + i∂y, Π0 = −2izz̄∂z ∧ ∂z̄. We will omit the factor (−2i)
from now on.

Let us start by considering vector fields having coefficients which are formal
power series in z and z̄ (real coefficients): Xkf (R2). Let us denote with Vn the

space of homogeneous polynomials in z and z̄ of degree n, Vn = 〈zn, zn−1z̄, . . . , z̄n〉,
dimVn = n+ 1.

X0
f (R2) = formal power series in z and z̄ =

∞∏

i=1

Vi,

X1
f (R2) =

∞∏

i=1

Vi∂z ⊕
∞∏

i=1

Vi∂z̄ =

∞∏

i=1

(Vi∂z ⊕ Vi∂z̄),

X2
f (R2) =

∞∏

i=1

Vi∂z ∧ ∂z̄ .

Now we compute [Π, f ] on f ∈ C∞(R2):

[Π, f ] = zz̄((∂z(f))∂z̄ − (∂z̄(f))∂z), (4.3)

and [Π, X ] with X ∈ X1(R2), X = f(z, z̄)∂z + g(z, z̄)∂z̄:

[Π, X ] = zz̄(∂z(f) + ∂z̄(g))− z̄f − zg. (4.4)

From this formulae it is evident that

dΠ : Vi−1 → Vi∂z ⊕ Vi∂z̄

dΠ : Vi∂z ⊕ Vi∂z̄ → Vi+1∂z ∧ ∂z̄.
Therefore the complex on formal vector fields splits into a direc sum complexes

0→ Vi−1 → V ⊕2
i → Vi+1 → 0

If we denote with ϕi := dπ |Vi : Vi → V ⊕2
i+1, and ψi := dΠ|V ⊕2

i
: V ⊕2

i → Vi+1, this

means that

H0
Π =

⊕

i∈N

kerϕi

H1
Π =

⊕

i∈N

kerψi/ imϕi

H2
Π =

⊕

i∈N

imψi

Let us first consider the case i ≥ 2.

0→ Vi−1 → V ⊕2
i → Vi+1 → 0

The cohomology contributions of these complexes are

kerϕi−1 →֒ H0
Π, kerψi/ imϕi−1 →֒ H1

Π, Vi+1/ imψi →֒ H2
Π .

Observe that dimVi−1 = i, dimV ⊕2
i = 2(i+ 1), dim Vi+1 = i + 2. Now

426



Part IV Computation for Poisson cohomology

1. ϕi−1 is injective. In fact from 4.3

ϕm+l(z
mz̄l) = mzmz̄l+1∂z̄ − lzm+1z̄l∂z.

Therefore kerϕi−1 = {0}, dim imϕi−1 = i.

2. ψi is surjective. In fact from 4.4

ψm+l(z
mz̄l∂z) = (m− 1)zmz̄l+1∂z ∧ ∂z̄ ,

ψm+l(z
mz̄l∂z̄) = (l − 1)zm+1z̄l∂z ∧ ∂z̄.

Therefore Vi+1/ imψi = 0 →֒ H2
Π.

3. lastly dim kerψi = dimV ⊕2
i − dim imψi = 2(i+ 2)− (i+ 2) = i+ 2 which

implies kerψi/ imϕi−1 = 0 →֒ H1
Π.

Thus no contributions to cohomology comes from i ≥ 2. Let us look what
happens when i = 0, 1.

V0

ϕ0 ##GGGGGGGGG V0 ⊕ V0

ψ0 ##GGGGGGGGG V0

V1 ⊕ V1

ψ1 ##GGGGGGGGG V1

V2

Again an easy and explicit computation shows that

ψ0 :

{
∂z 7→ z̄∂z ∧ ∂z̄
∂z̄ 7→ z∂z ∧ ∂z̄,

ϕ0 = 0,

ψ1 :





z∂z 7→ 0

z̄∂z 7→ −z̄2∂z ∧ ∂z̄
z∂z̄ 7→ −z2∂z ∧ ∂z̄
z̄∂z̄ 7→ 0.

Now
kerϕ0 = V0 ≃ R →֒ H0

Π

kerψ0 ⊕ kerψ1/ imϕ0 = kerψ1 →֒ H1
Π, kerψ1 = 〈z∂z, z̄∂z̄〉

V0 ⊕ V1/ imψ0 ⊕ V2/ imψ1 = V0 ⊕ 〈zz̄∂z ∧ ∂z̄〉 →֒ H2
Π .

Moving to real coordinates

V0 = 〈∂x ∧ ∂y〉
〈zz̄∂z ∧ ∂z̄〉 = 〈Π〉

z∂z = x∂x + y∂y

z̄∂z̄ = y∂x − x∂y.
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Now we need to prove that only this formal vector fields contribute to the Poisson
smooth cohomology. Define flat functions to be those f ∈ C∞(R2) such that
all their derivatives at the origin are 0 and f(0) = 0. Similarly flat multivector
fields are those with flat coefficients. Then we have a short exact sequence of
complexes

0→ X•flat(R
2)→ X•(M)→ X•formal(M)→ 0

Exactness is a consequence of Borel’s theorem.
If we prove that H∗flat,Π0

(R2) = 0 we are done.
Now consider #Π : Ω∗flat → X∗flat (here as usual by #Π we denote the ex-

tension to all Ω∗M ; as we have seen #Π(f) = Xf ). We claim that #Π is an
isomorphism. Let us prove it on 1-forms

#Π(fdx+ gdy) = (x2 + y2)(f∂y − g∂x).

Now tha point is that if f is flat, then (x2 + y2)f is also flat, but also the other
way around, i.e.

(x2 + y2)f = f̄

has always a flat solution in f , i.e.

f̄

x2 + y2

is a well defined flat function.
The key points are that Π has polynomial coefficients and has isolated sin-

gular points (this can be weakened).

Example 4.20. Let SU(2) have Poisson structure we already mentioned. The
adjoint action of SU(2) on su(2) ≃ R3 is then action by rotations. The isotropy

subgroup of (1, 0, 0) is

{(
α 0
0 ᾱ

)
: |α| = 1

}
. The orbit of (1, 0, 0) is S2. The

map
φ : SU(2)→ SU(2)/U(1) ≃ S2

is given by the formula

φ

(
α β
−β̄ ᾱ

)
= (|α|2 − |β|2︸ ︷︷ ︸

x1

,−i(αβ − ᾱβ̄)︸ ︷︷ ︸
x2

,−(αβ + ᾱβ̄)︸ ︷︷ ︸
x3

)

Check that indeed x2
1 + x2

2 + x2
3 = 1.

We claim that φ coinduces a Poisson structure on S2. Using the explicit
expression for p one can explicitly compute

{x1, x2} = (1− x1)x3

{x2, x3} = (1− x1)x1

{x3, x1} = (1− x1)x2

Π0 = (1− x1)[x3∂x1 ∧ ∂x2 + x1∂x2 ∧ ∂x3 + x2∂x3 ∧ ∂x1 ]

= (1− x1)Π,

Symplectic foliation consists of two 0-leaves - the north and south pole, and
complement which is a 2-leaf.
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Part IV Computation for Poisson cohomology

Example 4.21. Take the stereographic projection from the south pole, i.e.

R2 → S2 \ {N}

(x, y) 7→
(

x2

1 + x1
,

x3

1 + x1

)

Then Π0 on R2 becomes (x2 + y2)∂x ∧ ∂y.
Of course if you take the stereographic projection from the north pole you

get
R2 → S2 \ {S}

with the symplectic structure (it can be proved that it is the standard one).
We wanto to use the Mayer–Vietoris exact sequence to compute the Poisson

cohomology of (S2,Π0)

U = S2 \ {N} V = S2 \ {N} U ∩ V = S2 \ {N,S}
(x2 + y2)∂x ∧ ∂y symplectic symplectic

H0
Π(U) = R H0

Π(V ) = R H0
Π(U ∩ V ) = R

H1
Π(U) = R2 H1

Π(V ) = 0 H1
Π(U ∩ V ) = R

H2
Π(U) = R2 H2

Π(V ) = 0 H2
Π(U ∩ V ) = 0

The sequence is
0→ R→ R⊕ R→ R→
→ H1

Π(S2)→ R2 ⊕ 0→ R→
→ H2

Π(S2)→ R2 ⊕ 0→ 0

The first row is exact (a Casimir function is constant on each of U and V ).

0→ H1
Π(S2)→ R2 λ−→ R︸ ︷︷ ︸

x∂x+y∂y 7→y∂x−x∂y

µ−→ H2
Π(S2)→ R2 → 0

Because λ is surjecitve dim kerλ = 0 and dim imµ ≤ 1, so µ = 0 and H2
Π(S2) ≃

R2. If you know that H1
Π(S2) is nontrivial then H1

Π(S2) ≃ R.
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Chapter 5

Poisson homology

Recall that
∂Π = iΠd− diΠ : ΩkM → Ωk−1M.

We showed that ∂2
Π = 0 and defined Poisson homology as the homology of the

complex (Ω•, ∂Π).

Proposition 5.1. The Poisson homology is explicitely computed (in local coor-
dinates) by

∂Π(f0df1 . . . dfk) =
∑

1≤i≤k
(−1)i+1{f0, fi}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfk

+
∑

1≤i<j≤k
(−1)i+jf0d{fi, fj}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk

Proof.

∂Π(f0df1 . . . dfk) =

= iΠ(df0 ∧ df1 . . . dfk)

− d[
∑

1≤i<j≤k
(−1)i+jf0d{fi, fj}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk]

=
∑

1≤i<j≤k
(−1)i+j+1{fi, fj}df0 ∧ df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk

+
∑

1≤i<j≤k
(−1)i+j{fi, fj}df0 ∧ df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk

+
∑

1≤i<j≤k
(−1)i+jf0d{fi, fj}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk.

Remark 5.2. One could use this formulas a definition for ∂Π. This is correct,
but requires also checking that the formula does not depend on local choices
and this is quite difficult.

Note that ∂π(f0df1) = {f0, f1} and therefore The 0–th Poisson homology is
just given by: C∞(M)/{C∞(M), C∞(M)}. Thus it can be considered as the
dual space to Poisson traces. This apparently easy definition does not mean
that, even in very explicit examples, such invariant can be easily computed.
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Part IV Poisson homology

Theorem 5.3 (Brylinski). If M is symplectic manifold then

HΠ
k (M) ≃ Hm−k

DR (M ; R) ≃ Hm−k
Π (M).

Proof. (sketch) Given ω symplectic form, take the volume form ωm

m! = Ω0. You
can use it to define a ”Hodge-like” *-operator

∗ : Ωk(M)→ Ω2m−k(M),

implicitly as
(β ∧ ∗α) = Π∧k(α, β)︸ ︷︷ ︸

∈C∞(M)

Ω.

This operator verifies the following:

1. ∗∗ = id,

2. β ∧ (∗α) = (−1)kα ∧ (∗β),

3. on Ωk(M), ∂Π = (−1)k+1 ∗ d∗.
Therefore it intertwines d with * and therefore induces an isomorphism in ho-
mology.

Remark 5.4. This map is similar to Poincare duality. In fact one could recover
the same result through the existing duality between Poisson homology and
cohomology.

Poisson homology is functorial. Given a Poisson map ϕ : M1 →M2 there is
a map ϕ∗ : HΠ

k (M2,Π2)→ HΠ
k (M1,Π1). In particular for any leaf S of M

HΠ
k (S)

≃ �� ϕ∗ // HΠ
k (M)

Hn−k
Π (S)

≃ ��
Hn−k

DR (S)

ϕ∗

CC�����������������
Again deciding whether this map is injective or surjective is a difficult problem.

In the canonical double (mixed) complex you have d∂Π + ∂Πd = 0�� �� ��
Ω2(M)

∂Π�� Ω1(M)
doo

∂Π�� Ω0(M)
doo

Ω1(M)

∂Π�� Ω0(M)
doo

Ω0(M)

Starting from this you can define cyclic (negative, periodic) Poisson homology
and a long exact sequence of Connes-type.
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Part IV Poisson homology and modular class

Example 5.5. Consider on R3 the

{x2, x3} = 2px2x3 − qx2
1 = g1,

{x1, x3} = 2px1x3 − qx2
2 = g2,

{x1, x2} = 2px1x2 − qx2
3 = g3.

Check that
φ =

q

3
(x3

1 + x3
2 + x3

3)− 2px1x2x3

is a Casimir element. Can you prove that there are no other functionally inde-
pendent Casimirs?

Let
∇ = (∂x1 , ∂x2 , ∂x3).

Verify that
∇φ = (g1, g2, g3),

and that
∇× (g1, g2, g3) = 0.

(here we are denoting ∇× to be the curl as in usal vector calculus). Then, again
by direct computation you can verify that

∂Π(x1dx1 + x2dx2 + x3dx3) = ∇(x1, x2, x3) · ∇φ,

∂Π(x1dx2∧dx3+x2dx3∧dx1+x3dx1∧dx2) = ∇(x1, x2, x3)dφ−d[(x1, x2, x3)·∇φ],

∂Π(fdx1 ∧ dx2 ∧ dx3) = −df ∧ dφ.
These formulas are basically all one needs to thoroughly compute in an explicit
manner the Poisson homology groups, as explained in [v-m94].

The result of computation of Poisson homology is that HΠ
∗ (R3) is a free

R[φ]-module of rank 8, 8, 1, 1. HΠ
2 (R3) is generated by x1dx2dx3, x2dx3dx1,

x3dx1dx2. HΠ
3 (R3) is generated by dx1dx2dx3.

5.1 Poisson homology and modular class

Say Ω is a volume form on M .

∂ΠΩ = iΠdΩ− diΠΩ = −iφΩΩ.

If M is unimodular Poisson then there exists Ω ∈ Ωn(M) such that φΩ = 0, so
∂ΠΩ = 0 and thus [Ω] 6= 0 ∈ HΠ

n (M).
For this reason in quantization you can regard Connes axiom of having

”quantum” homological dimension equal classical dimension as a condition of
unimodularity of the underlying Poisson manifold.

Let us now consider the Poisson structure of example (5.5). We want to
compute its modular form starting from the standard volume form Ω = dx1 ∧
dx2 ∧ dx3. This means we want, for any f ∈ C∞(M)

LXf
Ω = φ(f)Ω
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Part IV Poisson homology and modular class

Then, explicitely

LXx1
Ω = dig3∂2−g2∂3Ω

= d (g3i∂2Ω− g2i∂3Ω)

= d (−g3dx1 ∧ dx3 − g2dx1 ∧ dx2)

= (∂2g3 − ∂3g2) Ω

And similar computations show that

φΩ(xi) = det

(
∂j ∂k
gj gk

)

with (i, j, k) = (1, 2, 3) or cyclic permutations. Therefore φΩ = ∇ × g (up to
now we’ve never used the explicit form of g). Lastly, as remarked, g is defined in
such a way that ∇× g = 0 and therefore such Poisson structure is unimodular.
It is worth remarking that van den Bergh in its paper was commenting that this
condition is exactly what makes computations of Poisson homology accesible
through explicit formulas (unimodularity was at that time not recognized as an
easily accesible, though very relevant, invariant of Poisson manifolds).
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Chapter 6

Coisotropic submanifolds

Let (M,Π) be a Poisson manifold, C a submanifold of M and N∗C its conormal
bundle defined as:

N∗C = {α ∈ T ∗M : 〈α, v〉 = 0 ∀ v ∈ TC}.
Definition 6.1. C is called coisotropic sumbanifold of M if

#Π(N∗C) ⊆ TC
Remark 6.2. On symplectic manifolds, for a submanifold N of M you consider
TN and

TN⊥ω = {w ∈ TM : ω(v, w) = 0 ∀ v ∈ TN}.
Then you have

TN ⊆ TN⊥ω isotropic,

TN = TN⊥ω Lagrangian,

TN ⊇ TN⊥ω coisotropic.

Exercise 6.3. Prove that if (M,Π) is the Poisson manifold associated to a
symplectic manifold then a submanifold verifies

#Π(N∗C) ⊆ TC iff (TC)⊥ω ⊆ TC.
Proposition 6.4. The following are equivalent

1. C is coisotropic in (M,Π).

2. For all f, g ∈ C∞(M) such that f |C , g|C = 0, {f, g}|C = 0.

3. For all f ∈ C∞(M) such that f |C = 0, Xf |C is tangent to C.

Proof. The point here is that if I = {f ∈ C∞(M)|f |C = 0} then

{dxf : f ∈ I} = N∗xC,

〈dxf, vx〉 = v(f)(x).

The fact that we get all conormal vectors as differentials of functions in I follows
from local equalities for C of the form x1 = . . . = xp = 0 in a coordinate
neighbourhood (U ;x1, . . . , xn) (p ≤ n) adapted to C.
Then we have easily (3) =⇒ (1) =⇒ (2) =⇒ (3).
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Part IV Coisotropic submanifolds

Remark 6.5.

• If C is Poisson submanifold then I is a Poisson ideal.

• If C is coisotropic then I is a Poisson subalgebra.

Exercise 6.6. Let h be a Lie subalgebra in g. Prove that h⊥ is a coisotropic
submanifold in g∗.

Theorem 6.7. ϕ : (M1,Π1)→ (M2,Π2) is a Poisson map if and only if

Γϕ := {(x, ϕ(x)) : x ∈M1}

is a coisotropic submanifold of M1 ×M2.

The notation:

M1 ×M2 = (M1 ×M2,Π1 ⊕ (−Π2))

with product Poisson structure.

Proof. We have
T(x,ϕ(x))Γϕ = {(v, ϕ∗,xv) : v ∈ TxM1}
N∗Γϕ = {(−ϕ∗λ, λ) : λ ∈ T ∗ϕ(x)M2}

Then
#Π(N∗Γϕ) ⊆ TΓϕ

is equivalent to

ϕ∗(#Π1(−ϕ∗λ)) = −#Π2λ, ∀ λ ∈ T ∗ϕ(x)M2,

which is one of the conditions equivalent to being Poisson.

Definition 6.8. Let C be a coisotropic submanifold of (M,Π) and let I := {f ∈
C∞(M) : f |C = 0}. Define

N(I) := {g ∈ C∞(M) : {g, I} ⊆ I}.

Proposition 6.9. N(I) is a Poisson subalgebra of C∞(M), I is a Poisson ideal
of N(I) and therefore N(I)/I is a Poisson algebra.

Proof. From the Jacobi identity we get the first part:

{{g1, g2}, f} = −{{g2, f}, g1}+ {{g1, f}, g2}

Furthermore

N(I)/I = C∞(C)

= {f ∈ C∞(C) : Xf = 0 ∀ X ∈ Γ(#ΠN
∗C)} ⊆ Poisson manifold

Proposition 6.10. A submanifold C is coisotropic if and only if f |C = 0 and
g|C = 0 implies {f, g}|C = 0.
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Part IV Poisson–Morita equivalence

Remark 6.11. Is it true that C is a coisotropic submanifold of M if and only
if C ∩ F is a coisotropic submanifold of any leaf F of M? To show this is
not true take for example R3, Π = ∂x ∧ ∂y. Symplectic foliation is given by
planes parallel to {z = 0}, Fh = {z = h}. The standard embedding S2 →֒
R3, x2 + y2 + z2 = 1 gives a coisotropic submanifold. This can be checked
directly proving that functions which are zero on S2 form a Poisson subalgebra
or through the following:.

Exercise 6.12. Show that every codimension 1 locally closed submanifold is
coisotropic.

Now let us look at intersections:

S2∩Fh =





∅ h /∈ [−1, 1]

∗ h ∈ {−1, 1} − is never coisotropic in the leaf to which it belongs

S1 h ∈ (−1, 1)

Therefore a submanifold maybe coisotropic without its intersections being coisotropic
in the leaves. From this example it is also quite evident the reason for it: the
submanifold and the leaves may intersect not transversally. In fact adding suit-
able transversality conditions it is possible to relate coisotropy to coisotropy in
the leaves (see for example [v-i94]).

6.1 Poisson–Morita equivalence

Take (M,Π) to be Poisson, (S, ω) symplectic,

#Π : T ∗M → TM

#ω−1 : T ∗S → TS

♭ω : TS → T ∗S

Say we have ρ : S →M surjective submersion,

ρ∗,p : TpS → Tρ(p)M.

For p ∈ S, x = ρ(p), ρ−1(x) is a closed submanifold. We have

ker(ρ∗,p) = {v ∈ TpS : ρ∗,p(v) = 0} = Tpρ
−1(x),

N∗pρ
−1(x) = {α ∈ T ∗pS : 〈α, v〉 = 0 ∀ v ∈ Tpρ−1(x)}

= {α ∈ T ∗pS : α = dpf, f ∈ ρ∗(C∞(M))},

(ker(ρ∗,p))
⊥ω = {w ∈ TpS : ω(v, w) = 0 ∀ v ∈ Tpρ−1(x)}

= {w ∈ TpS : 〈♭ω(w), v〉 = 0 ∀ v ∈ Tpρ−1(x)}
= {w ∈ TpS : ♭ω(w) ∈ N∗pρ−1(x)}
= #ω−1(N∗pρ

−1(x))

= {Xω
ρ∗(f) : f ∈ ρ∗(C∞(M))}.
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Part IV Poisson–Morita equivalence

Definition 6.13. Two Poisson manifolds (M1,Π1) and (M2,Π2) form a dual
pair if there exists a symplectic manifold (S, ω) and two Poisson submersions
(i.e. symplectic realizations)

S
ρ1~~}}}}}}}} ρ2   AAAAAAAA

M1 M2

such that the fibers are symplectic orthogonal, i.e. for any p ∈ S, ρ1(p) = x,
ρ2(p) = y

Tpρ
−1
1 (x) = (Tpρ

−1
2 (y))⊥ω.

The pair is called full if ρ1, ρ2 are surjective.

Remark 6.14. We have seen that in some sense a symplectic realization of M1

is a notion like ”one sided module over M1”. The dual pair is thus a notion of
bimodule.

Our task now is to unravel this definition.

Proposition 6.15. Let (S, ω) with ρi : (S, ω)→ (M,Πi), i = 1, 2 be a full dual
pair. Then

{ρ∗1(f), ρ∗2(g)}S = 0 ∀ f ∈ C∞(M1), g ∈ C∞(M2). (6.1)

Condition 6.1 is equivalent to symplectic orthogonality of tangent spaces if fibers
are connected.

Proof.

ker((ρ1)∗,p) = Tpρ
−1
1 (x) = (Tpρ

−1
2 (y))⊥ω = (ker((ρ2))∗,p)

⊥ω

= {Xω
ρ∗2(g)(p) : g ∈ ρ∗2(C∞(M2))}.

Take f ∈ C∞(M1)

{ρ∗1(f), ρ∗2(g)}(p) = −Xω
ρ∗2(g)(ρ

∗
1(f))(p) = 0

because −Xω
ρ∗2(g) ∈ Tρ−1(x) and ρ∗1(f) is constant along ρ−1(x).

The argument can be reversed provided fibers are connected.

Example 6.16. Let S be a symplectic manifold, J : S → g∗ constant rank Poisson
map. (Moment map, Hamiltonian action of G on S). Assume that J is a
surjective submersion and that G-action on S is regular, S/G is a manifold.
Then there exists a coinduced Poisson structure on S/G and

S

J��������� p !!BBBBBBBB
g∗ S/G

form a full dual pair.
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Part IV Poisson–Morita equivalence

If regularity is missing one can ask if p∗(C∞(S/G)) is the Poisson commutant
of J∗(C∞(g∗)) (admissible functions),

{C∞(S)G, J∗(C∞(g∗))} = 0.

One can also ask such questions only after restriction to an open subset U of
g∗.

Proposition 6.17. Let (Mi,Πi), i = 1, 2, be Poisson manifolds. Let (S, ω) be
a symplectic manifold. Let ρi : S → Mi, i = 1, 2, form a full dual pair with
connected fibers. Then there is a 1-1 correspondence between symplectic leaves
of M1 and M2, inducing homeomorphism on leaf spaces.

Proof. The basic idea is the following. Take a leaf F1 inM1. Consider ρ2(ρ−1
1 (F1)),

which is a leaf in M2. The correspondence Φ: F1 7→ ρ2(ρ−1
1 (F1)) is bijective and

Φ is a homeomorphism.
The details are as follows. Fix x ∈M1 and let F1 be a leaf through x

TxF1 = im #Π1,x.

Consider ρ−1
1 (F1) and take p ∈ ρ−1

1 (x). Prove that

(ρ2)∗(Tpρ
−1(F1)) = im #Π2,ρ2(p).

Indeed

Tρ1(p)F1 = {XΠ1

f (ρ1(p)) : f ∈ C∞(M1)}
= {(ρ1)∗,pX

ω
f (p) : f ∈ ρ∗1(C∞(M2))}

= (ρ1)∗,p(#ω−1N∗ ker((ρ1)∗,p)).

Take D1, D2 be the distributions spanned by Hamiltonian vector fields of pull-
backs.

D1 = {Xω
ρ∗1f

: f ∈ ρ∗1(C∞(M1))}
D2 = {Xω

ρ∗2f
: f ∈ ρ∗2(C∞(M2))}

Take as usual p ∈ S, ρ1(p) = x, ρ2(p) = y.
D1 and D2 are integrable disributions. In fact we know also the maximal

integral submanifolds - fibers. Surjectivity grants that each point belongs to a
fiber. Connectedness grants that the fibers are submanifolds.

Consider the distribution D1 +D2. We claim that it is also integrable. Let
F1 be a symplectic leaf in M1. Show that ρ−1

1 (F1) is a connected integral
sumanifold of D1 +D2.

Tp(ρ
−1(F1)) = (ker ρ1,∗)p + {v ∈ TpS : (ρ1,∗)pv ∈ Tρ1(p)F1}

= (ker ρ2,∗)
⊥ω
p + {Xω

ρ∗1f
(p) : f ∈ C∞(M1)}

= {Xω
ρ∗2g

(p) : g ∈ C∞(M2)}+ {Xω
ρ∗1f

(p) : f ∈ C∞(M1)}
= D1 +D2.

Now also ρ−1
2 (F2), F2 symplectic leaf of M2 are integral submanifolds of D2+D2.
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Part IV Poisson–Morita equivalence

Let L be the set of integral submanifolds of D1 + D2. Then L is in one to
one correspondence with the set of leaves of M1 and the set of leaves of M2.
The bijection on the sets of leaves is given by

F1 7→ ρ2(ρ−1
1 (F1))

It remains to show that it is homeomorphism of topological spaces.

Lemma 6.18. Let f : S(n) → M (m) be a submersion, n ≥ m, F is (m − k)-
dimensional submanifold of M , x ∈ S, f(x) = y ∈ F . Then we can find local
coordinates

(U, φ) around x in S,

(V, ψ) around y in M,

such that for all w ∈ f−1(V ) ∩ U

ψi(f(w)) = φi(w), i = 1, . . . ,m

and
f(w) ∈ F ∩ V ⇐⇒ ψ1 = . . . = ψk = 0.

Therefore f−1(F ) is an (n − k)-dimensional submanifold of S given by φ1 =
. . . = φk = 0.

Definition 6.19 ([x-p91]). Two Poisson manifolds are called Poisson–Morita
equivalent if there exists a full dual pair (S, ω), ρ1, ρ2 between (M1,Π1) and
(M2,−Π2) such that

1. ρ1, ρ2 are complete,

2. fibers of ρ1, ρ2 are connected, simply connected.

S
ρ1~~}}}}}}}} ρ2   AAAAAAAA

M1 M2

Remark 6.20. Despite its name Poisson–Morita equivalence is not an equiva-
lence relation as it fails to be reflexive. In such cases it is natural to single out
the subclass of objects on which a relation indeed defines an equivalence:

Definition 6.21. Poisson manifolds Poisson–Morita equivalent to themeselves
are called integrable.

Reason for the name is that the associated Lie algebroid can be integrated
to a Lie grupoid.

Proposition 6.22. Let (M1, ω1) and (M2, ω2) be symplectic manifolds. They
are Poisson–Morita equivalent if and only if they have isomorphic fundamental
groups.

In particular any connected and simply connected symplectic manifold is
Poisson–Morita equivalent to a point.

439



Part IV Dirac structures

Proof. Let

S
ρ1~~}}}}}}}} ρ2   AAAAAAAA

M1 M2

be the Poisson–Morita equivalence.
Look at the long exact sequence in homotopy

0 = π1(fiber1) // π1(S) // $$IIIIIIIII π1(M1) // π0(fiber1) = 0

0 = π1(fiber2)

88qqqqqqqqqq
π1(M2) // π0(fiber2)

Conversely: say π1(M1) ≃ π1(M2) ≃ G. Let M̃j be the universal cover of Mj,

j = 1, 2. Both are principal G-bundles over Mj . The product M̃1 × M̃2 has
symplectic structure given by (ω1,−ω2).

M̃1 × M̃2

ρ1zzvvvvvvvvv ρ2 $$HHHHHHHHH
M1 M2

Example 6.23. Let (S, ω) be a connected, simply connected symplectic manifold
and let M be a connected manifold with the zero Poisson structure. Then M
is Poisson–Morita equivalent to S.

S × T ∗M
p1zzuuuuuuuuuu p2 $$JJJJJJJJJ

S M

where p1 denotes the projection of S × T ∗M on its first component, while p2 is
the projection on the second component composed with the cotangent bundle
projection.

Proposition 6.24 (Lu-Ginzburg). Poisson–Morita equivalent manifolds have
isomorphic first Poisson cohomology H1

Π(−), but can have non-isomorphic Hk
Π(−).

Remark 6.25. With some more work one can prove that the induced map be-
tween set of leaves is in fact a heomeomorphism of topological spaces.

Remark 6.26. The first Poisson cohomology and modular class are Poisson–
Morita invariants.

6.2 Dirac structures

Definition 6.27. Let M be a smooth manifold. A Dirac structure on M is
a subbundle L ⊂ TM ⊕ T ∗M which gives pointwise linear Dirac structures in
TxM ⊕ T ∗xM and such that its sections are closed under the Courant bracket

[(X,α), (Y, β)] = ([X,Y ], LXβ − LY α+ 1
2d(α(Y )− β(X))) (6.2)
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Remark 6.28. The Courant bracket is not a Lie bracket. However it turns out
to be a Lie bracket on sections of a Dirac bundle.

Proposition 6.29. Let Π ∈ Γ(Λ2TM) be a bivector on M . Then graph(Π)
defines a subbundle of TM ⊕T ∗M which is pointwiese a linear Dirac structure;
Γ(Π) is a Dirac structure if and only if Π is Poisson.

Remark 6.30. Not every Dirac structure comes from a Poisson bivector.

Proof. For any Π ∈ Γ(Λ2TM) define

ΓΠ = {(#Π(α), α) : α ∈ Ω1(M)}

This is pointwise Dirac.

[(#Π(α), α), (#Π(β), β)] = ([#Π(α),#Π(β)],

L#Π(α)β − L#Π(β)α+ 1
2d(α(#Π(β))− β(#Π(α))))

= ([#Π(α),#Π(β)], [α, β]Π)

Now the point is that #Π is a Lie algebra map if and only if [Π,Π]SN = 0.

Proposition 6.31. Let B be a skewsymmetric bilinear form on V , B ∈ Λ2V ∗.
Then for any linear Dirac structure L

CB(L) := {(v, µ+Bv) : (v, µ) ∈ L}

is a linear Dirac structure.

Proof. Dimension is obviously unchanged. Therefore it suffices to show isotropy

((v, µ+Bv), (w, η +Bw)) = 1
2 ((µ+Bv)(w) + (η +Bw)(v))

= 1
2 (µ(w) + η(v)) + 1

2 (B(v, w) +B(w, v)︸ ︷︷ ︸
=0

)

= ((v, µ), (w, η)) = 0.

Proposition 6.32. Let Π ∈ Λ2V and let ΓΠ be the linear Dirac structure
corresponding to the graph of Π. Let B ∈ Λ2V ∗. Then there exists Π′ ∈ Λ2V
such that

CB(ΓΠ) = ΓΠ′ ⇐⇒ (id + ♭B ◦#Π) is invertible.

Here
♭B : V → V ∗, ♭B(v) = B(v,−),

#Π : V ∗ → V, #Π(ξ) = Π(ξ,−)

with the identifcation V ≃ V ∗∗.
Proof.

CB(ΓΠ) = ΓΠ′ ⇐⇒ CB(ΓΠ) ∩ V = {0}
Now id♭B ◦#Π : V ∗ → V ∗ is invertible if and only if it is injective, therefore

α+B(#Π(α)) = 0, α 6= 0⇐⇒ id + ♭B ◦#Π is injective.
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Proposition 6.33. Let L be a Dirac structure on M and let B ∈ Ω2(M). Then

CB(L) is Dirac ⇐⇒ dB = 0

Proof. As we have already seen CB(L) is pointwise a linear Dirac structure. We
have to show what happens if we require in CB(L) closeness with respect to the
Courant bracket.

[(X, η +B(X)), (Y, ξ +B(Y ))] = ([X,Y ], LX(µ+B(Y ))− LY (ω +B(X))

+ 1
2d((ω +B(X))(Y )− (µ+B(Y ))(X)))

= ([X,Y ], LXµ− LY ω + 1
2d(ω(Y )− µ(X))

+ LXB(Y )− LYB(X) + d(B(X,Y )))

Lemma 6.34.

LXB(Y )− LYB(X) + d(B(X,Y )) = (dB)(X,Y )−B([X,Y ])

Proof.
LX = diX + iXd, LY = diY + iY d

LXB(Y ) = d(B(Y,X)) + iX(dB(Y ))

LYB(X) = d(B(X,Y )) + iY (dB(X))

(iXd(B(Y )))(Z) = 〈d(B(Y )), X ∧ Z〉 = ZB(X,Y )−XB(Y, Z)−B(Y, [X,Z])

Use formula for

(dB)(X,Y, Z) = XB(Y, Z)− Y B(X,Z) + ZB(X,Y )

−B([X,Y ], Z) +B([X,Z], Y )−B([Y, Z], X).

Definition 6.35. Two Poisson bivectors Π1,Π2 on the manifold M are said to
be gauge equivalent if there exists a closed 2-form B such that

CB(ΓΠ1) = ΓΠ2

(i.e. if the corresponding Dirac structures are equivalent)
Two Poisson manifolds (M1,Π1) and (M2,Π2) are said to be gauge equiva-

lent up to diffeomorphism if there exists a Poisson diffeomorphism

ϕ : (M1,Π1)→ (M2,Π0)

such that Π0 and Π2 are gauge equivalent.

Remark 6.36. Two symplectic structures on a given manifold are gauge equiv-
alent. Two symplectic manifolds are gauge equivalent up to diffeomorphism if
and only if they are symplectomorphic.
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Chapter 7

Poisson Lie groups

7.1 Poisson Lie groups

Recall the two presentations of a Poisson manifold:

1. {−, −} : C∞(M)⊗ C∞(M)→ C∞(M) such that

• {−, −} is a Lie bracket (antisymmetric + Jacobi identity)

• {f, gh} = {f, g}h+ g{f, h} (Leibniz rule)

2. (M,Π), Π ∈ Γ(Λ2TM) such that [Π,Π] = 0

connected by the equality

{f, g}(x) = 〈Π(x), dxf ⊗ dxg〉
Recall that a smooth map φ : M → N between Poisson manifolds is a map that
preserves s

{f1, f2}M ◦ φ = {f1 ◦ φ, f2 ◦ φ}N
or equivalently

φ⊗2
∗,xΠM (x) = ΠN (φ(x))

Recall also that if M , N are Poisson manifolds the structure of product Poisson
manifold on M ×N is the one given by

{f1, f2}M×N (x, y) = {f1(−, y), f2(−, y)}M(x) + {f1(x,−), f2(x,−)}N(y)

or equivalently

ΠM×N = ΠM ⊕ΠN ∈ Γ(Λ2T (M ×N)) = Γ(Λ2TM ⊕ Λ2TN)

Proposition 7.1. Let G be a Lie group, Π Poisson tensor on G. Then the
following are equivalent:

1. The product m : G×G→ G is a Poisson map

2.
Π(g1g2) = Lg1,∗Π(g2) +Rg2,∗Π(g1),

where
Lg : G→ G, h 7→ gh, Rg : G→ G, h 7→ hg

and Lg,∗, Rg,∗ are derivatives.
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Part IV Poisson Lie groups

Proof. Let m : G×G→ G be a Poisson map, that is

{f1, f2}(m(g1, g2)) = {f1 ◦m, f2 ◦m}G×G(g1, g2)

i.e.

{f1, f2}(g1g2) = {f1 ◦ Lg1 , f2 ◦ Lg1}(g2) + {f1 ◦Rg2 , f2 ◦Rg2}(g1)

or equivalently
〈Π(g1g2), dg1g2f1 ⊗ dg1g2f2〉 =

〈Π(g2), dg2(f1 ◦Lg1)⊗dg2(f2 ◦Lg1)〉+ 〈Π(g1), dg1(f1 ◦Rg2)⊗dg1(f2 ◦Rg2)〉
Now use

dg(f ◦ Lh) = Lh,∗dgf, dg(f ◦Rh) = Rh,∗dgf

to obtain

〈Π(g1g2), dg1g2f1 ⊗Πg1g2f2〉 = 〈Π(g2), L⊗2
g1,∗(dg2f1 ⊗ dg2f2)〉

+ 〈Π(g1), R⊗2
g2,∗(dg1f1 ⊗ dg1f2)〉

= 〈L⊗2
g1,∗Π(g2), dg2f1 ⊗ dg2f2〉

+ 〈R⊗2
g2,∗Π(g1), dg1f1 ⊗ dg1f2〉

hence the thesis.

Definition 7.2. When one of the conditions of proposition (7.1) is verified
(G,Π) is called a Poisson Lie group.

Remarks 7.3.

• For a Poisson Lie group (G,Π) we have Π(e) = 0. In fact Π(ee) = 2Π(e).

•
0 = Π(e) = Π(gg−1) = Lg,∗Π(g−1) +Rg−1,∗Π(g)

so
Π(g−1) = −Adg−1,∗Π(g)

This means that the inverse g 7→ g−1 is not a Poisson map, but anti-
Poisson.

• Another equivalent condition is

LXLY Π = 0, ∀ X right invariant, and Y left invariant

and additionally Π(e) = 0.

This obviously suggests what if Π(e) 6= 0? We have

Π(g1g2) = Lg1Π(g2) +Rg2Π(g1) + Lg1Rg2Π(e)

what is called an affine Poisson structure on G.
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Part IV Poisson Lie groups

Let us move on to the infinitesimal description of the Poisson Lie groups.
Consider

η : G→ Λ2g

given by right translating the Poisson tensor

η(g) = Rg−1,∗Π(g)

(obviously η(e) = 0). Now

η(g1g2) = R(g1g2)−1,∗Π(g1g2)

= Rg−1
1 ,∗Rg−1

2 ,∗(Lg1,∗Π(g2) +Rg2,∗Π(g1))

= Rg−1
1 ,∗Π(g1) + Adg1 Rg−1

2 ,∗Π(g2)

= η(g1) + Adg1 η(g2)

i.e. Π multiplicative =⇒ η is a cocycle of G with values in Λ2g.
Define now

δ : g→ Λ2g

to be its derivative at e, i.e.

δ(X) :=
d

dt
η(etX)|t=0.

What are the properties of δ coming from the fact that Π is Poisson and mul-
tiplicative?

Proposition 7.4.

1. Π multiplicative =⇒

δ([X,Y ]) = adX δ(Y )− adY δ(X).

2. Π Poisson =⇒ tδ : Λ2g∗ → g satisfies Jacobi identity.

Proof.

1.
η(etXetY ) = η(etX) + AdetX η(etY )

η(etY etX) = η(etY ) + AdetY η(etX)

η(etXetY )− η(etY etX) = η(etX)− η(etY ) + AdetX η(etY )−AdetY η(etX)

2.

Lemma 7.5. Let ξ1, ξ2 ∈ g∗. Choose f1, f2 ∈ C∞(G) such that defi = ξi,
i = 1, 2. Then

tδ(×1, ξ2) = de{f1, f2}

Proof.

{f1, f2}(g) = 〈Π(g), dgf1 ⊗ dgf2〉
= 〈η(g), R⊗2

g,∗(dgf1 ⊗ dgf2)〉
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Part IV Lie bialgebras

Take g = etX and the derivative at t = 0.

d

dt
{f1, f2}(etX)|t=0|t=0

︸ ︷︷ ︸
〈X, de{f1, f2}〉

=
d

dt
〈η(gtX), R⊗2

etX ,∗(detX f1 ⊗ detXf2)〉|t=0

︸ ︷︷ ︸
〈 d

dtηe
tX |t=0, def1⊗def2〉

= 〈δ(X), def1 ⊗ def2〉 = 〈X, tδ(def1, def2)〉
Thus the claim. Remark that this proves indirectly independence of the
right hand side from choices.

Now the statement follows easily from

Jactδ(ξ1, ξ2, ξ3) = de Jac{−,−}(f1, f2, f3)

7.2 Lie bialgebras

Definition 7.6. A Lie bialgebra is a pair (g, δ) where g is a Lie algebra and
δ : g→ Λ2g is such that

1. tδ satisfies Jacobi identity (coJacobi: cyclic((δ ⊗ id)δ(X)) = 0)

2. δ([X,Y ]) = adX δ(Y )− adY δ(X)

We have just proven that the tangent space of a Poisson Lie group has a Lie
bialgebra structure. To what extend is the converse true?

Example 7.7. g abelian Lie algebra. Thus any δ : g→ Λ2g such that tδ satisfies
Jacobi identity gives a Lie bialgebra. Choose a nontrivial one. Therefore g∗ is
a non trivial Lie algebra, which implies that g itself has a non trivial Poisson
linear structure (g ∼= g∗∗).

Take Γ ∈ g a lattice under which the Poisson structure is not invariant.
Take a Lie group H = g/G. Then Lie(H) = g is a Lie bialgebra which does not
integrate to a Poisson Lie group structure.

The point here is

Lemma 7.8. Given a 1-cocycle g → g ∧ g there is a unique 1-cocycle η : G →
g ∧ g, where G is the connected simply connected Lie group integrating g (i.e.
Lie(G) = g).

Basically this is all you need to prove

Theorem 7.9 (Drinfel’d). The correspondence G 7→ g gives you a 1:1 corre-
spondence between Lie bialgebras and Poisson Lie groups.

Given any Poisson Lie group (G,Π) consider its Lie bialgebra (g, δ). Then
(g∗,t [−,−]) is a Lie bialgebra. Therefore it integrates to a unique connected,
simply connected Poisson Lie group G∗ called the dual Poisson Lie group of G.
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Part IV Lie bialgebras

Lie bialgebras form a category. Morphisms are those homomorphisms which
respect δ

g ∧ g
χ⊗χ // g′ ∧ g′

g

δ

OO
χ

// g′δ′OO
Proposition 7.10. Given a Lie bialgebra (g, δ), the vector space g∗ has a canon-
ical Lie bialgebra structure. The cobracket δ′ being dual to bracket [−,−] in g,
and the bracket [−,−]′ in g∗ being dual to δ.

Definition 7.11. g∗ is called dual bialgebra of g.

Examples 7.12.

1. Any Lie algebra with δ = 0.

2. Dual of previous, g∗ as vector space, [−,−] = 0, δ′ = [−,−]∗g.

3. g = sl(2,C), X+, X−, H ∈ sl(2,C)

[H,X±] = ±2X±, [X+, X−] = H

δ(X±) = X± ∧H, δ(H) = 0

cyclic(δ ⊗ id) ◦ δ(X±) = cyclic(δ ⊗ id)( X± ∧H︸ ︷︷ ︸
X±⊗H−H⊗X±

)

= cyclic(X± ⊗H −H ⊗X±)⊗H = 0

(co-Jacobi identity). Now check the 1-cocycle condition

δ([a, b]) = a · δ(b)− b · δ(a)

We have
δ([H,X±])

?
= H · (X± ∧H)−X± · δ(H)

LHS = ±2δ(X±) = ±2X± ∧H
RHS = [H,X±] ∧H + X± ∧ [H,H ] = ±2X± ∧H

Similarly

δ([X+, X−])
?
= X+ · δ(X−)−X− · δ(X+)

LHS = δ(H) = 0

RHS = X+ ·X− ∧H −X− ·X+ ∧H
= [X+, X−] ∧H +X− ∧ [X+, H ]− [X−, X+] ∧H −X+ ∧ [X−, H ]

= H ∧H − 2X− ∧X+ − 2X+ ∧X− = 0
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4. Let g be a C simple Lie algebra with fixed bilinear, nondegenerate, sym-
metric form (−,−) on g (and on g∗). choose a Cartan subalgebra h of g

(n = dim h is the rank of g). Choose a simple roots α1, . . . , αn ∈ h∗. This
gives a decomposition

g = n+ ⊕ h⊕ n−

where n± are nilpotent and h abelian. Let X±i , Hi be the corresponding
Chevalley generators and A = [aij ] the Cartan matrix

aij =
(αi, αj)

(αj , αj)

Recall

[Hi, Hj ] = 0, [Hi, X
±
j ] = ±aijX±j , [X+

i , X
−
i ] = δijHj

The following cobracket

δ(Hi) = 0, δ(X±i ) = diX
± ∧Hi,

where di symmetrize [aij ], i.e. diaij = aijdj , gives the structure of a Lie
bialgeba.

Definition 7.13. This example is called a standard Lie bialgebra structure
on g.

Remark. There exist other structures, and all standard structures are
equivalent up to conjugation.

7.3 Manin triples

Definition 7.14. Let g be a Lie algebra with a non degenerate invariant sym-
metric bilinear form. Let g+ and g− be Lie subalgebras such that

g = g+ ⊕ g−

as vector spaces, and such that g+, g− are maximal isotropic subspaces of g.
Then (g, g+, g−) is called a Manin triple.

Using the form we can identify

g− ∼= (g+)∗, g+
∼= (g−)∗

In particular dim g+ = dim g−.

Theorem 7.15.

1. Suppose (g, g+, g−) is a Manin triple. Let

[−,−] : g⊗ g→ g, [−,−]+ = [−,−]|g+⊗g+ , [−,−]− = [−,−]|g−⊗g−

Put

δ+ =t [−,−]− : (g∗−) = g+ → Λ2g+, δ− =t [−,−]+ : (g∗+) = g− → Λ2g−

Then (g+, δ+) and (g−, δ−) are Lie bialgebras.
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2. Let (g, δ) be a Lie bialgebra. Define on g⊕ g∗

〈X + ξ, Y + η〉 := ξ(Y ) + η(X)

[X + ξ, Y + η] = 〈[X,Y ] + ad∗X ξ − ad∗Y η, [ξ, η] + ad∗ξ X − ad∗η Y 〉
Then g⊕ g∗ with this form and bracket is a Manin triple.

Proof. Let us rewrite the cocycle condition in a Lie bialgebra

〈δ([X,Y ]), ξ ⊗ η〉 = 〈[X,Y ], [ξ, η]〉

Indeed,

〈δ([X,Y ]), ξ ⊗ η〉 = 〈adX δ(Y )− adY δ(X), ξ ⊗ η〉
= −〈δ(Y ), ad∗X(ξ ⊗ η)〉+ 〈δ(X), ad∗Y (ξ ⊗ η)〉
= −〈δ(Y ), ad∗X(ξ)⊗ η + ξ ⊗ ad∗X η〉

+ 〈δ(X), ad∗Y (ξ)⊗ η + ξ ⊗ ad∗Y η〉
= 〈Y, [ad∗X ξ, η] + [ξ, ad∗X η]〉 − 〈X, [ad∗Y ξ, η] + [ξ, ad∗Y η]〉
= 〈ad∗η Y, ad∗X ξ〉 − 〈ad∗ξ Y, ad∗X η〉
− 〈ad∗ηX, ad∗Y ξ〉+ 〈ad∗ξ X, ad∗Y η〉

Invariance of bilinear form is equivalent to

[ξ,X ] = ad∗ξ X − ad∗X ξ

〈[ξ,X ], η〉 = (ξ, [X, η]) = −〈ad∗X ξ, η〉, ∀ η
〈[ξ,X ], Y 〉 = 〈ξ, [X,Y ]〉 = −〈ad∗X ξ, Y 〉, ∀ Y

Therefore

〈δ([X,Y ]), ξ ⊗ η〉 = 〈[X,Y ], [ξ, η])〉
= −〈X, [Y, [ξ, η]]〉
= −〈X, [η, [Y, ξ]] + [ξ, [η, Y ]]〉 (from Jacobi identity)

= −〈X, [η, ad∗Y ξ − ad∗ξ Y ] + [ξ, ad∗η Y − ad∗Y η]〉
= 〈ad∗η Y, ad∗X ξ〉 − 〈ad∗ξ Y, ad∗X η〉
− 〈ad∗η X, ad∗Y ξ〉+ 〈ad∗ξ X, ad∗Y η〉

and this is formula obtained before. This proves (1).

Proposition 7.16. Let (g, δ) be a Lie bialgebra, (Dg, [−,−]) Lie algebra in
g⊕ g∗. Then

δ : Dg→ Λ2Dg

given by
δ(X + ξ) = δ(X) +t [−,−](ξ)

is a Lie cobracket.
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Example 7.17. g complex simple Lie bialgebra, g →֒ g⊕ g diagonal embedding.
Fix h Cartan subalgebra and choice of positive roots.

g = n− ⊕ h⊕ n+

b± = h⊕ n±

S := {(x, y) ∈ b+ ⊕ b− : x|h = −y|h}
Let on g⊕ g

〈(a, b), (c, d)〉 = 〈a, c〉 − 〈b, d〉
Then (g⊕ g, g, S) is a Manin triple.

Example 7.18. With the notation as before (g⊕ h, b+, b−) is a Manin triple.
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Chapter 8

Poisson actions

Recall some notations. Let G be a Lie group, g = Lie(G) its Lie algebra,
Lg, Rg : G→ G left and right translations with derivatives Lg,∗ : ThG→ TghG,
Rg,∗ : ThG→ ThgG.

Let (G,Π) be a Poisson Lie group, i.e.

Π(g1 · g2) = Lg1,∗Π(g2) +Rg2,∗Π(g1)

and let η : G→ Λ2TeG = Λ2g be

η(g) = Rg−1,∗Π(g).

Then η is a 1-cocycle of G with respect to adjoint action on Λ2g, i.e.

η(g1g2) = η(g1) + Adg1 η(g2)

Let δ : g→ Λ2g,

δ(X) =
d

dt
η(etX)

∣∣
t=0

Then (g, δ) is a Lie bialgebra

(g, [−,−]) is Lie

(g∗,t δ) is Lie

satisfying compatibility

δ([X,Y ]) = adX δ(Y )− adY δ(X).

The Lie algebra g∗ integrates to a (unique) connected (simply connected) Pois-
son Lie group G∗. Furthermore on g⊕ g∗ we have the following Lie bracket

[X + ξ, Y + η] = ([X,Y ] + ad∗X η − ad∗Y ξ, [ξ, η] + ad∗ξ Y − ad∗ηX)

and Lie cobracket
δD(X + ξ) = δ(X) + δ∗(ξ)

This makes g⊕g∗ a Lie bialgebra, which is called Drinfeld double of a Lie algebra
g. It integrates to (a unique sonnected, simply connected) Poisson Lie group
DG called Drinfeld double of a Lie group G.

451



Part IV Poisson actions

8.1 Poisson actions

Definition 8.1. Let (g, δ) be a Lie bialgebra. Let (M,Π) be a Poisson manifold,
together with an infinitesimal action, i.e. a Lie algebra morphism

ρ : g→ X(M)

Then ρ is called an infinitesimal Poisson action if

Lρ(X)Π = ρ∧2(δ(X)), ∀ X ∈ g (8.1)

Remark 8.2.

1. Π is not invariant under an infinitesimal Poisson action. If the infinitesimal
action is effective it is invariant if and only if δ = 0.

2. To be precise this could be considered an infinitesimal left Poisson action.
An infinitesimal right Poisson action is then a Lie algebra antihomomor-
phism such that (8.1) is verified.

Let now φ : G ×M → M be a Lie group action. Let us fix the following
notations

φ(g, x) = g · x
∀ g ∈ G, φg : M →M, x 7→ g · x
∀ x ∈M, φx : G→M, g 7→ g · x

Remark that
φg·x = φxRg, φgφx = φxLg.

For f ∈ C∞(M) let θf : M → g∗ be defined by

θf (x) = dgf(g · x)
∣∣
g=e

If we have only the infinitesimal action we can define equivalently

〈θf , Y 〉 = ρ(Y )f

Theorem 8.3 (Semonov-Tian-Shanskii). Let (G,ΠG) be a connected, simply
connected, Poisson Lie group with Lie bialgebra (g, δ). Let (M,ΠM ) be a Poisson
manifold. Let φ : G ×M → M be a Lie group action with infinitesimal map
ρ : g→ X(M). then following are equivalent

1. φ is a Poisson map with respect to the product Poisson structure;

2. for all x ∈M , g ∈ G

ΠM (g · x) = φg,∗ΠM (x) + φx,∗ΠG(g);

3. for all X ∈ g and f, g ∈ C∞(M)

ρ(X){f, g} − {ρ(X)f, g} − {f, ρ(X)g} = 〈[θf , θg], X〉;

4. ρ is an infinitesimal Poisson action, i.e. for all X ∈ g

Lρ(X)ΠM = ρ∧2(δ(X)).
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Proof. (1)⇐⇒ (2) by definition of product Poisson structure φ is Poisson if and
only if for all f1, f2 ∈ C∞(M), g ∈ G, x ∈M

{f1 ◦ φ, f2 ◦ φ}G×M (g, x) = {f1, f2}M (g · x)

But the left hand side equals

{f1 ◦ φx, f2 ◦ φx}G(g) + {f1 ◦ φg, f2 ◦ φg}M (x)

= 〈ΠG(g), φ∗xdg·xf1 ∧ φ∗cdg·xf2〉+ 〈ΠM (x), φ∗gdg·xf1 ∧ φ∗gdg·xf2〉
= 〈φx,∗ΠG(g), dg·xf1 ∧ dg·xf2〉+ 〈φg,∗ΠM (x), dg·xf1 ∧ dg·xf2〉

and the right hand side is

〈ΠM (g · x), dg·xf1 ∧ dg·xf2〉

Hence (1)⇐⇒ (2).
(3)⇐⇒ (4)

Lρ(X)ΠM = ρ∧2(δ(X)) = 〈δ(X), θf ∧ θg〉
⇐⇒ 〈Lρ(X)ΠM , df ∧ dg〉 = 〈ρ∧2(X), df ∧ dg〉

⇐⇒
Lρ(X)〈ΠM , df ∧ dg〉 = 〈ΠM , (Lρ(X)df ) ∧ dg〉 − 〈ΠM , df ∧ Lρ(X)dg〉

= 〈δ(X), θf ∧ θg〉
⇐⇒ ρ(X){f, g} − {ρ(X)f, g} − {f, ρ(X)g} = 〈X, [θf , θg]〉

because
〈δ(X), θf ∧ θg〉 = 〈X, [θf , θg]〉.

(2) =⇒ (4) by applying φg−1,∗ to both sides of (2) we have

φg−1,∗ΠM (g · x) = ΠM (x) + φg−1,∗φx,∗ΠG(g)

φg−1,∗ΠM (g · x) = ΠM (x) + φx,∗Lg−1,∗ΠG(g)

Now let g = etX , X ∈ g and differentiate with respect to t at t = 0

d

dt
φe−tX ,∗ΠM (etXx)

∣∣
t=0

= Lρ(X)ΠM

d

dt
φx,∗Le−tX ,∗ΠG(etX)

∣∣
t=0

= φx,∗
d

dt
Le−tX ,∗ΠG(etX)

∣∣
t=0

(4) =⇒ (2) Prove that

φe−tX ,∗ΠM (etX · x) = ΠM (x) + φe−tX ,∗φx,∗ΠG(etX)

Then prove that derivatives d
dt at t = 0 are equal.

φe−tX ,∗ΠM (etX · x) = φe−tX ,∗(Lρ(X)ΠM )(etXx)

= φe−tX ,∗(ρ
∧2(δ(X)))(etXx)

= φe−tX ,∗φetXx,∗[(LXΠG)(e)]

= φe−tX ,∗φx,∗RetX ,∗[(LXΠG)(e)]

= φx,∗Le−tX ,∗RetX ,∗[(LXΠG)(e)]

= φx,∗Ade−tX [(LXΠG)(e)].
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On the other hand

d

dt
(ΠM (x) + φx,∗Le−tX ,∗ΠG(etX)) = φx,∗

d

dt
Le−tX ,∗ΠG(etX)

= φx,∗Ade−tX (LXΠG(e)).

Therefore the two sides coincide for any x ∈ M in an open neighbourhood
of e ∈ G. Being G connected any open neighbourhood generates it and the
theorem is proven.

Remark 8.4.

1. φ does not preserve ΠM unless ΠG = 0. Neither φg nor φx are in general
Poisson maps.

2. The multiplicity condition (2) is often referred to as ΠM being covariant
with respect to ΠG.

3. m : G×G→ G is a left Poisson action on the Poisson Lie group itself. As
a special case of the previous statement neither left nor right translations
are Poisson maps.

4. Another way of stating the infinitesimal Poisson action condition is

dΠ(ρ(X)) = ρ∧2(δ(X))

g
ρ //

δ �� X(M)

dΠ��
Λ2g

ρ∧2
// X2(M)

Thus φ looks like some sort of intertwining operator between differentials.
In fact δ can be extended to a degree 1 derivation of Λ•g, simply by letting

δ(X1 ∧ · · · ∧Xn) =
n∑

i=1

(−1)iX1 ∧ · · · ∧ δ(Xi) ∧ · · · ∧Xn

The coJacobi condition on δ implies δ2 = 0. This turns Λ•g into a dif-
ferential Gerstenhaber algebra (Λ•g,∧, [−,−]). The infinitesimal action
condition shows that ρ : g→ X(M) with its natural extension ρ∧ : Λ•g→
X•(M) provides a morphism of differential Gerstenhaber algebras.

5. Right hand side of (4) does not depend on ΠM . Consider ΠM and Π′M such
that (G,ΠG) acts in a Poisson way on both. Then Lρ(X)(ΠM −Π′M ) = 0.
Thus ΠM −Π′M is an invariant bivector (not necessarily Poisson).

We can give a slightly different look on conditions (3)-(4).

θ : Ω1(M)→ C∞(M ; g∗) ∈ X(M)⊗ C∞(M ; g∗)

Recall the Poisson coboundary introduced in (4.1).

dΠ : Xp(M)→ Xp+1(M), dΠ(P ) = [Π, P ]

454



Part IV Poisson homogeneous spaces

(dΠX)(df, dg) = (LXΠ)(df, dg) = X{f, g} − {Xf, g} − {f, Xg}
Therefore LHS of (3) can be rewritten as

(dΠθ)(df, dg)

and phrased with suitable conventions as

(dΠθ − 1
2 [θ, θ])(df, dg) = 0

i.e. θ satisfies a Maurer-Cartan type of equation.

Proposition 8.5. Let (g, δ) be a Lie bialgebra with an infinitesimal Poisson ac-
tion ρ : g→ X(M) on the Poisson manifold (M,ΠM ). Let h be a Lie subalgebra
of g,

C∞(M)h = {f ∈ C∞(M) : ρ(X)f = 0 ∀ X ∈ h},
h⊥ = {ξ ∈ g∗ : 〈ξ, x〉 = 0 ∀ X ∈ h}.

Then

1. If h⊥ is a Lie subalgebra then C∞(M)h is a Poisson subalgebra.

2. If C∞(M)h is a Poisson subalgebra and {θf : f ∈ C∞(M)h} span h⊥,
then h⊥ is a Lie subalgebra.

Proof. Let f, g ∈ C∞(M)h. This means that for any X ∈ h, ρ(X)f = 0 =
ρ(X)g. Using condition (3)

ρ(X){f, g} = {ρ(X)f, g}+ {f, ρ(X)g}+ 〈[θf , θg], X〉 = 0

is equivalent to [θf , θg] ∈ h⊥. Now simply remark that for the case of an
infinitesimal action θf is defined via

〈θf , Y 〉 = ρ(Y )f ∀ Y ∈ g

Therefore f is invariant if and only if θf ∈ h⊥ and h⊥ is generated by such
elements. Thus the statement.

Corollary 8.6. If h\M is a smooth manifold then it posesses a Poisson struc-
ture and p : M → h \M is a Poisson map.

Corollary 8.7. If we have a global action and a closed connected subgroup H
such that h⊥ is a Lie subalgebra then the same holds true for H \M .

8.2 Poisson homogeneous spaces

Definition 8.8. A Poisson homogeneous space is a Poisson manifold (M,ΠM )
together with a transitive Poisson action of a Poisson Lie group.

Remark 8.9. The covariance condition is

ΠM (g · x) = φg,∗ΠM (x) + φx,∗ΠG(g)

When H is homogeneous for a given x ∈M this formula allows to compute ΠM

at all points from ΠM (x), i.e. ΠM is uniquely determined by its value at one
fixed point.
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Homogeneous G-spaces are of the form G/H for a closed Lie subgroup H .
We will show how, and why, such description does not work any more at the
Poisson level. First we need to describe properties of subgroups of Poisson Lie
group.

Definition 8.10. A Lie subgroup H of a Poisson Lie group G is called a Poisson
Lie subgroup if it is a Poisson submanifold. It is called a coisotropic subgroup
if it is a coisotropic submanifold.

Remark 8.11. Let H ≤ G be a Poisson (coisotropic) Lie subgroup and g ∈ G.
Then Adg(H) = gHg−1 may be Poisson, coisotropic or none of the above.

Proposition 8.12. Let H be a connected Lie subgroup of a Poisson Lie group
(G,ΠG).

1. H is a Poisson Lie subgroup if and only if h⊥ is an ideal in g∗.

2. H is coisotropic if and only if h⊥ is a Lie subalgebra.

Proof. H is a Poisson submanifold if and only if

IH = {f ∈ C∞(G) : f |H = 0}

is a Poisson ideal. Being h⊥ ⊂ g∗ spanned by covectors def , f ∈ IH , IH
is a Poisson ideal implies h⊥ ⊂ g∗ is an ideal. The converse is true due to
connectedness.

The second statement is proved analogously, but now we request that IH is a
Poisson subalgebra. h⊥ is still spanned by def , f ∈ IH , therefore the thesis.

Poisson homogeneous spaces φ : G ×M → M contain a number of special
cases.

1. Invariant Poisson structures (ΠG = 0)

2. Affine Poisson structures (M = G)

3. Non symplectic covariant (i.e. ΠG 6= 0) Poisson structures, which include

(a) ”Highly singular” covariant Poisson structures (∃ x0 ΠM (x0) = 0)

(b) Quotients by coisotropic subgroups

(c) Quotients by Poisson Lie subgroups

Furthermore (a) = (b) ⊃ (c).

Some relevant examples of Poisson Lie groups:

• (G,ΠG) any Poisson Lie group. Drinfeld double DG has a natural Poisson
Lie structure. G,G∗ →֒ DG (if it can be embedded) is a Poisson Lie
subgroup.

• G complex semisimple Lie group. K compact real form with standard
Poisson structure. Then DK = G. Furthermore, as the standard Pois-
son structure is defined via simple roots any Dynkin diagram embedding
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sorresponds to a Poisson Lie group. In particular to each node there cor-
responds a distinct Poisson embedding

SU(2) ⊂ SU(n)

Remark though that SL2 triples not corresponding to simple roots are not
Poisson Lie subgroups. For example



∗ ∗ 0
∗ ∗ 0
0 0 1







1 0 0
0 ∗ ∗
0 ∗ ∗




are Poisson Lie subgroups, but



∗ 0 ∗
0 1 0
∗ 0 ∗




is not.

Exercise 8.13. Classify Poisson Lie subgroups of SU(2).

Hint: Compute the dual Lie bialgebra. Classify ideals in this 3-dimensional Lie
algebra, distinguishing between 2-dimensional ideals and 1-dimensional ideals.
Check which of them is the ⊥ of a Lie algebra, and you have that the only pair
(h, h⊥) such that h is a Lie subalgebra of su(2) and h⊥ is a Lie ideal in su(2)∗

is when h = 〈H〉, H being the Cartan diagonal element. Therefore the only
connected Poisson-Lie subgroup is S1 diagonally embedded in SU(2) and the
disconnected ones are its discrete subgroups.

Exercise 8.14. Classify Poisson Lie subgroups of SL(n,C) with respect to the
standard structure.

It requires some work. A good start is to look at the first pages of [s-j03].
Coisotropy condition is much weaker. For example let H ≤ G be a Lie

subgroup of codimension 1. Then H is coisotropic. In fact dim h⊥ = 1 and
therefore h⊥ is a Lie algebra, [X,X ] = 0.

Let M be a Poisson homogeneous space. Fix x ∈M

TxM ≃ g/hx, hx - stabilizer of x

Proposition 8.15. For any v ∈ Λ2g/hx

Lx := {X + ξ : X ∈ g, ξ ∈ h⊥x , (ξ ⊗ id)(v) = X + hx}

is a Lagrangian subspace of the double.

Proof.
〈X + ξ, Y + η〉 = (ξ ⊗ η + η ⊗ ξ)(v) = 0

so Lx is isotropic. Surjectivity follows from surjectivity of X + ξ → X , which
implies maximality.

Theorem 8.16. For any x ∈ M let Lx be the Lagrangian subspace in Dg.
Then:
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1. Lx is a Lie subalgebra in Dg

2. Lgx = gLx where gLx is given by the adjoint action of G in Dg

3. There is a bijection between Poisson G-homogeneous structures on M and
G-equivariant maps from M to the set of Lagrangian subalgebras such that
if x ∈M then Lx ∩ g = hx.

Remark 8.17. Let Dg = g ⊕ g∗ be a Drinfeld double, G × Dg → Dg adjoint
action

Adg(X + ξ) = Adg X + Ad∗g−1 ξ iRg−1,∗Π(g) + Ad∗g−1 ξ

L(Dg) is an algebraic variety; the set of Lagrangian subalgebras of the double.
The adjoint action of G passes to an action on this variety

G× L(Dg)→ L(Dg)

Then theorem (8.16) says that on L(Dg) orbits are ”models” for Poisson homo-
geneous spaces ([el01]).

Proposition 8.18. Let M be a Poisson homogeneous space of (G,ΠG). For
x0 ∈M the following are equivalent:

1. ΠM (x0) = 0

2. φx0 : G→M is a Poisson map

3. Hx0 (stabilizer = {g ∈ G : gx0 = x0}) is coisotropic; M ≃ G/Hx0

Proof. (1) =⇒ (2) Take the same x0

ΠM (gx0) = φg,∗ΠM (x0)︸ ︷︷ ︸
=0

+φx0,∗ΠG(g)

Therefore φx0 is Poisson.
(2) =⇒ (1) Let φx0 be a Poisson map

ΠM (x0) = ΠM (ex0) = φx0,∗ΠG(e) = 0

(2) ⇐⇒ (3) We have already proven (3) =⇒ (2). Furthermore we know
that φx0 : G → M is Poisson if and only if {φ∗x0

f1, φ
∗
x0
f2}G is constant along

the fibers of φx0 (proposition (3.20)).

Lemma 8.19. {φ∗x0
f1, φ

∗
x0
f2}G is constant along all fibers if and only if

{φ∗x0
f1, φ

∗
x0
f2}G

∣∣
φ−1

x0
(x0)=Hx0

= 0

Proof. Let {φ∗x0
f1, φ

∗
x0
f2}G be constant along all fibers. Then it is constant

when restricted to Hx0 . But e ∈ Hx0 and

{φ∗x0
f1, φ

∗
x0
f2}G(e) = 0

due to ΠG(e) = 0. Therefore it is 0 on all Hx0 .
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Let {φ∗x0
f1, φ

∗
x0
f2}G

∣∣
Hx0

= 0. Take g, g′ ∈ G on the same fiber of φx0 . Then

there exists h ∈ Hx0 such that g′ = gh. Now

{φ∗x0
f1, φ

∗
x0
f2}G(g′) = 〈ΠG(gh), dgh(φ∗x0

f1)⊗ dgh(φ∗x0
f2〉

= 〈Lg,∗ΠG(h) +Rh,∗ΠG(g), dgh(φ∗x0
f1)⊗ dgh(φ∗x0

f2〉
= {L∗gφ∗x0

f1, L
∗
gφ
∗
x0
f2}(h) + {R∗hφ∗x0

f1, R
∗
hφ
∗
x0
f2}(g)

= {φ∗x0
(φg ◦ f1), φ∗x0

(φg ◦ f2)}(h)︸ ︷︷ ︸
=0 by hypothesis

+ {φ∗hx0
(φg ◦ f1), φ∗hx0

(φg ◦ f2)}(g)

= {φ∗x0
f1, φ

∗
x0
f2}(g)

because h ∈ Hx0 =⇒ φhx0 = φx0 .

Now we want to show

{φ∗x0
f1, φ

∗
x0
f2}G

∣∣
Hx0

= 0⇐⇒ Hx0 is coisotropic.

φ∗x0
f1 is constant along Hx0 , so

(φ∗x0
f1)(e) = c+ f ′, f ′ ∈ IHx0

= {f ∈ C∞(G) : f |Hx0=0}

{φ∗x0
f1, φ

∗
x0
f2}G = {f ′1 + c, f ′2 + c}G = {f ′1, f ′2}G

Remember that

{φ∗x0
f1, φ

∗
x0
f2}G(h) = 〈ΠG(h), dhφ

∗
x0
f1 ⊗ dhφ∗x0

f2〉

We want to prove that im #Π ⊆ N∗H . The point is that we can restrict to a
neighbourhood of identity (due to multiplicativity and connectedness). There
choose h = etH . It is enough to show that

d

dt
〈ΠG(h), dhφ

∗
x0
f1 ⊗ dhφ∗x0

f2〉|t=0 = 0

because we know that it is 0 at e. But this equals

〈δ(H), deφ
∗
x0
f1 ⊗ deφ∗x0

f2〉

and deφ
∗
x0
f1 ∈ h⊥, and in fact generates it. It is 0 if and only if δ(h) ⊂ h ∧ g,

that is precisely when Hx0 is coisotropic.

Proposition 8.20. Let G be a Poisson Lie group. Let K be a Poisson Lie
subgrouop and let H ′ be a coisotropic subgroup. Then H = K∩H ′ is coisotropic
in K and

i : K/K ∩H ′ → G/H ′

is a Poisson embedding.

Proof.
IK := {f ∈ C∞(G) : f |K = 0}

IK is a Lie ideal with respect to {−, −} and IH′ is a Lie subalgebra with respect
to {−, −}.

IH′∩K = IH′ + IK
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f = f1 + f2

Take f ′ ∈ IK
{f ′, f1 + f2} = {f ′, f1}︸ ︷︷ ︸

?

+ {f ′, f2}︸ ︷︷ ︸
∈IK

so IH′∩K is not in general a Lie ideal.
Take l1, l2 ∈ IH′∩K

{l1 + l2, f1 + f2} = {l1, f1}︸ ︷︷ ︸
∈IH′

+ {l1, f2}︸ ︷︷ ︸
∈IK

+ {l2, f1}︸ ︷︷ ︸
∈IK

+ {l2, f2}︸ ︷︷ ︸
∈IK

∈ IH′ + IK

Therefore IH′∩K is a Lie subalgebra with respect to {−, −}. The second state-
ment follows from the fact that in this diagram everything is Poisson

K //�� G��
K/H ′ ∩K // G/H ′

The following example is carried out in all details in [cs06].

Example 8.21. Take SU(n) with standard Poisson Lie structure

δ(Hi) = 0

δ(Ei) = Hi ∧ Ei
δ(Fi) = Hi ∧ Fi

Ei, Fi simple roots, i = 1, . . . , n.

Then S(U(1) × U(n − 1)), (a,A) 7→
(
A 0
O a

)
is a Poisson Lie subgroup

of SU(n). For every k ∈ {1, . . . , n}, (A,B) 7→
(
A 0
0 B

)
gives a Poisson Lie

subgroup Kk := S(U(k) × U(n − k)) →֒ SU(n). In particular SU(n)/Kn−1 =
CPn−1 with covariant Poisson structure.

Now take H ′ = Kn−1, K = Kk, k = 1, . . . , n− 2

H ′ ∩K ∼= U(k)×U(n− k − 1)

H ′/H ′ ∩K ≃ CPn−k−1

with the same Poisson structure.
Therefore we get

∗ →֒ CP 1 →֒ . . . →֒ CPn−2 →֒ CPn−1

This gives all symplectic foliation of CPn−1. Now change things a little bit.
There exists a family σc ∈ SU(n) such that Adσc H

′ is coisotropic. We want to
study

CPn−1
c ≃ SU(n)/Adσc H

′

Now H ′ ∩Kk changes.
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Proposition 8.22. The embedding

H ′/H ′ ∩Kk →֒ CPn−1
c

is an embedding of
S2k−1 × S2(n−k)−1 →֒ CPn−1

c

In particular, when k = 1, this gives

S2n−3 →֒ CPn−1
c

where odd spheres have the standard Poisson structure.

Recall that we have defined a Lie bracket on Ω1(M) (where M is Poisson)

[α, β] = L#Π(α)β − L#Π(β)α− d(Π(α, β)) (8.2)

What happens to this bracket when M = G is a Poisson-Lie group?

Theorem 8.23 (Dazord-Karasev-Weinstein). The left (resp. right) invariant
1-forms on a Poisson Lie group (G,ΠG) form a Lie subalgebra with respect to
(8.2). Furthermore this induces a Lie bracket on g∗ isomorphic to tδ.

Proof. Let α, β be left invariant 1-forms. Let X ∈ X1(G) be a left invariant
vector field. We will prove that [α, β] is left invariant by proving that 〈X, [α, β]〉
is constant for any such X .

〈X, [α, β]〉 = 〈X, L#Π(α)β − L#Π(β)α〉 − 〈X, d(Π(α, β))〉

Let’s look at the second summand

〈X, d(Π(α, β))〉 = LX(Π(α, β))

= (LXΠ)(α, β) + Π(LXα, β) + Π(α,LXβ)

= (LXΠ)(α, β) − 〈#Π, LXα〉+ 〈#Π(α), LXβ〉

Now consider first summand

〈X, L#Π(α)β〉 = L#Π(α)〈X, β〉︸ ︷︷ ︸
=0 because 〈X, β〉 is constant

−〈[#Π(α), X ], β〉

= −〈[#Π(α), X ], β〉
= 〈LX(#Π(α)), β〉
= 〈iLXΠα+ #Π(α), β〉

because #Π(α) = iΠ(α), [LX , iΠ] = iLXΠ.
Therefore

〈X, L#Π(α)β〉 = (LXΠ)(α, β) − 〈#Π(β), LXα〉
Similarly

〈X, L#Π(α)β〉 = −(LXΠ)(α, β) − 〈#Π(α), LXβ〉
Now substitute

LXΠ(α, β) − 〈#Π(β), LXα〉+ LXΠ(α, β) + 〈#Π(α), LXβ〉

−LXΠ(α, β) + 〈#Π(β), LXα〉 − 〈#Π(α), LXβ〉 = (LXΠ)(α, β)
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Lemma 8.24. If Π is a Poisson Lie bracket on G then for any X left invariant
vector field LXΠ is left invariant.

Proof. If X is left invariant on G its flow are right translations

(LXΠ)(g) =
d

dt
Re−tX ,∗Π(getX)|t=0

=
d

dt
(Re−tX ,∗Lg,∗Π(etX) +Re−tX ,∗RetX ,∗Π(g))|t=0

= Lg,∗
d

dt
RetX ,∗Π(etX)|t=0

= Lg,∗(LXΠ(e))

This proves that the bracket of left invariant 1-forms is left invariant because
〈X, [α, β]〉 = (LXΠ)(α, β) = 〈LXΠ(e), αe ∧ βe〉 so LXΠ is a left invariant 2-
vector field.

Now the statement follows from

tδ(def, deg) = de{f, g}

which gives the same as (8.2) computed at e.

[df, dg] = L#Π(df)dg − L#Π(dg)df − d(Π(df, dg))

= LXf
dg − LXgdf − d{f, g}

= d〈Xf , dg〉 − d〈Xg, df〉 − d{f, g}
= d{f, g}+ d{f, g} − d{f, g}
= d{f, g}

Left invariant 1-forms evaluated at e give you all of g∗ and therefore you can
say

tδ(ξ1, ξ2) = [df1, df2](e), where ξ1 = def1, ξ2 = def2.

Exercise 8.25. Consider the standard Poisson Lie group structure on SU(2).
Then su(2) has a basis

E1 = 1
2

(
i 0
0 −i

)
, E2 = 1

2

(
0 1
−1 0

)
, E3 = 1

2

(
0 i
i 0

)

Now δ : su(2)→ su(2) ∧ su(2)

δ(E1) = 0

δ(E2) = E1 ∧ E2

δ(E3) = E1 ∧ E3

Prove that this defines a Lie bialgebra, that is δ is a 1-cocycle

δ([X,Y ]) = adX δ(Y )− adY δ(X), adX = adX ⊗1− 1⊗ adX
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and
tδ : su(2)∗ ∧ su(2)∗ → su(2)∗

satisfies Jacobi identity. Check it is enough to verify the cocycle conditions for
(X,Y ) = (E1, E2), (E1, E3), (E2, E3).

Prove that for tδ = [−,−]

[e1, e2] = e2

[e1, e3] = e3

[e2, e3] = 0

define a Lie algebra structure.
Use the Killing form

〈A, B〉 = im(Tr(AB))

to identify su(2)∗ with
{(

x a+ ib
0 −x

)
: x, a, b ∈ R

}

Therefore the connected simply connected dual group

SB(2) =

{(
x z
0 x−1

)
: x ∈ R>0, z ∈ C

}
∼= R ⋉ C

Now let us describe all (SU(2),ΠG) Poisson homogeneous space structures on
S2. Let Π1, Π2 be Poisson homogeneous bivectors on S2. Then

1. Π1 −Π2 is SU(2)-invariant (general)

2. Π1 −Π2 is Poisson (because of dimension 2)

3. On S2 there is a ”unique” invariant symplectic form ω0 corresponding to
bivector Π0.

Π1 −Π2 = fΠ0

but being Π1−Π2 SU(2)-invariant, f = constant, Π1−Π2 = CΠ0. There-
fore we have a Poisson pencil of invariant Poisson structures on S2

cΠ0 + Π1

Choose as Π1 the quotient with respect to the Poisson Lie subgroup of
diagonal matrices. It is explicitely given by

{x1, x2} = (1− x1)x3

{x2, x3} = (1− x1)x1

{x3, x1} = (1− x1)x2 = (1− x1)Π0

Now
cΠ0 + (1− x1)Π0 = (λ − x1)Π0, λ ∈ R

Prove that λ 7→ −λ is a Poisson isomorphism.

In the corresponding symplectic foliation 0-dimensional leaves are given
by

{x2
1 + x2

2 + x2
3 = 1} ∩ {x1 = λ}

There are 3 cases
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Part IV Dressing actions

λ > 1 no 0-dimensional leaves, (λ− x1)Π0 is symplectic

λ = 1 (corresponding to Π1 the quotient by Poisson Lie group) {N} is a
0-dimensional leaf, and S2 \ {N} is a 2-dimensional leaf

0 ≤ λ < 1 (corresponding to Π1 the quotient by Poisson Lie subgroup) S1-family
of 0-dimensional leaves, two distinct 2-dimensional leaves.

If λ > 1 they all have different symplectic volume, thus they are not sym-
plectomorphic. If 0 ≤ λ < 1 they are not unimodular. The modular class is
x2δx3 − x3δx2 . Using 2-Poisson cohomology it is possible to show that S2

λ ≇ S2
λ′

for λ 6= λ′ in [0, 1].

8.3 Dressing actions

Take ξ ∈ g∗, and denote by ξL the associated left invariant 1-form and by ξR

the associated right invariant 1-form, i.e.

ξL(g) = L∗g−1ξ ∈ T ∗gG; ξR(g) = R∗g−1ξ ∈ T ∗gG .

Definition 8.26. Define λ, ρ : g∗ → X(G)

λ(ξ) := #Π(ξL)

ρ(ξ) := −#Π(ξR)

Lemma 8.27. λ is a Lie algebra morphism, ρ is a Lie algebra antimorphism.

Proof.

λ([ξ1, ξ2]) = #Π([ξ1, ξ2]L)

= #Π([ξL1 , ξ
L
2 ])

= [#Π(ξL1 ),#Π(ξL2 )]

ρ([ξ1, ξ2]) = #Π([ξ1, ξ2]R)

= #Π([ξR1 , ξ
R
2 ])

= −[#Π(ξR1 ),#Π(ξR2 )]

Therefore λ defines an infinitesimal left action of g∗ on G and ρ defines an
infinitesimal right action of g∗ on G. These are called infinitesimal dressing
actions.

Exercise 8.28. Prove that the inversion map S : g 7→ g−1 intertwines left and
right infinitesimal dressing actions, i. e. S∗ ◦ λ = ρ.

Definition 8.29. If the dressing action can be integrated to a global action of
G∗ on G, the Poisson Lie group G is said to be complete.

We recall that the notion of Poisson-Lie group is self dual, therefore the
above defines also the left and right infinitesimal dressing actions of g on the
dual Poisson-Lie group G∗.
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Part IV Dressing actions

Proposition 8.30. Locally symplectic leaves of G coincide with the orbits of
the left (or right) dressing action. If the Poisson Lie group is complete then the
symplectic leaves coincide with such orbits.

Proof. By definition left dressing vector fields are hamiltonian vector fields.
They are tangent to leaves. Therefore locally orbits are contained in leaves.

On the other hand values of the left dressing vector fields at any g ∈ G span
the tangent space to the leaf through g. Therefore orbits and leaves coincide
locally. If the action is global consider the whole orbit O ∈ S and TpO =
im#Π,p = TpS for all p. Thus O is a Poisson submanifold of S and therefore
O = S.

Dressing action is the most powerful tool for computing the symplectic
foliation of Poisson Lie group.

Proposition 8.31. Taking the derivative at e of left (resp. right) infinitesimal
dressing action you get (resp. minus) the coadjoint action of g∗ on g.

Theorem 8.32 (Semonov-Tian-Shansky,[]). Left and right dressing actions are
Poisson actions.

How can one integrate the dressing action? Recall the Drinfeld double Dg =
g⊕ g∗. Then locally (around e ∈ DG)

DG|U = GG∗|U

For any d ∈ U denote with dG its component in G, and with dG∗ its component
in G∗, such that d = dGdG∗ .

Proposition 8.33. The local action given by this splitting

g∗ · g := (g∗g)G

is a local left action of G∗ on G integrating the infinitesimal dressing action λ.

The proof relies on a characterisation of the dressing action we could not
give.
Whenever DG = GG∗ holds globally you have the global dressing action.

Example 8.34. Standard Poisson Lie structure onK compact. DK = G complex
semisimple in which K compact real form. DG = KAN+ Iwasawa decomposi-
tion is a global splitting of the double. Therefore symplectic leaves on K are
orbits of an AN+ action.

Take (G,Π = 0). Then G∗ ≃ g∗ abelian Lie group with Lie-. The dressing
action of G on G∗ is given by

λ : g→ X(G∗)

X 7→ #LP(XL)

where XL is identified with an invariant 1-form on G∗ (remark that TeG
∗ = g∗,

T ∗eG
∗ = g∗∗ = g).

〈#LP(XL)︸ ︷︷ ︸
∈Ω1

inv(G∗)

, Y L︸︷︷︸
∈Xinv(G∗)

〉(ξ) = {XL, Y L}(ξ) = 〈ξ, [X,Y ]〉 = 〈ad∗X ξ, Y 〉
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Part IV Dressing actions

Therefore #LP(XL) as vector field is the same as − ad∗X . Thus locally it is given
by coadjoint action of G on g∗. But this action is global. We recover the result
that symplectic leaves for the Lie-Poisson structure are orbits of the coadjoint
action.

How to integrate the dressing action? Recall that the Drinfeld double is a
Lie bialgebra on Dg = g⊕g∗ which integrates to a Poisson Lie group DG. Then
locally around e ∈ DG we have

DG|U = GG∗|U

Let d ∈ U ⊆ DG
d := dG · dG∗

with obvious notation.

Proposition 8.35. The local action given by the splitting

DG|U = GG∗|U

as
g∗ · g := (g∗g)G

integrates the infinitesimal dressing action.

Remark 8.36. When you have a global splitting of the double, you have a global
dressing action.

Examples 8.37.

1. K compact with standard Poisson Lie structure. Then G = KAN+ (Iwa-
sawa decomposition) is the double.

2. (G,Π = 0), (G∗ = g∗,ΠPL). Then the dressing action of G on G∗ is the
coadjoint action.

Theorem 8.38. Let g ∈ G (around e). The leaf through g locally is the image
of the double coset G∗gG∗ under the natural projection

DG→ DG/G∗ ∼= G

If the dressing action is global they are exactly those.
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Chapter 9

Quantization

9.1 Introduction

The purpose will be here to give a definition of quantization and estabilish a
vocabulary given us the link between two languages: Poisson geometry and
noncommutative algebras. Something like

classical semiclassical quantum

manifold Poisson manifold noncommutative algebra
group Poisson Lie group noncommutative Hopf algebra
point 0-leaf character

Of course to state all this correctly we need to be very precise on the setting in
which we will work. Apart from some preliminaries we will content ourselves to
deal with the group case where, for a number of reasons and still with a high
degree of attention on details, such dictionary behaves particularly well (i.e. is
a functor).

Let us start with a general definition of quantization. On the formal level
that will first require from us some definitions. We will work over the field
k = C. Basically all what follows work on any field of characteristic 0 and a not
so trivial part still holds in characteristic p.

Let us denote with C[[~]] the ring of formal power series in an indeterminant
~ with coefficients in C. The algebraic structure here is obvious:

∑

n≥0

an~n +
∑

n≥0

bn~n =
∑

n≥0

∑

n≥0

(an + bn)~n


∑

n≥0

an~n


 ·


∑

n≥0

bn~n


 =

∑

n≥0

( ∑

p+q=n

apbq

)
~n

This is a ring with unit 1. Invertible elements are exactly those power series
with a0 6= 0 (check this as an exercise).

Let now M be a C[[~]]-module. For every x ∈M define

κ(x) := max{k : x ∈ ~kM}
Define for every x, y ∈M

d(x, y) := 2−k(x−y)
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Lemma 9.1. d is a pseudo metric on M .

This metric induces a topology on M which is called the ~-adic topology. A
C[[~]]-module is called torsion free if the multiplication by ~ is an injective map.

Proposition 9.2. Let M be a topological C[[~]]-module. Then there exists a C-
vector space M0 such that M ∼=C M0[[~]] if and only if M is Hausdorff, complete,
~-torsion free.

Proof. If M ∼= M0[[~]] then one simply applies definitions.
In the opposite direction let M be Hausdorff, complete, torsion free. Let

M0 := M/~M . Take π : M →M0. Choose a section σ : M0 →M and define

σ̃ : M0[[~]]→M

∑

n≥0

~nmn 7→
∑

n≥0

~nσ(mn)

This σ̃ is well defined on formal power series because of completeness. In fact

N∑

n=0

~nσ(mn)

is a Cauchy sequence in N , therefore we have a well defined

lim
N→∞

N∑

n=0

~nσ(mn)

This σ̃ is injective as a consequence of ~-torsion freeness. In fact

∑

n≥0

~nσ(mn) = 0 =⇒ π

(
N∑

n=0

~nσ(mn)

)
= 0

=⇒ m0 = 0 =⇒ ~
N∑

n=1

~n−1σ(mn) = 0

Now divide by ~ and repeat the argument.
σ̃ is injective because of Hausdorffness.

A module M over C[[~]] of this form is called a topologically free module.
Take A to be a topologically free C[[~]]-algebra (completed tensor product).

Then being ~A an ideal A/~A is an algebra over C.

Definition 9.3. A quantization of an algebra A0 is a topological free C[[~]]-
algebra A such that A/~A is commutative.

Proposition 9.4. Let A be a quantization of A0. Then A0 is a Poisson algebra.

Proof. Take a, b ∈ A0, ā, b̄ ∈ A respective lifts (i.e. a = ā mod ~, b = b̄
mod ~). Remark that [ā, b̄] ∈ ~A from the commutativity of A0. Define

{a, b} :=
[ā, b̄]

~
mod ~
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Part IV Duality

This is well defined

[ā+ ~u, b̄+ ~v]

~
=

[ā, b̄]

~
+

~[u, b̄] + ~[ā, v]

~
+

~2[u, v]

~
= [ā, b̄] mod ~

In fact, when you have a Lie group, then you have two algebraic objects to
describe with: F [G] and U(g). What is their relation?

U(g) is a Hopf algebra (cocommutative). The ”right” choice of F [G] is a
Hopf algebra:

• G affine algebraic group and C[G] algebra of regular functions (sheaf of
Hopf algebras wnen you do not have affine)

• K compact group and R[K] algebra of representative functions (matrix
elements of irreducible representations)

• G Lie group and Cf [G] algebra of formal functions

If you consider everything as real objects you have a Hopf-*-algebras. (H,m,∆, ε, S)
is a Hopf-*-algebra if ∗ : A→ A is an involution, i.e.

(ab)∗ = b∗a∗

(λa)∗ = λ̄a∗

and

∆(a∗) = (∆a)∗

(a⊗ b)∗ = a∗ ⊗ b∗

(this implies (∗◦S)2 = id). Then U(g) and F [G] can be seen as Hopf-*-algebras.

9.2 Duality

Take X ∈ U(g). Then it defines a left invariant differential operator on G. Take
f ∈ F [G]

(Xf)(e) = 〈X, f〉
〈∆X, f1 ⊗ f2〉 = 〈X, f1f2〉

It gives you a nondegenerate pairing of Hopf-*-algebras. In general it is a map

〈−, −〉 : A⊗B → C

such that

〈a, b〉 = 0 ∀ a ∈ A =⇒ b = 0

〈a, b〉 = 0 ∀ b ∈ B =⇒ a = 0

〈1, b〉 = ε(b)

〈a, 1〉 = ε(a)

〈a1a2, b〉 = 〈a1 ⊗ a2, ∆b〉
〈∆a, b1 ⊗ b2〉 = 〈a, b1b2〉
〈S(a), b〉 = 〈a, S(b)〉
〈a∗, b〉 = 〈a, S(b)∗〉
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Part IV Duality

So you have a pair of Hopf-*-algebras in nondegenerate duality. More struc-
ture when (G,Π) is a Poisson-Lie group, F [G] is a Poisson algebra such that
multiplication m : G×G→ G satisfies

{f1 ◦m, f2 ◦m}G×G = {f1, f2}G ◦m

Definition 9.5. Poisson Hopf algebra is defned by condition

{∆f1, ∆f2}G×G = ∆{f1, f2}G

From our point of view it will be better to start with the infinitesimal de-
scription, i.e. universal enveloping algebra level. Let us first see what happens
at the universal enveloping algebra of a Lie bialgebra.

Definition 9.6. A coPoisson Hopf algebra is a pair (U, δ̂), where U is a Hopf

algebra and the linear map δ̂ : U → U ⊗ U is such that

δ̂(ab) = (∆a)δ̂(b) + δ̂(a)(∆b)

and the dual map δ∗ : U∗ ⊗ U∗ → U∗ is a .

Proposition 9.7. Let (g, δ) be a Lie bialgebra and U = U(g) its universal

enveloping algebra. Then there exists unique δ̂ : U(g)→ U(g)⊗ U(g) such that

δ̂|g = δ

In particular U(g) has a canonical coPoisson Hopf algebra structure.

Proof. The formula
δ̂(ab) = (∆a)δ̂(b) + δ̂(a)(∆b)

plus δ̂|g = δ defines δ̂ uniquely on all of U(g) once you have checked

δ([a, b]) = [∆a, δ(b)] + [δ(a),∆b], ∀ a, b ∈ g

which is equivalent to the 1-cocycle condition

[∆, a] = ada on g⊗ g.

Definition 9.8. A topologically free Hopf algebra H over C[[~]] is a quantized
universal enveloping algebra if

H/~H ∼= U(g)

for some Lie algebra g.

Proposition 9.9. Let H be a quantized universal enveloping algebra. Then g

has a Lie bialgebra structure defined by

δ(X) =
∆X −∆opX

~
mod ~

where X is any lifting of X ∈ g to H.
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Proof. ∆X −∆opX ∈ ~H because U(g) is cocommutative and therefore

∆X −∆opX

~
∈ H

δ(X) as defined does not depend on the choice of X

∆(X + ~u)−∆op(X + ~v)

~
=

∆X −∆opX

~
+ α, α ∈ ~H

Modulo ~ one obtains
∆X −∆opX

~
mod ~

δ(X) is skewsymmetric (clear) and belongs to g ⊗ g. δ(X) ∈ g ⊗ g if and only
if its two components are primitive elements.

(∆⊗ id)δ(X) =

[
1

~
(∆⊗ id)(∆X −∆opX)

]
mod ~

=

[
1

~
(id⊗∆− id⊗∆op)∆X + σ23(∆⊗ id−∆op ⊗ id)∆X

]

= (id⊗ δ)∆X + σ23(δ ⊗ id)∆X

CoJacobi identity for δ follows from coassociativity. Cocycle condition follows
from ∆ being an algebra morphism.

So for us a quantum group will be the following set of data. A pair F~[G]
(quantum functions algebra), U~(g) (quantum universal enveloping algebra) of
topological Hopf algebras over C[[~]] together with a nondegenerate Hopf pairing

〈−, −〉 : F~[G]× U~(g)→ C[[~]]

The pairing gives you U~(g) as ”dual” of F~[G] and vice-versa. You can start
with one of the two legs and construct the other. On the way you have some
choices. Many technical problems containing remarkable details.

This ”pairing” contains the (XLf)(e) kind of pairing, i.e. the interpretation
of U(g) as differentiable distributions supported at e. But it contains something
completely different.

9.3 Local, global, special quantizations

The discussion in the preceeding section was about local quantization. Their
main advantage is that they are well suited to capture relations between the
classical, semiclassical, and quantum properties (we will see some examples of
these relations in more details later). However they miss part of the relevant
information, or at least of the full geometry. For example local quantization
does not allow to specialize the deformation parameter to complex values 6= 0.
Being (~) the only maximal ideal in the local ring C[[~]] they can describe only
the limit ~→ a. But we know of some relevant parts of the theory of quantum
groups staying out of this range. This is the case, for example, of the theory
of quantum groups at roots of unity, which links quantum groups to 3-manifold
invariants and Lie algebras in characteristic p.

Let us denote with C(q) the field of rational functions in the variable q.

471



Part IV Local, global, special quantizations

Definition 9.10. Let Aq be a C(q)- Hopf algebra. An integer form (resp.
rational form) of Aq is a Z[q, q−1]-Hopf subalgebra (resp. Q[q, q−1]) A of Aq
such that

A⊗Z[q,q−1] C(q) = Aq

(resp. A⊗Q[q,q−1] C(q) = Aq)

Definition 9.11. Given a C(q)- Hopf algebra Aq together with an integer form
A a specialization of Aq to the complex number λ is

Aλ := A⊗Z[q,q−1] C

where the tensor product is taken with respect to ϕ : Z[q, q−1]→ C, ϕ(q) = λ.

In this way starting from a C(q)- Hopf algebra we obtain a C- Hopf algebra.

Example 9.12. Let g be a finitely dimensional complex simple Lie algebra. Then
Uq(g) is the associative Q(q)-algebra with generators X±i , K±1

i , 1 ≤ i ≤ n and
relations

KiKj = KjKi

KiK
−1
i = K−1

i Ki = 1

KiX
+
j K

−1
i = q

aij

i X+
j

KiX
−
j K

−1
i = q

−aij

i X−j

[X+
i , x

−
j ] = δij

Ki −K−1
i

qi − q−1
i

1−aij∑

r=0

(−1)r
[
1− aij
r

]

q

(X±i )1−aijX±j (X±i )r = 0, if i 6= j

together with the Hopf algebra structure

∆qK
±1
i = K±i

∆qX
+
i = X+

i ⊗Ki + 1⊗X+
i

∆qX
−
i = X−i ⊗Ki +K−1

i ⊗X+
i

Sq(Ki) = K−1
i

Sq(X
+
i ) = −X+

i K
−1
i

Sq(X
−
i ) = −KiX

−
i

εq(Ki) = 1

εq(X
±
i ) = 0

where [aij ] is the Cartan matrix of g, qi = qdi , and di are positive integers such
that [diaij ] is symmetric,

[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

(q; q)n = (1 − q) · . . . · (1− qn)

are the q-binomial coefficients.
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Remark 9.13.

• If we have a relation xy = qyx, then there is a following formula using
q-binomial coefficients

(x+ y)n =

n∑

k=0

[
n

k

]

q

xkyn−k

• It is not true that Uq(g) ⊗Q(q) C(q) = U(g) ⊗C C(q). For example in
U(g)⊗C C(q) you do not have that many invertibles.

• Let q = eh, Ki = edihHi . This defines a local quantization Uh(g) of the
standard bialgebra structure on g. To be precise you have, after modding
out relations, take closure in the h-adic topology.

• Examples of ambiquities in choices of integer form. You can declare

Ki −K−1
i

qi − q−1
i

= Ĥi to belong to Aq

or
K2
i − 1

q2i − qi
to belong to Aq

Choose between K±1
i X±i or X±i . Connected to choice of a lattice in be-

tween weight and root lattice, which is equivalent to choice in between
different groups with the same Lie algebra.

Definition 9.14. Let Fq(GLn(C)) be the C(q)-algebra generated by tij , det−1
q ,

1 ≤ i, j ≤ n with relations

tkitkj = qtkjtki, i < j

tiktjk = qtjktik, i < j

tiltkj = tkjtil, l < k, j < l

tijtkk − tkltij = (q − q−1)tiltkj , l < k, j < l

det q =
∑

σ∈Σn

(−1)l(σ)t1σ(1) . . . tnσ(n)

together with the Hopf algebra structure

∆tij =

n∑

k=1

tik ⊗ tkj

ε(tij) = δij

S(tij) = (−q)i−jξjcic det−1
q

where

ξjcic =
∑

σ ∈ Σn
i1, . . . , in−1 ∈ [1, . . . , n] \ {ic}

σ(i1), . . . , σ(in−1) ∈ [1, . . . , n] \ {jc}

(−q)l(σ)ti1σ(1)tjσ(1) . . . tin−1σ(n−1)tjσ(n−1)
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Here apparently there is no need to use the machinery of C(q)-algebras and
integer forms to specialize the parameter to complex values. This is why often
in this context one does not mention integer forms. Still they are relevant in
the duality between Fg[G] and Uq(g).

Definition 9.15. Let G be an affine algebraic complex Poisson group. A global
quantized function algebra on G is a C(q)- Hopf algebra Aq together with an
integer form A such that Aq=1

∼= F [G] as Hopf algebras.

Another good aspect of global quantization is that it provides you with
genuine (non topological) Hopf algebras.

9.4 Real structures

The usual approach to real structures is to consider C-Hopf algebras endowed
with a *-structure.

Definition 9.16. A Hopf-*-algebra is a Hopf algebra over C endowed with the
unital, involutive, antimultiplicative morphism ∗ : A→ A such that ∆ and ε are
*-homomorphisms.

One can then prove that ∗ ◦ S = S−1 ◦ ∗.

Proposition 9.17. Let G be a complex algebraic group with Lie algebra g. Then
there is a 1-1 correspondence between

1. real forms of G

2. Hopf-* structures on U(g)

3. Hopf-* structures on F [G]

Definition 9.18. A real quantum group is a global quantized function algebra
with a compatible *-structure.

Example 9.19. Consider the example of Fq[GLn(C)]. Fix on it the *-structure
given by

t∗ij = S(tji)

This gives you what is called the unitary Fq[U(n)] (compact form of Fq[GLn(C)]).

Example 9.20. Let 0 < q < 1. Consider the *-algebra generated by α, γ (=
t11,t22) subject to relations

αγ = qγα

αγ∗ = qγ∗α

γ∗γ = γγ∗

αα∗ + q2γγ∗ = 1

α∗α+ γ∗γ = 1
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together with the Hopf-algebra structure

∆α = α⊗ α− qγ∗ ⊗ γ
∆γ = γα+ α∗γ

ε(α) = 1

ε(γ) = 0

S(α) = α∗

S(γ) = −qγ

This is called the (standard) quantum SUq(2); Fq[SU(2)].

Example 9.21. Let 0 < q < 1. Consider the *-algebra generated by v, n subject
to relations

vv−1 = v−1v = 1

vn = qnv

nn∗ = qn∗n

vn∗ = qn∗v

together with the Hopf-algebra structure

∆v = v ⊗ v
∆n = v∗ ⊗ n+ n⊗ 1

ε(v) = 1

ε(n) = 0

S(v) = v−1

S(n) = −qn
S(n∗) = −q−1n∗

This is called the (standard) quantum Eq(2); Fq[E(2)].

Example 9.22. Consider now the *-algebra generated by v, n subject to relations

vv−1 = v−1v = q

vn− nv = q(1 − v)2

[n, n∗] = in

The Hopf algebra structure as before. This is called the non standard quantum
Eq(2).

9.5 Dictionary

In the following we would like to set up a whole dictionary

475



Part IV Quantum subgroups

classical semiclassical quantum

algebraic group Poisson algebraic group quantum group
compact group Poisson compact group compact quantum group
Lie algebra Lie bialgebra quantum universal enveloping agebra

Poisson dual quantum duality principle
Poisson double quantum double construction

point 0-leaf character

It is known in examples that quantum groups have few characters (classical
points). Why is it so?

Proposition 9.23. Let A~ be a local quantization of A0 = (F [M ],Π). There
is an injective map between set of characters of A~ (i.e. maps ε : A~ → C[[~]]
such that ε([A~, A~]) = 0) and 0-leaves of the Poisson bivector Π.

Proof. Let ε be the character of A~. Then ε defines a character of A0. Thus
there exists x0 ∈M such that ε(f) = f(x0) for all f ∈ A0.

Now
ε([a, b]) = 0 ∀ a, b ∈ A~

=⇒ ε({f1, f2}) = 0 ∀ f1, f2 ∈ A0

=⇒ {f1, f2}(x0)︸ ︷︷ ︸
〈Π(x0), dx0f1∧dx0f2〉

= 0

Thus if A0 is an algebra of functions on a smooth manifold such that dx0f
generate Ω1

x0
(M) we have Π(x0) = 0.

Example 9.24. Fq[SU(2)] (here *-characters - looking for real points)

ε(αγ)︸ ︷︷ ︸
ε(α)ε(γ)

= ε(qγα)︸ ︷︷ ︸
qε(γ)ε(α)

=⇒ (1− q)ε(α)ε(γ) = 0

Thus ε(α) = 0 or ε(γ) = 0 and so on. We end up with

ε(α) = t, ε(α∗) = t−1

This is just an issue of a more general situation. In principle you would
like to have a correspondence between primitive ideals of F~[G] and symplectic
foliation of (G,Π). For example if we take Uq(g) = Fq[g

∗] then by orbit method
we obtain a homeomorphism between primitive ideals in Uq(g) and coadjoint
orbits of G on g∗. It would be nice to have a ”quantum orbit method”. In fact
it works for compact quantum groups.

9.6 Quantum subgroups

Let H be a closed or algebraic subgroup of G.

IH = {f ∈ F [G] : f |H = 0}

is a Hopf ideal and
F [G]/IH ∼= F [H ]
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as Hopf algebras. To put it another way

H subgroup of G ⇐⇒ F [G]→ F [H ] Hopf algebra epimorphism

Alternatively thinking at the infinitesimal level

h subalgebra of g ⇐⇒ U(h)→ U(g) Hopf algebra monomorphism

It is therefore natural to say

Definition 9.25. A quantum subgroup of a (global, local, special) quantized
algebra of functions is a topological Hopf algebra epimorphism

Fq[G]→ Fq [H ]

Therefore quantum subgroups correspond to Hopf ideals in Fq[G].

9.7 Quantum homogeneous spaces

Let B be a unital *-algebra and let A be a Hopf-*-algebra.

Definition 9.26. A *-algebra homomorphism δ : B → b⊗A is a right coaction
if

(id⊗∆) ◦ δ = (δ ⊗ id) ◦ δ
(id⊗ ε) ◦ δ = id

B is called A-right quantum space.

Which right coactions correspond to homogeneous actions? Here we mean
A = F [G], B = F [X ], δ dual of action φ : G×X → X .

Definition 9.27. Two right quantum spaces (B, δ), (B′, δ′) are equivalent if
and only if there exists Φ: B → B′ *-algebra isomorphism such that

δ′ ◦ Φ = (Φ⊗ id)δ (9.1)

B //�� B′��
B ⊗A // B′ ⊗A

Modifying the following definition replacing the identity in (9.1) by a *-
algebra morphism Ψ: A→ A′

δ′ ◦ Φ = (Φ⊗Ψ) ◦ δ
gives the definition of equivariant map of quantum spaces on different Hopf
algebras.

Proposition 9.28. Let (B, δ) be A-right quantum space. There is a 1:1 cor-
respondence between *-algebra homomorphisms ε̃ : B → C and *-algebra homo-
morphisms i : B → A such that

∆ ◦ i = (i⊗ id) ◦ δ
The correspondence is given by

ieε = (ε̃⊗ id) ◦ δ
ε̃ = ε ◦ i
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Proof. Say ε̃ : B → C is given. Define

ieε := (ε̃⊗ id) ◦ δ

We have

∆ ◦ ieε = ∆ ◦ (ε̃⊗ id) ◦ δ
= (ε̃⊗ id⊗ id) ◦ (id⊗∆) ◦ δ (∆ is C-linear)

= (ε̃⊗ id⊗ id) ◦ (δ ⊗ id) ◦ δ (δ is a coaction)

= (ieε ⊗ id) ◦ δ

hence ieε verifies the required identity. Furthermore we then have

ε ◦ ieε = (ε̃⊗ ε) ◦ δ = (ε̃⊗ id) ◦ (id⊗ ε) ◦ δ = ε̃

Say i : B → A is given. Let ε̃ = ε ◦ i. Then

(ε̃⊗ id) ◦ δ = ((ε ◦ i)⊗ id) ◦ δ = (ε⊗ id) ◦ (i⊗ id) ◦ δ = (ε⊗ id) ◦∆ ◦ i = i

Thus for any A-right quantum space (B, δ) such that B has a character there
exists an equivariant map between (B, δ) and a subalgebra (iε(B),∆|iε(B)) of
A.

What is iε(B) in usual language? Take a G-space X . Fix x0 ∈ X . Then
consider

F [X ]→ F [G], f 7→ f̃x0

where f̃x0(g) := f(gx0). When X is a classical homogeneous space we have that
this map is injective.

Definition 9.29. An embeddable quantum homogeneous space is an A-right
quantum space (B, δ) with a *-homomorphism ε̃ : B → C such that ieε is injective.

Identifying (B, δ) with (ieε(B),∆|ieε(B)) we can equivalently declare an em-
beddable quantum homogeneous space to be a *-subalgebra and right coideal
of Fq[G].

Remark 9.30. This is not the most general fdefinition of quantum homogeneous
space. In fact it requires B to have a character, which is in noncommutative
algebras something not so trivial.

Let us understand this from the point of view of semiclassical limit. Every-
thing above can be rephrased on C[~]-Hopf-*-algebras. Now we have

Having one
character��

Being embeddable
i.e F~[X] →֒ F~[G]

OO
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But we have seen already this at the semiclassical level

SEMICLASSICAL QUANTUM

Having a 0-dimensional
leaf ΠX(x0) = 0

//�� Having one
character��oo

Having Poisson
surjective map
G→ X
i.e. having a coinduced
Poisson structure

//��
OO

Being embeddable
i.e F~[X] →֒ F~[G]

oo ��
OO

Being the quotient
by a coisotropic subgroup

//OO
THEN WE WANT
TO FILL THIS !

oo OO
Before going into this we want to understatnd the relation betwwen quantum
subgroups and embeddable quantum homogeneous spaces.

Proposition 9.31. Let Fq[G] = A be a quantum group and let Fq[H ] be a
quantum subgroup with defining ideal IH , i.e.

Fq[H ] = Fq[G]/IH , pH : Fq[G]→ Fq[H ]

If our quantum group is real require also I∗H = IH . Define

BH := {b ∈ A : (pH ⊗ id)∆b = 1⊗ b} = BcoIH

Then BH is a *-subalgebra and right coideal of A. Furthermore BH is S2-
invariant and pH(b) = ε(b)1 for all b ∈ B.

Proof. Remark that

y ∈ BH ⊗A ⇐⇒ (pH ⊗ id⊗ id)(∆⊗ id)y = 1⊗ y
Take b ∈ BH . We want to show that ∆b ∈ BH ⊗A.

(pH ⊗ id⊗ id) ◦ (∆⊗ id) ◦∆b = (pH ⊗ id⊗ id) ◦ (id⊗∆) ◦∆b

= (id⊗∆) ◦ (pH ⊗ id)∆b︸ ︷︷ ︸
1⊗b

= 1⊗∆b

Now we will prove that BH is S2-invariant. In fact S2 is a Hopf algebra auto-
morphism

(pH ⊗ id) ◦∆ ◦ S2(b) = (pH ⊗ id) ◦ (S2 ⊗ S2) ◦∆b

= ((pH ◦ S2)⊗ S2) ◦∆b

= (S2 ⊗ S2) ◦ (1⊗ b)
= 1⊗ S2b

Lastly, apply id⊗ ε to (pH ⊗ id) ◦∆b = 1⊗ b to prove pH(b) = ε(b)1.
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We would like to check whether all quantum homogeneous spaces are of this
form. We have a necessary condition, S2-invariance. Is it always verified?

Example 9.32. Consider on the standard Fq[E(2)]

z = λv + n, z̄ = λ̄v∗ + n∗, λ ∈ C, |λ| = 1

B = *-subalgebra generated by z, z̄. Then B coincides with polynomials in z
and z̄.

zz̄ = q2z̄z + (1− q2)

z∗ = z̄

Furthermore B is a coideal, ∆B ⊂ A⊗B.

∆z = v ⊗ z + n⊗ 1

∆z̄ = v∗ ⊗ z̄ + n∗ ⊗ 1

But B is not S2-invariant unless λ = 0.

S(z) = λS(v) + S(n) = λv∗ − q−1n

S2(z) = λv − q−2n

Thus z, S2(z) ∈ B, so n ∈ B, which is not true if λ 6= 0.

Example 9.33. Similarly consider Fq[SU(2)]. Take

K := s(γα+ α∗γ∗) + (1− s2)γ∗γ

L := s(α2 − qγ∗2) + (1− s2)αγ∗

One can check that:

1. The *-subalgebra generated by K and L is isomorphic to the universal
*-algebra on these two generators and relations

K = K∗

LK = q2KL

LL∗ +K2 = (1− s2)K + s2

LL∗ + qK2 = (1− s2)q2K + s2, s ∈ [0, 1]

2. This *-subalgebra is always a right coideal and therefore is an embeddable
quantum homogeneous space

3. This *-subalgebra is a quotient by a quantum subgroup if and only if
s = 1.

We are looking for a quantum analogue of a coisotropic subgroup.
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9.8 Coisotropic creed

When A~ is a quantization of (M,Π) then one-sided ideals in A~ should corre-
spond to coisotropic submanifolds. The motivation for this comes from charac-
terization

Poisson submanifold N�� Coisotropic submanifold N��
IN is an ideal
and a Poisson ideal

OO
�� IN is an ideal

and a Poisson subalgebra

OO
��

Iq,N is an ideal
(two-sided ideal)

OO
SOMETHING WEAKER
BUT STRONGER THAN
BEING A SUBALGEBRA

OO
Proposition 9.34. Let A~ is a quantization of M . Take I to be a right ideal
in M . Then I0 = I/~I is an ideal in A0 and a Poisson subalgebra in M .

Proof. Let i ∈ I, f ∈ A~

f ∗ i = fi+ ~{f, i}+ . . . ∈ I

[f ∗ i]~I = fi ∈ I/~I
To be precise, take f ∈ A0, i ∈ I0. Take any lift f̄ ∈ A~, ī ∈ I.

f̄ = f +O(~), ī = i+O(~)

Then
f̄ ∗ ī = fi+O(~) =⇒ [f̄ ∗ ī] = f0i0 ∈ A0I0

ī ∗ f̄ = fi+O(~) =⇒ [̄i ∗ f̄ ] = i0f0 ∈ A0I0

But now
f̄ ∗ ī− ī ∗ f̄ ∈ ~A~ /∈ I

so we cannot define {f, i} ∈ I0. Still what we have is the following. Let i, j ∈ I0.
Take ī, j̄ ∈ I lifting i, j.

ī ∗ j̄, j̄ ∗ ī ∈ I =⇒ [̄i, j̄] ∈ ~I

=⇒ {i, j} ∈ I0
so I0 is a Poisson subalgebra.

We will stick to this creed and declare the following

Definition 9.35. Let A be (*)- Hopf algebra. A right (real) coisotropic quantum
subgroup C is a coalgebra and A-right module C such that there exists surjective
linear map p : A → C, which is a morphism of coalgebras and right A-module
(endowed with an involution σ such that p ◦ (∗ ◦ S) = σ ◦ p).
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Proposition 9.36. C is a right (real) coisotropic quantum subgroup if and only
if there exists IC ⊆ A, which is a ((∗ ◦S)-invariant) two sided coideal and right
ideal such that

p : A→ A/IC ∼= C

Remark 9.37. All Poisson subgroups can be quantized in a context of functo-
rial quantization, but it is not known in such context whether all coisotropic
subgroups can be quantized.

Proposition 9.38.

1. Let C be a coisotropic quantum subgroup of A with defining ideal I. Then

BC := {a ∈ A : (p⊗ id) ◦∆b = pIC (1)⊗B}

is an embeddable quantum homogeneous space of A.

2. Let B be an embeddable quantum homogeneous space. Then

IB := {(b− ε(b)1) : b ∈ B}

is a right ideal and two sided coideal of A.

Is this

coisotropic quantum
subgroups

// embeddable quantum
homogeneous spaces

oo
a bijective correspondence? Is it true that quotient by quantum subgroups are
characterized by S2-invariance? Almost.

Let B be a right coideal subalgebra. Take

AB+ := B ∩ ker ε = {b− ε(b)1 : b ∈ B}

In general B ⊆ AcoA/AB+

but not necessarily equal. If the antipode is bi-
jective and we restrict to left faithfully flat right coideal subalgebras and left
faithfully coflat coisotropic quantum subgroups, then in that case S2-invariance
corresponds to quotient by a coisotropic quantum subgroup.
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Strasbourg, 7 rue R. Descartes, 67084 Strasbourg Cedex, France)
– Chapters 1, 2, 5, 6, 7.

• Mariusz Wodzicki
(Department of Mathematics, 970 Evans Hall 3840, University of Califor-
nia, Berkeley, USA)
– Chapters 8, 9, 10.

With additional lectures by:

• Piotr M. Hajac – Chapter 3.

• Ulrich Krähmer – Chapter 4.

491



Chapter 1

Cyclic category

1.1 Circle and disk as a cell complexes

The circle in its simplest decomposition has one 0-cell (a point) and one 1-cell
(an interval).

��
��
��

��
��
��

Figure 1.1: Circle

This is the only way to form a circle from an interval. If we try to decompose
a disk of higher dimension, then we have choices. In the table below we give a
few examples of decomposition of an n-cell.
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Part V Circle and disk as a cell complexes

0 1 2 ... n
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n-permutohedron

The construction of an n-associahedron can be given by the use of Stasheff
complex. Its vertices are defined to be all ways of putting parentheses to a word
of length (n + 1). They are in bijection with the set of planar binary rooted
trees as we can see on the example of words of length 3 and 4.

((x1x2)x3) (x1(x2x3))

There is a partial order on trees in which the first tree on the picture is
before the second one. This can be generalized for the trees with more leaves,
and is called the Tamari order.
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Part V Circle and disk as a cell complexes

(((x1x2)x3)x4) (x1(x2(x3x4)))

We can associate a tree to each vertex of a 2-associahedron and order them
using the ordering on trees.

The realization of the Stasheff polytope as a subspace in Rn is homeomorphic
to a ball. To each planar binary tree t we associate a point M(t) = (x1, . . . , xn)
in Rn as follows. The i-th coordinate is the product of the number of leaves to
the left of i-th vertex times the number of leaves to the right.

1

2

3

4

Figure 1.2: Tree t

M(t) = (1 · 1, 2 · 1, 3 · 2, 1 · 1) = (1, 2, 6, 1) ∈ R4

The Stasheff polytope Kn−1 of dimension n− 1 is the convex hull of the points
M(t) for all planar binary tree with (n+ 1) leaves. The sum of coordinates is

n∑

i=1

xi =
n(n+ 1)

2

so the Stasheff polytope lies in the hyperplane given by this equation. The
examples of Stasheff polytopes K1 and K2 are in the following pictures.
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The Stasheff polytope K3 has 14 vertices and 9 faces. The faces are three
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Part V Simplicial sets

squares and six pentagons (2-associahedrons). In general, the Stasheff polytope
Kn has faces of the form Kp ×Kq, where p+ q = n.

What about the permutohedron? Take an element σ in the symmetric group
Sn. Associate to it the point M(σ) = (σ(1), . . . , σ(n)) ∈ Rn. Then we have
permutohedron Pn−1 as a convex hull of all points M(σ) for all permutations.

Of course
∑n

i=1 σ(i) = n(n+1)
2 , so it lies in the hyperplane given by the equation∑n

i=1 xi = n(n+1)
2 .
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Figure 1.3: 2-permutohedron

In general Pn has faces of the form Pp × Pq, where p+ q = n− 1.
Observe that we have an order on the vertices of our complexes.
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On the set of vertices of the n-simplex the order comes from the order on
natural numbers, because the vertices are numbered from 0 to n.

On the set of vertices of the n-associahedron the order is called the Tamari
order.

On the n-permutohedron the order comes from the weak Bruhat order on
the symmetric group Sn.

1.2 Simplicial sets

Definition 1.1. The n-simplex is the subspace ∆n = {(x0, . . . , xn) ∈ Rn+1 :∑
i xi = 1, 0 ≤ xi ≤ 1}.

Denote by i the vertex on the xi-axis. On the set of vertices of an n-simplex
we have an ordering coming from the order on the set [n] = {0, . . . , n}.

495



Part V Simplicial sets

Figure 1.4: Tamari order on trees

1

0

0

1

2

0

1

2

3

Definition 1.2. Define two kinds of order preserving maps on simplices

• Face maps δi : ∆n−1 → ∆n, i = 0, . . . , n, whose image is the face not
containing i as image:

δi(x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi+1, . . . , xn).

• Degeneracy maps σj : ∆n+1 → ∆n, j = 0, . . . , n which squeezes the j-th
face:

σj(x0, . . . , xn+1) = (x0, . . . , xj−1, xj + xj+1, xj+2, . . . , xn+1).

Degeneracy map which does not preserve the ordering on vertices is not
allowed. For example if n = 2 we have two allowed degeneracies s0, s1
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Part V Simplicial sets

The face and degeneracy maps satisfy the following identities

δjδi = δiδj−1, i < j

σjσi = σiσj+1, i ≤ j

σjδi =





δiσj−1 i < j

id i = j, i = j + 1

δi−1σj i > j + 1

Definition 1.3. A simplicial set is a collection of sets {Kn}n≥0 with a collection
of maps

di : Kn → Kn−1, i = 0, . . . , n

sj : Kn → Kn+1, j = 0, . . . , n

satisfying ”the dual relations”

didj = dj−1di, i < j

sisj = sj+1si, i ≤ j

djsi =





sj−1di i < j

id i = j, i = j + 1

sjdi−1 i > j + 1

A simplicial morphism ϕ• : K• → K ′• is a collection of maps ϕn : Kn → K ′n
which commute with face and degeneracy maps

Kn
ϕn //

dK
i �� K ′n

dK′

i��
Kn−1 ϕn−1

// K ′n−1

Kn+1
ϕn+1 // K ′n+1

Kn ϕn

//sK
j

OO
K ′n

sK′

j

OO
Now suppose we have a simplicial set K•. For all x ∈ Kn we take a simplex

∆n and we will build a topological space out of these data.
The geometric realization of a simplicial set is the following topological space

∣∣X•
∣∣ :=

∐

n≥0

Xn ×∆n/ ∼,

where the equivalence relation ∼ is defined as follows. We identify (x, δit) ∈
Xn ×∆n with (dix, t) ∈ Xn−1 ×∆n−1 for any x ∈ Xn, t ∈ ∆n−1 and (x, σjt) ∈
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Xn ×∆n with (sjx, t) ∈ Xn+1 ×∆n+1 for any x ∈ Xn−1 and t ∈ ∆n+1. The
topology on |X•| is the quotient topology.

There exists a simplicial category ∆, whose objects are finite ordered sets
[n] = {0, . . . , n}, and morphism Mor([n], [m]) are nondecreasing set maps.

The category ∆ can be described by generators and relations. As generators
we take face and degeneracy maps

δi : [n− 1]→ [n]

σj : [n+ 1]→ [n]

and relations are as before

δjδi = δiδj−1, i < j

σjσi = σiσj+1, i ≤ j

σjδi =





δiσj−1 i < j

id i = j, i = j + 1

δi−1σj i > j + 1

A simplicial set is a functor X : ∆op → Sets.

Example 1.4. Take Xn = {∗} for all n ≥ 0, di, sj- the identity. Then |{∗}| = ∗.
Example 1.5. Take a monoid M (or a group). Define M• as follows.

Mn := M × . . .×︸ ︷︷ ︸
n times

M = Mn

di(m1, . . . ,mn) =





(m2, . . . ,mn) i = 0

(m1, . . . ,mimi+1, . . . ,mn) 0 < i < n

(m1, . . . ,mn−1) i = n

sj(m1, . . . ,mn) = (m1, . . . ,mj, 1,mj+1, . . . ,mn)

Example 1.6. Let C be a small category. The nerve of C is the following simplicial
set

Cn := {C0
f1−→ C1

f2−→ . . .
fn−→ Cn}

di(C0
f1−→ C1

f2−→ . . .
fn−→ Cn) = forget about Ci

= (C0
f1−→ C1

f2−→ . . .→

→ Ci−1
fi+1◦fi−−−−−→ Ci+1 → . . .

fn−→ Cn)

sj(C0
f1−→ C1

f2−→ . . .
fn−→ Cn) = insert idCj

= (C0
f1−→ C1

f2−→ . . .→

→ Cj−1
fj−→ Cj

id−→ Cj
fj+1−−−→ Cj+1 → . . .

fn−→ Cn)

The axioms of a category are exactly the conditions for C• to be a simplicial
set.
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f g f g

h

hg

gfgf

h(gf)=(hg)f

Figure 1.5: Associativity relation

To each category we associate its

B C := |C•|

The BG of a groupG is obtained from the realization of simplicial set in example
(1.5). If G is discrete, then we can prove the following

π1(BG) = G

πn(BG) = 0, n > 1.

If all Xn are topological spaces, and the face and degeneracy maps are con-
tinuous, then we call X• a simplicial space. Then the geometric realization is
defined as before, but we keep track of the topology of Xn in the construction.

∣∣X•
∣∣ :=

∐

n≥0

Xn ×∆n/ ∼,

(x, δit) ∼ (dix, t)

(x, σjt) ∼ (sjx, t)

1.3 Fibrations

A locally trivial fibration is a surjective map of topological spaces f : E → B
such that for every b ∈ B there exists an neighbourhood Ub of b in B such that
f−1(Ub) ∼= Ub × F , where F is a fiber.

Example 1.7. The Möbius band is a fibration over S1. It is not a trivial fibration
because it is not a product.

There is a fibration
G→ EG→ BG

where EG is a contractible space. For example if G = Z, then this fibration is
homotopy equivalent to

Z→ R→ S1

But B Z is not a space with one 0-cell and one 1-cell. The 0-cells are in bijection
with Z, and the 1-cells are in bijection with pairs of distinct integers.
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Part V Cyclic category

Figure 1.6: Z →֒ R→ S1

Example 1.8. The Hopf fibration is a map f : S3 → S2 with fiber S1 which can
be described as follows.

S3 := {(z, z′) : |z|2 + |z′|2 = 1} ⊂ C× C,

S2 := {(t, z) : t2 + |z|2 = 1} ⊂ R× C,

f(z, z′) = (|z|2 − |z′|2, 2zz′) ∈ R× C.

The restriction of f to the north (resp. south) hemisphere is a trivial fibration.
Another description of the sphere S3 is given by gluing two solid tori S1×D2

and D2 × S1 along the boundary S1 × S1.

If X and Y are pointed spaces, then we can perform the join construction
X ∗ Y :

X ∗ Y := X × I × Y/ ∼,
(x, 0, ∗) ∼ (x′, 0, ∗),
(∗, 1, y) ∼ (∗, 1, y).

For example S1 ∗ S1 = S3.

Exercise 1.9. Show that ∆p ∗∆q ∼= ∆p+q+1.

1.4 Cyclic category

We know that B Z is homotopy equivalent to S1. Consider a question: what
is the simplicial set C• whose geometric realization is the circle with the cell
structure consisting of one 0-cell and one 1-cell (not up to homotopy)?

The 0-cell ∗ ∈ C0 generate only one element, still denoted by ∗ in each Cn.

500



Part V Cyclic category

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

8

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

Figure 1.7: S3 = S1 ×D2 ∪S1×S1 D2 × S1

Suppose we an add additional element τ to C1. Then we get

C0 = {∗}
C1 = {∗, τ}
C1 = {∗, s0τ, s1τ}
C3 = {∗, s1s0τ, s2s0τ, s2s1τ}
. . . . . .

Cn = {∗, . . . , sn−1 . . . ŝi, . . . s0τ, . . .}

The faces are obvious to find. In particular d0(τ) = ∗ = d1(τ). Then |C•| is a
circle with its simplest cell structure. We can identify

Cn = {∗, . . . , sn−1 . . . ŝi, . . . s0τ, . . .}

with the cyclic group Z/(n+1)Z =: Cn by sending ∗ to 0, and sn−1 . . . ŝi, . . . s0τ
to i + 1. Denote the generator of Cn by tn.
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Part V Cyclic category

There exists a cyclic category ∆C whose objects are finite ordered sets
[n] = {0, . . . , n}, and morphism Mor([n], [m]) are generated by δi, σj as in
the simplicial category, and an additional morphism τn : [n]→ [n] for all n ≥ 0
satisfying the relations

τn+1
n = id[n],

τnδi = δi−1τn−1, 1 ≤ i ≤ n,
τnδ0 = δn,

τnσj = σj−1τn+1, 1 ≤ j ≤ n,
τnσ0 = σnτ

2
n+1.

If in this presentation we omit the relation τn+1
n = id[n], then we get a different

category, denoted ∆Z.

Definition 1.10. A cyclic set is a functor ∆Cop → Sets.

Proposition 1.11. C• is a cyclic set.

Proposition 1.12.
Aut∆([n]) = {1}

Aut∆C([n]) = Cn = Z/(n+ 1)Z

Every morphism of ∆C can be written uniquely as φ◦g, where φ ∈ Mor∆([n], [m]),
g ∈ Cn = Mor∆C([n], [n]). As sets

Hom∆C([n], [m]) ∼= Hom∆([n], [m])× Cn

The composition of two morphisms (g ◦ φ) and (h ◦ ψ) is in ∆C, so there
exist φ∗(h) ∈ Cn and h∗(φ) ∈ Mor∆([n], [m]) such that the following diagram
commutes.

[n]
g // [n]

φ //
φ∗(h)  AAAAAAAA [m]

h // [m]
ψ // [r]

[n]

h∗(φ)

==||||||||
Analogously, suppose we have two subgroups A,B ⊆ G such that every element
of G can be written uniquely as g = ab, a ∈ A, b ∈ B. In this situation

gg′ = aba′b′ = a b∗(a′)︸ ︷︷ ︸
∈A

a′∗(b)︸ ︷︷ ︸
∈B

b′.

The relations satisfied by φ∗ and h∗ are exactly the same as the relations satisfied
by b∗ : A→ A and a∗ : B → B.

Remark 1.13. There is a way of constructing a category ∆S along the same lines,
such that Aut∆S([n]) = Sn+1 - the symmetric group. Every morphism of ∆S can
be written uniquely as φ◦g, where φ ∈ Mor∆([n], [m]), g ∈ Sn = Mor∆S([n], [n]).
As sets

Hom∆C([n], [m]) ∼= Hom∆([n], [m])× Sn.
Example of such subgroups are Sn−1 ⊂ Sn and Cn generated by the cycle

(1 2 . . . n). We can replace the cyclic group Cn by the symmetric group Sn+1
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Part V Noncommutative sets

and construct a category ∆S. It means that for any φ ∈ Mor∆([m], [n]) and
σ ∈ Sn there exist φ∗(σ) ∈ Sm+1 and σ∗(φ) ∈ Mor∆([m], [n]) such that the
following diagram commutes:

[m]
φ //

φ∗(g)∈Sn+1 �� [n]

σ∈Sn+1��
[n]

σ∗(φ)
// [n]

Denote by ∆B the braided category, defined along the same lines using braid

0

1
2

3

3
2

1

0
0

1
2

3
4

0
3

4
2

1

Figure 1.8: Morphisms in ∆S

groups, which contains ∆S as a subcategory. Let Hn = (Z/2Z)n ⋊ Sn =
Z/2Z

∫
Sn and denote corresponding hyperdihedral category by ∆H . Further-

more we have a dihedral category ∆D. We can arrange them in a diagram of
inclusions

∆C //�� ∆S // ∆B
∆Z/2 // ∆D // ∆H

There is an exact sequence of groups

0→ Z
·(n+1)−−−−→ Z→ Z/(n+ 1)Z→ 0

If we treat Z as category, then we have the following diagram of functors

∆× Z→ ∆Z→ ∆C

We can ask what kind of structure on the geometric realization of the under-
lying simplicial set X•, that is |X•|, does the cyclic structure give? The answer
is a structure of S1-space. An open question is can we discretize analogously
S3 = SU(2)?

1.5 Noncommutative sets

Let Fin denote the skeleton category of the category of finite sets. This means
that the objects in Fin are the sets [n] = {0, 1 . . . , n} and the morphisms are
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Part V Adjoint functors

arbitrary functions. Let F ′ denote a category with the same objects, but whose
morphisms satisfy f(0) = 0. Then there is a following diagram of categories:

∆op���� // ∆S′op //�� Fin′����
∆C = ∆Cop // ∆S // Fin

For a set [n] we have

Aut∆S([n]) = Sn+1,

Aut∆S′([n]) = Sn.

The top row of this diagram will correspond to Hochschild homology, and the
bottom row to cyclic homology, which we will define in the next chapter.

If A is an algebra, then [n] 7→ A⊗(n+1) is a well defined functor ∆S →Mod.

A⊗2 ⇉ A, a⊗ b 7→ ab, a⊗ b 7→ ba.

The two maps d1, d0 : [1] → [0] become the same in Fin. If A is commutative,
then [n]→ A⊗(n+1) factors through Fin.

Thus ∆S can be viewed as a category of noncommutative sets. It has the
following description

Ob(∆S) = {[n]}
Mor∆S([n], [m]) = set maps preserving the order on fibers f−1(i) for any i ∈ [m].

1.6 Adjoint functors

Suppose we have two categories A and B and a pair of functors F : A → B,
G : B → A. We say that F is right adjoint to G and G is left adjoint to F if
there is an isomorphism of sets

HomA(G(B), A) ∼= HomB(B,F (A))

for every A ∈ Ob(A), B ∈ Ob(B), and the isomorphism is functorial in A and
B.

Example 1.14. Let A,B = Sets. Take a set X and define

G(B) = B ×X, F (A) = HomSets(X,A)

Then
Hom(B ×X,A) ∼= Hom(B,Hom(X,A))

ϕ : B ×X → A 7→ (B → Hom(X,A))

Many examples follow the pattern in (1.14), but with additional structure.

Example 1.15. Let A,B = Vect, V vector space over a field k. Define

G(B) = B ⊗k V, F (A) = Homk(V,A)

Then
Homk(B ⊗k V,A) = Homk(B,Homk(V,A))
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Part V Generic example of a simplicial set

Example 1.16. Let R be a ring, A be the category of left R-modules, and B the
category or right R-modules. Take a left R-module V and define

G(B) = B ⊗R V, F (A) = HomR(V,A)

HomZ(B ⊗R V,A) = HomZ(B,HomR(V,A))

Example 1.17. Define the loop space and the suspension of a topological space
X with base point as follows.

ΩX = {f : S1 → X : f(∗) = ∗}

SX = S1 ∧X/S1 ∨X
Then

HomTop∗
(SX, Y ) ∼= HomTop∗

(X,ΩY )

where Top∗ is the category of topological spaces with base point.

1.7 Generic example of a simplicial set

Let X be a topological space. Define

Sn(X) := {f : ∆n → X, continuous}

We claim that S•(X) is a simplicial set with the following face and degeneracy
maps:

di : Sn(X)→ Sn−1(X), di(f) := f ◦ δi
sj : Sn(X)→ Sn+1(X), sj(f) := f ◦ σj

It is called the singular functor. It goes from the category of topological spaces
to the category of simplicial sets.

S•(−) : Top→ SSets

Recall the functor of geometric realization of a simplicial set,

K• 7→ |K•|, | − | : SSets→ Top

Proposition 1.18. The functors S•(−) and | − | are adjoint, that is

HomTop(|K•|, X) ∼= HomSSets(K•,S•(X)).

In the example (1.16) R-modules can be replaced by functors. Left modules
correspond to covariant functors, and right modules correspond to contravariant
functors. Then the geometric realization functor can be seen as a tensor product
over the simplicial category

|K•| = K• ⊗∆ ∆•

In an analogous way we can present the singular functor as

S•(X) = HomTop(∆•, X)
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Part V Generic example of a simplicial set

Hence we can derive adjointness

HomTop(K• ⊗∆ ∆•, X) ∼= Hom∆(K•,HomTop(∆•, X))

Now the question arises: how to compare X and |S•(X)|? Take the identity

id ∈ HomSSets(S•(X),S•(X))

which goes to a map
ε : |S•(X)| → X

which is called a unit. Also id ∈ HomTop(|K•|, |K•|) goes to a map

η : K• → S•(|K•|)

which is called a counit. If X is a CW-complex, then the map ε is a homotopy
equivalence.

Now we will prove the following theorem.

Theorem 1.19. If X• is a cyclic set, then the geometric realization |X•| is an
S1-space.

Before the proof, we will give some necessary propositions.

Lemma 1.20. The functor ∆ → Top given by [n] 7→ ∆n is in fact a functor
on ∆C (it is a cocyclic space).

Proof. It is enough to define the image of τn

τn 7→ {∆n → ∆n}

vertex i 7→ vertex i− 1

vertex 0 7→ vertex n

Let C• be the cyclic set, whose geometric realization is the circle. A naive
way to define an S1-action would be to use

C• ×X• → X•

(g, x) 7→ g∗(x)

But it does not work, since it gives a trivial action of S1 for X• = C•.
There is a forgetful functor from the category of cyclic sets to the category

of simplicial sets
G : CSets→ SSets.

We will define its left adjoint

F : SSets→ CSets.

If Y• is a simplicial set, then put

F (Y•)n := Cn × Yn, Cn = Z/(n+ 1)Z
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Part V Generic example of a simplicial set

If f is a morphism in ∆op, then we define

f∗(g, y) := (f∗(g), (g∗(f))∗(y))

[n]
f //

f∗(g) �� [m]

g��
[n]

g∗(f)
// [m]

If h is a morphism in Cm, then we define

h∗(g, y) := (h(g), y)

Proposition 1.21. The set F (Y•) equipped with the Simplicial structure given
by f∗ and the cyclic structure given by h∗ is a cyclic set.

Proposition 1.22. If X•, Y• are simplicial sets, and if |X•| × |Y•| is a CW-
complex, then the map

|X• × Y•| → |X•| × |Y•|
is a homeomorphism.

Proposition 1.23. If X• is a cyclic set, then we have a homeomorphism

|F (X•)| ∼= |C•| × |X•| = S1 × |X•|

Observe that the composite

|F (X•)| → |C•| × |X•|
∼=−→ |C• ×X•|

is not the geometric realization of a simplicial map.

Proof. It is induced by the two projections

|F (X•)| p1×p2−−−−→ |C•| × |X•|

The map p1 is induced by (g, y) 7→ g, and p2 is induced by (g, y) 7→ y.
Next we define

Cn ×Xn ×∆n → Xn ×∆n

(g, y, t) 7→ (y, g∗(t))

and show that it is compatible with the equivalence relation. It induces a cyclic
map called the evaluation

F (X•)
ev−→ X•

which gives a map

|F (X•)|
|ev|−−→ |X•|
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Proof. (of theorem (1.19)) Define a map

S1 × |X•|
∼=−→ |C•| × |X•|

(p1,p2)−1

−−−−−−→ |F (X•)| ev−→ |X•|

If we want it to be an S1-action on |X•|, then the following diagram has to
commute

S1 × S1 × |X•| //�� S1 × |X•|��
S1 × |X•| // |X•|

Let X• = C•. We will show that, the action S1 × S1 → S1 is the classical
multiplication of units in C.

F (C•)0 = (∗, ∗), 1 ∈ C0,

F (C•)1 = (∗, t1), (t1, ∗), (t1, t1),︸ ︷︷ ︸
nondegenerate simplices

(∗, ∗),

F (C•)2 = (t2, t2), (t22, t
2
2), all other simplices are degenerate.

The higher rank simplices are degenerate.
We will examine the evaluation map

S1 × S1 = |F (C•)| → |C•| = S1

Take (u, v) ∈ |F (C•)|. Then

(u, v) ∈
{
{(t22, t22)×∆2} if u+ v ≤ 1

{(t2, t2)×∆2} if u+ v ≥ 1

The formulas

d0(t2, t2) = (∗, t1)

d2(t22, t
2
2) = (t1, ∗)

show that the 0-th face of the triangle (t2, t2) has to be identified with the 2-nd
face of the triangle (t22, t

2
2).

F (C•)
ev−→ C•, (t2, t2) 7→ t2

ev(t22, t
2
2) = t42 = t2 = s1(t1), because t32 = 1

ev(t2, t2) = t22 = s0(t1)

F (C•)
|ev| ##GGGGGGGGp1×p2yyrrrrrrrrrr

|C•| × |C•| // |C•|
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(*,t  )1

(*,t  )1

(t  ,*  )1
(t  ,*  )1

(t  ,t   )2 2
22

(t  ,t   )22

1 1
(t  , t )

(*,*)

(*,*)

(*,*)

(*,*)

Figure 1.9: 0,1, and 2-faces

S1 × |C•| → |C•|

C0 = {1}
C1 = {1, t1}
C2 = {1, t2, t22}

Degenerate simplices will be identified with the interval. There are two ways to
do that.

u

2

0

(t  , t )
2
2 2

2

u+v

|ev|

s
1

v

1

Figure 1.10:

⋃
n≥0 F (C•)×∆n //�� ⋃

n≥0 Cn ×∆n��
|F (C•)| // |C•|
ev : (t2, t2)×∆2 7→ (s0t1,∆

2)

ev : (t22, t
2
2)×∆2 7→ (s1t1,∆

2)
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(t  , t )
2 2

|ev|

u

v

21 s

0

0

u+v

Figure 1.11:

Therefore the map |ev| : S1 × S1 → S1 is the multiplication of complex units
(under the exponential map exp(2πi−) : R/Z→ SO(2)).

At the end we get a commutative diagram:

S1 × S1 × |X•| //
��

S1 × |X•|

��
F (C•)× |X•|

llXXXXXXXXXXXXXXXXXXXXX 33gggggggggggggggg
|C•| × F (X•)

bbEEEEEEEEEEEEEEEEE
||yyyyyyyyyyyyyyyyy |F (F (X•))| //oo OO�� |F (X•)|

AA���������������
��<<<<<<<<<<<<<<<|F (X•|rrffffffffffffffffffffffffff ++WWWWWWWWWWWWWWWWWWWWW

S1 × |X•| // |X•|
As a consequence |X•| is an S1-space.

1.8 Simplicial modules

Definition 1.24. A simplicial module is a functor

∆op →Modk, [n] 7→Mn

There is a chain complex associated to any simplicial module

M• : . . .→Mn
bn−→Mn−1

bn−1−−−→Mn−1 → . . .

where b = bn =
∑n

i=0(−1)idi. We have b2 = 0 as an immediate consequence of
didj = dj−1di, i < j, for example:

. . .M2
d0−d1+d2−−−−−−→M1

d0−d1−−−−→M0
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Part V Simplicial modules

(d0 − d1)(d0 − d1 + d2) = d0d0 − d0d1︸ ︷︷ ︸
0

+ d0d2 − d1d0︸ ︷︷ ︸
0

+ d1d1 − d1d2︸ ︷︷ ︸
0

= 0

We define the homology of a simplicial module as

Hn(M•) := ker(bn)/ im(bn−1)

It is well defined for pre simplicial module, that is using only face maps.

Lemma 1.25. The submodule M ′n of Mn spanned by the degeneracy elements
gives a subcomplex M ′• of M•.

Proof. This is a consequence of the relations between sj , di.

Define the normalized complex M• as a quotient

0→M ′• →M• →M• → 0

Theorem 1.26. The quotient map M• → M• is a quasi-isomorphism, i.e. it
induces an isomorphism in homology.

Proof. From the long exact sequence in homology

. . .→ Hn(M ′•)→ Hn(M•)→ Hn(M•)
δ−→ Hn−1(M ′•)→ . . .

it is enough to prove that Hn(M ′•) = 0.
If one wants to prove that some complex C• is acyclic, then it is enough to

construct a homotopy from id to 0 (contraction), that it a sequence of maps
hn : Cn → Cn+1 such that hn−1dn−1 + dnhn = id. Unfortunately it is hard to
find a contracting homotopy for M ′• to prove that it is acyclic. But one can
define a filtration on M ′•

Fk →֒ Fk+1 → Gk

with Fk spanned by the first k degeneracies, and quotient G• for which we can
construct a contracting homotopy. Then we can proceed by induction.

Let A be a k-algebra and M an A-bimodule. There is a simplicial module

C•(A,M) := M ⊗A⊗n

di(a0, a1, . . . , an) = (a0, . . . , aiai+1, . . . , an), i = 0, . . . , n− 1

dn(a0, a1, . . . , an) = (ana0, . . . , an−1)

sj(a0, a1, . . . , an) = (a0, . . . , aj , 1, aj+1, . . . , an)

Define

b :=
n∑

i=0

(−1)idi

Then (C•(A,M), b) is called the Hochschild chain complex, and its homology
H∗(A;M) the Hochschild homology of A with coefficients in M . If M = A, then
we denote

H∗(A;A) =: HH∗(A)
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Part V Bicomplexes

Suppose that A is augmented and let A be its augmentation ideal, that is
A = A⊕ k1. Define the reduced Hochschild complex as

Cn(A,M) := M ⊗A⊗n

If M = A = Ā⊕ k1, then C•(A,A) has extra degeneracy

s−1(a0, . . . , an) = (1, a0, . . . , an).

We have

d0(1, a1, . . . , an) = (a1, . . . , an),

dn(1, a1, . . . , an) = (an, . . . , a1).

Define also two maps on A
⊗n

t(a1, . . . , an) := (−1)n(an, a1, . . . , an−1),

b′ :=

n−1∑

i=0

(−1)idi, (b = b′ + (−1)ndn).

1.9 Bicomplexes

Assume we have an array of k-modules

...�� ...�� ...��
C02

dv �� C12
dhoo

dv �� C22
dhoo

dv �� . . .oo
C01

dv �� C11
dhoo

dv �� C21
dhoo

dv �� . . .oo
C00 C10

dhoo C20
dhoo . . .oo

We call it a bicomplex of k-modules if the maps dv and dh, called vertical and
horizontal differential, satisfy

dv ◦ dv = 0,

dh ◦ dh = 0,

dh ◦ dv + dv ◦ dh = 0.

For a bicomplex C•• we define a total complex as

Tot(C••)n :=
⊕

p+q=n

Cpq, d := dh + dv
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After taking homology with respect to the vertical differential we obtain a com-
plex

. . .← Hv
(p−1),• ← Hv

p,• ← Hv
(p+1),• ← . . .

with the differential induced on homology by horizontal differential in the bi-
complex. Now we can take homology of this complex and obtain

E2
pq := Hh

q (Hv
p,•).

There is a decomposition of the reduced Hochschild complex

Cn(A,A) = A⊗A⊗n = (A⊕ k1)⊗A⊗n = A
⊗(n+1) ⊕A⊗n

and a map (
b 1− t
0 −b′

)
: A
⊗(n+1) ⊕A⊗n → A

⊗n ⊕A⊗(n−1)

which fits in the diagram

Cn(A,A)

b �� ∼= //
A
⊗(n+1) ⊕A⊗n0

@b 1− t
0 −b′

1
A��

Cn−1(A,A)
∼= //

A
⊗n ⊕A⊗(n−1)

This complex can be thought of as the total complex of a bicomplex

...�� ...��
A
⊗3

b �� A
⊗31−too

−b′ ��
A
⊗2

b �� A
⊗21−too

−b′ ��
A A

1−too
Here we see the beginning of the complex computing the homology of the cyclic
group with coefficients in a module. This will lead to the cyclic bicomplex.

1.10 Spectral sequences

Having computed E2
pq = Hh

q (Hv
p,•) of a bicomplex C•• it seems that we have used

all data, that is vertical and horizontal differentials in the bicomplex. However,
there is a piece of information which we can extract in addition to E2

pq. We can
define a homomorphism

d2 : E2
pq → E2

p−2,q+1
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as follows.

Cp−2,q+1 Cp−1,q+1
dhoo

dv ��
Cp−1,q Cpq

dhoo
Starting with a horizontal cycle x ∈ Zp(C•,q) we want to define an element in
Cp−2,q−1 which represents an element in horizontal cycles of vertical homology

complex, that is in Zhp(Hv
q(C••)). Our cycle x gives a class [x] ∈ Hv

q(C••). Using
the induced map

dh∗ : Hv
q(Cp,•)→ Hv

q(Cp−1,•)

we have dh∗([x]) = 0 = [dh(x)]. Saying that the homology class is zero means that
the cycle is in fact a boundary. Therefore there exists an element y ∈ Cp−1,q+1

such that dv(y) = dh(x). Now we define our cycle as dh(y) ∈ Cp−2,q+1.

dh(y) y
dhoo

dv ��
dv(y) = dh(x) x

dhoo
We claim that this element defines an element in E2

p−2,q+1 which does not
depend on the choice of y nor on the choice of the representative of [x]. Thus
we have defined

d2 : E2
pq → E2

p−2,q+1, [x] 7→ [dh(y)].

Furthermore d2 ◦ d2 = 0, so now we can take homology to obtain E3
pq and

d3 : E2
pq → E3

p−3,q+2.

This procedure can be continued and as a result we get a sequence of arrays
Erpq for any r ≥ 2 and maps

dr : Erpq → Erp−r,q+r−1

such that Erpq is the homology of the complex (Er−1, dr−1) at the place (p, q).
Furthermore there are subspaces Brpq, Z

r
pq of Cpq

B2
pq ⊆ B3

pq ⊆ . . . ⊆ B∞pq ⊆ Z∞pq ⊆ . . . ⊆ Z2
pq ⊆ Z2

pq ⊆ Cpq
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such that Erpq = Zrpq/B
r
pq.

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • •

ggOOOOOOOOOOOOOO
eeJJJJJJJJJJJJJJJJJJJJJJJ

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
• • •

• • • • • • •

ggOOOOOOOOOOOOOO •

• • • • • • • •

eeJJJJJJJJJJJJJJJJJJJJJJJ
• • • • • • • •

q

OO

p
//

When both differentials (leaving and entering) for Erpq are zero, this component
does not change furthermore and we have Erpq = Er+1

pq = . . .. We denote this
stable component by E∞pq .

There is a filtration on the total complex

Fp TotC•• := Tot
⊕

k≤p
Ck•,

0 ⊆ F0 ⊆ F1 ⊆ . . . ⊆ Fp−1 ⊆ Fp ⊆ . . . ⊆ TotC••.

This filtration induces a filtration on H∗(TotC••)

Fp := Fp H∗(TotC••) := im(H∗(Fp TotC••)→ H∗(TotC••)).

Denote the quotient

Fp/Fp−1 =: grp(Hp+q(TotC••)).

All data defined above, that is {Erpq, dr}p,q,r and a filtration {Fp}p define a
spectral sequence of a bicomplex C••. We say that the spectral sequence abuts
to H∗(TotC••), which means that there is an isomorphism

E∞pq ∼= grp(Hp+q(TotC••))

We write
E2
pq = Hh

p(Hv
q(C••)) =⇒ Hp+q(TotC••).

which is to read as: there is a spectral sequence starting at E2
pq and converging

to Hp+q(TotC••)
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Example 1.27. The typical theorem using spectral sequences in algebraic topol-
ogy looks as follows

Theorem 1.28. Let F → E → B be a fibration of connected spaces, with B
simply connected. Then there is a spectral sequence

E2
pq = Hp(B; Hq(F )) =⇒ Hp+q(E).

The implicit data in this theorem areE3
pq, E

4
pq, . . ., the filtration Fp on H∗(E).

The sign ” =⇒ ” means that there is an isomorphism

E∞pq ∼= grp(Hp+q(E)).

In many cases we do not need to look at Erpq for r ≥ 3 and at the filtration.
That is why these data are often omitted in the theorems.

Example 1.29. Let X be an S1-space, ES1 the contractible space of paths on
S1. Consider the Borel space ES1 ×S1 X and the S1-fibration

S1 →֒ ES1 ×S1 X → X.

The homology of a fiber is

H0(S1) = Z,

H1(S1) = Z,

Hq(S
1) = 0, q ≥ 2.

E2 : . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0

• • • • • •

• • •

iiSSSSSSSSSSS •

iiSSSSSSSSSSS •

iiSSSSSSSSSSS •

iiSSSSSSSSSSSq

OO
p

//
E3 = . . . = E∞ : . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0

• • • E2
pq/ imd2 • •

• • • • • •

q

OO
p

//
For any S1-fibration S1 →֒ E

f−→ B of pointed spaces we obtain a Gysin sequence

. . .→ Hn(E)
f∗−→ Hn(B)

d2−→ Hn−2(B)→ Hn−1(E)→ . . . .
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Recall that for the bicomplex we took the vertical homology and then hori-
zontal homology. We could have done it the other way. Any bicomplex gives a
rise to two spectral sequences

E′2pq = Hh
p(Hv

q(C••)) =⇒ Hp+q(Tot(C••)),

E′′2pq = Hv
p(Hh

q (C••)) =⇒ Hp+q(Tot(C••)).

But remark that the filtrations are different on Tot(C••).
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Chapter 2

Cyclic homology

2.1 The cyclic bicomplex

Let C• be the cyclic module with

di : Cn → Cn−1,

tn : Cn → Cn.

Consider the following two-column bicomplex

...�� ...��
C2

b �� C2

−b′ ��1−too
C1

b �� C1

−b′ ��1−too
C0 C0

1−too
One checks that it has anticommuting squares, so it is indeed a bicomplex. It
can be extended to the right using the map N := 1 + t+ . . . tn : Cn → Cn.

...�� ...�� ...�� ...��
C2

b �� C2

−b′ ��1−too C2

b ��Noo C2

−b′ ��1−too . . .Noo
C1

b �� C1

−b′ ��1−too C1

b ��Noo C1

−b′ ��1−too . . .Noo
C0 C0

1−too C0
Noo C0

1−too . . .Noo
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Part V The cyclic bicomplex

For example if Cn = A⊗ A⊗n we have a cyclic bicomplex C••(A) with t being
the cyclic operator, and N = 1 + t+ . . . tn.

Definition 2.1. The cyclic homology of a cyclic module C• is defined as

HCn(C•) := Hn(Tot(C••)).

When Cn = A ⊗ A⊗n then the cyclic homology of an algebra A is denoted by
HCn(A).

Proposition 2.2. The complex (C•, b′) is acyclic.

Proof. Use the extra degeneracy

(a0, . . . , an) 7→ (1, a0, . . . , an)

to construct a homotopy of the identity and the zero map.

Whenever we have a sequence of complexes

K ′•  K• ։ K ′′•

and we know that K ′• is acyclic, then the complexes K• and K ′′• are quasi-
isomorphic. This allows us to quotient out the acyclic subcomplexes of a given
complex when computing homology. But (C•,−b′) is not a subcomplex. We
will get rid of one column at a time using

Lemma 2.3 (Killing contractible complexes). Suppose we have o complex

. . .→ An ⊕A′n
d=

0
@α β
γ δ

1
A

−−−−−−−−→ An−1 ⊕A′n−1 → . . .

and (A′•, δ) has a homotopy h between id and 0. Then the following inclusion
is a quasi-isomorphism

(A•, α− βhγ)
(id,−hγ)−−−−−→ (A• ⊕A′•, d).

The cokernel of (id,−hγ) is (A′•, δ). Applied infinitely many times to the
cyclic bicomplex we end up with the total complex of the bicomplex B•C•

...�� ...�� ...��
C2

b �� C2

b ��B

ffLLLLLLLLLLLLLL
C2

b ��B

ffLLLLLLLLLLLLLL
. . .

C1

b �� C1

b ��B

ffNNNNNNNNNNNNN
C1

b ��B

ffNNNNNNNNNNNNN
. . .

ffNNNNNNNNNNNNN
C0 C0

B

ffNNNNNNNNNNNNN
C0

B

ffNNNNNNNNNNNNN
. . .

ffNNNNNNNNNNNNN
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Part V The cyclic bicomplex

This is the normalized version of a bicomplex C•• used to define cyclic homology.
Because of the quasi-isomorphism in the lemma (2.3) we have

H∗(C•) = H∗(Tot(B•C•)).

We can rearrange the bicomplex B•C• to obtain

...�� ...�� ...�� ...

C2

b �� C1

b ��Boo C0
Boo

C1

b �� C0
Boo

C0

It is indeed a bicomplex, that is we have the identities

b2 = 0, B2 = 0, bB +Bb = 0.

The morphism B on the normalized complex B•C•(A) is given explicitly by

B = (1− t)sN : A⊗A⊗n → A⊗A⊗(n+1)
,

(a0, . . . , an) 7→
n∑

i=0

(−1)in(1, ai, . . . , an, a0, . . . , an−1).

In the non-normalized complex there are more terms, but they are trivial in the
normalized complex.

Theorem 2.4. For a cyclic module C• there exits a periodicity exact sequence

. . .→ Hn(C•)
I−→ HCn(C•)

S−→ HCn−2(C•)
B−→ Hn−1(C•)→ . . . , (2.1)

where the map I is induced by the inclusion of the simplicial complex for C•
into the bicomplex C••.

If Cn = A⊗n the sequence takes the form

. . .→ HHn(A)
I−→ HCn(A)

S−→ HCn−2(A)
B−→ HHn−1(A)→ . . . . (2.2)

Proof. It follows from the bicomplex (B•C•, b, B) and the sequence of complexes

C•  Tot(B•C•) ։ TotB•C•[−2].

Prove that the boundary map is given by B. Find an explicit formula for S.
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Part V Characteristic 0 case

2.2 Characteristic 0 case

Recall the computation of the homology of the cyclic group Z/nZ. Let M be a
module over Z/nZ, that is a module over the group ring k[Z/nZ] for some ring
k. to compute Hi(Z/nZ;M) one uses a complex

M
1−t←−−M N←−M 1−t←−−M N←− . . .

When the ring k is a field of characteristic 0, there is a homotopy from id to 0,

M
h−→M

h′

−→M
h−→M

h′

−→ . . . ,

h := − 1

n

n−1∑

i=1

iti,

h′ :=
1

n
id,

h(1 − t) +Nh′ = tn = id.

It proves that

H0(Z/nZ;M) = M/1− t,
Hn(Z/nZ;M) = 0, n ≥ 1.

Now instead of considering all bicomplex C•• we can take the reduced complex
Cλ• which is defined as a cokernel of the map (1 − t) between first and zeroth
column of C••

...�� ...

C3/(1− t)

b �� 0

C2/(1− t)

b �� 0

C1/(1− t)

b �� 0

C0/(1− t) 0

If Cn = A⊗(n+1), then Cλn(A) = A⊗(n+1)/(1− t) and we denote

Hλ
n(A) := Hn(Cλ• )

As a corollary we have that if k ⊃ Q, then Hλ(A) ∼= HCn(A) and there exists
an exact sequence

. . .→ HHn(A)
I−→ Hλ

n(A)
S−→ Hλ

n−2(A)
B−→ HHn−1(A)→ . . . .

In the case of characteristic not equal 0 the maps are still well defined, but the
sequence is not exact.
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Part V Computations

2.3 Computations

Let A = k, the ground ring. Then

HH0(k) = k,

HHn(k) = 0, n ≥ 1.

The periodicity exact sequence (2.2) implies that

HC2n(k) = k,

HC2n+1(k) = 0,

so also

Hλ
2n(k) = k,

Hλ
2n+1(k) = 0.

Let A = T (V ) be the tensor algebra over V , that is

T (V ) =

∞⊕

n=0

V ⊗n, (v1, . . . , vn)(vn+1, . . . , vn+m) = (v1, . . . , vn+m) ∈ V ⊗(n+m)

Then

HH0(T (V )) =
⊕

m≥0

V ⊗m/(1− τ) =
⊕

m≥0

(V ⊗m)Z/mZ,

HH1(T (V )) =
⊕

m≥0

(V ⊗m)Z/mZ,

HH1(T (V )) = 0,

where τ is the cyclic operator without sign.

HCn(T (V )) = HCn(k)⊕
⊕

m>0

Hn(Z/mZ;V ⊗m)

︸ ︷︷ ︸
This is zero in the characteristic 0 case.

Consider now the matrix algebras Mn(A) for a unital associative algebra A over
a field k. There are isomorphisms

HH∗(Mr(A)) ∼= HH∗(A),

HC∗(Mr(A)) ∼= HC∗(A).

The map A→Mr(A) is given by

a 7→
(
a 0
0 0

)
.

In the opposite way we have the trace map Tr: Mr(A)→ A

α = [αij ] 7→
∑

i

αii.
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Part V Computations

There is also a trace map Tr: Mr(A)⊗(n+1) → A⊗(n+1)

Tr(α0, . . . , αn) :=
∑

(i0,...,in)

α0
i0i1 ⊗ α1

i1i2 ⊗ . . .⊗ αnini0

We claim that this map commutes with the faces and with the cyclic operator.
Let k be a field and A a commutative k-algebra. Define the space of 1-forms

on A, denoted by Ω1
A/k = Ω1

A, as an A-module generated by elements da for
every a ∈ A satisfying the following relations

d(λa+ µb) = λda+ µdb (linearity),

d(ab) = adb+ bda (Leibniz rule).

Define the space of n-forms as an n-th exterior power of Ω1
A

ΩnA := ΛnAΩ1
A.

Elements of ΩnA can be written as a0da1 . . . dan, ai ∈ A, i = 0, . . . , n, with the
relation

dada′ = −da′da.
Define a differential of an n-form as

d(a0da1 . . . dan) := 1da0da1 . . . dan.

d : ΩnA → Ωn+1
A , d ◦ d = 0.

Now Ω•A is a cochain complex and its homology is called deRham cohomology
of an algebra A

HdR(A) := Hn(Ω•A, d).

If A is commutative, M an A-module, then

H1(A;M) = M ⊗A Ω1
A.

There is a map
π : Cn(A) = A⊗(n+1) → ΩnA

(a0, . . . , an) 7→ a0da1 . . . dan (2.3)

There is a map also in the opposite way

ΩnA
εn−→ HHn(A)

εn(a0da1 . . . dan) :=
∑

σ∈Sn

sign(σ)(a0, aσ(1), . . . , aσ(n)). (2.4)

Passing to Hochschild homology it gives a well defined map ΩnA → HHn(A). In
charecteristic 0 case the composition of the maps in (2.4) and (2.3) gives an
isomorphism

ΩnA → HHn(A)→ ΩnA.

Proposition 2.5. The following diagram is commutative

ΩnA
εn //

d �� HHn(A)

B��
Ωn+1
A

εn+1 // HHn+1(A)
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Part V Computations

Proof. There is a bijection of sets Sn+1
∼= Sn × Z/(n + 1)Z. First one proves

the commutativity of the following diagram

A⊗ ΛnA
εn //�� Cn(A)��

A⊗ Λn+1A
εn+1 // Cn+1(A)

and then passes to the quotient.

Now we can form a map of bicomplexes

...�� ...�� ...�� ...

C2

b �� C1

b ��Boo C0
Boo

C1

b �� C0
Boo

C0

π∗−→ ...�� ...�� ...�� ...

Ω2

0 �� Ω1

0 ��doo Ω0doo
Ω1

0 �� Ω0doo
Ω0

Definition 2.6. A commutative algebra A is formally smooth if for any com-
mutative algebra R and two sided ideal R ⊃ I such that I2 = 0 and a map
A→ R/I, there is a lifting φ : A→ R.

R��
A

ϕ
==|||||||| // R/I

Theorem 2.7 (Hochschild-Kostant-Rosenberg). If A is formally smooth, then

ε∗ : M ⊗A ΩnA → H∗(A;M)

is an isomorphism.

As a corollary we have that for a formally smooth algebra A over character-
istic 0 field k

HCn(A) ∼= ΩnA/dΩn−1
A ⊕HdR

n−2(A)⊕HdR
n−4(A)⊕ . . .⊕HdR

0(A) or HdR
1(A).
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Part V Periodic and negative cyclic homology

2.4 Periodic and negative cyclic homology

Recall the cyclic bicomplex

...�� ...�� ...�� ...

C2

b �� C1

b ��Boo C0
Boo

C1

b �� C0
Boo

C0

which after passing to total complex gives a complex computing cyclic homology
of an algebra. There is an obvious way to extend this bicomplex to the left using
the same differentials

...�� ...�� ...�� ...�� ...

. . . C3

b ��oo C2

b ��Boo C1

b ��Boo C0
Boo

. . . C2

b ��oo C1

b ��Boo C0
Boo

. . . C1
oo C0

Boo
Furthermore we can repeat each row going down continuing the same pattern.

...�� ...�� ...�� ...�� ...

. . . C3

b ��oo C2

b ��Boo C1

b ��Boo C0
Boo

. . . C2

b ��oo C1

b ��Boo C0
Boo

. . . C1
oo �� C0

Boo
. . . C0

oo
. . .

(2.5)

525



Part V Harrison homology

This is called a periodic bicomplex. If the columns of the cyclic bicomplex we
started with were indexed by natural numbers starting from 0, then in the
periodic bicomplex (2.5) we have columns indexed by integers.

To work with the total complex of the periodic bicomplex one should use
the product instead of the sum. Otherwise one would get zero in the homology.

Definition 2.8. The cohomology of the total complex of bicomplex (2.5) is called
the periodic cyclic homology. If Cn = A⊗(n+1), then we denote this homology
by HP∗(A) or HCper∗ (A).

The cohomology of the total complex consisting of columns with nonpositive
indices is called negative cyclic homology. If Cn = A⊗(n+1), then we denote
this homology by HN∗(A) or HC−∗ (A).

2.5 Harrison homology

Recall that when A is a commutative algebra over characteristic 0 field k, then

HH∗(A)
∼=−→ Ω∗A.

In general there is a decomposition into direct sum

HHn(A) = �⊕ . . .⊕�︸ ︷︷ ︸
n terms

⊕ΩnA

. . .

HH2(A) = �⊕ Ω2
A

HH1(A) = �

When one considers the first summands in each gradation then what one obtains
is called Harrison homology of the commutative algebra A. When M is an A-
bimodule, then Cn(A,M) = M ⊗A A⊗n gives a complex computing Hochschild
homology of an algebra A with coefficients in M . The complex for Harrison
homology can be obtained by taking a quotient by the shuffles in Cn(A,M).

2.6 Derived functors

The Hochschild homology of an algebra A over a field k with coefficients in an
A-bimodule M can be interpreted as a derived functor.

Proposition 2.9. There is an isomorphism

Hn(A;M) ∼= TorA
e

n (M,A),

where Ae = A⊗Aop (so M is a right Ae-module).

The definition of the derived functor TorA
e

n goes as follows. Having an exact
sequence of right Ae-modules

0→M ′ →M →M ′′ → 0

we tensor it with A over Ae to get a sequence which is exact on the right

M ′ ⊗Ae A→M ⊗Ae A→M ′′ ⊗Ae A→ 0,
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Part V Derived functors

but the map M ′ ⊗Ae A→M ⊗Ae A can have a nontrivial kernel. There exists
a group TorA

e

1 (M ′′, A) which maps onto it. Next we can define in an analogous

way TorA
e

1 (M,A) and TorA
e

1 (M ′, A) which fit into an exact sequence

TorA
e

1 (M ′, A)→ TorA
e

1 (M,A)→ TorA
e

1 (M ′′, A)→

→M ′ ⊗Ae A→M ⊗Ae A→M ′′ ⊗Ae A→ 0.

There exists a general construction using a resolution of A by free left Ae-
modules, C• ։ A→ 0,

. . . // C2
// C1

// C0����
A��
0

Then we define
TorA

e

n (M,A) := Hn(M ⊗Ae C•).

As a resolution we can take Cn := Ae ⊗ A⊗n and obtain the isomorphism
Hn(A,M) ∼= TorA

e

n (M,A).
Recall that the simplicial module C• is a functor ∆op →Mod, for example

[n] 7→ M ⊗Ae An. The homology of C• with respect to b =
∑

i(−1)idi can be
written as a derived functor

Hn(C•) ∼= Tor∆
op

n (k, C•),

where C• is a left module over ∆op, and k is a right module over ∆op, that is a
functor ∆→Mod, [n] 7→ k. The resolution for k can be given by

. . . // k[Hom∆([n],−)] // . . . // k[Hom∆([1],−)] // k[Hom∆([0],−)]����
k

In general for a category C we have the following correspondence

Category C Algebra A
Functor F : C →Mod Left A-module M

Functor G : Cop →Mod Right A-module N
Tensor product over a category G⊗C F Tensor product over algebra N ⊗AM

The tensor product over a category is defined as

G⊗C F :=
⊕

C∈Ob(C)
G(C) ⊗ F (C)/ ∼,

where the equivalence relation ∼ is given by

y ⊗ f∗(x) ∼ f∗(y)⊗ x, C
f−→ D, x ∈ F (C), y ∈ G(D),
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Part V Derived functors

F (C)
f∗−→ F (D), G(C)

f∗

←− G(D).

Using cyclic category ∆C we can present cyclic homology of a cyclic module C•
as a derived functor.

Proposition 2.10. There is an isomorphism

HCn(C•) ∼= Tor∆C
op

n (k, C•).

We can write TorC0 (G,F ) simply as the tensor product G ⊗C F . To define
higher derived functors TorCn(G,F ) we need a notion of a free module over a
category. Let Ctriv be the category with the same objects as C, but with only
the identity morphisms. For a functor F : C → Mod there is a corresponding
forgetful functor forget(F): Ctriv →Mod. Suppose we have an adjoint pair

Funct(C,Mod)
forgetful //

Funct(Ctriv,Mod)
left adjoint

oo
Then we say that a functor F : C → Mod is free if it is an image of this left
adjoint functor to a forgetful functor. For example

A−Mod→ k −Mod

has a left adjoint
kn 7→ An.
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Chapter 3

Cyclic duality and Hopf–
cyclic homology

3.1 Cyclic duality

Definition 3.1. A cyclic (cocyclic) object is a contravariant (covariant) functor
from the cyclic category ∆C to an abelian category A.

Cyclic objects are used to define homology

. . . An−2 An−1

tn−1

WW si //
di

oo An

tn

XX sj //
dj

oo An+1

tn+1

WW sk //
dk

oo An+2 . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n, 0 ≤ k ≤ n + 1, n ∈ N , and the faces d and
degeneracies s satisfy the ∆Cop relations.

Cocyclic objects are used to define cohomology

. . . An−2

δi

// An−1

τn−1

FF
δj

// An
τn

EE
δk

//σioo
An+1

τn+1

FFσjoo
An+2

σkoo . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n, 0 ≤ k ≤ n + 1, n ∈ N , and the faces δ and
degeneracies σ satisfy the ∆C relations.

Having a cyclic object, we can construct a cocyclic one, and vice versa.

∆Cop
·̂ //

∆C
·̌

oo
Ân := An Ǎn := An

δ̂0 := tnsn−1 ď0 := σn−1τn

δ̂j+1 := sj , 0 ≤ j ≤ n− 1 ďj+1 := σj , 0 ≤ j ≤ n− 1

σ̂j := dj šj := δj

τ̂n := t−1
n ťn := τ−1

n
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Part V Cyclic homology of algebra extensions

The cyclic category ∆C is isomorphic with its opposite ∆Cop. The compositions
·̂ ◦ ·̌ and ·̌ ◦ ·̂ are inner automorphisms implemented by τ∗ and t∗ respectively.

3.2 Cyclic homology of algebra extensions

Let B be a subalgebra of A and M an A-bimodule. Define

Bn := B ⊗B⊗Bop (M ⊗B A⊗B . . .⊗B A︸ ︷︷ ︸
n times

).

Then
B0 = B ⊗B⊗Bop M = M/[B,M ]

and Bn can be written in a circle.
The simplicial structure is given by

d0(m, a1, . . . , an) := (ma1, a2, . . . , an)

dj(m, a1, . . . , an) := (m, a1, . . . , ajaj+1, . . . , an), 1 ≤ j ≤ n− 1

dn(m, a1, . . . , an) := (anm, a1, . . . , an−1)

sj(m, a1, . . . , an) := (m, a1, . . . , aj, 1, aj+1, . . . , an).

Lemma 3.2. The collection {Bn}n∈N is a simplicial module. If M = A, then
adjoining the morphisms tn : Bn → Bn

tn(a0, a1, . . . , an) := (an, a0, . . . , an−1)

makes {Bn}n∈N a cyclic module.

3.3 Hopf–Galois extensions

Let H be a Hopf algebra with comultiplication ∆: H → H ⊗ H , ∆(h) :=
h(1) ⊗ h(2). Let M be a right H-comodule with coaction ∆R : M → M ⊗ H ,
∆R(m) := m(0) ⊗m(1).

Let A be a right H-comodule algebra via ∆R : A→ A⊗H (G-space). Denote

B := {a ∈ A | ∆R(a) = a⊗ 1}
(functions on quotient).

Definition 3.3. The extension of algebras B ⊂ A is called Hopf–Galois exten-
sion if

g : A⊗B A→ A⊗H
g(a⊗B a′) := (a⊗ 1)∆R(a′) = a(a′)(0) ⊗ (a′)(1)

(canonical map) is an isomorphism.

Since g is a B-module map, we can extend it to Bn

g̃(a0, . . . , an−1, an) := (a0, . . . , an−1a
(0)
n )⊗ a(1)

n .

Using g̃ we have

B ⊗B⊗Bop (A⊗B . . .⊗B A︸ ︷︷ ︸
n times

)
g̃−→ B ⊗B⊗Bop (A⊗B . . .⊗B A︸ ︷︷ ︸

n−1 times

)⊗H

After n iterations we land in B ⊗B⊗Bop A⊗H⊗n = A/[A,B] ⊗H⊗n. The key
idea is to transport the cyclic structure via g̃∗.
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3.4 Hopf– cyclic homology with coefficients

Definition 3.4. Let M be a left H-module and right H-comodule. It is called
anti-Yetter-Drinfeld module if

∆R(hm) = h(2)m(0) ⊗ h(3)m(1)S(h(1)) ∈M ⊗H.

M is stable if m(1)m(0) = m.

Denote Hn := (H⊗(n+1))⊗H M with diagonal action on H⊗(n+1).

Theorem 3.5 (Jara-Stefan, Hajac-Khalkhali-Rangipour-Sommerhaus). The fol-
lowing formulas define a cyclic module structure on {Hn}n∈N.

dj(h0 ⊗ · · · ⊗ hn)⊗H m := (h0 ⊗ · · · ⊗ ε(hj)⊗ · · · ⊗ hn)⊗H m

sj(h0 ⊗ · · · ⊗ hn)⊗H m := (h0 ⊗ · · · ⊗∆hj ⊗ · · · ⊗ hn)⊗H m

tn(h0 ⊗ · · · ⊗ hn)⊗H m := (hnm
(1) ⊗ h0 ⊗ · · · ⊗ hn−1)⊗H m(0).

It is well defined if and only if M is a stable anti-Yetter-Drinfeld module.

Let B ⊂ A be a Hopf–Galois extension for a Hopf algebra H . The map
g : A⊗H → A⊗B A allows to define the translation map

T : H → A⊗B A, T (h) := g−1(1⊗ h) = h[1] ⊗B h[2].

Lemma 3.6 (Mijaschita-Ulbrich, Jara-Stefan, Hajac-Khalkhali-Rangipour-Som-
merhaus). The formula

H ⊗A/[B,A]
⊲−→ A/[B,A], h ⊲ ā 7→ h[2]ah[1]

defines a left action. Moreover this action satisfies the stable anti-Yetter-Drinfeld
module compatibility condition for the induced coaction on A/[B,A].

Example 3.7. If A = H then h ⊲ k = h(2)kS(h(1)).

Theorem 3.8 (Jara-Stefan). The cyclic modules {B ⊗B⊗Bop A⊗Bn}n∈N and
{H⊗(n+1) ⊗H A/[B,A]}n∈N are isomorphic.

Theorem 3.9. Let A be a left H-module algebra with respect to H ⊗ A → A,
h(ab) = h(1)(a)h(2)(b), h(1) = ε(h). Let M ⊗ A⊗(n+1) be a right H-module
via (m ⊗ ã)h := mh(1) ⊗ S(h(2))ã and k be a right H-module via ε. Then
{HomH(M ⊗ A⊗(n+1), k)}n∈N is a cocyclic module with the cocyclic structure
given by

(δjf)(m⊗ a0 ⊗ · · · ⊗ an) := f(m⊗ a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an)

(δnf)(m⊗ a0 ⊗ · · · ⊗ an) := f(m(0) ⊗ (S−1(m−1)an)a0 ⊗ a1 ⊗ · · · ⊗ an−1)

(σjf)(m⊗ a0 ⊗ · · · ⊗ an) := f(m⊗ a0 ⊗ · · · ⊗ aj ⊗ 1⊗ aj+1 ⊗ · · · ⊗ an)

(τnf)(m⊗ a0 ⊗ · · · ⊗ an) := f(m(0) ⊗ S−1(m−1)an ⊗ a0 ⊗ · · · ⊗ an).

Special cases:

1. H = k = M - the standard cyclic homology.

2. H = k[σ, σ−1], M = σkε - the twisted cyclic homology.
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Chapter 4

Twisted homology and
Koszul duality

4.1 Hochschild homology of the Quantum plane

Let k = C, and A be a quadratic algebra with the relation xy = qyx, where
q ∈ k× not a root of unity . The elements eij = xiyj , i, j ≥ 0 form a vector
space basis (⇒ PBW algebra). Consider the following automorphism

σ(x) = λx, σ(y) = µy, λ, µ ∈ k×

We will compute twisted cyclic homology HCσ
• (A).

The general strategy is to compute the simplicial theory underlying the
paracyclic object as

H•(A,M) = TorA
e

• (M,A)

(in our case M = σA) using a nice resolution of A as Ae-module or other
techniques.

There is a morphisms to the simplicial object underlying the cyclic object
(in our case this simplicial object will be denoted by HHσ

• (A)). We will try to
compute this using the spectral sequence arising from the (b, B)-bicomplex to
obtain as its limit the cyclic theory (here HCσ• (A)).

First we look for free resolution, i.e., exact complex

. . .→ (Ae)b1 → (Ae)b0 → A→ 0

ofAe-modules. It should be as small as possible. Thus b0 = 1, and augmentation
is a multiplication.

Lemma 4.1. If A generated by xi, then kerµ is generated as Ae-module by
1⊗ xi − xi ⊗ 1.

Proof. If
∑
aibi = 0 then

∑
ai ⊗ bi =

∑
ai ⊗ bi − aibi ⊗ 1

=
∑

(ai ⊗ 1)(1⊗ bi − bi ⊗ 1),
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Part V Hochschild homology of the Quantum plane

hence it is generated by elements of the form 1⊗f−f⊗1. But f 7→ (1⊗f−f⊗1)
satisfies the Leibniz rule

1⊗ fg − fg ⊗ 1 = (f ⊗ 1)(1⊗ g − g ⊗ 1) + (1⊗ g)(1⊗ f − f ⊗ 1).

The claim follows.

Thus here b0 = 1, b1 = 2,

. . .→ (Ae)2 → Ae → A→ 0

Now we will determine the kernel of the first map

(a⊗ b, c⊗ d) 7→ (a⊗ b)(1⊗ x− x⊗ 1) + (c⊗ d)(1⊗ y − y ⊗ 1)

= a⊗ xb− ax⊗ b+ c⊗ yd− cy ⊗ d.

Thus
(eij ⊗ ekl, 0) 7→ eij ⊗ ek+1l − q−jei+1j ⊗ ekl,

and
(0, eij ⊗ ekl) 7→ q−keij ⊗ ekl+1 − eij+1 ⊗ ekl.

Playing a bit with grading arguments gives that the kernel is generated as Ae-
module by a single element

ω := (1⊗ y − qy ⊗ 1,−q ⊗ x+ x⊗ 1).

Hence we can take b2 = 1. Since A is a domain (again grading argument), the
new map

Ae → (Ae)2,

(a⊗ b) 7→ (a⊗ b)ω

is injective, so we have a free resolution

0→ Ae → (Ae)2 → Ae → 0

of A as left Ae-module.
Now we tensor this resolution with σA and take homology. As vector space

our complex is
0→ A→ A2 → A→ 0.

The two morphisms are

f 7→ (σ(y)f − qfy,−qσ(x)f + fx),

and
(f, g) 7→ σ(x)f − fx+ σ(y)g − gy.

Thus on bases:

eij 7→ ((µq−i − q)eij+1, (−qλ+ q−j)ei+1j)

(eij , 0) 7→ (λ− q−j)ei+1j

(0, ekl) 7→ (µq−k − 1)ekl+1
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Part V Hochschild homology of the Quantum plane

The generators of HH2 are

eij , λ = q−j−1, µ = qi+1,

and the generators of HH0 are

e00,

e0,l+1 for µ = 1,

ei+1,0 for λ = 1,

ei+1,j+1 for λ = q−j−1, µ = qi+1.

The image contains ei+1,j except when λ = q−j and ek,l+1 except when µ = qk.
For the computation of HH1 we write generators of the kernel

(eij,0) for λ = q−j

(0, ekl) for µ = qk

((1 − µq−i−1)ei,j+1, (λ− q−j−1)ei+1,j)

The latter are always trivial in homology. Furthermore

(eij+1, 0), λ = q−j−1

is trivial except when also µ = qi+1. Finally

(ei0, 0), λ = 1

are always nontrivial. Similarly,

(0, ek+1l) µ = qk+1

is trivial except when λ = q−l−1 and always nontrivial is

(0, e0l), µ = 1.

From now on for simplicity

λ = q−1 µ = q.

Then we can write the generators of Hochschild homology

HH2 : 1

HH1 : (y, 0), (0, x)

HH0 : 1, xy

In the original Hochschild homology

HH2 : 1⊗ x⊗ y − α⊗ y ⊗ x

is a boundary only when λ = q−1, µ = α = q. In degree one

HH1 : x⊗ y, y ⊗ x.

Now we will compute HCσ
∗ (A).

534



Part V Cyclic homology of the Quantum plane

The (b, B)-bicomplex is not a bicomplex, since

b ◦B +B ◦ b = id− T.

But the columns form a complex. It computes the Hochschild homology HH∗(A, σA)
with coefficients in the bimodule σA = A.

Define C0
n = ker(id− T ). If Cn = C0

n⊕C1
n, then we have

HH∗(A, σA) ∼= HHσ
∗ (A).

Since [b, id− T ] = 0, C∗ = C0
∗⊕C1

∗ as complexes, we have

HHσ
∗ (A) = H∗(C

0
∗, b),

H∗(A, σA) = HHσ
∗ (A)⊕H∗(C

1
∗, b).

But (id− T )|C1
∗

is a bijection, and on C1
∗ we have

b ◦ (id− T )−1 ◦B + (id− T )−1 ◦B ◦ b = id.

Hence (id−T )−1 ◦B is a contracting homotopy. This applies for example when
σ is diagonalizable.

4.2 Cyclic homology of the Quantum plane

The B-map in normalised form:

B : f 7→ 1⊗ f
f ⊗ g 7→ 1⊗ f ⊗ g − 1⊗ σ(g)⊗ f

f ⊗ g ⊗ h 7→ 1⊗ f ⊗ g ⊗ h+ 1⊗ σ(g)⊗ σ(h) ⊗ f + 1⊗ σ(h)⊗ f ⊗ g.

On our generators:

1 7→ 1⊗ 1,

xy 7→ 1⊗ xy
x⊗ y 7→ 1⊗ x⊗ y − q ⊗ y ⊗ x
y ⊗ x 7→ 1⊗ y ⊗ x− q−1 ⊗ x⊗ y

We have (consider b(1⊗ x⊗ y))

[1⊗ xy] = [x⊗ y] + q[y ⊗ x]

On the page 2 of the spectral sequence there is nothing in degree 2, the generator
of HH2 is in imB. The kernel of B1 is spanned by ω := [x⊗ y] + q[y⊗ x] which
is in the image of B0. The kernel of B0 is spanned by [1].

Here the spectral sequence stabilises. So periodically:

HPeven = k[1], HPodd = 0.

and not periodically we have to correct

HC0 = k[1]⊕ k · [xy].

That is, the quantum plane has the same cyclic theory as the classical one.
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4.3 On Koszul duality

Let A = A(V, I) be quadratic, A! = A(V ∗, I⊥) its Koszul dual, xi, x
i dual bases

in V, V ∗ The original Koszul complex

K = (A!)∗ ⊗k A

has differential given by multiplication from the right by e := xi ⊗ xi. Here A!

acts on the dual space from the right. Why d2 = 0? We have

Homk(V ⊗2, V ⊗2) ≃ V ∗ ⊗ V ⊗ V ∗ ⊗ V ≃ (A!
1 ⊗A1)⊗2

and

A!
2 ⊗k A2 ≃ (V ∗ ⊗ V ∗/I⊥)⊗ (V ⊗ V/I)

≃ I∗ ⊗ (V ⊗ V/I)

≃ Homk(I, V ⊗ V/I)

Then µ just become the canonical map

Homk(V ⊗2, V ⊗2)→ Homk(I, V ⊗ V/I).

Under the identification e⊗ e becomes id. Hence µ(e⊗ e) is zero.
The bimodule complex is

A⊗ (A!)∗ ⊗A

built as the total complex of a bicomplex:

bL : r ⊗ f ⊗ s 7→ rxi ⊗ fxi ⊗ s
bR : r ⊗ f ⊗ s 7→ r ⊗ xif ⊗ xis

These commute and square to zero. Spectral sequence argument: One complex
acyclic if and only if the other is. One is a resolution of k, and the second of A.
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Chapter 5

Relation with K-theory

We will define invariant of rings, called algebraic K-theory and denoted by K∗(A)
for a ring A. Next we will describe its relation with cyclic homology by defining
a map

K∗(A)→ HC∗(A).

5.1 K-theory

First we will define K-theory of a ring A in gradation 0, that is K0(A). We
say that a finitely generated module over A is free if it is isomorphic to the
product An for some n. A finitely generated A-module P is projective if it is a
direct summand in a free A-module, that is there exists an A-module Q such
that P ⊕ Q ∼= An for some n. Such projective module P corresponds to an
idempotent in the matrix algebra Mn(A). The set of isomorphism classes of
finitely generated projective modules over A is a monoid with respect to direct
sum of classes defined by

[P ] + [Q] =: [P ⊕Q].

There is a universal abelian group for this monoid (called the Grothendieck
group), and we take it as the definition of the K-theory of A, denoted by K0(A).

Let A be a commutative algebra over k. Suppose we want to construct a
map

ch: K0(A)→ HdR
2(A).

First consider an example of a map from a tori S1×S1 to a sphere S2 given
by contracting the boundary of a square with opposite edges identified. This
map has degree 1 and induces an isomorphism

H2(S2)
deg(f)−−−−→ H2(S1 × S1).

If we want to find an algebraic map of corresponding coordinate rings

S2
a := C[X,Y, Z]/(X2 + Y 2 + Z2 − 1)→ C[U,U−1, V, V −1] =: S1 × S1

a

then we will not succeed, because any algebraic map S1×S1 → S2 is homotopic
to the constant map (Loday). The situation is very different now than it is in
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Part V Trace map

Figure 5.1: f : S1 × S1 → S2

case of maps S3 → S2. Indeed, assume we have the map

f∗ : S2
a → S1

a × S1
a.

Then it induces a map on K-theory

K0(S2
a)→ K0(S1

a × S1
a),

and we would have a commutative diagram

Z�� K̃0(S2
a) //�� K̃0(S1

a × S1
a)�� 0��

C HdR
2(S2

a)
deg(f) // HdR

2(S1
a × S1

a) C

which gives a contradiction, because a generator of Z = K̃0(S2
a) goes to the

generator of C = HdR
2(S2

a).
Define a projector p and idempotent e in M2(S2

a) by the formulas

p :=

(
X Y + iZ

Y − iZ −X

)
, p2 = 1, e :=

p+ 1

2
, e2 = e.

Fact 5.1. The class of the image of e, denoted [im e], generates K0(S2
a).

Fact 5.2 (Grothendieck). For any noetherian ring A there is an isomorphism

K̃0(A[X,X−1]) ∼= K0(A).

5.2 Trace map

There is a trace map defined as

Tr: Mr(A)→ A, [aij ]
r
i,j=1 7→

r∑

i=1

aii.

We can extend it to a map

Tr: Mr(A)⊗(n+1) → A⊗(n+1),
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Part V Trace map

[ai0j0 ]⊗ . . .⊗ [ainjn ] 7→
∑

k0,k1,...,kn

ak0k1 ⊗ ak1k2 ⊗ . . .⊗ aknk0

for any r ≥ 1, n ≥ 0. It induces a maps on Hochschild, cyclic, periodic cyclic
and negative cyclic homology.

HHn(Mr(A))→ HHn(A), HCn(Mr(A))→ HCn(A), etc.

Let us take an idempotent e2 = e in Mr(A). Under the map b in Hochschild
complex for Mr(A) we have

e⊗(n+1) 7→
{

0 n even

e⊗n n odd

In Cλn(Mr(A)) we have e⊗(n+1) = (−1)ne⊗(n+1). If n is odd, then [e⊗(n+1)] = 0.
If n = 2m is even, then b[e⊗(n+1)] = 0, so [e⊗(n+1)] is a cycle, and we can define
a map [e] 7→ [Tr(e⊗(n+1))],

K0(A)→ Hλ
2m(M(A))

Tr−→ Hλ
2m(A),

M(A) =
⋃

r

Mr(A), Mr(A) →֒Mr+1(A), α 7→
(
α 0
0 0

)
.

We have to show that the element [Tr(e⊗(n+1))] ∈ Hλ
2m(A) depends only on the

isomorphism class.

Lemma 5.3. An interior automorphism (conjugation) induces an identity for
Hochschild, cyclic, periodic cyclic, negative cyclic homology.

We have constructed a functorial map K0(A)→ Hλ
2m(A). Now we ask if we

can construct a map K0(A)→ HC2m(A)?
Recall the cyclic bicomplex C••(A)

...�� ...�� ...�� ...��
C2

b �� C2

−b′ ��1−too C2

b ��Noo C2

−b′ ��1−too . . .Noo
C1

b �� C1

−b′ ��1−too C1

b ��Noo C1

−b′ ��1−too . . .Noo
C0 C0

1−too C0
Noo C0

1−too . . .Noo
Define

yi := (−1)i
(2i)!

i!
Tr(e⊗(2i+1)),

zi := (−1)i−1 (2i)!

2(i!)
Tr(e⊗(2i)).
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Part V Algebraic K-theory

Proposition 5.4. The element ch([e]) := (ym, zm, ym−1, zm−1, . . . , y0, z0) ∈
(Tot(C••(A)))n, n = 2m + 1 is a cycle. Furthermore the following diagram is
commutative

K0(A)
ch //
ch &&MMMMMMMMMM ��================

==
Tr ��33333333333333

333333333 HC2m(A)

S��
HC2m−2(A)��. . .��

HC0(A)

For the B•C• we have to use ch([e]) := (yn, yn−1, . . . , y0) ∈ (Tot(B•C•(A)))n.
We can define a map

ch: K0(A)→ HdR
ev(A), ch([e]) := Tr(edede . . . de).

5.3 Algebraic K-theory

Let A be a ring with unit. Define a discrete group GL(A) as a direct limit of
the groups GLr(A) with respect to the maps

GLr(A) →֒ GLr+1(A), α 7→
(
α 0
0 1

)
.

There is a B GL(A) with

π1(B GL(A)) = GL(A),

πn(B GL(A)) = 0, n 6= 1.

We can apply the Quillen’s plus construction to obtain a space B GL(A)+ with
the following three properties

1. the fundamental group is an abelianization of GL(A),

π1(B GL(A)+) = GL(A)/[GL(A),GL(A)],

2. there is an isomorphism on homology Hi(B GL(A)) ∼= Hi(B GL(A)+),

3. there is an H-space structure on B GL(A)+.

Thus H∗(B GL(A)+) is commutative, cocommutative (and connected) Hopf al-
gebra.

Definition 5.5. Higher K-theory groups of A are defined as

Kn(A) := πn(B GL(A)+), n ≥ 1.
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Part V Algebraic K-theory

Prior to this definition there were defined K1, K2, K3. We will describe these
earlier definitions.

The K1 group of a ring A was defined as an abelianization of GL(A),

K1(A) = GL(A)/[GL(A),GL(A)].

For example if A = F is a field, then K1(F ) = F×, the group of invertible
elements in F . The determinant map det: GL(F )→ F× can be generalized to
noncommutative rings by the map GL(A)→ K1(A).

Denote by E(A) the group generated by elementary matrices eaij , where each
eaij is an identity matrix plus the matrix with only one nonzero entry equal to
a in i-th row and j-th column. Then

[GL(A),GL(A)] = E(A).

The elementary matrices eaij satisfy the following relations





eaije
b
ij = ea+bij ,

eaije
b
kl = ebkle

a
ij , for j 6= k, i 6= l,

eaije
b
jk = ebjke

ab
ike

a
ij .

(5.1)

The group E(A) can be presented using generators eaij which satisfy the relations
(5.1) above plus some relations which depend on A. Define the Steinberg group
St(A) of A as the group with the set of generators {xaij} with the relations (5.1).
There is an epimorphism St(A) ։ E(A) and we define K2(A) as the kernel of
this map. Then K2(A) is abelian, and the sequence

K2(A)  St(A) ։ E(A)

is a central extension.

Theorem 5.6 (Kervaire). The group E(A) is perfect, that is

H1(E(A)) = 0,

and
H2(E(A)) ∼= K2(A).

Proof. The proof relies on the spectral sequence of the fibration

B K2(A)→ B St(A)→ B E(A)

On the second table we have

E2
pq = Hp(B E(A); Hq(B K2(A)))

and the sequence converges to Hp+q(B St(A)). We have

Hp(B E(A); Hq(B K2(A))) ∼= Hp(E(A); Hq(K2(A))) ∼= Hp(E(A)) ⊗Hq(K2(A))
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Part V Algebraic K-theory

The second table looks like follows.

. . . 0 . . . . . . . . .

Λ2K2(A) 0 . . . . . . . . .

K2(A) 0 H2(E(A) ⊗K2(A)

jjVVVVVVVVVVV
H3(E(A)⊗K2(A) . . .

Z 0 H2(E(A))

kkVVVVVVVVVVVVV
H3(E(A))

llYYYYYYYYYYYYYYYYYYYYYYYYYY
. . . //

OO
One needs to prove that H2(St(A)) = 0, and that E∞pq looks like

0 0 0 0 . . .

0 0 0 0 . . .

Z 0 0 H3(St(A)) . . .

OO
//

Theorem 5.7 (Gersten). There is an isomorphism

H3(St(A)) ∼= K3(A).

Proof. One has to prove that there is a fibration

BK2(A) // B St(A)+ // B E(A)+

BK2(A)+

and then use a spectral sequence.

Summarizing earlier results we have

H1(GL(A)) = K1(A),

H2(E(A)) = K2(A),

H3(St(A)) = K3(A).
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Part V Algebraic K-theory

Let us look once more at the relations for Steinberg group (5.1). We can label
the edges of a Stasheff polytope of dimension 2 as follows

•
eb

jk��������� ea
ij ���������•

eab
ik �� •

eb
jk����������������•

ea
ij ��������� •

to encode the relation eaije
b
jk = ebjke

ab
ike

a
ij . There is a way to put labels on the

Stasheff polytope of dimension 3 in the coherent way. It can be generalized to
higher dimension.

Proposition 5.8 (Kapranov-Saito). The space B GL(A)+ is an H-space and
there is an isomorphism

Prim H∗(B GL(A)+; Q) = π∗(BGL(A)+)⊗Q

where the primitive elements are the set

{x ∈ H∗(B GL(A)+; Q) : ∆(x) = x⊗ 1 + 1⊗ x}.
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Chapter 6

Homology of Lie algebras of
matrices

Theorem 6.1 (Loday-Quillen, Tsygan). Let k be a characteristic 0 field, A an
associative unital k-algebra. Then

H∗(gl(A)) ∼= Λ(HC∗−1(A)). (6.1)

On the left hand side of isomorphism (6.1) we have matrices of any size,
while on the right hand side there are no matrices, and the computations are
easier.

There are generalizations of the theorem (6.1) for Lie algebras so(A) and
sp(A). Also, if instead of algebra we take an operad, then on the right hand
side cyclic homology is replaced by some graph homology (Kontsevich).

6.1 Leibniz algebras

Definition 6.2. A Leibniz (right) algebra over k is an algebra A with bracket

[−,−] : A⊗A→ A,

such that [−, z] is a derivation for each z ∈ A, that is

[[x, y], z] = [[x, z], y] + [x, [y, z]].

Definition 6.3. A Lie algebra is a Leibniz algebra such that

[x, y] = −[y, x].

Under this symmetry property, the Leibniz relation is equivalent to Jacobi rela-
tion.

There is a chain complex associated to a Leibniz algebra g:

CL∗(g) : . . .→ g⊗n
d−→ g⊗(n−1) d−→ . . .

d−→ g
0−→ k

CLn(g) = g⊗(n−1), d : CLn+1(g)→ CLn(g)

d(x1, . . . , xn) :=
∑

1≤i<j≤n
(−1)j(x1, . . . , [xi, xj ], xi+1, . . . , x̂j , . . . , xn).
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Part V Leibniz algebras

Lemma 6.4. The map d is a differential, that is d2 = 0.

Proof. We will check only the composition

g⊗3 d // g⊗2 d // g
x⊗ y � // [x, y]

x⊗ y ⊗ z � // −[x, z]⊗ y − x⊗ [y, z] + [x, y]⊗ z

In this case d2 = 0 is equivalent to Leibniz relation. The general case is analo-
gous.

Definition 6.5. The Leibniz homology of the Leibniz algebra g is

HL∗(g) := H∗(CL∗(g), d).

When g is a Lie algebra, then one can pass to the quotient by the action of
symmetric group (with signature)

g⊗n ։ Λng.

Then d also passes to the quotient and one obtains a Chevalley-Eilenberg chain
complex of g:

C∗(g) : . . .→ Λng
d−→ Λn−1g

d−→ . . .
d−→ g

0−→ k

Cn(g) = Λn−1g, d : Cn+1(g)→ Cn(g)

d(x1, . . . , xn) :=
∑

1≤i<j≤n
(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

For a Lie algebra g we define a Lie algebra homology:

H∗(g) := H∗(C∗(g), d).

There is a map HL∗(g) → H∗(g), which is not an isomorphism in general.
For example if g is abelian, then the boundary in the Leibniz and Chevalley-
Eilenberg complex is 0, so we have

HLn(g) = g⊗n

Hn(g) = Λng

Also if g is a simple Lie algebra, then HLn(g) = 0, for n ≥ 1, but Hn(g) does
not have to be 0 for n 6= 1.

Let g be a Lie algebra, and g ∈ g. Then g acts on g⊗n

[g1 ⊗ · · · ⊗ gn, g] =
n∑

i=1

g1 ⊗ · · · ⊗ [gi, g]⊗ · · · ⊗ gn.

Proposition 6.6. This action is compatible with the boundary map d and it is
zero on H∗(g).
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Proof. The first part is easy. For the second part we construct for y ∈ g a map

σ(y) : Λng→ Λn+1g

α 7→ (−1)nα ∧ y.
Then σ(y) is a homotopy from conjugation to zero map, that is

dσ(y) + σ(y)d = [−, y].

Proposition 6.7. Let g be a Lie algebra, and h be a reductive sub- Lie algebra
of g. Then the surjective map

(Λng) ։ (Λng)h

induces an isomorphism on homology

H∗(g) ∼= H∗((Λ
ng)h, d).

6.2 Computation of Lie algebra homology H∗(gl(A))

Let k be a field, A an associative unital algebra over k. Denote by Mr(A)
the algebra of r × r matrices with coefficients in A, and by glr(A) the same
space, but with its Lie algebra structure given by [α, β] = αβ− βα. There is an
inclusion of Lie algebras glr(A) →֒ glr+1(A),

α 7→
(
α 0
0 0

)
,

but it does not preserve the identity in Mr(A). With respect to these inclusions
we define gl(A) :=

⋃
r glr(A), the Lie algebra of matrices over A. Our aim is

to compute H∗(gl(A)) = lim
−→r

H∗(glr(A)), but unfortunately we cannot compute

H∗(glr(A)).

Proof. (of the theorem (6.1)) The strategy of the proof of theorem (6.1) can be
summarized in the following four steps:

1. Koszul trick.

2. Coinvariant theory.

3. Hopf-Borel (type) theorem.

4. Computation of primitive part.
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The idea is to prove that the composition of the following maps is a quasi-
isomorphism

(gl(A)⊗n)Sn����
((gl(A)⊗n)Sn)sl(k)

((gl(k)⊗n ⊗A⊗n)sl(k))Sn

((gl(k)⊗n)sl(k) ⊗A⊗n)Sn

(k[Sn]⊗A⊗n)Sn��
Λ((k[Un]⊗A⊗n)Sn)��

Λ(A⊗n/(1− t))

where Un denotes the set of permutations with only one cycle, and A⊗∗/1 − t
is the Connes complex computing cyclic homology.

1. The algebra slr(k) is reductive, (glr(A)⊗n)Sn is an slr(k)-module, and we
can consider the projection on the component corresponding to the trivial
representation

K  (glr(A)⊗n)Sn ։ ((glr(A)⊗n)Sn)slr(k).

The kernelK has trivial homology, so the projection is a quasi-isomorphism.

2. There is an isomorphism glr(A) ∼= glr(k) ⊗ A which can be proved by
decomposing a matrix with entries in A into the elementary matrices Eaij ,
having one nonzero entry a in the place (i, j), that is

r∑

i,j=1

E
aij

ij =

r∑

i,j=1

E1
ij ⊗ aij .

From this we derive

(gl(A)⊗n)slr(k) = (glr(k)⊗A⊗n)slr(k) = (glr(k)⊗n)slr(k) ⊗A⊗n.

Now we use

Theorem 6.8. When k is a characteristic 0 field there is an isomorphism
of Sn-modules

(glr(k)⊗n)slr(k)
∼= k[Sn].
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Proof. The isomorphism is given by

α = α1 ⊗ · · · ⊗ αn 7→
∑

σ∈Sn

T (σ)(α)︸ ︷︷ ︸
∈k

σ,

where for sg ∈ Sn which is decomposed into cycles (i1 . . . ik)(j1 . . . jl)(. . .) . . .
we define a map T (σ) : (glr)

⊗n → k by

T (σ)(α) = Tr(αi1 . . . αik ) Tr(αj1 . . . αjl) Tr(. . .) . . . ,

which is a product of finite number of elements in k. From the trace
property Tr(ab) = Tr(ba) we know that T (σ) is well defined.

Observe that

E1
i1i2 ⊗ E1

i2i3 ⊗ · · · ⊗E1
ini1 7→ (12 . . . n).

The action of Sn on k[Sn]⊗A⊗n is conjugation in k[Sn], place permutation
on A⊗n and multiplication by sign.

3. The diagonal map g
∆−→ g× g induces a graded cocommutative coproduct

on homology H∗(g) → H∗(g × g) = H∗⊗H∗(g). For g = gl(A) there is a
map

gl(A) × gl(A)
⊕−→ gl(A),

which we can schematically describe as





∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
. . . . . . . . . . . .


 ,



⋆ ⋆ ⋆ . . .
⋆ ⋆ ⋆ . . .
. . . . . . . . . . . .




 7→




∗ 0 ∗ 0 ∗ 0 . . .
0 ⋆ 0 ⋆ 0 ⋆ . . .
∗ 0 ∗ 0 ∗ 0 . . .
0 ⋆ 0 ⋆ 0 ⋆ . . .
. . . . . . . . . . . . . . . . . . . . .




It induces a graded cocommutative product.

H∗(gl(A)) ⊗H∗(gl(A))
µ=⊕∗−−−−→ H∗(gl(A))

Theorem 6.9. H∗(gl(A)) is a commutative cocommutative bialgebra.

For any coalgebra H there is a filtration F∗H such that , F0 = k and

Fr := {x ∈ H | ∆(x) ∈ Fr−1 ⊗ Fr−1},

where ∆(x) = ∆(x)− x⊗ 1− 1⊗ x.

Definition 6.10. We say that a coalgebra H is conilpotent if H =
∑
r≥0 FrH.

Now we recall the Hopf-Borel theorem:
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Theorem 6.11. If k is a characteristic 0 field, and H is a conilpotent
graded commutative cocommutative bialgebra, then

H ∼= Λ(Prim(H)).

The main point now is that C∗(gl(A)) is a graded commutative cocom-
mutative bialgebra.

Proposition 6.12.
⊕

n(k[Sn]⊗A⊗n)Sn is a graded commutative cocom-
mutative bialgebra.

4. The last step in the proof of theorem (6.1) is determining the primitive
part of (k[Sn] ⊗ A⊗n)Sn . Let Un denote the permutations with only one
cycle. Then

Proposition 6.13.

Prim((k[Sn]⊗A⊗n)Sn) = (k[Un]⊗A⊗n)Sn .

Proof. Assume that σ can be decomposed into more than one cycle, σ =
(i1 . . . ik)(j1 . . . jl). Then the coproduct gives

∆((i1 . . . ik)(j1 . . . jl)) = σ⊗1+1⊗σ+(i1 . . . ik)⊗(j1 . . . jl)±(j1 . . . jl)(i1 . . . ik).

We see that σ is primitive if and only if σ has only one cycle.

Now
H∗(gl(A)) = Λ(H∗((k[U∗]⊗A⊗∗)S∗)).

The symmetric group Sn is acting by conjugation in k[Sn] and k[Un]. As
an Sn-representation

k[Un] = IndSn

Cn
k

and the dimension of k[Un] is (n− 1)!. Furthermore

(IndSn

Cn
k ⊗A⊗n)Sn

∼= (A⊗n)Cn = A⊗n/(1− t) = Cλn(A)

and for a1⊗· · ·⊗an ∈ Cλn(A) we have by tracing all the steps in the proof

a1 ⊗ · · · ⊗ an ∈ Cλn(A)
b // b(a1 ⊗ · · · ⊗ an)

(12 . . . n)⊗ (a1, . . . , an) ∈ k[Sn]⊗A⊗n //_OO
a1a2 ⊗ a3 ⊗ · · · ⊗ an
−a1 ⊗ a2a3 ⊗ · · · ⊗ an

+ . . .+
+(−1)nana1 ⊗ a2 ⊗ · · · ⊗ an−1

Ea1
12 ⊗ Ea2

23 ⊗ · · · ⊗Ean
n1

d //_OO
Ea1a2

12 ⊗ Ea3
34 ⊗ · · · ⊗ Ean

n1

+Ea1
12 ⊗ Ea2a3

23 ⊗ · · · ⊗Ean
n1

+ . . .+
+Ea1

12 ⊗ Ea2
23 ⊗ · · · ⊗Eana1

n1

_OO
We proved that (k[Un]⊗A⊗n)Sn is the Connes complex, and thus

Λ(HC∗−1(A)) ∼= H∗(gl(A)).
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Example 6.14. If A = k we know that
{

HC2n(k) = k

HC2n−1(k) = 0

From this we can derive

H∗(gl(k)) = Λ(x1, x3, . . . , x2n+1, . . .),

H∗(gln(k)) = Λ(x1, x3, . . . , x2n−1),

H∗(sl2(k)) = Λ(x3).

6.3 Computation of Leibniz homology HL∗(gl(A))

Our aim now is to compute HL∗(gl(A)). Recall the steps in the proof of theorem
(6.1).

gl(A)⊗n

quasi-isomorphism����
(gl(A)⊗n)sl(k)

(gl(k)⊗n ⊗A⊗n)sl(k)

(gl(k)⊗n)sl(k) ⊗A⊗n

(k[Sn]⊗A⊗n)Sn

We have to modify the third step, because Leibniz homology is not a Hopf
algebra. If g is a Leibniz algebra, then HL∗(g) is a graded Zinbiel coalgebra
which definition we give below.

Definition 6.15. A Zinbiel algebra A is an algebra such that its multiplication
satisfies the following identity

(x · y) · z = x · (y · z + z · y).

Lemma 6.16. If we define a new product xy := x · y + y · x, then it will be
associative.

Zinbiel algebras play the same role to the commutative algebras as the as-
sociative algebras to Lie algebras.

Definition 6.17. A graded Zinbiel algebra A is an algebra such that its multi-
plication satisfies the following identity

(x · y) · z = x · (y · z + (−1)|y||z|z · y).
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Definition 6.18. A Zinbiel coalgebra C is a coalgebra such that its comultipli-
cation ∆: C → C ⊗ C satisfies the following identity

(∆⊗ Id)∆ = (Id⊗∆)∆ + (Id⊗ τ∆)∆,

where τ : C ⊗ C → C ⊗ C is given by

τ(x ⊗ y) =

{
y ⊗ x in the non graded case,

(−1)|y||x|y ⊗ x in the graded case.

Proposition 6.19. The Leibniz homology HL∗(gl(A)) is graded Zinbiel as coal-
gebra and associative as algebra.

In short we say that HL∗(gl(A)) is a graded Zinbc-As-bialgebra. It means
that the Zinbiel coalgebra coproduct and the associative algebra product satisfy
some compatibility relation. If one compares the product with the symmetric
coproduct, then one obtatins the Hopf formula.

There is a following structure theorem for Zinbc-As-bialgebras.

Theorem 6.20. If a Zinbc-As-bialgebra H is conilpotent, then it is free and
cofree over its primitive part.

Corollary 6.21.

HL∗(gl(A)) ∼= T (Prim(
⊕

n≥0

k[Sn]⊗A⊗n)) = T (
⊕

n≥0

k[Un]⊗A⊗n).

Our aim now is to compute H∗(
⊕

n≥0 k[Un]⊗A⊗n).

Theorem 6.22 (Cuvier). There is a quasi-isomorphism of complexes

. . . // k[Un]⊗A⊗n d //���� k[Un−1]⊗A⊗(n−1) //���� . . .

. . . // A⊗n b // A⊗(n−1) // . . .
The map is given by

g(12 . . . n)g−1 ⊗ α 7→ g(α),

where g ∈ Sn, g(1) = 1 is chosen in such way that g(12 . . . n)g−1 is the cycle
which we want to send to A⊗n. The map in the opposite direction is

α 7→ (12 . . . n)⊗ α.

and the one composition is identity on A∗ and the second one is homotopic to
the identity.

Corollary 6.23.

HL∗(gl(A))
∼= //�� T (HH∗−1(A))��

H∗(gl(A))
∼= // Λ(HC∗−1(A)).
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Now we can make a digression on some algebraic topology theorems. Suppose
there is a fibration F → E → B of H-spaces. There is a spectral sequence

E2
pq = Hp(B,Hq(F )) =⇒ Hp+q(E).

Furthermore for any H-space X

Prim(H∗(X ; Q)) = π∗(X) ⊗Q,

so
H∗(X ; Q) = Λ(π∗(X)⊗Q).

If we take the primitive parts on second term of this spectral sequence, then it
can be proved that the only nonzero terms will be on the row q = 0 and column
p = 0, and it will be isomorphic to rational homotopy of the basis and the fiber.

q

πr−1(F )⊗Q ∗

OO
∗

dr

ddIIIIIIIIIIIIIIIIIIIIIIIIII //
πr(B) ⊗Q p

From this spectral sequence we obtain the long exact sequence of homotopy
groups.

The motivation for computing H∗(glr(A)) for fixed r comes from Macdonald
conjecture, which is some identity with sum on the left hand side and product
on the right. To prove it, it is sufficient to compute Hn(glr(k[t]/tk)). On one
side there will be an Euler-Poincaré characteristic of the complex, and on the
other the Euler-Poincaré characteristic of the homology, which are equal.

Theorem 6.24. If k is a characteristic 0 field, and A is an associative unital
algebra, then

Hn(gln(A)) ∼= Hn(gln+1(A)) ∼= . . . ∼= Hn(gl(A)).

Furthermore for commutative A the following sequence is exact

Hn(gln−1(A))→ Hn(gln(A)) ։ Ωn−1
A /dΩn−2

A .

Theorem 6.25. If k is a characteristic 0 field, and A is an associative unital
algebra, then

Hn(GLn(F )) ∼= Hn(GLn+1(F )) ∼= . . . ∼= Hn(GL(A)),

and the following sequence is exact

Hn(GLn−1(F ))→ Hn(GLn(F ))→ KM
n (F )⊗Q.

where KM is the Milnor’s K-theory.
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Theorem 6.26. If k is a characteristic 0 field, and A is an associative unital
algebra, then

HLn(gln(A)) ∼= HLn(gln+1(A)) ∼= . . . ∼= HLn(gl(A)).

Furthermore for commutative A there is an exact sequence

HLn(gln−1(A))→ HLn(gln(A)) ։ Ωn−1
A .
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Chapter 7

Algebraic operads

7.1 Schur functors and operads

Definition 7.1. An algebraic operad is a functor P : Vect → Vect, together
with a natural transformation of functors ι : Id → P, γ : P ◦ P → P. They are
supposed to satisfy the following relations

• γ is associative,

P ◦ P ◦ P
id◦γ //

γ◦id �� P ◦ P
γ��

P ◦ P γ
// P

• ι is a unit for γ.

If X is a set, then the structure is just inclusion {∗} → X and if X×X → X
is an operation, then we have the notion of set operad P : Sets → Sets. In
analagous way we can define topological operad, chain complex operad etc.

In the sequel, we suppose that P is Schur functor, which definition we give
below.

Definition 7.2. A Schur functor is defined from an S-module P, which is a
collection of right Sn-modules, and

P(V ) :=
⊕

n≥0

P(n)⊗Sn V
⊗n.

We can as well write

P(V ) :=
⊕

n≥0

(P(n)⊗ V ⊗n)Sn .

In characteristic 0 we can take the invariants as well as coinvariants.
In these notes we restrict the study of algebraic operads to Schur functors.
The natural transformation γ gives us for each vector space V a linear map

γ : P(P(V )) = P


⊕

n≥0

P(n)⊗Sn V
⊗n


→ P(V ).
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and so for each n ≥ 0, a map

γi1...in : P(n)⊗ P(i1)⊗ . . .⊗ P(in)→ P(i1 + . . .+ in), n ≥ 0.

Starting with γi1...in , in order to reconstruct the operad we need to assume that
it is compatible with the action of the symmetric groups

Sn × (Si1 × . . .× Sin )→ Si1+...+in ,

and that it satisfies a certain associativity property, namely the associativity of
γ : P ◦ P → P .

Definition 7.3. An algebra over the operad P (or P-algebra) is a vector space
A equipped with a linear map γA : P(A) → A such that the following diagrams
commute

P(P(A))
P(γA) //

γ(A) �� P(A)

γA��
P(A) γA

// A A
ι(A) //
= !!DDDDDDDDD P(A)

γA��
A

For an algebra over the operad P and each n ≥ 0 there is a map γn : P(n)⊗Sn

A⊗n → A and we write

(µ; a1, . . . , an) 7→ γ(µ⊗ (a1, . . . , an)) =: µ(a1, . . . , an).

We call P(n) the space of n-ary operations.
Let V be a vector space, and P an operad. Suppose that we have a type of

algebras (for example associative, Leibniz, Lie). We name it P-algebras, where
P denotes the given type. Then we define

Definition 7.4. The P-algebra A0 is free over V if for any map V → A to a
P-algebra A there is a unique map of P-algebras A0 → A such that the following
diagram commutes

V //   AAAAAAAA A0�����
A

Let V = kx1⊕ . . .⊕ kxn be an n-dimensional vector space over k, and P(V )
denote the free algebra of a given type over V . The multilinear part of P(V ) of
degree n (linear in each variable) is a subspace which we denote by P(n) and
it inherits an Sn-action. Thus it allows us to construct an operad P as a Schur
functor. If k ⊇ Q then

P(V ) =
⊕

n≥0

P(n)⊗Sn V
⊗n.
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7.2 Free operads

The notion of free P- algebra over a vector space V gives rise to a functor from
the category Vect of vector spaces to the category of P-algebras, which is a left
adjoint to the forgetful functor

HomP−alg(P(V ), A) ∼= HomVect(V,A).

There is a forgetful functor from the category Op of operads to the category of
Schur functors. It has a left adjoint F giving rise to free operads.

Example 7.5. An S-module is given by the family M(n) of Sn-modules. Suppose
M(n) = 0 except M(2) = k[S2]µ. What is F(M)? We have id ∈ F(M)(1),
µ ∈ F(M)(2) and the following two operations in F(M)(3)

µ ◦ (µ, id), µ ◦ (id, µ).

Thus
F(M)(3) = k[S3]µ ◦ (µ, id)⊕ k[S3]µ ◦ (id, µ).

Proposition 7.6. The free operad F(M), where M is binary and free over S2,
has F(M)(n) = k[Yn−1] ⊗ k[Sn], where Yn−1 is the set of planar binary trees
with n leaves.

Exercise 7.7. What is the free operad on N , where N(n) = 0 except N(2) = k
- the trivial representation?

7.3 Operadic ideals

Definition 7.8. For a given operad P and a family of operations in P, the
operadic ideal generated by this family is a sub-Schur functor I (that is I(n) ⊆
P(n)) linearly generated by all the compositions where at least one of the oper-
ations is in the family.

In another words whenever one of the operations is in I, then the image by
γ is also in I.

γ : P(n)⊗ (P(i1)⊗ · · · ⊗ P(in))→ P(i1 + . . .+ in)

Proposition 7.9. The quotient P/I defined as (P/I)(n) := P(n)/I(n) is an
operad. It is called the quotient operad.

A type of algebras consists of generating operations and relations (multilin-
ear). Let F(M) be the free operad over an S-module M such that M(n) is
defined by the n-ary operations. If we take the ideal I generated by the relators
in F(M)(−), then the we have an operad associated to a given type of algebras
represented as a quotient operad P = F(M)/I. The space P(V ) is exactly the
free algebra over V for the given type.
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7.4 Examples

Example 7.10. Associative algebras over k with binary associative operation
µ : A⊗A→ A, µ(xy) =: xy. The corresponding operad As has

As(n) = k[Sn],

As(n)⊗Sn V
⊗n = V ⊗n,

γ : As(n)⊗As(i1)⊗ · · · ⊗As(in)→ As(i1 + . . .+ in),

k[Sn]⊗ k[Si1 ]⊗ · · · ⊗ k[Sin ]→ k[Si1+...in ]

(σ;ω1, . . . , ωn) 7→ σ(ω1, . . . , ωn) = (ωσ(1) × · · · × ωσ(n)).

Example 7.11. Commutative algebras over k with binary commutative operation
µ : A⊗A→ A, µ(xy) =: xy. The corresponding operad Com has

Com(n) = k,

Com(n)⊗Sn V
⊗n = SnV,

γ : Com(n)⊗Com(i1)⊗ · · · ⊗Com(in)→ Com(i1 + . . .+ in),

γ : k⊗(n+1) ∼=−→ k

The general construction of the operad associated to algebras of given type
uses the following data:

• generating operations µn with symmetries which define a right Sn-module
M(n), n ≥ 0

• multilinear relations in M(n), n ≥ 0.

From the generating operations we can construct a free operad F(M), and then
quotient by the ideal I generated by the relations which gives us P = F(M)/I.

For example if we have one binary operation µ and one relator µ ◦ (µ⊗ id)−
µ ◦ (id⊗ µ), then we can construct an operad As for associative algebras.

7.5 Koszul duality of algebras

Definition 7.12. A quadratic data is a pair (V,R), where V is a vector space
and R ⊂ V ⊗2.

Definition 7.13. A quadratic algebra associated with quadratic data (V,R) is
a quotient algebra of a tensor algebra A(V,R) := T (V )/R.

The algebra A := A(V,R) has universal property

R // // 0 ##
T (V ) // // %%JJJJJJJJJJ T (V )/R�����

A′
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Let T c(V ) be the tensor module with the deconcatenation operation ∆: T c(V )→
T c(V )⊗ T c(V ),

∆(v1, . . . , vn) =

n∑

i=1

v1 . . . vi ⊗ vi+1 . . . vn.

Definition 7.14. A quadratic coalgebra associated with quadratic data (V,R) is
a subcoalgebra of a cotensor algebra C := C(V,R) having the following universal
property

C(V,R) // // 0 %%
T c(V ) // // V ⊗2/R

C′

OO��� 99tttttttttt
We can write explicitly

A = k ⊕ V ⊕ V ⊗2/R⊕ V ⊗3/(V ⊗R +R⊗ V )⊕ . . .⊕ V ⊗n/(
∑

i+2+j=n

V ⊗i ⊗R⊗ V ⊗j)⊕ . . .

C = k ⊕ V ⊕R⊕ (V ⊗R ∩R⊗ V )⊕ . . .⊕
⋂

i+2+j=n

V ⊗i ⊗R⊗ V ⊗j ⊕ . . .

α : C //�� ��������� A

V
?? ??~~~~~~~

We can define a map dα : C ⊗A→ C ⊗A by the composition

C ⊗A ∆⊗id//
dα

55C ⊗ C ⊗Aid⊗α⊗id// C ⊗A⊗A id⊗· // C ⊗A
Lemma 7.15. The map dα is a differential, that is dα ◦ dα = 0.

Proof. This immediately follows from α ∗ α = 0 and dα ◦ dα = dα∗α.

Definition 7.16. A Koszul complex of the quadratic algebra A(V,R) is the
complex (C ⊗A, dα).

Definition 7.17. A quadratic algebra A(V,R) is said to be Koszul algebra if
the Koszul complex is acyclic.

Definition 7.18. The Koszul dual algebra to an algebra A = A(V,R) is defined
as

A! := C∗ := C(V,R)∗.

We have A! = T (V ∗)/(R⊥), where R⊥ is defined as the kernel

R⊥  V ∗⊗2 → R∗.

If dimV <∞, then V ∗∗ = V and there is an epimorphism V ∗⊗2 ։ R∗.
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7.6 Bar and cobar constructions

Recall that for associative algebras there is so called bar construction

B : As− alg→ DGA− coalg,

and for coalgebras there is a dual cobar construction

Ω: As− coalg→ DGA− alg.

Theorem 7.19. Let (V,R) be a quadratic data. Then the following are equiv-
alent

1. A(V,R) is Koszul.

2. C  B(A) is a quasi-isomorphism.

3. Ω(C) ։ A is a quasi-isomorphism.

The last two conditions mean that

2. C ∼= H0(B(A)), Hn(B(A)) = 0 for n 6= 0.

3. A ∼= H0(Ω(C)), Hn(Ω(C)) = 0 for n 6= 0.

Analogous constructions we can perform for quadratic operads. Starting from
generating operations E and relators R ⊂ F(E)(3) we can construct an operad
P(E,R) and a cooperad C(E,R). The cooperads are constructed on the same
pattern but using comonoids instead of monoids, that is they are Schur functors
with the comonoid structure with comultiplication γ : P → P ◦ P and counit
η : P → Id.

There are bar and cobar constructions

B : Op→ DGA− coOp

Ω: coOp→ DGA−Op

Along the same lines we can construct a Koszul complex as (C ◦ P , d), and if it
is acyclic then P is called a Koszul operad.

Define dual cooperad P ! := C∨ := C∗ ⊗ sgn, where sgn is the signature rep-
resentation of Sn. For any P-algebra A we define a chain complex P !∨(A) :=
CP∗ (A). The Koszul complex (P !∨ ◦ P(V )) is a particular case of this construc-
tion.

Definition 7.20. The homology HP∗ (A) := H∗(CP∗ (A), d) is called operadic
homology of P-algebra A.

Proposition 7.21. The Koszul complex is acyclic if and only if HPn (P(V )) = 0
for n > 1, and HP1 (P(V )) = V .

Example 7.22. If P = Lie, Lie(n) = IndSn

Cn
k[Un] then P ! = Com, Com(n) = k

for n ≥ 0. If g is a Lie algebra, then CLie
n = Λng is the Chevalley-Eilenberg

complex.

Example 7.23. If P = Leib, Leib(n) = k[Sn] then P ! = Zinb, Zinb(n) = k[Sn]
for n ≥ 0. If A is a Leibniz algebra, then CLeib

n = g⊗n is the Leibniz complex.
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Part V Bialgebras and props

7.7 Bialgebras and props

Recall that the operad is a Schur functor P : Vect→ Vect together with natural
transformations ι : Id → P , γ : P ◦ P → P definining a monoid structure. An
algebra of given type P gives rise to an operad by the construction of free
algebra P(V ) over V . The free algebra is an adjoint functor to the forgetful
functor Alg → Vect. For bialgebras however, the left adjoint functor to the
forgetful functor does not exist. Recall that for an operad P we have a family
of Sn-modules P(n) such that P(V ) =

⊕
n≥0 P(n)⊗Sn V

⊗n. The module P(n)
is called a space of n-ary operations. For bialgebras one replaces these modules
by P(n,m) for n,m ≥ 0, because we can do operations and cooperations.

Definition 7.24. A symmetric monoidal category S is a category with distin-
guished object 0 ∈ Ob(S) and an associative product � : S × S → S. We say
that the category is strict if the associativity relation is equality, not only an
isomorphism.

Definition 7.25. A prop is a strict symmetric monoidal category S such that

Ob(S) = {0, 1, . . . , n, . . .} ∼= Z

n�m := n+m,

and the morphisms MorS(n,m) is a vector space over k.

Definition 7.26. An algebra over the prop P ( gebra) is a functor between
symmetric monoidal categories

(P ,�)→ (Vect,⊗)

1 7→ A, n 7→ A⊗n.

Example 7.27. Consider the skeleton category of the cateogory of finite sets,
denoted by Fin. Objects are n = {1, 2, . . . , n} and the morphisms are the
set-theoretic maps.

The category of gebras over Fin is the category of unital commutative alge-
bras.

3 ���� {1, 2, 3}���� A⊗3

µ⊗id��id⊗µ ��
2�� {1, 2}�� A⊗2

µ��
1 {1} A

0

OO
∅

OO
k

OO
What if we would like to have a prop corresponding to unital associative alge-
bras? Then the answer is the category of noncommutative sets ∆S. Its skeleton
category NFin has the same objects {n} as Fin, but the morphism f : n→ m
is a set map together with a total order on each fiber f−1(i). For example we
have one map 2 = {1, 2} → {1} = 1, but two morphisms {1 < 2} → {1} and
{2 < 1} → {1}, which correspond to the two maps A⊗2 → A given by a⊗b 7→ ab
and a⊗ b 7→ ba.
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Part V Bialgebras and props

For the Hochschild complex Cn(A,M) = M ⊗ A⊗n there are idempotents

e
(i)
n which commute with the Hochschild boundary b

Cn(A,M)

b �� M ⊗A⊗n

e(i)n ��
Cn−1(A,M) M ⊗A⊗(n−1)

e(i)n

WW
be(i)n = e

(i)
n−1b.

When A = M and there is a B-map we also have

Be(i)n = e
(i)
n−1B.

All these formulas live in kFin, where MorkFin(n,m) = k[MorFin(n,m)]. If A
is commutative, then we have

b : n→ n− 1, b =
n∑

i=1

di

e(i)n : n→ n, n
e(i)n //

b �� n

b��
n− 1

e(i)n // n− 1

in k[MorFin(n,m)]. There is a functor L : kFin→M ⊗A⊗n such that

n � //
f �� M ⊗A⊗n

f∗��
m � // M ⊗A⊗m

f∗(m, a1, . . . , an) = (m, b1, . . . , bm), bi =
∏

j, f(j)=i

aj.

When A is not commutative we take NFin and get Loday’s functor.
Any operad P gives rise to a prop. One defines

P(n, 1) := P(n)

P(n,m) := ...

We can say that operads and free operads correspond to abstract rooted trees
with data what happens when we contract an edge. If one considers planar
rooted trees, then what one gets is so called non-symmetric operad (with no
action of symmetric group). If any leaf could be a root, that is we consider
abstract trees, then what we get is so called cyclic operads (there is a cyclic
action of Z/(n+ 1)Z) on P(n).

Let τ = τn ∈ Z/(n + 1)Z denote the generator. For every n-ary operation
µ ∈ P(n) we have τ(µ) ∈ P(n).
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Part V Graph complex

Definition 7.28. A cyclic operad is an operad such that P(n) has a Z/(n+1)Z-
action. This action together with the Sn-action makes it an Sn+1-module.

There is a relation between cyclic action and composition.

Example 7.29. Let P(1) = R an associative algebra, and P(n) = 0 for n ≥ 0.

r rs

s

If there is a cyclic action r 7→ r̄, ¯̄r = r on R, then rs = s̄r̄. The cyclic operad
here correspond to cyclic algebra with involution.

Fact 7.30. As, Lie, Com, Poiss are cyclic operad, but Leib is not.

Let P be a cyclic operad. Then we can construct three homology theories
HA∗, HB∗, HC∗ (Getzler-Kapranov) which fit into an exact sequence

. . .→ HAn(A)→ HBn(A)→ HCn(A)→ HAn−1(A)→ . . . ,

where A is a P-algebra, and HBn(A) = HPn (A) is an operadic homology of A.
If P = As, then HCn is cyclic homology, HAn = HCn−1, HBn = HHn. If
P = Lie, then HBn = HLie

n (g), HAn = HLie(g, g), where g is a Lie algebra and
a g-module via the adjoint representation.

g⊗ Λng //
dCE �� Λn+1g

dCE ��
g⊗ Λn−1g // Λng
HLie
n (g, g) HLie

n+1(g)

7.8 Graph complex

In the degree n of graph complex the space of n-chains is generated by connected
graphs without loops with n edges and the valence of each vertex is ≥ 3. The
differential

d(γ) =
∑

e edges

±γ/e, d : Cn → Cn−1

(when there is a loop we send the graph to 0).
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Part V Graph complex

To describe it precisely we assume that the graphs are oriented and the set
of vertices is labelled by 1, . . . ,K.

1��
2

__??
The equivalence relation:

1. changing the orientation of one edge, ∼1

1��
2

__?? = − 1����
2

__
2. permutation of indices, ∼2

1��
2

__?? = − 2��
1

__??
The differential in the complex C̃n is given by

d(γ̃) =
∑

i
e−→j

(−1)j γ̃/e

and is compatible with the equivalence relation ∼. It is also compatible with
the first part ∼1 of the equivalence relation. The complex C̃n quotient by ∼
gives a graph complex Cn. We denote

Gn := C̃n/ ∼1

(Gs)n := C̃n/ ∼1,∼2

The complex (Gs)∗ is called the Kontsevich graph complex.

C3
(2) C(2)

1C
(2)
2

0 0

Figure 7.1: H
(2)
2 = Q
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Part V Symplectic Lie algebra of the commutative operad

(3)
C

(3)
C

(3)
C

(3)
C 1234

0

Figure 7.2: H
(3)
4 = Q

7.9 Symplectic Lie algebra of the commutative

operad

We consider the polynomial algebra in p1, . . . , pn, q1, . . . , qm, that is k[p1, . . . , qm] =
S(V ). The , defined as

{F, G} :=
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

is a Lie bracket, and so, S(V ) is a Lie algebra. We denote it by sp2m(Com).

Theorem 7.31 (Kontsevich). If G∗ is the graph complex, then

H∗(sp(Com)) ∼= Λ(H∗(G∗)).

The proof follows the same pattern as before:

1. Koszul trick.

2. Coinvariant theory.

3. Hopf-Borel type theorem, primitives.

4. Making the primitive complex smaller by dividing out acyclic complexes.

The key point in step 2 is the following result.

Theorem 7.32. Let A−r be a linear subspace of degree r in k[ϕij ] 1≤i≤r

1≤i≤r
/ ∼,

ϕij ∼ ϕji. Then
(V ⊗2m)sp(V )

∼= A−r .

Kontsevich’s idea is to compute

⊕

k1,...,kn

(A−r )Sk1
×···×Skn
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Part V Symplectic Lie algebra of the commutative operad

which appears to be a vector space generated by graphs divided by the relation
∼1.

In step 3 one proves that the subcomplex of primitives is connected.
In step 4 we get rid of loops and graphs which have vertices of valence 2.
An analogue of this theorem for Leibniz homology is due to E. Burgunder.
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Chapter 8

The algebra of classical
symbols

8.1 Local definition of the algebra of symbols

Let X be a C∞-manifold (not necessarily compact), and E a vector bundle on
X . Consider a coordinate patch

fU : U → X, U ⊂ Rn.

The cotangent bundle T ∗X → X pulls back to U

T ∗0U //
π �� T ∗U //�� T ∗X��
U U

fU // X
The bundle T ∗0U is defined as T ∗U \ U . There is an isomorphism

T ∗0U
∼= //

π �� U × Rn0 ⊂ Rn × Rn0

U

Using it we can denote the coordinates on T ∗0U by (u, ξ), where u = (u1, . . . , un) ∈
Rn0 , and ξ ∈ (ξ1, . . . , ξn) ∈ Rn.

To each open set U we associate a section aU :=
∑∞

j=0 a
U
j , where each aUj is

a section of the bundle End(π∗f∗UE), where

π∗f∗UE�� // f•UE�� // E��
T ∗0U

π // U fU // X
More precisely by aUm−j we denote the homogeneous part of degree m− j

aUm−j ∈ C∞(T ∗0U,End(π∗f∗UE))(m− j).
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Part V Local definition of the algebra of symbols

There is a natural action of R∗+ on T ∗0X given by t · (u, ξ) := (u, tξ). The
infinitesimal action is provided by the Euler field

Ξ =

n∑

i=1

ξi∂ξi .

The homogenity condition for aUm−j is given by aUm−j(u, tξ) = tm−jaUm−j(u, ξ).
The section aU belongs to the product

∞∏

j=0

C∞(T ∗0U,End(π∗f∗UE))(m− j)

which has a natural structure of Frechet space. With the norm

|ξ| :=
√
ξ21 + . . . ξ2n

we can write

|ξ|j−maUm−j ∈ C∞(T ∗0U,End(π∗f∗UE))(0) ∼= C∞(S∗U,End(π∗f∗UE)),

where S∗U is the cosphere bundle T ∗0U/R
∗
+

π−→ U . The cotangent bundle T ∗X →
X is canonically oriented and S∗X is canonically oriented (even though we do
not have the orientation on X). Now S∗U is a canonically oriented (2n − 1)-
manifold and S∗U ∼= U × Sn−1.

The sections aU are given locally, so we need a compatibility condition. We
need a composition law such that it will depend on all jets, not only on 1-jets
as usual composition.

aU ◦u bU :
∑

α

δαξ a
UD[α]

u bU

α = (α1, . . . , αn), αi ∈ N

Dui :=
1

i
∂ui , D[α]

u =
1

α!
Dα
u =

1

α!i|α|
∂αu .

If aU is of order m, bU of order m′ using the notation for classical symbols

CSmU (U,E) :=

∞∏

j=0

(T ∗0U,End(π∗f∗UE))(m− j)

we can write

◦u : CSmU (U,E)× CSm
′

U (U,E)→ CSm+m′

U (U,E), m,m′ ∈ C.

Now suppose we have two open sets U, V ∈ Rn such that the images of charts
fU : U → X , fV : V → X have nonempty intersection f(U) ∩ f(V ). Denote

U ′ := f−1
U (f(U) ∩ f(V )), V ′ := f−1

V (f(U) ∩ f(V )),

fUV := f−1
U ◦ fV : V ′ → U ′.

For a smooth map f : X → Y there are induced maps

Tf : TC → TY, (Tf)x : (TX)x → (TY )f(x),

T f∗ : T ∗X → T ∗Y, (Tf)∗x : (T ∗X)x ← (T ∗Y )f(x).
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Part V Classical pseudodifferentials operators

Assume that Tf is invertible

((Tf)∗x)−1 : (TX)∗x → (TY )∗f(x)

Define a maps

X × TX → Y × TY, (x, v) 7→ (f(x), (Tf)x(v)),

X × T ∗X → Y × T ∗Y, (x, ξ) 7→ (f(x), ((Tf)∗)−1
x (ξ)).

Now comes the question, to what extend aV and (T ∗f)∗aU agree? We have

aV = (T ∗f)∗(aU + (arbitrary high order correction terms))

= (T ∗fUV )∗(
∑

α

ψα∂
α
ξ a

U ),

where
ψα(u, ξ) = D[α]

z ei〈j
>1
u (z), (TfUV )∗v(ξ)〉∣∣

z=u, v=(f−1
V ◦fU )(u)

,

j>1
u (z) = f−1

V ◦ fU − j1U (f−1
V ◦ fU ),

so j>1
u vanishes up to second order at point u ∈ U . The ψα(u, ξ) are scalar

valued functions on coordinate charts. They do not depend on symbols, only
on manifold.

In the whole notes we will be using a projective tensor product of topological
vector spaces desribed in the appendix (??).

The product

CSm(X,E)× CSm
′

(X,E)→ CSm+m′

(X,E)

of Frechet spaces is associative. Define the algebra of symbols as

CS(X,E) : =
⋃

m∈Z

CSm(X,E).

Let a := {aU}fU : U→X . The topology on CS(X,E) is defined as follows. We
say that the net {aλ} converges to a symbol a if for any m ∈ C there exists λ0

such that aλ − a ∈ CSm(X,E) for all λ ≥ λ0.
The subalgebra CS0(X,E) is a Frechet algebra, and CS−j(X,E), j ∈ Z+ is

a two sided ideal in CS0(X,E).

Remark 8.1. The multiplication

CSm(X,E)⊗ CS(X,E)→ CS(X,E)

is not continuous in both arguments.

8.2 Classical pseudodifferentials operators

Let A : C∞c (X,E) → C∞(X,E) be a pseudo differential operator. For a chart
fU : U → X there is an operator

f#
U A : C∞c (U, f∗UE)→ C∞(U, f∗UE)
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Part V Classical pseudodifferentials operators

We can define it for ϕ ∈ C∞c (U, f∗UE) as follows. First take (ϕ ◦ f−1
U )|f(suppϕ),

and then extend by 0, apply A and pullback, as in the following diagram

C∞c (X,E)
A // C∞(X,E)

f∗
U��

C∞c (U, f∗UE)

(fU )!

OO
f#

U A

// C∞(U, f∗UE)

Explicitly

(f#
U A)ϕ(u) =

∫

Rn
ξ

∫

U

ei〈u−u
′, ξ〉β(u, u′, ξ)ϕ(u′)du′d̄ξ + (Tϕ)(u),

where β ∈ C∞(U × T ∗U,End(π∗f∗UE)) is called an amplitude,

β(u, u′, ξ) ∼
∞∑

j=0

βm−j(u, u
′, ξ),

βm−j(u, u
′, tξ) = tm−jβ(u, u′, ξ),

T is a smoothing operator

(Tφ)(u) =

∫

U

K(u, u′)ϕ(u′)|du′|,

and

|du| = |du1 ∧ · · · ∧ dun|, d̄ξ =
1

(2π)n
|dξ1 ∧ · · · ∧ dξn|.

By CLm(X,E) we denote the space of classical pseudo differential operators,
and by CLmprop(X,E) the subset of operators which take functions with compact
support into functions with compact support. For A ∈ CLm(X,E) there is a
decomposition A = Aprop+S into a proper partAprop and non proper smoothing
part S. Define a Frechet space of arbitrary low order operators by

L−∞(X,E) :=
⋂

m∈Z

CLm(X,E).

There is an isomorphism

CLm(X,E)/L−∞(X,E)
∼=−→ CSm(X,E).

Classical symbols have a product

CLmprop(X,E)× CLm
′

prop(X,E)→ CLm+m′−1
prop (X,E), m,m′ ∈ C.

We define the algebra of classical symbols as

CL(X,E) :=
⋃

m∈Z

CLm(X,E).

The space of smoothing operators L∞(X,E) is defined as a kernel

L∞(X,E)  CL(X,E) ։ CS(X,E)
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Part V Statement of results

and if X is closed it is isomorphic (non canonically) to the space of rapidly
decaying matrices

L−∞ = {(aij)i,j=1...,∞ | |aij |(i + j)N → 0, as i+ j →∞}.
This is the noncommutative orientation class of a closed manifold and index
theorem is the way to state that. Index measures to what extend this sequence
is not split.

The map
CL(X,E)/L−∞(X,E)→ CS(X,E)

is defined as follows. For a classical pseudo differential operator

A : C∞c (X,E)→ C∞(X,E)

we take the amplitude

βU (u, u′, ξ) ∼
∞∑

j=0

βUm−j(u, u
′, ξ)

and then define aU ∈ CS(X,E) by

aU :=
(
e

Pn
i=1 ∂ξi

Dui
βU
) ∣∣

u=u′ .

8.3 Statement of results

The main goal is to compute the Hochschild and cyclic homology of the algebra
of symbols CS(X). Let T ∗0X = T ∗X \ X and Y c be the C∗-bundle over the
cosphere bundle S∗X defined as

Y c := T ∗0X ×R+ C∗

C
∗��

S∗X

Theorem 8.2. There is a canonical isomorphism

HHq(CS(X)) ∼= H2n−q
dR (Y c).

Regarding cyclic homology, consider on HCcont
q (CS(X)) the filtration by the

kernels of the iterated S-map:

{0} = Sq0 ⊂ Sq1 ⊂ . . . ⊂ Sqt = HCq(CS(X)),

where t =
[
q
2

]
and Sqr := kerS1+r

∗ ∩HCq(CS(X)).

Theorem 8.3. The canonical map

I : HH∗(CS(X))→ HC∗(CS(X))

is injective. In particular

HCqr(CS(X)) = grSr HCq(CS(X)) := Sqr/Sq,r−1

is canonically isomorphic with

H2n−q+2r
dR (Y c), r = 0, 1, . . . .
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Part V Derivations of the de Rham algebra

8.4 Derivations of the de Rham algebra

Let O be a commutative k-algebra with unit, and k any commutative ring of
coefficients. We define

Ω∗O/k := Λ∗OΩ1
O/k,

where Ω1
O/k can be defined in a three ways:

• Serre’s picture
Ω1
O/k := I∆/I

2
∆,

where I∆ := ker(O⊗2 → O).

• Hochschild picture
Ω1
O/k := O⊗2/bO⊗3.

• Leibniz picture

Ω1
O/k :=

O〈df | f ∈ O〉
O〈d(f + g)− df − dg, dc = 0 (c ∈ k), d(fg)− fdg − gdf〉 .

The differential d : O → Ω1
O/k is defined in those three pictures as follows

• f 7→ d∆f mod I2
∆ = (1⊗ f − f ⊗ 1) mod I2

∆ (Serre’s picture),

• f 7→ d∆f mod bO⊗3 = (1⊗ f − f ⊗ 1) mod bO⊗3 (Hochschild picture),

• f 7→ df (Leibniz picture).

The derivation d∆ : O → I∆ ⊂ O ⊗ O is universal in the sense that if we have
an O-bimodule M and a derivation δ : O → M , then there exists a unique
O-bimodule map δ̃ such that the following diagram commutes

M

O d //δ

<<yyyyyyyyy
d∆ ""EEEEEEEEE I∆/I

2
∆

eδ

OO���
I∆

OO
Let Derm(Ω∗) = Dermk (Ω∗) denote the algebra of degree m derivations, and

Der∗(Ω∗) :=
⊕

m∈Z

Derm(Ω∗).

If η is of degree p and ζ of degree q, then for δ ∈ Derm(Ω∗) we have

δ(η ∧ ζ) = δ(η) ∧ ζ + (−1)pmη ∧ δ(ζ).
δ : Ωp → Ωp+m.

Furthermore Der∗(Ω∗) is a super Lie algebra, that is the commutators satisfy
the super Jacobi identity

0 = [[a, b], c] + (−1)|a|(|b|+|c|)[[b, c], a] + (−1)|c|(|a|+|b|)[[c, a], b].

Denote δp := δ|Ωp .
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Part V Derivations of the de Rham algebra

Proposition 8.4. The set Derm(Ω∗) is naturally identified with the set of pairs
(δ0, δ1), where

δ0 : O → Ωm

is a k-linear derivation of O with values in Ωm,

δ1 : Ω1 → Ωm+1

is a k-linear map such that

δ1(fα) = δ0(f) ∧ α+ fδ1(α).

and
δ1(α)α − (−1)m+1αδ1(α) = 0,

that is the super commutator [δ1(α), α] = 0.

Any derivation of degree m is uniquelly determined by δ0 and δ1. Thus
Derm(Ω∗) = 0 for m < −1.

For δ0 = 0 we have

δ(fα1 ∧ · · · ∧ αp) =

p∑

i=1

(−1)m(i−1)fα1 ∧ · · · ∧ δ1(αi) ∧ · · · ∧ αp.

Similarly for any φ ∈ HomO(Ω1,Ωm+1) there exists a corresponding derivation

δφ(fα1 ∧ · · · ∧ αp) :=

p∑

i=1

(−1)m(i−1)fα1 ∧ · · · ∧ φ(αi) ∧ · · · ∧ αp.

Example 8.5. (The de Rham derivation) Let d0 = d : O → Ω1. Now we will give
a construction of d1 : Ω1 → Ω2. Consider a k-linear pairing

O ×O → Ω2, (f, g) 7→ df ∧ dg

O ×O //�� Ω2

O ⊗k O

;;vvvvv O ×O //�� Ω2

(O ⊗k O)/I2
∆

99sssss
Now we can take a restriction to I∆/I

2
∆ ⊂ (O⊗kO)/I2

∆. Recall that I∆ consists
of sums of terms of the form

f0d∆f1 = f0(1 ⊗ f1 − f1 ⊗ 1)

= f0 ⊗ f1 − f0f1 ⊗ 1.

Similarly I2
∆ consists of sums of terms of the form

f0d∆f1d∆f2 = f0(1⊗ f1 − f1 ⊗ 1)(1⊗ f2 − f2 ⊗ 1)

= f0(1⊗ f1f2 + f1f2 ⊗ 1− f1 ⊗ f2 − f2 ⊗ f1)

= f0 ⊗ f1f2 + f0f1f2 ⊗ 1− f0f1 ⊗ f2 − f0f2 ⊗ f1)
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Part V Derivations of the de Rham algebra

The last expression maps to

df0 ∧ d(f1f2) + d(f0f1f2) ∧ d1− d(f0f1) ∧ df2 − d(f0f2) ∧ df1
= df0 ∧ ((df1)f2 + f1df2)− ((df0)f1 + f0df1) ∧ df2 − ((df0)f2 + f0df2) ∧ df1
= f2df0 ∧ df1 + f1df0 ∧ df2 − f1df0 ∧ df2 − f0df1 ∧ df2 − f2df0 ∧ df1 − f0df2 ∧ df1
= −f0df1 ∧ df2 − f0df2 ∧ df1
= 0.

Proposition 8.6. Any derivation δ ∈ Dermk (Ω∗) can be uniquelly expressed as

[δφ, d] + δψ

for φ ∈ HomO(Ω1,Ωm), ψ ∈ HomO(Ω1,Ωm+1).

Example 8.7. (O-linear derivation) For m = −1 Der−1
k (Ω∗) = Der−1

O (Ω∗) and
by restriction to Ω1

Der−1
O (Ω∗) = HomO(Ω1,Ω∗).

If O = O(X), then DerkO = T X .

Ω1 // Ω∗
O

d

OO ==||||||||
Suppose that δ, δ′ ∈ Dermk (Ω∗) are such that

δ0 = δ|O = δ′|O = δ′0.

Then
δ − δ′ ∈ DermO (Ω∗) O − linear.

Suppose that we have a derivation D ∈ Der1k(Ω∗). Then for any φ ∈
HomO(Ω1,Ωm) there is a δφ ∈ Derm−1

O (Ω∗) and

[δφ, D] ∈ Derm(Ω∗)

[δφ, D]0 = δφD = φ ◦D = d(the de Rham derivation)

If there exists d1 : Ω1 → Ω2, k-linear and satisfying

d1(fα) = df ∧ α+ fdα,

then there exists a derivation d ∈ Der1k(Ω∗).
There is a natural identification between O-modules

Der(O,Ωm) oo //hh ((PPPPPPPPPPPP HomO(Ω1,Ωm)OO��
Derm−1

O (Ω∗)

Let η = φ◦d which on Ω0 is = [δφ, d]. Then ιη = δφ is the interior product with
derivation η. If m = −1 this is the classical product of differential forms with a
given vector field. Define a Lie derivative with respect to η

Lη := [δφ, d] = [ιη, d].
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Part V Derivations of the de Rham algebra

Then
[Lη, d] = [[ιη,d], d] = (−1)m−1dιηd− (−1)mdιηd = 0.

Any derivation δ is of the form δ = Lη + ιζ where ζ = ψ ◦ d for some ψ ∈
HomO(Ω1,Ωm+1). Consider a special φ : Ω1 → Ωm

φ(α) = ϕ ∧ α
for some ϕ ∈ Ωm−1. Then

[δφ, d](ω) = ϕ ∧ dω − (−1)m−1pdϕ ∧ ω
= ϕ ∧ dω − (−1)m−1dϕ ∧ deg .

A degree map deg is a derivation deg = δid, id : Ω1 → Ω1, [δid, d] = d.

Remark 8.8. To prove identities like δ = δ′, where δ, δ′ are O-linear derivations
on Ω∗, it is enough to prove it on dO ⊂ Ω1. For example, for vector fields there
is an identity

[Lη, ιζ ] = [ιη,Lζ ] = ι[η,ζ].

The expressions are O-linear, so we can check the equalities by evaluating on
df , f ∈ O.

For ω ∈ Ωp we have the formula

[δϕ∧−, d]2(ω) =





0 m = 1
1−m

2 d(ϕ ∧ ϕ) ∧ dω if m is odd 6= 1

(m+ p)pdϕ ∧ dϕ ∧ ω if m is even.

For example if m = 1 ϕ is the contact 1-form on A1, that is
∑n

i=1 ξidxi.

ω = LΞω = dιΞω.

In case m = 0, for any function f ∈ O let f ·− denote the multiplication by the
function f

[δf ·−, d] = fd− df ∧ deg, [δ1·−, d] = ddR.

Let η1, . . . , ηp ∈ Derk(O) (vector fields if O = O(X)). Then there is a formula

[d, ιη1 . . . ιηp ] =
∑

1≤i≤p
(−1)i−1ιη1 . . . ι̂ηi . . . ιηpLηi+ (8.1)

+
∑

1≤i<j≤p
(−1)i+j−1ι[ηi,ηj ]ιη1 . . . ι̂ηi . . . ι̂ηj . . . ιηp .

where deg ιηi = −1 for all i = 1, . . . , p. Similarly

[ιηp . . . ιη1 , d] =
∑

1≤i≤p
(−1)i−1Lηi ιηp . . . ι̂ηi . . . ιη1+ (8.2)

+
∑

1≤i<j≤p
(−1)i+jιηp . . . ι̂ηj . . . ι̂ηi . . . ιη1ι[ηi,ηj ].

This is in analogy to the Cartan formula for ω ∈ Ωp−1

(dω)(η1, . . . , ηp) =
∑

1≤i≤p
(−1)i−1Lηiω(η1, . . . , η̂i, . . . , ηp)+ (8.3)

+
∑

1≤i<j≤j
(−1)i+jω([ηi, ηj ], η1, . . . , η̂i, . . . , η̂j , . . . , ηp).
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8.5 Koszul-Chevalley complex

Let m be a g-module, where g is a Lie k-algebra This means that [, ] : g⊗k g→ g

satisfies Jacobi identity, each g ∈ g acts as an endomorphism of a k-module m,
and the map

g→ glk(m) = Lie(Endk(m)), g 7→ ρg - action of g on m

is a homomorphism of Lie-k-algebras. We have

ρ[g1,g2] = [ρg1 , ρg2 ]

and glk(m) has the right g-module structure

ρ̃g(m) := mg,

mg1g2 −mg2g1 = (ρ̃g2 ρ̃g1 − ρ̃g1 ρ̃g2)(m) = [ρ̃g2 , ρ̃g1 ] = m[g2, g1].

This shows that ρ̃g→ gl(m) is an antihomomorphism of Lie algebras (it corre-
sponds to the fact that the inverse G→ G, g 7→ g−1 corresponds to g 7→ −g on
g).

Definition 8.9. Koszul-Chevalley complex of a Lie k-algebra g with coefficients
in m

C∗(g,m) := m⊗ Λ∗kg, ∂ : Cp(g,m)→ Cp+1(g,m),

where

∂(m⊗ g1 ∧ · · · ∧ gp) :=
∑

1≤i≤p
(−1)i−1gim⊗ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gp+

+
∑

1≤i<j≤p
(−1)i+j−1m⊗ [gi, gj ] ∧ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝj ∧ · · · ∧ gp.

C∗(g,m) :== Alt∗(g× · · · × g,m), δ : Cp−1(g,m)→ Cp(g,m),

where for γ ∈ Altp−1(g× · · · × g,m) we define δ(γ) ∈ Altp(g× · · · × g,m) by

δ(γ)(g1, . . . , gp) :=
∑

1≤i≤p
(−1)i−1giγ(g1, . . . , ĝi, . . . , gp)+

+
∑

1≤i<j≤p
(−1)i+j−1γ([gi, gj], g1, . . . , ĝi, . . . , ĝj , . . . , gp).

In the next definition we use a relative Tor and Ext groups, which are the
derived functorsin the sense of relative homological algebra ([?], [?]).

Definition 8.10. Lie algebra homology and cohomology with coefficients in a
g-module m

H∗(g; m) := H(C∗(g,m), ∂) ∼= Tor(U(g),k)
∗ (k,m),

H∗(g; m) := H(C∗(g,m), δ) ∼= Ext∗(U(g),k)(k,m).
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8.6 A relation between Hochschild and Lie al-
gebra homology

Consider the following situation: A is an associative k-algebra with unit, M an
A-bimodule. Let Lie(A) = A as a k-module with commutator bracket [a, b] :=
ab−ba. Let a ∈ A act on m ∈M by m 7→ am−ma. Consider d∆ : A→ A⊗Aop,
a 7→ 1⊗ aop − a⊗ 1,

[d∆a, d∆b] = − [1⊗ aop, b⊗ 1]︸ ︷︷ ︸
=0

− [a⊗ 1, 1⊗ bop]︸ ︷︷ ︸
=0

+[1⊗ aop, 1⊗ bop] + [a⊗ 1, b⊗ 1]

(because A⊗ 1 and 1⊗Aop commute in A)

= 1⊗ [aop, bop] + [a, b]⊗ 1

= 1⊗ [b, a]op − [b, a]⊗ 1

= −d∆[a, b].

Universal derivation is an antihomomorphism, so

−d∆ : Lie(A)→ Lie(A⊗Aop)

is a homomorphism of Lie algebras.
In what follows we will use many arguments based on spectral sequences,

and the necessary basics of the theory is presented in appendix (??).
Let R = U(Lie(A)), S = A⊗ Aop. Any bimodule N can be viewed as a left

A⊗Aop-module. The base change spectral sequence takes the form

E2
pq = TorA⊗A

op

p (TorU(Lie(A))
q (k,A⊗Aop), N)

a · (b⊗ cop) = ab⊗ cop − b⊗ aopcop = ab⊗ cop − b⊗ (ca)op

Assume that U(Lie(A)) is flat over k. Then

TorA⊗A
op

p (TorU(Lie(A))
q (k,A⊗Aop), N) ∼= TorA⊗A

op

p (Hq(Lie(A);A ⊗Aop), N).

In our base change spectral sequence we get an edge homomorphism

Hp(Lie(A);N)→ TorA⊗A
op

p (H0(Lie(A);A⊗Aop), N).

In general if g is a Lie algebra, and M a g-module, then H0(g;M) = Mg - the
coinvariants of the g-action. Thus we have a map from Lie algebra homology
to Hochschild homology

Hp(Lie(A);N)→ TorA⊗A
op

p (H0(Lie(A);A⊗Aop)︸ ︷︷ ︸
A

, N) = TorA⊗A
op

p (A,N) = Hp(A;N).

When k is of characteristic 0, that map, up to a sign, is induced by inclusion

η : C∗(Lie(A);N)→ C∗(A;N)

n⊗ a1 ∧ · · · ∧ ap 7→
∑

l1,...,lp

(−1)l1...lpn⊗ al1 ⊗ · · · ⊗ alp ,

where on the right hand side we have a sum over all permutations of the set
{1, . . . , p}, and l1 . . . lp denotes the sign of a permutation.
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Part V A relation between Hochschild and Lie algebra homology

Proposition 8.11. The map η is a map of complexes, that is

bη = −η∂,

where b is the Hochschild boundary, and ∂ the boundary of the Koszul-Chevalley
complex.
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Proof. On the left hand side we have:

bη(n⊗ a1 ∧ · · · ∧ ap) =
∑

l1,...,lp

(−1)l1...lpnal1 ⊗ · · · ⊗ alp

+
∑

1≤m≤p−1

∑

l1,...,lp

(−1)l1...lp+mn⊗ al1 ⊗ · · · ⊗ almalm+1 ⊗ · · · ⊗ alp

+
∑

l1,...,lp

(−1)l1...lp+palpn⊗ al1 ⊗ · · · ⊗ alp−1

=
∑

1≤i≤p
(−1)i−1

∑

l1,...,lp

l1=i

(−1)l2...lpnai ⊗ al2 ⊗ · · · ⊗ alp

(because il2 . . . lp = l2 . . . lp · (−1)i−1)

−
∑

1≤i≤p
(−1)i−1

∑

l1,...,lp

lp=i

(−1)l1...lp−1iain⊗ al1 ⊗ · · · ⊗ alp−1

(because l1 . . . lp−1i = l1 . . . lp−1 · (−1)p−i)

+
∑

1≤m≤p−1

∑

1≤i<j≤p

∑

l1...lp

lm=i, lm+1=j

(−1)l1...lp+mn⊗ al1 ⊗ · · · ⊗ almalm+1 ⊗ · · · ⊗ alp

+
∑

1≤m≤p−1

∑

1≤j<i≤p

∑

l1...lp

lm=j, lm+1=i

(−1)l1...lp+mn⊗ al1 ⊗ · · · ⊗ almalm+1 ⊗ · · · ⊗ alp

=
∑

1≤i≤p
(−1)i[ai, n]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ ap

(because l1 . . . lp · (−1)m = l1 . . . lm−1lm+2 . . . lp · (−1)(i−1)+(j−1))

+
∑

1≤m≤p−1

∑

1≤i<j≤p
(−1)(i−1)+(j−1)

∑

l1...lp

lm=i, lm+1=j

(−1)l1...lm−1lm+2...lp

n⊗ al1 ⊗ · · · ⊗ almalm+1︸ ︷︷ ︸
aiaj

⊗ · · · ⊗ alp

+
∑

1≤m≤p−1

∑

1≤j<i≤p
(−1)(i−1)+(j−1)

∑

l1...lp

lm=j, lm+1=i

(−1)l1...lm−1lm+2...lp

n⊗ al1 ⊗ · · · ⊗ almalm+1︸ ︷︷ ︸
ajai

⊗ · · · ⊗ alp

= η

( ∑

1≤i≤p
(−1)i[ai, n]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ ap

+
∑

1≤i<j≤p
(−1)i+j+1[ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ ap

)

= −η∂(n⊗ a1 ∧ · · · ∧ ap).
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8.7 Poisson trace

Consider the Lie algebra of derivations DerO = DerkO. The algebra O is
always a DerO-module via the natural representation. Let ϕ ∈ ΩpO/k. Then it

defines an alternating O-p-linear map

DerO × · · · ×DerO︸ ︷︷ ︸
p

→ O

(η1, . . . , ηp) 7→ ϕ(η1, . . . , ηp) := ιηp . . . ιη1ϕ ∈ Ω0 = O.
There is an O-linear map,

Ω∗ → Alt∗O(DerO,O) →֒ Alt∗k(DerO,O)

which transforms the de Rham differential d into δ

dϕ 7→ δ(ιηp . . . ιη1ϕ).

(Cartan’s picture of de Rham complex).
Let Ωvol = Ωn, where n is such that Ωn 6= 0, d : Ωn → Ωn+1 identically 0.

Then

C∗(DerO; Ωvol) = Ωvol ⊗k Λ∗k DerkO ։ Ωvol ⊗O Λ∗O DerkO

where the last epimorphism is O-linearization and is an isomorphism if O is
smooth algebra of dimn.

Fact 8.12. The kernel of O-linearization is a subcomplex of C∗(DerO; Ωvol).

For ν ∈ Ωvol = Ωn

ν ⊗ η1 ∧ · · · ∧ ηp 7→ ιη1 . . . ιηpν ∈ Ωn−p =: Ωp.

The composition

C∗(DerO; Ωvol)→ Ωvol ⊗O Λ∗O DerkO

is the map of complexes. It suffices to apply the formula for [d, ιη1 . . . ιηp ] only
to n-forms.

(C∗(DerkO,Ωvol), ∂) ։ (Ω∗, d)

(Spencer’s picture of de Rham complex).
Now we fix the volume form ν, and denote

DerkOν := {derivations annihilating ν}.

There is an O-module morphism

O → Ωvol, f 7→ fν,

C∗(DerkOν ,O)→ C∗(DerO,Ωvol)→ Ω∗

(”Divergentless vector fields”).
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Suppose that O = O(X), where X is a symplectic manifold of dimension
2n, ω ∈ Ω2 is closed and nondegenerate.

ω : DerO → Ω1, η 7→ ιηω

is injective. Furthermore ωn ∈ Ωvol and we can take ν = ωn.
Define Ham(X,ω) ⊂ DerkOωn as

Ham(X,ω) := {η ∈ DerOωn | Lηω = 0}.

Define Poiss(X,ω) as an algebra O with the

{f, g} := LHf
g = ω(Hf , Hg) = ιHg ιHf

ω,

where Hf is the vector field characterized by

ιHf
ω = −df.

There is a homomorphism of Lie algebras

Poiss(X,ω)→ Ham(X,ω),

and an O-linear map of complexes

C∗(Poiss(X,ω), ad)→ C∗(Ham(X,ω), ωn).

f0 ⊗ f1 ∧ · · · ∧ fp 7→ f0ω
n ⊗ f1 ∧ · · · ∧ fp.

There is also a map
C∗(Ham(X,ω), ωn)→ Ω∗

f0ω
n ⊗ f1 ∧ · · · ∧ fp 7→ f0ιHf1

. . . ιHfp
ωn.

We have
LHf

= [d, ιHf
]ω = 0.

Proposition 8.13. For any f, g ∈ O

Hf,g = [Hf , Hg].

Proof. It is sufficient to prove the corresponding identity for contractions

ι[Hf ,Hg ] = ιH{f, g}
.

We have

ι[Hf ,Hg]ω = [LHf
, ιHg ]

= LH(ιHgω)− ιHg LHf
ω︸ ︷︷ ︸

0

= −LHf
(dg)

= −d(LHf
g)

= −d{f, g}
= −ιH{f, g}

.
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There is a well defined map, called a Poisson trace

ptr∗ : (C∗(Poiss(X,ω); ad), ∂) ։ (Ω∗, d).

Let Y be a symplectic manifold, dimY = 2n, with a symplectic 2-form ω. Then
we have a canonical morphism of chain complexes

ptr : C∗(Poiss(Y, ω); ad) ։ Ω∗(Y ),

where Ωq(Y ) = ΩdimY−q(Y ), given by

f0 ⊗ f1 ∧ · · · ∧ fq 7→ f0ιHf1
. . . ιHfq

ωn.

An important special case is when Y is a symplectic cone, i.e. Y is acted upon
by R∗+. Let Ξ be the corresponding Euler field (the image of t ddt ). We have
t∗ω = tω or equivalently

LΞω = ω.

8.7.1 Graded Poisson trace

We consider the graded algebra of functions on Y

O∗ :=
⊕

m∈Z

O(m),

where
O(m) := {f ∈ O | LΞf = mf}.

Then the {·, ·} agrees with the grading in the following way

{O(l), O(m)} ⊆ O(l +m− 1).

Let
Pl := O(l + 1), P∗ :=

⊕

l∈Z

Pl

be the graded Lie algebra when equipped with the {·, ·}. The map f 7→ Hf is
a homomorphism of Lie algebras O → P = Poiss(Y, ω), and furthermore

LΞHf = (deg(f)− 1)Hf .

To check this identity one computes

ι[Ξ,Hf ]ω = [LΞ, ιHf
]ω = − deg(f)df + df = (1 − deg(f))df = (deg(f)− 1)Hf

because ιHf
ω = −df . Thus there is a graded Poisson trace

ptr∗ : C∗(P∗, ad)→ Ω∗∗(Y )

ptr∗ :
⊕

k∈Z

C
(k)
∗ (P∗, ad)→ Ω∗,k+n(Y ),

where
C

(k)
∗ (P∗, ad) = (P∗ ⊗ ΛqP∗)(k + q)

and ∂ preserves k. Explicitely we have

LΞ(f0ιHf1
. . . ιHfq

ωn) = (l0 + (l1 − 1) + . . .+ (lq − 1) +m)f0ιHf1
. . . ιHfq

ωn

= ((l0 + . . .+ lq) + n− q)f0ιHf1
. . . ιHfq

ωn,

(P∗ ⊗ ΛqP∗)(l)→ Ωq(l − q)
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8.8 Hochschild homology

Let C∗(CS(X)) be the completed Hochschild complex of CS(X). Define

C
(m)
∗ := C∗(CS(X))/Fm−1C∗(CS(X)),

where Fm−1C∗(CS(X)) is the filtration induced by order. Then

Cj = lim
m→−∞

C
(m)
j , j ∈ N

The complexes C
(m)
∗ inherit filtration from C∗

{0} = Fm−1C
(m)
∗ ⊂ FmC(m)

∗ ⊂ . . .

where

FpC
(m)
∗ :=

{
FpC∗(CS(X))/Fm−1C∗(CS(X)) for p ≥ m− 1,

0 for p ≤ m− 1.
(8.4)

We have
C

(m)
j = lim

p→∞
F

(m)
pj , m ∈ Z, j ∈ N.

Let HH(m)
∗ denote the homology of C

(m)
∗ and HH∗ the homology of C∗. Our

first objective will be to find HH(m)
∗ .

There is a Milnor short exact sequence

0→ lim1 Hq+1(C
(m)
∗ )→ HHq(CS(X))→ lim Hq(C

(m)
∗ )→ 0.

If the system {Hq−1(C
(m)
∗ )}m→−∞ satisfies the Mittag-Leffler condition, then

lim1 vanishes.
Suppose {Vλ} is an inverse system of sets (k-modules). It satisfies Mittag-

Leffler condition if for all λ the system of subsets (im(Vµ → Vλ)) for µ > λ

stabilizes. The inverse system {Vλ} can be treated as a sheaf Ṽ over the indexing
set Λ with partial order topology. Then

limp{Vλ} = Hp(Λ, Ṽ ),

and in particular lim{Vλ} = Γ(Λ, Ṽ ).

Theorem 8.14 (Emmanouil). For Λ = ω - the first infinite ordinal, the inverse
system of vector spaces {Vλ} is Mittag-Leffler if and only if one of the following
conditions is satisfied

lim1{Vλ ⊗k W} = 0, for all vector spaces W over k, (8.5)

lim1{Vλ ⊗k W} = 0, for some infinite dimensional vector space W over k.
(8.6)
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Recall that T ∗0X = T ∗X \ X and Y c is the C∗-bundle over the cosphere
bundle S∗X defined as

Y c := T ∗0X ×R+ C∗

C∗��
S∗X

Consider the eigenspace of the action of the Euler field Ξ =
∑n

i=1 ξi∂ξi on T ∗0X

Ω∗(T ∗0X)(m) ⊂ Ω∗C∞(T ∗0X)

t∗η = tmη

Then
Ω∗∗(T ∗0X) :=

⊕

m∈Z

Ω∗(T ∗0X)(m)

is a bigraded algebra whose cohomology is naturally isomorphic with H∗(Y c).
We denote it by H∗dR(Y c).

There is a spectral sequence ′E(m),r
∗∗ converging to HH(m)

∗ which is associated

with the filtration (8.4) of C
(m)
∗ . Its complete description is provided in the

following proposition.

Proposition 8.15. Assume m ≤ − dimX = −n. Then

a) the second term of a spectral sequence ′E(m),r
∗∗ which is associated with the

filtration on C
(m)
• which is induced by the order filtration as in (8.4) is

given by

′E(m),2
pq

∼=





Hn−p
dR (Y c) q = n

Ω2n−m−q(n− q)/dΩ2n−1−m−q(n− q) p = m

0 otherwise

b) the spectral sequence ′E(m),r
∗∗ degenerates at ′E2

c) the identification in a) are compatible with the spectral sequence morphisms
induced by the canonical spectral sequence projections

C
(l)
∗ ։ C

(m)
∗

for l ≤ m.
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BBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBB

B
p=m

q=n

p
//

q

OO

Corollary 8.16. The inverse system of the homology groups {HH(m)
p }m∈Z<−n

satisfies Mittag-Leffler condition, in fact

HH(l1,m)
p = HH(l2,m)

p

for any l1 ≤ l2 ≤ m < −n, where HH(l,m)
p := im(HH(l)

p → HH(m)
p ).

Proof. From the proposition (8.15) we obtain a commutative diagrams whose
rows are exact.

Ω2n−p(n+m−p)
dΩ2n−1−p(n+m−p)

// // H(m)
p

// // H2n−p
dR (Y c)

Ω2n−p(n+l−p)
dΩ2n−1−p(n+l−p)

// //0

OO
H(l)
p

// //OO
H2n−p

dR (Y c)

Consider a spectral sequence with ′E0
p∗ being the p-th component of the
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graded complex grF (CS(X)).

p+q=0

??????????????????
??????????????????

??????????????
p

//
q

OO

Taking homology with respect to the differential d0
p∗ : ′E0

p∗ →′ E0
p,∗−1 we obtain

′E1
pq = HHp+q(O∗(X))(p),

calculated in terms of differential forms.
If O is a smooth algebra, there is a map of complexes

(C∗, b)→ (Ω∗, 0)

f0 ⊗ · · · ⊗ fq → f0df1 ∧ · · · ∧ dfq.
But instead of this map we take

f0 ⊗ · · · ⊗ fq →
(−1)q

q!
f0ιHf1

. . . ιHfq
ωn.

We can compose the two maps

(C∗(Lie(CS(X))), ∂) // 66(C∗(CS(X)), b) // (Ω∗∗, d).

The first map

η : a0 ⊗ a1 ∧ · · · ∧ aq 7→
∑

l1,...,lq

(−1)l1...lqa0 ⊗ al1 ⊗ · · · ⊗ alq ,

is a map of complexes, while the second one is a map of complexes only if d = 0.
But the composition is still a map of complexes.

We identified ′E(m),1
pq with Ω2n−p−q

O (n− q) for p ≥ m and d1 with ddR.
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To demonstrate that the spectral sequence degenerates at ′E2 one has to
show that the only possibly nontrivial differentials

d(m),p−m
pn : ′E(m),p−m

pn →′ E(m),p−m
m,n+p−m−1

all vanish. This is a consequence of the commutativity of the diagram

′E(m),p−m
pn

d(m),p−m
pn // ′E(m),p−m

m,n+p−m−1

′E(l),p−m
p,n

d(l),p−m
pn //∼=

OO
′E(l),p−m
m,n+p−m−1

OO
for l < m.

Now H∗ = HH∗(CS(X)) is the homology of the projective limit limC
(m)
∗ .

The projective system C(m) satisfies Mittag-Leffler condition. The same holds
for the projective systems of homology groups {HH(m)

∗ }m∈Z<−n by corollary
(8.16). Hence

HHj = lim
m

HH
(m)
j
∼= H2n−j

dR (Y c),

and we proved the theorem.

Theorem 8.17. There is a canonical isomorphism

HHq(CS(X)) ∼= H2n−q
dR (Y c).

8.9 Cyclic homology

We will use the Connes double complex B∗∗(CS(X)). The maps I, B, S which
involve Hochschild and cyclic homology HH∗, HC∗ are induced by morphism of
filtered chain complexes.

C∗(CS(X))  Tot(B∗∗(CS(X))) ։ Tot(B∗∗(CS(X)))[2]

b �� b �� b ��
CS(X)⊗3

b �� CS(X)⊗2Boo
b �� CS(X)

Boo
CS(X)⊗2

b �� CS(X)
Boo

CS(X)

The first column is a Hochschild complex C∗(CS(X)). The rest is the same
complex but shifted diagonally by 1, so the total complex is shifted by 2.

Let us put

B(m)
∗∗ := B∗∗/Fm−1B∗∗,
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where FpBkl := FpCl−k. Much as we did before we consider the projective
system of quotient complexes

TotB(m)
∗∗ = TotB∗∗/Fm−1B∗∗, m→ −∞.

Then we have
B(m)
kl = lim

p→∞
F

(m)
pkl , m ∈ Z, k, l ≥ 0

and
Bkl = lim

m→−∞
B(m)
kl , k, l ≥ 0,

where
F

(m)
pkl := FpBkl/Fm−1Bkl.

Let HC(m)
∗ denote the homology of TotB(m)

∗∗ , and HC∗∗ the homology of TotB∗∗.

Proposition 8.18. Assume that m ≤ 0 and q ≥ 2n + 1. Then there exist
isomorphisms

HC(m)
q
∼=
{

Hev
dR(Y c) q even

Hodd
dR (Y c) q odd

compatible with the canonical maps HC(m′)
q → HC(m)

q for m′ ≤ m.

In particular, the systems {HC(m)}m∈Z≤0
satisfy for q ≥ 2n+ 1 the Mittag-

Leffler condition. This gives us a corollary.

Corollary 8.19. There are, for q ≥ 2n+ 1, natural isomorphisms

HCq ∼= lim
m→−∞

HC(m)
q
∼=
{

Hev
dR(Y c) q even

Hodd
dR (Y c) q odd

This corollary together with a theorem (8.17) imply the following theorem
for cyclic homology of an algebra of symbols if dim H∗dR(Y c) <∞.

Theorem 8.20. The canonical map

I : HH∗(CS(X))→ HC∗(CS(X))

is injective. In particular

HCqr(CS(X)) = grSr HCq(CS(X)) := Sqr/Sq,r−1, Sqr = kerS1+r
∗ ∩HCq(CS(X))

is canonically isomorphic with

H2n−q+2r
dR (Y c), r = 0, 1, . . . .

With some more work we can prove the theorem without assumption of finite
dimension of H∗dR(Y c). Then one represents X as a union

⋃
j∈N Xj , where each

Xj is compact (with smooth or empty boundary) and Xj ⊂ IntXj+1. Then the
restriction maps CS(X)→ CS(Xj) induce homomorphisms

θ : HH∗(CS(X))→ ĤH∗ := lim
j

HH∗(CS(X)), (8.7)
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η : HC∗(CS(X))→ ĤC∗ := lim
j

HC∗(CS(X)). (8.8)

For each q there is a commutative diagram

HHq(CS(X))
θq //

∼= �� ĤHq

∼=��
H2n−q

dR
// limj H2n−q

dR (Y cj )

Notice that also the lower arrow is an isomorphism, since

Ω∗O = lim
j

Ω∗Oj
,

where Oj denotes the corresponding graded algebra of functions on Y cj . Since
both projective systems {Ω∗j} and {H∗dR(Y cj )} satisfy Mittag-Leffler condition,
we have that θ in (8.7) is an isomorphism.

The naturality of the Connes exact sequence gives us the commutative dia-
gram

. . . 0 // ĤHq

bI // ĤCq
bS // ĤCq−2

0 // ĤHq−1

bI // . . .
. . . B // HHq

I //∼=θq

OO
HCq

S //ηq

OO
HCq−2

B //ηq−2

OO
HHq−1

I //∼=θq−1

OO
. . .

with a priori only the lower sequence being exact. The exactness of the upper
sequence follows from

1

lim HHq(CS(Xj)) = 0, for all q ∈ N,

which is a consequence of the finite-dimensionality of the groups HHq(CS(Xj)) =
HdR(Y cj ). Thus the ”five lemma” and an easy inductive argument prove that η
is an isomorphism and B = 0.

Now it remains to prove the proposition (8.18). The filtration {F (m)
p∗∗ | p =

m,m + 1, . . .} on B(m)
∗∗ induces a filtration on TotB(m)

∗∗ . Denote by E
(m),r
pq the

associated spectral sequence which converges to HC(m)
∗ .

This spectral sequence is a priori located in the region {(p, q) | p ≥ m, p+q ≥
0}. We shall see that E

(m),r
pq for r ≥ 1 vanishes in fact outside the region shown
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below

q

//
p

OO

i.e. E
(m),r
pq = 0 also if p+ q ≥ 2n and p 6= 0.

Indeed, E
(m),1
pq is equal, for p ≥ m, to

Hp+q(TotB∗∗(O)(p)) = HCp+q(O)(p).

Actually, the first spectral sequence of the double complex B∗∗(O)(p) degener-
ates at E2 yielding thus that

E(m),1
pq

∼= Ωp+qO (p)/dΩp+q−1
O (p), p ≥ m, p 6= 0,

and
E

(m),1
0q

∼= Hq̃
dR(Y c), q ≥ 2n,

where q̃ is the parity of q and H∗dR = H
(0)
dR(Y c) ⊕ H

(1)
dR(Y c). This implies the

required location of non-vanishing E
(m),r
pq and as a corollary gives

HC(m)
q
∼= E

(m),1
0q

∼= H
(q̃)
dR(Y c)

for q ≥ 2n + 1. The isomorphisms are also compatible with the canonical

mappings HC(m′)
q → HC(m)

q .

589



Part V Cyclic homology

8.9.1 Further analysis of spectral sequence

We will use the notation ′E(m),r
pq for the earlier spectral sequence converging to

Hochschild homology HH(m).
First, let us consider the morphism of spectral sequences induced by S

′E(m),r
pq

S(m),r
pq��

′E(m),r
p,q−2

For r=1 we have

E(m),1
pq =

{
HCp+q(O)(p), O = gr(CS(X)) =

⊕
p∈ZO(p) p ≥ m

0 p < m

Then

E
(m),1
pq

S(m),1
pq��

E
(m),1
p,q−2

is the corresponding component of the S-map on cyclic homology of graded
algebra O.

If p = 0
HCp+q(O) = Ω

q ⊕Hq−2
dR ⊕Hq−4

dR ⊕ . . . ,
where

Ω∗ := Ω∗O, H∗dR := H∗(Ω∗).

Ω
k
(p) := Ωk(p)/dΩk−1(p)

For p 6= 0

HCp+q(O)(p) =

{
Ω
p+q

(p) p ≥ m
0 p < m

p = −2 p = −1 p = 0 p = 1 p = 2

Ω
q−2

(−2)

0 �� Ω
q−1

(−1)

0 ��d1oo Ω
q ⊕Hq−2

dR ⊕Hq−4
dR ⊕ . . .��d1oo Ω

q+1
(1)��d1oo Ω

q+2
(2)��d1oo

Ω
q−2

(−4) Ω
q−1

(−3)
d1oo Ω

q−2 ⊕Hq−4
dR ⊕Hq−4

dR ⊕ . . .
d1oo Ω

q−1
(1)

d1oo Ω
q
(2)

d1oo
where for p = 0 we have

Ω
q�� ⊕ Hq−2

dR���� ⊕ Hq−4
dR

⊕ . . .

0 ⊕ Ω
q−2 ⊕ Hq−4

dR
⊕ . . .
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Denote

E
(m),1

pq :=

{
Ω
p+q

(p) p ≥ 0

0 p < 0

Corollary 8.21. There is an isomorphism of chain complexes

(E
(m),1
∗,q , d1

∗,q) ∼= (E
(m),1

∗,q ⊕ (Hq−2
dR ⊕Hq−4

dR ⊕ . . .)[0], d)

and there is an exact sequence of complexes

0��
(Hq−1

dR [0], 0)����
(E

(m),1

∗,q−1, d
1)

B��
(′E(m),1
∗,q , d1)����

(E
(m),1

∗,q , d1)��
0

Consider the second spectral sequence of the double complex but arranged
according to conventions of Cartan-Eilenberg’s book. Denote it by qEr∗∗, al-
though it depends also on m.

The qE2
∗∗ looks as follows.

Hq−2
dR

E
(m),2

−2,q−1 �� ��<<<<<<<<<< E
(m),2

−1,q−1 �� ��;;;;;;;;;; E
(m),2

0,q−1 �� ��9999999999 E
(m),2

1,q−1 �� ��9999999999 E
(m),2

2,q−1 �� ��9999999999 E
(m),2

3,q−1

0 0 0 0 0 0

E
(m),2

−2,q−1 E
(m),2

−1,q−1 E
(m),2

0,q−1 E
(m),2

1,q−1 E
(m),2

2,q−1 E
(m),2

3,q−1

There is an isomorphism

E
(m),2

pq

∼=−→ E
(m),2

p+1,q+1

except (p, q) = (0, q), (1, q − 1), (1, q), (2, q).

The term E
(m),2

pq appears twice, in qEr∗∗ and q+1Er∗∗.
There are two cases:

q < n then for l =
[
q
2

]
+ 1

E
(m),2

0

∼=←− E(m),2

−1,q−1

∼=←− E(m),2

−2,q−2

∼=−→ . . .
∼=−→ E

(m),2

−l,q−l ⊆ HCq−2l(O)(−l) = 0
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because q − 2l < 0.

The E1-term is the same as the E2-term:

Hq−1
dR

##GGGGGGGGGGGGGGGGGGGG
GGGG

0 0 0 E
(m),2

0,q−1 = 0 E
(m),2

1,q−1 = 0 E
(m),2

2,q−1

0 0 0 0 0 0

0 0 0 0 E
(m),2

1,q E
(m),2

2,q

In E3 there are only two terms and the spectral sequence collapses at E4.

Hq−1
dR

��777777777777777
77

0 0 0 0 0 Hq−2
dR Hq−3

dR

0 0 0 0 0 0 0

0 0 0 0 0 Hq−1
dR Hq−2

dR

q − 1 ≥ n then for l = n−
[
q
2

]

E
(m),2

2,q−1

∼=−→ E
(m),2

3,q

∼=−→ E
(m),2

4,q+1

∼=−→ . . .
∼=−→ E

(m),2

2+l,q+l−1
∼= Ω

2l+q−1
(2 + l) = 0

because 2l+ q − 1 > 2n.

Hn−1
dR

0 0 0 0 0 E
(m),2

2,n−1 E
(m),2

3,n−1

Hn+3
dR Hn+2

dR Hn+1
dR Hn

dR Hn−1
dR Hn−2

dR Hn−3
dR

0 E
(m),2

−2,n E
(m),2

−1,n E
(m),2

0,n 0 0 0
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q

//

OO

p
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8.9.2 Higher differentials

For r = 1, 2, . . . the differentials in the spectral sequence are as follows

∗ooggNNNNNNNNNNddIIIIIIIIIIIIIIIII
GGGGGGGGGGGGGGGGGGGGGGG

bbEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
p

//
q

OO

Let Erpq be a spectral sequence such that each Erpq (for r > r0) is a finite
dimensional vector space. Let R be a region in the (p, q)-plane which contains
finitely many boxes. Then

∑

(p,q)∈R
dimErpq ≥

∑

(p,q)∈R
dimEr+1

pq ≥ . . . ≥
∑

(p,q)∈R
dimE∞pq .

The equality holds if and only if there is no nontrivial differential originating or
leaving R, that is the equality

∑

(p,q)∈R
dimEr

′

pq =
∑

(p,q)∈R
dimE∞pq

is another way of saying that the spectral sequence in region R degenerates at
Er

′

.
In our spectral sequence

E(m),2
pq =⇒ Hp+q(TotB∗∗(CS(X))/Fm−1 TotB∗∗(CS(X)))

We claim that the only nonvanishing differentials drpq for r ≥ 2 are

dppq : E(m),p
pq → E

(m),2
0,p+q−1

which inject E
(m),2
pq = E

(m),2
pq

∼= Hq−2
dR into E

(m),p
0,p+q−1.

We can define two regions R, R′ as follows.

[PICTURE]

Then ∑

(p,q)∈R
dimEr

′

pq =
∑

(p,q)∈R
dimE∞pq .
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Suppose that ther is no nontrivial differential originating from R′ or nontrivial
differential hitting R and originating outside. Then

∑

(p,q)∈R′

dimErpq −
∑

(p,q)∈R
dimErpq ≥

∑

(p,q)∈R′

dimEr+1
pq −

∑

(p,q)∈R
dimEr+1

pq

Equality holds if and only if all dr inside R are zero, and then for all r > r0 for
some r0

∑

(p,q)∈R′

dimErpq −
∑

(p,q)∈R
dimErpq =

∑

(p,q)∈R′

dimE∞pq −
∑

(p,q)∈R
dimE∞pq .

We can write

∑

0≤q≤n
dimE

(m),2
0q −

∑

0≤q≤n
dimE

(m),∞
0q =

∑

p>0

dimE(m),2
pq .

For r ≥ 2 let us introduce the following statements:

(A)r The natural maps
E(m),r
pq → E(m),r

pq 〈Y n−1〉
are isomorphisms for p > 0, r fixed.

(B)r The differentials

drpq : E(m),r
rq → E

(m),r
0,q+r−1

are injective.

(C)r The differentials

drpq : E(m),r
pq → E

(m),r
p−r,q+r−1

are zero for p ≥ r.

We prove them by induction on r, simultaneously

(B)2

(A)2

8�yyyyyyyy yyyyyyyy �&EEEEEEEE EEEEEEEE
(C2)

(B)3

(B)2 ∧ (C)2 +3 (A)3

8�yyyyyyyy yyyyyyyy �&EEEEEEEE EEEEEEEE
(C)3

and so on. Furthermore let us introduce two more sequences of statements:

(D)r For p > m
drpq = lim

j
drpq,j .

(E)r For p > m
E(m),r
pq = lim

j
E(m),r
pq 〈Yj〉.
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These are also proved by induction on r in the following way. The (E)r im-

plies (D)r and (E)r and (D)r together with the condition that {E(m),r
pq 〈Y j〉},

{E(m),r+1
pq 〈Y j〉} satisfy Mittag-Leffler condition, imply (E)r+1.
The (A)2 statement follows from the following remark. Suppose Hk

dR(Y c) =
0 for k > n and that dim H∗dR(Y c) <∞. Then

2n−2∑

j=0

dimE
(m),2
0j −

∑

p>0,q

dimE(m),2
pq =

2n−2∑

j=0

dim HCj(CSY ).

The maps
Hj

dR(Y c)→ Hj
dR((Y k)c)

are isomorphisms for j < k, monomorphism for j = k, zero for j > k + 1.
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Chapter 9

Appendix: Topological
tensor products

Let (E, {pα}α∈A), (F, {qβ}β∈B) be vector spaces with the sytems of seminorms
{pα}α∈A, {qβ}β∈B respectively. Define a system of seminorms on E ⊗ F by

(pα ⊗ qβ)(τ) := inf
∑

ı∈I
pα(ei)qβ(fi), (9.1)

where infimum is taken over all representations τ =
∑
i∈I ei ⊗ fi, in which I is

a finite set.

Definition 9.1. A locally convex space E ⊗ F with topology induced by the
system of seminorms {pα ⊗ qβ}(α,β)∈A×B is calles a projective tensor product

and denoted by E ⊗π F . Its completion is denoted by E⊗̂πF .

A bilinear map

φ : E × F → E⊗̂πF, (e, f) 7→ e⊗ f,

is continuous in both variables and has the following universal property.

Fact 9.2. For every bilinear jointly continuous mapping f : E × F → W into
locally convex space W there exists unique continuous linear map Lφ : E⊗̂πF →
W such that following diagram commutes.

E × F f //
φ $$JJJJJJJJJ W

E⊗̂πF
Lφ

;;xxxx
Remark 9.3. There are also different tensor products on topological vector
spaces, like injective and inductive tensor products, but we will not describe
them here.

Suppose that E′ =
⋃
m∈Z E

′
m, where

. . . ⊆ E′m−1 ⊆ E′m ⊆ . . .

598



Part V Appendix: Topological tensor products

is a Z-filtration of E′ by locally convex closed vector subspaces of E′, and
analogously for the space E′′. Then define

E′⊗̃E′′ := lim
(l1,l2)∈Z×Z

E′l1⊗̂πE′′l2 .

If for any m there is a continuous projections E′m → E′m−1, E′′m → E′′m−1,

then the space E′l1⊗̂πE′′l2 is a closed subspace in E′m1
⊗̂πE′′m2

for any m1 ≥ l1,
m2 ≥ l2.

Define a Z-filtration on E′⊗̃E′′

(E′⊗̃E′′)m :=
⋃

(l1,l2)∈Z×Z

l1+l2≤m

E′l1⊗̂πE′′l2 .

In similar way we define E(1)⊗̃ . . . ⊗̃E(p) with Z-filtration

(E(1)⊗̃ . . . ⊗̃E(p))m :=
⋃

(l1,...,lp)∈Zp

l1+...+lp≤m

E
(1)
l1
⊗̂π . . . ⊗̂πE(p)

lp
.
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Chapter 10

Appendix: Spectral
sequences

10.1 Spectral sequence of a filtered complex

Let (C•, F, ∂) be a filtered chain complex, that is

. . . ⊆ FpC• ⊆ Fp+1C• ⊆ . . . ⊆ C•.

We say that the filtration is

1. separable if
⋂
p FpCn = {0},

2. complete if Cn
∼=−→ lim
←−

p

Cn/FpCn,

3. cocomplete if
⋃
p FpCn

∼=−→ Cn,

for all n ∈ Z.
We define E0

∗∗ := grF∗ C• (the associated graded complex), where E0
pq :=

FpCp+q/Fp−1Cp+q, and d0
∗∗ is the boundary operator induced by ∂,

d0
pq : E0

pq → E0
p,q−1.

Thus (E0
∗∗, d

0
∗∗) is the direct sum of complexes

(E0
∗∗, d

0
∗∗) =

⊕

p∈Z

(E0
p∗, d

0
p∗).

Next we define

E1
pq := Hq(E

0
p∗, d

0
p∗)

=
{c ∈ FpCp+q | ∂c ∈ Fp−1Cp+q−1}

{c ∈ FpCp+q | c = ∂b for some b ∈ FpCp+q+1}
mod Fp−1Cp+q

=:
Z1
pq + Fp−1Cp+q

B1
pq + Fp−1Cp+q

.
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Part V Spectral sequence of a filtered complex

On E1
pq the boundary operator ∂ from a complex

. . . Cp+q−1 Cp+q
∂oo Cp+q+1

∂oo . . .

induces a boundary operator

d1
pq : E1

pq → E1
p−1,q.

Let us define, for r = 1, 2, . . .

Erpq =
{c ∈ FpCp+q | ∂c ∈ Fp−rCp+q−1}

{c ∈ FpCp+q | c = ∂b for some b ∈ Fp+r−1Cp+q+1}
mod Fp−1Cp+q

=:
Zrpq + Fp−1Cp+q

Brpq + Fp−1Cp+q
∼=

Zrpq
Brpq + Zrpq ∩ Fp−1Cp+q

=
Zrpq

Brpq + Zr−1
p−1,q+1

.

Now Er∗∗ equipped with the boundary operator induced by ∂ becomes a direct
sum of complexes

. . .← Erp−r,q+r−1

dr
pq←−− Erpq

dr
p+r,q−r+1←−−−−−−− Erp+r,q−r+1 ← . . . ,

which we can denote by (Erp+∗r,q−∗(r−1), d
r
p+∗r,q−∗(r−1)). Now Er+1

pq is canoni-
cally isomorphic to the homology of the complex

(Erp+∗r,q−∗(r−1), d
r
p+∗r,q−∗(r−1))

at the Erpq .
One can arrange terms Erpq in a table:

. . . Erp−r,q+r−1 Erp−r,q+r Erp−r,q+r+1 . . .

. . . ...
...

...
. . .

. . . Erp−1,q Erp−1,q+1 Erp−1,q+2 . . .

. . . Erp,q−1 Erp,q

dr
pq

XX22222222222222222222222222
Erp,q+1

dr
pq

YY33333333333333333333333333
. . .

. . . Erp+1,q−2 Erp+1,q−1 Erp+1,qCp+q+1 . . .

. . . ...
...

...
. . .

. . . Erp+r,q−r−1 Erp+r,q−r

dr
pq

XX22222222222222222222222222
Erp+r,q−r+1

dr
pq

YY33333333333333333333333333
. . .

. . . ...
...

...
. . .
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Part V Spectral sequence of a filtered complex

For each (p, q) we defined a system of subobjects of FpCp+q :

{0} = B0
pq ⊆ B1

pq ⊆ . . . ⊆ Brpq ⊆ . . .

⊆
⋃

r

Brpq =: B∞pq ⊆ Z∞pq :=
⋂

r

Zrpq ⊆

. . . ⊆ Zrpq ⊆ . . . ⊆ Z1
pq ⊆ Z0

pq = FpCp+q,

such that
Erpq = Zrpq/B

r
pq mod Fp−1Cp+q.

Morphism ϕ : (C•, F, ∂) → (C′•, F
′, ∂′) of filtered complexes induces a mor-

phism
Er∗∗(ϕ) : Er∗∗ → E′r∗∗, r ≥ 0,

of corresponding spectral sequences.

Theorem 10.1 (Eilenberg-Moore). If Er∗∗(ϕ) is an isomorphism for some r and
both filtrations are complete and cocomplete, then ϕ is a quasi-isomorphism.

We say that the spectral sequence Er∗∗ converges to a filtered module M if

E∞pq ∼= FpMp+q/Fp−1Mp+q, p, q ∈ Z.

Then we write Erpq =⇒ Mp+q.
If the filtration is locally bounded from below (i.e., FpCn = {0} for p ≪ 0)

and cocomplete, then Er∗∗ converges to H∗(C•, ∂). The homology of complex
(C•, ∂) is equipped with canonical filtration

Fp H∗(C•, ∂) := im(H∗(FpC•, ∂)→ H∗(C•, ∂)).

We say that the spectral sequence Er∗∗ degenerates (or collapses) at Es if
Es∗∗ ∼= E∞∗∗ .

Consider the r-th term Er of the spectral sequence.
There is a sequence of maps

Erpq ։ Er+1
pq ։ · · ·։ E∞pq → Hp+q(C),

and similarly
Hp′+q′(C)→ E∞p′q′  · · · Er+1

p′q′  Erp′q′ .

These maps are called the edge homomorphisms. For the first quadrant spectral
sequence they correspond to the maps from leftmost column p = 0

Er0q → Hq(C),

and to the bottom row, q = 0,

Hp(C)→ Erp0.
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10.2 Examples

Example 10.2. Two spectral sequences associated with the double complex
(C∗∗, ∂′, ∂′′).

...�� ...�� ...��
. . . Cp−1,q+1

∂′′ ��oo Cp,q+1
∂′oo

∂′′ �� Cp+1,q+1
∂′oo

∂′′ �� . . .oo
. . . Cp−1,qoo

∂′′ �� Cpq
∂′oo

∂′′ �� Cp+1,q
∂′oo

∂′′ �� . . .oo
. . . Cp−1,q−1oo �� Cp,q−1

∂′oo �� Cp+1,q−1
∂′oo �� . . .oo

...
...

...

Here
∂′2 = ∂′′2 = 0, [∂′, ∂′′] = ∂′∂′′ + ∂′′∂′ = 0,

and the total complex is defined by

(TotC)n :=

−1∏

p=−∞
Cp,n−p ⊕

⊕
Cp,n−p, ∂ := ∂′ + ∂′′.

...
...

...
. . . ...

...
. . . ∗ ∗ ∗ . . . ∗ ∗ . . .

. . . C0,n ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ C1,n−1 ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ C2,n−2 . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . Cn−1,1 ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ Cn0 . . .

...
...

...
. . . ...

...

There are two filtrations on TotC:

filtration by columns

F ′p(TotC)n :=
∏

r≤p
Cr,n−r
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...
...

...
. . . ...

p ...
. . . ...

...
. . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . C0,n ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ C1,n−1 ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ C2,n−2 . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . Cp,n−p ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ Cp+1,n−p−1 . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ ∗ . . . Cn−1,1 ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ Cn0
. . .

...
...

...
. . . ...

p ...
. . . ...

...

filtration by rows

F ′′p (TotC)n :=
⊕

p≤s
Cn−s,s

...
...

...
. . . ...

...
. . . ...

...
. . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . C0,n ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ C1,n−1 ∗ . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ C2,n−2 . . . ∗ ∗ . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . Cn−p,p ∗ . . . ∗ ∗ . . .

p p

. . . ∗ ∗ ∗ . . . ∗ Cn−p−1,p+1 . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ ∗ . . . Cn−1,1 ∗ . . .

. . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ Cn0
. . .

...
...

...
. . . ...

...
. . . ...

...

Both filtrations are cocomplete. The filtration by columns is also complete
for each n. The filtration by rows is complete if and only if, Cp,n−p = 0 for
p≪ 0.

There are two spectral sequences associated to double complex (C∗∗, ∂′, ∂′′).

1. First spectral sequence associated to the filtration by columns

E′1pq = Hq(Cp∗, ∂
′′).

It converges to Hp+q(C∗∗) := Hp+q(Tot(C∗∗)) if Cp,n−p = 0 for p ≪ 0
(n ∈ Z).

2. Second spectral sequence associated to the filtration by rows

E′′1pq = Hq(C∗p, ∂
′).

It converges to Hp+q(C∗∗) if Cp,n−p = 0 for p≪ 0 and p≫ 0 (n ∈ Z).
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Example 10.3. Double complex B(A)∗∗ (Connes double complex). Let A be the
associative algebra with unit.

B(A)pq :=

{
A⊗(q−p+1) if q ≥ p ≥ 0,

0 otherwise.

...�� ...�� ...�� ...

A⊗3

b �� A⊗2

b ��Boo A
Boo

A⊗2

b �� A
Boo

A

Here b is the Hochschild boundary operator and B is defined as

B := (1 − t)sN,

where

s(a0 ⊗ · · · ⊗ an) := 1⊗ a0 ⊗ · · · ⊗ an
t(a0 ⊗ · · · ⊗ an) := (−1)n ⊗ a0 ⊗ · · · ⊗ an−1

N(a0 ⊗ · · · ⊗ an) := (id + t+ . . .+ tn)(a0 ⊗ · · · ⊗ an)

Example 10.4. Double complex D(A)∗∗. Here A is commutative k-algebra with
unit.

D(A)pq :=

{
Ωq−pA/k if q ≥ p ≥ 0,

0 otherwise.

...�� ...�� ...�� ...

Ω2
A/k

0 �� Ω1
A/k

0 ��doo A
doo

Ω1
A/k

0 �� A
doo

A

If A
∼=−→ A ⊗Z Q (i.e. the additive group (A,+) is uniquely divisible), then the

formula

µ(a0 ⊗ · · · ⊗ an) :=
1

n!
a0da0 ∧ · · · ∧ dan

induces a morphism of double complexes µ : B(A)∗∗ → D(A)∗∗.
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On the level of spectral sequences associated with the filtration by columns
we obtain surjective maps

E1(pq)(µ) : A⊗(q−p+1) ։ Ωq−pA/k.

These maps are isomorphisms if A is a function algebra on the smooth algebraic
variety over a perfect field (i.e. of characteristic 0 or such that kp = k if
char(k) = p), or iductive limit of such (for example A = C as Q-algebra).

The first spectral sequence of a double complex

(D(A)∗∗, 0, d) =
⊕

q≥0

(ΩqA/k
d←− . . . d←− A)

degenerates at the term E2:

...�� ...�� ...�� ...

Ω2
A/k/dΩ1

A/k

0 �� H1
dR(A)

0 ��doo H0
dR(A)

doo
Ω1
A/k/dA

0 �� H0
dR(A)

doo
A

Thus the first spectral sequence of the double complex (B(A)∗∗, b, B) also de-
generates at the term E2, and we get an isomorphism

HCn(A) := Hn(B(A)∗∗) = ΩnA/k/dΩn−1
A/k ⊕Hn−2

dR (A)⊕Hn−4
dR (A)⊕ . . . .

Example 10.5. Let P∗ be a projective resolution of a right R-module M , and
Q∗ a projective resolution of a left R-module N . Consider the double complex
P∗ ⊗R Q∗. Then

E′2pq =

{
Hp(P∗ ⊗R N) q = 0,

0 q 6= 0

E′′2pq =

{
Hp(M ⊗R Q∗) q = 0,

0 q 6= 0

Both spectral sequences converge to Hp+q(P∗ ⊗R Q∗) =: TorRp+q(M,N), so we
get an important canonical isomorphisms

Hp(P∗ ⊗R N) ∼= TorRp (M,N) ∼= Hp(M ⊗R Q∗).

They express the fact that the bifunctor ⊗R : Mod-R × R-Mod → Ab is bal-
anced.

Example 10.6. Two hyperhomology spectral sequences. A Cartan-Eilenberg res-
olution of a complex (C∗, ∂) is a double complex (P∗∗, ∂′, ∂′′) with augmentation
η : P∗0 → C∗ satisfying the following conditions:

606



Part V Examples

1. for all p, q the modules Ppq, im ∂′pq, ker∂′pq, Hp(P∗q, ∂′) are projective,

2. the augmented complexes

Pp∗,

η �� im ∂′p∗,

η �� ker ∂′p∗,

η �� Hp(P∗q , ∂′)

η ��
Cp im ∂p ker ∂p Hp(C∗, ∂)

are projective resolutions of modules Cp, im ∂p, ker∂p, Hp(C∗, ∂).

. . . ...�� ...�� ...�� . . .

. . . Pp−1,qoo
∂′′

q �� Pp,q
∂′

poo
∂′′

q �� Pp+1,q

∂′
p+1oo

∂′′
q �� . . .oo

. . . Pp−1,q−1oo �� Pp,q−1

∂′
poo �� Pp+1,q−1

∂′
p+1oo �� . . .oo

. . . ...�� ...�� ...�� . . .

. . . Pp−1,1oo
∂′′
1 �� Pp,1

∂′
poo

∂′′
1 �� Pp+1,1

∂′
p+1oo

∂′′
1 �� . . .oo

. . . Pp−1,0oo
η �� Pp,0

∂′
poo

η �� Pp+1,0

∂′
p+1oo

η �� . . .oo
. . . Cp−1oo Cp

∂poo Cp+1
∂p+1oo . . .oo

Such resolution can be obtained from the arbitrary projective resolutions of
Hp(C∗, ∂) and im ∂p−1 by gluing.

PHp∗�� PZp∗oooo_ _ _ _ _ ����� PBp−1,∗oooo_ _ _ _ ��
Hp(Cp, ∂) ker ∂poooo im ∂p−1oooo PBp∗�� Pp∗oooo_ _ _ ����� PZp∗oooo_ _ _ ��

im ∂p Cpoooo ker ∂poooo
For an additive functor F the hyperhomology spectral sequences are the first
and second spectral sequences of a double complex (F (P∗∗), F (∂′), F (∂′′))

E′1pq = (LqF )(Cp),

E′′2pq = F (PHpq ),

and

E′2pq = Hp((LqF )(C∗)),

E′′2pq = (LpF )(Hq(C∗)).
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Both spectral sequences converge to

Lp+qF (C∗) := Hp+q(F (P∗∗)).

if C∗ is bounded from below, that is Cn = 0 for n≪ 0.

Assume that Cn = 0 for n < 0, C∗ is F -acyclic, that is (L0F )(Cn)
∼=−→ Cn,

(LpF )(Cn) = 0 for p > 0, and that

Hn(C∗) =

{
M n = 0,

0 n > 0.

Such complex is called an F -acyclic resolution of the module M . In that case

E′2pq ∼=
{

Hp(F (C∗)) q = 0,

0 q 6= 0,

E′′2pq ∼=
{
LpF (M) p = 0,

0 p 6= 0.

Thus we obtain an isomorphism

Hp(F (C∗)) ∼= (LpF )(M).

We established a very important fact: to compute (LpF )(M) it suffices to use
an arbitrary F -acyclic resolution of M .

Example 10.7. A flat module is an F -acyclic module for F = (−)⊗R N , where
N is an arbitrary left R-module. For R = Z flat modules are precisely torsion
free abelian groups. Thus

0← Q/Z← Q← Z← 0

is a flat resolution of group Q/Z (which is an injective cogenerator of a category
of abelian groups Ab). From this we obtain

TorZ
1 (Q/Z, A) = ker(A→ A⊗Z Q) = Torsion(A).

Example 10.8. Consider two composable additive functors

A G−→ B F−→ C,

where A,B, C are abelian categories. Let M be an object in A, P∗ its projective
resolution. In the hyperhomology spectral sequence we put C∗ = G(P∗). Then
if G sends projective objects into F -acyclic objects

E′2pq = Hp((LqF )(G(P∗))) ∼=
{

Hp((F ◦G)(P∗)) = (Lp(F ◦G))(M) q = 0

0 q 6= 0

E′′2pq = (LpF ◦ LqG)(M)

In this case we obtain that

E′′2pq = (LpF ◦ LqG)(M) =⇒ (Lp+q(F ◦G))(M).
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E′2pq = E∞pq = . . . . . . . . . . . .

0 0 . . . 0

0 0 . . . 0

(L0(F ◦G))(M) (L1(F ◦G))(M) . . . (Lp(F ◦G))(M)

p
//q

OO
E′′2pq = . . . . . . . . . . . .

(L0F ◦ LqG)(M) (L1F ◦ LqG)(M) . . . (LpF ◦ LqG)(M)

. . . . . . . . . . . .

(L0F ◦ L1G)(M) (L1F ◦ L1G)(M) . . . (LpF ◦ L1G)(M)

(L0F ◦ L0G)(M) (L1F ◦ L0G)(M) . . . (LpF ◦ L0G)(M)

p
//q

OO
This spectral sequence is called the spectral sequence of a composition of func-
tors.

Example 10.9. Let ϕ : R → S be a homomorphism of unital rings, M a right
R-module, N a left S-module. Consider a composition

Mod-R
(−)⊗RS−−−−−→Mod-S

(−)⊗RN−−−−−−→ Ab

The spectral sequence of a composition of these two functors (G sends projective
R-modules into projective S-modules) in looks as follows:

E2
pq = TorSp (TorRq (M,S), N) =⇒ TorRp+q(M,N)

and it is called a base change spectral sequence.
Suppose that R→ S is a homomorphism of k-algebras, MR, SN are respec-

tively right R-module and left S-module. Their tensor product M ⊗RN gives
rise to a sequence of derived functors TorR∗ (M,N).

Suppose that P∗ ։ M is a projective R-module resolution of M , and Q∗ ։

N a projective S-module resolution for N .

M ⊗R N ← P∗ ⊗R Q∗ ∼= (P∗ ⊗R S)⊗S Q∗

Suppose F (·, ·) is a functor covariant in both arguments.

LqF (·, ·) L
{1,2}
q F (·, ·)xxqqqqqqqqqqq ''OOOOOOOOOOO

L
{1}
q F (·, ·) $$JJJJJJJJJJJJ L

{2}
q F (·, ·)xxrrrrrrrrrrrrr

L∅qF (·, ·)
{
F if q = 0

0 if q 6= 0
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We say that it is left balanced if there are isomorphisms L
{1}
q
∼= L

{1,2}
q

∼= L
{2}
q .

RqF (·, ·) Rq{1,2}F (·, ·)

Rq{1}F (·, ·)

88pppppppppp
Rq{2}F (·, ·)

ggOOOOOOOOOOO
Rq∅F (·, ·)

eeJJJJJJJJJJJJJ 88rrrrrrrrrrrrrr {
F if q = 0

0 if q 6= 0

We say that it is right balanced if there are isomorphisms Rq{1}
∼= Rq{1,2}

∼= Rq{2}.
There is an isomorphism

P∗ ⊗R N
∼=←− P∗ ⊗R Q∗ ∼= (P∗ ⊗R S)⊗S Q∗

TorRq (M,S ⊗S Q∗)
∼=−→ TorRq (M,S)⊗S Q∗.

Taking homology we get

Hp(TorRq (M,S)⊗Q∗) ∼= TorSp (TorRq (M,S), N),

and a base change spectral sequence

E2
pq = TorSp (TorRq (M,S), N) =⇒ TorRp+q(M,N).

The boundary maps (transgressions) of this spectral sequences are as follows:

E2
0n = TorRn (M,S)⊗S N → TorRn (M,N)

TorRn (M,N)→ E2
n0 = TorSn(M ⊗ S,N)

Example 10.10. For an unital k-algebra A let Lie(A) denote the associated Lie
algebra with bracket [a, a′] = aa′ − a′a. The universal derivation

d∆ : A→ A⊗k Aop, d∆(a) = 1⊗ aop − a⊗ 1

is a homomorphism of Lie algebras Lie(A) → Lie(A ⊗k Aop), so it induces a
homomorphism of associative algebras R := U(Lie(A)) → A ⊗k Aop =: S. Let
M = k (trivial representation of a Lie algebra Lie(A)). The base change spectral
sequence has the form

E2
pq = TorA⊗kA

op

p (TorU(Lie(A))
q (k,A⊗k Aop), N) =⇒ Tor

U(Lie(A))
p+q (k,N),

that is if A is flat over k then

E2
pq = TorA⊗kA

op

p (HLie
q (A;A⊗k Aop), N) =⇒ HLie

p+q(k,N).

Because k ⊗U(Lie(A)) (A ⊗ Aop) ∼= A as a right A ⊗ Aop-module, we have that
the second boundary map gives a canonical homomorphism

HLie
n (A;N)→ Hn(A;N) ∼= E2

n0.
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There is a homomorphism of standard chain complexes

(C∗(Lie(A);N), ∂)→ (C∗(A,N), b)

where

∂(n⊗ a1 ∧ · · · ∧ an) :=
n∑

i=1

(−1)i (ain− nai)︸ ︷︷ ︸
−(d∆a)n

⊗a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+
∑

1≤i<j≤n
(−1)i+jn⊗ [ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an

In the special case N = A we obtain canonical homomorphism

HLie
n (A; ad)→ HHn(A)

Example 10.11. hyper-Tor spectral sequences and Künneth spectral sequence.
For a right R-module M and a complex of left modules C∗ we define

TorRn (M,C∗) := Hn(P∗ ⊗R C∗)

where P∗ → M is a projective resolution of M . Then the first and second
spectral sequence of a bicomplex P∗ ⊗R C∗ are as follows:

E′1pq = Pp ⊗R Hq(C)

E′2pq = TorRp (M,Hq(C)) =⇒ TorRp+q(M,C∗)

and

E′′1pq = TorRq (M,Cp)

E′′2pq = Hp(TorRq (M,C∗)) ∼=
{

Hp(M ⊗R C∗) q = 0

0 q 6= 0

where the isomorphism for E2
pq holds if the complexes TorRq (M,C∗) are acyclic

for q > 0, for example if Cn are flat. Then we obtain a Künneth spectral
sequence

E2
pq = TorRp (M,Hq(C)) =⇒ Hp+q(M ⊗R C∗)

if Cn = 0 for n≪ 0.
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Introduction to KK-theory

KK-theory was defined and developed by Kasparov in the 1980s. Since then
it has played a fundamental rôle in the theory of operator algebras and its
applications. In this lecture we explain some of the origins of Kasparov’s theory,
sketch its definition and basic properties, and indicate some applications. A
large part of the material presented here will be discussed in much more detail
in later lectures. Therefore we will skip almost all proofs and only give some
references to the literature.

Motivation and background

Topological K-theory

The origins of KK-theory go back to topological K-theory in the sense of Atiyah
and Hirzebruch which was introduced around 1960.
For a compact topological space X the topological K-theory group K0(X) is the
Grothendieck group of the semigroup of isomorphism classes of complex vector
bundles over X . This definition can be extended to locally compact spaces by
setting

K0(X) = coker(ι∗ : K0(+)→ K0(X+))

where X+ denotes the one-point compactification of X , + is a one-point space
and ι : + → X+ the inclusion of the base point. Using the n-fold suspension
Rn ×X one defines K−n(X) := K0(Rn ×X).
With these definitions at hand we can already formulate the most fundemantal
result in topological K-theory: The Bott periodicity theorem asserts that there
is a natural isomorphism K−n−2(X) ∼= K−n(X) for all n. As a consequence we
see that there are only two K-groups to consider, namely K0 and K1.

K-theory for Banach algebras

The K-group K0(A) of a unital complex Banach algebra A is defined as the
Grothendieck group of the semigroup of isomorphism classes of finitely generated
projective modules over A. For nonunital Banach algebras one sets

K0(A) = ker(π∗ : K0(A+)→ K0(C))

where A+ is the unitarization of A and π : A+ → C denotes the augmentation
homomorphism.
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The Serre-Swan theorem states that the category of vector bundles over a com-
pact space X is equivalent to the category of finitely generated projective mod-
ules over the algebra of continuous functions C(X). It follows that K0(X) can
be identified with K0(C0(X)) for all locally compact spaces X .
The higher topological K-groups of a Banach algebra A are defined by Kn(A) =
K0(C0(Rn, A)). Here C0(Rn, A) is the algebra of continuous functions Rn → A
vanishing at infinity. We remark that the definition of K0(A) uses only the alge-
braic structure, and not the topology of the Banach algebra A. In contrast, the
definition of the higher topological K-theory groups Kn(A) relies on the Banach
algebra structure of A.
The Bott periodicity theorem carries over to the setting of Banach algebras:
There is a natural isomorphism Kn+2(A) ∼= Kn(A) for all n.

The index theorem

One main motivation for the study of topological K-theory comes from index
theory. Let D be an elliptic pseudodifferential operator on a closed oriented
manifold M , a classical example is given by the Dirac operator on a spin mani-
fold. The Atiyah-Singer index theorem allows to calculate the index

Index(D) = dim ker(D)− dim coker(D)

of D in terms of topological data.
More precisely, the symbol of D gives a class [σ(D)] ∈ K0(T ∗M). Here T ∗M
denotes the cotangent bundle of M . Atiyah and Singer defined two maps

a- Index, t- Index: K0(T ∗M)→ Z,

called the analytical and topological index, respectively. These maps are made
in such a way that a- Index([σ(D)]) = Index(D), and t- Index([σ(D)]) is defined
topologically. The Atiyah-Singer index theorem states that

a- Index = t- Index .

Using the Chern character from K-theory to cohomology, this result leads to an
explicit expression for the index involving characteristic classes. For instance,
in the case of the Dirac operator D on a spin manifold M the corresponding
formula reads

Index(D) =

∫

M

Â(M)

where Â(M) is the Â-genus of M .

K-homology

Index theory is a natural starting point for the definition of K-homology, the ho-
mology theory dual to K-theory. The existence of such a dual homology theory
follows from abstract homotopy theory, but homotopy theory does not provide
a useful description for the cycles of K-homology.
Atiyah proposed an operator theoretic approach to K-homology based on ”ab-
stract elliptic operators” [a-mf68]. The definition of an abstract elliptic operator
encodes the main properties of elliptic pseudodifferential operators on closed
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manifolds.
Let X be compact topological space. An abstract elliptic operator over X is
a triple (φ0, φ1, T ), where φi : C(X) → B(Hi) are ∗-representations on Hilbert
spacesHi and T ∈ B(H0,H1) is a Fredholm operator such that φ1(f)T−Tφ0(f)
is a compact operator for all f ∈ C(X).
Let us write Ell(X) for the set of all such triples. There is a binary operation
on Ell(X) given by direct sum. Atiyah defined a map Ell(X) → K0(X) and
showed that it is surjective provided X is a finite CW -complex.
The remaining problem was to describe explicitely the equivalence relation ∼
such that Ell(X)/ ∼ is isomorphic to K0(X). Eventually this problem was
solved by Kasparov via KK-theory.

Brown-Douglas-Fillmore theory

Another approach to K-homology which precedes KK-theory is the extension
theory of Brown, Douglas and Fillmore [bdf-77]. This theory was motivated by
questions in operator theory in the first place.
Let H be a Hilbert space and consider the exact sequence

0→ K(H)→ B(H)
π−→ Q(H)→ 0,

where K(H) is the ideal of compact operators on H, and Q(H) = B(H)/K(H)
is the Calkin algebra. An operator T ∈ B(H) is called essentially normal (self-
adjoint) if π(T ) is normal (selfadjoint). The essential spectrum of T is the
spectrum of π(T ).
The Weyl-von Neumann theorem states that if T is essentially selfadjoint,
then T = S + K, where S is selfadjoint and K compact. Moreover, one has
T = URU∗+K where U is unitary and K compact if and only if T and R have
the same essential spectrum.
Brown, Douglas and Fillmore addressed the following two natural questions. If
T is essentially normal, then

• under what conditions can one write T = N +K, where N is normal and
K compact?

• under what conditions on R can one write T = URU∗ + K, where U is
unitary and K compact?

This led them to study extensions of C*-algebras. We say that E is and exten-
sion of A by B if there exists an exact sequence

0→ B → E → A→ 0

of C*-algebras, that is, B is an ideal in E and A is isomorphic to the quotient
of E by B. If A is separable and nuclear and B is σ-unital, then there is an
abelian group Ext(A,B) constructed out of equivalence classes of extensions of
A by B ⊗K.
If T is an essentially normal operator on H and X ⊂ C its essential spectrum,
then one has an extension

0→ K(H)→ C∗(T, 1,K(H))→ C(X)→ 0.

The crucial point is that a computation of Ext(C(X),C) answers the questions
stated above. We refer to chapter 16 in [b-b98] for a precise statement of the
results and more information.
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Definition of KK-theory

Hilbert modules

As a first ingredient in Kasparov theory we need Hilbert modules [l-e95]. If B
is a C*-algebra, then a Hilbert B-module is a right B-module E with a positive
definite sesquilinear form 〈−, −〉 : E × E → B such that

〈ξ, η · b〉 = 〈ξ, η〉 · b,
〈ξ, η〉∗ = 〈η, ξ〉,
〈ξ, ξ〉 ≥ 0

〈ξ, ξ〉 = 0 iff ξ = 0

for all ξ, η ∈ E , b ∈ B and E is complete in the norm ‖ξ‖ =
√
‖〈ξ, ξ〉‖.

Let us consider some examples of Hilbert modules.

a) In the case B = C a Hilbert B-module is the same thing as a Hilbert
space.

b) If B = C0(X) for a locally compact space X then Hilbert B-modules can
be identified with continuous fields of Hilbert spaces over X .

c) Every C*-algebra B is a Hilbert B-module over itself with the bracket
〈b, c〉 = b∗c.

d) If (Ei)i∈I is a family of Hilbert B-modules, then the completed direct sum⊕
i∈I Ei is a Hilbert B-module. For a C*-algebra B the Hilbert B-module

HB =
⊕∞

i=1B is a standard module in a certain sense. More precisely,
the Kasparov stabilization theorem states that if EB is any countably
generated Hilbert B-module, then EB ⊕HB = HB .

Let E , F be Hilbert B-modules. Denote by L(E ,F) the set of all maps T : E → F
such that there exists T ∗ : F → E satisfying 〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ E ,
η ∈ F . Such maps are automatically B-linear and bounded, and they are simply
referred to as bounded operators.
A bounded operator T ∈ L(E ,F) is called finite rank operator if it is a finite sum
of rank-one operators |η〉〈ξ| given by |η〉〈ξ|(λ) = η〈ξ, λ〉 for ξ ∈ E , η ∈ F . The
space K(E ,F) of compact operators is defined as the closed linear span of the
space of finite rank operators. In the case E = F we have that L(E , E) = L(E)
is a C*-algebra, and K(E , E) = K(E) ⊂ L(E) is an ideal.

Kasparov modules

Let A and B be separable C*-algebras. A Kasparov A-B-module is a triple
(E , φ, F ), where E is countably generated graded Hilbert B-module E = E+⊕E−,
φ : A→ L(E) is a ∗-homomorphism of degree 0, that is,

φ(a) =

(
φ+(a) 0

0 φ−(a)

)
,

with ∗-homomorphisms φ± : A→ L(E±), and F ∈ L(E) is an operator of degree
one,

F =

(
0 P
Q 0

)
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such that
[φ(a), F ], φ(a)(F − F ∗), φ(a)(F 2 − Id)

are compact for all a ∈ A.
Let us consider some examples of Kasparov modules.

a) If φ : A→ B is a *-homomorphism, then (B ⊕ 0, φ, 0) is a Kasparov A-B-
module.

b) Let M be a closed manifold, and let P : Γ(E+) → Γ(E−) be an elliptic
pseudodifferential operator of order zero between vector bundles E± over
M . Moreover let Q be a parametrix for P . If we setH = L2(E+)⊕L2(E−)
and let φ : C(M) → B(H) be the ∗-homomorphism given by pointwise
multiplication of functions with sections, then

(
H, φ,

(
0 Q
P 0

))
,

is a Kasparov C(M)-C-module.

c) Finally, let A and B be Morita–Rieffel equivalent C∗-algebras, and let

AEB be an imprimitivity bimodule. If we write φ for the left action of
A then (AEB, φ, 0) is a Kasparov A-B-module. For instance, the Hilbert
space l2(N) with the canonical action of the compact operators yields an
element in KK(K,C).

KK-theory

There is an obvious notion of isomorphism of Kasparov modules. More generally,
a homotopy between Kasparov A-B-modules E0, E1 is a Kasparov A-B⊗C[0, 1]-
module (E , φ, F ) such that

(Ei, φi, Fi) ∼= (E ⊗evi
B, φ⊗ Id, F ⊗ Id),

for i = 0, 1. Here evi : B ⊗ C[0, 1] → B is the evaluation at i, and E ⊗evi
B is

the so-called inner tensor product of E and B with respect to evi.
Let A and B be separable C*-algebras and denote by E(A,B) the set of iso-
morphism classes of Kasparov A-B-modules. There is a binary operation on
E(A,B) given by direct sum.
By definition, the KK-group KK(A,B) is the set of equivalence classes in E(A,B)
with respect to homotopy. The set KK(A,B) is an abelian group with addition
induced by direct sum. The zero element in this group is the class of 0 = (0, 0, 0).

Some properties of KK-theory

Let us state some fundamental properties of KK-theory [b-b98].

• KK(A,B) defines a bifunctor on the category of separable C*-algebras,
covariant in B and contravariant in A.

• There exists an associative, natural product

KK(A,B)× KK(B,C)→ KK(A,C)
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for all A,B,C. This product is called the Kasparov product, and it is by
far the most important feature of Kasparov theory. Using the Kasparov
product we can view KK as a category with separable C*-algebras as
objects and morphism sets MorKK(A,B) = KK(A,B).

• There are several equivalent ways to define higher Kasparov groups, one
possible definition is KKn(A,B) = KK(A,C0(Rn) ⊗ B). As for ordi-
nary K-theory there are Bott periodicity isomorphisms KKn+2(A,B) ∼=
KKn(A,B), natural in A and B.

• Topological K-theory and K-homology are contained in KK-theory as a
special case. In fact, one has KK∗(C, A) = K∗(A), KK∗(A,C) = K∗(A)
for every separable C*-algebra A. If A = C(X) where X is a finite CW -
complex we obtain in this way the K-theory and K-homology of X , re-
spectively.

• Let
0→ K → E → Q→ 0

be an extension of C*-algebras with a completely positive, contractive
splitting of the quotient map. Then there are exact sequences

KK0(A,K) // KK0(A,E) // KK0(A,Q)��
KK1(A,Q)

OO
KK1(A,E)oo KK1(A,K)oo

and
KK0(Q,A) // KK0(E,A) // KK0(K,A)��
KK1(K,A)

OO
KK1(E,A)oo KK1(Q,A)oo

The boundary maps in these sequences are determined by an element in
KK1(Q,K) naturally associated to the extension.
If Q is nuclear, then every extension 0 → K → E → Q → 0 has a
completely positive splitting.

• If A is nuclear there is a natural isomorphism KK1(A,B) ∼= Ext(A,B).

Further developments

Universal coefficient theorem

For computations it is important that the groups KK(A,B) are determined
by the K-groups K∗(A), K∗(B) in many cases. More precisely, the universal
coefficient theorem of Rosenberg-Schochet [rs87] states that there is a short
exact sequence of graded abelian groups

0→ Ext∗(K∗+1(A),K∗(B))→ KK∗(A,B)→ Hom(K∗(A),K∗(B))→ 0

if A is isomorphic in KK to a commutative C*-algebra.
For instance, using this in the case A = C(X) where X ⊂ C is compact and
B = C one can reprove the results of Brown-Douglas-Fillmore.
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The Kasparov index theorem

Many results in index theory can be formulated and proved elegantly using KK-
theory. As an example let us consider the following version of the index theorem
due to Kasparov.
Let M be a closed manifold. The cotangent bundle T ∗M is an almost complex
manifold in a natural way. In particular, there is the Dolbeault operator D =
∂̄ + ∂̄∗ which gives a class [∂̄M ] in KK(C0(T ∗M),C). Now if P is an elliptic
pseudodifferential operator P : Γ(E+) → Γ(E−) on M , then, as we have seen
above, P defines a class [P ] ∈ KK(C(M),C). Its symbol yields a class [σ(P )] ∈
KK(C, C0(T ∗M)) = K0(T ∗M). In fact, one may define a bivariant symbol class
[[σ(P )]] ∈ KK(C(M), C0(T ∗M)) such that [σ(P )] = 1 · [[σ(P )]].
The Kasparov index theorem states that

[P ] = [[σ(P )]] · [∂̄M ].

This implies the index theorem of Atiyah-Singer since

a- Index([σ(P )]) = 1 · [P ] = 1 · [[σ(P )]] · [∂̄M ] = [σ(P )] · [∂̄M ] = t- Index([σ(P )]).

The universal property of KK

It is remarkable that KK-theory can be characterized abstractly by a universal
property.
A functor F from the category of C*-algebras to an additive category C is called

• homotopy invariant if F (f0) = F (f1) for f0, f1 homotopic *-homomorphisms,

• stable if F (A⊗K(H)) ∼= F (A) (naturally),

• split exact if for every split extension

0 // K // E π // Q //σ��
0,

where σ : Q→ E is a ∗-homomorphism such that πσ = id, there is a split
exact sequence

0 // F (K) // F (E) // F (Q) //F (σ){{
0.

A theorem due to Higson and Cuntz [h-n87] states that the obvious functor
from the category C∗-Alg of separable C*-algebras to the category KK is the
universal split exact stable homotopy functor. That is, whenever f : C∗-Alg→
C is a split exact stable homotopy invariant functor, then there exists a unique
additive functor F : KK→ C such that the diagram

C∗-Alg //
f $$IIIIIIIIII KK

F��
C
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commutes.

There are many important topics that we do not have time to touch upon,
in particular the equivariant versions of KK-theory and its applications to the
Novikov conjecture [k-g88]. The Novikov conjecture was one of the principal
motivations for the invention of KK-theory.
In a completely different direction, KK-theory plays a prominent rôle in the
classification of purely infinite simple C*-algebras due to Kirchberg and Philipps.
This classification is one of the deepest achievements in C*-algebra theory up
to now.
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Chapter 1

C*-algebras

1.1 Definitions

Definition 1.1. A Banach algebra (complex) is an algebra A which is a Banach
space with norm satisfying the inequality

‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A.

Assume that we have an involution on Banach algebra, ∗ : A→ A that is for
all a, b ∈ A, λ, µ ∈ C

a∗∗ = a,

(λa+ µb)∗ = λ̄a∗ + µ̄b∗,

(ab)∗ = b∗a∗.

Definition 1.2. A C*-algebra is a Banach algebra A with involution ∗ : A→ A
which satisfies the C*-identity

‖a∗a‖ = ‖a‖2

for all a ∈ A.

We say that A is unital if there exists 1 ∈ A such that a · 1 = 1 · a = a. The
involution ∗ is an isometry

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, ‖a‖ ≤ ‖a∗‖.

The C*-identity forces a strong connection between algebra and analysis. A
*-morphism is an algebra homomorphism ϕ : A→ B such that ϕ(a∗) = (ϕ(a))∗

for all a ∈ A.

Theorem 1.3. Let A, B be a C*-algebras (unital or not). If φ : A → B is
∗-homomorphism then

1. for all a ∈ A we have ‖φ(a)‖ ≤ ‖a‖, i.e. φ is continuous with norm
‖φ‖ ≤ 1.

2. φ(A) is closed in B, in particular φ(A) is a subalgebra of B and the in-
duced homomorphism A/ kerφ → φ(A) is an isometry. An injective C*-
homomorphism is an isometry.
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Part VI Examples

1.2 Examples

Example 1.4. Let X be a locally compact Hausdorff space, and C0(X) the
algebra of functions vanishing at infinity. Then with respect to conjugation and
norm ‖f‖ = supx∈X |f(x)|, the algebra C0(X) is a C*-algebra.

Example 1.5. The matrix algebra Mn(C) is a C*-algebra. Furthermore

Theorem 1.6. Every finite dimensional C*-algebra A is of the form Mn1(C) ⊕
· · · ⊕Mnk

(C).

More generally direct limits of finite dimensional C*-algebras are called AF
algebras.

Example 1.7. Let B(H) be tha algebra of bounded operators on Hilbert space.
It is not separable unless it is finite dimensional. If dimH = n, then B(H) =
Mn(C). If dimH =∞, then there is a closed ideal of compact operators K(H) ⊂
B(H) which takes over the role of matrices. There is an extension

0→ K(H)→ B(H)→ B(H)/K(H)→ 0,

where the quotient algebra B(H)/K(H) is denoted Q(H), and is called the
Calkin algebra.

Theorem 1.8. [Gelfand, Naimark] Every C*-algebra A admits a faithful repre-
sentation on H i.e. there is an injective C*-homomorphism φ : A → B(H) for
some H. Then φ is an isometry, so A can be identified with a C*-subalgebra of
B(H).

Example 1.9. Let G be a discrete group (for simplicity). Its group ring C[G]
is the ring of finitely supported functions f : G → C, f =

∑
g∈G fgδg, fg ∈ C,

δg(s) = 1 if s = g and 0 otherwise. The multiplication is given by convolution

(f ∗ g)(s) :=
∑

α,β=s

f(α)g(β) =
∑

t∈G
f(st−1)g(t).

We have δs ∗ δt = δst. We will assume that G is countable and then {δs}s∈G
will provide a basis for l2(G). For fixed g the action of δg ∗− on l2(G) produces
a permutation of {δs}s∈G and so an operator Ug : l2(G)→ l2(G),

(Ugξ)(t) = (δg ∗ ξ)(t) = ξ(g−1t)

The operator Ug is unitary U−1
g = Ug−1 = U∗g . Indeed

〈Ugξ, η〉 =
∑

t∈G
(Ugξ)(t)η(t)

=
∑

t∈G
ξ(g−1t)η(t)

=
∑

t′∈G
ξ(t′)η(gt′)

= 〈ξ, Ug−1η〉

‖Ugξ‖2 =
∑

t∈G
|ξ(g−1t)|2 =

∑

t′∈G
|ξ(t′)|2 = ‖ξ‖2.
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Part VI Examples

The left regular representation λ : C[G]→ L(l2(G))

λ(f) =
∑

g∈G
fgUg

‖λ(f)‖ ≤
∑

g∈G
|fg| = ‖f‖1

extends to λ : l1(G)→ L(l2(G)).

Definition 1.10. The reduced group algebra C∗r (G) of G is the norm closure
λ(C[G]) = λ(l1(G)).

If G is abelian, then C∗r (G) = C0(Ĝ), where Ĝ is the Pontryagin dual,

Ĝ = Hom(G,U(1)).
There is a canonical trace on C[G]

τ :
∑

g∈G
fgδg 7→ fe ∈ C.

Proposition 1.11. If φ : G1 → G2 is an injective group homomorphism, then
there is an induced map φ : C∗r (G1)→ C∗r (G2).

Let ΠU be the direct sum of all irreducible representations of G (up to
unitary equivalence). The algebra C∗(G) is defined as a closure of ΠU (C[G]).
Equivalently, if ‖f‖ = sup{‖π(f)‖ | f ∈ l1(G)}, where the supremum is taken
over all *-representations of l1(G), then C∗(G) is the completion of l1(G) in this
norm. Our λ extends to a C*-algebra homomorphism λ : C∗(G)→ C∗r (G). The
following theorem holds for all locally compact groups.

Theorem 1.12. The homomorphism λ : C∗(G) → C∗r (G) is an isomorphism if
and only if G is amenable.

Proposition 1.13. If φ : G1 → G2 is a group homomorphism, then there is an
induced map φ : C∗(G1)→ C∗(G2).

If X is a compact Hausdorff space, then f ∈ C(X) is a projection if and
only if f̄ = f , f2 = f . It follows that f(x) = 0 or 1 for all x ∈ X . Denote
Si := {x ∈ X | f(x) = i} for i = 0, 1. Then S0 ∩ S1 = ∅, S0 ∪ S1 = X . If
F is continuous, integer valued, then δ0, δ1 are open and closed. So if f is a
nontrivial projection, then X must be disconnected.

Conjecture 1 (Idempotent conjecture). If G is discrete, torsion free, then C[G]
has no nontrivial idempotents.

Conjecture 2 (Strong idempotent conjecture, Kadison-Kaplansky conjecture).
If G is discrete, torsion free, then C∗r (G) has no nontrivial idempotents.

Both conjectures follow from the Baum-Connes conjecture.

Example 1.14. If a locally compact group G acts on locally compact Hausdorff
space X , then there is a crossed product algebra C0(X)⋊G. When G acts freely,
properly on X , then C0(X)⋊G is Morita equivalent to C0(X/G). Remark that
X/G is not a Hausdorff space in general.
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Example 1.15. We will define a Toeplitz algebra as T := C∗(v), where v∗v = 1
(isometry), vv∗ 6= 1 (not unitary). There is an isomorphism C∗(v) ∼= C∗(S),
where S : l2(N)→ l2(N) is the shift operator

S(x1, x2, . . .) := (0, x1, x2, . . .), S∗(x1, x2, . . .) := (x2, x3, . . .).

Theorem 1.16 (Coburn). The algebra C∗(S) contains the compact operators K
as an ideal and there is an extension

0→ K → C∗(S)→ C(S1)→ 0,

where S1 is the circle.

We can give another description using Hardy space H2 ⊂ L2(S1)

H2 = span{zn | n ≥ 0} (closed span).

Let P : L2(S1) → H2 be the orthogonal projection. For each f ∈ C(S1) define
an operator Tf : H2 → H2, Tf(g) = P (fg) for g ∈ H2. The operator Tz,
where z is the identity funcion in C(S1), acts as a shift operator on H2, so
C∗(Tz) ∼= T ∼= C∗(S).

For f ∈ C(S1) let Mf be the operator of pointwise multiplication by f .

Exercise 1.17. ‖Mf‖ = ‖f‖.

Consider the action of [P,Mz] on the basis {zn | n ∈ Z} of L2(S1).

PMz : zn 7→ zn+1, n ≥ −1

MzP : zn 7→ zn+1, n ≥ 0.

Both operators are zero outside this range. It follows that [P,Mz ] is of rank
one, and [P,Mzn ] is of rank n on L2(S1). If p is a polynomial in z, then [P,Mp]
is of finite rank.

For f ∈ C(S1) there exist a sequence of Laurent polynomials pn → f such
that

‖Mpn −Mf‖ = ‖Mpn−f‖ = ‖pn − f‖ → 0, and so Mpn →Mf .

From this we have that [P,Mpn ]→ [P,Mf ], so [P,Mf ] is compact.
For f, g ∈ C(S1)

TfTg = PMfPMg

= P (PMf − [P,Mf ])Mg

= PMfMg − P [P,Mf ]Mg

= Tfg +K,

where K is compact operator. Denote

B := {Tf +K | f ∈ C(S1), K ∈ K}.

Theorem 1.18 (Coburn). There is an isomorphism B ∼= C∗(Tz) ∼= T .
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Part VI Gelfand transform

The map f 7→ π(Tf ) ∈ Q, where πB(H) → Q is a projection on Calkin
algebra, gives an isomorphism C(S1) ∼= C∗(Tz)/K. Furthermore

π(Tf )π(Tg) = π(TfTg) = π(Tfg +K) = π(Tfg).

Consider the Toeplitz extension

0→ K → T → C(S1)→ 0.

We may ask whether there are other extensions

0→ K → E → C(S1)→ 0

not equivalent to the Toeplitz extension. The example is E = C, where

C := {Mf +K | f ∈ C(S1), K ∈ K}.

There is no *-isomorphism T → C. Now we can ask about the classification of
such extensions. The answer was given by Brown, Douglas and Filmore, who
introduced Ext-groups, which have relation with K-homology.

Example 1.19. More general construction than the Toeplitz algebra are the
Cuntz algebras On. These are generated by S1, . . . , Sn such that S∗i Si = 1
(isometries),

∑n
i=1 SiS

∗
i = 1. The algebras On are unique up to isomorphism,

simple, purely infinite for n ≥ 2. There exist an extension En

0→ K → En → On → 0.

We recall that:

Definition 1.20. A projection p ∈ A is infinite if p is equivalent to a proper
subprojection of itself. Otherwise it is called finite.

A simple C*-algebra is purely infinite if and only if the closure of xAx
contains an infinite projection for every positive x ∈ A.

Example 1.21. Noncommutative Riemann surfaces. Let Γg be a fundamental
group of compact oriented Riemann surface Σg of genus g ≥ 1.

Γg = {ujvj | j = 1, . . . , g,

g∏

j=1

[uj, vj ] = 1},

B Γg = Σg, H2(Γg; U(1)) = R/Z.

For all θ ∈ [0, 1) there is a cocycle δγ ∗ δµ = σθ(γ, µ)δγµ. By completion in
operator norm we get C∗r (Γg, σθ).

We can give an alternative description by unitaries uj, vj such that
∏g
j=1[uj , vj ] =

e2πiθ. Noncommutative torus is a special case for g = 1.

1.3 Gelfand transform

Let A be a unital C*-algebra. For an element a ∈ A we define its spectrum as

spA(a) := {λ ∈ C | λ1− a is not invertible},
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Part VI Gelfand transform

and the resolvent as
ρA(a) := C \ spA(a).

The spectral radius of an element is

r(a) := sup{|λ| | λ ∈ spA(a)}, r(a) ≤ ‖a‖.

Proposition 1.22. 1. If A is a Banach algebra, then for every a ∈ A

lim
n→∞

‖an‖ 1
n = r(a).

2. If A is a C*-algebra, and a ∈ A is a normal element (a∗a = aa∗), then
r(a) = ‖a‖.

3. If A is a C*-algebra, then for every a ∈ A

‖a‖2 = r(a∗a).

Let B be a C*-algebra, a ∈ B. Consider C*-algebra C∗(a) generated by a
(when B is unital we assume 1 ∈ C∗(a)). The algebra C∗(a) is commutative if
and only if a is normal. Define

Â := {φ : A→ C | φ is a homomomorphism, ‖φ‖ ≤ 1}.

Definition 1.23. Let A be a commutative C*-algebra.The Gelfand transform
is the homomorphism

A→ C0(Â), a 7→ â,

â(φ) := φ(a).

Theorem 1.24 (Gelfand). If A is commutative, then the Gelfand transform is

an isometric *-isomorphism form A to C0(Â).

Corollary 1.25. If a is normal element of a C*-algebra A, then the Gelfand
transform gives an isometric *-isomorphism C∗(a)→ C(sp(a)).

Definition 1.26. If a is a normal element in a unital C*-algebra A and f ∈
C(sp(a)), then the inverse of Gelfand transform f 7→ f(a) ∈ C∗(a) is called the
functional calculus for a.

Example 1.27. Let A be a C*-algebra, u ∈ A unitary element. Then sp(u) ⊂
S1. Assume sp(u) ( S1. Take a branch of logarithm defined on subset of S1

containing sp(u). Use functional calculuc to define a family of unitary groups
ut := exp(t log u), t ∈ [0, 1]. This family constitutes a continuous path which
connects u to the identity through unitaries.

There is also a holomorphic functional calculus. Let A be a unital Banach
algebra, a ∈ A. Assume that f is a holomorphic sunction in on an open set
containing sp(a). Choose a piecewise linear closed curve C in that set, but not
intersecting sp(a). Then

f(a) :=
1

2πi

∫

C

f(z)(z − a)−1dz

628



Part VI Gelfand transform

defines an element of A. If H(a) is the set of holomorphic functions of this type,
then this gives an algebra homomorphism H(a) → A - holomorphic functional
calculus.

If A is a subalgebra of a Banach algebra B, and Ã, B̃ are unitizations, then
we say that A is stable under holomorphic functional calculus if and only if for
any a ∈ A, and f which is holomorphic in an open set containing sp eB(a), we
have f(a) ∈ ã.

Proposition 1.28. Let A be a C*-algebra. Then for any x ∈ A the following
are equivalent

1. x = x∗, sp(x) ⊂ R+,

2. there exists y ∈ A such that x = y∗y,

3. there exists y ∈ A such that y = y∗, y2 = x.

If x satisfies any of thers, then we say that it is positive and write x ≥ 0.

If x ≥ 0 and −x ≥ 0 then x = 0. Positivity induces a partial order on
elements of A. We say that x ≤ y if and only if y − x ≥ 0. Positive elements
form a cone A+ ⊂ A. For projections p, q we have p ≤ q if and only if pq = p.

Now we will define tensor products of C*-algebras. Let A, B be C*-algebras
and A⊙B be the algebraic tensor product (as vector spaces). The vector space
A⊙B is a *-algebra

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′, (a⊗ b)∗ = a∗ ⊗ b∗.

C*-algebra norm on A ⊙ B is a cross norm ‖ − ‖α, ‖a ⊗ b‖α = ‖a‖‖b‖, and
satisfies

‖xy‖α ≤ ‖x‖α‖y‖α, ‖x∗x‖α = ‖x‖2α.
A completion of A⊙B with respect to such norm is a C*-algebra A⊗α B. Let
π : A→ B(H), σ : B → L(H′) be faithful representations. The algebraic tensor
product gives a representation

π ⊙ σ : A⊙B → L(H⊗H′),

((π ⊙ σ)(a ⊗ b))(ξ ⊗ η) = π(a)ξ ⊗ σ(b)η.

Define a minimal norm ‖x‖min := ‖(π ⊙ σ)(x)‖L(H⊗H′). The theorem of Take-
saki states that this definition does not depend on π, σ.

Definition 1.29. A C*-algebra A is nuclear if and only if for any C*-algebra
B there is a unique C*-norm on A⊙B.

A is exact if and only if the functor B 7→ A ⊗min B is exact (i.e. sends
exact sequences of C*-algebras to exact sequences).

Theorem 1.30 (Kirchberg-Wassermann). A discrete group G is exact if and
only if C∗r (G) is exact.

Nuclear algebras are exact. For a free group on two generators F2 the reduced
group algebra C∗r (F2) is exact but not nuclear. The full C*-subalgebra C∗(F2)
of the nonabelian free group on two generators is not exact.
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Part VI Gelfand transform

Proposition 1.31. The reduced group algebra C∗r (G) is nuclear if and only if
G is amenable.

Maximal tensor product ⊗max has the following universal property. There
is a natural bijection between non degenerate C*-homomorphisms

A1 ⊗max A2 → B(H),

and pairs of commuting non degenerate C*-homomorphisms

A1 → B(H), A2 → B(H).

One can also replace B(H) be the multiplier algebraM(D) for any C*-algebra
D.

There is a canonical C*-algebra homomorphism

A1 ⊗max A2 → A1 ⊗min A2

for any C*-algebras A1, A2. We can give a second definition

Definition 1.32. A C*-algebra A1 is nuclear if this map is an isomorphism for
any C*-algebra A2.

One can say that A1 is K-nuclear if this map induces an isomorphism on
K-theory for any C*-algebra A2.
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Chapter 2

K-theory

2.1 Definitions

Definition 2.1. If A is a unital C*-algebra, then p ∈ A is a projection if and
only if p∗ = p, p2 = p.

Definition 2.2. Let p, q ∈ A be a projections. We say that they are

1. Murray-von Neumann equivalent, p ∼v q, if there exist v ∈ A such that
p = v∗v, q = vv∗.

2. unitarily equivalent, p ∼u q, if there exist a unitary u ∈ A such that
upu∗ = q.

3. homotopic, p ∼h q, if there exist a continuous map γ : [0, 1]→ A such that
γ(0) = p, γ(1) = q, and γ(t) is a projection for all t ∈ [0, 1].

In a general C*-algebra there are implications

p ∼h q =⇒ p ∼u q =⇒ p ∼v q.

Let M∞(A) =
⋃
n≥1Mn(A). Then these three notions of equivalence coincide

in M∞(A).
Denote by P (A) the set of projections in M∞(A). We have the following

structure:

• Semigroup, for p ∈Mn(A), q ∈Mn(A)

p⊕ q =

(
p 0
0 q

)
∈Mn+m(A).

• A projection p ∈ Mn(A) is equivalent to q ∈ Mm(A), n ≤ m, if and only
if p⊕ 0m−n ∼ q in Mm(A).

• Projections p and q are stably isomorphic if and only if p⊕ r ∼ q ⊕ r for
some projection r ∈ P (A).

• The set of stable equivalence classes of projections in P (A) with the ad-
dition induced from P (A) is denoted by [P (A)].
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Part VI Unitizations and multiplier algebras

• Two pairs ([p1], [p2]) and ([q1], [q2]) are equivalent if and only if

[p1]⊕ [q2] = [p2]⊕ [q1].

Definition 2.3. The set of equivalence classes of pairs ([p1], [p2]) with compo-
nentwise addition is an abelian group denoted by K0(A).

Example 2.4. If A = C, then two projections in Mn(C) are homotopic if and
only if they have the same rank. It follows that K0(C) = Z.

Example 2.5. If H is a separable Hilbert space, and A = B(H) is the algebra of
bounded operators on H, then two projections p, q ∈ B(H) are equivalent in the
sense of Murray- von Neumann if and only if there exists a unitary isomorphism
from the range of p to the range of q. The set of projections in B(H) can be
indexed by the dimension of the range (including 0 and ∞). Thus any two
projections of infinite range are equivalent. If p ∈ B(H) is any projection, then
p ⊕ 1 ∼ 0 ⊕ 1, [p] + [1] = [0] + [1] in K0(A), so [p] = [0] = 0 in K0(A), and
K0(B(H)) = 0.

Proposition 2.6.

1. K0 is a covariant functor. If φ : A → B is a homomorphism of C*-
algebras, then there is an induced map φ∗ : K0(A)→ K0(B).

2. If φ0, φ1 : A→ B are homotopic homomorphisms then φ0∗ = φ1∗ : K0(A)→
K0(B).

3. If A is a unital C*-algebra and A1 ⊂ A2 ⊂ A3 ⊂ . . . is an increasing se-
quence of unital C*-algebras whose union is dense in A then lim

−→
K0(An) =

K0(A).

For any nonunital C*-algebra J there exists an unique (up to isomorphism)

unital C*-algebra J̃ which contains J as an ideal of codimension 1.

0→ J → J̃ → C→ 0.

Define K0(J) := ker(K0(J̃)→ K0(C)). When J is unital, then K0(J̃) = K0(C)⊕
K0(J).

2.2 Unitizations and multiplier algebras

There are at least two ways to adjoin a unit to a C*-algebra A.

1. Represent A on a Hilbert space H. The image of A in B(H)) may not
contain 1, even if A is unital, as the following example shows

C→M2(C), µ 7→
(
µ 0
0 0

)
.

Let Ã be the C*-subalgebra of B(H) generated by A and 1. It contains 1
as an ideal of codimension 1.

2. Use the left multiplication to represent A on the Banach space A. Regard
Ã as generated by A and 1.
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Is there a reasonable maximal unitization?

Definition 2.7. A is an essential ideal in a C*-algebra B if and only if for all
b ∈ B if bA = {0} then b = 0.

There is a unique (up to isomorphism) unital C*-algebra which contains A as
an essential ideal and is maximal in the sense that it contains any other algebra
with this property. This is the multiplier algebra M(A).

We will give an interpretation of the two, minimal and maximal, unitizations,
in the case of commutative C*-algebras. Let A = C0(X), and B a unital
commutative C*-algebra, B = C(Y ) for a compact space Y . Then the inclusion

A = C0(X) →֒ C(Y ) = B

corresponds to inclusion of X as an open subset in Y , and is given by extension
by 0. Then A is essential in B if and only if X is dense in Y , that is Y is a
compactification of X . The minimal choice of compactification is the one-point
compactification X+. Then B = Ã. The maximal choice is the Stone Čech
compactification βX . Then M(C0(X)) = C(βX).

2.3 Stabilization

Stabilization map

a 7→
(
a 0
0 0

)

is an example of a nonunital C*-algebra morphism A→Mn(A) even when A is
unital.

Proposition 2.8. The stabilization map induces an isomorphism in K-theory
for all n.

Proof. For all k there is an isomorphism Mk(Mn(A)) ∼= Mkn(A), so any matrix
in Mk(Mn(A)) can be regarded as a projection in Mkn(A) which provides the
two-sided inverse to the stabilization map.

Example 2.9. TakeM2(C) ⊂M4(C) ⊂M8(C) ⊂ . . .. The direct limit
⋃
n≥1M2n(C)

is dense in K, so

lim
−→

K0(M2n(C)) = K0(K) =⇒ K0(K) = Z.

By applying similar argument to Mn(A) we get the following stability prop-
erty.

Proposition 2.10. For any C*-algebra A and the algebra of compact operators
K there is an isomorphism

K0(A) = K0(A⊗K).
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2.4 Higher K-theory

Let A be a unital C*-algebra. Define the cone of A as a C*-algebra

CA := {f : [0, 1]→ A | f is continuous, f(0) = 0}.

This is a contractible algebra, and a map φs : CA→ CA given by

φs(f)(t) = f(ts), s ∈ [0, 1]

gives a homotopy between id: A→ A (s = 1) and 0: A→ 0 (s = 0).
Define the suspension of A as a C*-algebra

SA := {f ∈ CA | f(1) = 0}.

There is a suspension extension

0→ SA→ CA→ A→ 0.

Definition 2.11. The higher K-theory groups are defined by

K1(A) := K0(SA) = K0(C0(R)⊗A)

Kp(A) := K0(SpA) = K0(C0(Rp)⊗A)

2.5 Excision and relative K-theory

Let J be an ideal in a C*-algebra A,

0→ J → A→ A/J → 0.

Then the induced sequence of K0-groups

K0(J)→ K0(A)→ K0(A/J)

is exact in the middle (half-exactness). If the sequence is split-exact, then K0

is additive, K0(A) = K0(J)⊕K0(A/J).

Definition 2.12. A relative cycle is a triple (p, q, x), where p, q are projections
in Mn(A) for some n, and x ∈Mn(A) is such that π(x) ∈Mn(A/J) for π : A→
A/J is a partial isometry implementing the Murray-von Neumann equivalence
between π(p) and π(q).

Such a triple is nondegenerate if and only if x provides the Murray-von
Neumann equivalence between p and q.

Definition 2.13. Relative K-theory group K0(A,A/J) is the abelian group with
one generator [p, q, x] for each relative cycle modulo homotopy equivalence and
degeneracy.

If J is an ideal in a unita algebra A, then J̃ may be regarded as a subalgebra
of A. The excision map is a homomorphism

K0(J) = K0(J̃ ,C)→ K0(A,A/J).

Theorem 2.14. The excision map K0(J)→ K0(A,A/J) is an isomorphism.
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Example 2.15. Let D be the open unit disc in R2, A = C(D). Let J = C0(D) -
continuous functions on D which vanish on ∂D. Then A/J = C(∂D).

The inclusion D →֒ C can be regarded as an element of A. The triple
(1, 1, z̄) defines a relative K-cycle in K0(C(D), C(∂D)). By excision this gives
an element of K0(C0(D)). Since D ∼= R2 we have an element b ∈ K0(C0(R2)).
This is the Bott generator. Under the isomorhism K0(C0(R2)) ∼= Z, the Bott
generator b is mapped to 1 ∈ Z.

Definition 2.16. The mapping cone of a surjective morphism π : A ։ B of
C*-algebras is the C*-algebra

C(A,B) := {(a, f) | a ∈ A, f : [0, 1]→ B is continuous , f(0) = 0, f(1) = π(a)}.

If π = id: A → A then C(A,A) = CA. This construction is useful in the
following situation. If J is an ideal in A, π : A→ A/J , we get C(A,A/J). There
is a map C(A,A/J)→ A, (a, f) 7→ a. An element (a, f) is in the kernel of this
map if and only if a = 0 and f(1) = 0. Since f(0) = 0 by definition, this means
that f ∈ S(A/J). Thus we have the following exact sequence

0→ S(A/J)→ C(A,A/J)→ A→ 0,

where the first map is given by f 7→ (0, f).
There is also a homomorphism J → C(A,A/J) given by a 7→ (a, 0).

Proposition 2.17. Excision map K0(J)→ K0(C(A,A/J)) is an isomorphism.

By applying K0 to the above exact sequence we get

0→ K0(S(A/J))→ K0(C(A,A/J))→ K0(A)→ 0.

Using the definition of K1 and the isomorphism in proposition we can write a
sequence

K1(A/J)→ K0(J)→ K0(A)→ K0(A/J),

which is exact at K0(J) and K0(A). By iterating this we obtain

Proposition 2.18. Let 0 → J → A → A/J → 0 be a short exact sequence of
C*-algebras. Then there is a natural exact sequence of abelian groups.

. . .→ Kn+1(A/J)→ Kn(J)→ Kn(A)→ Kn(A/J)→ Kn−1(J)→ . . .→ K0(A/J).

Example 2.19. Consider a Hilbert space H and an exact sequence

0→ K(H)→ B(H)→ Q(H)→ 0,

where Q(H) is the Calkin algebra. Take T ∈ B(H) such that T ∗T − 1 ∈ K(H)
and TT ∗ − 1 ∈ K(H) (T is essenitally unitary). Then (1, 1, T ) is a relative
K-cycle for (B(H),Q(H)),

π(T )∗π(T ) = 1, π(T )π(T )∗ = 1.

By excision and computation of K0(K(H)) we have

K0(B(H),Q(H)) = K0(K(H)) = Z, [T ] 7→ m ∈ Z.
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Let p be an orthogonal projection onto kerT , and q an orthogonal projection
onto kerT ∗. Then

(1, 1, T ) = (p, q, 0) + (1− p, 1− q, T (1− p)).

The second cycle is degenerated because T restricts to an invertible operator
from im(1− p) to im(1− q). The cycle (p, q, 0) ∈ K0(K̂,C) corresponds to

dim im p− dim im q = Index(T ).

To summarise, the relative K-theory leads to half-exactness of K-theory and
the cone construction provides the connecting homomorphism ∂ in the and long
exact sequence in K-theory. Bott periodicity provides a six term exact sequence

K0(J) // K0(A) // K0(A/J)��
K1(A/J)

OO
K1(A)oo K1(J)oo

We will give a more explicit description of K1(A).

Definition 2.20. Let A be a unital C*-algebra. Denote by Ku
1 (A) the abelian

group with one generator for each unitary matrix in GLn(A), subject to the
following relations.

1. If u, v ∈ GLn(A) can be joined by a path of unitaries in GLn(A) then
[u] = [v].

2. [1] = [0].

3. [u] + [v] = [u⊕ v]

For unitaries u, v ∈ GLn(A) we write u ∼ v if u and v can be joined by a
path of unitaries. Then u⊕ 1 ∼ 1⊕ u by using

Rt

(
u 0
0 1

)
R∗t , Rt =

(
cos πt2 sin πt

2
− sin πt

2 cos πt2

)
.

Furthermore
u⊕ v ∼ uv ⊕ 1 ∼ vu⊕ 1, u⊕ u∗ ∼ 1⊕ 1

[u] + [v] = [u⊕ v] = [uv ⊕ 1] = [uv],

so addition in Ku
1 (A) corresponds to matrix product.

Proposition 2.21. For a unital C*-algebra A

Ku
1 (A) ∼= K0(SA) = K1(A).
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2.6 Products

For any unital C*-algebras A1, A2 there exists a bilinear associative product

× : Ki(A1)×Kj(A2)→ Ki+j(A1 ⊗min A2)

defined as follows.

1. If q1, q2 are projections in Mk(A1), Mp(A2), then q1 ⊗ q2 is a projection
in Mkp(A1 ⊗min A2) using Mk(C)⊗Mp(C) ∼= Mkp(C).

2. This gives rise to the product

K0(A1)⊗K0(A2)→ K0(A1 ⊗A2).

3. This extends to nonunital algebras.

4. Now use suspension and the isomorphism SiA1 ⊗ SjA2
∼= Si+j(A1 ⊗A2)

to get
Ki(A1)⊗Kj(A2)→ Ki+j(A1 ⊗A2).

2.7 Bott periodicity

Let b ∈ K2(C) = K0(C0(R2)) be the Bott generator. Taking the exterior product
with b defines a map

βA : K0(A)→ K0(A⊗ C0(R2)) = K2(A).

Theorem 2.22 ( Bott periodicity). For every C*-algebra A, the map βA is an
isomorphism.

Proof. We shall use the Toeplitz extension

0→ K → T → C(S1)→ 0

Proposition 2.23. The tensor product of a short exact sequence

0→ T1 → A1 → A1/T1 → 0

with a C*-algebra A2 i.e. a sequence

0→ T1 ⊗A2 → A1 ⊗A2 → A1/T1 ⊗A2 → 0

remains exact if either

1. the surjection A1 → A1/T1 has completely positive section s : A1/T1 → A2,
or

2. A2 is nuclear.

A linear map f : A → B of C*-algebras is positive if and only if f(x) ≥ 0
for all x ≥ 0. It is completely positive if and only if fn : Mn(A) → Mn(B),
(aij) 7→ (f(aij)) is positive for all n.
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Proposition 2.24. The Toeplitz extension has completely positive section C(S1)→
T , f 7→ Tf .

Remark that the map f 7→ Tf is not an algebra homomorphism.
Using the two propositions above we get that for every C*-algebra A ther is

an exact sequence.

0→ K⊗A→ T ⊗A→ C(S1)⊗A→ 0.

The boundary map of this sequence is

∂ : K1(C(S1)⊗A)→ K0(K ⊗A) ∼= K0(A).

Regard S1 as a one-point compactification of R. Restrict to C0(R) ⊗ A. Then
we have

αA : K2(A) = K1(C0(R)⊗A)→ K0(A).

We will prove, after Atiyah, that αA is an inverse to βA with respect to the
exterior product. The proof depends on the following formal properties of αA

1. αC(b) = 1. If u is a unitary-valued function on S1, then αC : [u]→ IndexTu
is the minus winding number of u. Furthermore b = (1, 1, z̄) 7→ 1.

2. for all A,B the following diagram is commutative

K2(A) ⊗K0(B)

αA⊗id �� // K2(A⊗B)

αA⊗B��
K0(A) ⊗K0(B) // K0(A⊗B)

(αA is right linear over K0(B), αA⊗B(x× y) = αA(a)× Y ).

We have from (1) that αAβA = id for A = C. In general if x ∈ K0(A) then from
(2)

αAβA(x) = αA(b × x) = αA(b × x) = αC(b)× x = 1× x = x.

αX⊗A(b × x) = αC(b)× x = 1× x = x.

Thus βA is injective. The idea of Atiyah’s proof is to use αAβA = id to prove
that βAαA = id. Consider two flip isomorphisms:

σ : A⊗ C0(R2)→ C0(R2)⊗A
τ : C0(R2)⊗A⊗ C0(R2)→ C0(R2)⊗A⊗ C0(R2)

which interchange the first and last terms in the tensor products.
For any y ∈ K0(A⊗ C0(R2))

τ∗(b × y) = σ∗(y)× b.

The map induced by τ on K-theory is the identity. Now

y = αA⊗C0(R2)(βA⊗C0(R2)(y)) = αA⊗C0(R2)(b×y) = αA⊗C0(R2)(σ∗(y)×b) = αA(σ∗(y))×b

Applying σ∗ to both sides we obtain

σ∗(y) = σ∗βAαAσ∗(y).

But σ2
∗ = id and y was arbitrary, so βAαA = id.
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2.8 Cuntz’s proof of Bott periodicity

We will give another proof of Bott periodicity, due to Cuntz. Let E be a functor
on some class of C*-algebras which is

1. homotopy invariant,

2. half exact,

3. stable.

Then one can define higher E-functors En, n ≥ 0. Moreover E is additive, that
is if φ1, φ2 : A → B are C*-algebra morphisms such that φ1(A)φ2(A) = 0 then
φ1 + φ2 : A→ B is a C*-algebra morphism and E(φ1 + φ2) = E(φ1) + E(φ2).

Theorem 2.25 (Cuntz). Let E be a functor with these properties. Then E
satisfies Bott periodicity E2(A) ∼= E0(A) for every C*-algebra for which E is
defined.

Proof. We start with Toeplitz extension

0→ K −→ T σ−→ C(S1)→ 0

Define p : T → C as the composition

T σ // C(S1)
ε1 // C

Tf
� // f � // f(1)

Then p has a right inverse j : C → T . We want to prove, that E(p) : E(T ) →
E(C), E(j) : E(C) → E(T ) are inverses of each other. The easy part is id =
E(p ◦ j) = E(p) ◦ E(j) because p ◦ j : C→ C is the identity map.

Proposition 2.26. The maps E(j) : E(C) → E(T ) and E(p) : E(T ) → E(C)
estabilish an isomorphism E(C) ∼= E(T ). Moreover for any C*-algebra the maps

idA ⊗ j : A = A⊗ C→ A⊗ T
idA ⊗ p : A⊗ T → A

estabilish an isomorphism E(A) ∼= E(A⊗ T ).

Granted the proposition, the proof proceeds as follows. The extension

0 // T0 i // T p // C
j

aa // 0
where by definition T0 = kerp, is split and the sequence

0→ A⊗K → A⊗ T0 → A⊗ C(S1)→ 0

is exact. By proposition E(T0 ⊗ A) = 0, so E0(A ⊗ K) ∼= E1(A ⊗ C0(R)) =
E2(A).
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Part VI The Mayer–Vietoris sequence

2.9 The Mayer–Vietoris sequence

Assume we have the pull-back diagram

A
q2 //

q1 �� A2

p2��
A1 p1

// B
A = {(a1, a2) ∈ A1 ⊕A2 | p1(a1) = p2(a2)}.

Then there is an exact sequence

K0(A) // K0(A1)⊕K0(A2) // K0(B)��
K1(B)

OO
K1(A1)⊕K1(A2)oo K1(A)oo

We have only to assume that at least one of p1, p2 is surjective.

Example 2.27. For n ≥ 2 the K-theory of Cuntz algebra On is

K0(On) = Z/(n− 1)Z,

K1(On) = 0.

From these computations it follows that On 6≃ Om.

Example 2.28. Noncommutative torus Aθ has the following K-theory

K0(Aθ) = Z⊕ Z

K1(Aθ) = Z⊕ Z

Example 2.29. For the free group on two generators F2 the map

C∗(F2)→ C∗r (F2)

induces an isomorphism in K-theory (K-amenability) which gives K0(C∗r (F2)),
K1(C∗r (F2)).

2.10 Completely positive maps

Lemma 2.30. Let A and B be C∗-algebras and let ϕ : A→ B be a linear map.
Then ϕ is c.p. if and only if for all n and all a1, . . . , an ∈ A the matrix




ϕ(a∗1a1) ϕ(a∗1a2) · · · ϕ(a∗1an)
ϕ(a∗2a1) ϕ(a∗2a2) · · · ϕ(a∗2an)

...
...

. . .
...

ϕ(a∗na1) ϕ(a∗na2) · · · ϕ(a∗nan)




is a positive element of Mn(B).
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Proof. The lemma is a consequence of the fact that any positive element x ∈
Mn(A) is a sum of elements of the form




a∗1a1 a∗1a2 · · · a∗1an
a∗2a1 a∗2a2 · · · a∗2an

...
...

. . .
...

a∗na1 a∗na2 · · · a∗nan


 =

[
a1 a2 · · · an

]∗ [
a1 a2 · · · an

]
.

Indeed, if y ∈Mn(A) and x = y∗y then writing

y =



y1,1 · · · y1,n

...
. . .

...
yn,1 · · · yn,n




we have

x =



y∗1,1 · · · y∗n,1

...
. . .

...
y∗1,n · · · y∗n,n






y1,1 · · · y1,n

...
. . .

...
yn,1 · · · yn,n




so that

xk,l =

n∑

r=1

y∗r,kyr,l.

In other words x = u1 + · · ·+ un, where

ur =



y∗r,1yr,1 · · · y∗r,1yr,n

...
. . .

...
y∗r,nyr,1 · · · y∗r,nyr,n


 .

Corollary 2.31. A map ϕ : A→ B(H) is c.p. if and only if for any n and any
a1, . . . , an ∈ A, ξ1, . . . , xn ∈ H the number

n∑

i,j=1

(ξi ϕ(a∗i aj)ξj)

is positive.

Theorem 2.32 (Stinespring). Let ϕ : A → B(H) be a unital c.p. map. Then
there exists a Hilbert space K, a representation π of A on K and an isometry
V : K → H such that

ϕ(a) = V ∗π(a)V

for all a ∈ V .

Proof. Let A ⊙ H be the algebraic tensor product of A and H. We define a
sesquilinear form (· ·) on A⊙H by


∑

i

aiξi
∑

j

bjηj


 =

∑

i,j

(ξi ϕ(a∗i bj)ηj)
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and let N =
{
X ∈ A⊙H | (X X) = 0

}
Now A⊙H is an A module under

a(b ⊗ η) = ab⊗ η

and N is a submodule (because a∗i a
∗aaj ≤ ‖a‖∗a∗i aj). Clearly K = (A⊙H)/N

is a pre-Hilbert space. We let K be the completion of K.
The action of A on K can be extended to action by bounded operators on

K. We denothe the operator on K corresponding to a ∈ A by π(a). It is
straightforward to check that π is a ∗-representation of A. Let us also define
V : H → K by V ξ = 1A ⊗ ξ ∈ K ⊂ K. It is easy to see that

π(a)V ξ = (a⊗ ξ)

for all a ∈ A and ξ ∈ H.
The map V ∗ can be decomposed as V ∗ = V −1P , where P is the projection

of H onto
V H = span

{
1A ⊗ ξ | ξ ∈ H

}
.

Moreover we have a formula for P , namely if (ξn) is an orthonormal basis of H
and X ∈ K then

PX =
∑

(1A ⊗ ξn X) (1A ⊗ ξn).

Now take X of the form X = a⊗ ξ. We have

PX =
∑

(1A ⊗ ξn X) (1A ⊗ ξn)

=
∑

(1A ⊗ ξn a⊗ ξ) (1A ⊗ ξn)

=
∑

(ξn ϕ(a)ξn) (1A ⊗ ξn)

= 1A ⊗
(∑

(ξn ϕ(a)ξn) ξn

)

= 1A ⊗ ϕ(a)ξ.

This shows that (
V ∗π(a)V

)
ξ = ϕ(a)ξ

for all x ∈ A and a ∈ A.

Let us remark that all maps of the form ϕ(a) = v∗ρ(a)v, where ρ is a ∗-
homomorphism into B(K) and v ∈ B(H,K) are completely positive. Indeed,
the map ϕn : Mn(A)→Mn

(
B(K)

)
= B(Kn) maps

a =



a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n




to


v∗

. . .

v∗






a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n






v

. . .

v


 = (1⊗v)∗

[
(idMn⊗ρ)(a)

]
(1⊗v) ≥ 0.

If ρ is unital and V is an isometry then ϕ is unital.
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2.11 The Toeplitz extension

The Hilbert space L2(T) (with normalized Lebesgue measure) has orthonormal
basis (φn)n ∈ Z, where

φn(λ) = λn

for all λ ∈ T. Define the Hardy projection P ∈ B
(
L2(T)

)
by

Pφn =

{
φn n ≥ 0,

0 n < 0

and let H = PL2(T). Let p denote the projection P considered as a map
L2(T) → H and let j be the incusion of H into L2(T), so that j = p∗. Finally
for f ∈ C(T) denote by Mf the operator of multiplication by f on L2(T).

Now for f ∈ C(T) the Toeplitz operator Tf of f is defined as

Tf = pMfj.

We have Tf ∈ B(H) and the C∗-subalgebra generated in B(H) by all such
operators is called the Toeplitz algebra and is denoted by T . One can easily show
that T coincides with the C∗-subalgebra of B(H) generated by the isometry
s = Tz, where z ∈ C(T) is the identity function: z(λ) = λ.

We have s∗s = 1H while ss∗ is the projection onto span
{
φn | n ≥ 1

}
. There-

fore 1− ss∗ = φ0) (φ0 and

sm(1− ss∗)sn∗ = φm) (φn (2.1)

so that all finite dimensional operators on H are contained in T . It follows that
the ideal K(H) of compact operators on H is also contained in T .

Let us analyse the C∗-algebra T /K(H). Since 1 − ss∗ ∈ K(H) we see that
the image u of s in the quotient algebra is unitary. Since T /K(H) is generated
by u (because T is generated by s) we see that T /K(H) is commutative.

Lemma 2.33. Spu = T.

Proof. For any λ ∈ T consider vλ ∈ B(H) given by vλφn = λnφn. We have

svλφn = λnsφn = λnφn+1

and
vλsφn = vλφn+1 = λn+1φn+1 = λsvλφn.

It follows that vλsv
∗
λ = λs.

Clearly the inner automorphism Advλ
of B(H) leaves T and K(H) invariant.

Therefore it descends to an automorphism of T /K(H). This shows that Spu is
invariant under all rotations, so it must be T.

It follows immediately from Lemma 2.33 that T /K(H) is isomorphic to C(T).
Let π : T → C(T) be the quotient map sending s to u followed by iden-

tification of u with the canonical generator z of C(T) and let σ be the map
C(T) ∋ f 7→ Tf ∈ T . It’s simple to see that σ is a positive map (σ(f) is PMfP
restricted to H) and thus continuous. We will now check that

π ◦ σ = idC(T). (2.2)
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Part VI The Wold decomposition

Equality (2.2) follows from the fact that π
(
σ(z)

)
= z and that π ◦ σ is a ∗-

homomorphism of unital algebras. The only nontrivial fact is multiplicativity
of π ◦ σ. This, however follows from the fact that for any f, g ∈ C(T) we have

TfTg − Tfg ∈ K(H).

Indeed,

TfTg = pMf jpMgj

= pMf

(
Mgj + jpMgj −Mgj

)

= pMfMgj + pMf (jpMg −Mg)j.

For g a polynomial the operator jpMg−Mg i finite dimensional, so for g ∈ C(T)
we have

jpMg −Mg ∈ K
(
L2(T)

)
.

Therefore TfTg = Tfg modulo compact operators.
The above argument shows that we have an exact sequence with a positive

splitting:

0 // K(H) // T π // C(T) //σ��
0

which is called the Toeplitz extension.
Let us identify C0

(
]0, 1[

)
with the ideal

{
f ∈ C(T) | f(1) = 0

}
(2.3)

and let T0 be the pre-image under π of this ideal. We have K(H) ⊂ T0 bcause the
image of 1− ss∗ under π vanishes at 1 and K coincides with the two sided ideal
generated in T by 1 − ss∗ (cf. (2.1)). If σ0 is the restriction of σ to C0

(
]0, 1[

)

identified with (2.3) then we have the following morphism of positively split
extensions:

0 // K(H) // T0 π //� _�� C
(
]0, 1[

) //σ0�� � _�� 0

0 // K(H) // T π // C(T) //σ��
0

2.12 The Wold decomposition

Let H be a Hilbert space and let v ∈ B(H) be an isometry: v∗v = 1H. For
n ∈ Z+ let Hn = vnH (so that H0 = H) and let

H∞ =
⋂

n∈Z+

Hn.

We have H∞ = H∞ by the very definition of H∞ (note that Hi ⊃ Hi+1), so if
we let u

∣∣
H∞

then u is a unitary on H∞.
Let us now note that for any n the spaces Hn ⊖ Hn+1 and Hn+1 ⊖ Hn+2

are isomorphic (namely v maps one isomorphically onto the other). Therefore
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Part VI Cuntz’s proof of Bott periodicity

their dimensions are the same. We can choose an orthonormal basis (ξι) of
H0 ⊖H1 and then for each n the system (vnξι) will be an orthonormal basis of
Hn ⊖Hn+1. Since

H =
(⊕

n∈Z+

(Hn ⊖Hn+1)
)
⊕H∞

we can decompose v into w ⊕ u, where w acts on

⊕

n∈Z+

(Hn ⊖Hn+1).

This last Hilbert space is cearly isomorphic to ℓ2(N)⊗ (H0 ⊖H1) and with this
identification w = s ⊗ 1, where s is the shift operator on ℓ2(N) considered in
Section ??.

We have this shown that any isometry v is unitarily equivalent to (s⊗1)⊕u,
where u is unitary and s is the unilateral shift on ℓ2(N). This can be easily used
to prove that v generates a C∗-algebra isomorphich to the Toeplitz algebra.
In other words the Toeplitz algebra is the universal C∗-algebra generated by
an isometry. To see this in very concrete terms take the map π : T → C(T)
sending s to the canonical generator of C(T). Composing this with the map
sending the generator of C(T) to u we obtain a mapping Ψ : T → C∗(u). Now
let Ψ : T → C∗(v) send s to w (which is unitari;y equiva;ent to s⊗ 1). Clearly

Φ⊕ Ψ : T ∋ s 7−→ Φ(s)⊕Ψ(s) ∈ C∗(v)

is an isomorphism of C∗-algebras.

2.13 Cuntz’s proof of Bott periodicity

Theorem 2.34. Let E be a functor on the category of C∗-algebras with ∗-
homomorphisms to abelian groups which is

• homotopy invariant,

• half-exact,

• stable.

Define maps ξ : T → C and η : C→ T by

ξ = δ1 ◦ π

where π : T → C(T) and δ1 is the evaluation at 1 ∈ T and

η(1) = 1 ∈ T .

Then the maps

E(T )

E(ξ) %%
E(C)

E(η)

ee
are mutualy inverse isomorphism.
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Proof. Since ξ ◦ η = idC we only need to check that E(η) ◦ E(ξ) = idE(T ).
Let e ∈ K be the matrix 


1 0 · · ·
0 0 · · ·
...

...
. . .




and let κ : T → K ⊗ T be the map

T ∋ x 7−→ e⊗ x =



x 0 · · ·
0 0 · · ·
...

...
. . .


 ∈ K ⊗ T .

Then by stability of E the map E(κ) is an isomorphism E(T ) → E(K ⊗ T ).
Note also that

κ ◦ η ◦ ξ : T ∋ s 7−→ e⊗ 1 ∈ K ⊗ T .
Let us identify K with the ideal in T in such a way that e = 1 − ss∗ (cf. Sec-

tion 2.11) and let T̂ be the C∗-algebra generated by K ⊗ T and T ⊗ 1 inside
T ⊗ T .

Define
w0 = s(1− e)⊗ 1 + e⊗ s.

Then w0 is an isometry:

w∗0w0 =
(
(1 − e)s∗ ⊗ 1 + e⊗ s∗

)(
s(1 − e)⊗ 1 + e⊗ s

)

= (1− e)s∗s(1− e)⊗ 1 + es(1− e)⊗ s∗ + (1− e)s∗e⊗ s+ e⊗ s∗s
= (1− e)⊗ 1 + (1− ss∗)s(1 − e)⊗ s∗ + (1− e)s∗(1− ss∗)⊗ s+ e⊗ 1 = 1⊗ 1

where we used the fact that

(1− ss∗)s = s∗(1− ss∗) = 0. (2.4)

In the same way we show that

w1 = s(1− e)⊗ 1 + e⊗ 1

is an isometry. Moreover we can write

w0 = u0(s⊗ 1), w1 = u1(s⊗ 1),

where

u0 = s(1− e)s∗ ⊗ 1 + es∗ ⊗ s+ se⊗ s∗ + e⊗ e,
u1 = s(1− e)s∗ ⊗ 1 + es∗ ⊗ 1 + se⊗ 1,

(use (2.4) again). The same trick shows after straightforward computations
that u0 and u1 are selfadjoint unitaries. For i = 1, 2 we can construct paths
(uti)t∈[0, 12 ] connecting ui to the identity of T ⊗ T :

uti = 1
2 (1 + ui)− exp(2πit)

2 (1 − ui)

thus getting a path (ut)t∈[0,1] connecting u0 to u1:

ut =

{
ut0 0 ≤ t ≤ 1

2 ,

ut1
1
2 ≤ t ≤ 1.
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Let us also note that this is a path of unitary operators: for i = 1, 2 we have

(
1
2 (1 + ui)− exp(2πit)

2 (1− ui)
)∗( 1

2 (1 + ui)− exp(2πit)
2 (1− ui)

)

= 1
4 (1 + ui)

2 + 1
4 (1− ui)2

− 1
4 (1 + ui)(1− ui)2 cos(2πt)

= 1
2 (1 + ui) + 1

2 (1− ui) = 1

and, of course, the same in the opposite order.
Consider the path

wt = ut(s⊗ 1), (t ∈ [0, 1])

of elements of T̂ . Then

w∗twt = (s∗ ⊗ 1)u∗tut(s⊗ 1) = 1⊗ 1,

wtw
∗
t = ut(s⊗ 1)(s∗ ⊗ 1)u∗t = ut(ss

∗ ⊗ 1)u∗t 6= 1⊗ 1.

Therefore for any t ∈ [0, 1] the C∗-algebra generated by wt inside T̂ is isomorphic

to T . Let αt : T → T̂ be this isomorphism.
We have thus constructed a family of homomorphisms αt : T → T̂ (t ∈ [0, 1])

such that

α0(s) = w0 = s(1− e)⊗ 1 + e⊗ s,
α1(s) = w1 = s(1− e)⊗ 1 + e⊗ 1.

Also we have the following exact sequence:

0 // K ⊗ T // T̂ bπ // C(T) // 0,
where π̂ maps k ⊗ x+ y ⊗ 1 ∈ T̂ to π(y) (cf. Section 2.11).

Let T be the pull back:

T //�� T
π��

T̂
bπ // C(T)

so that
T =

{
(r, z) ∈ T̂ ⊕ T | π̂(r) = π(z)

}
,

The algebra T contains K ⊗ T as an ideal:

K⊗ T ∼=
{

(X, 0) ∈ T̂ ⊕ T | X ∈ K ⊗ T ⊂ T̂
}
⊂ T

and we let γ be this inclusion of K ⊗ T into T . Further let ρ be the projection
from T onto the second coordinate:

ρ : T ∋ (r, z) 7−→ z ∈ T .

Then ρ is onto, because for any z ∈ T the we have (z ⊗ 1, z) ∈ T . Moreover

ker ρ =
{

(r, z) ∈ T | z = 0
}
,

=
{

(r, 0) ∈ T̂ ⊕ T | π̂(r) = 0
}
,

=
{

(k ⊗ x+ y ⊗ 1, 0) ∈ T̂ ⊕ T | π(y) = 0
}

= K ⊗ T .
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Therefore we have an exact sequence

0 // K ⊗ T γ // T ρ // T // 0.
This sequence is split by λ : T ∋ s 7→ (s⊗ 1, s) ∈ T .

By split exactness of E we have

E
(
T
)

= E
(
γ(K ⊗ T )

)
⊕ E(T ).

Let us define βt : T → T by

βt(x) =
(
αt(x), x

)
.

To see that the element
(
αt(x), x

)
belongs to T note that π̂ ◦ αt maps s to

π̂
(
ut(s⊗ 1)

)
= π̂(ut)π̂(s⊗ 1) = π̂(ut)π(s).

Moreover it is easy to see that π̂(u0) = π̂(u0) = 1C(T), so by definition of (ut)
we have π̂(ut) = 1 for all t. Since T is generated by s, it follws that π̂ ◦ αt = π
for all t.

Now

β0(s) = (w0, s) =
(
s(1− e)⊗ 1 + e⊗ s, s

)
,

β0(s) = (w1, s) =
(
s(1− e)⊗ 1 + e⊗ 1, s

)
.

Let us extract the “common summand” of both these maps, i.e. let β : T ∋ s 7→(
s(1− e)⊗ 1, s

)
∈ T . Then

β0(s) = β(s) +
(
κ(s), 0

)
= β(s) + (γ ◦ κ)(s),

β0(s) = β(s) +
(
(κ ◦ η ◦ ξ)(s), 0

)
= β(s) + (γ ◦ κ ◦ η ◦ ξ)(s).

It’s an easy exercise to see that β0 and β1 are homotopic, so that E(β1) =
E(β0) : E(T ) → E

(
T
)

by homotopy invariance of E. Then we note that the
homomorphisms β and γ ◦ κ have ranges that multipliy to 0. This means that
β + γ ◦ κ is a homomorphism (this we know since it is equal to β0) and

E(β0) = E(β + γ ◦ κ) = E(β) + E(γ ◦ κ) = E(β) + E(γ)E(κ) (2.5)

(see remarks following the proof). The same reasoning applied to β and γ◦κ◦η◦ξ
gives

E(β1) = E(β+γ◦κ◦η◦ξ) = E(β)+E(γ◦κ◦η◦ξ) = E(β)+E(γ)E(κ◦η◦ξ). (2.6)

We know that E(γ) is the inclusion of E(K ⊗ T ) into

E
(
T
)

= E
(
γ(K⊗ T )

)
⊕ E(T ) = E(γ)

(
E(K ⊗ T )

)
⊕ E(T ).

Moreover, it is clear from (2.5) and (2.6) that E(β0)−E(β) and E(β1)−E(β)
map E(T ) into this summand of E

(
T
)
. Therefore, looking again at (2.5) and

(2.6) we see that
E(κ) = E(κ ◦ η ◦ ξ)

as maps E(T )→ E(K ⊗ T ). Now by stability of E the map E(κ) is an isomor-
phism, so we can cancel it to obtain

E(η ◦ ξ) = idE(T ).
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Part VI Cuntz’s proof of Bott periodicity

Let us explain one device we used in the above proof. Consider two ∗-
homomorphisms φ1, φ2 from a C∗-algebra A to C∗-algebra B and let E be a
functor as considered in Theorem 2.34. Assume that for any a1, a2 ∈ A we have

φ1(a1)φ2(a2) = 0.

Then φ1 + φ2 is a ∗-homomorphism A→ B and E(φ1 + φ2) = E(φ1) + E(φ2).
Indeed, let j be the obvious (incective) map φ1(A)⊕φ2(A)→ B and for i = 1, 2
let

pi : φ1(A) ⊕ φ2(A) −→ φi(A) ⊂ φ1(A) ⊕ φ2(A)

be the canonical projection. Note that E(p1) + E(p2) = idE(φ1(A)⊕φ2(A)) and
therefore

E(φ1 + φ2) = E(j)
(
E(p1) + E(p2)

)
E(φ1 + φ2)

= E(j)E
(
p1 ◦ (φ1 + φ2)

)
+ E(j)E

(
p2 ◦ (φ1 + φ2)

)

= E(φ1) + E(φ2).
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Chapter 3

Hilbert modules

3.1 Definitions

Suppose that A is a commutative unital C*-algebra, that is A = C(X) for some
compact Hausdorff topological space X . Suppose that F is a Hermitian vector
bundle over X . Let E be all the continuous sections (defined over X) of the
Hermitian vector bundle F . Then E is a C(X)-module and has a C(X)-valued
inner product

〈ξ, η〉(t) = 〈ξ(t), η(t)〉.

Definition 3.1. If A is a C*-algebra (not necessarily unital or commutative),
then an inner product A-module is a right A-module E with a compatible scalar
multiplication

λ(xa) = (λx)a = x(λa), λ ∈ C, x ∈ E, a ∈ A

together with a map (inner product) E × E → A such that

1. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉

2. 〈z, αy〉 = 〈x, y〉α

3. 〈y, x〉 = 〈x, y〉∗

4. 〈x, x〉 ≥ 0 (in A) and if 〈x, x〉 = 0 then x = 0.

There is a Cauchy-Schwartz inequality for x, y ∈ E

〈y, x〉〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉.

Define a norm of x ∈ E by ‖x‖ := ‖〈x, x〉‖ 1
2 . Then there is an inequality

‖〈x, y〉‖ ≤ ‖x‖‖y‖.

Definition 3.2. If an inner product A-module E is complete with respect to
‖ · ‖ then it is called a Hilbert A-module.
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Part VI Definitions

Example 3.3. A is a Hilbert A-module with respect to

〈x, y〉 = x∗y, ‖x‖H = ‖x‖A.

Similarly An is a Hilbert A-module with respect to

〈x, y〉 =

n∑

i=1

x∗i yi.

Example 3.4. If {Ei}ni=1 is a finite family of Hilbert A-modules, then
⊕n

i=1Ei
is a Hilbert A-module with respect to

〈x, y〉 =

n∑

i=1

x∗i yi.

If {Ei}i∈I is an arbitrary family of Hilbert A-modules, then
⊕

i∈I Ei is the space
of sequences (xi)i∈I such that

∑
i∈I〈xi, xi〉 converges in A. Then

〈x, y〉 =
∑

i∈I
x∗i yi.

converges by Cauchy-Schwartz inequality.

Example 3.5. If H is a Hilbert space, then the algebraic tensor product H⊗algA
has A-valued inner product

〈ξ ⊗ a, η ⊗ b〉 = 〈ξ, η〉a∗b, ξ, η ∈ H, a, b ∈ A.

The completion with respect to a Hilbert A-module norm is a Hilbert A-module
denoted by H⊗A. If {ei} is an orthonormal basis for H, then H⊗A ∼=

⊕
Ai.

When H is infinite dimensional, separable, then H⊗A is denoted by HA.

Suppose E, F are Hilbert A-modules. Denote by L(E,F ) the set of bounded,
adjointable maps t : E → F that is such that there exists t∗ : F → E for which

〈tx, y〉F = 〈x, t∗y〉E , x ∈ E, y ∈ F.

For this to make sense, t needs to be A-linear, t(xa) = t(x)a. Not every bounded
A-linear map has an adjoint (for example the inclusion {f ∈ C([0, 1]) | f(1) =
0} →֒ C([0, 1])).

There is a composition

L(E,F )× L(F,G)→ L(E,G),

(t, s) 7→ s ◦ t.
It follows that L(E,E) is a C*-algebra.

Let E, F be Hilbert A-modules, x ∈ E, y ∈ F . Define for z ∈ F

θx,y : F → E, θx,y(z) = x〈y, z〉.

Then θx,y ∈ L(E,F ), (θx,y)∗ = θy,x and θx,yθu,v = θx〈x, y〉v = θx,v〈u, y〉. For
t ∈ L(E,G), s ∈ L(G,F )

tθx,y = θtx,y, θx,ys = θx,s∗y.

Denote by K(E,F ) the closed linear span of {θx,y}. We write K(E) for K(E,E),
which is an analogue of compact operators.
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Part VI Definitions

Example 3.6. If E = A, then K(A) = A and the isomorphism is given by

θa,b 7→ mab∗ (left multiplication)

θ1,1 = id: A→ A.

If A is unital, then K(A) ∼= L(A) and every t ∈ L(A) acts by t(1).

Example 3.7. If H is a Hilbert space, then K(H ⊗A) = K(H)⊗A, where K(H)
is the usual space of compact operators. Apply

Proposition 3.8. Assume A is unital, E a Hilbert A-module. then the following
are equivalent

1. E is a finitely generated projective A-module.

2. K(E) ∼= L(E).

3. The identity map on E is compact.

4. id : E → E is of finite rank.

Proposition 3.9. Let A,B,C be C*-algebras such that A is an ideal in B
and let E be a Hilbert C-module. Suppose that α : A → L(E) is a nondegen-
erate *-homomorphism (A · E is dense in E). Then α extends uniqualy to a
*-homomorphism ᾱ : B → L(E). If α is injective and A is essential in B, then
ᾱ is injective.

Proof. Let ej be an approximate unit for A. For b ∈ B, a1, . . . , an ∈ A,
ξ1, . . . , ξn ∈ E

‖
n∑

i=1

α(bai)ξi‖ ≤ lim
j
‖

n∑

i=1

α(bejai)ξi‖

= lim
j
‖α(bej)

n∑

i=1

α(ai)ξi‖

≤ ‖b‖‖
n∑

i=1

α(ai)ξi‖.

The map
n∑

i=1

α(ai)ξi 7→
n∑

i=1

α(bai)ξi

is well defined and continuous.
Since α is non-degenerate, it extends by continuity to a bounded map ᾱ(b)

on E. Similar argument shows that ᾱ(b∗) is an adjoint for ᾱ(b).

Apply this when C = E = A, and α : A→ L(A) is the canonical embedding.
Then any C*-algebra B which contains A as an essential ideal embeds in L(A).

If B is a maximal essential extension of A (A is an essential ideal in B and
if A is also an essential ideal in C, then id : A → A extends to an embedding
β : C → B), then there is an injection β : L(A) → B whose restriction to A is
the identity map.
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Part VI Definitions

By proposition, the canonical embedding α : A → L(A) has an injective
extension ᾱ : B → L(A). We can apply the proposition again to A as an ideal
in L(A). Then α has a unique extension to a *-homomorphism L(A) → L(A).
There are two maps

id, ᾱβ : L(A)→ L(A)

and ᾱβ = id, so ᾱ is surjective. L(A) is a unique maximal essential extension
of A so L(A) = M(A).

Theorem 3.10. Let A be a C*-algebra. Then

1. L(A) is an essential extension of K(A) which is maximal in the above
sense.

2. If a C*-algebra B is maximal essential extension of A, then we have a

*-isomorphism B
∼=−→ L(A) whose restriction to A is the canonical map

A 7→ K(A).

Proposition 3.11. Let A,C be C*-algebras and E a Hilbert c-module. Suppose
α : A → L(E) is a nondegenerate injective *-homomorphism and let B be the
idealiser of α in LE,

B := {s ∈ L(E) | sL(A) ⊆ L(A), L(A)s ⊆ L(A)}.

Then α extends to a *-isomomorphism

M(A)
∼=−→ B.

Theorem 3.12 (Kasparov). If E is a Hilbert module then L(E) ∼= M(K(E)).

Proof. The inclusion map i : K(E) → L(E) is nondegenerate and the idealiser
of K(E) is L(E).

Example 3.13. For A = C we have M(K(H)) = B(H) and an exact sequence

0→ K(A)→M(A)→M(A)/K(A)→ 0.

We call Q(A) := M(A)/A the outer multiplier algebra.

Definition 3.14. The stable multiplier algebra

M s(A) := M(A⊗K),

and the quotient
Qs(A) := M(A⊗K)/A⊗K

is the stable outer multiplier algebra.

Proposition 3.15. For any C*-algebra A

K0(M s(A)) = K1(M s(A)) = 0.
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Proof. Let vi be a sequence of projections in 1⊗B(H) with orthogonal ranges.
If p is any projection in M s(A), then let q :=

∑
i vipv

∗
i

w :=

(
0 0
v1

∑
i vi+1v

∗
i

)(
p 0
0 q

)
.

The sums
∑

i vipv
∗
i and

∑
i vi+1v

∗
i converge in A⊗K.

w∗w =

(
p 0
0 q

)
, ww∗ =

(
0 0
0 q

)

so [p] + [q] = [q] in K0(M s(A)).
For K1 there is a similar argument and the Cuntz-Higson theorem that

U(M s(A)) is contractible.

For any C*-algebra A there is an isomorphism

Ki(A)
∼=−→ Ki−1(Qs(A)).

3.2 Examples

Here we recall the main examples that we shall use in what follows; see [l-e95]
for more information.

Example 3.16. Let A be C*-algebra. We define a Hilbert A-module structure
on H = An by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),

(a1, . . . , an)a = (a1a, . . . , ana),

〈(a1, . . . , an), (b1, . . . , bn)〉 = a∗1b1 + a∗2b2 + . . . a∗nbn.

Example 3.17. Let

H = {(a1, a2, . . .) |
∞∑

j=1

a∗jaj is norm-convergent in A}

with the operations

(a1, a2, . . .) + (b1, b2, . . .) = (a1 + b1, a2 + b2, . . .),

(a1, a2, . . .)a = (a1a, a2a, . . .),

〈(a1, a2, . . .), (b1, b2, . . .)〉 =

∞∑

j=1

a∗jbj.

Then H is a Hilbert A-module.

Example 3.18. Let G be a locally compact Hausdorff second countable topologi-
cal group. Fix a left-invariant Haar measure dg for G. Let A be a G-C*-algebra.
Denote

L2(G,A) := {f : G→ A |
∫

G

g−1f(g)∗f(g)dg is norm-convergent in A}.
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Part VI Kasparov stabilization theorem

Then L2(G,A) is a Hilbert A-module with operations

(f + h)g = f(g) + h(g),

(fa)(g) = f(g)[ga],

〈f, h〉 =

∫

G

g−1f(g)∗h(g)dg.

Definition 3.19. An A-module map T : H → H is adjointable if there exists
an A-module map T ∗ : H → H with

〈Tu, v〉 = 〈u, T ∗v〉

for all u, v ∈ H.

If T ∗ exists, then it is unique, and sup‖u‖=1 ‖Tu‖ <∞. Set

B(H) := {T : A→ A | ‖T is adjointable}.

Then B(H) is a C*-algebra with operations

(T + S)u = Tu+ Su

(ST )(u) = S(Tu)

(Tλ)u = (Tu)λ

‖T ‖ = sup
‖u‖=1

‖Tu‖

for u ∈ H, λ ∈ C.

3.3 Kasparov stabilization theorem

A Hilbert B-module E is countably generated if there exists a countable subset
X ⊂ E such that the smallest closed submodule of E containing X is E.

Theorem 3.20. For every countably generated Hilbert B-module E there is an
isomorphism

HB ⊕B ∼= HB .

Proof. A variant of Gram-Schmidt orthogonalization. There exists u ∈ L(HB⊕
B,HB) such that u∗u = 1HB⊕B, uu∗ = 1HB . It implies that for every countably
generated B-module H there exists a porjection p ∈ L(HB) such that E ∼=
pHB.

3.4 Morita equivalence

Recall:

• A C*-algebra A is stable if and only if A ∼= A⊗K.

• Two C*-algebras A,B are stably isomorphic if and only if A⊗K ∼= B⊗K.

• A Hilbert A-module E is full if and only if 〈E, E〉 is dense in A.
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Part VI Morita equivalence

Suppose we have a C*-algebra, E,F are Hilbert A-modules. The space of com-
pact operators K(E,F ) from E to F is a right K(E)-module and a left K(F )-
module with respect to the natural composition of maps.

E
β // fβ ##

E
f //

αf

;;F
α // E

Let B = K(E), G = K(E,F ). Then G is a right B-module and has a B-valued
inner product

〈s, t〉B := s∗t, s, t ∈ G.

Proposition 3.21. Let A be a C*-algebra and E,F Hilbert A-modules. If E is
full, then

KB(G) ∼= KA(F ),

LB(G) ∼= LA(F ).

Proof. Let t ∈ LA(F ). The map α(t) : u 7→ tu, u ∈ G, is adjointable

〈tu, v〉B = (tu)∗v = u∗t∗v = 〈u, t∗v〉B

so α(t) ∈ LB(G). Thus the left LA(F )-module structure on G provides a map
α : LA(F ) → LB(G) which is a *-homomorphism. If α(t) = 0 then tu = 0 for
all u ∈ G. In particular

tθz,x(y) = 0, x, y ∈ E, z ∈ F

so tz〈x, y〉 = 0.
Now suppose E is full, so

F 〈E, E〉 = FA = F.

Since tF 〈E, E〉 = {0} implies t = 0, we have that α is surjective.
Let x, y ∈ E, z, w ∈ F , s = θz,x, t = θw,y. Then s, t ∈ G and α(θz〈x, y〉,w) =

θs,t. Since G is generated as a normed linear space by the elements of the form
s, t, and *-homomorphisms between C*-algebras have closed range, it follows
that α(KA(F )) ⊃ KB(G).

On the other hand if E is full then elements of the form θz〈x, y〉,w gener-
ate KA(F ), so α(KA(F )) ⊂ KB(G). We can now restrict α to KA(F ) to get
KA(F ) ∼= KB(G).

For the second statement we use the fact that if algebras are isomorphic,
then their multiplier algebras are also isomorphic.

Definition 3.22. Two C*-algebras are Morita equivalent, A ∼M B if and only
if there is a full Hilbert A-module E such that B ∼= KA(E) (strong Morita
equivalence due to Rieffel).

Proposition 3.23. Morita equivalence is an equivalence relation.

Proof. 1. Reflexive: A ∼= KA(A).
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Part VI Tensor products of Hilbert modules

2. Symmetric: by proposition (F = A) if B ∼= KA(E) and G = KA(E,A) as
B-modules, then A ∼= KB(G).

3. Transitive: suppose B ∼= KA(E), C ∼= KB(F ), E-full Hilbert A-module,
F -fill Hilbert B-module. If ι : B → LA(E) let G := F ⊗i E. Then G is a

full Hilbert A-module and ι∗ : C
∼=−→ KA(G).

Theorem 3.24. Two σ-unital C*-algebras are Morita equivalent if and only if
they are stably isomorphic.

Proof. For any C*-algebra A

KA(HA) = KA(H⊗A) ∼= KC(H)⊗KA(A) = K ⊗A

so A ∼M K ⊗A. If A and B are stably isomorphic then

A ∼M K ⊗A ∼= K ⊗B ∼M B

so A ∼ B (we do not need σ-unitality here).
Suppose that A ∼M B and let B ∼= KA(E). Then if A,B are σ-unital

K⊗B ∼= KA(H⊗E) ∼= KA(HA) ∼= K ⊗A.

3.5 Tensor products of Hilbert modules

1. Outer tensor products For i = 1, 2 let Bi be a C*-algebras and Ei a Hilbert
Bi-module. The Hilbert B1 ⊗min B2-module E1 ⊗ E2 is by definition
the completion of the algebraic tensor product E1 ⊗alg E2 in the norm

‖ξ‖ := ‖〈ξ, ξ〉‖ 1
2 , where for ξi, ηi ∈ Ei

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 := 〈ξ1, η1〉 ⊗ 〈ξ2, η2〉.

2. Inner tensor products Let A, B be two C*-algebras, E1 a Hilbert A-
module, E2 a Hilbert B-module, and π : A → L(E2) a *-homomorphism.
The Hilbert B-module E1⊗π E2 (also denoted by E1⊗AE2) is the Haus-
dorff completion of the algebraic tensor product E1 ⊗alg E2 with respect

to the norm ‖ξ‖ := ‖〈ξ, ξ〉‖ 1
2 , where for ξi, ηi ∈ Ei

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 := 〈ξ2, π(〈ξ1, η1〉)η1〉.

The action of B is given by (ξ1 ⊗ ξ2)b := ξ1 ⊗ ξ2b. Note that for a ∈ A,
ξ1 ∈ E1, ξ2 ∈ E2 we have ξ1 ⊗ π(a)ξ2 = ξ1a⊗ ξ2.
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Chapter 4

Fredholm modules and
Kasparov’s K-homology

4.1 Fredholm modules

If P and Q are bounded operators on a Hilbert space we shall write P ∼ Q
when they differ by a compact operator. We assume that A is a separable
C*-algebra, not necessarily unital.

Definition 4.1. An (ungraded) Fredholm module over A is given by the fol-
lowing data:

1. a separable Hilbert space H,

2. a representation ρ : A→ B(H),

3. an operator F on H such that for all a ∈ A

(F 2 − 1)ρ(a) ∼ 0

(F − F ∗)ρ(a) ∼ 0

Fρ(a)− ρ(a)F ∼ 0.

The representation ρ is not required to be non-degenerate.

Definition 4.2. Aa Z2-graded Fredholm module over A is given by the same
data as in definition (4.1) plus the following additional structure:

1. the Hilbert space is equipped with the decomposition H = H+ ⊕H−,

2. for each a ∈ H, ρ(a) is even, ρ(a) = ρ+(a)⊕ ρ−(a),

ρ(a) =

(
ρ+(a) 0

0 ρ−(a)

)

where ρ± is a representation on H±,

3. F is odd,

F =

(
0 v
u 0

)
, u : H+ → H−, v : H− → H+.
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Part VI Fredholm modules

The operators u, v are not independent: V is essentially the adjoint of u.
We can rewrite the conditions of the original definition as follows

(uv − 1)ρ−(a) ∼ 0

(vu− 1)ρ+(a) ∼ 0

(u− v∗)ρ+(a) ∼ 0

uρ+(a) ∼ ρ−(a)u.

Let p ∈ N.

Definition 4.3. A p-graded Fredholm module is a Fredholm module (H, ρ, F )
as above for which there exist operators ε1, . . . , εp such that

εj = −ε∗j , ε2j = −1, , εiεj + εjεi = 0, ; i 6= j.

Example 4.4. Fredholm modules over C. Assume that ρ : C → B(H) is the
unique unital representation. Then an ungraded Fredholm module is given by
an essentially selfadjoint Fredholm operator F . This characterisation follows
from Atkinson’s theorem. Recall we defined a Fredholm operator to be an
operator F such that kerF , kerF ∗ are finite dimensional.

Theorem 4.5 (Atkinson). Let F ∈ B(H). Then then the following are equivalent

1. F is Fredholm.

2. The image of F in Q(H) = B(H)/K(H) is invertible.

3. There exist G ∈ B(H) such that 1− FG, 1−GF are compact.

A graded Fredholm module is given by an essentially selfadjoint operator F
of the form

F =

(
0 v
u 0

)

where u and v are Fredholm and u ∼ v∗. By definition Index(F ) = Index(u).

Example 4.6. The pseudodifferential operator extension. Let M be a smooth
manifold without boundary (not necessarily compact). Let S∗M be the cosphere
bundle of M : take the cotangent bundle of M , delete the zero section (zero
cotangent vectors), identify non-zero cotangent vectors which differ only by
multiplication by a positive scalar (if M is equipped qith a Riemannian metric
then S∗M can be identified with the space of unit length cotangent vectors).

There is an extension

0→ K(L2(M))→ ΨDO(M)→ C0(S∗M)→ 0

The outline of the construction is as follows. If M is an opent subset of Rn, then
suppose that σ is a complex valued function on T ∗M which has the property
(homogenity):

σ(x, tξ) = σ(x, ξ), t ≥ 1, |ξ| ≥ 1.

Assume that σ is compactly supported in the M -direction, i.e. σ(x, ξ) van-
ishes when x is outside some compact subset of M . Then the linear map
Dσ : C∞c (M)→ C∞c (M) given by the integral formula

Dσf(x) :=
1

(2π)n

∫
σ(x, ξ)f̂ (ξ)ei〈x, ξ〉dξ,
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where f̂ denotes the Fourier transform of f , is an example of a pseudodifferential
operator. Because σ is homogeneous, it defines a function σ0 on the cosphere
bundle S∗M , which is called the symbol of the operator Dσ.

Proposition 4.7. The operator Dσ extends by continuity to a bounded linear
operator on L2(M). The map which associates to each Dσ its symbol σ0 extends
to a *-homomorphism form the C*-algebra ΨDO(M) generated by all Dσ onto
the C*-algebra C0(S∗M).

The map ΨDO(M)→ C0(S∗M) is called the symbol map.
This proposition gives the extension when M is an open subset of Rn. The

extension to manifolds is done as follows. If M ⊆ Rn is open and g ∈ C∞c (M)
then the multiplication operator Mg is a pseudodifferential operator associated
with the function σ(x, ξ) = g(x), so Mg ∈ ΨDO(M). Next we use the invariance
of pseudodifferential operators under smooth changes of coordinates. If Ψ: M →
M ′ is a diffeomorphism of open sets in Rn, then the transform under Ψ of an
operator in ΨDO(M) with symbol σ0 is an operator in ΨDO(M ′) with symbol
Φ∗(σ0) (Φ: M → M ′ induces Cc(M

′) → Cc(M) by composition. Get unitary
u : L2(M ′) → L2(M) by multiplying by

√
Jac(f) and then T ∈ B(L2(M)) 7→

u∗TU ∈ B(L2(M ′))). So we can define ΨDO(M) for any smooth manifold
(using invariance plus partition of unity) to be a C*-algebra consisting of those
T ∈ B(L2(M)) such that

1. lim ‖TMgn − T ‖ = 0 = lim ‖MgnT − T ‖ for some approximate unit gn for
C0(M)

2. T commutes with C0(M) modulo compact operators

3. for each coordinate chart U and each g ∈ C0(U), the operator MgTMg

belongs to ΨDO(M).

Symbol of T is well defined as an element of C0(S∗M).
The operator Dσ is Fredholm if and only if σ0 is nowhere zero. Let D ∈

Mk(ΨDO(M)) be a system of psedudodifferential operators whose symbol is a
unitary matrix-valued function on S∗M . Then

H = L2(M)k ⊕ L2(M)k, F =

(
0 D∗

D 0

)

together with a representation ρ : C(M)→ B(L2(M)) by multiplication opera-
tors is a graded Fredholm module over C(M).

This construction generalises Atiyah’s definition of Ell. There is a pairing
with K-theory. For a projection p ∈Mk(C(M))

Fp :=

(
0 ρ(p)D∗

ρ(p)D 0

)

is an operator on H = ρ(p)L2(M)k ⊕ ρ(p)L2(M)k, and

〈[p], [D]〉 := Index(ρ(p)Dρ(p)).

Let A be a C*-algebra and (H, F ) a Fredholm module over A. It extends to
Mn(A) and Hn := H⊗ Cn, Fn := F ⊗ idn.
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Part VI Commutator conditions

Proposition 4.8. Let (H, F ) be a Fredholm module over A. There exists a
unique additive map φ : K0(A) → Z such that for every projection e ∈ Mn(A)
we have φ([e]) = Index(T ), where T : eH+

n → eH−n is defined by Tx = eFnx for
all x ∈ H+

n .

4.2 Commutator conditions

In the definition of Fredholm module (H, F ) we have a condition [F, ρ(a)] ∈ K
for all a ∈ A. In Kasparov K-homology A has to be a separable C*-algebra.
For more subtle invariants, Connes allows Fredholm modules over *-algebras A,
not necessarily C*-algebras. Most useful condition is that [F, a] ∈ Lp(H) for
some p ≥ 1. There is a fine balance to be struck here: the class of algebras
we allow for Fredholm modules should still have a meaningful K-theory, fairly
close to the K-theory for C*-algebras. Ideally we want K-theory with the same
formal properties as K-theory for C*-algebras. Note that the K-theory for such
algebras needs to be developed from scratch. A sensible class of C*-algebras
may be determined using the following

Proposition 4.9 (Connes). Let A be an involutive algebra, (H, F ) an (n+ 1)-
summable Fredholm module over A with the parity of n. Let A be the C*-algebra
closure of A (in its action on H). Let Ā be the smallest involutive subalgebra of
A containing A and stable under holomorphic functional calculus. Then (H, F )
is an (n+ 1)-summable Fredholm module over Ā.

From this one deduces that it is sufficient to restrict attention to local C*-
algebras (pre C*-algebras).

Proposition 4.10. Let A be a pre C*-algebra (local C*-algebra). Then

1. Any Fredholm module (H, F ) over A extends by continuity to a Fredholm
module over the associated C*-algebra A.

2. The inclusion A →֒ A is an isomorphism on K-theory.

Proposition 4.11 (Connes). Suppose that (H, F ) is a 1-summable Fredholm
module and γ is an involution im[plementing the Z/2-grading on H. Then the
map

τ : A→ C, a 7→ 1
2 Tr(γF [F, a])

is a trace on A.

Proof. Define
A := {a ∈ A | [F, a] ∈ L1(H)}, A ⊂ A.

We have

γF [F, a] = γa− γFaF
= γa+ FaγF

= aγF 2 + FaγF − FγF + FaγF

= [F, a]γF,
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where we use F 2 = 1 or the equalities are modulo K. Next

τ(ab) = 1
2 Tr(γF [F, ab])

= 1
2 Tr(γF [F, a]b+ γFa[F, b])

= 1
2 Tr([F, a]γFb+ [F, b]γFa)

= τ(ba).

We call τ the character of the Fredholm module (H, F ).

Theorem 4.12 (Connes). Let A be a unital C*-algebra equipped with a faithful
positive trace τ , τ(1) = 1. Let (H, F ) be a Fredholm module over A such that

A := {a ∈ A | [F, a] ∈ L1(H)}

is a dense subalgebra of A and the restriction of τ to A is the character of the
Fredholm module (H, F ). Then A contains no nontrivial idempotents.

Proof. A is a subalgebra of A stable under holomorphic functional calculus.
The inclusion A →֒ A induces an isomorphism K0(A) → K0(A). The trace τ
takes integer values (this is the index map). If e is a projection then τ(e) = 0, 1.
Because τ is faithful e = 0, 1.

Example 4.13. Let F2 be the nonabelian free group on two generators. It acts
on a tree (1-dimensional simplicial complex with no loops). Let ∆0 be the
set of vertices and ∆1 be the set of edges. Denote by [x, y] for x, y ∈ ∆0 the
set of vertices on the unique path from x to y, and by x0 the origin. For all
x ∈ ∆0 \ {x0} let β(x) ∈ ∆1 be the unique edge containing x in [x, x0].

Lemma 4.14.

1. The map β : ∆0 → ∆1 is a bijection.

2. For a fixed g ∈ F2, the set of x ∈ ∆0 such that gβ(g−1x) 6= β(x) is finite
and equals [x0, gx0].

Proof.

1. The inverse is given by

β−1(edge u) := vertex of u further from x0.

2. gβ(g−1x) is the edge containing x and lying in [gx0, x]. Suppose x /∈
[gx0, x].

Define a map F : l2(∆0)→ l2(∆1) by

Fδx :=

{
δβx for x 6= x0

0 for x = x0

Proposition 4.15.
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Part VI Quantised calculus of one variable

1. F is an operator of index 1, FF∗ = 1, F∗F = 1−px0, where px0 : l2(∆0)→
Cδx0 .

2. Let π0, π1 be actions of F2 on l2(∆0), l2(∆1). For all g ∈ F2 the operator
π1(g)F − Fπ0(g) is of finite rank and (l2(∆0)⊕ l2(∆1),F) is a Fredholm
module.

Let
A := {a ∈ C∗r (F2) | [F , a] ∈ l2(∆0)⊕ l2(∆1)}.

By the proposition C[F2] ⊂ A, so A is dense in C∗r (F2). Now from the Connes
theorem one obtains the proof of the Kadison-Kaplansky conjecture

Theorem 4.16. The algebra C∗r (F2) has no nontrivial idempotents.

Fredholm modules of this type can be constructed for any locally compact
group acting on a tree (Julg, Vallette).

Theorem 4.17. Let G be any locally compact group acting on a tree such that
the stabiliser of any vertes is amenable. Then G is K-amenable.

4.3 Quantised calculus of one variable

Let f be a function on R. Find function algebras for which df := [F, f ] has a
given regularity. Take H = L2(R). The Hilbert transform is given by

(Fξ)(s) = lim
ε→0

1

πi

∫

|s−t|>ε

ξ(t)

s− tdt.

We have F 2 = 1 and [F, f ] is the operator on L2(H) associated to the kernel

k(s, t) =
f(s)− f(t)

s− t
This can be transported to S1 by some conformal map. Then we obtain a
Fredholm module given by the data

H = L2(S1), F = 2P − 1,

where P : L2(S1)→ H2(S1) is the orthogonal projection onto the Hardy space.
For any f ∈ L∞(S1)

• [F, f ] is a finite rank operator if and only if f is a rational function.

• [F, f ] is compact if and only if f is of vanishing mean oscillation, that is
for

Maf := sup
|I|≤a

1

|I|

∫

I

|f − I(t)|dt,

where I(t) = 1
|I|
∫
fdx, we have lima→0Maf = 0.

• [F, f ] is in Lp(H) if and only if f is in Besov space B
1
p
p , that is

∫ ∫
|f(x+ t)− 2f(x) + f(x− t)|pt−2dxdt <∞.
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Part VI Quantised differential calculus

4.4 Quantised differential calculus

Let (A, H, F ) be a Fredholm module over an involutive algebra A, n integer
≥ 0. We assume that the Fredholm module is even for n even and odd for n
odd. In either case it is (n+ 1)-summable: [F, a] ∈ Ln+1(H) for all a ∈ H.

For k = 0, put Ω0 = A. For k > 0

Ωk := span{a0[F, a1] . . . [F, ak] | aj ∈ A}.

By Hölder inequality, Ωk ⊂ Ln+1
k (H). Put Ω∗ :=

⊕
k≥0 Ωk. The product in

Ω∗ is the operator product. We use the Leibniz rule for [F,−] to check that if
ω ∈ Ωk and ω ∈ Ωk

′

then ωω′ ∈ Ωk+k
′

a0[F, a1] . . . [F, ak]ak+1 =

k−1∑

j=1

(−1)k−ja0[F, a1] . . . [F, ajaj+1] . . . [F, ak+1]+

+(−1)ka0a1[F, a2] . . . [F, ak+1].

It is a differential graded algebra (DGA) with differential d : Ωk → Ωk+1 given
by the graded commutator

dω = [F, ω] = Fω − (−1)|ω|ωF.

It is a graded derivation, that is

d(ω1ω2) = (dω1)ω2 + (−1)|ω1|dω2, d
2 = 0.

4.5 Closed graded trace

We will define a supertrace Trs : Ωn → C. If T is an operator on H such that
FT + TF ∈ L1(H) then put

Tr′(T ) := 1
2 Tr(F (FT + TF )).

If T ∈ L1(H), then put
Tr′(T ) := Tr(T ).

Now define Trs(ω) for ω ∈ Ωn

Trs(ω) :=

{
Tr′(ω) for n odd

Tr′(γω) for n even

where γ is the involution implementing the Z/2-grading on H.

Proposition 4.18. Trs is a closed graded trace.

1. Trs(dω) = 0

2. If ω ∈ Ωk, ω′ ∈ Ωk
′

, k + k′ = n, then

Trs(ωω
′) = (−1)kk

′

Trs(ω
′ω)
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Part VI Closed graded trace

Proof. In the odd case
Fω + ωF = [F, ω] = dω,

and in the even case

Fγω + γωF = −γFω + γωF = −γ[F, ω] = −γdω,

so for ω = dη, Trs(ω) = 0.
For the trace condition, take ω ∈ Ωk, ω′ ∈ Ωk

′

, k + k′ = n, n odd.

Trs(ωω
′) = 1

2 Tr(Fd(ωω′))

= 1
2 Tr(F (dω)ω′ + (−1)|ω|Fω(dω))

= 1
2 Tr((−1)|ω|(dω)Fω′ + (−1)|ω|Fωdω′)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|Fω)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|+|ω

′|+1F (dω′)ω)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|+|ω

′|+1F (d(ω′ω) + (−1)|ω
′|+1ω′(dω)))

= 1
2 Tr((−1)|ω|+|ω

′|+1Fd(ω′ω))

= 1
2 Tr(Fd(ω′ω)).

If |ω| + |ω′| = n and n is odd, then |ω|, ω′ cannot both be odd, so |ω||ω′| = 0
mod 2 and

Trs(ωω
′) = (−1)|ω||ω

′|Trs(ω
′ω) = Trs(ω

′ω).

The even case is very similar, use the extra condition Fγ = −γF .

Definition 4.19. The character of the cycle (A,H, F ) is the cyclic cocycle

τn(a0, a1, . . . , an) = Trs a
0[F, a1] . . . [F, an].

Difficult problem: provide an explicit formula for this cocycle in terms of
data defining the Fredholm module. The cyclic cocycle seems to depend on n,
but in fact there is no problem here.

Recall Connes’ periodicity operator S : HCn(A)→ HCn+2(A),

. . .→ HHn−1(A,A)→ HCn(A)
S−→ HCn+2(A)→ HHn+2(A,A)→ . . .

Proposition 4.20. The characters τn+2q satisfy

τm+2 = − 2

m+ 2
Sτm, m = n+ 2q,

so the cocycles together determine a class in periodic cyclic homology

HP∗(A) = lim
−→

(HCn(A), S)

Definition 4.21. Let (A,H, F ) be a finitely summable Fredholm module over an
involutive algebra A. The Chern character ch∗(H, F ) ∈ HP∗(A) is the periodic
cyclic homology class whose components are the following cyclic cocycles for
large enough n:

(−1)
n(n−1)

2 Γ
(n

2
+ 1
)

Tr′(γa0[F, a1] . . . [F, an])
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Part VI Index pairing formula

for n even (even Fredholm module), and

√
2i(−1)

n(n−1)
2 Γ

(n
2

+ 1
)

Tr′(γa0[F, a1] . . . [F, an])

for n odd.

Remark 4.22. Let ΩA be the universal differential graded algebra, N-graded. It
is also Z/2-graded algebra with respect to the Fedosov product

ω1 ◦ ω2 = ω1ω2 + (−1)|ω1|dω1dω2.

Supertraces Tr : ΩA → C are linear maps which satisfy the suspension condi-
tions.

Theorem 4.23 (Connes, Cuntz-Quillen). There is one-to-one correspondence be-
tween (harmonic) periodic cocycles and supertraces on ΩA.

(ΩA, b,B)→ (entire) cyclic type homology theories.

4.6 Index pairing formula

From Atiyah and Kasparov we have the following result:

Proposition 4.24. Let A be an involutive algebra, (H, F ) a Fredholm module
over A. For q ∈ N let (Hq, Fq) be the Fredholm module over Mq(A) = A ⊗
Mq(C), Hq = H⊗ Cq, Fq = F ⊗ idq. Extend the action of A on H to a unital

action of Ã.

1. In the even case: let γ be the involution for Z/2-grading and e ∈ Mq(Ã)
be a projection. Then the operator

π−q (e)Fqπ
+
q (e) : π+

q (e)H+
q → π−q (e)H−q

is Fredholm. There is an additive map

ϕ : K0(A)→ Z

given by
ϕ([e]) := Index(π−q (e)Fqπ

+
q (e)).

2. In the odd case: let u ∈ GLq(Ã), E = 1+F
2 . Then

Eqπq(u)Eq : EqHq → EqHq
is Fredholm. There is an additive map

ϕ([u]) := Index(Eqπq(u)Eq).

When A is a C*-algebra, K1(A) in 2. is the topological K-theory Ktop
1 (A) as

defined before.
In both cases, the index map depends only on the class

[(H, F )] ∈ KKi(A,C) = Ki(A),

the K-homology of A. This can be regarded as a pairing

Ki(A)×Ki(A)→ Z.
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Part VI Kasparov’s K-homology

Proposition 4.25. For x ∈ Ki(A)

ϕ(x) = 〈x, ch∗(H, F )〉 = 〈ch(x), ch(H, F )〉.

On the right hand side in the proposition we have a pairing between K-theory
and cyclic sohomology. A more symmetric formula would use a complementary
Chern character on K-homology. Since Connes’ construction, formulae were
given for Chern characters in K-theory with values in HP∗(A).

The pairing has simple definition. Let τ ∈ HCn(A). Take τ ⊗Tr: Mk(A)→
C for every k,

τ ⊗ Tr(a0 ⊗ T 0, a1 ⊗ T 1, . . . , an ⊗ T n) = τ(a0, . . . , an) Tr(T 0, . . . .T n).

Then

〈[e], [τ ]〉 =
1

m!
(τ ⊗ Tr)(e, e, . . . , e).

All this is explained in Quillen’s higher traces paper.

4.7 Kasparov’s K-homology

Let (ρ,H, F ) be a Fredholm module, U : H′ → H be a unitary isomorphism (pre-
serving the grading if there is one). Then (U∗ρU,H′, U∗FU) is also a Fredholm
module unitarily equivalent to (ρ,H, F ).

Definition 4.26. Suppose (ρ,H, Ft) is a family of Fredholm modules parametrized
by t ∈ [0, 1], H is fixed Hilbert space, and Ft varies with t. If the function t 7→ Ft
is norm continuous, then we say that the family defines an operator homotopy
between the Fredholm modules (ρ,H, F0) and (ρ,H, F1) an that these two Fred-
holm modules are Operator homotopic.

Definition 4.27. If (ρ,H, F ) and (ρ,H, F ′) are Fredholm modules on H and
(F − F ′)ρ(a) is compact for all a ∈ A, then we call F a compact perturbation
of F ′.

Compact perturbation impliest operator homotopy - the linear path from F
to F ′ defines an operator homotopy.

One can perform a compact perturbation to make F exactly self adjoint,
F 7→ 1

2 (F + F ∗).

Definition 4.28. K-homology of a C*-algebra A, Kp(A), is an abelian group
with one generator [x] for each unitary equivalence class of graded Fredholm
modules over A with the following relations:

1. If x0 and x1 are operator homotopic graded Fredholm modules, then [x0] =
[x1] ∈ Kp(A).

2. If x0 and x1 are graded Fredholm modules then [x0 ⊕ x1] = [x0] + [x1] in
Kp(A), where x0 ⊕ x1 = (A,H0 ⊕H1, ρ0 ⊕ ρ1, F0 ⊕ F1).

We have p = 0 for graded, and p = 1 for ungraded Fredholm modules.

Remark 4.29. p-graded Fredholm modules give rise to lower K-homology K−p(A)
for all p ∈ N.
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Part VI Kasparov’s K-homology

Kp(A) is a contravariant functor in A. If α : A′ → A is a *-homomorphism,
and (ρ,H, F ) is a Fredholm A-module, then (ρ ◦ α,H, F ) is a Fredholm A′-
module. We have an induced map

α∗ : Kp(A)→ Kp(A′).

Definition 4.30. A Fredholm module (ρ,H, F ) is degenerate if and only if

[ρ(a), F ] = 0

ρ(a)(F 2 − 1) = 0

ρ(a)(F − F ∗) = 0

for all a ∈ A.

Proposition 4.31. The class of a degenerate Fredholm module is zero in Kp(A).

Proof. Let x = (ρ,H, F ) be a degenerate Fredholm module. Then

x′ := (ρ′,H′, F ′), H′ :=

∞⊕

i=1

, F ′ :=

∞⊕

i=0

F, ρ′ :=

∞⊕

i=0

ρ.

This is a Fredholm module, since x is degenerate. But x⊕ x′ is unitarily equiv-
alent to x′, so [x⊕ x′] = [x] + [x′] = [x′] and [x] = 0.

Lemma 4.32. For a graded Fredholm module (ρ,H, F ) denote by (ρop,Hop,−F op)
the Fredholm module with the opposite grading. This is the additive inverse to
(ρ,H, F ).

Proof. Let

Ft :=

(
cos(π2 t)F sin(π2 t)Id
sin(π2 t)Id − cos(π2 t)F

)
,

F0 =

(
F 0
0 −F

)
, F1 =

(
0 1
1 0

)
.

This is the operator homotopy on H ⊕ Hop from F0 = F ⊕ (−F op) to the

degenerate F1 =

(
0 1
1 0

)
.

Example 4.33. K0(C) = Z. If (ρ,H, F ) is a Fredholm module over C, then
ρ(1) =: p is a projection in B(H) and up to compact perturbation (ρ,H, F ) is
the direct sum of (ρ, pH, pFp) and (ρ, (1 − p)H, (1 − p)F (1 − p)). The second
module carries the zero action of C. The first is determined by pFp. Put

(ρ,H, F ) 7→ Index(pFp).

This gives a homomorphism K0(C) → Z. Since an essentially unitary oper-
ator with index zero is a compact perturbation of a unitary, this map is an
isomorphism.

Lemma 4.34. Let (ρ,H, F ) be a Z/2Z-graded Fredholm module. Assume that
there exists a self adjoint odd-graded involution E : H → H which commutes
with ρ (the action of A) and anticommutes with F . Then the Fredholm module
(ρ,H, F ) represents the zero element in K0(A).
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Part VI Kasparov’s K-homology

Proof. Let Ft := cos(t)F + sin(t)E. This is an operator homotopy from F to
the degenerate operator E.

In particular putting tho ungraded Fredholm modules together produces a
degenerate Fredholm module. Conversely, if we ignore Z/2Z-grading on an even
Fredholm module then the resulting odd Fredholm module represents the zero
element. A possible argument is as follows. A Z/2Z-graded module is given by
the data H = H+ ⊕H−,

F =

(
0 u∗

u 0

)
, ρ =

(
ρ(a) 0

0 ρ(a)

)
.

We construct an operator homotopy

Ft =

(
cos(π2 t)Id sin(π2 t)v
sin(π2 t)u cos(π2 t)Id

)

F0 =

(
1 0
0 1

)
, F1 =

(
0 v
u 0

)
.

For this we need to assume that F1 is an involution.
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Chapter 5

Boundary maps in
K-homology

5.1 Relative K-homology

Definition 5.1. Let J be an ideal in A. A relative Fredholm module for
(A,A/J) is a triple (ρ,H, F ), where

1. H is a separable Hilbert space

2. ρ : A→ B(H) is a *-representation

3. for all a ∈ A, j ∈ J

(F 2 − 1)ρ(j) ∼ 0

(F − F ∗)ρ(j) ∼ 0

[F, ρ(a)] ∼ 0

One defines also the graded version.
The relative Fredholm modules generate relative K-homology Kp(A,A/J).

The natural map
Kp(A,A/J)→ Kp(J)

is an isomorphism (excision).
To any extension of separable C*-algebras one can associate an exact se-

quence of lenght six

K1(A/J) // K1(A) // K1(J)��
K0(J)

OO
K0(A)oo K0(A/J)oo

We can give an explicit description of the boundary maps in this six term exact
sequence.
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Part VI Semi-split extensions

5.2 Semi-split extensions

There is ono-to-one correspondence between extensions of A by K(H) and uni-
tary equivalence classes of *-homomorphisms φ : A→ Q(H)

0 // K(H) // E //�� A //
φ�� 0

0 // K(H) // B(H)
π // Q(H) // 0

Definition 5.2. A unital injective extension φ : A→ Q(H) is semi-split if there
is another unital extension φ′ : A→ Q(H) such that φ⊕ φ′ is split extension.

Definition 5.3. Let the extension

0→ J → A→ A/J → 0

be semi-split by a completely positive map Ã/J → Ã. Let ρ : A → B(H) be
a representation of A on a separable Hilbert space H. A Stinespring dilation
associates to the above data is a *-homomorphism

ψ =

(
ψ11 ψ12

ψ21 ψ22

)
: A/J → B(H⊕H′),

where H′ is a separable Hilbert space and ψ11(x) = ρ(s(x)).

The existence of such extension follows from Stinespring’s theorem.

Theorem 5.4 (Stinespring). A unital linear map σ : A → B(H) is absolutely
positive if and only if there are

1. an isometry v : H → H
2. a nondegenerate representation ρ : A→ B(H) such that σ(a) = v∗ρ(a)v

In Z/2Z-graded case one applies this to each component separately.

Proposition 5.5. Take an extension as above. Let (ρ,H, F ) be a selfadjoint
relative Fredholm module (graded or ungraded). Let ψ : A/J → B(H⊕H′) be a
Stinespring dilaton. Then the boundary maps are given by

1. ∂ : K0(A,A/J)→ K1(A/J) : the cycle (ρ,H, F ) is graded Fredholm mod-
ule. Assume that F 2 is a projection (this can always be done). Let Q± be
the components of the projection 1− F 2 on H±. Then the projections

(
Q± 0
0 0

)
∈ B(H⊕H′)

commute modulo compacts with ψ(x) for all x ∈ A/J and so define un-
graded Fredholm modules. Their difference represents a class of ∂[ρ,H, F ]
(if ρ : A→ B(H), P ∈ B(H) is a projection such that [P, ρ(a)] ∈ K for all
a ∈ A, then (ρ,H, F = 2P − 1) is an ungraded Fredholm module over A).

2. ∂ : K1(A,A/J) → K0(A/J): the cycle (ρ,H, F ) is ungraded Fredholm
module. Then (

eiπF 0
0 −1

)
∈ B(H⊕H′)

is unitary on H ⊕ H′ commuting with ψ. The corresponding Fredholm
module represents a class of ∂[ρ,H, F ].
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5.3 Schrödinger pairs

Recall that we call an operator X ∈ B(H) contractive if and only if ‖X‖ ≤ 1.
For a selfadjoint contractive operator X we define Xb to be a commutative
C*-subalgebra of B(H) consisting of all ψ(X) for ψ ∈ C0(−1, 1).

Definition 5.6. Let X,Y be contractive operators on H. The pair (X,Y ) is a
Schrödinger pair if and only if

1. Y commutes with Xb modulo K(H).

2. Xb · Y b ⊆ K(H).

We call (X,Y ) a graded Schrödinger pair if the commutator in 1 is graded.
We call (X,Y ) a strong Schrödinger pair if Y commutes with X.

Example 5.7. Let H = L2(R), X multiplies by x 7→ x√
1+x2

, and Y multiplies

the Fourier transform by ξ 7→ ξ√
1+ξ2

(Xf)(x) :=
x√

1 + x2
f(x)

(Y f̂)(ξ) :=
ξ√

1 + ξ2
f̂(ξ)

These are the position and momentum operators in quantum mechanics and
(X,Y ) is a strong Schrödinger pair.

Example 5.8. Let (ρ,H, F ) be an ungraded Fredholm module over J , where J
is an ideal in some C*-algebra A and ρ extends to A. If a is an element of A
such that a2 − 1 ∈ J , then X = ρ(a), Y = F constitute Schrödinger pair.

If the extension of ρ makes (ρ,H, F ) into a relative Fredholm module (i.e.
[F, ρ(a)] ∼ 0 for all a ∈ A) then (X,Y ) is a strong Schrödinger pair.

Example 5.9. Let H = L2([−1, 1]). Define operators

(Tψ)(x) = ψ(−x),

(Sψ)(x) = xψ(x).

If f ∈ C0(−1, 1) then f(T ) = 0 and (T, S) is a Schrödinger pair. If f is an odd
function on [−1, 1] such that f(−1) = f(1) = 0, then

[f(S), T ] = −2f(S)T

which is not compact. Thus (S, T ) is not a Schrödinger pair.

Definition 5.10. Let (X,Y ) be a Schrödinger pair. The Schrödinger operator
is given by

V (X,Y ) := εX + (1 −X2)
1
2Y,

where ε = i in the ungraded, and ε = 1 in the graded case.

Proposition 5.11. Let (X,Y ) be a (graded) strong Schrödinger pair. Then

1. in the ungraded case the Schrödinger operator

V (X,Y ) = iX + (1 −X2)
1
2 Y

is essentially unitary and so Fredholm,
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2. in the graded case the Schrödinger operator

V (X,Y ) = X + (1−X2)
1
2Y

is essentially selfadjoint graded and Fredholm.

Proposition 5.12.

1. In the ungraded case

IndexV (X,Y ) = IndexV (Y,X).

2. In the graded case

IndexV (X,Y ) = − IndexV (Y,X).

Proposition 5.13. If X,Y commute modulo compacts with a representation of
C*-algebra B then

1. in the graded case

[V (X,Y )] = [V (Y,X)] ∈ K0(B),

2. in the ungraded case

[V (X,Y )] = −[V (Y,X)] ∈ K1(B).

Proof.

V (X,Y )2 − 1 ∼ X2 + (1−X2)Y 2 − 1

= −(1−X2)(1− Y 2) ∈ K(H),

because XY + Y X ∼ 0. Next

V (X,Y )V (Y,X) + V (Y,X)V (X,Y ) ∼ 2(Y (1 −X2)
1
2 Y +X(1− Y 2)

1
2X) ≥ 0,

so Fredholm modules associated with V (X,Y ) and V (Y,X) are homotopic,
which is a consequence of the following

Proposition 5.14. If (ρ,H, F0) and (ρ,H, F1) are (graded) Fredholm modules
such that ρ(a)(F0F1 + F1F0)ρ(a∗) are positive modulo compacts for all a ∈ A,
then F0 and F1 are operator homotopic.

Recall the index map on K-homology

Index: Kp(A)→ Z, (ρ,H, F ) 7→ inf F.

If F =

(
0 v
u 0

)
, then IndexF = Indexu.
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Lemma 5.15. Let (X,Y ) be a Schrödinger pair on an ungraded Hilbert space
H. Put PY := 1

2 (1 + Y ). Then the operator

W1(X,Y ) := eiπXPY − (1 − PY )

is essentially unitary and Fredholm. Furthermore

IndexW1(X,Y ) = IndexV (X,Y ).

Proof. Denote for convinience S := sin(π2X). From the definition of Schrödinger
pair we know that

• Y commutes with Sb modulo compacts,

• (1− S2)(1− Y 2) is compact.

Write

e−i
π
2XW1(X,Y ) = ei

π
2XPY − e−i

π
2X(1− PY )

= (cos(
π

2
X) + i sin(

π

2
X))PY − (cos(

π

2
X)− i sin(

π

2
X))(1− PY )

= ((1 − S2)
1
2 + iS)PY − ((1− S2)

1
2 − iS)(1− PY )

= ((1 − S2)
1
2 + iS)(1

2 (1 + Y ))− ((1− S2)
1
2 − iS)(1

2 (1− Y ))

= iS + (1− S2)
1
2 Y

= V (S, Y ).

Thus the operator W1(X,Y ) is essentially unitary and homotopic to V (S, Y )
through the path

t 7→ e−it
π
2XW1(X,Y ), t ∈ [0, 1],

so [W1(X,Y )] = [V (S, Y )]. But S is homotopic to X via a path Xt := tX +
(1 − t)S, and (Xt, Y ) are a Schrödinger pairs for all t. This gives a homotopy
V (Xt, Y ) and [V (X,Y )] = [V (S, Y )] = W1(X,Y ).

Lemma 5.16. Let (X,Y ) be a graded Schrödinger pair on a graded Hilbert
space H. Suppose also that

1. QX = 1−X2 is a projection

2. there exists a self adjoint involution Y0 on H which commutes with QX
modulo the compacts.

Then the operator W2(X,Y ) = Y QX + Y0(1 − QX) is essentially self-adjoint,
graded, Fredholm, and

IndexW2(X,Y ) = IndexV (X,Y ).

Proof. Let

Xt := cos
(π

2
t
)
X + sin

(π
2
t
)
Y0(1−QX).
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Then for all t ∈ [0, 1] we have

Xt(Y QX) ∼ 0

(Y QX)Xt ∼ 0

X2
t ∼ 1−QX

Indeed:

X2
t = cos2

(π
2
t
)
X2 + sin2

(π
2
t
)
Y0(1−QX)Y0(1−QX)

+ cos
(π

2
t
)

sin
(π

2
t
)
XY0(1−QX) + sin

(π
2
t
)

cos
(π

2
t
)
Y0(1−QX)X

= cos2
(π

2
t
)
X2 + sin2

(π
2
t
)

(1−QX)2.

The operator QX is a projection onto kerX . The path t 7→ Y QX +Xt gives an
operator homotopy from V (X,Y ) to W2(X,Y ). Indeed:

QXXt = cos
(π

2
t
)
QXX︸ ︷︷ ︸

0

+ sin
(π

2
t
)
QXY0(1 −QX) ∈ K(H).

Recall that V (X,Y ) = X + (1 −X2)
1
2 Y . Thus for

t = 0 : Y QX +Xt = Y Qx +X ∼ V (X,Y ),

t = 1 : Y QX + Y0(1−QX) = W2(X,Y ).

5.4 The index pairing

Proposition 5.17 (odd case). Let A be a unital C*-algebra and suppose given

1. an ungraded unital Fredholm module (ρ,H, F ) over A,

2. a unitary u in a matrix algebra Mk(A) over A.

Let Pk = 1 ⊗ 1
2 (1 + F ) : Hk → Hk and U = (1 ⊗ ρ)(u) : Hk → Hk be a unitary

operator. Then:

1. the operator W := PkUPk − (1−Pk) : Hk → Hk is essentially unitary, so
Fredholm.

2. The Fredholm index of W = PkUPk−(1−Pk) depends only on [U ] ∈ K1(A)
and [P ] ∈ K1(A). This index gives a pairing

K1(A)×K1(A)→ Z

([u], [F ]) 7→ Index(PkUPk − (1 − Pk)).
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Assume that F 2 = 1 so that Pk is a projection. ThenHk = imPk⊕im(1−Pk)
and W = PkUPk ⊕ (−Id) with respect to this decomposition. The second
summand has index zero, and this is precisely the pairing that was defined
before.

By definition of Fredholm module Pk and U commute modulo compacts
K(Hk) and

W ∗W ∼ PkU∗UPk + (1− Pk) ∼ 1.

Thus W ∗W ∼ 1 and similarly WW ∗ ∼ 1. The map ([u], [F ]) 7→ IndexW is
additive and stable under compact perturbations and homotopies.

Proposition 5.18 (even case). Let (ρ,H, F ) be a graded unital Fredholm module
over A and let p ∈ Mk(A) be a projection. Put P = 1 ⊗ ρ(p) : Hk → Hk
(projection) and write

F =

(
0 v
u 0

)

relative to the graded decomposition H = H+ ⊕H−. Then

1. the operator P (1⊗u)P : P (Cn⊗H+)→ P (Cn⊗H−) is essentially unitary
and so Fredholm.

2. the pairing
(p, F ) 7→ IndexP (1⊗ u)P

depends only on the K-theory class of [p] and K-homology class of (ρ,H, F ).

Example 5.19. Let α : A→ C be a *-homomorphism. Define (ρ,H, F ) by H =
C⊕ 0, ρ = α⊕ 0, F = 0. The index pairing with this Fredholm module gives a
homomorphism iα : K0(A)→ Z which by definition sends a projection p to the
index of the zero operator 0 : imα(p) → 0, hence the index pairing gives the
same map as

α∗ : K0(A)→ K0(C).

Theorem 5.20. Let J be an ideal in a separable C*-algebra A for which the
quotient map A → A/J is semi-split. We denote by ∂0, ∂1 the connecting ho-
momorphisms in K-theory and by ∂0, ∂1 the connecting homomorphisms in K-
homology.

If x ∈ K0(A/J) and y ∈ K1(J) then

〈∂0x, y, y〉 = −〈x, ∂1y〉.

If x ∈ K1(A/J) and y ∈ K0(J) then

〈∂1x, y〉 = 〈x, ∂0y〉.

Proof. The six term exact sequences in K-theory and K-homology:

K0(J) // K0(A) // K0(A/J)

∂0��
K1(A/J)

∂1

OO
K1(A)oo K1(J)oo
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K0(A/J) // K0(A) // K0(J)

∂0��
K1(J)

∂1

OO
K1(A)oo K1(A/J)oo

We shall assume that A/J is unital. The strategy is to construct a Schrödinger
operator V and show using two diefferent deformation arguments that

IndexV = 〈∂0,1x, y〉,
IndexV = ∓〈x, ∂1,0y〉

Case 1.

Step 1. Suppose we are given a short exact sequence of separable C*-algebras

0→ J → A→ A/J → 0.

Let (ρ,H, F ) be an ungraded Fredholm module for J . Let p ∈
Mk(A/J) be a projection and let a ∈Mn(A) be a lift of p. Then

X = (1⊗ ρ)(2a− 1), Y = 1⊗ F

form a Schrödinger pair. If (ρ,H, F ) is a relative Fredholm module
for (A,A/J) then (X,Y ) is a strong Schrödinger pair. The map

(p, F ) 7→ IndexV (X,Y )

defines pairings
K0(A/J)⊗K1(J)→ Z

K0(A/J)⊗K1(A,A/J)→ Z

which are compatible with the excision isomorphism K1(A,A/J)
∼=−→

K1(J). For x ∈ K0(A/J), y ∈ K1(J) denote this pairing by x · y.

Step 2. x · y = −〈x, ∂1y〉.
Assume that x = [p] with p ∈ A/J (similar arguments works for
matrices) and y = [(ρ,H, F )].

∂1y =

[(
ψ,H⊕H′,

(
eiπF 0

0 −1

))]
,

where ψ : A/J → B(H ⊕ H′) is a representation obtained from a

completely positive section s : Ã/J → Ã by composing with ρ and
then applying Stinespring’s dilation.

Put

X̂ = ψ(2p− 1) ∈ B(H⊕H′), X̂ =

(
X11 X12

X21 X22

)
.

Then X11 = ρ(2a−1), a ∈ A is a lift of p ∈ A/J . This is the operator
which appears in the definition of Schrödinger pairing.

If Y = F then X = X11 and Y form a strong Schrödinger pair and
x · y = IndexV (X,Y ). Now

Ŷ =

(
Y 0
0 1

)
, X̂ =

(
X11 X12

X21 X22

)
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form a Schrödinger pair (not strong). Now

(X̂)2 = ψ((2p− 1)2) = 1

X12X21 = 1−X2
11 = 1−X2 ∈ ρ(J).

Furthermore X = ρ(2a− 1), and 2a− 1 lifts 2p− 1, (2p− 1)2 = 1, so
(2a − 1)2 = 1 + j, where j ∈ J . Now X2 = ρ((2a − 1)2) = 1 + ρ(j)
and we get the required compactness conditions from the definition
of Fredholm module. Indeed, 1− Y 2 = 1− F 2, so

(1− F 2)ρ(j) = (1− F 2)(1−X2) ∈ K(H).

Essentially the same calculation will show that

V (Ŷ , X̂) ∼
(
V (X,Y ) 0

0 1

)
.

By the proposition

IndexV (Ŷ , X̂) = IndexV (Y,X) = − IndexV (X,Y ) = −x · y.

If P bX = 1
2 (X̂ + 1) = ψ(p) then using the formula for ∂1y

〈x, ∂1y〉 = Index

((
eiπF 0

0 −1

)
P bX − (1− P bX)

)

= Index(eiπFP bX − (1− P bX))

= IndexW1(Ŷ , X̂).

But we have seen that Index(W1(Ŷ , X̂)) = Index(V (Ŷ , X̂)) so

〈x, ∂1y〉 = IndexW1(Ŷ , X̂) = Index(V (Ŷ , X̂)) = Index(V (X,Y )) = −x·y.

Step 3. As before, assume that a projection p ∈ A/J has a lift to a self adjoint
a ∈ A, and that y is represented by (ρ,H, F ). Put X := ρ(2a− 1),
Y := F . The boundary map in K-theory gives

∂0x = [e2πia] ∈Mk(J̃).

The index pairing is

〈∂0x, y〉 = Index((1 ⊗ ρ)e2πiaPY + (1− PY )),

where PY = 1
2 (1+Y ). Put T := −e−iπXPY +(1−PY ) = −W1(X,Y ).

Then

〈∂0x, y〉 = Index(T ) = Index(W1(X,Y )) = Index(V (X,Y )) = x · y,

so
〈∂0x, y〉 = −〈x, ∂1y〉.

Case 2.
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Step 1. In the graded case take a short exact sequence

0→ J → A→ A/J → 0

and a graded Fredholm module (ρ,H, F ) for (A,A/J). Let u ∈
Mn(A/J) be a unitary matrix and a ∈Mn(A) a lift of u to A. Then

X =

(
0 (1 ⊗ ρ)(a∗)

(1 ⊗ ρ)(a) 0

)
, Y =

(
1⊗ F 0

0 −1⊗ F

)

on a graded Hilbert space Cn⊗H⊕Cn⊗Hop form a strong Schrödinger
pair. Furthermore

(u, F ) 7→ Index(V (X,Y ))

defines a bilinear pairing K1(A/J)×K0(A,A/J)→ Z denoted again
by x · y.

Step 2. For x ∈ K1(A/J), y ∈ K0(A,A/J) we have x · y = 〈x, ∂0y〉. Assume
that y = [(ρ,H, F )] is a graded relative module for K0(A,A/J). Use
the descritption of boundary map ∂0 : K0(J)→ K1(A/J), so assume
that (ρ,H, F ) is paritally isometric i.e. Q := 1 − F 2 is a projection
with graded components Q±. Then ∂0[y] = [Q+]− [Q−].

Assume that u is a unitary in A/J representing x. Define

X :=

(
0 ρ(a∗)

ρ(a) 0

)
, Y :=

(
F 0
0 −F

)

onH⊕Hop. Then by definition x·y = Index(V (X,Y )) = Index(V (Y,X)).
Put

QY := 1− Y2 =

(
Q 0
0 Q

)
.

The operator X0 =

(
0 1
1 0

)
is odd and commutes modulo compacts

with Y 2. By Lemma 6.10 for W2(Y,X) := XQY +X0(1−QY )

Index(V (Y,X)) = Index(W2(Y,X)) = 〈x, [Q+]〉−〈x, [Q−]〉 = 〈x, ∂0y〉.

Step 3. Assume that A is unital. Let y ∈ K0(A,A/J) be represented by a
graded relative Fredholm module (ρ,H, F ), and x ∈ K1(A/J) rep-
resented by a unitary u ∈ A/J . Then u lifts to a partial isometry
a ∈ A. Put

X :=

(
0 ρ(a∗)

ρ(a) 0

)
, Y :=

(
F 0
0 −F

)
.

Then x · y = Index(V (X,Y )), and

QX := 1−X2 =

(
ρ(1− a∗a) 0

0 ρ(1− aa∗)

)

is a projection onto kerX . We have furthermore

V (X,Y ) = X + (1−X2)Y = (1−QX)X(1−QX) +QXY QX ,
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Index(V (X,Y )) = Index(QXY QX).

Using the boundary formula for the boundary map in K-theory

∂1x = [1− a∗a]− [1− aa∗] ∈ K0(J)

we get
Index(QXY QX) = 〈∂1x, y〉.

5.5 Product of Fredholm operators

The construction of the index pairing by means of Schrödinger operators is a
special case of the Kasparov product.

Let F1, F2 be graded Fredholm operators, Fi =

(
0 U∗i
Ui 0

)
, on a graded

Hilbert spaces H1, H2. A graded Fredholm operator F on H1⊗̂H2 (graded
Hilbert space product) is aligned with Fi if F (Fi⊗̂1) + (Fi⊗̂1)F ≥ 0 modulo
compacts.

Proposition 5.21. Let Fi be graded Fredholm operator on Hi, i = 1, 2. There
exist graded Fredholm operators on H1⊗̂H2 which are simultaneously aligned
with F1 and F2. Any two such operators have the same index.

Proof. Define F ∈ B(H1)⊗B(H2) by F := F1⊗̂1 + 1⊗̂F2. Then

F (Fi⊗̂1) + (Fi⊗̂1)F = 2(F 2
i ⊗ 1) ≥ 0,

so F is aligned with both F1, F2. Moreover

Index(F ) = Index(F1) · Index(F2),

so F is a good model for the product of Fi, but we need F 2 − 1 ∼ 0.

Lemma 5.22. Let Fi are graded Fredholm operators on Hi, and Ni a positive
operators on H1⊗̂H2 such that

1. N2
1 +N2

2 = 1,

2. [Ni, Fj⊗̂1] ∼ 0, i, j = 1, 2,

3. Ni(Fi⊗̂1)2 ∼ Ni.

Then
F := N

1
2
1 (F1⊗̂1)N

1
2
1 +N

1
2
2 (1⊗̂f2)N

1
2
2

is an odd Fredholm operator aligned with F1, F2. Moreover F 2 ∼ 1.

Let (ρi,Hi, Fi) be graded Fredholm modules over C*-algebras Ai, i = 1, 2.
Define a representation of A1 ⊗A2 on B(H), H = H1⊗̂H2:

ρ : A1 ⊗A2 → B(H1 ⊗H2), ρ(a1 ⊗ a2) := ρ1(a1)ρ2(a2).
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We say that Fredholm module (ρ,H, F ) is aligned with (ρi,Hi, Fi) if

ρ(a)(F (Fi⊗̂1) + (Fi⊗̂1)F )ρ(a∗) ≥ 0 mod K(H)

for all a ∈ A1 ⊗ A2, and if ρ(a)F derives K(H1) ⊗ B(H2) for all a ∈ A1 ⊗ A2,
that is

[ρ(a)F,K1 ⊗ T2] ∈ K1(H1)⊗B(H2), ∀K1 ⊗ T2 ∈ K(H1)⊗B(H2).

Proposition 5.23. Let (ρi,Hi, Fi) be graded Fredholm modules over separable
C*-algebras A1 and A2. There exist Fredholm modules F which are aligned with
F1 and F2. Moreover the operator homotopy class of such an F is determined
uniquely by the operator homotopy classes of F1 and F2.

The hard part is to prove existence of such Fredholm modules.

Definition 5.24. The module F from the proposition is the product of F1 and
F2.
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Chapter 6

Equivariant KK-theory

6.1 K-homology revisited

K-homology was discussed in depth in Chapter 4; here we recall the main
points in a form that is suitable for our purposes and prepares the ground for
a discussion of equivariant K-homology, which will be our main objective here.
For more information see [b-b98] or [hr00].

Let A be a separable C*-algebra (A has a countable dense subset). We will
define generalized elliptic operators over A in the odd and even case.

Definition 6.1 (odd case). A generalized odd elliptic operator over A is a
triple (H, ψ, T ) such that

1. H is a separable Hilbert space,

2. ψ : A→ B(H) is a *-homomorphism,

3. T ∈ B(H)

and
T = T ∗, ψ(a)T − Tψ(a) ∈ K(H), ψ(a)(1− T 2) ∈ K(H)

for all a ∈ A.
We will denote the set of such triples by E1(A). If ϕ : A → B is a *-

homomorphism then there is an induced map

ϕ∗ : E1(B)→ E1(A), ϕ∗(H, ψ, T ) = (H, ψ ◦ ϕ, T ).

Example 6.2. S1 := {(t1, t2) ∈ R2 | t21 + t22 = 1}, A = C(S1), ψ : C(S1) →
B(L2(S1))

ψ(α)(u) = αu, α ∈ C(S1), u ∈ L2(S1),

(αu)(λ) = α(λ)u(λ), λ ∈ S1.

The Dirac operator D of S1 is −i ∂∂θ . If we take a basis {einθ}n∈Z of L2(S1),
then

D(einθ) =

(
−i ∂
∂θ

)
(einθ) = neinθ.
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Set T = D(I +DD)−
1
2 . Then

T (einθ) =
n√

1 + n2
einθ,

and (L2(S1), ψ, T ) ∈ E1(C(S1)).

We will define odd K-homology of A by

K1(A) := E1(A)/ ∼ (= KK(A,C)),

where the relation ∼ is homotopy, which is defined below.

Definition 6.3. Let ξ = (H, ψ, T ), η = (H′, ψ′, T ′) be elements of E1(A). We
say that ξ is isomorphic to η, ξ ∼= η if there exists a unitary operator U : H → H′
with commutativity in the diagrams

H U //
T �� H′

T ′��
H

U
// H′ H U //

ψ(a) �� H′

ψ′(a)��
H

U
// H′

for all a ∈ A.

Definition 6.4. We say that ξ = (H, ψ, T ), η = (H′, ψ′, T ′) ∈ E1(A) are strictly
homotopic if there exists a continuous function [0, 1]→ B(H), t 7→ Tt such that

1. T0 = T ,

2. for all t ∈ [0, 1], (H, ψ, Tt) ∈ E1(A),

3. (H, ψ, T1) ∼= (H′, ψ′, T ′).
Definition 6.5. We say that a generalized elliptic operator (H, ψ, T ) ∈ E1(A)
is degenerate if and only if

ψ(a)T − Tψ(a) = 0, ψ(a)(I − T 2) = 0, for all a ∈ A.

Definition 6.6. We say that ξ = (H, ψ, T ), η = (H′, ψ′, T ′) ∈ E1(A) are homo-
topic, ξ ∼ η, if and only if there exist degenerate generalized elliptic operators
ξ̃, η̃ with ξ ⊕ ξ̃ strictly homotopic to η ⊕ η̃.
Definition 6.7. The odd K-homology of a C*-algebra A is defined as the group
of homotopy classes of generalized odd elliptic operators,

K1(A) := E1(A)/ ∼ .

It is an abelian group with respect to

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

with inverse defined by

−(H, ψ, T ) = (H, ψ,−T ).

If ϕ : A→ B is a *-homomorphism, then there is an induced homomorphism of
abelian groups

ϕ∗ : K1(B)→ K1(A), ϕ∗(H, ψ, T ) = (H, ψ ◦ ϕ, T ).
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Now we will define even elliptic operators and K0(A). The discussion in
Chapter 4 presents a definition of the even K-homology in terms of graded
Hilbert spaces. Here we present an alternative definition that does not use
Z/2Z-grading. There is a canonical isomorphism of abelian groups between the
even K-homology defined in Chapter 4 and the group defined here.

Definition 6.8 (even case). A generalized even elliptic operator over A is a
triple (H, ψ, T ) such that

1. H is a separable Hilbert space,

2. ψ : A→ B(H) is a *-homomorphism,

3. T ∈ B(H)

and

ψ(a)T − Tψ(a) ∈ K(H), ψ(a)(1 − TT ∗) ∈ K(H), ψ(a)(1 − T ∗T ) ∈ K(H)

for all a ∈ A.
We will denote the set of such triples by E0(A).

Definition 6.9. The even K-homology of a C*-algebra A is the group of ho-
motopy classes of generalized even elliptic operators,

K0(A) := E0(A)/ ∼ .

It is an abelian group with respect to

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

with inverse defined by

−(H, ψ, T ) = (H, ψ,−T ).

If ϕ : A→ B is a *-homomorphism, then there is an induced homomorphism of
abelian groups

ϕ∗ : K0(B)→ K0(A), ϕ∗(H, ψ, T ) = (H, ψ ◦ ϕ, T ).

Note that the basic difference between the even and odd cases is that in the
odd case the operator T is self-adjoint and in the even case the operator T is
not required to be self-adjoint.

6.2 Equivariant K-homology of spaces

Definition 6.10. Let X be a Hausdorff topological space. Let G be a locally
compact Hausdorff topological group. Assume given a continuous action

G×X −→ X

of G on X. This action is proper if the following two conditions are satisfied:

1. The quotient space (with the quotient topology) X/G is Hausdorff.
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Part VI Equivariant K-homology of spaces

2. For each x ∈ X there exists (U,H, ρ) such that U is a G-invariant open
neighbourhood of x, H is a compact subgroup of G, and ρ : U → G/H is a
continuous G-equivariant map. (Here G/H is given the quotient topology.)

Let G and X be as in the above definition. Assume that the action of G
on X is proper. Given x ∈ X , choose (U,H, ρ) as in the above definition. Set
S = ρ−1(eH), where e is the identity element of G. Observe that S is preserved
by the action of H . Map G×H S to U by (g, s) 7→ gs. This is a G-equivariant
homeomorphism from G×H S onto U . Thus a proper G-space is locally induced
from an H-space, where H is a compact subgroup of G.

In the literature, there are various definitions of proper action. These defini-
tions are compared in [b-h03],[cem01]. For instance, another definition of proper
action is:

Definition 6.11. The action G×X → X is proper if and only if the map

G×X → X ×X, (g, x) 7→ (gx, x)

is proper. (For locally compact Hausdorff spaces a continuous map is proper if
and only if the preimage of any compact set is compact.)

All the various definitions of proper action agree if both the group G and
the space X are locally compact Hausdorff and second countable.

Examples 6.12.

1. Any (continuous) action by a compact group is proper.

2. If G acts simplicially on a simplicial complex X , then the action is proper
if and only if the vertex stabilizers are compact.

Let X be a locally compact space equipped with a proper action by a locally
compact group G.

Definition 6.13. A generalized elliptic G-equivariant operator on X is a triple
(U, π, F ) such that

• U is a unitary representation of G on a Hilbert space H (g 7→ Ug ),

• π is a *-homomorphism from C0(X) to B(H) which is covariant, that is

π(gf) = Ugπ(f)U∗g

for all f ∈ C0(X), where (gf)(x) = f(g−1x),

• F is a bounded self adjoint operator which is G-equivariant, that is UgF =
FUg, and

π(f)(F 2 − 1), [π(f), F ]

are compact for all f ∈ C0(X).

Definition 6.14. Two cycles α0 = (U0, π0, F0), α1 = (U1, π1, F1) are operator
homotopic, α0 ∼h α1, if and only if U0 = U1, π0 = π1 and there exists a path
t 7→ Ft, t ∈ [0, 1] such that αt = (U0, π0, Ft) is a generalized G- elliptic operator.

We say that α0, α1 are equivalent, α0 ∼ α1, if and only if there exist degen-
erate operators β0, β1 such that α0 ⊕ β0 ∼h α1 ⊕ β1, up to unitary equivalence.
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Part VI Equivariant K-homology of spaces

Definition 6.15. The equivariant K-homology groups of X are defined by

• KG
0 (X) = equivalence classes of Z/2Z-graded G- elliptic operators, that is

Ug =

(
U+
g 0
0 U−g

)
, π =

(
π+ 0
0 π−

)
, F =

(
0 p∗

p 0

)
,

• KG
1 (X) = equivalence classes of G- elliptic operators.

Remark 6.16. Kasparov uses a weaker form of homotopy. He allows the repre-
sentations to vary as well, but proves that the resulting theory is isomorphic to
the one defined here.

This construction is functorial with respect to G-equivariant proper maps
between G-spaces. If h : X → Y is such a map, then it induces h∗ : C0(Y ) →
C0(X), h∗(f) = f ◦ h. The induced map h∗ : KG

0 (X) → KG
0 (Y ) sends a cycle

(U, π, F ) over C0(X) to the cycle (U, π ◦ h∗, F ), so the theory is covariant.

Proposition 6.17 (Kasparov). If f, g : X → Y are proper G-homotopic maps,
then

f∗ = g∗ : KG
j (X)→ KG

j (Y ).

Example 6.18. Let X = R, G = Z act on X by translations (x,m) 7→ x+m. Let
H = L2(R), π a representation of C0(R) on L2(R) by pointwise multiplication.
The Fourier transform sends the unbounded operator D = −i ddt to the multipli-

cation by the dual variable λ on L1(R̂). Let F̂ be the operator of multiplication

by sign(λ) and let F be the operator obtained from F̂ by the inverse Fourier
transform (Hilbert transform)

(Ff)(x) =
1

π

∫ ∞

−∞

f(t)

x− tdt,

where the integral is considered in the sense of principal value. Then F 2 = 1,
FUn = UnF for all n ∈ Z, and [π(f), F ] is compact. This data gives a generator
for KZ

1 (R).

Example 6.19. Let G = {e}, the trivial one-element group, X = S1. Denote
en := e2πinθ. Define F by

F (en) =





en n > 0,

−en n < 0,

0 n = 0.

Then 1 − F 2 is a rank one projection onto the subspace of constant functions
in L2(S1). For f ∈ C(S1) define π(f) ∈ B(L2(S1)) by (πf)(u) = fu where for
u ∈ L2(S1)

(fu)(x) = f(x)u(x).

Let
A = {f ∈ C(S1) | [π(f), F ] is compact}.

Then A = C(S1). Indeed, [π(e1), F ] is an operator of rank 2, so A contains the
*-subalgebra generated by e1, which is the algebra of trigonometric polynomials,
and these are dense in C(S1).
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Part VI Equivariant K-homology of C*-algebras

The operator F is the sign of the unbounded operator D = −i ddθ , D(en) =
2πnen. That is

F = signD =
D

|D| on C⊥.

This data gives a generator for K1(S1). There is a descent map

KZ
j (R)→ Kj(S

1).

In degree one it sends the generator of KZ
1 (R) to the generator of K1(R) just

described.

Proposition 6.20. If G acts freely and properly then

KG
j (X) ∼= Kj(X/G) (= KKj(C0(X/G)),C)).

Proof. We shall outline the proof for the special case when the group G is
discrete. In this special case there is a (canonical) isomorphism

KG
j (X) ∼= KKj(C0(X) ⋊G,C),

which is an example of a descent map. Then use freeness to prove the Morita
equivalence

C0(X) ⋊G ∼Morita C0(X/G)

which gives an isomorphism

KKj(C0(X) ⋊G,C) ∼= KKj(C0(X/G)),C).

Example 6.21. If X = pt, and G is compact, then KG
0 (pt) is the additive group

of the representation ring R(G), and KG
1 (pt) = 0.

[U0]− [U1] ∈ R(G) 7→ (U0 ⊕ U1,C, 0) ∈ KG
0 (pt),

(U,C, F =

(
0 p∗

p 0

)
) 7→ IndexG(F ) = ker(p)− ker(p∗)

regarded as an element of R(G).

If Y is a Hausdorff topological space with proper G-action, then we define

KG
j (Y ) := lim

−→X⊂Y
KG
j (X),

where the limit is taken over the inductive system of G-compact subsets of
Y (i.e. with compact quotient X/G). This is G-equivariant K-homology with
G-compact supports.

6.3 Equivariant K-homology of C*-algebras

Let G be a locally compact Hausdorff second countable group, andH a separable
Hilbert space. Denote the set of unitary operators on H by

U(H) := {U ∈ B(H) | UU∗ = U∗U = I}
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Part VI Equivariant K-homology of C*-algebras

Definition 6.22. A unitary representation of G is a group homomorphism
π : G → U(H) such that for each v ∈ H the map G → H, g 7→ π(g)v is a
continuous map from G to H.

Definition 6.23. A G-C*-algebra is a C*-algebra A with a given continuous
action

G×A→ A

by automorphisms. The continuity condition is that for each a ∈ A the map
G→ A, g 7→ ga is a continuous map from G to A.

Example 6.24. Let X be a locally compact G-space. Then G acts on C0(X) by

(gα)(x) = α(g−1x), g ∈ G, α ∈ C0(X), x ∈ X.

This makes C0(X) a G-C*-algebra.

Let A be a (separable) G-C*-algebra.

Definition 6.25. A covariant representation of A is a triple (H, ψ, π) such that

• H is a separable Hilbert space,

• ψ : A→ B(H) is a *-homomorphism,

• π : G→ U(H) is a unitary representation of G,

• and
ψ(ga) = π(g)ψ(a)π(g−1)

for all g ∈ G, a ∈ A.

Definition 6.26. Equivariant odd K-homology K1
G(A) of a G-C*-algebra A is

the group of homotopy classes of quadruples (H, ψ, T, π), where (H, ψ, π) is a
covariant representation of A, and T ∈ B(H) is such that

T = T ∗,

π(g)T − Tπ(g) ∈ K(H),

ψ(a)T − Tψ(a) ∈ K(H),

ψ(a)(1 − T 2) ∈ K(H)

for all g ∈ G, a ∈ A.

E1
G(A) = {(H, ψ, π, T )},

K1
G(A) = {(H, ψ, π, T )}/ ∼ .

The equivalence relation ∼ is homotopy and will be precisely defined below.

Example 6.27. Let G = Z, X = R, A = C0(R). Consider the action by transla-
tions

Z× R→ R, (n, t) 7→ n+ t.

Let H = L2(R). Define ψ : A→ B(H) by

ψ(α)u = αu, αu(t) = α(t)u(t), α ∈ C0(R), u ∈ L2(R), t ∈ R.
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Part VI Equivariant K-homology of C*-algebras

The representation π : Z→ U(L2(R)) is defined by

(π(n)u)(t) := u(t− n).

As an operator on L2(R) we take −i ddx . It is not a bounded operator on L2(R),

but we can“normalize” it to obtain a bounded operator T . Since −i ddx is self-
adjoint, one can use the functional calculus, so that T can be taken to be the
function x√

1+x2
applied to −i ddx ,

T :=

(
x√

1 + x2

)
(−i d

dx
).

Equivalently, T can be constructed using Fourier transform. Let Mx be the
operator of “multiplication by x”

(Mxf)(x) = xf(x).

The Fourier transform converts −i ddx to Mx i.e., the diagram

L2(R)

−i d
dx �� F // L2(R)

Mx��
L2(R)

F // L2(R)

commutes, where F denotes the Fourier transform. LetM x√
1+x2

be the operator

of “multiplication by x√
1+x2

”. Then

(
M x√

1+x2
f

)
(x) =

x√
1 + x2

f(x),

and M x√
1+x2

is a bounded operator

M x√
1+x2

: L2(R)→ L2(R).

Now, T is the unique bounded operator T : L2(R) → L2(R) such that the fol-
lowing diagram commutes:

L2(R)

T �� F // L2(R)

M x√
1+x2��

L2(R)
F // L2(R)

Then
(L2(R), ψ, π, T ) ∈ E1

Z(C0(R)).

Definition 6.28. Equivariant even K-homology K0
G(A) of a G-C*-algebra A

is the group of homotopy classes of quadruples (H, ψ, T, π), where (H, ψ, π) is a
covariant representation of A, and T ∈ B(H) is such that

π(g)T − Tπ(g) ∈ K(H),

ψ(a)T − Tψ(a) ∈ K(H),

ψ(a)(1 − T ∗T ) ∈ K(H),

ψ(a)(1 − TT ∗) ∈ K(H)
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Part VI Kasparov’s bifunctor: KK-theory

for all g ∈ G, a ∈ A.

E0
G(A) = {(H, ψ, π, T )},

K0
G(A) = {(H, ψ, π, T )}/ ∼ .

The equivalence relation ∼ is homotopy and will be precisely defined below.

IfA, B areG-C*-algebras, and ϕ : A→ B is aG-equivariant *-homomorphism,
then ϕ∗ : EjG(B)→ EjG(A) for j = 0, 1 is given by

ϕ∗(H, ψ, π, T ) 7→ (H, ψ ◦ ϕ, π, T ).

Addition in Kj
G(A) is direct sum

(H, ψ, π, T ) + (H′, ψ′, π′, T ′) = (H⊕H′, ψ ⊕ ψ′, π ⊕ π′, T ⊕ T ′),

and the inverse is
−(H, ψ, π, T ) = (H, ψ, π,−T ).

6.4 Kasparov’s bifunctor: KK-theory

Definition 6.29. Let A,B be C*-algebras. An A-B-bimodule is a pair (E , ψ)
where E is a Hilbert B-module, and a *-homomorphism ψ : A→ L(E) is given.

Denote by E(A,B) the set of triples (E , ψ, F ), where (E , ψ) is an (A,B)-
bimodule, F ∈ L(E), and for all a ∈ A

ψ(a)(F 2 − 1) ∈ K(E), [ψ(a), F ] ∈ K(E).

The triple (E , ψ, F ) is degenerate if for all a ∈ A ψ(a)(F 2−1) = 0, [ψ(a), F ] = 0.
Denote by D(A,B) the set of degenerate triples.

The addition on E(A,B) is defined by

(E , ψ, F ) + (E ′, ψ′, F ′) = (E ⊕ E ′, ψ ⊕ ψ′, F ⊕ F ′).

A homotopy in E(A,B) is an element of E(A,B[0, 1]). In some sense it is a
map [0, 1] → E(A,B). A homotopy in which the bimodule (E , ψ) is fixed and
the operator F varies in a norm continuous way is called an operator homotopy.

Definition 6.30. The group KK(A,B) is defined to be the set of homotopy
classes in E(A,B) modulo degenerate elements.

The construction is functorial in both variables, that is

• If f : A1 → A2, (E , ψ, F ) ∈ E(A2, B), then (E , ψ ◦ f, F ) ∈ E(A1, B) and
this induces

f∗ : KK(A2, B)→ KK(A1, B).

• If g : B1 → B2, (E , ψ, F ) ∈ E(A,B1), then define ψ⊗ 1: A→ L(E ⊗g B2),

(ψ ⊗ 1)(a)(ξ ⊗ b) = ψ(a)ξ ⊗ b,

then (E ⊗g B2, ψ ⊗ 1, F ⊗ 1) ∈ E(A,B2). This induces

g∗ : KK(A,B1)→ KK(A,B2).
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Part VI Kasparov’s bifunctor: KK-theory

Let A be a C*-algebra, H a Hilbert module, u, v ∈ L(H). Denote

θu,v ∈ L(H), θu,v(ξ) = u〈v, ξ〉, θ∗u,v = θv,u.

The θu,v are the rank one operators on H [b-b98]. A finite rank operator on H
is any T ∈ L(H) such that T is a finite sum of θu,v.

T = θu1,v1 + θu2,v2 + . . .+ θun,vn .

The compact operators K(H) are defined as the norm closure in L(H) of the
space of finite rank operators. It is an ideal in L(H).

We say that H is countably generated if in H there is a countable (or finite)
set such that the A-module generated by this set is dense in H.

Let A,B be C*-algebras, ϕ : A → B a *-homomorphism, and H a Hilbert
A-module. We will define H⊗AB which will be a Hilbert B-module. First form
the algebraic tensor product H⊙A B. It is a right B-module

(h⊗ b)b′ = h⊗ bb′, h ∈ H, b, b′ ∈ B.

Now define B-valued inner product 〈−, −〉 on H⊙A B by

〈h⊗ b, h′ ⊗ b′〉 = b∗ϕ(〈h, h′〉)b′.

Set
N := {ξ ∈ H ⊙A B | 〈ξ, ξ〉 = 0}.

It is a B-submodule of H⊙A B, and H⊙A B/N is a pre-Hilbert B-module.

Definition 6.31. H⊗A B is the completion of H⊙A B/N .

Let A,B be separable C*-algebras, E1(A,B) = {(H, ψ, T )}, where H is a
countably generated Hilbert B-module, ψ : A → L(H) is a *-homomorphism,
T ∈ L(H) is such that

T = T ∗,

ψ(a)(I − T 2) ∈ K(H),

ψ(a)T − Tψ(a) ∈ K(H),

for all a ∈ A.
We say that (H0, ψ0, T0), (H1, ψ1, T1) ∈ E1(A,B) are isomorphic if there

exists an isomorphism of Hilbert B-modules Φ: H0 → H1 with

Φψ0(a) = ψ1(a)Φ, for all a ∈ A, ΦT0 = T1Φ.

Let A,B,D be separable C*-algebras, ϕ : B → D a *-homomorphism. There
is an induced map

ϕ∗ : E1(A,B)→ E1(A,D),

ϕ∗(H, ψ, T ) = (H⊗B D,ψ ⊗B I, T ⊗B I),

where I is the identity operator of D.
Consider two maps ρ0, ρ1 : C([0, 1], B) → B, ρ0(f) = f(0), ρ1(f) = f(1).

We say that (H0, ψ0, T0), (H1, ψ1, T1) ∈ E1(A,B) are homotopic if there exists
(H, ψ, T ) ∈ E1(A,C([0, 1], B)) with (ρj)∗(H, ψ, T ) ∼= (Hj , ψj , Tj).
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For the even case, consider E0(A,B) = {(H, ψ, T )}, where H is a countably
generated Hilbert B-module, ψ : A → L(H) is a *-homomorphism, and T ∈
L(H) is such that

ψ(a)T − Tψ(a) ∈ K(H),

ψ(a)(I − T ∗T ) ∈ K(H),

ψ(a)(I − TT ∗) ∈ K(H),

for all a ∈ A.

Definition 6.32. We define the KK-theory of A,B as

KK0(A,B) := E0(A,B)/ ∼,
KK1(A,B) := E1(A,B)/ ∼,

where the relation ∼ is homotopy. KKj(A,B) is an abelian group with addition
and additive inverse given by

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

−(H, ψ, T ) =

{
(H, ψ, T ∗) j = 0,

(H, ψ,−T ) j = 1.

Note that in both the even and the odd case the Hilbert B-module H is
not Z/2Z-graded. In Kasparov’s papers (??) the Hilbert B-module H is Z/2Z-
graded. The abelian groups defined here (i.e. without Z/2Z-grading on the
Hilbert B-module H) are isomorphic to the Kasparov groups. Without the
Z/2Z-grading the difference between the even and odd cases is that in the odd
case the operator T is self-adjoint, and in the even case the operator T is not
required to be self-adjoint.

6.5 Equivariant KK-theory

Let A be a G-C*-algebra.

Definition 6.33. A G-Hilbert A-module is a Hilbert A-module H with a given
continuous action G×H → H, (g, v) 7→ gv such that

g(u+ v) = gu+ gv

g(ua) = (gu)(ga)

〈gu, gv〉 = g〈u, v〉

for u, v ∈ H, g ∈ G, a ∈ A. Continuity here means that for each u ∈ H, g 7→ gu
is a continuous map G→ H.

Remark 6.34. If A = C then the action of G on C must be the trivial action,
because C has no nontrivial *-automorphisms. Thus if A = C a Hilbert A-
module is a Hilbert space together with a given unitary representation G →
U(H).
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Part VI Kasparov product

For each g ∈ G, denote by Lg the map Lg : H → H, Lg(v) = gv. Note that
Lg might not be in L(H). But if T ∈ L(H), then LgTL

−1
g ∈ L(H). Thus L(H)

is a G-C*-algebra with gT = LgTL
−1
g .

Example 6.35. If A is a G-C*-algebra, n positive integer. Then An is a G-Hilbert
A-module with g(a1, a2, . . . , an) = (ga1, ga2, . . . , an).

Let A,B be separable G-C*-algebras, E1(A,B) = {(H, ψ, T )}, where H is a
G-Hilbert B-module (countably generated), ψ : A→ L(B) is a *-homomorphism
with

ψ(ga) = gψ(a), g ∈ G, a ∈ A,
and T ∈ L(H) is such that

T = T ∗

gT − T ∈ K(H)

ψ(a)T − Tψ(a) ∈ K(H)

ψ(a)(I − T 2) ∈ K(H)

for all g ∈ G, a ∈ A.
In the even case we take E0(A,B) = {(H, ψ, T )}, where H is a G-Hilbert

B-module (countably generated), ψ : A→ L(B) is a *-homomorphism with

ψ(ga) = gψ(a), g ∈ G, a ∈ A,
and T ∈ L(H) is such that

gT − T ∈ K(H)

ψ(a)T − Tψ(a) ∈ K(H)

ψ(a)(I − T ∗T ) ∈ K(H)

ψ(a)(I − TT ∗) ∈ K(H)

for all g ∈ G, a ∈ A.

Definition 6.36. We define the equivariant KK-theory of A,B as

KK0
G(A,B) := E0(A,B)/ ∼

KK1
G(A,B) := E1(A,B)/ ∼

where the relation ∼ is homotopy. KKj
G(A,B) is an abelian group with addition

and additive inverse given by

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

−(H, ψ, T ) =

{
(H, ψ, T ∗) j = 0,

(H, ψ,−T ) j = 1.

6.6 Kasparov product

Theorem 6.37 (Kasparov). Let A,B,C be separable G-C*-algebras. Then
there is a biadditive pairing for i, j ∈ Z/2Z

KKi
G(A,B)×KKj

G(B,C)→ KKi+j
G (A,C)
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Part VI Kasparov product

If D is a separable G-C*-algebra, then there is the extension of scalars homo-
morphism

τD : KKi
G(A,B)→ KKi

G(A⊗D,B ⊗D)

and the descent homomorphism

jG : KKi
G(A,B)→ KKi(A⋊r G,B ⋊r G).
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Chapter 7

Topological applications

7.1 The Chern character

Let A be a C*-algebra with unit 1A. Consider the topological groups GL(n,A)
and embeddings

GL(n,A) →֒ GL(n+ 1, A)



a11 . . . a1n

...
...

an1 . . . ann


 7→




a11 . . . a1n 0
...

...
...

an1 . . . ann 0
0 . . . 0 1A




Each GLn(A) is topologized by the norm of A. Then

GL(A) = lim
−→n→∞

GL(n,A) =

∞⋃

n=1

GL(n,A)

with the direct limit topology. Define the K-theory groups

Kj(A) := πj−1(GL(A)), j = 1, 2, 3, . . . .

Bott periodicity states that Ω2 GL(A) ∼ GL(A) (see [b-r59]), so Kj(A) ∼=
Kj+2(A) for j = 0, 1, 2, . . .. Thus in fact we have two groups K0(A) and K1(A).
This formulation of Bott periodicity may appear a little different from the one
presented in 2.7, but is in fact equivalent to it.

If A is not unital, then we can adjoin a unit,

0→ A→ Ã→ C→ 0

and define

K0(A) := ker(K0(Ã)→ K0(C)),

K1(A) := K1(Ã).

If ϕ : A→ B is a *-homomorphism, then there is an induced homomorphism of
abelian groups Kj(A)→ Kj(B).

Example 7.1. C is a C*-algebra, ‖λ‖ = |λ|, λ∗ = λ̄.
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Theorem 7.2 ([b-r59]).

Kj(C) =

{
Z j even

0 j odd

Theorem 7.3 ([b-r59]).

πj(GL(n,C)) =

{
0 j even

Z j odd

for j = 0, 1, . . . , 2n− 1.

For a locally compact Hausdorff topological space one defines a topological
K-theory with compact supports (Atiyah-Hirzebruch)

Kj(X) := Kj(C0(X)).

If X is compact Hausdorff then K0(X) is the Grothendieck group of complex
vector bundles on X .

There is the Chern character [h-f56]

ch: Kj(X)→
⊕

l

Hj+2l
c (X ; Q), j = 0, 1.

Theorem 7.4. For any locally compact Hausdorff topological space X

ch: Kj(X)→
⊕

l

Hj+2l
c (X ; Q)

is a rational isomorphism, i.e.

ch: Kj(X)⊗Z Q→
⊕

l

Hj+2l
c (X ; Q)

is an isomorphism for j = 0, 1.

As the target for the Chern character, we can use Čech cohomology, Alexander-
Spanier cohomology or representable cohomology (all with compact supports).
Note that it is the direct sum, not the direct product, of the cohomology groups
which is used.

7.2 K-theory of the reduced group C*-algebra

We recall that a representation of C*-algebra A is a *-homomorphism

ϕ : A→ B(H),

where H is a Hilbert space.
An imprecise and heuristic point of view on the reduced C*-algebra C∗r (G)

of a locally compact group G is that there exists a locally compact Hausdorff
topological space Ĝr. The space Ĝr has one point for each distinct (i.e., non-
equivalent) irreducible unitary representation of G which is weakly contained in

the (left) regular representation of G. The space Ĝr is known as the support of
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Part VI K-theory of the reduced group C*-algebra

the Plancherel measure or the reduced unitary dual of G. We remark that the
space of non-equivalent unitary representations of G which are weakly contained
in the left regular representation of G is canonically bijective to the space of
distinct irreducible representations of C∗r (G). The K-theory K∗(C∗rG) can be

viewed as the topological K-theory with compact supports of Ĝr.

Example 7.5. For G = SL(2,R) we have Ĝr:

∗ ∗∗ ∗ ∗ ∗ ∗ ∗ . . .

If a compact group G acts on C by a C*-automorphisms, then it must
act trivially, since C has no nontrivial *-automorphisms. We will prove the
following:

Theorem 7.6. For a compact group G there is an isomorphism

K0(C∗r (G)) ∼= R(G).

The key element in the proof is the Peter-Weyl theorem:

Theorem 7.7 (Peter-Weyl). If G is a compact, Hausdorff, second countable
topological group, then every irreducible unitary representation of G is finite
dimensional.

Proof. Let ρ : G→ U(H) be an irreducible representation on a separable Hilbert
space H. Choose a projection p on H, p 6= 0, p = p∗ with finite dimensional
range. Let

T :=

∫

G

ρ(g)pρ(g)∗dg,

where dg is a Haar measure. Then

• T commutes with ρ(g) for all g ∈ G,

• T = T ∗, T ≥ 0, T 6= 0,

• T is compact operator, T ∈ K(H).

The structure theorem for compact selfadjoint positive operators gives

sp(T ) := {an ∈ R | an → 0},

where each an is an eigenvalue with finite dimensional eigenspace. In particular
any compact nonzero selfadjoint operator has a finite dimensional eigenspace.
For T this eigenspace has to be preserved by the group action, so ρ has to be
finite dimensional if it is irreducible.

Proof. (of Theorem 7.6) Notice that for a compact group C∗r (G) = C∗(G) (there
is only one C*-algebra for a compact group). Second countability of G implies
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that the irreducible unitary representations of G (up to equivalence) form a
countable set. There is a C*-isomorphism

C∗(G) ∼=
⊕

σ∈Irrep(G)

Aσ,

where each Aσ is a finite dimensional C*-algebra, which is isomorphic to Mn(C),
n = dimσ. Hence

Kj(C
∗(G)) ∼=

⊕

σ∈Irrep(G)

Kj(Aσ)︸ ︷︷ ︸
Kj(C)

∼=
{

R(G) for j = 0,

0 for j = 1.

7.3 Reduced crossed product

Let A be a G-C*-algebra. Denote

Cc(G,A) = {f : G→ A | f is continuous and has compact support}

Then Cc(G,A) is an algebra with operations

(f + h)(g) = f(g) + h(g)

(fλ)(g) = f(g)λ

(f ∗ h)(g0) =

∫

G

f(g)[gh(g−1g0)]dg

for g, g0 ∈ G, λ ∈ C. The operation ∗ is the twisted convolution. There is an
injection of algebras Cc(G,A)→ L(L2(G,A)).

f 7→ Tf , Tf (u) = f ∗ u

(f ∗ u)(g0) =

∫

G

f(g)(gu(g−1g0))dg.

Definition 7.8. The reduced crossed product C*-algebra Cr(G,A) is the com-
pletion of Cc(G,A) in L(L2(G,A)) with respect to the norm ‖f‖ = ‖Tf | (see
[p-g79]).

Example 7.9. Let G be a finite group and A a G-C*-algebra. Give G the Haar
measure in which every element has mass 1. Then

C∗r (G,A) = {
∑

γ∈Γ

aγ [γ] | aγ ∈ A}
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with the following operations


∑

γ∈Γ

aγ [γ]


+


∑

γ∈Γ

bγ [γ]


 =

∑

γ∈Γ

(aγ + bγ)[γ]

(aγ [γ])(bβ [β]) = aγ(γbβ)[γβ]

∑

γ∈Γ

aγ [γ]



∗

=
∑

γ∈Γ

(γ−1a∗γ)[γ−1]

λ


∑

γ∈Γ

aγ [γ]


 =

∑

γ∈G
(λaγ)[γ]

for γ ∈ G, λ ∈ C.

Let X be a locally compact G-space. Then C0(X) is a G-C*-algebra with

(gf)(x) = f(g−1x), f ∈ C0(X), g ∈ G, x ∈ X.

We will denote C∗r (G,C0(X)) by C∗r (G,X). We ask about the K-theory of
this C*-algebra. If G is compact, then Kj(C

∗
r (G,X)) is the Atiyah-Segal group

Kj
G(X), j = 0, 1. Hence for G non-compact Kj(C

∗
r (G,X)) is the natural exten-

sion of the Atiyah-Segal theory to the case when G is non-compact.
We say that the G-space is G-compact if and only if the quotient space X/G

is compact. If X is a proper G-compact G-space, then an equivariant C-vector
bundle E on X determines an element [E] ∈ K0(C∗r (G,X)).

Theorem 7.10 (W. Lück, B. Oliver [lo01]). If Γ is a (countable) discrete group
and X is a proper Γ-compact Γ-space, then K0(C∗r (Γ, X)) is the Grothendieck
group of Γ-equivariant C-vector bundles on X.

7.4 KK0
G(C, C)

If G is a compact group then EG = pt and K0(C∗r (G)) = R(G) - the represen-
tation ring of G. We obtain R(G) as the Grothendieck group of the category of
finite dimensional (complex) representations of G. It is a free abelian group with
one generator for each distinct (i.e. nonequivalent) irreducible representation of
G.

Theorem 7.11. For a compact group G there is an isomorphism

KK0
G(C,C) ∼= R(G).

Proof. Given (H, ψ, T, π) ∈ E0
G(C) within the equivalence relation on E0

G(C) we
may assume that

Tπ(g)− π(g)T = 0, (7.1)

because we can average T over the compact group G

T ′ :=
∫

G

π(g)Tπ(g)∗dg = 0,
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T − T ′ = T −
∫

G

π(g)Tπ(g)∗dg

=

∫

G

(T − π(g)Tπ(g)∗)dg ∈ K(H),

because
∫
G
Tdg = T since we normalize Haar measure.

Furthermore we can assume that

ψ(λ) = λId. (7.2)

Indeed, ψ : C → B(H) is a *-homomorphism, and ψ(1) is a selfadjoint projec-
tion. For all λ ∈ C

ψ(λ) = λψ(1), p := ψ(1).

H splits into pH⊕ (1− p)H, and

Tp− pT ∈ K(H),

T (1− p)− (1− p)T ∈ K(H).

Compare T to pTp⊕ (1− p)T (1− p), to see that on (1− p)H ψ is 0.
The only nontrivial condition on (H, ψ, T, π) is

I − T ∗T ∈ K(H),

I − TT ∗ ∈ K(H).

These conditions imply that T is Fredholm, that is

dimC(kerT ) <∞,
dimC(cokerT ) <∞.

The spaces kerT and cokerT are finite dimensional representations of G. We
have

µ(H, ψ, T, π) = kerT − cokerT ∈ R(G).

First we will prove the surjectivity of the map KK0
G(C,C) → R(G). Let V ∈

R(G) be a finite dimensional irreducible unitary representation. Consider the
countable direct sums

⊕
V and

⊕
π. Let T be the shift

(v1, v2, . . .) 7→ (v2, v3, . . .).

Then kerT = V (first copy), and cokerT = 0.
Given (H, ψ, T, π) ∈ E0

G(C), we can assume as above that Tπ(g)−π(g)T = 0
for all g ∈ G and that ψ(λ) = λ Id for all λ ∈ C. The Hilbert space H is
canonically a direct sum of isotypical components of π. Consider one isotypical
component; this is of the form V ⊗U , where V is an irreducible representation of
G and U is a Hilbert space. Choosing an orthonormal basis for U , we have that
the isotypical component is of the form V ⊕V ⊕V . . . . With respect to this direct
sum decomposition, the operator T is a matrix of operators. However, each of
these operators is an intertwining operator for the irreducible representation V
and therefore, by Schur’s lemma, is a complex number. In other words, the
restriction of T to the isotypical component is of the form Id ⊗ F , where Id is
the identity operator of V , and F is a Fredholm operator on U . The Theorem
now follows from the well known proposition that two Fredholm operators on a
Hilbert space are homotopic (through Fredholm operators) if and only if they
have the same index.
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7.5 Topological K-theory of Γ

Let Γ be a (countable) discrete group. Consider pairs (M,E) such that M is a
C∞-manifold without boundary, with a given smooth proper co-compact action
of Γ and a given Γ-equivariant Spinc-structure, and E is a Γ-equivariant vector
bundle on M . We introduce an equivalence relation on such pairs [bd82], which,
by definition, is the equivalence relation ∼ generated by the three elementary
moves

• Bordism,

• Direct sum - disjoint union,

• Vector bundle modification.

Then we define the topological K-theory of Γ as

Ktop
0 (Γ)⊕Ktop

1 (Γ) = {(M,E)}/ ∼ .

Addition will be disjoint union

(M,E) + (M ′, E′) = (M ∪M ′, E ∪ E′).

The main result of this section is:

Theorem 7.12 (P. Baum, N. Higson, T. Schick [bhs07]). There is a natural
isomorphism of abelian groups

τ : Ktop
j (Γ)→ KΓ

j (EΓ)

for j = 0, 1.

We now describe the equivalence relation ∼ in detail. We say that (M,E) is
isomorphic to (M ′, E′) if and only if there exist a Γ-equivariant diffeomorphism
ψ : M → M ′ preserving the Γ-equivariant Spinc-structures on M , M ′ with
ψ∗E′ ∼= E. Then the three elementary moves, which by definition generate the
relation, can be described as follows.

• Bordism: we say that (M0, E0) is bordant to (M1, E1) if and only if there
exists (W,E) such that

1. W is a C∞-manifold with boundary, with a given smooth proper
co-compact action of Γ;

2. W has a given Γ-equivariant Spinc-structure;

3. E is a Γ-equivariant vector bundle on W ;

4. (∂W,E|∂W ) ∼= (M0, E0) ∪ (−M1, E1).

• Direct sum - disjoint union: if E,E′ are Γ-equivariant vector bundles on
M , then

(M,E) ∪ (M,E′) ∼ (M,E ⊕ E′).

701



Part VI The Baum-Connes conjecture

• Vector bundle modification: let F be a Γ-equivariant Spinc vector bundle
on M . Assume that for every fiber Fp we have dimR(Fp) = 0 mod 2.
Consider the one-dimensional Γ-equivariant trivial bundle 1 = M × R,
γ(p, t) = (γp, t). Let S(F ⊕ 1) be the unit sphere bundle of F ⊕ 1. F ⊕ 1
is a Γ-equivariant Spinc vector bundle with odd dimensional fibers. Let Σ
be the spinor bundle for F ⊕ 1

π : Cl(Fp ⊕ R)⊗ Σp → Σp.

Decompose π∗Σ = β+ ⊕ β−. Then

(M,E) ∼ (S(F ⊕ 1), β+ ⊗ π∗E).

In the bordism elementary move we are using the standard fact that if W is
a Spinc-manifold with boundary ∂W then, in a canonical way, ∂W is again a
Spinc-manifold, i.e., ∂W ‘inherits’ a Spinc-structure from the Spinc-structure of
W .

In the vector bundle modification elementary move S(F ⊕ 1) is given the
Spinc-structure determined by the Spinc-structure of M and the Spinc-vector
bundle F .

7.6 The Baum-Connes conjecture

Let G be a locally compact, Hausdorff, second countable (the topology of G has
a countable base) group. Examples are:

• Lie groups with π0(G) finite - SL(n,R),

• p-adic groups - SL(n,Qp),

• adelic groups - SL(n,A),

• discrete groups - SL(n,Z).

For a group G we have the reduced C*-algebra of G, denoted by C∗rG. The
problem is to compute its K-theory Kj(C

∗
rG), j = 0, 1 [bch93].

Conjecture 3 (P. Baum - A. Connes). For all locally compact, Hausdorff,
second countable groups G

µ : KG
j (EG)→ Kj(C

∗
rG)

is an isomorphism for j = 0, 1.

In the previous part, the reduced C*-algebra was defined in the context of
discrete groups; for convenience, we recall here the definition of this algebra for
locally compact groups.

Example 7.13. Let G be a locally compact Hausdorff second countable topolog-
ical group. Fix a left-invariant Haar measure dg for G, that is for all continuous
f : G→ C with compact support

∫

G

f(γg)dg =

∫

G

f(g)dg
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Part VI The Baum-Connes conjecture

for all γ ∈ G.
Let L2G be the following Hilbert space

L2G = {u : G→ C |
∫

G

|u(g)|2dg <∞}

〈u, v〉 =

∫

G

u(g)v(g)dg, u, v ∈ L2G.

Let L(L2G) be the C*-algebra of all bounded operators T : L2G→ L2G. Let

CcG = {f : G→ C | f is continuous, and has compact support}.

Then CcG is an algebra

(λf)g = λ(fg), λ ∈ C, g ∈ G
(f + h)g = fg + hg

(f ∗ h)g0 =

∫

G

f(g)h(g−1g0)dg, g0 ∈ G.

There is an injection of algebras

0→ CcG→ B(L2G)

given by f 7→ Tf , Tf (u) = f ∗ u, u ∈ L2G,

(f ∗ u)g0 =

∫

G

f(g)u(g−1g0)dg, g0 ∈ G.

Define the reduced C*-algebra C∗rG of G as the closure of CcG ⊂ B(L2G) in the
operator norm. C∗rG is a sub-C*-algebra of B(L2G).

We will also need the following commutative C*-algebra of functions on a
locally compact space.

Example 7.14. Let X be a locally compact Hausdorff topological space, and
X+ = X ∪ {p∞} its one-point compactification. Define

C0(X) := {α : X+ → C | α is continuous, α(p∞) = 0},

‖α‖ = sup
p∈X
|α(p)|, α∗(p) = α(p).

with operations

(α+ β)(p) = α(p) + β(p),

(αβ)(p) = α(p)β(p),

(λα)(p) = λα(p), λ ∈ C.

If X is compact, then

C0(X) := C(X) = {α : X → C | α is continuous},

Definition 7.15. A subalgebra A of B(H) is a C*-algebra of operators if and
only if
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1. A is closed with respect to the operator norm.

2. If T ∈ A, then the adjoint operator T ∗ ∈ A.

The Gelfand-Naimark theorem (see Theorem 1.8) asserts that any C*-algebra
is isomorphic, as a C*-algebra, to a C*-algebra of operators. In particular, let
A be a commutative C*-algebra. Then A is (canonically) isomorphic to C0(X)
where X is the space of maximal ideals of A. Thus a non-commutative C*-
algebra can be viewed as a ”noncommutative locally compact Hausdorff topo-
logical space”.

We have an equivalence of the following categories

• Commutative C*-algebras. The set of morphisms between two commuta-
tive algebras A and B is the set of all ∗-homomorphisms φ : A→ B;

• Locally compact Hausdorff topological spaces with morphisms from X to
Y being continuous maps f : X+ → Y + with f(p∞) = q∞. Here X+, Y +

are the one-point compactifications of X , Y , and p∞, q∞ are the points
at infinity. Note that f : X+ → Y + is not required to map X to Y .

The functor which which gives the equivalence of categories assigns to any
locally compact Hausdorff topological space X the C*-algebra C0(X). This
functor reverses the direction of morphisms and so, strictly speaking, is an
equivalence of categories between the category of commutative C*-algebras and
the opposite category to the category of locally compact Hausdorff topological
spaces.
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Introduction

Galois theory appears in mathematics as a part of algebra - theory of field
extensions, and topology - theory of coverings.

Finite field extensions ))SSSSSSSSSSSSSSS Coverings of spacesuukkkkkkkkkkkkkk
Galois theoryuukkkkkkkkkkkkkkk ))SSSSSSSSSSSSSS

Categorical ))SSSSSSSSSSSSSSSSSS Noncommutativeuukkkkkkkkkkkkkkkkk
?

The categorical and noncommutative approach to Galois theory meet at a place
which will be described in the rest of the lectures.

0.7 Principal actions and finite fibre bundles

Let X be a set with group action X ×G→ X , that is

(xg)g′ = x(gg′), xe = x, for all a ∈ X, g, g′ ∈ G, e ∈ G a unit.

There is a map

F : X ×G→ X ×X
(x, g) 7→ (x, xg)

We say that the action is free if F is injective.

(F (x, g) = F (y, g))⇐⇒ (x = y ∧ xgh−1 = y)

Example 0.16. Kronecker foliation on the 2-torus T2 × R→ T2.

If the action is free, then the image of F is X ×X/G X . If x, y belong to the
same orbit in X/G, then there is a unique g ∈ G such that y = xg. We can
define a translation map

τ̂ : X ×X/G X → G

(x, y) 7→ g such that xg = y.

We can view τ̂ as an ”inverse” of F on the image.
Properties of τ̂
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• τ̂(xg, yh) = g−1τ̂(x, y)h

• xτ̂ (x, y) = y

• τ̂(x, y)τ̂ (y, z) = τ̂(x, z)

• τ̂(x, y)−1 = τ̂(y, x)

Assume from now on that X × G → X is continuous. Then F is continuous.
If the action is free, then there exists τ̂ but it need not be continuous (for
example Kronecker foliation). The translation map is always continuous if X =
G̃ - topological group, and G is a closed subgroup of G̃ and the action is by
multiplication. Then τ̂(x, y) = x−1y.

Example 0.17. Palais foliation of R2. The action of R is by the flow of vertically
invariant and unit vector field

(x, y) 7→ (cos(x), sin(x)).

It is free, locally trivial, τ̂ is continuous but it is not proper (the quotient map
is not Hausdorff).

Definition 0.18. A continuous map X
f−→ Y is proper if for all Z the map

X ×X (f,id)−−−→ Y × Z is closed.

If X is Hausdorff and Y is locally compact Hausdorff then f is proper if
and only if for all compact K ⊆ Y the preimage f−1(K) is compact. Action
is called proper if F is proper. If G is compact, its action is always proper,
F−1(X,XG) = X ×G.

Proposition 0.19. Let X ×G→ X be free and continuous. It is proper if and
only if τ̂ is continuous and X ×X/G X is closed in X ×X.

Cartan equality:
principal = free + proper.

A triple (X,π,M), where X
π−→M is a continuous surjection is called a bundle.

Any continuous group action yields a bundle (X,π,X/G).

Definition 0.20. A principal bundle is a quadruple (X,π,M,G) such that

1. (X,π,M) is a bundle, and G is a topological group acting continuously on
X from the right.

2. The action of G on X is principal (i.e. free and proper).

3. π(x) = π(y) if and only if there exists g ∈ G such that y = xg (the fibres
are the orbits of G).

4. The induced map X/G→M is a homomorphism.
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0.8 Compact principal bundles as principal co-
module algebras

Definition 0.21. An H-comodule algebra P (existence of S−1 is assumed) is
principal if

1. The canonical map

can: P ⊗ P → P ⊗H
p⊗ q 7→ (p⊗ 1)∆R(q) = pq(0) ⊗ q(1)

is bijective (Galois condition).

2. For
P coH := {p ∈ P | ∆R(p) = p⊗ 1}

there exists s ∈ HomH
P coH (P, P coH ⊗ P ) such that ms = id (equivariant

projectivity).

There are known correspondences

(A)

Compact coverings ∼= Commutative principal C*-comodule algebras

P = C(X), H = C(G), P coH = C(X/G)

∆R(p)(x, g) = p(xg).

(B)

Compact U(1)-principal bundles ∼= Commutative unital C*-algebras C(X)

such that the C[Z]-comodule algebra

P := {f ∈ C(X) | ∆R(f) ∈ C(X)⊗alg C[Z]}
⊆ C(U(1)).

Conjecture 4. There is a correspondence

Compact principal bundles ∼= Commutative unital C*-algebras C(X)

such that O(G)-comodule algebra

P := {f ∈ C(X) | ∆R(f) ∈ C(X)⊗alg O(G)} is principal.

Principality of P implies principality of X , but the converse is an open problem.
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Chapter 1

Galois theory

Galois theory is a language to speak about various phenomena in algebra, arith-
metic and geometry. It helps to deal with the problems of solving polynomial
equations and possibility of geometric constructions.

1.1 Fields

Definition 1.1. A field F is an abelian group (addition) such that the set F∗ =
{x ∈ F | x 6= 0} is equipped with a structure of an abelian group (multiplication)
which distributes over addition.

Definition 1.2. A field F is a commutative ring without nontrivial ideals.

Definition 1.3. A field F is a commutative division ring.

Examples 1.4.

1. Q ⊂ R ⊂ C

2. Q(
√
D), where D is not a perfect square, that is the equation x2 = D

has no rational solutions. In another words Q(
√
D) is the smallest field

containing Q and
√
D ∈ R,C. All even powers of

√
D belong to Q, and

all odd powers of
√
D are nontrivial multiples of

√
D. Thus for every

polynomial f ∈ Q[X ] we have f(
√
D) = a + b

√
D, where a, b ∈ Q. The

inverse of an element a+ b
√
D, a, b ∈ Q is given by

1

a+ b
√
D

=
a

a2 − b2D −
b

a2 − b2D
√
D,

so in fact for every rational function f ∈ Q(X) we have f(
√
D) = a+b

√
D,

where a, b ∈ Q.

3. Rational functions in one variable Q(X), and in n variables Q(X1, . . . , Xn).

4. Fp - classes of integers modulo prime p. There exist also a field Fpn for
every n > 0, of pn elements, unique up to isomorphism and all finite fields
are of this form.
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Part VII Morphisms of fields

1.2 Morphisms of fields

Definition 1.5. A morphism of fields φ : F→ F′ is a homomorphism of rings.

Morphism of fields φ : F→ F′ is always injective, because

1F′ = φ(1F) = φ(xx−1) = φ(x)φ(x−1) = φ(x)φ(x)−1 ,

so φ(x) 6= 0 for every x ∈ F.
There is always a ring homomorphism φ : Z→ F. We have two cases

1. φ is injective: then φ(Z) ⊂ F generates a subfield isomorphic to Q, and
we say that F has characteristic 0, char(F) = 0.

2. φ is not injective: then there exists the smallest positive integer p > 0
such that φ(p) = 0. It is a prime number, because if p = ab, 1 < a, b < p
then we would have

0 = φ(p) = φ(a)φ(b) 6= 0.

In this case φ(Z) ⊂ F generates a subfield isomorphic to Fp, and we say
that F has characteristic p, char(F) = p.

Definition 1.6. A field E is an extension of the field F if F is a subfield of E.

We write E/F or draw

E

F

Corollary 1.7. If E is an extension of F then

• char(E) = char(F),

• E is a vector space over F.

Definition 1.8.

1. The degree [E : F] of an extension E/F is defined as dimF(E).

2. E is a finite extension of F if [E : F] <∞.

Examples 1.9. 1. [Q(
√
D) : Q] = 2 with {1,

√
D} as basis over Q.

2. [C : R] = 2 with {1, i} as basis over R.

3. [Q(x) : Q] = ∞ with {1, x, x2, . . .} being an infinite linearly independent
system.

4. [R : Q] = ∞ with {1, e, e2, . . .} being an infinite linearly independent
system, where e ≈ 2.72 . . . is the Euler number.

Linear dependence of powers of e ∈ E over F ⊂ E is nothing else but a
polynomial equation

a0 + a1x+ a2x
2 + . . .+ anx

n = 0.

Note that in the first two examples the degree is equal to the minimal degree of
a polynomial equation satisfied by the adjoint element

√
D : x2 −D = 0, i : x2 + 1 = 0.
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Part VII Polynomials

1.3 Polynomials

Denote by F[X ] the ring of polynomials in one variable X . It is an integral do-
main, that is if f(X), g(X) ∈ F[X ] are nonzero polynomials, then f(X)g(X) 6=
0. It is also a Euclidean domain, that is for all f(X), g(X) ∈ F[X ] there are
unique polynomials q(X), r(X) ∈ F[X ] such that

f(X) = g(X)q(X) + r(X),

where either r(X) = 0 or deg(r(X)) < deg(g(X)).

Corollary 1.10. For any two nonzero polynomials f(X), g(X) ∈ F[X ] there is
their greatest common divisor

gcd(f(X), g(X)) = a(X)f(X) + b(X)g(X).

Corollary 1.11. Every ideal in F[X ] is principal, that is of the form (f(X)).

Corollary 1.12. Every nonconstant polynomial f(X) ∈ F[X ] can be factored
as

f(X) = uf1(X) . . . fk(X),

where fi(X) are monic, irreducible, and u ∈ F∗. This factorisation is essentially
unique.

There is an important construction of field extensions from irreducible poly-
nomials.

Proposition 1.13. Let f(X) ∈ F[X ] be an irreducible of degree d. Then

E := F[X ]/(f(X))

is an extension of degree d.

Proof. First we prove that the classes of 1, x, x2, . . . , xd−1 form a basis of E over
F. Every polynomial g(X) ∈ F[X ] can be presented as

g(X) = f(X)q(X) + r(X),

where r(X) = 0 or deg(r(X)) < d. Thus g(X) is a combination of 1, x, . . . , xd−1,
and classes of 1, x, . . . , xd−1 generate E.

Every linear combination of classes of 1, x, . . . , xd−1 is a polynomial of degree
less than d = deg(f(X)), so classes of 1, x, . . . , xd−1 are linearly independent.
Observe that E is an integral domain - it is a consequence of the unique factori-
sation property for F[X ] and an assumption that f is irreducible.

The proof will be finished if we prove the following lemma

Lemma 1.14. Every finite dimensional commutative F-algebra E which is an
integral domain is a field.

Proof. Take e ∈ E∗. There exists a linear dependence among elements 1, e, e2, . . .
since E is of finite dimension over F. We can divide by the monomial of the
lowest degree to obtain

1 + f1e+ f2e
2 + . . .+ fne

n = 0,

e(−f1 − f2e− . . .− fnen−1) = 1,

so e has an inverse.
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Part VII Automorphisms of fields

Corollary 1.15 (Kronecker). Let f(X) ∈ F[X ] be any nonconstant polynomial.
Then there exists an extension E/F in which f(X) has a root.

Proof. We can assume that f(X) is irreducible. Then take

E = F[X ]/(f(X))

The root of f(X) in E is the class of X ∈ F[X ].

Definition 1.16. Let e ∈ E be algebraic over F. Then the monic irreducible
polynomial fe(X) ∈ F[X ] such that fe(e) = 0 is determined uniquely (as the
monic generator of the ideal {f(X) ∈ F[X ] | f(e) = 0}) and is called the
minimal polynomial of e.

Lemma 1.17. Let e ∈ F be algebraic over F. Then the canonical map

ϕ : F[X ]/(fe(X))→ F(e) ⊂ E, x 7→ e

is an isomorphism.

Proof. Because fe(e) = 0 the map ϕ is well defined. It is enough to prove that

dimF (F[X ]/(fe(X))) = dimF (F(e))

By definition
dimF (F[X ]/(fe(X))) = deg(fe(X)).

Also
dimF (F(e)) = deg(fe(X)),

because fe(x) is a monic polynomial of lowest degree vanishing at e.

1.4 Automorphisms of fields

If G ⊂ Aut(E) is a subgroup then EG ⊂ E is a subfield.

Definition 1.18. Let G = {g1, . . . , gn} ⊂ Aut(E). We define a trace

TrG : E→ EG, TrG(e) =
∑

g∈G
g(e).

Trace TrG is an EG-linear map.

Theorem 1.19 (Dedekind). If g1, . . . , gn are pairwise distinct automorphisms
of E, they are linearly independent over E as E-valued functions on E.

Proof. Induction by n. If n = 1 then g1 6= 0 since it is an automorphism.
Take pairwise distinct automorphisms g1, . . . , gn+1. If they were linearly

dependent then for instance

gn+1 = e1g1 + . . .+ engn
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Part VII Automorphisms of fields

with at least one ei 6= 0. We would have

gn+1(e)(e1g1(e′) + . . .+ engn(e′)) = gn+1(e)gn+1(e′) = gn+1(ee′) =

= e1g1(ee′) + . . .+ engn(ee′) = e1g1(e)g1(e′) + . . .+ engn(e)gn(e′).

Hence

e1gn+1(e)g1 + . . .+ engn+1(e)gn = e1g1(e)g1 + . . . engn(e)gn.

But g1, . . . , gn are linearly independent so

gn+1(e)e1 = e1g1(e), . . . , gn+1(e)en = engn(e),

g1e1 = gn+1e1, . . . , gnen = gn+1en

which means that for at least one i we would have gi = gn+1, contradiction.

Corollary 1.20. If |G| <∞ then TrG 6= 0.

Proof. If TrG = 0, that is TrG(e) = 0 for all e ∈ E then by definition

∑

g∈G
g(e) =


∑

g∈G
g


 (e) = 0

that is
∑

g∈G g = 0, which contradicts linear independence.

Theorem 1.21. Let G be a group of automorphisms of E. Assume that at least
one of numbers |G|, [E : EG] is finite. Then they are equal.

Proof.

1. Assume |G| < ∞, G = {g1, . . . , gn}. Take e1, . . . , em ∈ E, where m > n.
Let (e′1, . . . , e

′
m) be a nonzero solution of the system

n∑

j=1

g−1
i (ej)e

′
j = 0.

We can assume that TrG(e′1) 6= 0. Then

n∑

i=1

m∑

j=1

ejgi(e
′
j)

︸ ︷︷ ︸
=

Pn
j=1 ej TrG(e′j)

=
n∑

i=1

gi




m∑

j=1

g−1
i (ej)e

′
j


 = 0,

so e1, . . . , em are linearly dependent over EG if m > n which means that
[E : EG] ≤ n = |G|.

2. Assume [E : EG] < ∞. Take a basis e1, . . . , eN of E over EG. Let
(e′1, . . . , e

′
M ), N < M ≤ G be a nonzero solution of the system of equations

M∑

j=1

e′jgj(ei) = 0.
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Part VII Automorphisms of fields

Then for all e ∈ E
M∑

j=1

e′jgj(e) = 0,

M∑

j=1

e′jgj = 0

which contradicts Dedekind theorem (1.19). Thus [E : EG] ≥ |G|.
Together 1 and 2 give [E : EG] = |G|.
Definition 1.22. An algebraic extension E/F is called Galois if there exists a
subgroup G ⊂ Aut(E) such that F = EG.

Theorem 1.23. Let E/F be an algebraic extension. Then it is Galois if and
only if F = EGal(E/F).

Proof. Assume that there exists group G such that EG = F. Then

G ⊂ Gal(E/F) +3 EG ⊃ EGal(E/F)

F = EGal(E/F)

so EG = EGal(E/F).

Remark 1.24. This G may not be equal Gal(E/F).

Corollary 1.25. If [E : F] is finite then it is Galois if and only if |Gal(E/F)| =
[E : F].

Proof. If F = EGal(E/F) then

|Gal(E/F)| = |Gal(E/EGal(E/F))| = [E : EGal(E/F)] = [E : F].

If |Gal(E/F)| = [E : F] then F ⊂ EGal(E/F) ⊂ E.
To finish the proof we need the following:

Lemma 1.26. Assume F ⊂ E ⊂ D. Then provided finiteness

[D : E] = [D : E][E : F]

Proof. Let {d1, . . . , dn} be a basis of E/F. It is enough to show that {diej} is a
basis of D/F. Let

d =
∑

i

diẽi, ẽi =
∑

j

eifij .

Then
d =

∑

i,j

diejfij ,

so {diej} span D/F. If
∑
i,j diejfij = 0 then

∑

i

di


∑

j

ejfij




︸ ︷︷ ︸
∈E

= 0

which gives a contradiction.
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Now

[EGal(E/F) : F] =
[E : F]

[E : EGal(E/F)]
= 1,

so EGal(E/F) = F.

Definition 1.27. A field extension E/F is normal if E contains all roots of
minimal polynomials of all elements in F which are algebraic over F.

Lemma 1.28. Let E/F be algebraic i.e. F ⊂ E ⊂ F, and let E/F be normal.
Then for every embedding over F

E
ϕ // F
F

^^>>>>>>>> ��������� ,

one has ϕ(E) = E.

Proof. Take e ∈ E, f(e) = 0, so f(ϕ(e)) = 0. Hence ϕ maps the set of
roots of every f(X) ∈ F[X ] in E into the set of all roots of f(X). Thus
E = F(roots(family of polynomials)). The homomorphism ϕ transforms roots
of this family into the roots of its image.

ϕ(E) = ϕ(F(roots(family of polynomials)))

= F(ϕ(roots(family of polynomials)))

= F(roots(family of polynomials))

= E.

Definition 1.29. A field extension E/F is separable if every e ∈ F is a single
root of its minimal polynomial.

Definition 1.30. An extension E/F is a splitting field of f(X) ∈ F[X ] if

f(X) = c(X − e1) . . . (X − en) ∈ E[X ]

and such decomposition is impossible in F′[X ] for any proper subfield F ⊂ F′ ⊂
E.

All splitting fields of a given polynomial are isomorphic over F.

1.5 Extending isomorphisms

Lemma 1.31. Let σ0 : F1 → F2 be an isomorphism of fields. Let f1(X) ∈ F1[X ]
be irreducible and E1 = F1(e1), where f1(e1) = 0. Let E2 = F2(e2), where
f2(e2) = 0 for f2(X) = σ0(f1(X)). Then σ0 extends to a unique isomorphism
σ : E1 → E2 with σ(e1) = e2.
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Part VII Extending isomorphisms

Proof. Extend σ0 to σ0 : F1[X ] → F2[X ]. The polynomial f1(X) is irreducible
if and only if f2(X) is irreducible. By the Kronecker theorem (1.15)

Fi[X ]/(fi)(X) ∼= Fi(ei) = Ei, i = 1, 2.

Lemma 1.32. Let σ0 : F1 → F2 be an isomorphism. Let f1(X) ∈ F1[X ] and
f2(X) = σ0(f1(X)) ∈ F2[X ]. Let Ei be splitting field of fi(X). Then σ0 extends
to an isomorphism of σ : E1 → E2.

Proof. Factor f1(X) into k irreducibles in F1[X ] and consider d := deg(f1(X))−
k. The proof goes by induction on d. If d = 0, then f1(X) is a product of linear
factors, E1 = F1, E2 = F2, and σ = σ0.

Suppose d > 0. Then f1(X) has an irreducible factor of degree > 1. Take a
root e1 ∈ E1 of g1(X) ∈ F1[X ], and a root e2 ∈ E2 of σ0(g1(X)) ∈ F2[X ]. Then
Fi(ei) ∈ Ei, i = 1, 2, and by the previous lemma (1.31) there is an isomorphism

σ̃0 : F1(e1)→ F2(e2)

with σ̃0

∣∣
F1

= σ0 and σ̃0(e1) = e2. Take now F̃1 := F1(e1) instead of F1. Consider

f̃i(X) = fi(X) ∈ F̃i[X ]. Now g1(X) ∈ F1[X ] has a linear factor (X − e1). Thus
f̃1(X) has k̃ > k irreducible factors in F̃1[X ]. Thus d̃ = deg f̃1(X)− k̃ < d. Now
Ei is still a splitting field of a polynomial f̃i(X) ∈ F̃i[X ], so σ̃0 extends to some
σ : E1

∼= E2.

Theorem 1.33. An algebraic extension E/F is Galois if and only if it is normal
and separable.

Proof.

• Assume that E/F is Galois, that is there exists group G < Aut(E) such
that F = EG. It is enough to prove that the minimal polynomial fe(X) ∈
F[X ] of any e ∈ E splits into pairwise distinct linear factors in E[X ].

Because fe(e) = 0 we have for all g ∈ G that fe(g(e)) = gfe(e) = 0, so
|Ge| < ∞ as the number of roots is finite. Say Ge = {g1(e), . . . , gr(e)}.
Define f(X) := (X − g1(e)) . . . (X − gr(e)). For all g ∈ G we have
g(f(X)) = f(X), so f(X) ∈ F[X ]. Since all roots of f are pairwise
distinct roots of fe we have that f |fe. But fe is monic irreducible, so
f = fe. This implies that fe splits as desired.

• Assume now that E/F is separable and normal. Take e ∈ E \ F and its
minimal polynomial fe(X). In E fe(X) splits as fe(X) = (X−e1) . . . (X−
er). Assume that e1 := e /∈ F, so deg(fe(X)) > 0. There must be another
root e2 6= e1 of fe(X). There is an isomorphism F(e1) → F(e2) which
is id on F and sends e1 to e2. It extends to F(e1) = F → F = F(e2)
(nonconstructive axiom of choice). Since E/F is normal this isomorphism
restricts to g ∈ Gal(E/F) such that g(e1) = e2 6= e1. There are no elements
of E\F which are fixed by Gal(E/F), so EGal(E/F) = F and E/F is a Galois
extension.
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Part VII The fundamental theorem of Galois theory

Corollary 1.34. Extension E/F is finite Galois if and only if it is a splitting
field of a separable polynomial f(X) ∈ F[X ].

Proof. We know that E/F is finite Galois if and only if it is finite, normal, and
separable. In fact E/F is finite and normal if and only if E is a splitting field
of some f(X) ∈ F[X ]. Indeed, if E/F is finite and normal, then we can take all
roots of a family of polynomials and choose a linearly independent (finite) subset
of roots generating E/F. They are roots of some finite number of polynomials
f1(X), . . . , fn(X) ∈ F[X ]. Then E is a splitting field of f(X) = f1(X)·. . .·fn(X).
The reverse implication is obvious from the definition of normality. Finally E/F
is separable if and only if f(X) = f1(X) · . . . · fn(X) is separable.

1.6 The fundamental theorem of Galois theory

Theorem 1.35. Let E/F be a finite Galois extension, G = Gal(E/F). Then

1. There is a one-to-one correspondence between intermediate fields F ⊂ F′ ⊂
E and subgroups G ⊃ G′ ⊃ {1} given by

F′ := EG
′

2. Extension F′/F is normal if and only if G′ is a normal subgroup of G. This
is the case if and only if F′/F is Galois. In this case Gal(F′/F) ∼= G/G′.

3. For each F ⊂ F′ ⊂ E

[F′ : F] = [G : G′]

[E : F′] = |G′|

Remark 1.36.

1. If F ⊂ F′ ⊂ F′′ ⊂ E then G′ ⊃ G′′.

2. Extension E/F′ is always Galois with Gal(E/F′) = G′.

3. If an extension E/F is separable then F′/F is separable. Thus F′/F is
normal if and only if it is Galois.

4. From the proof we will get that if Gal(E/F) = G, then G/G′ = Gal(F′/F)
in the case F′/F is Galois.

Proof.

1. Define a map

φ : {subgroups of G} → {intermediate fields}
G′ 7→ EG

′

• φ is injective: G′ 6= G′′ =⇒ EG
′ 6= EG

′′

Lemma 1.37. Gal(E/EG
′

) = G′.
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Part VII The fundamental theorem of Galois theory

Proof. EG
′

= EGal(E/EG′
) because E/EG

′

is Galois. Furthermore

|G′| = [E : EG
′

] = [E : EGal(E/E
G′

)] = |Gal(E/EG
′

)|

and G′ ⊂ Gal(E/EG
′

), so G′ = Gal(E/EG
′

).

By lemma if EG
′ ⊂ EG

′′

then G′′ = Gal(E/EG
′

) ⊂ G′. Hence if
EG

′

= EG
′′

then G′ = G′′.

• φ is surjective. Indeed, let F ⊂ F′ ⊂ E, G′ = Gal(E/F′) ⊂ Gal(E/F) =
G. If E/F is Galois then E is a splitting field of a separable poly-
nomial with coefficients in F, f(X) ∈ F[X ] ⊂ F′[X ]. Thus E is a
splitting field of f(X) ∈ F′[X ], so E/F′ is Galois and F′ = EG

′

.

2. Suppose G′ ⊳ G, F′ := EG
′

. Then E/F′ is a Galois extension. Take g ∈
Gal(E/F). Then g(F′) = EgGg

−1

= EG
′

= F′. This gives the restriction
map

Res: Gal(E/F) = G→ Gal(F′/F)

g 7→ g|F′

ker(Res) = Gal(E/F′) = G

im(Res) = G/G′

We want to prove that Res is onto. Let g̃ ∈ Gal(F′/F). We know that E is
a splitting field of some polynomial f(X) ∈ F′[X ], so g̃ : F′ → F′ extends

to g : E
∼=−→ E, g|F = id. Thus g ∈ Gal(E/F) and g|F′ = g̃ and Res is onto.

Hence Gal(F′/F) ∼= G/G′.

Suppose the converse, that is F′/F is Galois. Then F′ is a splitting
field of some separable polynomial f(X) ∈ F[X ] with roots (distinct by
separability) e1, . . . , en ∈ F′ ⊂ E and F′ = F(e1, . . . , en) ⊂ E. Take
g ∈ Gal(E/F) = G. We have g(f(X)) = f(X), so g permutes the

set of roots {e1, . . . , en}. Hence EG
′

= F′ = g(F′) = EgG
′g−1

. By 1,
G′ = gG′g−1, so G′ ⊳ G.

3. If E/F′ is Galois extension, then

[E : F′] = |Gal(E/F′)| = |G′|,

[E : F] = [E : F] · [F′ : F], |G| = |G′| · [G : G′].

Hence [F′ : F] = [G : G′] and [E : F′] = |G′|.

Corollary 1.38. If

F′ ��������
F

~~~~~~~~ �������� E

F′′

~~~~~~~~
are field extensions, then the following are equivalent
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Part VII The normal basis theorem

1. g(F′) = F′′ for some g ∈ Gal(E/F)

2. gGal(E/F′)g−1 = Gal(E/F′′)

Definition 1.39. An abstract group G acts transitively on a set S if for all
elements s, s′ ∈ S there is g ∈ G such that s′ = g(s).

Proposition 1.40. Let E/F be finite Galois extension, so E is a splitting field
of a separable polynomial f(X) ∈ F[X ]. Then G = Gal(E/F) is isomorphic to a
subgroup of the permutation group on the roots of f(X). If f(X) is irreducible
then this action is transitive.

Proof. Take the set of roots of f(X), S := {e1, . . . , en}. Let g ∈ G such that
g(f(X)) = f(X), so g permutes S. We have E = F(e1, . . . , en), and if for all i
g(ei) = ei, then g = id. This means that G embeds in the group of permutations
of S.

Take now ei 6= ej. If f(X) is irreducible then there exists an isomorphism

σ0 : F(ei)
∼=−→ F(ej), such that σ0|F = id, σ0(ei) = ej. Hence σ0 extends to

g : E→ E, g|F = id, so there exists an element g ∈ Gal(E/F) such that g(ei) =
ej .

1.7 The normal basis theorem

We know that if E/F is finite Galois then [E : F] = |Gal(E/F)|.

Definition 1.41. If E/F is finite Galois then a basis {e1, . . . , en} is called
normal if there exists e ∈ E such that ei = gi(e) for {g1, . . . , gn} = Gal(E/F).

Theorem 1.42 (Normal Basis theorem). If F is infinite and E/F is finite Galois
then E has a normal basis over F.

The proof uses some additional results.

Lemma 1.43. If E/F is a Galois extension of degree n, Gal(E/F) = {g1, . . . , gn},
then {e1, . . . , en} ⊂ E is a basis over F if and only if the matrix {gi(ej)} is non-
singular.

Proof. If {e1, . . . , en} is a basis of E/F, then if for some (c1, . . . , cn) 6= 0 ∈ Fn

and all j = 1, . . . , n
n∑

i=1

cigi(ej) = 0

we get that for all e ∈ E
n∑

i=1

cigi(e) = 0,

which contradicts Dedekind theorem (1.19).
On the other hand if

∑n
j=1 cjej = 0 is a nontrivial linear dependence then

for all i
n∑

i=1

cjgi(ej) = 0

which means that {gi(ej)} is singular.
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Lemma 1.44. Let F be infinite, E/F an extension. If f(c1, . . . , cn) = 0 for all
(c1, . . . , cn) ∈ Fn and f(X1, . . . , Xn) ∈ E[X1, . . . , Xn], then f(X1, . . . , Xn) = 0.

Proof. Induction by n. If f(e1) = 0 for infinitely many e1, then f(X1) = 0.
Let n > 1. Then we can write

f(X1, . . . , Xn) =
n∑

k=0

fk(X1, . . . , Xn−1)Xk
n.

Take (c1, . . . , cn−1) such that f(c1, . . . , cn−1, Xn) = 0. Then for all k we have
fk(c1, . . . , cn−1) = 0, and by the inductive step fk(X1, . . . , Xn−1) = 0, so
f(X1, . . . , Xn) = 0.

The next result we need is a generalization of the Dedekind theorem, pro-
vided F is infinite.

Theorem 1.45. Let F be infinite, E/F finite extension, Gal(E/F) = {g1, . . . , gn}.
Then g1, . . . , gn are algebraically independent i.e. for all e ∈ E if for some
f(X1, . . . , Xn) ∈ E[X1, . . . , Xn] we have f(g1(e), . . . , gn(e)), then f(X1, . . . , Xn) =
0.

Proof. Let {e1, . . . , en} be a basis of E over F. By the first lemma {gi(ej)} is non-
singular. Let e =

∑n
j=1 cjej, so gi(e) =

∑n
j=1 cjgi(ej). Suppose f(g1(e), . . . , gn(e)) =

0 for all e ∈ E. After substitution

f(. . . ,

n∑

j=1

cjgi(ej), . . .) = 0,

for all e ∈ E, so from the second lemma

f(. . . ,

n∑

j=1

Xjgi(ej), . . .) = 0.

Since Xi 7→
∑n
j=1Xjgi(ej) is an automorphism of E[X1, . . . , Xn] we get that

f(. . . , Xi, . . .) = 0.

Proof. (of the Normal Basis Theorem (1.42)) Let Gal(E/F) = {g1, . . . , gn}. Take
a matrix

Aij = Xk if gigj = gk.

Denote its determinant by d(X1, . . . , Xn) := det(Aij) ∈ E[X1, . . . , Xn]. Then
d(1, . . . , 1) = ±1 6= 0 because each Xk appears only once in every row and every
column. Hence d(X1, . . . , Xn) 6= 0.

Let ej := gj(e), A
e
ij := gk(e) if gigj = gk. Then Aeij = gigj(e) = gi(ej), and

det(Aeij) = d(g1(e), . . . , gn(e)). By the previous theorem there exists e ∈ E such
that

d(g1(e), . . . , gn(e)) 6= 0.

By the first lemma {e1, . . . , en} is a normal basis.
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Part VII Hilbert’s 90 theorem

1.8 Hilbert’s 90 theorem

Definition 1.46. Let E/F be finite Galois, G = Gal(E/F).

• The norm NE/F : E→ F is given by

NE/F(e) :=
∏

g∈G
g(e).

• The trace TrE/F : E→ F is given by

TrE/F :=
∑

g∈G
g(e).

Theorem 1.47. Let E/F be a finite Galois extension with cyclic Galois group
Gal(E/F) generated by g ∈ Gal(E/F). Then the following sequences of abelian
groups

1.

E∗ ∂−→ E∗
NE/F−−−→ F, ∂(e) =

e

g(e)

2.

E ∂−→ E
TrE/F−−−→ F, ∂(e) = e− g(e)

are exact.

Proof.

1. By the Dedekind theorem {g, g2, . . . , gn−1, gn = 1} are linearly indepen-
dent over E. For every (e1, . . . , en) ∈ En there exists ˜̃e ∈ E such that

ẽ :=
n∑

i=1

eig
i(˜̃e) 6= 0.

Take {
ei := eg(e) . . . gi−1(e), i = 1, . . . n− 1,

en := 1 = NE/F(e)
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We have

eg(ei) = eg(e) . . . gi(e) = ei+1, i = 1, . . . , n− 1

eg(en) = e = e1

eg(ẽ) =

n∑

i=1

eg(ei)g
i+1(˜̃e)

=

n−1∑

i=1

eg(ei)︸ ︷︷ ︸
ei+1

gi+1(˜̃e) + eg(en)︸ ︷︷ ︸
e1

gn+1

︸ ︷︷ ︸
g

(˜̃e)

=

n−1∑

i=1

ei+1g
i+1(˜̃e) + e1g(˜̃e)

=

n∑

i=2

eig
i(˜̃e) + e1g(˜̃e)

=

n∑

i=1

eig
i(˜̃e)

= ẽ.

Hence e = ẽ
g(ẽ) .

2. By the Dedekind theorem (1.19) there is ˜̃e ∈ E such that TrE/F(˜̃e) = 1.

ẽ := eg(˜̃e) + (e + g(e))g2(˜̃e) + . . .+ (e+ g(e) + . . .+ gn−2(e))gn−1(˜̃e)

ẽ− g(ẽ) = e(˜̃e+ g(˜̃e) + . . .+ gn−1(˜̃e)︸ ︷︷ ︸
=TrE/F(˜̃e)=1

)− (e+ g(e) + . . .+ gn−1(e)︸ ︷︷ ︸
=TrE/F(e)=0

)˜̃e

= e.
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Chapter 2

Hopf–Galois extensions

2.1 Canonical map

Theorem 2.1. Let E/F be a finite Galois extension, G = Gal(E/F). Then

can: E⊗F E→ Map(G,E),

e1 ⊗ e2 7→ (g 7→ e1g(e2))

is bijective.

Proof. Let G = {g1, . . . , gn}. Observe that can is left E-linear and

dimE(E⊗F E) = dimF(E) = [E : F],

dimE(Map(G,E)) = |G|.
By Galois theory these dimensions are equal. It is enough to prove that can is
injective. Let

∑
ẽi ⊗ ei ∈ ker(can), where {e1, . . . , en} is a basis of E/F. After

applying the canonical map we get that for all gj ∈ G
n∑

i=1

ẽigj(ei) = 0.

By the Dedekind theorem (1.19) gj(ei) are nonsingular, so all ẽi are zero, and
ker(can) = {0}.

Theorem 2.2. If E/F is a finite Galois extension, G < Gal(E/F), then

can: E⊗F E→ Map(G,E),

e1 ⊗ e2 → (g 7→ e1g(e2))

is well defined, and the following implication holds:

can is bijective =⇒ F = EG.

Proof. We have
dimF(E⊗F E)︸ ︷︷ ︸

[E:F]2

= dimF(Map(G,E))︸ ︷︷ ︸
|G|[E:F]

Hence [E : F] = |G| = [E : EG]. If F ⊂ EG, then [E : F] = [E : EG][EG : F], so
[EG : F] = 1, that is F = EG.
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Corollary 2.3. If E/F is a finite extension, G < Gal(E/F), then E/F is Galois
if and only if can is bijective.

What algebraic structures are involved in can?
On E⊗F E there is a structure of a bimodule over E

e(e1 ⊗ e2) = ee1 ⊗ e2
(e1 ⊗ e2)e = e1 ⊗ e2e

If one wants can to be a bimodule map, then Map(G,E) has to be equipped
with the following bimodule structure

(eϕ)(g) = eϕ(g)

(ϕe)(g) = ϕ(g)g(e)

2.2 Coring structure

Definition 2.4. (C,∆, ε) is called a coring over E if C is a bimodule over
E equipped with bimodule maps ∆: C → C ⊗E C (a comultiplication), and
ε : C → E (a counit) such that the following diagrams commute

C
∆ //

∆�� C ⊗E C

id⊗∆��
C ⊗E C

∆⊗id// C ⊗E C ⊗E C

C
∆ //

∆�� id %%LLLLLLLLLLLL C ⊗E C

id⊗ε��
C ⊗E C

ε⊗id // C
On E⊗F E there is a coring structure given by

∆(e1 ⊗ e2) := (e1 ⊗ 1)⊗ (1⊗ e2) ∈ (E⊗F E),

ε(e1 ⊗ e2) := e1e2.

The following diagrams commute

E⊗F E ∆ //
∆�� (E ⊗F E)⊗E (E⊗F E)

id⊗∆��
(E⊗F E)⊗E (E⊗F E)

∆⊗id // (E⊗F E)⊗E (E⊗F E)⊗E (E⊗F E)

E⊗F E ∆ //
∆�� id ))SSSSSSSSSSSSSSSSSSSSSS (E ⊗F E)⊗E (E⊗F E)

id⊗ε��
(E⊗F E)⊗E (E⊗F E)

ε⊗id // E⊗F E
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Part VII Coring structure

so (E⊗F E,∆, ε) is a coring.
On Map(G,E) there is also a canonical comultiplication ∆ induced by the

group law G×G→ G.

Map(G,E)
∆ //_____________ ((PPPPPPPPPPPP Map(G,E) ⊗E Map(G,E)

∼=ttjjjjjjjjjjjjjjjj
Map(G ×G,E)

The isomorphism Map(G,E)⊗E Map(G,E)→ Map(G×G,E) is given by

ϕ1 ⊗ ϕ2 7→ ((g1, g2) 7→ ϕ1(g1)g1(ϕ2(g2))).

The counit is induced by the neutral element g0 ∈ G

ε : Map(G,E)→ E, ϕ 7→ ϕ(g0).

Altogether these give a coring structure on Map(G,E).

Proposition 2.5. The canonical map can: E ⊗F E → Map(G,E) is a homo-
morphism of corings over E.

Proof. We have to check compatibility with comultiplication, that is commuta-
tivity of the diagram

E⊗F E
can //

∆ ��
Map(G,E)��

Map(G×G,E)��
(E⊗F E)⊗E (E⊗F E)

can⊗ can// Map(G,E)⊗E Map(G,E)

We have

e1 ⊗ e2 � //_
��

(g 7→ e1g(e2))_��
((g1, g2) 7→ e1g1g2(e2))

((g1, g2) 7→ e1g1(g2(e2)))

(e1 ⊗ 1)⊗ (1⊗ e2) � // (g1 7→ e1)⊗ (g2 7→ g2(e2))
_OO
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Next we check the compatibility with the counit that is commutativity of the
diagram

E⊗F E can //
ε �� Map(G,E)

ε��
E // E

We have
e1 ⊗ e2 � //_�� (g 7→ e1g(e2))_��
e1e2

� // e1e2 = e1g0(e2)

We will use the Sweedler notation for comultiplication ∆: C → C ⊗E C

∆(c) =
∑

i

c1i ⊗ c2i =: c(1) ⊗ c(2).

Proposition 2.6. Let (C,∆, ε) be a coring over E. Then HomE(C,E) is a ring
with multiplication given by

(ϕ1ϕ2)(c) := ϕ1(c(1)ϕ2(c(2)))

and unit ε.

Examples 2.7.

1. HomE(E ⊗F E,E) = HomF(E,E) = EndF(E) with composition of mor-
phisms as multiplication, and identity as the unit.

2. For finite G
E ⋊G

∼=−→ HomE(Map(G,E),E)
∑

g∈G
egxg 7→ (ϕ 7→

∑

i

eiϕ(gi)), xge = g(e)xg

Corollary 2.8. The canonical map of corings can: E⊗FE→ Map(G,E) induces
a ring homomorphism

HomE(can,E) : E ⋊G→ EndF(E).

Proposition 2.9. Let E/F be a finite extension, G ⊂ Gal(E/F). Then E/F is
Galois if and only if HomE(can,E) is bijective.

Proof. If E/F is Galois, then can is bijective, so Hom(can,E) is bijective.
Apllying Hom(−,E) to Hom(can,E) we obtain can again by finite dimension

over F.

Remark 2.10. EndF(E) is a matrix algebra with entries in F. If E/F is Galois
then E ⋊ G is Morita equivalent to F = EG (i.e. the category EG −Mod is
equivalent to E ⋊G−Mod). It is the cornerstone of noncommutative geome-
try. If G is not finite, then EG can be pathological and then one can take its
noncommutative replacement E ⋊G.
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Example 2.11. Let E = C((X)) be the field of rational complex functions. Take
G = Z generated by g(X) := 2X . Each e ∈ E can be written as

e =
a−n
xn

+
a−n+1

xn−1
+ . . .+ a0 + a1x+ . . .

If g fixes e, then ai = 0 for i 6= 0, so EG = C. On the other hand E ⋊ G =
C((X)) ⋊G.

2.3 Hopf–Galois field extensions

Assume [E : F] <∞, G < Gal(E/F). Then

Map(G,E) = E⊗F Map(G,F).

Map(G,F) is an F-algebra with pointwise multiplication and it is also a coalgebra
with comultiplication

Map(G,F)
∆ //_____________ ((PPPPPPPPPPPP Map(G,F)⊗F Map(G,F)

∼=ttjjjjjjjjjjjjjjj
Map(G×G,F)

ϕ1 ⊗ ϕ2 7→ ((g1, g2) 7→ ϕ1(g1)ϕ2(g2))

ε : Map(G,F)→ F, ϕ 7→ ϕ(g0).

There is also a coinverse map

S : Map(G,F)→ Map(G,F), ϕ 7→ (g 7→ ϕ(g−1))

Fact 2.12. The comultiplication, counit, and coinverse are homomorphisms of
(commutative) F-algebras.

This fact motivates the following definition:

Definition 2.13. An F-algebra H is called Hopf algebra if it has a coassociative
counital comultiplication ∆, and the coinverse S such that the following diagram
is commutative

H

��∆{{wwwwwwwww ∆ ##GGGGGGGGG
H⊗H

S⊗id ��
H⊗H

id⊗S��F

��H⊗H

m ##GGGGGGGGG H⊗H

m{{wwwwwwwww
H
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The action of G in E defines the coaction of Map(G,F) on E, i.e.

E 7→ E⊗F Map(G,F) = Map(G,E)

e 7→ (g 7→ g(e))

compatible as follows with the comultiplication ∆

E
∆ //

∆ �� E⊗F Map(G,F)

id⊗∆��
E⊗F Map(G,F) // E⊗F Map(G,F)⊗F Map(G,F)

Remark 2.14. For any K ⊂ F ⊂ E, F/K finite, one can take another Hopf
algebra Map(G,K) and obtain

can: E⊗F E→ E⊗K Map(G,K).

In the coring approach there is one canonical coring Map(G,E) related to the
action of G on E, which in the Hopf approach can be realized by many Hopf
algebras Map(G,K) defined over subfields F ⊂ F. Even when we fix K = F after
replacing Map(G,F) by an arbitrary abstract Hopf algebra over F theory is not
as complete as in the group case.

For every group G

Map(G,F) = HomF(FG,F),

where FG is the group algebra of G. FG is also a Hopf algebra with comultipli-
cation obtained from the diagonal map G 7→ G×G, g 7→ (g, g),

∆: FG→ FG⊗ FG, g 7→ g ⊗ g,

counit ε : FG→ F sending all group elements to 1 ∈ F, and coinverse obtained
from group inverse g 7→ g−1.

Dualization Hom(−,F) transforms the coalgebra structure of FG into the
algebra structure of Map(G,F). If |G| <∞ then

FG ∼= HomF(Map(G,F),F)

transforms the coalgebra structure of Map(G,E) into the algebra structure of
FG. From the point of view of FG the canonical map looks like

can: E⊗F E→ HomF(FG,E)

e1 ⊗ e2 7→ (h 7→ e1he2),

where FG acts on E in the following way

h(e1e2) := h(1)(e1)h(2)(e2).

Fixed subfield can also be defined in terms of this action

EFG := {e ∈ E | ∀ h ∈ FGhe = ε(h)e} = EG
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Replacing FG by an arbitrary Hopf algebra H we obtain

can: E⊗F E→ HomF(H,E)

e1 ⊗ e2 7→ (h 7→ e1he2).

where H acts on E in the same manner

h(e1e2) := h(1)(e1)h(2)(e2).

To extend the Galois theory to this case we need a notion of a Hopf subalgebra
of H.

Definition 2.15. H′ ⊂ H is a Hopf subalgebra of H if the inclusion is a homo-
morphism of Hopf algebras.

Theorem 2.16 (Chase-Sweedler). Let E/F be Hopf–Galois with respect to the
action of a cocommutative Hopf algebra H. Then

φ : {H′ ⊂ H | H′ is Hopf subalgebra of H} → {F′ | F ⊂ F′ ⊂ E subfield}

H′ 7→ EH
′

is injective and inclusion reversing.

Note that the claim is about injectivity only. Another distinction comparing
with classical Galois theory is that the Hopf algebra making a given extension
Hopf–Galois is not unique.

Example 2.17. [gp87]Let F = Q, E = Q(4
√

2), ω :=4
√

2

H := Q[c, s]/(c2 + s2 − 1, cs)

with the comultiplication

∆: H → H⊗F H
c 7→ c⊗ c− s⊗ s
s 7→ c⊗ s+ s⊗ c,

counit

ε : H → F

c 7→ 1

s 7→ 0,

and coinverse

S : H → H
c 7→ c

s 7→ −s.

The action H⊗F E→ E is given in a table

1 ω ω2 ω4

c 1 0 −ω2 0
s 0 −ω 0 ω3
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Then E/F is H-Galois.

Example 2.18. Let F = Q, E = Q( 4
√

2), ω := 4
√

2

H̃ := Q[c̃, s̃]/(c̃2 + s̃2 − 1, c̃s̃)

with the comultiplication

∆: H̃ → H̃ ⊗F H̃
c̃ 7→ c̃⊗ c̃− 1

2 s̃⊗ s̃
s̃ 7→ c̃⊗ s̃+ s̃⊗ c̃,

counit

ε : H → F

c̃ 7→ 1

s̃ 7→ 0,

and coinverse

S : H → H
c̃ 7→ c̃

s̃ 7→ −s̃.

The action H̃ ⊗F E→ E is given in a table

1 ω ω2 ω4

c̃ 1 0 −ω2 0
s̃ 0 ω3 0 −2ω

Then E/F is H̃-Galois.

Example 2.19. Note that Q( 4
√

2)/Q is not normal, because the minimal polyno-
mial of 4

√
2 is X4− 2, and it has imaginary roots ±i 4

√
2 /∈ Q( 4

√
2) ⊂ R. Hence it

is not Galois in a classical sense. However it is Hopf–Galois.

Example 2.20. There are separable field extensions which are not Hopf–Galois
at all. For example no field extension E/F, [E/F] = 5 with Gal(Ẽ/F) = 5 (where

Ẽ denotes the normal closure of F ⊂ E ⊂ F) can be Hopf–Galois.

What can be said about separable Hopf–Galois extensions?

Definition 2.21. If S is a set, then a subgroup of Perm(S) is called regular if
it is transitive with trivial stabilizers.

Let Ẽ be a normal closure of E in F, so Gal(Ẽ/E) ⊂ Gal(Ẽ/F). Denote

S := Gal(Ẽ/E)/Gal(Ẽ/F) (left cosets)

Theorem 2.22. The following conditions are equivalent:

1. There is a Hopf F-algebra H such that E/F is H-Hopf–Galois.

2. There is a regular subgroup N ⊂ Perm(S) such that Gal(Ẽ/F) = Perm(S)
normalizes N .
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Proposition 2.23. The following conditions are equivalent:

1. There exists a Galois extension F′/F such that F′⊗F E is a field containing

Ẽ.

2. There exists a Galois extension F′/F such thae F′ ⊗F E = Ẽ.

3. Gal(Ẽ/E) has a normal complement N ⊂ Gal(Ẽ/F).

4. There exists a normal subgroup N ⊂ Gal(Ẽ/F) which is regular in Perm(S).

Definition 2.24. If E/F is finite and one of the conditions (1)-(4) is fulfilled
then this extension is called almost classical.

Theorem 2.25 ([gp87]). If E/F is almost classicaly Galois, then there is a Hopf
algebra H such that E/F is H-Hopf–Galois and the map

φ : {H′ ⊂ H | H′ is Hopf subalgebra of H} → {F′ | F ⊂ F′ ⊂ E subfield},
H′ 7→ EH

′

is bijective.

However, even for classical Galois extensions one cannot expect that for such
H, making this extension Hopf–Galois, the image of φ contains all intermediate
subfield.

Theorem 2.26 ([gp87]). Any classical Galois extension E/F can be endowed
with an H- Galois structure such that the image of φ consists of normal inter-
mediate extensions F ⊂ F′ ⊂ E.

Example 2.27. Let F = Q, E = Q(ω, ξ), where ω = 3
√

2 and ξ =
√

3+i
2 . It is

known that the extension E/F is Galois with Gal(E/F) = S3. But there exists
a Hopf algebra

H := Q〈c, s, t〉︸ ︷︷ ︸
noncommutative variables

/(c(c−1)(c+1), 2c2+st+ts−2, cs, sc, ct, tc, s2, t2)

The comultiplication is given by

∆: H → H⊗F H
c 7→ c⊗ c+ 1

2 (s⊗ t+ t⊗ s)
s 7→ c⊗ s+ s⊗ c+ 1

2 t⊗ t
t 7→ c⊗ t+ t⊗ c+ s⊗ s

H is a Hopf algebra making E/F Hopf–Galois, where action H⊗F E→ E is given
in the table

1 ω ξ
c 1 0 ξ2

s 0 ω2 0
t 0 0 0

In the image of φ one obtains only normal intermediate extensions.
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2.4 Torsors

Let G be a group, X a set, X × G → X right action (x, g) 7→ xg. We assume
that neutral element acts trivially xg0 = x, and that x(g1g2) = (xg1)g2.

Example 2.28.

1. X = ∅ or X = ∗, a one element set.

2. X = G, G×G→ G group composition.

3. X = {1, 2, . . . , n}, G = Sn acting by permutations.

Definition 2.29. A G-torsor is a G-set which is isomorphic to G in the category
of G-sets.

Theorem 2.30. The following conditions are equivalent

1. X is a G-torsor.

2. For all x, y ∈ X there is a unique g ∈ G such that xg = y.

3. For all x ∈ X the map g 7→ xg gives an isomorphism G ∼= X of G-sets.

4. The map X ×G→ X ×X, (x, g) 7→ (x, xg) is bijective.

We are mainly interested in algebraic sets.

Definition 2.31. If I =
√
I ⊳ F[X1, . . . , Xn] is a radical ideal of an algebraic

set X ⊂ F
n
, then we form a coordinate ring of X

O(X) = F[X1, . . . , Xn]/I

Definition 2.32. If F ⊂ E is an algebraic field extension then X(E) is the set
of E-points of X.

Fact 2.33. If X,Y are algebraic sets corresponding to F-algebras O(X), O(Y )
respectively then

O(X ×F Y ) = O(X)⊗F O(Y )

(X ×F Y )(E) = X(E)× Y (E)

Example 2.34. Let O(X) := R[X,Y ]/(X2 +Y 2−1). The real points X(R) form
a circle in R2. But an algebraic set can have complex points, which are the
complex solutions of X2 + Y 2 = 1.

Definition 2.35. A morphism of algebraic sets X → Y over F is a homomo-
prhism of F-algebras O(Y )→ O(X).

This gives a map X(E)→ Y (E) for every algebraic extension E/F.

Example 2.36. GLn(E) - set of E-points of general linear group over F.

O(GLn) = F[X11, . . . , Xij , . . . , Xnn; det([Xij ]
n
i,j=1)−1]

A linear algebraic group G ⊂ GLn is defined by polynomial relations f1(X), . . .,
fr(X), X = [Xij ]

n
i,j=1. A matrix A ∈ G(E) if and only if f1(A) = 0, . . . , fr(A) =

0. Here are the examples of linear algebraic groups:
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1. GLn, f1(X) = 0.

2. SLn, f1(X) = det(X)− 1.

3. On, {ATA = I}.

4. UTn, fij(X) = Xij for i > j.

If G is an algebraic group, then H = O(G) is a Hopf algebra with the
pointwise multiplication and comultiplication induced by the composition in G,

∆: O(G)→ O(G) ⊗F O(G) ∼= O(G×F G).

If E/F is any field extension then an F-homomorphism O(G)→ E is determined
by a subgroup G(E) ⊂ GLn(E).

Consider a group action of G on X . The compatibility conditions can be
shown using diagrams

X ×F G×F G //�� X ×F G��
X ×F G // X X × ∗�� ##GGGGGGGGG

X ×F G // X
These diagrams can be dualized

O(X)⊗F O(G) ⊗F O(G) O(X)⊗F O(G)oo
O(X)⊗F O(G)

OO
O(X)oo OO O(X)⊗ ∗�� ''NNNNNNNNNNN

O(X)⊗F O(G)

OO
O(X)

ggNNNNNNNNNNNoo
Algebraic G-action on an algebraic set induces a coaction of the Hopf algebra
O(G) on an algebra O(X). Then X is a G-torsor if the map

O(X)⊗F O(X) // O(X)⊗F O(X)

O(X ×F X) O(X ×F G)

is induced by the canonical map

X ×F X ← X ×F G

On E-points it is given by

(X ×F X)(E) (X ×F G)(E)oo
X(E)×X(E) X(E)×G(E)

(x, xg) (x, g)
�oo
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Part VII Crossed homomorphisms and G-torsors

Example 2.37. If E/F is a finite Galois extension then the algebraic set X over
F corresponding to an F-algebra E = O(X) is a G-torsor where G is a linear
algebraic group corresponding to an F-algebraO(G) = Map(Gal(E/F),F). Note
that X(F) = ∅, X(E) is a finite set of cardinality equal to the degree of the
extension [E : F]. If E is a splitting field of f(X) ∈ F[X ], then X(E) is the set
of roots of f .

2.5 Crossed homomorphisms and G-torsors

Let E/F be a finite Galoios extension, and G linear algebraic group over F.

Definition 2.38. A crossed homomorphism is a map

ϕ : Gal(E/F)→ G(E)

satisfying ϕ(g1g2) = ϕ(g1)g1(ϕ(g2)). Two crossed morphisms ϕ, ϕ′ are said to
be equivalent if ϕ′(g) = ψϕ(g)ψ−1 for some ψ ∈ G(E).

A crossed homomorphism ϕ gives rise to a torsor as follows. On E⊗F O(G)
we have an obvious Gal(E/F)-action, and we define a ϕ-twisted action by

g · (e⊗ h) := g(e)⊗ ϕ(g−1)∗h ∈ E⊗F O(G)

Then the fixed F-subalgebra (E⊗FO(G))Gal(E/F) is a coordinate ring O(X) for a
G-torsorX with the G-action induced by the restrictionO(X)→ O(X)⊗FO(G)
of the comultiplication

E⊗F O(G)→ (E⊗F O(G)) ⊗E (E⊗F O(G)).

Definition 2.39. W say that the extension E/F trivializes a G-torsor X if after
the base extension E/F we have an isomorphism.

E⊗F O(X) ∼= E⊗F O(G).

Theorem 2.40. The isomorphism classes of G-torsors over F trivializable by
the extension E/F correspond bijectively to the equivalence classes of crossed
homomorphisms Gal(E/F)→ G(E).

Example 2.41. Let G = GL1 = F
∗

(invertible elements). Then the set of nonzero
vectors in any one dimensional vector space over F is a G-torsor X over F. Then
the set of isomorphism classes of such torsors correspond bijectively to the set
of isomorphism classes of one dimensional vector spaces over F.

The set of equivalence classes of crossed homomorphisms Gal(E/F)→ G(E)
is H1(Gal(E/F); E∗), which is 0 by the Hilbert’s 90’th theorem (1.47).

Example 2.42. Let F = C, O(G) = C[g, h, g−1, h−1],

O(X) = C〈x, y, x−1, y−1〉/(xy = qyx), q ∈ C∗.
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2.6 Descent theory

Let E/F be a field extension. Given an algebraic object A defined over F (vector
space, quadratic space, algebra, coalgebra, Hopf algebra etc.) one can construct
an algebraic object E ⊗F A defined over E. The aim of descent theory is to
say something about what happens when we go in the opposite direction. For
example given aE ∈ AE := E ⊗F A we can ask what conditions guarantee that
aE = 1⊗ aF.

Example 2.43. If E/F is finite Galois extension then taking AF = F we obtain
AE = E ⊗F F = E. The answer in this case is: this happens if and only if
g(a) = a for all g ∈ Gal(E/F).

Another problem consists in the question when a given AE defined over E
is of the form AE = E ⊗F AF. This is called a problem of forms of algebraic
structures.

Definition 2.44. A′F is called E-form of AF if E⊗F A
′
F
∼= E⊗F AF.

Example 2.45. Let F = R, E = C, H = RZ (group algebra). Define

H′ := R[c, s]/(c2 + s2 − 1)

∆(c) = c⊗ c− s⊗ s
∆(s) = c⊗ s+ s⊗ c

Then
a := 1⊗ c+ i⊗ s = c+ is ∈ E⊗F H′

is invertible with inverse a−1 = c− is ∈ E⊗F H′. Hence c, s ∈ E⊗F H′, and

E⊗F H′ = C[a, a−1] ∼= CZ ∼= E⊗F H

Note that H and H′ are not isomorphic over R, because their groups of real
points are different:

Hom(H,R) ∼= R∗

with only two elements of finite order {1,−1}, and

Hom(H′,R) ∼= U(1)

with infinitely many elements of finite order.

Theorem 2.46 ([hp85]). Let Γ be a finitely generated group with finite isomor-
phism group G. Then there is a bijection between the set of isomorphism classes
of G-Galois extensions of F and the set of Hopf algebra forms of H = FΓ. This
associates with each G-Galois extension E of F the Hopf algebra

H′ :=




∑

γ∈Γ

cγγ ∈ EΓ | ∀ g ∈ G
∑

γ∈Γ

g(cγ)g(γ) =
∑

γ∈Γ

cγγ





which is an E-form of EΓ by the isomorphism

E⊗F H′ → E⊗F H = EΓ

e⊗
∑

γ∈Γ

cγγ 7→
∑

γ∈Γ

ecγ ⊗ γ
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Part VII Splitting of polynomials with roots in noncommutative algebras

Example 2.47. Let G = Z/2, g-generator, C →֒ H = {z0 + z1j | jz = z̄j, j2 =
−1}.

g(z0 + z1j) := z0 − z1j = i(z0 + z1j)i
−1

Then HG = C ⊂ H, and

can: H⊗C H ∼= Map(G,H)

q1 ⊗ q2 7→ (g 7→ q1g(q2))

2.7 Splitting of polynomials with roots in non-
commutative algebras

It is interesting to see a cyclic property of splittings of a polynomial with non-
commutative coefficients into linear factors (X − ak) with ak’s commuting with
coefficients. We will show that any cyclic permutation of linear factors gives the
same result and all ak are roots of that polynomial. It implies that although
the set of ak’s appearing in a splitting of a polynomial with commutative coef-
ficients in some noncommutative extension does not determine the splitting (in
general), the cyclic order consisting of roots appearing in the splitting does. It is
an interesting example of cyclic symmetry “in nature”. From the point of view
of algebraic geometry this can be understood as the principle saying that a finite
geometric cycle defined over a noncommutative algebra should be regarded not
as a set (with multiplicities) but rather as a cyclic order (with multiplicities).

Let f(X) = fnX
n + fn−1X

n−1 + · · · + f0 ∈ A[X ] be a polynomial with
coefficients in a commutative unital ring A. Suppose there is given a splitting
of f(X) in A[X ]

f(X) = fn(X − a1) · · · (X − an). (2.1)

Then by the substitution homomorphism argument one sees that all ak’s are
roots of f(X) and by commutativity of A[X ] any permutation of them defines
the same splitting. Therefore the problem of splitting of a given polynomial
reduces to the problem of finding the set of its roots. This fact is fundamental
for Galois theory and algebraic geometry.

In the case of noncommutative coefficients of a given polynomial the situa-
tion is much worse. First of all, a given splitting does not reduces to the set
of elements ak, since we cannot permute linear factors because of noncommu-
tativity of A[X ]. Moreover, if a ∈ A is not central in A then the substitution
homomorphism of rings

Z[X ]→ A, X 7→ a (2.2)

does not extend to a homomorphism of A-algebras

A[X ]→ A, X 7→ a, (2.3)

because X is central in A[X ]. This means that one can not use the substitution
A-algebra homomorphism argument to prove that elements a1, . . . , an appearing
in the decomposition

f(X) = fn(X − a1) · · · (X − an) (2.4)
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are roots of f(X). The problem of such splittings in terms of relationships
between coefficients of a given polynomial with a generic set of its (left or right)
roots and elements ak (so called pseudoroots) was related to quadratic algebras
with structure encoded by graphs in [gr96][grw01][ggrw05][rswxx]. However,
these relationships are much more complicated than in the commutative case
and make sense only if some elements of the algebra are invertible.

The interest for splitting polynomials in noncommutative algebras started in
1921 when Wedderburn proved [w-jhm21] that any minimal polynomial f(X) ∈
K[X ] of an element of a central division algebra A algebraic over the center K of
A splits in A[X ] into linear factors which can be permuted cyclically and every
pseudoroot appearing in this splitting is a root of f(X). This fact was very
helpful in determining the structure of division algebras of small order [w-s02]
and found many other applications (see e.g. [ll04] for references).

However, under the assumption that coefficients (which do not have to com-
mute one with each other) commute with pseudoroots (which do not have to
commute one with each other), the situation is much closer to the commutative
case. We show that then pseudoroots are roots and any cyclic permutation of
them gives the same splitting. This means that instead of finite sets of commu-
tative roots (ordered n-tuples up to all permutations) we obtain finite cyclically
ordered sets (ordered n-tuples up to all cyclic permutations) of noncommutative
roots.

Theorem 2.48 ([m-txx]). Let A be a unital ring and Aa1,...,an be its subring of
elements commuting with a1, . . . , an ∈ A. If f(X) ∈ Aa1,...,an [X ] splits in A[X ]
as follows

f(X) = fn(X − a1)(X − a2) · · · (X − an) (2.5)

then

f(X) = fn(X − an)(X − a1) · · · (X − an−1) (2.6)

and

f(a1) = · · · = f(an) = 0. (2.7)

Corollary 2.49 ([m-txx]). For any splitting as in Theorem 1 substitution ho-
momorphisms

Aa1,...,an [X ]→ Aa1,...,an [ak] ⊂ Aak ⊂ A (2.8)

X 7→ ak

define a ring homomorphism

Aa1,...,an [X ]/(f(X))→ Aa1,...,an [a1]× · · · ×Aa1,...,an [an] (2.9)

where cyclic permutations of roots in the splitting correspond to cyclic permuta-
tions of factors in the cartesian product on the right hand side.

Example 2.50 ([m-txx]). Let A be the ring of upper triangular 2×2 matrices over
a nonzero commutative ring K and take f(X) = X2(X − 1) ∈ K[X ] ⊂ A[X ].
Although it has a double root in K it can be split in A as follows

f(X) = (X − a1)(X − a2)(X − a3), (2.10)
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where

a1 =

(
0 0
0 1

)
, a2 =

(
0 −1
0 0

)
, a3 =

(
1 1
0 0

)
(2.11)

are pairwise distinct roots in A. This can be viewed as a kind of resolution of
singularity by passing to a noncommutative extension.

The linear factors can be cyclically permuted, but none two of them can be
transposed, because

[a1, a2] = [a2, a3] = [a3, a1] = −a2 6= 0. (2.12)

In spite of the fact that A is not a field and f(X) is not separable this
example shares many properties with splitting of a separable polynomial in its
Galois extension, if the Galois group is replaced by the endomorphism monoid.
We will assume only that K is a domain. Although the set of roots and the set
of cycles of roots appearing in possible splittings are both infinite it turns out
that [m-txx]

1. The set of all roots is the union of supports of all cycles.

2. One can choose a finite number of roots whose translates cover the set of
all roots.

3. One can choose a finite set of roots containing translates of all roots.

4. One can choose a finite number of cycles whose translates cover the set of
all cycles.

5. One can choose a finite set of cycles containing translates of all cycles.

Points (2)-(5) replace the fact that for a separable polynomial there is only
one cycle of roots contained in its splitting field and this cycle is an orbit of the
Galois group. Instead of strict equivalence of roots induced by the transitive
Galois action we have the action of endomorphisms preserving some partial
order on roots [m-txx].
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Chapter 3

Galois theory in general
categories

3.1 Introduction

This chapter describes a purely-categorical approach to Galois theory whose
first version was proposed in [j-g84] as a generalization of A. R. Magids Galois
theory of commutative rings [m-ar74]. It is, however, important to note here
that:

Magids approach is itself on the one hand a generalization of the commutative-
ring reduction of A. Grothendieck’s Galois–Poincaré theory [g-a71] and on the
other hand a generalization of Galois theory of commutative rings due to S.
U. Chase, D. K. Harrison, and A. Rosenberg [chr65]. A reasonable historical
overview would also require at least mentioning [ag60], [ab59], [cs69], [j-gj66],
[vz66], and [vz69].

The approach of [j-g84] was presented slightly differently in [j-g89-1] and
then extended in [j-g90] and again in [j-g91-2]. Further developments in var-
ious directions include [bj97, bj99, bj04], [cj96, cj02, cjkp97, cjm96], [e-t07,
egl08, g-m04, g-m07, gr07, gj03], [j-g89-2], [j-g91-1], [j-g92], and [j-g08, jk94,
jk97, jk00-1, jk00-2, jmt98, jss93, js99, jt99-1, jt99-2]; some of them are briefly
described in [bj01], [g-m04], and [j-g04] (see also references there).

Apart from the commutative-ring-theoretic motivation, categorical Galois
theory has an important topos-theoretic motivation (based on the geomet-
ric/topological motivation), provided by [b-m80, b-m82, bd80], which itself
generalizes A. Grothendieck’s and C. Chevalley’s approach. Giving details here
would require mentioning many books and articles devoted to covering maps and
the fundamental group. The same can be said about the algebraic-geometric
side of the story involving étale coverings of schemes and the étale fundamental
group.

There are many investigations of other kinds of abstract Galois theories,
especially in topos theory, still to be compared with what we describe (see e.g.
[jss93] and [js99], and what they say about A. Joyal’s and M. Tierneys Galois
theory [jt84] and about the Tannaka duality respectively). Some topos-theoretic
comparison results are contained in [b-m04] and [bl03].

Section 3.2 can simply be omitted by those readers who have no doubts

742
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about the importance of category theory; however, it should be useful to others
as it presents an important motivation well known but not mentioned in many
textbooks. Sections 3.3–3.11 will tell almost nothing new to those readers who
are familiar with the corresponding material from S. Mac Lanes book [m-s71].
Sections 3.12 and 3.13 also present material well known to category-theorists,
even though it is not present in [m-s71]. Sections 3.14,3.15 and 3.20 describe the
main notions and the main result (fundamental theorem) of categorical Galois
theory respectively, while the intermediate Sections 3.16–3.19 describe the main
examples. And Section 3.21 shows what does that fundamental theorem give in
what should be considered as (the) classical cases. Sections 8.1–8.3 (Appendix)
attempt to make this chapter self-contained.

3.2 How do categories appear in modern math-

ematics?

The question “How do categories appear in modern mathematics?” has many
answers; this section is devoted to only one of them, far away from the original
answer visible in the joint work of S. Eilenberg and S. Mac Lane, and our
presentation is very brief of course.

First, thinking of mathematics as the study of abstract mathematical struc-
tures, such as groups, rings, topological spaces, etc., we ask: what is a math-
ematical structure in general? And, having Bourbaki structures in mind, we
might answer:

• We begin with two finite collections of sets: constant sets E1, . . . , Em and
variable sets X1, . . . , Xn.

• We build a scale, which is a sequence of sets obtained from the sets above
by taking finite products and power sets, and by iterating these operations.

• A type is a uniformly defined subset T (X1, . . . , Xn) of a set in such a
scale, and a structure of that type on the sets X1, . . . , Xn is an element s in
T (X1, . . . , Xn); one then also says that (X1, . . . , Xn, s) is a structure of the
type T . Making the term “uniformly” precise would be a long story, which
we omit; let us only mention that considering various structures of a given
type T , we will fix the sets E1, . . . , Em, but not the sets X1, . . . , Xn - which
explains why we write T (X1, . . . , Xn) and not T (E1, . . . , Em, X1, . . . , Xn).

For the readers not familiar with Bourbaki structures it might be helpful to
consider the following simple examples, where, as for most basic mathematical
structures, we have m = 0 and n = 1:

Example 3.1.

1. A topology on a set X is an element of the set

T = T (X)

= {τ ∈ PP (X) | τ is closed under arbitrary unions and finite intersections},

where P (X) denotes the power set of X ;
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2. a binary operation on a set X is an element of the set

T = T (X) = {m ∈ P (X ×X ×X)) | m determines a map X ×X → X}.

It turns out that every mathematical structure ever considered in mathe-
matics can indeed be presented an (X1, . . . , Xn, s) above, and moreover, using
the fact that arbitrary bijections f1 : X1X

′
1, . . . , fn : XnX

′
n induce a bijec-

tion T (f1, . . . , fn) : T (X1, . . . , Xn))T (X ′1, . . . , X
′
n), it is easy to define a general

notion of an isomorphism for structures of the same type:

Definition 3.2. Let (X1, . . . , Xn, s) and (X ′1, . . . , X
′
n, s
′) be mathematical struc-

tures of the same type T ; an isomorphism

(f1, . . . , fn) : (X1, . . . , Xn, s)→ (X ′1, . . . , X
′
n, s
′),

is a family of bijections f1 : X1 → X ′1, . . . , fn : Xn → X ′n with T (f1, . . . , fn)(s) =
s′.

However, we are not able to define structure preserving maps (=homomor-
phisms) in general. The best we can do, is:

Definition 3.3. Let T be a type. For structures (X1, . . . , Xn, s) and (X ′1, . . . , X
′
n, s
′)

of the same type T , a map

(f1, . . . , fn) : (X1, . . . , Xn, s))→ (X ′1, . . . , X
′
n, s
′),

is a family of maps f1 : X1 → X ′1, . . . , fn : Xn → X ′n. A class M of such maps
is said to be a class of morphisms, if it satisfies the following conditions:

1. If
(f1, . . . , fn) : (X1, . . . , Xn, s)→ (X ′1, . . . , X

′
n, s
′)

and
(f ′1, . . . , f

′
n) : (X ′1, . . . , X

′
n, s
′)→ (X ′′1 , . . . , X

′′
n , s
′′)

are in M, then so is

(f ′1f1, . . . , f
′
nfn) : (X1, . . . , Xn, s)→ (X ′′1 , . . . , X

′′
n , s
′′);

2. the class of invertible morphisms in M coincides with the class of isomor-
phisms in the sense of Definition 3.2.

Accordingly, our study of the structures of a given type T will depend on the
chosen class M of morphisms - suggesting that it is a study of a new structure
whose “elements” are structures of the type T and the elements of M. And such
a new structure is first of all a category of course, but is it merely a category?
Would not replacing our T and M with an abstract category trivialize our
study? In other words, is abstract category theory powerful enough to express
deep properties of classical mathematical structures and simple enough to clarify
those properties and to help proving them? Answering these questions seriously,
and especially saying well-motivated “yes” to the last one, is not what we can
do in a few page section of these notes. But the following definition, of one of
the oldest categorical definitions, due to S. Mac Lane, should give some initial
indication of the remarkable power of the categorical approach:
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Definition 3.4. The product of two objects A and B in a category C is an
object A×B in C together with two morphisms π1 : A×B → A and π2 : A×B →
B, such that for every object C and morphisms f : C → A and g : C → B, there
exists a unique morphism h : C → A×B making the diagram

C
f||xxxxxxxxx g ##FFFFFFFFFh�����

A A×Bπ1

oo
π2

// B (3.1)

commute, i.e. satisfying π1h = f and π2h = g.

This so simple definition is equivalent to the familiar ones in essentially all
important categories of interest in algebra and geometry/topology, and the same
is true for its dual, which is:

Definition 3.5. The coproduct of two objects A and B in a category C is an
object A +B in C together with two morphisms ι1 : A→ A+ B and ι2 : B →
A+B, such that for every object C and morphisms f : A→ C and g : B → C,
there exists a unique morphism h : A+B → C making the diagram

A

f ##FFFFFFFFF A+B
ι1oo ι2 //

h����� B

g{{xxxxxxxxx
C

(3.2)

commute, i.e. satisfying hι1 = f and hι2 = g.

Furthermore, these categorical definitions give a new insight into our under-
standing of very first mathematical concepts, such as multiplication and addition
of natural numbers, intersection, product, and union of sets, and conjunction
and disjunction in mathematical logic. In particular they make addition dual
to multiplication and make disjoint union more natural than the ordinary one.
In simple words, everyone knows that, say,

a+ b = b+ a and ab = ba (for natural a and b),

but only category theory tells us that these equalities are special cases of a single
result!

3.3 Isomorphism and equivalence of categories

The purpose of this section is to list and prove basic properties of isomorphisms
and equivalences of categories. We assume that the readers are familiar with:

• Isomorphisms in general categories: they compose, they have uniquely
determined inverses that are isomorphisms themselves, and they determine
the isomorphism relation d on the set of objects of the given category; and
that relation is an equivalence relation.

• Isomorphisms of categories: the following condition on a functor F : A→
B are equivalent:
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(a) F is an isomorphism;

(b) F is bijective on objects and on morphisms;

(c) F is bijective on objects and fully faithful (recall that “fully faithful”
means “bijective of Hom sets”).

• Isomorphism of functors: a natural transformation τ : F→ G of functors
A→ B is an isomorphism if and only if the morphism τA : F (A)→ G(A)
is an isomorphism for each object A in A. The isomorphism relation is
a congruence on the category of all categories, i.e. if (F, F ′) and (G,G′)
are composable pairs of functors, then F ≈ F ′ and G ≈ G′ implies FF ′ ≈
GG′.

Theorem 3.6. Let F : A → B be a functor, G0 a map from the set A0 of
objects in A to the set B0 of objects in B, and , τ = (τA : F (A)→ G0(A))A∈A0

a family of isomorphisms. Then there exists a unique functor G : A → B, for
which G0 is the object function and τ : F→ G is an (iso)morphism.

Proof. On the one hand τ : F → G is an isomorphism if and only if for each
morphism α : A → A′ in A, we have G(α) = τA′F (α)τ−1

A , and on the other
hand it is easy to check that sending α : A → A′ to τA′F (α)τ−1

A determines a
functor A→ B whose object function is G0.

Remark 3.7. 1. Since G0 above is completely determined by the family τ =
(τA)A∈A0 , the assumptions of Theorem 3.6 should be understood as “given
F : A→ B and, for each object A in A, an isomorphism τA from F (A) to
somewhere”.

2. Theorem 3.6 has an interesting application: Starting from an arbitrary
isomorphism θ : X → Y in a category A, we apply this theorem to B = A,
F = 1A, and

τA =





θ : X → Y, if A = X ;

θ−1 : Y → X, if A = Y ;

1A : A→ A, if X 6= A 6= Y ;

(3.3)

it is easy to see that the resulting functor G : A → A is an isomorphism
(for, use Theorem 3.8(c) below, and the fact that a functor is an iso-
morphism if and only it is bijective on objects and fully faithful). This
in fact explains how to interchange isomorphic objects in any categorical
construction.

Given a functor F : A→ B and objects A and A′ in A, let us write

FA,A′ : HomA(A,A′)→ HomB(F (A), F (A′)) (3.4)

for the induced map between the Hom sets HomA(A,A′) and HomB(F (A), F (A′)).
As in fact already observed in the proof of Theorem 3.6, given an isomorphism
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τ : F → G, the diagram

HomB(F (A), F (A′))

f 7→τA′fτ
−1
A��HomA(A,A′)

FA,A′

55kkkkkkkkkkkkkk
GA,A′ ))SSSSSSSSSSSSSS

HomB(G(A), G(A′))

g 7→τ−1

A′ gτA

OO (3.5)

commutes. Since its vertical arrows are bijections, we obtain:

Theorem 3.8. If F and G are isomorphic functors, then:

1. F is faithful (=all FA,A′ ’s above are injective) if and only if so is G;

2. F is full (=all FA,A′ ’s above are surjective) if and only if so is G;

3. F is fully faithful (=all FA,A′ ’s above are bijective) if and only if so is G.

Definition 3.9. An equivalence of categories A and B is a system consisting
of functors

A
F //

B
G

oo and isomorphisms α : 1A → GF, β : 1B → FG

we will also say that (F,G, α, β) : A × A → B is a category equivalence, and
(briefly) that F : A×A→ B is a category equivalence.

Remark 3.10.

1. If F : A×A→ B is a category isomorphism, then it is a category equiv-
alence;

2. If
(F,G, α, β) : A×A→ B

is a category equivalence, then so is

(G,F, β, α, ) : B×B→ A;

3. If
(F,G, α, β) : A×A→ B, and (H, I, γ, δ) : B×B→ C

are category equivalences, then so is

(HF,GI, (GγF )α, (HβI)δ) : A×A→ C,

whereGγF : GF → GIHF and HβI : HI → HFGI denote natural trans-
formations defined by (GγF )A = G(γF (A)) and (HβI)C = H(βI(C)) re-
spectively.

4. As follows from the previous assertions, the category equivalence deter-
mines an equivalence relation on the collection of all categories; we will
simple write A ∼ B when there exists a category equivalence A×A→ B.
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5. If F : A×A→ B is a category equivalence and F ′ ≈ F , then F ′ : A×A→
B also is a category equivalence.

The next definition will later help us describe the relationship between iso-
morphisms and equivalences of categories precisely.

Definition 3.11. A category S is said to be a skeleton, if for objects A and B
in S, we have:

A ≈ B =⇒ A = B;

for an arbitrary category C, we say that S is a (the) skeleton of C and write
S = Skel(C) if S is a full subcategory in C, and the inclusion functor S→ C is
a category equivalence.

This definition immediately suggests to ask, if every category has a skeleton,
and if the skeleton of a category is uniquely (up to an isomorphism?) deter-
mined. These questions are answered below.

Lemma 3.12. If F : A × A → B is a category equivalence, then F is fully
faithful and essentially (=up to isomorphism) bijective on objects, i.e.:

1. for objects A and A′ in A, F (A) ≈ F (A′) =⇒ A ≈ A′ (essential
injectivity);

2. for each object B in B, there exists an object A in A with F (A) ≈ B
(essential surjectivity).

Proof. Let (F,G, α, β) : A × A → B a category equivalence involving F . As
follows from Theorem 3.8(c) applied to 1A ≈ GF , the functor GF is fully
faithful. Therefore the composite

HomA(A,A′)
FA,A′−−−−→ HomB(F (A), F (A′))

GF (A),F (A′)−−−−−−−−−→ HomA(GF (A), GF (A′))

is a bijection for all objects A and A′ in A, from which we conclude:

• F is faithful;

• since F is always faithful in such a situation, G is also faithful by 3.10(b);

• since G is faithful, GF (A),F (A′) is always injective;

• since FA,A′ and GF (A),F (A′) are injective and their composite is bijective,
FA,A′ is bijective too.

That is, F is fully faithful. Essential bijectivity on objects is obvious:

F (A) ≈ F (A′) =⇒ A ≈ GF (A) ≈ GF (A′) ≈ A′,
and F (A) ≈ B for A = G(B).

Remark 3.13.

1. In fact the crucial properties here are fully faithfulness and essential sur-
jectivity, since it is easy to show that a fully faithful functor is always
essentially injective on objects. Indeed, if F : A ×A → B is fully faith-
ful, and β : F (A) → F (A′) is an isomorphism in B, then we can choose
α : A→ A′ with F (α) = β and α′ : A′ → A with F (α′) = β−1 - and these
chosen morphisms will be inverse to each other since so are their images
under F .
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2. Proving essential injectivity of the functor F in (a) we in fact also proved
another important property of a fully faithful functor, which is reflection
of isomorphisms. It says: if F (α)is an isomorphism, then so is α.

From Remark 3.10(a), Lemma 3.12, and Remark 3.13 we obtain:

Lemma 3.14. The following conditions on a functor F between skeletons are
equivalent:

1. F is a category equivalence;

2. F is fully faithful and essentially bijective on objects;

3. F is fully faithful and essentially surjective on objects;

4. F is an isomorphism.

Remark 3.15.

1. It is not, however, true of course that G = F−1 for any equivalence
(F,G, α, β) : A×A→ B between skeletons.

2. As follows from 3.10(d) and 3.14(a)-(d), skeletons of equivalent categories
are always isomorphic. In particular so are every two skeletons of the same
category.

Theorem 3.16. Every category has a skeleton.

Proof. Given a category A, we choose:

• an object in each isomorphism class of objects in A, and for any object A
in A, the chosen object isomorphic to A will be denoted by Φ(A);

• an isomorphism ϕA : A → Φ(A), assuming for simplicity that ϕΦ(A) =
1Φ(A);

• Φ: A→ A to be the functor obtained from the identity functor of A and
the family (ϕA)A∈A0 as in Theorem 3.6 (see also Remark 3.7(a)), making
ϕ : 1A → Φ an isomorphism;

• S to be the full subcategory in A with object all Φ(A)(A ∈ A0);

• F : S→ A to be the inclusion functor;

• G : A → S defined by FG = Φ (which indeed defines a functor since the
image of Φ is inside S), making GF = 1S, since ϕΦ(A) = 1Φ(A) for all
objects A in A0.

Here S is a skeleton and (F,G, 11S
, ϕ) : S→ A is a category equivalence.

Theorem 3.17. 1. A functor is a category equivalence if and only if it is
fully faithful and essentially surjective on objects.

2. Two categories are equivalent if and only if they have isomorphic skeletons.
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Proof. 1. : Suppose F : A×A→ B is fully faithful and essentially surjective
on objects. Consider the diagram

A
F //

L�� B

N��
Skel(A)

K

OO
NFK //

Skel(B)

M

OO
(NFK)−1

oo
in which:

• the vertical arrows determine equivalences A ∼ Skel(A) and B ∼
Skel(B), which exist by Theorem 3.16.

• the composite NFK is fully faithful and essentially surjective on ob-
jects, because so are N , F , and K; therefore NFK is an isomorphism
by Lemma 3.14(c)-(d).

Using Remark 3.10 we conclude that MNFKL is a category equivalence,
and then that since MNFKL ≈ 1BF1A = F , so is F . The “only if” part
is Lemma 3.12.

2. : Again, just use Remark 3.10, Lemma 3.14, and the square diagram above
(although the “only if” part has already been proved: see Remark 3.15(b)).

3.4 Yoneda lemma and Yoneda embedding

The purpose of this section is to describe fully faithful functors

C
Y−→ SetsC

op G−→ (Cat ↓ C) (3.6)

where C is an arbitrary category, SetsC
op

is the category of functors Cop →
Sets, and (Cat ↓ C) is the comma category of the category Cat of all categories
over the category C (i.e. the category of pairs (D, P ), where D is a category
and P : D→ C a functor. As we will see, the fully faithfulness of Y will follow
from

Theorem 3.18 (Yoneda lemma). For any functor T : Cop → Sets and any
object C in C, the map

Nat(HomC(−, C), T )→ T (C), τ 7→ τC(1C) (3.7)

from the set Nat(HomC(−, C), F ), of natural transformations from HomC(−, C)
to T , to the set T (C) is bijective.

Proof. Let us denote the map above by α and define a map

β : T (C)→ Nat(HomC(−, C), T )

by

β(t)A(f) = T (f)(t) for a t ∈ T (C) and a morphismf : A→ C in C.
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We are going to show that α and β are inverse to each other. We have

αβ(t) = β(t)C(1C) = T (1C)(t) = t for each t ∈ T (C),

proving that αβ is the identity map of T (C). On the other hand, for τ :
HomC(−, C)→ T and f : A→ C, we have

βα(τ)A(f) = T (f)(α(τ)) = T (f)(τC(1C)) = τA(HomC(f, C)(1C)) = τA(f),

where the last equality is visible in the naturality square

HomC(C,C)
τC //

HomC(f,C) �� T (C)

T (f)��
HomC(A,C) τA

// T (A),

and the equality βα(τ)A(f) = τA(f) (for all f) implies that βα is the identity
map of Nat(HomC(−, C), T ).

Consider the special case of this theorem in which the functor T is of the
form T = HomC(−, C′) for some C′ in C. Then the bijection of Theorem 3.18
together with its inverse become

Nat(HomC(−, C),HomC(−, C′))
τ 7→τC(1C) //

HomC(C,C′),
t7→(f 7→tf)

oo (3.8)

where t 7→ (f 7→ tf) means that t : C → C′ is sent to the natural transformation

τ : HomC(−, C)→ HomC(−, C′) defined by τA(f) = tf.

However this map HomC(C,C′)→ Nat(HomC(−, C),HomC(−, C′)) is the same
as YC,C′ , where

Y : C→ SetsC
op

is the functor defined by Y (C) = HomC(−, C),

i.e. the functor corresponding to the functor Hom : Cop × C → Sets via the
canonical category isomorphism

HomCat(C
op ×C,Sets) ≈ HomCat(C,SetsC

op

). (3.9)

Therefore Theorem 3.18 gives

Corollary 3.19. The functor

Y : C→ SetsC
op

defined by Y (C) = HomC(−, C) (3.10)

is fully faithful.

The functor Y above is usually called the Yoneda embedding (for C), while

the functor G : SetsC
op → (Cat ↓ C) we are going to introduce now has no

name; a somewhat artificial name would be “the discrete form of Grothendieck
construction”.
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For a functor T : Cop → Sets, the category E(T ) is defined as the category
of pairs (A, a), where A is an object in C and a is an element T (A); in this
category, a morphism

f : (A, a)→ (B, b) is a morphism f : A→ B in C with T (f)(b) = a.

We define the functor

G : Sets
op → (Cat ↓ C) by G(T ) = (E(T ), PT ),

where PT : E(T ) → is the forgetful functor, sending f : (A, a) → (B, b) to
f : A → B. In order to see how exactly is G defined on morphisms, let us
describe morphisms in (Cat ↓ C) of the form Φ : (E(T ), PT )→ (E(U), PU):

Such a morphism is a functor Φ: E(T )→ E(U) making the diagram

E(T )
Φ //

PT !!DDDDDDDD E(U)

PU}}zzzzzzzz
C

commute. At the level of objects this means that, for each (A, a) in E(T ),
Φ(A, a) should a pair whose first component is A. This means that to give the
object function of Φ is to give a fimily of maps ϕ = (ϕA : T (A)→ U(A))A∈A0

and define Φ on objects by Φ(A, a) = (A,ϕA(a)). After that, again, since the
diagram above commutes, on morphisms Φ must be defined by

Φ(f : (A, a)→ (B, b)) = f : (A,ϕA(a))→ (B,ϕB(b)).

This simply means that the images of morphisms are uniquely determined, but
the fact that Φ is indeed defined on morphisms puts the following condition on
the family ϕ: if f is a morphism from (A, a) to (B, b), then it also must be
a morphism from (A,ϕA(a)) to (B,ϕB(b)). And since f is a morphism from
(A, a) to (B, b) if and only if a = T (f)(b), this means that every f : A → B
must be a morphism from (A,ϕAT (f)(b)) to (B,ϕB(b)) for each b in T (B). In
other words, for every f : A→ B in A, we must have ϕAT (f) = U(f)ϕB , which
is the same as to say that ϕ is a natural transformation from T to U .

That is, we can define

G : SetsC
op → (Cat ↓ C) by G(ϕ : T → U) = Φ : (E(T ), PT )→ (E(U), PU )

(3.11)
In the notation above (omitting routine verification of preservation of composi-
tion and identity morphisms), and this makes it fully faithful.

3.5 Representable functors and discrete fibra-
tions

Definition 3.20.

1. A functor T : Cop → Sets is said to be representable if it is isomorphic
to a functor of the form Y (C) = HomC(−, C) for some object C in C.
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2. A functor P : D→ C is said to be a discrete fibration, if the diagram

D1
//

P1 �� D0

P0 ��
C1

// C0

in which the horizontal arrows are the codomain maps of D and C, and
the vertical arrows are the morphism function and the object function of
P respectively, is a pullback.

This section is devoted to the following two theorems:

Theorem 3.21. A functor T : Cop → Sets is representable if and only if the
category E(T ) has a terminal object. Moreover, a natural transformation τ :
HomC(−, C)→ T is an isomorphism if and only if the pair (C, t), in which t is
the image of τ under the map (3.7), is a terminal object in E(T ).

Proof. The following assertions are obviously equivalent:

1. τ : HomC(−, C)→ T is an isomorphism;

2. τA : HomC(A,C)→ T (A) is a bijection for each object A in C;

3. for every objectA in C and every a ∈ T (A) there exists a unique morphism
f : A→ C with τA(f) = a;

4. for every objectA in C and every a ∈ T (A) there exists a unique morphism
f : A→ C with T (f)τC(1C) = a;

5. for every object (A, a) in E(T ) there exists a unique morphism from (A, a)
to (C, τC(1C));

6. (C, τC(1C)) is a terminal object in E(T ).

And since (C, τC(1C)) is exactly the image of τ under the map (3.7), this com-
pletes the proof.

Theorem 3.22. A functor P : D → C is a discrete fibration, if and only if
the object (D, P ) of (Cat ↓ C) is isomorphic to G(T ) = (E(T ), PT ), for some
functor T : Cop → Sets.

Proof. “If”: We have to prove that (E(T ), PT ) is always a discrete fibration.
This means to prove that for every morphism f : A → B in C and every b ∈
T (B), there exists a unique a ∈ T (A) for which f is a morphism from (A, a) to
(B, b). However this is trivial since f is a morphism from (A, a) to (B, b) if and
only if a = T (f)(b).

“Only if”: Assuming that P : D → C is a discrete fibration, we define a
functor T : Cop → Sets as follows:

• For an object C in C, we take T (C) to be the set of objects D in D with
P (D) = C.
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• For a morphism f : A→ B in C, and an element b in T (B), which in fact
an object in D with P (b) = B, we take g to be the morphism g in D, with
P (g) = f and codomain of g equal to b. The existence and uniqueness of
such a g follows from the fact that the diagram is a pullback. We then
take T (f)(b) to be the domain of g.

Accordingly the procedure of defining T (f)’s (for all f) displays as

T (f)(b) //___ b

A // B
and it is easy to see that it indeed defines a functor T : Cop → Sets in such a
way that (E(T ), PT ) becomes isomorphic to (D, P ).

3.6 Adjoint functors

Adjoint functors will be defined at the end of this section via several equivalent
kinds of data that will be described before.

Definition 3.23. Let U : A → X be a functor and X an object in X. A
universal arrow X → U is a pair (F (X), ηX) in which F (X) is an object in A
and ηX : X → UF (X) a morphism in X with the following universal property:
for every object A in A and every morphism u : X → U(A) in X there exists a
unique morphism f : F (X)→ A making the diagram

UF (X)

U(f) $$IIIIIIIII
U(A)

X

ηX

OO
u

::tttttttttt
(3.12)

commute.

Theorem 3.24. Let U : A → X be a functor and ((F (X), ηX))X∈X0 a family
of universal arrows X → U given for each object X in X. Then there exists a
unique functor F : X → A for which the family ((F (X), ηX))X∈X0 determines
a natural transformation η : 1X → UF .

Proof. Given a morphism h : X → Y in X, we can define F (h) : F (X)→ F (Y )
as the unique morphism making the diagram commute for A = F (Y ) and u =
ηY h. Since the commutativity in this case is equivalent to the commutativity
of the naturality square

UF (X)
UF (h) //

ηX�� UF (Y )

ηY��
X

h
// Y, (3.13)
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this proves the theorem.

Remark 3.25. 1. The universal property given in Definition 3.23 can be equiv-
alently reformulated as: the map

ϕX,A : HomA(F (X), A)→ HomX(X,U(A)), defined by ϕX,A(f) = U(f)ηX ,
(3.14)

is a bijection for each object A in A. Moreover, since this map is obviously
natural in A, that universal property can also be reformulated as: the
natural transformation

ϕX,− : HomA(F (X),−)→ HomX(X,U(−)), defined by ϕX,A(f) = U(f)ηX ,
(3.15)

is an isomorphism. Furthermore, let

ϕX,− : HomA(F (X),−)→ HomX(X,U(−)) (3.16)

be an arbitrary isomorphism. Then, for any f : F (X) → A, using the
naturality square

HomA(F (X), F (X))
ϕX,F (X)//

HomA(F (X),f)�� HomX(X,U(F (X)))

HomX(X,U(f))��
HomA(F (X), A) ϕX,A

// HomX(X,U(A)),

(3.17)

we obtain

ϕX,A(f) = ϕX,A HomA(F (X), f)(1F (X))

= HomX(X,U(f))ϕX,F (X)(1F (X))

= U(f)ϕX,F (X)(1F (X)).

Therefore we have one more reformulation of the universal property given
in Definition 3.23, namely: there exists an isomorphism (3.16); and with
this reformulation ηX and ϕX,− determine each other by

ϕX,A(f) = U(f)ηX and ηX = ϕX,F (X)(1F (X)). (3.18)

2. The relationship between ηX and ϕX,− can be seen of course as a special
case of the statement dual to Theorem 3.21, but we omit details here.

3. Suppose ηX , or, equivalently, ϕX,− is given for every object X in X. Then,
by Theorem 3.24, there is a unique way to make F a functor X→ A, so
that the family ((F (X), ηX))X∈X0 determines a natural transformation
η : 1X → UF . And it is easy to check that this will also make ϕX,−
natural in X, yielding a natural isomorphism

Aop ×A
HomA%%KKKKKKKKKK

Xop ×A

F op×1
88qqqqqqqqqq

1×U &&MMMMMMMMMM Sets

Xop ×X

HomX

99ssssssssss
(3.19)
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Moreover, the ”ϕ approach” shows that the unique functoriality of F is
actually a consequence of the fact that the Yoneda embedding Cop →
SetsC is fully faithful. Indeed, given a morphism h : X → Y in X, the
naturality square

HomA(F (Y ),−)
ϕY,− //

HomA(F (h),−) �� HomX(Y, U(−))

HomX(h,U(−))��
HomA(F (X),−) ϕX,−

// HomX(X,U(−)),

(3.20)

determines HomA(F (h),−), and since the Yoneda embedding Cop →
SetsC is fully faithful, HomA(F (h),−) determines F (h).

From Remark 3.25 we obtain

Theorem 3.26. For a functor U : A→ X, the following kinds of data uniquely
determine each other:

1. a family ((F (X), ηX))X∈X0 of universal arrows X → U given for each
object X in X;

2. a functor F : X→ A and a natural transformation η : 1X → UF such that
(F (X), ηX) is a universal arrow X → U for each object X in X;

3. a family (F (X))X∈X0 of objects in A and a family

(ϕX,− : HomA(F (X),−)→ HomX(X,U(−)))X∈X0

of isomorphisms given for each object X in X;

4. a functor F : X→ A and an isomorphism (3.19).

Moreover, the ηX of (1) corresponds to the ηX of (2), the ϕX,− of (3) corre-
sponds to (the X-component) of ϕ of (4), and these ηX and ϕX,− corresponding
to each other via (3.18).

The data in (4) shows certain dual symmetry between U and F , and suggests
to dualize Definition 3.23 and Theorem 3.26 as follows:

Definition 3.27. Let F : X → A be a functor and A an object in A. A
universal arrow F → A is a pair (U(A), εA) in which U(A) is an object in X
and εA : FU(A) → A a morphism in A with the following universal property:
for every object X in X and every morphism f : F (X)→ A in A there exists a
unique morphism u : X → U(A) making the diagram

FU(A)

εA �� F (X)

F (u)

ddIIIIIIIII
fzztttttttttt

A

(3.21)

commute.

756



Part VII Adjoint functors

Theorem 3.28. For a functor F : X→ A, the following kinds of data uniquely
determine each other:

1. a family ((U(A), εA))A∈A0 of universal arrows F → A given for each
object A in A;

2. a functor U : A→ X and a natural transformation ε : FU → 1A such that
(U(A), εA) is a universal arrow F → A for each object A in A;

3. a family (U(A))A∈A0 of objects in X and a family

(ψ−,A : HomX(−, U(A))→ HomA(F (−), A))A∈A0

of isomorphisms given for each object A in A;

4. a functor U : A→ X and an isomorphism

Aop ×A
HomA%%KKKKKKKKKK

Xop ×A

F op×1
88qqqqqqqqqq

1×U &&MMMMMMMMMM Sets

Xop ×X

HomX

99ssssssssss
(3.22)

Moreover, the εA of (1) corresponds to the εA of (2), the ψ−,A of (3) corresponds
to (the A-component) of ψ of (4), and these εA and ψ−,A corresponding to each
other via

ψX,A(u) = εAF (u) and εA = ψU(A),A(1U(A)). (3.23)

Remark 3.29. The data described in Theorem 3.26(d) is obviously identical to
the data described in Theorem 3.28(d): just take ϕ and ψ inverse to each other.
Therefore these two theorems actually describe eight equivalent kinds of data.

Remark 3.29 is not the end of this story: although eight is a large number,
it is good to add at least one more, which is purely equational. For, we observe:

• Having functors U : A → X and F : X → A, and merely natural trans-
formations η : 1X → UF and ε : FU → 1A, we can still define natural
transformations ϕ and ψ as in 3.19 and in 3.22 respectively.

• Under no conditions on η and ε, those ϕ and ψ will also be merely natural
transformations independent from each other. But requiring them to be
each other’s inverses and reformulating this requirement in terms of η and
ψ will give us a new equivalent form of the desired data, which is purely
equational.

• Requiring that ϕ and ψ be each other’s inverses means to require

ψX,AϕX,A(f) = f and ϕX,AψX,A(u) = u,

for each f : F (X) → A in A and each u : X → U(A) in X. But then
Yoneda lemma (Theorem 3.18) tells us that it suffices to have these equal-
ities for f = 1F (X) : F (X)→ F (X) and u = 1U(A) : U(A)→ U(A).
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• Thus, we are interested in

ψX,F (X)ϕX,F (X)(1F (X)) = 1F (X)

and
ϕU(A),AψU(A),A(1U(A)) = 1U(A).

Translated into the language of η and ϕ, these equations become

εF (X)F (ηX) = 1F (X) and U(εA)ηU(A) = 1U(A), (3.24)

and we obtain:

Theorem 3.30. Let U : A → X and F : X → A be functors and η : 1X →
UF and ε : FU → 1A natural transformations. The following conditions are
equivalent:

1. (F (X), ηX) is a universal arrow X → U for each object X in X, and ε
is the corresponding family of morphisms, i.e. U(εA)ηU(A) = 1U(A) for
every object A in A;

2. (U(A), εA) is a universal arrow F → A for each object A in A, and η
is the corresponding family of morphisms, i.e. εF (X)F (ηX) = 1F (X) for
every object X in X;

3. the equalities εF (X)F (ηX) = 1F (X) and U(εA)ηU(A) = 1U(A) hold for every
object X in X and every object A in A.

Remark 3.31. Using the standard notation for composing functors and natu-
ral transformations, the equalities (3.25) (for all X and A) are displayed as
commutative diagrams

F
Fη // EEEEEEEEE EEEEEEEEE FUF

εF��
F

UFU

Uε �� U
ηUooyyyyyyyyyyyyyyyyyy

U

(3.25)

and called triangular identities.

Definition 3.32.

Let U : A→ X and F : X→ A be functors, η : 1X → UF and ε : FU → 1A

be natural transformations satisfying the triangular identities, and ϕ and ψ be
as in Theorems 3.26 and 3.28 respectively. We will say that:

1. (F,U, η, ε) : X → A is an adjunction; however, we might also omit either
η or ε, or replace them with either ϕ or ψ;

2. F is the left adjoint (of U), U is the right adjoint (of F ), η is the unit of
adjunction, and ε is the counit of adjunction.
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3.7 Monoidal categories

In this section we introduce monoidal categories with some examples and related
concepts.

Definition 3.33. A monoidal category is a system (C, I,⊗, α, λ, ρ) in which:

1. C is a category;

2. I is an object in C;

3. ⊗ : C×C→ C is a functor, written as ⊗(A,B) = A⊗B;

4. α = (αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C)A,B,C∈C, λ = (λA : A →
I ⊗ A)A∈C, and ρ = (ρA : A → A ⊗ I)A∈C are natural isomorphisms
making the diagrams commute:

A⊗ (I ⊗B)
α // (A⊗ I)⊗B

A⊗B

1⊗λ

OO
A⊗B,

ρ⊗1

OO (3.26)

A⊗ (B ⊗ (C ⊗D))

1⊗α �� α // (A⊗B)⊗ (C ⊗D)
α // ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
α

// (A⊗ (B ⊗ C))⊗D

α⊗1

OO
(3.27)

Here and below we write just α instead of αA,B,C for short; it is also often
useful to write (C, I,⊗, α, λ, ρ) = (C, I,⊗) = (C,⊗) =. A monoidal category
(C, I,⊗, α, λ, ρ) is said to be strict if A⊗ (B⊗C) = (A⊗B)⊗C for all A,B,C;
I ⊗A = A = A⊗ I for all A; and α, λ, and ρ are the identity morphisms.

Example 3.34. Any monoid M = (M, e,m) can be regarded as a strict monoidal
category (C, I,⊗), in which C is the underlying set M regarded as a discrete
category (i.e. a category with no non-identity arrows), I = e, and ⊗ = m.

Example 3.35. Any category X yields the strict monoidal category End(X) =
(End(X), 1X,−) of functors X → X, where 1X is the identity functor X → X
and ⊗ is the composition of functors.

Example 3.36. If C is a category with finite products, then (C, I,⊗, α, λ, ρ), in
which I = 1 is a terminal object in C, ⊗ = × is a (chosen) binary product
operation, and α, λ, ρ arise from the canonical isomorphisms A × (B × C) ∼=
(A×B)×C, A ∼= 1×A, A ∼= A× 1 respectively, is a monoidal category. Such
a monoidal structure is said to be cartesian.

Example 3.37. An internal graph G in a category is a diagram of the form

G1

dG //
G0

cG

oo
in C. For a fixed object O, the internal graphs G in C with G0 = O are called
internal O-graphs in C, and their category will be denoted by Graphs(,O); a
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morphism f : G → H in Graphs(,O) is a morphism f : G1 → H1 in C with
dHf = dG and cHf = cG. When C has chosen pullbacks, this category becomes
a monoidal category (Graphs(,O), I,⊗, α, λ, ρ) as follows:

1. I has I0 = I1 = O and dI = cI = 1O;

2. ⊗ is defined as the span composition, i.e. for G and H in Graphs(C, O),
G⊗H is defined by (G⊗H)1 = G1 ×O H1, dG⊗H = dHπ2, and cG⊗H =
cGπ1 via the diagram

G1 ×O H1

π2 %%JJJJJJJJJJπ1zztttttttttt
G1

dG %%JJJJJJJJJJJcG~~}}}}}}}} H1

dG   AAAAAAAAcGyyttttttttttt
O O O

(3.28)

in which diamond part is the chosen pullback of the pair (dG, cG).

3. α, λ, and ρ arise from the appropriate canonical isomorphisms.

In the special case in which O = 1 is a terminal object in C, the pullbacks we
need become binary products, and the monoidal category we obtain coincides
with the one from Example 3.36.

Example 3.38. Dualizing Example 3.36, if C is a category with finite coprod-
ucts, then (C, I,⊗, α, λ, ρ), in which I = 0 is an initial object in C, ⊗ = +
is a (chosen) binary coproduct operation, and α, λ, ρ arise from the canonical
isomorphisms A+ (B +C) ∼= (A+B) +C, A ∼= 0 +A, A ∼= A+ 0 respectively,
is a monoidal category.

Example 3.39. Let R be a commutative ring, and C the category of R-modules.
Then (, I,⊗, α, λ, ρ), in which I = R, ⊗ the usual tensor product over R, and
α, λ, ρ the usual natural isomorphisms, forms a monoidal category.

Definition 3.40. Let = (C, I,⊗, α, λ, ρ) and C′ = (C′, I,⊗, α, λ, ρ) be monoidal
categories (we use the prime sign ’ only for C, although the I, ⊗, etc. in C
and in C′ are not, of course, supposed to be the same). A monoidal functor
F = (F, θ, φ) : C→ C′ consists of

1. an ordinary functor F : C→ C′;

2. a morphism θ : I → F (I) in C′;

3. a natural transformation φ = (φA,B : F (A) ⊗ F(B) → F (A ⊗ B))A,B∈C
making the diagrams

F (A)⊗ (F (B) ⊗ F (C))
α //

1⊗φ �� (F (A)⊗ F(B)) ⊗ F (C)

φ⊗1��
F (A)⊗ (F (B ⊗ C))

φ �� (F (A⊗B)) ⊗ F (C)

φ��
F (A⊗ (B ⊗ C))

F (α)
// F ((A ⊗B)⊗ C),

(3.29)
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I ⊗ F (A)

θ⊗1 �� F (A)
λoo

F (λ)��
F (I)⊗ F (A)

φ
// F (I ⊗A),

(3.30)

F (A)⊗ I

1⊗θ �� F (A)

F (ρ) ��ρoo
F (A)⊗ F (I)

φ
// F (A⊗ I),

(3.31)

commute. A monoidal functor F = (F, θ, φ) is said to be strong if θ and
φ are isomorphisms, and strict if moreover F (I) = I, F (A) ⊗ F(B) =
F (A⊗ B) for all A and B, and θ and φ are the identity morphisms.

Definition 3.41. Let Fi = (Fi, θi, φi) : C → C′ (i = 1, 2) be monoidal func-
tors. A monoidal natural transformation τ : F1 → F2 is an ordinary natural
transformation τ : F1 → F2 such that the diagrams

I
θ1 // F1(I)

τ��
I

θ2

// F2(I),

(3.32)

F1(A)⊗ F1(B)
φ1 //

τ⊗τ �� F1(A⊗B)

τ��
F2(A)⊗ F2(B)

φ2

// F2(A⊗B)

(3.33)

commute.

Several examples of monoidal functors are used as definitions of important
concepts. Two of them will be given here with further cases considered in the
next sections.

Definition 3.42. Let C be monoidal category and X a category. A C-action
on X is a monoidal functor C→ End(X), where End(X) is as in Example 3.35.

Equivalently such a C-action can be defined as a functor C×X→ X, which
we will write as (C,X) 7→ ⊗X, equipped with natural transformations θ =
(θX : X → I⊗X))X∈X and φ = (φA,B,X : A⊗(B⊗X)→ (A⊗B)⊗X)A,B∈,X∈X
making the diagrams

A⊗ (B ⊗ (C ⊗X))

1⊗φ �� A⊗ (B ⊗ (C ⊗X))

φ��
A⊗ ((B ⊗ C)⊗X)

φ �� (A⊗B)⊗ (C ⊗X)

φ ��
(A⊗ (B ⊗ C))⊗X

α⊗1
// ((A ⊗B)⊗ C)⊗X,

(3.34)
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A⊗X
θ �� A⊗X

λ⊗1��
I ⊗ (A⊗X)

φ
// (I ⊗A)⊗X,

(3.35)

A⊗X
1⊗θ �� A⊗X

1⊗ρ��
A⊗ (I ⊗X)

φ
// (A⊗ I)⊗X,

(3.36)

commute.

Definition 3.43. Let 1 be the trivial monoid considered as a monoidal category.
A monoidal functor from it to an arbitrary monoidal category C can be presented
as a triple M = (M, e,m), in which M is an object in C and e : I → M and
m : M ⊗M →M morphisms in C making the diagram

M ⊗ (M ⊗M)
α //

1⊗m �� (M ⊗M)⊗M m⊗1 // M ⊗M
m �� M

(e⊗1)λoollllllllllllllllllllllllllllllllll (1⊗e)ρ��
M ⊗M m

// M M ⊗Mmoo
(3.37)

commute. Such a triple is called a monoid in C.

Moreover, a monoidal natural transformation τ : (M1, e1,m1)→ (M2, e2,m2)
being a morphism τ : M1 → M2 in C with e1 = e2 and τm1 = m2(τ ⊗ τ),
is nothing but a monoid homomorphism in C. So, the monoids in C form
a category Mon(C), which is the category MonCat(1,C) of monoidal func-
tors 1 →. In particular this immediately tells us that every monoidal functor
F = (F, θ, φ) : C→ C′ induces a functor Mon(F ) : Mon(C)→ Mon(C′), which
sends (M, e,m) to the composite

1
(M,e,m)−−−−−→ C

(F,θ,φ)−−−−→ C′

considered as a monoid in C′.

3.8 Monads and algebras

In this section we introduce monads, algebras over monads, and free algebras; we
also introduce a very general notion of a monoid action as a “general example”.

Definition 3.44. A monad on a category X is a monoid in the monoidal cat-
egory End(X) of Example 3.35. Explicitly, a monad on X is a triple T =
(T, η, µ), in which T : X → X is a functor and η : 1X → T and µ : T 2 → T
natural transformations making the diagram

T 3
µT //

Tµ �� T 2

µ �� T
ηToo

Tη��~~~~~~~~~~~~~~~~
T 2

µ
// T Tµ

oo (3.38)
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Definition 3.45. Let T = (T, η, µ) be a monad on a category X. A T -algebra
(or an algebra over T ) is a pair (X, ξ), in which X is an object in X and
ξ : T (X)→ X a morphism making the diagram

T 2(X)
µT //

T (ξ) �� T (X)

ξ �� X
ηXoo

Tη��{{{{{{{{{{{{{{{{{{
T (X) µ

// X (3.39)

commute. A morphism h : (X, ξ)→ (X ′, ξ′) of T -algebras is a morphism h : X →
X ′ making the diagram

T (X)
T (h) //

ξ �� T (X ′)

ξ′��
X

h
// X (3.40)

commute. The category of T -algebras will be denoted by XT .

Theorem 3.46. Let T = (T, η, µ) be a monad on a category X, and let UT : XT →
X be the forgetful functor defined by UT (X, ξ) = X. Then:

1. for each object X in X, the pair (T (X), µX) is a T -algebra;

2. the functor FT : X → XT , defined by FT (X) = (T (X), µX) is a left
adjoint of UT . The unit and counit of the adjunction are η : 1X → T =
UTFT and ε : FTUT → 1XT defined by ε(T (X),µX) = µX respectively.

Proof. 1. We have to prove the commutativity of

T 3(X)
µT (X) //

T (µX ) �� T 2(X)

µX �� X
ηT (X)oozzzzzzzzzzzzzzzzzz

T 2(X) µX

// X (3.41)

but it follows from the commutativity of (3.38).

2. The square part of (3.41) insures that putting

ε(T (X),µX ) = µX

determines a natural transformation ε : FTUT → 1XT , and it is easy to
see that η and ε satisfy the triangular identities.

Example 3.47.

Let X be a category equipped with an action of a monoidal category C. Ac-
cording to Definition 3.42, such an action is simply a monoidal functor F : C→
End(X), and, like every monoidal functor, it induces a functor Mon(F ) : Mon(C)→
Mon(End(X)). Therefore every monoid M = (M, e,m) in C determines a
monad on X; the algebras over that monad are called M -actions, and their
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category is denoted by XM . Explicitly, such an M -action is a pair (X, ξ), in
which ξ : M ⊗X → X is a morphism in X making the diagram

M ⊗ (M ⊗X)
φ //

1⊗ξ �� (M ⊗M)⊗X m⊗1 // M ⊗X
ξ �� X

(e⊗1)θoonnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
M ⊗X

ξ
// X

commute. Here θ and φ are as in (3.34)-(3.36).

Remark 3.48. 1. According to G. M. Kelly, an ”M-action” is the right name
not for a pair (X, ξ) above, but just for its structure morphism ξ.

2. Example 3.47 is at the same time a “generalization”. Indeed, starting from
an arbitrary monad T on X, we can consider T-algebras as T-actions in
the sense of Example 3.47, putting = End(X) and considering the identity
momoidal functor End(X)→ End(X) as the action of End(X) on X.

3.9 More on adjoint functors and category equiv-
alences

This section contains additional observations on adjoint functors and category
equivalence; some them will be explicitly used later, while others simply help to
understand the concepts involved. We begin with

Remark 3.49. 1. It is easy to see that (F,U, η, ξ) : X → A is an adjunction
if and only if so is

(Uop, F op, εop, ηop) : Xop → Aop

(in the obvious notation). Therefore every general property of adjoint
functors has its dual, where the left and the right adjoints exchange their
roles (see e.g. Theorems 3.53 and 3.54 below).

2. Since in an adjunction (F,U, η, ε) : X→ A, ηX : X → UF (X) is a univer-
sal arrow X → U for each object X ∈ X, the functor U alone determines
such an adjunction uniquely up to an isomorphism; dually, the same is
true for F .

3. It is easy to see that adjunctions compose: if (F,U, η, ε) : X → A and
(G, V, θ, ζ) : Y→ X are adjunctions, then so is

(FG, V U, (V ηG)θ, ε(FζU)) : Y → A.

(cf. 3.10(c)).

4. Let

A
K //

K′�� B
M

oo
L��

B′
L′ //M ′

OO
C

N ′
oo N

OO (3.42)
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a diagram of functors in which M , M ′, N , and N ′ are the left adjoints of
K, K ′, L, and L′ respectively. Then, as easily follows from (b) and (c),
we have LK ≈ L′K ′ ≡MN ≈M ′N ′.

Lemma 3.50. Every fully faithful functor reflects isomorphisms, i.e. under
such a functor only isomorphisms are sent to isomorphisms.

Proof. Let U : A → X be a fully faithful functor with U(f : A → B) being an
isomorphism. Since U is full, U(f)−1 = U(g) for some g : B → A in A. Then
since U(gf) = 1U(A), U(fg) = 1U(B), and U is faithful, we obtain gf = 1A and
fg = 1B, which shows that f : A→ B is an isomorphism.

Definition 3.51. An adjunction (F,U, η, ε) : X → A is said to be an adjoint
equivalence if η and ε are isomorphisms.

Theorem 3.52. Let U : A → X be a category equivalence, F0 a map from
the set X0 of objects in X to the set A0 of objects in A, and η = (ηX : X →
UF0(X))X∈X0 a family of isomorphisms. Then there exists a unique functor
F : X → A and a unique natural transformation ε : FU → 1A, for which F0 is
the object function of F and (F,U, η, ε) : X → A is an adjunction. Moreover,
that adjunction is always an adjoint equivalence.

Proof. Since U is fully faithful (by Lemma 3.12) and each ηX : X → UF0(X) is
an isomorphism, it is easy to see that ηX : X → UF0(X) is a universal arrow
X → U for each object X in X. After that the first assertion of the theorem
follows from Remark 3.29 (see also Definition 3.32). Next, since ηXs are isomor-
phisms, so are U(εA)s (by the second identity in (3.25)), and by Lemma 3.50
this implies that ε is an isomorphism.

Theorem 3.53. Let (F,U, η, ε) : X→ A be an adjunction. Then:

1. U is faithful if and only if ε is an epimorphism;

2. U is full if and only if ε is a split monomorphism;

3. and therefore U is fully faithful if and only if ε is an isomorphism.

Proof. For two arbitrary objects A and B in A, consider the diagram

HomX(U(A), U(B))

u7→εBF (u)��HomA(A,B)

UA,B

55llllllllllllll
HomA(εA,B) ))RRRRRRRRRRRRRR

HomA(FU(A), B)

f 7→U(f)ηU(A)

OO (3.43)

where the vertical arrows are bijections inverse to each other (since they are
ψU(A),B and ϕU(A),B respectively: see (3.18) and (3.23)). Since the left-hand
vertical arrow is bijective and makes the triangle commute (by naturality of ε),
we have:

1. UA,B is injective HomA(εA, B) is injective;
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2. UA,B is surjective HomA(εA, B) is surjective;

3. UA,B is bijective HomA(εA, B) is bijective.

Since HomA(εA, B) is injective, surjective, or bijective if and only if εA is an
epimorphism, split monomorphism, or isomorphism respectively, this completes
the proof.

Dually, we obtain:

Theorem 3.54. Let (F,U, η, ε) : X→ A be an adjunction. Then:

1. F is faithful if and only if η is a monomorphism;

2. F is full if and only if η is a split epimorphism;

3. and therefore F is fully faithful if and only if η is an isomorphism.

- which helps to prove the following:

Theorem 3.55. The following conditions on an adjunction (F,U, η, ε) : X→ A
are equivalent:

1. (F,U, η, ε) : X→ A is an adjoint equvalence;

2. F and U are fully faithful;

3. F is fully faithful and U reflects isomorphisms;

4. η is an isomorphism and U reflects isomorphisms;

5. U is fully faithful and F reflects isomorphisms;

6. ε is an isomorphism and F reflects isomorphisms.

Proof. (a) =⇒ (b), (c) =⇒ (d), and (e) =⇒ (f) follow from Theorems
3.54(a)-(c) and 3.53(a)-(c). (b) =⇒ (c) and (b) =⇒ (e) follow from Lemma ??.
Therefore it suffices to prove the implications (d) =⇒ (a) and (f) =⇒ (a).
Moreover, since these implications are dual to each other, it suffices to prove only
one of them, say, (d) =⇒ (a). For, consider the second identity U(εA)ηU(A) =
1U(A) in (3.25). Assuming that η is an isomorphism, we conclude that so is
U(εA) for each A, and, when U reflects isomorphisms, this implies that ε is an
isomorphism, as desired.

3.10 Remarks on coequalizers

The remarks on coequalizers we make in this section are presented as a definition
and an example:

Definition 3.56. 1. A coequalizer diagram in a given category is a diagram
of the form

A
f //
g

// B h // C (3.44)

in which hf = hg, and for every morphism h′ : B → C′ with h′f = h′g,
there exists a unique morphism k : C → C′ with kh = h′. We will then
also say that h is the coequalizer of the pair (f, g).
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2. A morphism that occurs in a coequalizer diagram as the morphism h occurs
in (3.44) is called a regular epimorphism.

3. A coequalizer diagram is said to be absolute, if it is preserved by any
functor, i.e. if its image under any functor is a coequalizer diagram.

Example 3.57. 1. Consider a split fork, i.e. a diagram of the form

A
f //
g

// B h //j��
C

i��
(3.45)

in which hf = hg, hi = 1C , fj = 1B, and gj = ih. In each such diagram
f , g, and h form a coequalizer diagram. Indeed, given h′ : B → C′ with
h′f = h′g, it is easy to see that there is a unique morphism k : C → C′

with kh = h′: just take k = h′i, which gives

kh = h′ih = h′gj = h′fj = h′,

and the uniqueness follows from the fact that h is a split epimorphism.
Since the conditions imposed on the diagram (3.45) were purely equational
and therefore are “preserved” by every functor, this also proves that f, g,
and h form an absolute coequalizer diagram.

2. An arbitrary split epimorphism h : B → C can be involved in a split fork,
namely in

B
1B //
ih

// B h //1B��
C

i��
(3.46)

where i is a splitting, i.e. a morphism from C toB with hi = 1C . Therefore
every split epimorphism is a regular epimorphism.

3. For a monad T = (T, η, µ) on a category X, any T -algebra (X, ξ) deter-
mines the following split fork in X:

T 2(X)
µX //
T (ξ)

// T (X)
ξ //ηT (X)��

X

ηX��
(3.47)

3.11 Monadicity

In this section we discuss the relationship between adjunctions and monad.

Theorem 3.58. For every adjunction (F,U, η, ε) : X → A, the triple T =
(T, η, µ) defined by

• T = UF ,

• η of (T, η, µ) is the same as η of (F,U, η, ε),
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• µ = UεF , i.e. µ = (µX : T 2(X) → T (X))X∈X0 is defined by µX =
U(εF (X)),

is a monad on X.

Proof.

For the triple above, and any object X in X, the X-component of the diagram
(3.38) becomes

UFUFUF (X)
U(εF UF (X)) //

1⊗m �� UFUF (X)
ηUF (X) // UF (X)

m �� M
UFU(εF (X))oollllllllllllllllllllllllllllllllllllllllll UF (ηX )��

UFUF (X) m
// UF (X) UFUF (X)

moo
(3.48)

and its left-hand square commutes by the naturality of while the triangles com-
mute by the triangular identities (3.25).

Example 3.59. Starting from an arbitrary monad T = (T, η, µ) on a category X,
we obtain the forgetful-free adjunction (FT , UT , ηT , εT ) : X→ XT described in
Theorem 3.46. It is easy to see that the corresponding monad on X is the same
as the original monad T = (T, η, µ). This tells us that every monad can be
obtained from an adjunction as in Theorem 3.58. Since this result is originally
due to S. Eilenberg and J. Moore, the category XT is often called the Eilenberg-
Moore category (of algebras over T ). Note also, that using only free T -algebras,
i.e. the T -algebras of the form FT (X) = (T (X), µX) we could also obtain an
adjunction whose corresponding monad is T = (T, η, µ). Furthermore, since
such an algebra (T (X), µX) is fully determined by its underlying object X , the
full subcategory in XT with objects all free T -algebras can be described as the
so-called Kleisli category of T , whose objects are the same as the objects in X.
In detail:

• The category Kleisli(T ) is defined as the category with the same objects
as the in X, and a morphism f : X → Y being a morphism f : X → T (Y )
in X; the composite of morphisms f : X → Y and g : Y → Z in Kleisli(T )
is the composite

X
f−→ T (Y )

T (g)−−−→ T 2(Z)
µZ−−→ T (Z)

in X.

• The forgetful functor U : Kleisli(T ) → X is defined by U(f : X → Y ) =
µZT (f) : T (X) → T (Y ), and free functor F : X → Kleisli(T ) is defined
by F (f : X → Y ) = ηY f : X → T (Y ), considered as a morphism from X
to Y in Kleisli(T ).

• And the monad obtained from adjunction as in Theorem 10.1 is again the
same as the original monad T = (T, η, µ) (a result due to H. Kleisli).

It is now natural ask, to what extend is it possible to recover the adjunction
(F,U, η, ε) : X → A from the monad T = (T, η, µ) in the situation of Theo-
rem 3.58? In order to formulate this question properly, we need:
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Theorem 3.60.

(F,U, η, ε) : X → A and T = (T, η, µ) be as in Theorem 3.58. Then there
exists a unique functor K : A→ XT with UTK = U and KF = FT .

Proof. Existence: Simply define K by

K(A) = (U(A), U(εA)). (3.49)

To prove that (U(A), U(εA)) is indeed a T -algebra is to prove that the diagram

UFUFU(A)
U(εF U(A)) //

1⊗m �� UFU(A)
ηU(A) // U(A)

m �� M
UFU(εA)oooooooooooooooooooooooooooooooooooooooooooooooo

UFU(A)
m

// U(A)

(3.50)
commutes, which, for the left-hand square, follows from the naturality of , and,
for the triangle, follows from the second identity in (3.25) (cf. (3.48)). Defining
K by (3.49), we also obviously have UTK = U , and KF = FT since KF (X) =
(UF (X), U((F (X))) = (T (X), )X) = FT (X).

Uniqueness: Let H : A→ XT be a functor satisfying UTH = U and HF =
FT . Since UTH = U , such a functor must be given by H(A) = (U(A), εA) for
some natural transformation ξ : UFU → U . On the other hand, since HF =
FT , we must have ξF (X) = µX = U(εF (X)). . After that, comparing the
naturality square from (3.50) with the naturality square

UFUFU(A)
U(εF U(A))=ξF U(A)//

UFU(εA) �� UFU(A)

U(εA)��
UFU(A)

ξA

// U(A)

we obtain ξAUFU(εA) = U(εA)UFU(εA), which implies ξA = U(εA), since
UFU(εA) is a split epimorphism by the second identity in (3.25).

Definition 3.61. Let (F,U, η, ε) : X→ A and T = (T, η, µ) be as in Theorems
3.58 and 3.60. Then:

1. the functor K : A → XT as in Theorem 3.60 is called the comparison
functor;

2. the functor U : A → X is said to be monadic if the functor K : A → XT

above is a category equivalence.

Accordingly, saying that an adjunction (F,U, η, ε) : X→ A can be recovered
from the corresponding monad T = (T, η, µ) on X should be understood as say-
ing that the functor U is monadic. In order to formulate some of the monadicity
results, we will need the following construction containing long calculations:
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Let (F,U, η, ε) : X → A and T = (T, η, µ) be as above, and suppose that
for every T -algebra (X, ξ), the pair (εF (X), F (ξ)) has a coequalizer in A. Then
the comparison functor K : A → XT has a left adjoint forming an adjunction
(L,K, η′, ε′) : X→ A that can be described as follows:

1. For a T -algebra (X, ξ), the object L(X, ξ) is defined via the coequalizer
diagram

FUF (X)
εF (X) //
F (ξ)

// F (X)
π(X,ξ)// L(X, ξ) (3.51)

2. For a morphism h : (X, ξ)→ (X ′, ξ′) of T -algebras, we form the diagram

FUF (X)
εF (X) //
F (ξ)

//
FUF (h) �� F (X)

π(X,ξ) //
F (h)�� L(X, ξ)

L(h)��
FUF (X ′)

εF (X′) //
F (ξ′)

// F (X ′)
π(X′,ξ′) // L(X, ξ′)

(3.52)

of solid arrows, in which

π(X′,ξ′)F (h)εF (X) = π(X′,ξ′)εF (X′)FUF (h)

= π(X′,ξ′)F (ξ′)FUF (h)

= π(X ′, ξ′)F (h)F (ξ)

implies the existence and uniqueness of the dotted arrow making the right-
hand square commute. This determines a functor L : XT → A.

3. We then define η′(X,ξ) : (X, ξ) → KL(X, ξ) = (UL(X, ξ), U(εL(X,ξ))) as

the composite U(π(X,ξ))ηX , which we can do since the diagram

UF (X)
UF (ηX ) //

ξ �� UFUF (X)
UFU(π(X,ξ))// UFUL(X, ξ)

U(εL(X,ξ)) ��
X ηX

// UF (X)
U(π(X,ξ)) // UL(X, ξ)

(3.53)
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commutes. Indeed, we have

U(εL(X,ξ))UFU(π(X,ξ)))UF (ηX) = U(εL(X,ξ)FU(π(X,ξ)))F (ηX))

(by functoriality of U)

= U(π(X,ξ))εF (X)F (ηX))

(by naturality of ε)

= U(π(X,ξ)))

(by the first identity in (3.25))

= U(π(X,ξ)))U(εF (X))ηUF (X)

(by the second identity in (3.25)

applied to A = F (X))

= U(π(X,ξ))εF (X))ηUF (X)

(by functoriality of U)

= U(π(X,ξ))F (ξ))ηUF (X)

(since (3.51) is a coequalizer diagram)

= U(π(X,ξ)))UF (ξ)ηUF (X)

(by functoriality of U)

= U(π(X,ξ)))ηXξ

(by naturality of η).

4. To show that η′(X,ξ) is a universal arrow (X, ξ)→ K is to show that for ev-

ery morphism k : (X, ξ)→ (U(A), U(εA)) there exists a unique morphism
l : L(X, ξ)→ A with

U(l)U(π(X, ξ))ηX = k.

Since U(l)U(π(X,ξ)) = U(lπ(X,ξ)) and (F,U, η, ε) is an adjunction, this is
the same as to show that there exists a unique morphism l : L(X, ξ)→ A
with lπ(X,ξ) = εAF (k). Since (3.51) is a coequalizer diagram this simply
means to show that

εAF (k)εF (X) = εAF (k)F (ξ). (3.54)

For, we have

εAF (k)F (ξ) = εAF (kξ) (by functoriality of F )

= εAF (U(εA)UF (k))

(since k : (X, ξ)→ (U(A), U(εA))is a morphism of T -algebras)

= εAFU(εAF (k)) (by functoriality of U)

= εAF (k)εF (X) (by naturality of ε),

as desired.

5. In particular, for an object A in A, the morphism ε′A : LK(A)→ A is the
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unique morphism L((U(A), U(εA))→ A making the diagram

FUFU(A)
εF U(A) //
FU(εA)

// FU(A)
π(U(A),εA) //

εA !!DDDDDDDDDDDDDDD L((U(A), U(εA))

ε′Azzttttttttttttttttttt
A

(3.55)
commute.

Remark 3.62. As an intermediate result of the calculation in (3), we have

U(π(X,ξ))ηXξ = U(π(X,ξ)) (3.56)

for every T -algebra (T (X), ξ). Since η′(X,ξ) : (X, ξ) → KL(X, ξ) was defined

(in (3.52)) as U(π(X,ξ))ηX , this equality together with Example 3.57 tell us
that η′(X,ξ) considered as a morphism in X is the unique morphism making the
diagram

UFUF (X)
U(εF (X))=µX //
UF (ξ)=T (ξ)

// UF (X)
ξ //

U(π(X,ξ)) ""DDDDDDDDDDDDDDDD L((U(A), U(εA))

π(X,ξ)=U(π(X,ξ))ηXzzttttttttttttttttttt
A

(3.57)
commute.

Theorem 3.63. For (F,U, η, ε) : X→ A and T = (T, η, µ) as above the follow-
ing conditions are equivalent:

1. the functor U : A→ X is monadic;

2. the functor U preserves the coequalizer diagram (3.51) for every T -algebra
(X, ξ), and, for every object A in A, the morphism εA is the coequalizer
of the pair (εFU(A), FU(εA));

3. the functor U reflects isomorphisms and preserves the coequalizer diagram
(3.51) for every T -algebra (X, ξ);

4. the functor U reflects isomorphisms, and every pair (f, g) of parallel mor-
phisms in A, for which the pair (U(f), U(g)) has an absolute coequalizer,
has a coequalizer preserved by U .

Proof. • Since UTK = U , and UT : XT → X obviously reflects isomor-
phisms, U reflects isomorphisms if and only if K does.

• As follows from Remark 3.62 and the fact that the top part of the diagram
3.57 is a coequalizer diagram (see Example 3.57), the functor U preserves
the coequalizer diagram (3.51) if and only if η′(X,ξ) : (X, ξ)→ KL(X, ξ) is
an isomorphism.

772



Part VII Internal precategory actions

• As follows from 3.55, the morphism εA is the coequalizer of the pair
(εFU(A), FU(εA)) if and only if ε′A : LK(A)→ A is an isomorphism.

• This proves (a) =⇒ (b) and makes (b) =⇒ (c) a consequence of
Theorem 3.55 (in fact a consequence of the last argument in its proof).

• Since the pair (U(εF (X)), UF (ξ)) = (µX , T (ξ)) involved in (3.57) is a part
of a split fork (3.47), (d) implies (c).

• After this all we need to prove is that if (f, g) of parallel morphisms in
XT , for which the pair (f, g) has an absolute coequalizer in X, then (f, g)
has a coequalizer in XT preserved by UT . For, consider the diagram

T (X)
T (f) //
T (g)

//�� T (Y )
T (h) //�� T (Z)��

X
f //
g

// Y h // Z
(3.58)

where: h is the coequalizer of (f, g) in X; the left-hand and the middle
vertical arrow are the domain and the codomain of f (and of g) respectively
in the category XT ; and the dotted arrow is determined by the fact that
the top row in (3.58) is a coequalizer diagram (since h is the absolute
coequalizer of (f, g) in X). Using the fact that not only T but also T 2

preserves the equalizer of (f, g), it is easy to check that the dotted arrow
determines a T -algebra structure on Z and then makes h is the coequalizer
of (f, g) in XT and this coequalizer is trivially preserved by UT .

Remark 3.64.

1. Condition (3.63)(d) can modified by asking the pair (U(f), U(g)) to be a
split coequalizer (i.e. to be a part of a split fork) instead of an absolute one.
As one can see from the argument proving (d) =⇒ (c) of Theorem 3.63,
this follows from the fact that the diagram (3.47) is a split fork.

2. The pair (εF (X), F (ξ)) involved in (3.51) is reflexive, which means that
εF (X) and F (ξ) are split epimorphisms with a common splitting which
is F (ηX). Therefore using the same arguments as in the proof of Theo-
rem 3.63, we can prove the following: if a functor admits a left adjoint,
reflects isomorphisms, and preserves coequalizers of reflexive pairs, then
it is monadic.

3.12 Internal precategory actions

This section presents generalized versions of very first concepts of internal cat-
egory theory need for the purposes of categorical Galois theory.
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Part VII Internal precategory actions

Definition 3.65. An internal precategory in a category X is a diagram

P = (P0, P1, P2, d, c, e,m) = P2
m //p ��
q

BBP1

d ��
c

BBP0
eoo (3.59)

in X with de = 1 = ce, dp = cq, dm = dq, and cm = cp. An internal precategory
in Sets is simply called a precategory.

Example 3.66. Any (small) category C can be regarded as a precategory; it is
then to be displayed as

C = (C0,C1,C2, d, c, e,m) = C2
m //p ��
q

BBC1

d ��
c

BBC0
eoo (3.60)

where:

• C0 is the set of objects in C;

• C1 is the set of morphisms in C;

• d and c are the domain map and the codomain map respectively, i.e.
d(f) = x and c(f) = y if and only if f is a morphism from x to y;

• C2 = {(g, f) | d(g) = c(f)} is the set of composable pairs of morphisms
in C;

• p and q are the projection maps, i.e. p(g, f) = g and q(g, f) = f .

Example 3.66 suggests:

Definition 3.67. An internal category in a category X with pullbacks is an
internal precategory C in X, in which the diagram formed by d, c, p, q is a
pullback (yielding C2 = C1 ×d,c) C1) and the diagram

C1 ×(d,c) C1 ×(d,c) C1
1×m //

m×1 �� C1 ×(d,c) C1
〈ec,1〉 //

m �� C1

〈1,ed〉��
C1 ×(d,c) C1 m

// C1

rrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrr
C1 ×(d,c) C1m

oo
(3.61)

commutes.

Remark 3.68. 1. Comparing diagrams (3.61) and (3.37) makes clear that an
internal category C in X is nothing but a monoid in the monoidal category
(Graphs(X, O), I,⊗, α, λ, ρ), described in Example 3.37, for O = C0.
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2. An internal category in Sets is of course the same as an ordinary (small)
category.

The readers familiar with simplicial sets might prefer to consider precate-
gories as truncated simplicial sets, and present Example 3.66 via the notion of
nerve of a category. According to this approach, but also independently of it,
given a precategory P , it is convenient to use displays like

x
h //

f ��??????? z

y

g

??������� , x

e(x)��
(3.62)

for t in P2, g = p(t), f = q(t), h = m(t), x = d(f) = d(h), y = d(g) = c(f), and
z = c(g) = c(h). Note that these displays “remember” all identities required in
Definition 3.65. Thinking of internal precategories as generalized categories, we
are going now to generalize functors. In fact there are several concepts to be
introduced, and the first obvious step is to define precategory morphisms as the
corresponding diagram morphisms, which brings us to

Definition 3.69. Let P and P ′ be internal precategories in X. A morphism
ϕ : P→ P′ is a diagram in X of the form

P2
m //p ��
q

BB
ϕ2 �� P1

d ��
c

BB
ϕ1 �� P0

eoo
ϕ0 ��

P ′2
m′ //p′ ��
q′

BBP ′1 d′ ��
c′

BBP ′0e′oo
(3.63)

which reasonably commutes, i.e. has ϕ0d = d′ϕ1, ϕ0c = c′ϕ1, ϕ1e = e′ϕ0,
ϕ1p = p′ϕ2, ϕ1q = q′ϕ2, and ϕ1m = m′ϕ2. A morphism ϕ : P → P′ above is
said to be

1. a discrete fibration if the squares (ϕ0c = c′ϕ1 and ϕ1p = p′ϕ2 in (3.63)
are pullbacks;

2. a discrete opfibration if the squares (ϕ0d = d′ϕ1 and ϕ1q = q′ϕ2 in (3.63)
are pullbacks.

Remark 3.70. It is easy to show that if ϕ : P→ P′ is a discrete fibration and P ′

is an internal category, then P also is an internal category. On the other hand,
if P and P ′ were internal categories, then ϕ′ : P → P′ is a discrete fibration
whenever just the square ϕ0c = c′ϕ1 in (3.63) is a pullback. Therefore discrete
fibrations of internal categories in Sets are the same as ordinary ones defined
in Definition 3.20(b).
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Next, we need “functors” P → X, and since this concept is less obvious, let
us begin with the case X = Sets:

Definition 3.71. Let P be a precategory. Then:

1. For a category C, a prefunctor P C is a precategory morphism P C, where
C is regarded as a precategory in the same way as in Example 3.66.

2. A P -action is a diagram

A = (A0, π, ξ) = P1 ×P0 A0
ξ // A0

π // P0, (3.64)

where P1 ×P0 A0 = P1×(d,π)A0 is the pullback of d and π, ξ is written as
ξ(f, a) = fa, and

π(fa) = c(f), e(x)a = a, ha = g(fa) (3.65)

in the situation (3.62) whenever π(a) = x.

Remark 3.72. 1. When P is a category (see Example 3.66), the equalities
(3.65) are to be rewritten as

π(fa) = c(f), 1xa = a, (gf)a = g(fa). (3.66)

That is, when P is a category, a P -action is nothing but a functor from P
to Sets. To be absolutely precise, we should say that in that case there is a
canonical equivalence between the category of P -actions and the category
of functors from P to Sets.

• The general case reduces to the case of categories. Indeed: Let

L : Precategories→ Categories (3.67)

be the left adjoint of the inclusion functor from the category of cate-
gories to the category of precategories. Explicitly, for a precategory
P = (P0, P1, P2, d, c, e,m), the category L(P ) is the quotient category
Pa(G)/ ∼, where:

• Pa(G) is the free category (“the category of paths”) on the underlying
graph G = (P0, P1, d, c) of P ; that is, the objects of Pa(G) are the
elements of P0, and a morphism x → y is a finite (possibly empty)
sequence (f0, . . . , fn), in which d(fn) = x, c(fi) = d(fi−1) (for i =
1, . . . , n), and c(f0) = y.

• ∼ is the smallest congruence on Pa(G), for which e(x) ∼ 1x and
m(t) ∼ p(t)q(t) for each x in P0 and t in P2.

Requiring m(t) ∼ p(t)q(t) here is of course the same to require h ∼ gf in
the situation (3.62), and the category of P -actions can be identified with
the category of L(P )-actions.

2. The category of P -actions is canonically equivalent to the category of
prefunctors P → Sets. This can be either shown directly, or deduced
from (a) and (b), since the category of prefunctors P → Sets is obviously
canonically isomorphic to the category of functors L(P )→ Sets.
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Internalizing now Definition 3.71(b) we arrive at:

Definition 3.73. Let P = (P0, P1, P2, d, c, e,m) be an internal precategory in a
category X with pullbacks. A P -action is a diagram

A = (A0, π, ξ) = P1 ×P0 A0
ξ // A0

π // P0, (3.68)

where P1 ×P0 A0 = P1 ×(d,π) A0 is the pullback of d and π, and the diagram

P2 ×(dq,π) A0
〈p,q〉×1//

m×1 �� P1 ×(d,c) P1 ×(d,π) A0
1×ξ // P1 ×(d,π) A0

ξ �� A0

〈eπ,1〉oouuuuuuuuuuuuuuuuuuuuuuuuuuuu
P1 ×(d,π) A0

ξ
//

proj1 �� A0

πvvmmmmmmmmmmmmmmmmmmmmmm
P1 c

// P0

(3.69)
commutes. The category of P -actions will be denoted by XP .

Remark 3.74. When P is an internal category, the diagram 3.69 becomes

P1 ×(d,c) P1 ×(d,π) A0
1×ξ //

m×1 �� P1 ×(d,π) A0

ξ �� A0

〈eπ,1〉ootttttttttttttttttttttt
P1 ×(d,π) A0

ξ
//

proj1 �� A0

π ��
P1 c

// P0

(3.70)

This makes a P -action a special case of an M-action in the sense of Example 3.47.
Specifically:

we take the monoidal category C of Example 3.47 to be (Graphs(X, O), I,⊗, α, λ, ρ);

the role of X in Example 3.47 will be played by the comma category (X ↓ P0)
(of pairs A = (A0, π), where π : A0 → P0 is a morphism in X);

the C-action on (Graphs(X, O), I,⊗, α, λ, ρ) is defined in the obvious way using
P ⊗A = (P1 ×(d,π) A0, c(proj1)) defined via

P1 ×(d,π) A0

proj1yyssssssssss proj2 %%KKKKKKKKKK
P1

c~~}}}}}}}} d %%KKKKKKKKKKK A0

πyysssssssssss
P0 P0

(3.71)
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then since P becomes a monoid in (Graphs(X, O), I,⊗, α, λ, ρ), we have the
category (X ↓ P0)P of P -actions in the sense of Example 3.47, and it coincides
with the category XP of P -actions in the sense of Definition 3.73.

We end this section with a natural (dual) internal-precategorical version of
the results of Section 3.5 concerning discrete fibrations:

Theorem 3.75. Let P = (P0, P1, P2, d, c, e,m) be an internal precategory in a
category X with pullbacks and A = (A0, π, xi) a P -action. Then the diagram

P2 ×(dq,π) A0
m×1 //(1×ξ)(〈p,q〉×1) $$
q×1

::
proj1 �� P1 ×(d,π) A0

proj2   
ξ

>>
proj1 �� A0

〈eπ,1〉oo
π ��

P2
m //p ##
q

;; P1

d   
c

>>P0
eoo

(3.72)

is a discrete opfibration. Moreover, sending A to the so defined opfibration
determines an equivalence between the category XP of P -actions and the cat-
egory DisOpfib(P ) of discrete opfibrations over P (i.e. the category of dis-
crete opfibrations ?→ P considered as a full subcategory of the comma category
((Precategories in X) ↓ P )).

Proof is a routine calculation.

3.13 Descent via monadicity and internal actions

In this section we develop a simplified approach to Grothendieck descent theory
suitable for our purposes. Let p : E → B be a fixed morphism in a category C
with pullbacks. Consider the diagram

(C ↓ B)
K //

p∗ ##HHHHHHHHHHHHHHHHH (C ↓ E)T

Uzzuuuuuuuuuuuuuuuuu
(C ↓ E)

p!

HHHHHHHHHHHHHHHHH F

::uuuuuuuuuuuuuuuuu (3.73)

in which:

• p! is defined as the composition with p, i.e. by p!(D, δ) = (D, pδ);

• p∗ is the pullback-along-p (change-of-base functor determined by p), and
we will write p∗(A,α) = (E ×(p,α) A, proj1) = (E ×B A, proj1);

• it is to see that p! is the left adjoint p∗, and T denotes the corresponding
monad on (C ↓ E);
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• (C ↓ E)T is the category of T -algebras and U , F , and K the corresponding
forgetful functor, free functor, and comparison functor respectively.

Explicitly:

• a T -algebra is a diagram

(D, δ, ζ) = E ×(p,pδ) D
ζ // D δ // E, (3.74)

for which the diagram

E ×(p,p) E ×(p,pδ) D
1×ζ //

〈proj1,proj3〉 �� E ×(p,pδ) D
ζ //

ζ �� D
〈δ,1〉ooxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

E ×(p,pδ) D

proj1 ��
ζ // D
δwwooooooooooooooooooooooooo

E

(3.75)

commutes;

• the functor U is defined by U(D, δ, ζ) = (D, δ);

• the functor F is defined by F (D, δ) = (E ×(p,pδ) D, proj1, 〈proj1, proj3〉),
where (here and below) proji (i = 1, 2, 3) are suitable projections;

• the functor K is defined by K(A,α) = (E ×(p,α) A, proj1, 〈proj1, proj3〉).

The diagrams (3.74) and (3.75) look almost similar to the diagrams (3.68) and
(3.69) (see also (3.70)), and in fact they are special cases of those. For, let us
take (X = C and) P to be the internal category

Eq(p) = E ×B E ×B E
〈proj1,proj3〉 //〈proj1,proj2〉 $$
〈proj2,proj3〉

::
proj1 �� E ×B E

proj2 ��
proj1

??
proj1 �� E

〈1,1〉oo
E ×(p,p) E ×(p,p) E E ×(p,p) E

(3.76)

and write (D, δ) instead of (A0, π) in (3.68) and (3.69). Then (3.68) becomes

(E ×(p,p) E)×(proj2,δ)
D
ξ // D δ // E, (3.77)

and a straightforward calculation proves:
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Theorem 3.76.

For an object (D, δ) in (C ↓ E), the morphism

δ̄ = 〈proj1, proj3〉 : (E ×(p,p) E)×(proj2,δ)
D → E ×(proj2,δ)

D → E ×(p,pδ) D
(3.78)

is an isomorphism and (D, δ, ζ) is a T -algebra if and only if (D, δ, ζδ̄) is an
Eq(p)-action. Moreover, sending (D, δ, ζ) to (D, δ, ζδ̄) determines a category
isomorphism

(C ↓ E)T ≈ CEq(p). (3.79)

Remark 3.77.

1. As the notation obviously suggests, Eq(p) is nothing but the right internal
version of the equivalence on E determined by p. Moreover, of course
there are suitable notions of an internal groupoid, an internal preorder,
an internal equivalence relation, and the opposite internal category to a
given one, for which:

• every internal groupoid is isomorphic to its opposite internal groupoid;

• a morphism of internal groupoids is a discrete fibration if and only it
is a discrete opfibration;

• an internal preorder is the same as an internal category whose domain
morphism and codomain morphism are jointly monic;

• an internal equivalence relation is the same as an internal groupoid
that is an internal preorder. In particular we do not need to be too
careful in distinguishing Eq(p) from its opposite internal equivalence
relation.

2. Every morphism ϕ : P → P′ of internal precategories in C obviously de-
termines an induced functor Cϕ : CP ′ → CP , and this determines a
pseudofunctor (where “pseudo” refers to preservation of composition and
identities only up to “good” isomorphisms; omitting details let us just
mention that this is similar to “preservation” of by monoidal functors)

C? : Precat(C)op → Cat, (3.80)

where Precat(C) and Cat denote the category of internal precategories
in C and the category of categories respectively. In particular applying
this pseudofunctor to the commutative diagram

Eq(1E) = E
p //&&LLLLLLLLLL B = Eq(1B)

Eq(p)

88rrrrrrrrrr
,

(3.81)

(in the obvious notation) and identifying CEq(1E) and CEq(p) with (C ↓ E)
and (C ↓ B) respectively, we obtain a diagram

(C ↓ B) //%%KKKKKKKKK (C ↓ E)

CEq(p)

99sssssssss (3.82)
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that can be identified with

(C ↓ E) //%%LLLLLLLLLL (C ↓ E)

(C ↓ E)T

99rrrrrrrrrr (3.83)

via the isomorphism (3.79).

Definition 3.78. A morphism p : E → B in a category C with pullbacks is said
to be:

1. a descent morphism if the comparison functor K : (C ↓ B) → (C ↓ E)T

is fully faithful;

2. an effective descent morphism if the functor p∗ is monadic, i.e. if K
is an equivalence of categories; in this and in the more general situation
considered in later sections we will also say that p : E → B is a monadic
extension.

3.14 Galois structures and admissibility

Admissible Galois structures introduced in this section are the basic categorical
structures for Galois theory in general categories.

Definition 3.79.

A Galois structure is a system (C,X, I,H, η, ε,F,Φ), in which

(I,H, η, ε) : C→ X (3.84)

is an adjunction, and F and Φ a class of morphisms in C and in X respectively,
satisfying the following conditions:

1. I(F ) ⊆ Φ and H(Φ) ⊆ F.

2. The category C admits pullbacks along morphisms from F, and the class
F is pullback stable; similarly, the category X admits pullbacks along
morphisms from Φ, and the class Φ, is pullback stable. Furthermore, the
classes F and Φ contain all isomorphisms in C and X respectively.

Given a Galois structure Γ = (C,X, I,H, η, ε,F,Φ) and an object B in C, there
is an induced adjunction

(IB, HB, ηB, εB) : F(B)→ Φ(I(B)), (3.85)

in which:

• F(B) is the full subcategory in (C ↓ B) with objects all pairs (A,α) with
α : A→ B in F;

• similarly Φ(I(B)) is the full subcategory in (X ↓ I(B)) with objects all
pairs (X,ϕ) with ϕ : X → I(B) in Φ;
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• IB(A,α) = (I(A), I(α));

• HB(X,ϕ) = (B ×HI(B) H(X), proj1) is defined via the pullback

B ×HI(B) H(X)
proj2 //

proj1 �� H(X)

H(ϕ)��
B ηB

// HI(B)

(3.86)

• (ηB)(A,α) = 〈α, ηA〉 : A→ B ×HI(B) H(A);

• (εB)(X,ϕ) is the composite

I(B ×HI(B) H(X))
I(proj2)// IH(X)

εX // X (3.87)

where proj2 is as in (3.14).

Using the notation above we introduce

Definition 3.80. An object B in C is said to be admissible if B : IBHB →
1Φ(I(B)) is an isomorphism. If this is the case for each B in C, then we say
that the Galois structure Γ = (C,X, I,H, η, ε,F,Φ) is admissible.

Obvious but important:

Proposition 3.81. If ε : IH → 1X is an isomorphism, then the following con-
ditions on an object B in C are equivalent:

1. B is admissible;

2. the functor HB : Φ(I(B))→ F(B) is fully faithful;

3. the functor I preserves all pullbacks of the form 3.14.

Remark 3.82. From now on Γ = (C,X, I,H, η, ε,F,Φ) will denote a fixed ad-
missible Galois structure in which ε : IH → 1X is an isomorphism, and so the
equivalent conditions of Proposition 3.81 hold.

More precisely, we will freely use this convention in Sections 3.15 and 3.20,
and it will hold true in all examples of Sections 3.16-3.19, which we will prove
there.

3.15 Monadic extensions and coverings

In this section we introduce the main notions of categorical Galois theory (using
convention from Remark 3.82). Given a morphism p : E → B in C, pulling back
along p determines a functor

p∗ : F(B)→ F(E), (3.88)

and the composition with p determines a functor

p! : F(E)→ F(B), (3.89)

which is the left adjoint of p∗.
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Part VII Monadic extensions and coverings

Definition 3.83. A pair (E, p), in which p : E → B is morphism in C, or
a morphism p : E → B itself, is said to be a monadic extension of B if the
following conditions hold:

1. If (D, δ) is in F(E), then (D, pδ) is in F(B);

2. the functor p∗ : F(B)→ F(E) is monadic.

We are now ready to introduce our main definition:

Definition 3.84. 1. An object (A,α) in F(B) is said to be a trivial covering
(of B) if the morphism (ηB)(A,α) : (A,α) → HBIB(A,α) is an isomor-
phism, or, equivalently, the diagram

A
ηA //

α �� HI(A)

HI(α)��
B ηB

// HI(B)

(3.90)

is a pullback.

2. An object (A,α) in F(B) is said to be split over a monadic extension
(E, p) of B if p ∗ (A,α) is a trivial covering.

3. An object (A,α) in F(B) is said to be a covering of B if there exists a
monadic extension (E, p) of B such that (A,α) is split over (E, p). We
will then also say that W : A×A→ B is a covering morphism.

According to this definition we have

TrivCov(B) = Spl(B, 1B) ⊆ Cov(B) =
⋃

(E,p)

Spl(E, p) ⊆ F(B), (3.91)

where:

• TrivCov(B) is the full subcategory in F(B) with objects all trivial cov-
erings of B;

• Spl(E, p) is the full subcategory in F(B) of all objects split over (E, p);

• Cov(B) is the full subcategory in F(B) with objects all coverings of B;

• the union of Spl(E, p)’s in 3.91 is taken over all monadic extensions (E, p)
of B.

Remark 3.85. The following simple properties of coverings are useful:

1. Since εB : IBHB → 1Φ(I(B)) is always an isomorphism, an object (A,α)
inF(B) is a trivial covering if and only if (A,α) ≈ HB(X,ϕ) for some
(X,ϕ) in Φ(I(B)).
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2. For every morphism β : B′ → B, the functor, β∗ : F(B) → F(B′) sends
trivial coverings to trivial coverings, and the functor I preserves pullbacks
along trivial coverings. To see this, consider the cube diagram

A′

�� ��???????? // H(X)

�� %%JJJJJJJJJ
A //

��
HI(A)

��B′ //��???????? HI(B) %%JJJJJJJJJ
B // HI(B),

(3.92)

where the left-hand face is a pullback, A → B is a trivial covering, the
right-hand face is the H-image of the pullback formed by the I-images of
B′ → B and A → B, and the arrows connecting the left-hand and right-
hand faces are canonical morphisms. In this diagram all vertical faces are
pullbacks, and, by the admissibility, X can be identified with I(A′). This
implies our assertions above.

3. As follows from (b), for monadic extensions (E, p) and (E′, p′), we have
Spl(E, p) ⊆ Spl(E′, p′) whenever p′ factors through p.

4. Using some further arguments one can show that the union in 3.91 is in
fact directed.

3.16 Categories of abstract families

In this section we present an example of an admissible Galois structure, which
will later help us to present the classical Galois theory as a special case of the
categorical one. We take X to be a full subcategory of the category of sets,
closed under finite limits, and A an arbitrary category that has a terminal
object 1.

Definition 3.86. The category FamX(A) of families of objects in A with index
sets in X has:

1. its objects all families A = (Ai)i∈I(A) of objects Ai in A with I(A) in X;

2. a morphism A→ B in FamX(A) is a pair (f, α), in which f : I(A)→ I(B)
is a map of sets and is a family of morphisms α = (αi : Ai → Bf(i))i∈I(A)

in A.

Sending (f, α) : A→ B to f : I(A)→ I(B) determines a functor I : FamX(A)→
X, with the right adjoint H defined by H(X) = (Ai)i∈I(A), where I(A) = X
and Ai = 1 for all i. This can easily be checked either directly, or using the
following obvious facts
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Part VII Coverings in classical Galois theory

• Sending A to FamX(A) determines a 2-functor

FamX : Cat→ Cat, (3.93)

where Cat is the 2-category of all categories.

• FamX(1) is canonically isomorphic to X, where 1 denotes a (the) one-
morphism category (=the terminal object in the category of all categories).

• The unique functor A→ 1 has the right adjoint sending the unique object
of 1 to the terminal 1 object in A, and the functor I : FamX(A) → X
above is nothing but the composite FamX(A)→ FamX(1)→ X.

It is then easy to prove:

Theorem 3.87. Let Γ = (FamX(A),X, I,H, η, ε,F,Φ) be a Galois structure,
in which I : FamX(A)→ X and H : X→ FamX(A) are as above, with suitable η
and ε, Φ the class of all morphisms in X, and F an arbitrary class of morphisms
in FamX(A) containing H(Φ) and satisfying condition (b) in Definition 3.79.
Then ε : IH → 1X is an isomorphism and Γ is admissible.

Theorem 3.88. Let Γ = (FamX(A),X, I,H, η, ε,F,Φ) be as in Theorem 3.87,
and (f, α) : A → B be in F. Then (A, (f, α)) is a trivial covering of B if and
only if i : Ai → Bf(i) is an isomorphism for each i ∈ I(A).

3.17 Coverings in classical Galois theory

In this section we describe the relationship between the separable/Galois ex-
tensions in classical Galois theory and covering morphisms of categorical Galois
theory.

Here, K denotes a field, C the opposite category of commutative unitary
K-algebras that are finite-dimensional as K-vector spaces, and X the category
of finite sets. We define here I : C→ X by

I(A) = the set of minimal (non-zero) idempotents in A; (3.94)

that is I(A) consists of all e ∈ A such that e2 = e 6= 0 and e′2 = e′ 6= 0 6= ee′

implies ee′ = e. Sending A to the family (Ae)e∈I(A) determines a category
equivalence

C ∼ FamX(A), (3.95)

where A is the full subcategory in C with objects all (commutative unitary)
K-algebras with no non-trivial idempotents, i.e. no elements e with e2 = e and
0 6= e 6= 1. Moreover, the functor I : C → X above is a special case of the one
defined in the previous section up to the equivalence 3.95. Using this fact and
Theorem 3.87 we obtain:

Theorem 3.89. Let I : C → X be as above, H : X→ C the right adjoint of I
defined therefore by

H(X) = K × . . .×K︸ ︷︷ ︸
coproduct in C of K with itself “X-times”

= the K-algebra of all maps from X to K,

(3.96)
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Part VII Coverings in classical Galois theory

η and ε the unit and counit of adjunction, and F and Φ the classes of all
morphisms in C and in X respectively. Then ε : IH → 1X is an isomorphism
and Γ = (C,X, I,H, η, ε,F,Φ) is an admissible Galois structure.

Next, using Theorem 3.63, we easily prove:

Theorem 3.90. A morphism p : E → B in C, in which B is a field, is a
monadic extension if and only if E is a non-zero ring. In particular this is the
case whenever E is a field.

Proof. The functor p∗ : F(B) → F(E), whose monadicity we have to prove for
a non-zero E, is the same as the functor E ⊗B (−):

(Commutative unitary B-algebras)
op → (Commutative unitary E-algebras)

op
.

(3.97)
According to Theorem 3.63 it suffices to prove that this functor reflects iso-
morphisms and preserves coequalizers. Moreover, since the coequalizers in the
categories involved are the same as equalizers of algebras, and since those are
calculated via the corresponding equalizers of underlying modules, we only need
to prove that the functor

E ⊗B (−) : B-modules→ E-modules (3.98)

reflects isomorphisms and is (left) exact, which is obvious since B is a field.

Now we are ready to prove:

Theorem 3.91. Let K ⊆ B ⊆ E be finite (=finite-dimensional over B) field
extensions and A = (A,α) a B-algebra (in particular p : B → A is a ring
homomorphism and B acts on A via ba = α(b)a. Out of the following three
conditions, the first two are always equivalent, and the third always follows from
them and implies them when B ⊆ E is a Galois extension:

1. (A,α) belongs to Spl(E, p) (where Spl(E, p) is defined with respect to the
Galois structure described in Theorem 3.89) with p being the inclusion
map B → E considered as a morphism E → B in C;

2. E⊗B A ≈ E× . . .×E (a finite product of K-algebras = a finite coproduct
in C);

3. A ≈ E1× . . .×En for some natural n (0 is not excluded), where B ⊆ Ei ⊆
E (i = 1, . . . , n) (and therefore E1, . . . , En are field extensions of B).

Proof.

(a)⇔ (b) easily follows, using the equivalence 3.95, from Theorem 3.91 and the fact
that E ⊗B A considered as an object in C is the same as p ∗ (A,α).

(b)⇔ (c) ((b) =⇒ (c) always, and (c) =⇒ (b) when B ⊆ E is a Galois extension)
is well known in classical algebra, and we only sketch the proof here:

(b) =⇒ (c) (b) implies that A has no nilpotent elements. Therefore A ≈ E1 × . . . ×
En as B-algebras, for some field extensions E1, . . . , En of B, say, by the
Wedderburn Theorem. After that in order to show that E1, . . . , En can
be chosen among the subextensions of B ⊆ E, it suffices to show that each
of E1, . . . , En admits a B-algebra homomorphism into E. This, however,
immediately follows from E ⊗B A ≈ E × . . .× E and A ≈ E1 × . . .× En.
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(c) =⇒ (b) when B ⊆ E is a Galois extension: Since a finite product of B-algebras
satisfying (b) itself obviously satisfies (b), we can assume from the begin-
ning that A is a B-subalgebra in E. Moreover, since B ⊆ E is a Galois
extension, there is a polynomial u ∈ B[x] that splits into linear factors
u =

∏m
i=1(x−ai) with ai = aj =⇒ i = j, and has B[x]/uB[x]. Therefore

E ⊗B A ≈ E ⊗B (B[x]/uB[x]) ≈ E[x]/uE[x]

≈ E[x]/(

m∏

i=1

(x− ai))

≈
m∏

i=1

(E[x]/(x− ai)E[x])

≈ E × . . .× E (m times),

as desired.

In fact the connection with classical Galois theory goes much further, and
provides categorical proofs for many of its results. Let us mention just two of
them that are “almost corollaries” of Theorem 3.91:

Theorem 3.92. Let K ⊆ B ⊆ E be finite field extensions and p the inclusion
map B ⊆ E considered as a morphism E → B in C. Then the following
conditions are equivalent:

1. (E, p) belongs to Spl(E, p);

2. B ⊆ E is a Galois extension.

Theorem 3.93. Let K ⊆ B be a finite field extensions and A = (A,α) a
B-algebra as above. Then the following conditions are equivalent:

1. (A,α) is a covering of B;

2. there exists a finite field extension B ⊆ E, such that (A,α) belongs to
Spl(E, p), where Spl(E, p) is as in Theorem ??;

3. there exists a finite Galois field extension B ⊆ E, such that (A,α) belongs
to Spl(E, p), where Spl(E, p) is as in Theorem ??;

4. A = (A,α) is a commutative separable B-algebra;

5. A = (A,α) is a finite product of finite separable field extensions of B.

3.18 Covering spaces in algebraic topology

The purpose of this section is to present classical covering maps of locally con-
nected topological spaces as covering morphisms in the sense of categorical Ga-
lois theory.

Therefore we take here C to be the category of locally connected topological
spaces and X the category of sets. And we define the functor I : C→ X by

I(A) = π0(A) (the set of connected components of A). (3.99)
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Sending spaces to the families of their connected components determines a cat-
egory equivalence

C ∼ FamX(A), (3.100)

where A is the category of connected locally connected topological spaces. More-
over, the functor I : C → X above is a special case of the one defined in Sec-
tion 3.16. Using this fact and Theorem 3.87 we easily obtain:

Theorem 3.94. Let I : C → X be as above, H : X → C the inclusion func-
tor, η and ε the unit and counit of adjunction, F = Etale the class of lo-
cal homeomorphisms (=etale maps) of locally connected topological spaces, and
the class of all morphisms in X. Then ε : IH → 1X is an isomorphism and
Γ = (C,X, I,H, η, ε,F,Φ) is an admissible Galois structure.

A brief story of monadic extensions and coverings with respect to this Galois
structure is:

Theorem 3.95. A morphism p : E → B in C is a monadic extension if and
only if it is a surjective local homeomorphism.

Proof. “If”: Assuming that p : E → B is a surjective local homeomorphism, we
have to prove that the functor 3.88, which we write here as

p∗ : Etale(B)→ Etale(E), (3.101)

is monadic. We observe:

1. Since the class of local homeomorphisms is closed under composition the
functor 3.101 has a left adjoint.

2. A morphism f : (A,α) → (A′, α′) in Etale(B) is an isomorphism if and
only if the map f : A → A′ is bijective; this easily implies that, for a
surjective p, the functor 3.101 reflects isomorphisms.

3. When α : A → B is a local homeomorphism, the local connectedness of
B implies the local connectedness of A. Therefore Etale(B) can be iden-
tified, up to a category equivalence, with the topos of sheaves (of sets)
over the space B. The same is true for E, and the functor 3.101 can be
identified with the inverse image functor

p∗ : Shv(B)→ Shv(E) (3.102)

between the toposes of sheaves. Since the functor 3.102 has a (well-known)
right adjoint, namely the direct image functor

p∗ : Shv(E)→ Shv(B), (3.103)

we conclude that it preserves all coequalizers. Indeed, it is easy to show
that any left adjoint functor preserves all colimits, and in particular all
coequalizers.

4. The desired monadicity follows from (1), (2), (3), and Theorem 3.63.
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“Only if”: When (E, p) is a monadic extension, p must be a local homeo-
morphism by Definition 3.83(a) (applied to δ = 1E). Therefore we only need to
prove that p is surjective. For, consider the objects (B, 1B) and (p(E), inclusion)
in F(B) = Etale(B); note that (p(E), inclusion) is indeed in F(B) since p is
open. Since the functor p∗ reflects isomorphisms and sends the canonical map
(p(E), inclusion) → (B, 1B) to an isomorphism, we must have p(E) = B, as
desired.

Lemma 3.96. Suppose B (in C) is connected. Then the following conditions
on an object (A,α) in F(B) = Etale(B) are equivalent:

1. (A,α) is a trivial covering of B (in the sense of Definition 3.84(a));

2. A is a disjoint union of open subsets, each of which is mapped homeomor-
phically on B by .

Proof. This is an easy corollary of Theorem 3.88. .

Theorem 3.97. The following conditions on an object (A,α) in F(B) = Etale(B)
are equivalent:

1. (A,α) is a covering of B (in the sense of Definition 3.84(c));

2. every element b in B has an open neighbourhood U for which the pair

(α−1(U), the map α−1(U)→ U induced by α) (3.104)

is a trivial covering of U (in the sense of Definition 3.84(a));

3. the same as (b), but with U required to be connected;

4. (A,α) is a covering space over B in the classical sense, i.e. every element
in B has an open neighbourhood whose inverse image is a disjoint union
of open subsets, each of which is mapped homeomorphically on it by α.

Proof.

(a) =⇒ (b) easily follows from the “only if” part of Theorem 3.95, and (b) =⇒ (a)
can easily be deduced from the same theorem and the following simple
observation:

For each b in B, let Ub be a chosen open neighbourhood of b, let E be the
topological coproduct of all these neighbourhoods, and let p : E → B be
the map induced by the family of inclusion maps Ub → B (for all b in B).
Then p is a local homeomorphism.

(b) =⇒ (c) follows from the local connectedness of B and (c) =⇒ (b) is trivial.

(d) follows from the local connectedness of B and Lemma 3.96. .
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3.19 Central extensions of groups

The purpose of this section is to present central extensions of groups as covering
morphisms in the sense of categorical Galois theory.

Accordingly C will denote now the category of groups, X the category of
abelian groups, and I : C → X the left adjoint of the inclusion X → C, which
will plays the role of H . That is:

• From the viewpoint of universal algebra I is the abelianization functor
sending groups to their quotients determined by the identity xy = yx, we
could write

I(A) = A/R, where R is the congruence generated by {(a, b) ∈ A×A | ab = ba}.
(3.105)

• From the viewpoint of group theory I is to be defined by

I(A) = A/[A,A], (3.106)

where [A,A] is the commutator of A with itself.

• From the viewpoint of homological algebra I is to be defined by

I(A) = H1(A; Z), (3.107)

where H1(A; Z) is the first homology group of A with coefficients in the
additive group of integers, on which A acts trivially.

The Galois structure Γ = (C,X, I,H, η, ε,F,Φ) that we fix in this section will
have C, X, I, H as above, with the canonical η and ε, and F and Φ being the
classes of surjective homomorphisms of groups and of abelian groups respec-
tively. The morphism ε : IH → 1X is obviously an isomorphism here, but the
admissibility needs a little proof:

Theorem 3.98. Γ = (C,X, I,H, η, ε,F,Φ) is admissible.

Proof. Consider the pullback 3.86, which now becomes

B ×B/[B,B] X
proj2 //

proj1 �� X

ϕ��
B ηB

// B/[B,B]

(3.108)

We need to prove that proj2 : B ×B/[B,B] X → X has the universal property of
the abelianization of B ×B/[B,B] X , or, equivalently, that the kernel ker(proj2)
of this morphism is contained in [B×B/[B,B]X,B×B/[B,B]X ]. We observe that
any element k in ker(proj2) is of the form k = (b, 1), where b is in [B,B], and
so we can present it as

k = ([b1, b
′
1] . . . [bn, b

′
n], 1) = ([b1, b

′
1], 1) . . . ([bn, b

′
n], 1). (3.109)

Since ϕ is surjective, there exist x1, . . . , xn, x
′
1, . . . , x

′
n in X with ϕ(x1) = b1[B,B],

. . ., ϕ(xn) = bn[B,B], ϕ(x′1) = b′1[B,B], . . ., ϕ(x′n) = b′n[B,B]; and since X is
abelian, we have [x1, x

′
1] = . . . = [xn, x

′
n] = 1. Therefore

k = ([b1, b
′
1], [x1, x

′
1]) . . . ([bn, b

′
n], [xn, x

′
n]) = [(b1, x1), (b′1, x

′
1)] . . . [(bn, xn), (b′n, x

′
n)],

(3.110)
which shows that k is in [B ×B/[B,B] X,B ×B/[B,B] X ], as desired.

790



Part VII Central extensions of groups

Remark 3.99. The surjectivity of ϕ played a crucial role in the proof of Theo-
rem 3.58. Indeed, taking X = 0 in 3.51, we would obtain ker(proj2) → [B,B],
but at the same time [B ×B/[B,B] X,B ×B/[B,B] X ] ≈ [[B,B], [B,B]] (canoni-
cally).

Next, the monadic extensions:

Theorem 3.100. A morphism p : E → B in C is a monadic extension if and
only if it is surjective.

Proof. “If”: According to Remark 3.64(b), it suffices to prove that, for a sur-
jective p, the functor p∗ : F(B) → F (E) reflects isomorphisms and preserves
coequalizers of reflexive pairs. However, it is an easy exercise to show that the
coequalizers of reflexive pairs of group homomorphisms are calculated as in the
category of sets - which reduces the problem to the case of sets, where the proof
becomes another easy exercise.

The “only if” part follows from Definition 3.83(a) (applied to δ = 1E).

In order to characterize coverings we will also need the following almost
obvious fact:

Lemma 3.101. For a pullback diagram

D
u //

δ �� A

α��
E v

// B (3.111)

with α and δ surjective, the conditions (a) and (b) below are related as follows:
(a) always implies (b), and (b) implies (a) whenever v is surjective.

1. (A,α) is a central extension of B (i.e. ka = ak for all k in ker(α) and all
a in A);

2. (D, δ) is a central extension of E.

- after which we are ready to prove

Theorem 3.102. The following conditions on an object (A,α) in F(B) are
equivalent:

1. (A,α) is a covering of B;

2. (A,α) is a central extension of B.

Proof.

(a) =⇒ (b) follows from (the “only if” part of) Theorem 3.100 and Lemma 3.101.

(b) =⇒ (a) As follows from the “if” part of Theorem 3.100, (A,α) is a monadic ex-
tension of B. Consider the object

α∗(A,α) = (A×B A, proj1) (3.112)
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Part VII The fundamental theorem of Galois theory

in F(A). It has ker(proj1) canonically isomorphic to ker(α), and proj1 is
a split epimorphism. Being central by Lemma 3.101 (a) =⇒ (b), it is
therefore isomorphic to

α∗(A,α) = (A× ker(α), the first projection), (3.113)

after which we only need to observe:

The object 3.113 is a trivial covering of A since (ker(α), ker(α) → 0) is a
trivial covering of 0, and the class of trivial coverings is pullback stable by
Remark 3.85(b).

3.20 The fundamental theorem of Galois theory

In this section we formulate and prove the fundamental theorem of categorical
Galois theory.

Let Γ = (C,X, I,H, η, ε,F,Φ) be a fixed abstract Galois structure satis-
fying convention from Remark 3.82. We begin by considering various induced
adjunctions:

We can obviously look at the category of internal precategories in C as the
functor category Cτ , where τ is the free category determined by the graph

2
m //p ��
q

CC 1 d ��
c

EEeoo (3.114)

and the identities de = 1 = ce, dp = cq, dm = dq, and cm = cp as in Defini-
tion 3.65. And then the category of internal precategories in C becomes nothing
but the functor category Cτ . Our adjoint functors between C and X induce
adjoint functors between C and X, which we will display as

(Iτ , Hτ , ητ , ετ ) : Cτ → Xτ . (3.115)

Using also F τ = the class of all κ in Cτ with κ0, κ1, and κ2 in F, and the
similarly defined ,,, we obtain the induced Galois structure

Γτ = (Cτ ,Xτ , Iτ , Hτ , ητ , ετ ,Fτ ,Φτ ) (3.116)

for internal precategories. After that we take an object P in Cτ , and con-
struct a further induced adjunction in the same way as the adjunction 3.85 was
constructed out of an object B in C; we display it as

(IP , HP , ηP , εP ) : Fτ (P )→ Φτ (IP ). (3.117)

where we write IP instead of Iτ (P ), since Iτ (P ) is nothing but the composite
of P : τ → C with I : C→ X. From Remark 3.85(b) we obtain:

Lemma 3.103. If (Q, κ) is a discrete opfibration over P, in which ,0 is a trivial
covering, then 1 and 2 also are trivial coverings, and IP (Q, κ) is a discrete
opfibration over Iτ (P ).
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Part VII The fundamental theorem of Galois theory

Corollary 3.104. The adjunction 3.117 induces an equivalence between:

1. the full subcategory in Fτ (P ) with objects all (Q, κ) that are discrete opfi-
brations with κ0 being a trivial covering, and

2. the full subcategory in Φτ (Iτ (P )) with objects all objects in it that are
discrete opfibrations.

Identifying now discrete opfibrations with actions (see Theorem 3.75), we
obtain

Theorem 3.105. The adjunction 3.117 induces an equivalence between:

1. the full subcategory Triv(CP ) in CP with objects all A = (A0, π, ζ) in
CP , in which is a trivial covering;

2. the full subcategory XIP ∩Φ in XIP with objects all X = (X0, π, ξ) in XP ,
in which π, is in Φ.

- after which we are ready to prove:

Theorem 3.106 (“The fundamental theorem of Galois theory”). Let Γ =
(C,X, I,H, η, ε,F,Φ) be a fixed abstract Galois structure satisfying conven-
tion from Remark 3.82 as above, and let (E, p) be a monadic extension of
an object B in C. Then sending an object (A,α) in Spl(E, p) to the triple
(I(E ×B A), I(proj1), I(proj1)× I(proj2)), determines a category equivalence

Spl(E, p)→ XI(Eq(p)) ∩ Φ (3.118)

(denoting by proji (i = 1, 2) suitable projections, in particular using proj1 for
both E ×B A→ E and E ×B E → E, and using the notation of Theorem 3.105
for P = Eq(p)).

Proof. All we need is to consider the diagram

F(B) // F(E)T ≈ CEq(p) ∩ F

Spl(E, p) //___OO
Triv(CEq(p)) ∼ XI(Eq(p)) ∩ Φ

OO (3.119)

in which:

1. T is the monad determined by the monadic functor p∗ : F(B)→ F(E), and
F(B)→ F(E)T is the comparison functor, which is a category equivalence
since p∗ is monadic.

2. F(E)T ≈ CEq(p)∩F is the isomorphism established in the same way as the
isomorphism 3.79 in Theorem 3.6. It therefore sends a T -algebra (D, δ, ζ)
to the triple (D, δ, ζδ̄), where δ = 〈proj1, proj3〉 : (E ×(p,p) ×E) ×(proj2,δ)

D → E ×(p,pδ) D as in Theorem 3.76.

3. Calculating the composite F(B)→ F(E)T ≈ CEq(p)∩F we easily conclude
that it sends an object (A,α) to the triple (E ×B A, proj1, proj1 × proj2),
where proji (i = 1, 2) are the same as in the formulation of the theorem.
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4. The vertical arrows are the inclusion functors.

5. (A,α) belongs to Spl(E, p) exactly when (E×BA, proj1) is a trivial cover-
ing. Therefore (3) tells us that the composite F(B)→ F(E)T ≈ CEq(p)∩F
determines the dotted arrow in 3.62, and that that arrow is an equivalence
of categories.

6. Triv(CEq(p)) ∼ XI(Eq(p)) ∩Φ is the equivalence described in Theorem ??
(for P = Eq(p)).

7. The desired equivalence is the composite of the equivalences Spl(E, p) ∼
Triv(CEq(p)) and Triv(CEq(p)) ∼ XI(Eq(p)) ∩ Φ.

Remark 3.107.

1. According to this theorem it is good to write

Gal(E, p) = I(Eq(p)), (3.120)

and call this internal precategory the Galois pregroupoid of the monadic
extension (E, p). Here “pregroupoid” (rather than “precategory”) refers
to a certain extra structure, that makes I(Eq(p)) a groupoid whenever
it is a category. And in fact it is a groupoid whenever (E, p) is normal,
which means that (E, p) belongs to Spl(E, p). Other reasonable synonyms
of “normal” are Galois covering and regular covering. Furthermore, for a
normal (E, p), I(Eq(p)) is a group if and only if E is connected, i.e. I(E)
is a terminal object in X.

2. There is also a reasonable way to define fundamental groupoids as “the
largest” Galois groupoids.

3.21 Back to the classical cases

In this section we consider the simplest applications the fundamental theorem
of categorical Galois theory.

The classical form of the fundamental theorem of Galois theory is usually
formulated as follows:

Theorem 3.108. Let B ⊆ E be a finite Galois field extension, and AutB(E)
its Galois group. Then:

1. The correspondences

F 7→ AutF (E) and H 7→ EH = {x ∈ E | g ∈ H =⇒ g(x) = x}
(3.121)

determine inverse to each other and inclusion reversing bijections between
the lattice Sub(E/B) of field subextensions of B ⊆ E, and the lattice
Sub(AutB(E)) of subgroups in AutB(E).

2. If B ⊆ F is a field subextension of B ⊆ E, then every B-algebra homo-
morphism from F to E extends to a B-algebra automorphism of E.
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3. A field subextension B ⊆ F of B ⊆ E is a Galois extension if and only
if its corresponding subgroup AutF (E) is a normal subgroup in AutB(E).
In this case every B-algebra automorphism of E restricts to a B-algebra
automorphism of F , yielding a short exact sequence

0→ AutF (E)→ AutB(E)→ AutB(F )→ 0 (3.122)

of groups.

How does this theorem follow from Theorem 3.106?
Answering this question requires a number of simple observations:

1. Every statement of Theorem 3.108 is a statement about purely-categorical
properties of the category Sub(E/B) of subextensions of the field extension
B ⊆ E. The only thing that needs an explanation here, is that E itself
can be defined categorically as a special object in Sub(E/B). For, just
observe that it is the only weak terminal object (i.e. the only object that
admits morphisms from all other objects into it).

2. Moreover, it turns out that the category Sub(E/B)op is equivalent to
the category of transitive (=one-orbit) AutB(E)-sets - which is known as
Grothendieck’s form of the fundamental theorem of Galois theory - and
every statement of Theorem 3.108 follows from this fact.

3. Furthermore, it is sufficient to know that Sub(E/B)op is equivalent to the
category of transitive G-sets for some monoid G, because this fact itself
implies that G is isomorphic to AutB(E). Indeed:

• We know that Sub(E/B) has a unique weakly terminal object, namely
E, and that the endomorphism monoid of this object is AutB(E).

• On the other hand G acts on itself via its multiplication, and this
object is weakly initial in the category of transitive G-sets; and its
endomorphism monoid is isomorphic to G.

• Therefore the equivalence of Sub(E/B)op to the category of transitive
G-sets implies that G is isomorphic to AutB(E).

4. Let us now apply Theorem 3.106 to the situation considered in Sec-
tion 3.17. As follows from the equivalence (a) =⇒ (c) in Theorem 3.91,
which assumes that B ⊆ E is a Galois extension and p : E → B is the
inclusion map B → E, in that situation we have

Spl(E, p) ∼ FamX(Sub(E/B)op). (3.123)

At the same time Theorem 3.106 tells us that the category Spl(E, p)
is equivalent to the category of finite G-sets for some finite monoid G -
namely for G = L(I(Eq(p))), where L is the functor 3.67, and L(I(Eq(p)))
is indeed a monoid since I(E) has only one element.

5. As follows from (4), Sub(E/B)op must be equivalent to the category of
transitiveG-sets, as desired. Therefore Theorem 3.108 indeed follows from
Theorem 3.106.
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The situation with covering spaces is very similar: many standard text books in
algebraic topology show how the connected covering spaces of a “good” space
B are “classified” via subgroups of the fundamental group of B by proving a
theorem similar to Theorem 3.76, usually not showing the categorical result
behind, which is:

Theorem 3.109. Let B be a connected locally connected topological space, ad-
mitting a universal covering space (E, p) over it. Then the category of covering
spaces over B is equivalent to the category of Aut(E, p)-sets.

- and this theorem can easily be obtained as a corollary of Theorem 3.106,
using the results of Section 3.18. Recall, however, that what is called a universal
covering space of B is in fact a weakly initial object in the category of non-empty
covering spaces over B, and that “weakness” can be avoided by using pointed
spaces.

Applying Theorem 3.106 to the situation considered in Section 3.19, we
obtain, in particular, a description of the category Centr(B) of central extension
of an arbitrary group B. The full explanation would involve some homological
algebra and internal category theory (in “nice” categories), which would take
us too far. Therefore let us just mention that it becomes especially simple when
B is perfect, i.e. when [B,B] = B: in this case

Centr(B) ∼ (Ab ↓ H2(A; Z)), (3.124)

which presents the second homology group H2(A; Z) as a certain “Galois group”,
and implies the well-known result saying that every perfect group has a universal
central extension.

Finally, let us mention one less familiar examples of Galois theories very
briefly; being less familiar it was, however, the original motivating example for
categorical Galois theory:

Example 3.110. The system (C,X, I,H, η, ε,F,Φ) described below is an admis-
sible Galois structure in which ε is an isomorphism:

• C is the opposite category of commutative unitary rings;

• X is the opposite category of (unitary) Boolean rings, or, equivalently, the
opposite category of Boolean algebras; up to a category equivalence we
can identify X with the category of Stone spaces (=profinite topological
spaces = compact totally disconnected Hausdorff spaces = compact 0-
dimensional Hausdorff spaces = compact topological spaces in which every
two points can be separated by a closed-and-open subset);

• I : C → X is sending rings to the Boolean rings of their idempotents, or,
considering X as the category of Stone spaces, I is defined by

I(A) = Boolean spectrum of A

= Stone space of the Boolean algebra of idempotents in A

= the space of connected components of the Zariski spectrum of A;

• H : X→ C is defined by

H(X) = Hom(X,Z), (3.125)
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where X is any object in X considered as a topological space, Z is the
ring of integers equipped with the discrete topology, and Hom(X,Z) is set
of continuous maps X → Z with the ring structure induced by the ring
structure of Z;

• and are defined accordingly, and F and Φ are the classes of all morphisms
in C and X respectively.

The covering morphisms with respect to this Galois structure are the same as
what A. R. Magid calls componentially locally strongly separable algebras; they
are defined as follows:

1. a commutative (unitary) algebra S over a commutative (unitary) ring R
is said to be separable if it is projective as an S ⊗R S-module;

2. a commutative separable R-algebra S is said to be strongly separable if it
is projective as an R-module;

3. an R-algebra S is said to be locally strongly separable if every finite subset
in it is contained in a strongly separable R-subalgebra;

4. a commutative R-algebra S is said to be componentially locally strongy
separable if its all Boolean localizations Sx are locally strongly separable
Rx-algebras; here, for a maximal ideal x of the Boolean ring of idempotents
in R, the Boolean localizations Sx is defined as the quotient algebra S/Sx.

And these componentially locally strongly separable algebras were the most
general algebras involved in Magid’s separable Galois theory of commutative
rings. For a field extension B ⊆ E we have:

E is a separable B-algebra⇔ E is a strongly separable B-algebra

⇔ E is a finite separable extension of B.
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Chapter 4

Comonads and Galois
comodules of corings

The aim of the remaining lectures is to study Galois structures which arise
in differential non-commutative geometry, in particular to show, how Galois
conditions encode geometric notions such as principal (and associated vector)
bundles. The Galois condition which arises in this context is very closely re-
lated to (co)monadicity described earlier. To make better connection with the
preceding sections we start with the category theory considerations.

We use the following notational conventions. The identity morphism for
an object X is denoted by X (though occasionally we write id for clarity).
We do not write composition symbol ◦ when composing functors. Given a
natural transformation δ between functors F and G, δX denotes corresponding
morphism F (X) → G(X). For any other functors H , K (composable with F
or G, respectively) Hδ means the natural transformation HF → HG given on
objects X as H(δX), while δK means the transformation FK → GK given on
objects as δK(X).

4.1 Comonads

Definition 4.1. A comonad on a category A is a triple G = (G, δ, σ), where
G : A → A is a functor δ : G → GG, σ : G → idA are natural transformations
such that the following diagrams

G
δ //

δ �� GG

Gδ��
GG

δG
// GGG ,

G
δ //

δ �� DDDDDDDDDDDD DDDDDDDDDDDD GG

Gσ��
GG

σG
// G

commute. The transformation δ is called a comultiplication, and σ is called a
counit.

Comonads form a category. A morphism between comonads G → G′ is a
natural transformation ϕ : G → G′ rendering commutative the following dia-
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grams

G

δ �� ϕ // G′
δ′��

GG
Gϕ

// GG′
ϕG′

// G′G′ , G
ϕ //

σ !!CCCCCCCCCCCC G′

σ′}}zzzzzzzzzzz
idA .

Definition 4.2. A coalgebra over a comonad G = (G, δ, σ) is a pair (A, ρA)
consisting of an object A of A and a morphism ρA : A → G(A), such that the
following diagrams commute

A
ρA //

ρA �� G(A)

δA��
G(A)

G(ρA)

// GG(A) ,

A
ρA // CCCCCCCCCCCC CCCCCCCCCCCC G(A)

σA��
A .

A morphism of coalgebras (A, ρA) → (B, ρB) is a morphism f : A → B in A
compatible with the structure maps ρA, ρB in the sense of the commutativity of
the following diagram

A
f //

ρA �� B

ρB��
G(A)

G(f)
// G(B) .

The category of coalgebras of G is often referred to as the Eilenberg-Moore
category and is denoted by AG.

Dually to comonads one considers monads F on a category A and their
Eilenberg-Moore category of algebras AF ; see Section 3.8.

The introduction of the Eilenberg-Moore category allows one to realise a
close relationship between adjoint functors and comonads. Any adjoint pair of
functors L : A → B, R : B → A (L is the left adjoint of R) gives rise to a
comonad (G, δ, σ) on B, where G = LR, δ = LηR (that is δB = L(ηR(B))),
σ = ψ and η is the unit of adjunction (L,R), and ψ the counit of adjunction.

Given a comonad (G, δ, σ) on A, there is an adjunction

L : AG → A , the forgetful functor,

R : A→ AG , the free coalgebra functor defined by R(A) = (G(A), δA)

Similarly, if (L,R) is an adjoint pair of functors, then F = RL is a monad on
MA. Conversely, given a comonad F on A, the free algebra functor A → AF

is the left adjoint of the forgetful functor AF → A.
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4.2 Comonadic triangles and descent theory

The correspondence between pairs of adjoint functors and comonads leads to the
following fundamental question: What is the relationship between a category
on which a pair of adjoint functors is defined and a category of coalgebras of a
given comonad. The situation is summarised in

Definition 4.3. Take categories A, B, a comonad G on A and adjoint functors
L : B→ A, R : A→ B. A triangle of categories and functors

B
K //

L ������������� AG

UG~~|||||||||||
A

R

__�����������
where UG is the forgetful functor is called a G-comonadic triangle provided
UGK = L . The functor K is referred to as a comparison functor.

We would like to study, when the comparison functor K is an equivalence.
First, we need to find an equivalent description of comparison functors.

Proposition 4.4. Fix categories A, B, a comonad G on A, and adjoint func-
tors L : B→ A, R : A→ B. There is a one-to-one correspondence between com-
parison functors K in comonadic triangles made of G, L and R, and comonad
morphisms ϕ : LR→ G.

Proof. Given ϕ define a natural transformation

β : L
Lη−−→ LRL

ϕL−−→ GL, βB : L(B)→ G(L(B)), βB = ϕL(B) ◦ L(ηB),

where η is the unit of adjunction (L,R). Then the functor K : B→ AG is given
by B 7→ (L(B), βB). Conversely, given K : B → (K(B), ρK(B)) define

β : L→ GL, by βB = ρK(B).

Then

ϕ : LR
βR−−→ GLR

Gψ−−→ G,

where ψ is the counit of adjunction (L,R), is the required morphism of comon-
ads.

Proposition 4.5. In the set-up of Proposition 4.4, If B has equalisers, then K
has a right adjoint D : AG → B defined by the equaliser

D(A, ρA)
eqA // R(A)

αA //
R(ρA)

// RG(A),

where
α : R

ηR−−→ RLR
Rϕ−−→ RG.
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Proof. The unit of the adjoint pair (K,D) is given by η̂B in the diagram:

DK(B) // RL(B)
αL(B) //
R(βB)

// RGL(B)

B .

bηB

H H H H H H H H H ηB

OO
The existence of such η̂B follows by the universal property of equalisers. The
counit of the adjoint pair (K,D) is given by ψ̂ in the diagram

KD(A, ρA)

bψ(A,ρA) $$IIIIIIIII L(eqA) // LR(A)

ψA��
L(αA) //
LR(ρA)

// LRG(A)

A .

Note that ψ̂(A,ρA) is a composite, the universal property of an equaliser is not
used here.

Recall that a contractible equaliser of two morphisms g, h : B → G is a
morphism f : A→ B fitting into the following diagram

A
f // B g //

h
//

i

[[ G ,

j

\\
with two maps i, j such that

i ◦ f = A, j ◦ g = B, j ◦ h = f ◦ i, g ◦ f = h ◦ f ;

compare Example 3.57. For objects A in A consider a contractible equaliser

R(A)
αA // RG(A)

αG(A) //
R(δA)

//
R(σA)

`` RG2(A).

RG(σA)

aa
In view of the universal property of equalisers this implies that

αA = eqG(A), R(A) = D(G(A), δA),

hence

ψ̂(G(A),δA) = ψG(A) ◦ L(eqG(A))

= ψG(A) ◦ L(αA)

= ψG(A) ◦ LR(ϕA) ◦ L(ηR(A))

= ϕA,
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where the last equality follows by one of the triangular equalities for the unit
and counit of an adjunction. Since a functor which has a right adjoint is full
and faithful if and only if the counit of adjunction is a (natural) isomorphism,

this simple calculation of ψ̂ immediately establishes the following

Proposition 4.6. If D is full and faithful, then ϕ is an isomorphism of comon-
ads.

The problem of finding whenK is an equivalence is equivalent to studying the
comonadicity of L. Thus the Beck monadicity theorem yields (see Theorem 3.63)

Theorem 4.7. Consider a comonadic triangle in Definition 4.3. If B has
equalisers, then K is an equivalence if and only if ϕ is an isomorphism, L
preserves equalisers that define D, and L reflects isomorphisms.

Comonadic triangles encode (and generalise) the typical setup of descent
theory. Let T be a monad on a category B, and let L : B→ A, R : A→ B be a
pair of adjoint functors. Setting G = LR one obtains the following comonadic
triangle

B
K //

FT !!BBBBBBBB (BT )G

UG{{vvvvvvvvv
BT .

UT

aaBBBBBBBB
Here K is the standard comparison functor corresponding to ϕ = id. (BT )G is
known as the category of descent data. We say that this triangle is of descent type
whenever K is full and faithful, and we say that it defines an effective descent
when K is an equivalence. The standard descent theory studies effective descent
in specific situations (such as, e.g. arise in algebraic geometry).

4.3 Comonads on a category of modules. Cor-
ings.

Let A,B be associative and unital algebras over a commutative ring k, with
multiplication operations denoted by µA, µB and units 1A, 1B (understood both
as elements or linear maps k → A, k → B), respectively. Denote by MA, MB

the categories of right modules overA and B. Categories of modules are additive
and have colimits (they are abelian categories), and we would like to study
functors which preserve these structures. Such functors are fully characterised
by the Eilenberg-Watts theorem.

Theorem 4.8 (Eilenberg-Watts). Let F : MA → MB be an additive functor
that preserves colimits. Then F (A) is an (A,B)-bimodule and

F ∼= −⊗A F (A), F (M) ∼= M ⊗A F (A) .

We would like to study comonads (G, δ, σ) on MA such that G preserves col-
imits. By Theorem 4.8, G ∼= −⊗AG(A). Let C := G(A), so C is an A-bimodule.
Next we explore consequences of the fact that δ, σ are natural transformations.
For any M ∈MA, m ∈M , consider a morphism in MA

lm : A→M, a 7→ ma .
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The naturality of δ implies

C ∼= A⊗A C
lm⊗AC //

δA�� M ⊗A C

δM��
C ⊗A C ∼= A⊗A C ⊗A C

lm⊗AC⊗AC // M ⊗A C ⊗A C .
The evaluation of this diagram at 1A ⊗A c, c ∈ C gives

δM (m⊗A c) = m⊗A δA(c).

Hence δM = M ⊗A δA. This means, in particular, that δA is a left A-linear,
hence an A-bilinear map (it is right A-linear as a morphism in MA). Similarly,
σM = M ⊗A σA. Let

∆C := δA : C → C ⊗A C , εC := σA : C → A .

Then diagrams for coassociativity of δ and counitality of σ are equivalent to the
following commutative diagrams

C ∆C //
∆C �� C ⊗A C

∆C⊗AC��
C ⊗A C C⊗A∆C

// C ⊗A C ⊗A C , C ∆C //
∆C �� ∼= &&NNNNNNNNNNNNNNNNN C ⊗A C

C⊗AεC��
C⊗A

εC⊗AC
// A⊗A C ∼= C ⊗A A .

(4.1)

Definition 4.9. (compare Definition 2.4) An A-bimodule C together with A-
bilinear maps ∆C : C → C ⊗A C, εC : C → A satisfying (4.1) is called an
A-coring (pronounced: co-ring). ∆C is called the comultiplication and εC is
called the counit of C.

A morphism of A-corings (C,∆C , εC) → (D,∆D , εD) is an A-bimodule map
f : C → D such that the following diagrams commute

C
f //

∆C �� D

∆D��
C ⊗A C

f⊗Af
// D ⊗A D ,

C
f //

εC   AAAAAAAAAAA D

εD��
A .

Using arguments similar to those establishing the correspondence between cor-
ings and (tensor functor) comonads, one easily finds that f arises as (and gives
rise to) a morphism of comonads (evaluated at A). We have thus established
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bijective correspondences:

A-coringsOO��
Additive comonads on MA that preserve colimitsOO��

Additive comonads on MA that have a right adjointOO��
Additive monads on MA that have a left adjoint .

This last correspondence follows by the fact that the right adjoint of a comonad
is a monad and vice versa. The correspondence between corings and comonads
is explicitly given by

(C,∆C , εC)↔ (−⊗A C,−⊗A ∆C ,−⊗A εC).

Definition 4.10. Let C be an A-coring, M be a right A-module and let ρM : M →
M ⊗A C be a right A-module map. A pair (M,ρM ) is called a right C-comodule
if and only if the following diagrams commute

M
ρM //

ρM �� M ⊗A C

ρM⊗AC��
M ⊗A C

M⊗A∆C

// M ⊗A C ⊗A C , M
ρM //
∼= ##HHHHHHHHHHHHH M ⊗A C

M⊗AεC��
M ⊗A A .

The map ρM is called a coaction.

(M,ρM ) is a C-comodule if and only if (M,ρM ) is a coalgebra for the corre-
sponding comonad G = (−⊗AC,−⊗A∆C ,−⊗AεC). A morphism in (MA)G is a
right A-module map f : M → N rendering the following diagram commutative

M
f //

ρM �� N

ρN��
M ⊗A C

f⊗AC
// N ⊗A C .

The category of right C-comodules (i.e. the category of coalgebras of (− ⊗A
C,− ⊗A ∆C ,− ⊗A εC)) is denoted by MC . Morphisms between comodules
(M,ρM ) and (N, ρN ) are denoted by HomC(M,N).

Left comodules are defined symmetrically as coalgebras of the comonad (C⊗A
−,∆C ⊗A −, εC ⊗A −) on the category of left A-modules.

As an example of a coring we can study corings associated to a module.

Example 4.11. Take algebras A, B and look at functors MB →MA preserving
colimits. By the Eilenberg-Watts theorem (Theorem 4.8) such functors have
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Part VII Galois comodules for corings

the tensor form, i.e. there is a (B,A)-bimodule M such that the functor is of
the form

−⊗B M : MB →MA.

For N ∈MA, morphisms HomA(M,N) form a right B-module by

(f · b)(m) = f(bm), f ∈ HomA(M,N), m ∈M, b ∈ B.

Since the functor HomA(M,−) : MA → MB is the right adjoint to − ⊗B M ,
there is a comonad

G = HomA(M,−)⊗B M : MA →MA ,

with comultiplication

δN : HomA(M,N)⊗B M → HomA(M,HomA(M,N)⊗B M)⊗B M,

f ⊗B m 7→ [m′ 7→ f ⊗B m′]⊗B m ,

and counit

σN : HomA(M,N)⊗B M → N , f ⊗B m 7→ f(m) .

G preserves colimits if M is finitely generated and projective as a right A-
module, i.e. there exists e =

∑
i ei ⊗A ξi, ei ∈ M , ξi ∈ M∗ := HomA(M,A),

i = 1, 2, . . . , n such that, for all m ∈M ,

m =
∑

i

eiξi(m).

In this case

HomA(M,N) ∼= N ⊗AM∗, G = −⊗AM∗ ⊗B M.

Hence C = M∗ ⊗B M is an A-coring with comultiplication and counit

∆C(ξ ⊗B m) = ξ ⊗B e⊗B m, εC(ξ ⊗B m) = ξ(m).

G(A) = M∗ ⊗B M is called a (finite) comatrix coring.

4.4 Galois comodules for corings

We start with an A-coring C and take a category of right A-modules A := MA.
Denote by G = − ⊗A C the corresponding comonad on A. The category AG

of G-coalgebras is thus the same as the category of C-comodules MC . Take a
comodule (M,ρM ) ∈ MC and set B = EndC(M) = HomC(M,M). This is an
algebra with respect to composition of morphisms and M is a left B-module
by evaluation (b · m = b(m) for b ∈ B, m ∈ M). Furthermore, the definition
of comodule morphisms imply that ρM is a left B-linear map. Set B := MB.
Since ρM is a left B-linear map, there is a functor

K : MB →MC , V 7→ (V ⊗B M,V ⊗B ρM ). (4.2)

805



Part VII Galois comodules for corings

Note that for the forgetful functor UC : MC →MA, UCK(V ) = V ⊗BM. Thus
there is a comonadic triangle

MB
K //

−⊗BM ""DDDDDDDDDDDDDDDD MC

UC}}zzzzzzzzzzzzzzz
MA .

HomA(M,−)

bbDDDDDDDDDDDDDDDD
By Proposition 4.4 there is a comonad morphism

ϕ : HomA(M,−)⊗B M → −⊗A C.

Recall that, for all N ∈MA, the counit ψ of the tensor-hom adjunction (−⊗B
M,HomA(M,−)) in provided by the evaluation map

ψN : HomA(M,N)⊗B M → N, f ⊗B m 7→ f(m).

Therefore,

ϕN = G(ψN ) ◦ ρKR(N),

f ⊗B m 7→ (ψN ⊗A C)(ρK(HomA(M,N))(f ⊗B m))

= (ψN ⊗A C)(f ⊗B ρM (m)) = (f ⊗A C)(ρM (m)) .

Writing
ρM (m) = m(0) ⊗A m(1) ,

(summation implicit) we obtain

ϕN (f ⊗B m) = f(m(0))⊗A m(1) . (4.3)

Definition 4.12. A right C-comodule (M,ρM ) is called a Galois comodule if
and only if the natural transformation ϕ determined by all the maps ϕN (4.3)
is a natural isomorphism.

If M is finitely generated and projective as a right A-module, then the
comonad HomA(M,−)⊗BM comes from the comatrix coring −⊗AM∗⊗BM .
The fact that ϕ is a comonad morphism is equivalent to the fact that ϕA is a
coring morphism. Write

canM := ϕA : M∗ ⊗B M → C , ξ ⊗B m 7→ ξ(m(0))m(1) .

The map canM is called the canonical map.

Definition 4.13. A Galois comodule (M,ρM ) such that M is finitely generated
projective as a right A-module is called a finite Galois comodule.

The Galois property of a finite Galois comodule is entirely encoded in the
properties of the canonical map. More precisely,

Lemma 4.14. A right C-comodule (M,ρM ) with M finitely generated projective
as a right A-module is a Galois comodule if and only if the canonical map canM
is an isomorphism of A-corings.
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Part VII Galois comodules for corings

Since the category of modules has equalisers, the comparison functor K in
(4.2) has a right adjoint D; see Proposition 4.5. Recall that D is defined by the
diagram

D(N, ρN )
eqN // R(N)

αN //
R(ρN )

// RG(N)

HomA(M,N) HomA(M,N ⊗A C) .

The equalised maps can be explicitly computed as

R(ρN )(f) = HomA(M,ρN )(f) = ρN ◦ f,
and

αN (f) = R(ϕN )(ηR(N)(f)) = HomA(M,ϕN )(f ⊗B −) = (f ⊗A C) ◦ ρN .
Therefore, D can be identified with the comodule homomorphism functor, i.e.
for all right C-comodules (N, ρN ),

D(N, ρN ) = HomC(M,N).

In order to state the conditions under which the comparison functor K, and
thus also the constructed functor D, is an equivalence we need to recall the
notions of flatness and faithful flatness. Consider a sequence of right B-module
maps

V // V ′ // V ′′. (4.4)

For any left B-module M there is then also the following sequence

V ⊗B M // V ′ ⊗B M // V ′′ ⊗B M. (4.5)

The module M is said to be flat if the exactness of any sequence (4.4) implies
exactness of the corresponding sequence (4.5). The module M is said to be
faithfully flat if its flat and, for any sequence of modules (4.4), the exactness of
(4.5) implies exactness of (4.4).

Combining the discussion of comodules in this and preceding sections with
Beck’s monadicity theorem (see Proposition 4.6 and Theorem 4.7) one derives
the main characterisation of Galois comodules in terms of equivalences of cate-
gories.

Theorem 4.15 (The finite Galois comodule structure theorem). Let (M,ρM )
be a comodule over a coring C such that M is finitely generated projective as a
right module over A. Then the following conditions are equivalent:

1. the functor HomC(M,−) : MC → MB is fully faithful and C is flat as a
right A-module;

2. M is flat as a left B-module and (M,ρM ) is Galois comodule.

Furthermore the following conditions are equivalent:

1. HomC(M,−) is an equivalence of categories and C is flat as a right A-
module;

2. M is faithfully flat as a left B-module and (M,ρM ) is Galois comodule.
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Part VII A Galois condition motivated by algebraic geometry

4.5 A Galois condition motivated by algebraic
geometry

The notion of a Galois comodule presented in Section 4.4 is considered to be
standard in the theory of corings; see [bw03]. Recently, motivated by an ap-
proach to non-commutative algebraic geometry through monoidal categories,
Maszczyk introduced a different Galois condition in [m-t07]. We describe this
condition here and compare it with the one studied in Section 4.4.

Start with a morphism of A-corings γ : D → C. Then D is a C-bicomodule
(i.e. it has both left and right C-coaction such that the left coaction is a morphism
of right C-comodule) via

(D ⊗A γ) ◦∆D (right C-coaction) ,

(γ ⊗A D) ◦∆D (left C-coaction) .

Consider the k-module of C-bicomodule maps B :=CHomC(D, C). Then B is an
algebra with the product of b, b′ ∈ B given by

bb′ = (C ⊗A εC) ◦ (b⊗A b′) ◦∆D,

i.e. explicitly

bb′ : d 7→ d(1) ⊗A d(2) 7→ b(d(1))⊗A b′(d(2)) 7→ b(d(1))εC(b
′(d(2))) .

Furthermore, D is a B-bimodule. Define

D := D/[D, B], p : D → D .

Then D is an A-coring with the structure induced by p from that of A-coring
D, and there is a commutative triangle of coring maps:

D
γ //

p   BBBBBBBB C

D .

γ

>>}}}}}}}}
Following [m-t07], C is said to be a Galois coring if the map γ is an isomorphism.
The above triangle of coring maps induces two functors

F : MD →MD, (M,ρM ) 7→ (M, (M ⊗A p) ◦ ρM ),

and
G : MD →MC , (M,ρM ) 7→ (M, (M ⊗A γ) ◦ ρM ).

Any right D-comodule (M,ρM ) defines two comonadic triangles

MB

K=−⊗BF (M) //
−⊗BM !!CCCCCCCCCCCCCCC MD

UD}}{{{{{{{{{{{{{{{
MA,

HomA(M,−)

aaCCCCCCCCCCCCCCC
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with the corresponding (to K) morphism of comonads

ϕ(f ⊗B m) = (f ⊗A p)(ρM (m)), f ∈ HomA(M,N) , m ∈M ,

and

MB

K=−⊗BG(M) //
−⊗BM !!DDDDDDDDDDDDDDD MC

UD}}{{{{{{{{{{{{{{{
MA,

HomA(M,−)

aaDDDDDDDDDDDDDDD
with the corresponding (to K) morphism of comonads

ϕ(f ⊗B m) = (f ⊗A γ)(ρM (m)), f ∈ HomA(M,N) , m ∈M .

Proposition 4.16 (G. Böhm). Assume that ϕ is an isomorphism (i.e. that
F (M) is a Galois D-comodule). Then ϕ is an isomorphism (i.e. G(M) is a
Galois C-comodule) if and only if γ is an isomorphism of corings (i.e. C is
Galois in the sense of [m-t07]).

References for this chapter are: [bm05], [b-j67], [bw03], [d-e70], [em65], [g-j06],
[g-a60], [m-s71], [m-t07], [m-b06], [s-m75], [w-c60].
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Chapter 5

Hopf–Galois extensions of
non-commutative algebras

In this lecture we introduce the key notions in the Galois theory of Hopf algebras
or in the algebraic approach to non-commutative principal bundles. We also
show how Hopf–Galois extensions fit into the theory of Galois comodules of
corings described in Chapter 4.

From now on, k denotes a field, and all algebras etc. are over k. The tensor
product over k is denoted by ⊗.

5.1 Coalgebras and Sweedler’s notation

Definition 5.1. A coalgebra is a vector space C with k-linear maps ∆C : C →
C ⊗ C, εC : C → k such that the following diagrams commute

C
∆C //

∆C �� C ⊗ C
C⊗∆C��

C ⊗ C
∆C⊗C

// C ⊗ C ⊗ C, C
∆C //

∆C �� JJJJJJJJJJJ JJJJJJJJJJJ C ⊗ C
εC⊗C��

C ⊗ C
C⊗εC

// C
∆C is called a comultiplication and εC is called a counit.

In other words, a k-coalgebra is the same as a k-coring (when a vector
space is viewed as a symmetric k-bimodule). Following this identification of
k-coalgebras as k-corings one defines C-comodules as comodule of the k-coring
C. (The reader should notice that we use the term coalgebra here in the sense
different from that in Chapter 4.)

The idea of comultiplication is somewhat counter-intuitive: out of a single
element of a vector spaces, a family of elements is produced. Heyneman and
Sweedler developed a shorthand notation which proves very useful in explicit
computations that involve comultiplications and counits. The Sweedler notation
for comultiplication is based on omitting unnecessary summation range, index
and sign, and then employing the coassociativity of comultiplication (the first
of diagrams in Definition 5.1) to relabel indices by consecutive numbers. Given
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Part VII Coalgebras and Sweedler’s notation

an element c ∈ C, we write

∆C(c) =

n∑

i=1

ci(1) ⊗ ci(2)

=
∑

i

ci(1) ⊗ ci(2)

=
∑

c(1) ⊗ c(2)
= c(1) ⊗ c(2).

The coassociativity of comultiplication means that the two ways to compute the
result of two applications of ∆ give the same result:

(C ⊗∆C) ◦∆C(c) = (C ⊗∆C)(c(1) ⊗ c(2))
= c(1) ⊗∆C(c(2)) = c(1) ⊗ c(2)(1) ⊗ c(2)(2)

(∆C ⊗ C) ◦∆C(c) = (∆C ⊗ C)(c(1) ⊗ c(2))
= ∆C(c(1))⊗ c(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2) .

We can order all indices appearing in above expressions (and in all expressions
involving multiple application of ∆C) in the following way. Remove the brackets,
put 0. in front of the index and then arrange them in increasing order. In this
way we obtain

0.1 < 0.21 < 0.22, 0.11 < 0.12 < 0.2 .

The coassociativity of ∆C tells us that we do not need to care about exact labels
but only about their increasing order. Hence we can relabel:

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1) ⊗ c(2) ⊗ c(3) = c(1)(1) ⊗ c(1)(2) ⊗ c(2).

Exercise 5.2. Compute and check labelling for all three applications of ∆ to
an element c ∈ C.

In terms of the Sweedler notation, the counitality of the comultiplication or
the second of the diagrams in Definition 5.1 comes out as

c(1)εC(c(2)) = εC(c(1))c(2) = c.

Example 5.3. Let X be a set, C = kX – the linear span of X (elements of X
form a basis of the vector space kX). Define the comultiplication and counit by

∆C(x) = x⊗ x, εC(x) = 1, for all x ∈ X.

Remark: for any coalgebra C an element c ∈ C such that ∆C(c) = c ⊗ c,
εC(c) = 1 is called a group-like element.

Example 5.4. Consider the trigonometric identities

sin(x + y) = sin(x) cos(y) + cos(x) sin(y),

cos(x + y) = cos(x) cos(y)− sin(x) sin(y),

and the values of sine and cosine at the origin sin(0) = 0, cos(0) = 1. We can
abstract from these expressions the variables x and y and use the trignometric
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Part VII Bialgebras and comodule algebras

identities to define the comultiplication, and values at 0 to define the counit.
Thus we consider a two-dimensional coalgebra C with a basis {sin, cos}, and
comultiplication and counit

∆C(sin) = sin⊗ cos + cos⊗ sin, ∆C(cos) = cos⊗ cos− sin⊗ sin,

εC(sin) = 0, εC(cos) = 1.

This coalgebra is often referred to as the trigonometric coalgebra.

Example 5.5. Let G be a monoid with unit e, O(G) algebra of functions G →
k. If G is finite we take all functions, and if G is an algebraic group then
we take polynomial (or representative) functions. O(G) is a coalgebra with
comultiplication and counit

∆O(G)(f)(g ⊗ g′) = f(gg′), εO(G)(f) = f(e).

5.2 Bialgebras and comodule algebras

In addition to comultiplication and counit, coalgebras in Examples 5.4 and 5.5
can be equipped with the structure of an algebra in a way that is compatible
with the coalgebra structure.

Definition 5.6. A bialgebra is a vector space H such that:
(a) H is an algebra with multiplication µH and unit 1H ;
(b) H is a coalgebra with comultiplication ∆H and counit εH;
(c) ∆H and εH are algebra maps, i.e. the following diagrams commute

H ⊗H µH //
∆H⊗∆H �� H

∆H��
H ⊗H ⊗H ⊗H H⊗flip⊗H // H ⊗H ⊗H ⊗H µH⊗µH // H ⊗H,

H ⊗H µH //
εH⊗εH !!DDDDDDDDDDDDDDDD H

εH����������������
k,

and ∆H(1H) = 1H ⊗ 1H and εH(1H) = 1.

Explicitly, in terms of the Sweedler notation the first of diagrams in Defini-
tion 5.6 reads, for all h, h′ ∈ H ,

∆H(hh′) = h(1)h
′
(1) ⊗ h(2)h

′
(2) .

Example 5.7. Let G be a monoid with unit e, and let H = kG – the linear
span of G. The multiplication is the monoid multiplication extended linearly,
i.e. µH : g⊗g′ 7→ gg′, for all g, g′ ∈ G, unit 1H = e, the comultiplication is given
by ∆H(g) = g ⊗ g, and the counit by εH(g) = 1 (see Example 5.3). With these
structures kG is a bialgebra.
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Part VII Bialgebras and comodule algebras

Example 5.8. Let G be a monoid with unit e, and let H = O(G) – the functions
G → k; see Example 5.5. H is an algebra by the pointwise multiplication
µH(f ⊗ f ′)(g) = f(g)f ′(g), and with the unit 1H(g) = 1. The comultiplication
is given by ∆H(f)(g ⊗ g′) = f(gg′), and the counit by εH(f) = f(e) as in
Example 5.5. With these operations H is a bialgebra. For example:

(i) Functions on the two element group G = Z2. As a vector space

O(Z2) = k2 with basis e1, e2 ,

e1(1) = 1, e1(−1) = 0, e2(1) = 0, e2(−1) = 1.

The comultiplication derived from the rule described above comes out as

∆H(e1) = e1 ⊗ e1 + e2 ⊗ e2, ∆H(e2) = e1 ⊗ e2 + e2 ⊗ e1.

The pointwise multiplication is e1e1 = e1, e1e2 = e2e1 = 0, e2e2 = e2.
(ii) Functions on the circle group G = S1 = U(1), k = C. As an algebraO(U(1))

is isomorphic to the algebra of Laurent polynomials,

O(U(1)) ∼= C[X,X−1].

The comultiplication is given on generators by ∆H(X) = X ⊗X , ∆H(X−1) =
X−1 ⊗X−1 (and is extended multiplicatively to the whole of C[X,X−1]).

Definition 5.9. Given a bialgebra H, a right H-comodule algebra is a quadru-
ple (A, µA, 1A, ρ

A), where
(a) (A, µA, 1A) is a k-algebra with multiplication µA and unit 1A;
(b) (A, ρA) is a right H-comodule (with coaction ρA : A→ A⊗H);
(c) the coaction ρA is an algebra map, when A ⊗ H is viewed as a tensor

product algebra

(a⊗ h)(a′ ⊗ h′) = aa′ ⊗ hh′, 1A⊗H = 1A ⊗ 1H .

That is the following diagram commutes

A⊗A ρA⊗ρA //
µA ��

A⊗H ⊗A⊗H

A⊗flip⊗H��
A⊗A⊗H ⊗H

µA⊗µH��
A

ρA // A⊗H,
and ρA(1A) = 1A ⊗ 1H .

An alternative definition of a bialgebra can be given by considering the struc-
ture of the category of comodules of a coalgebra H . A coalgebraH is a bialgebra
if and only if the category of right H-comodules, MH , is a monoidal category
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and the forgetful functor from MH to vector spaces is strongly monoidal (i.e.
the monoidal operation in MH is the same as the tensor product of vector
spaces). If H is a bialgebra and (M,ρM ) and (N, ρN ) are H-comodules, then
(M ⊗N, ρM⊗N ) is an H-comodule with the coaction

M⊗Nρ
M⊗ρN// M⊗H⊗N⊗H M⊗flip⊗H // M⊗N⊗H⊗H M⊗N⊗µH // M⊗N⊗H.

With this interpretation a right H-comodule algebra is simply an algebra in the
monoidal category of right H-comodules.

Similarly to comultiplication, in explicit expressions and calculations it is
useful to use Sweedler’s notation for comodules. Let (A, ρA) ∈ MH . For all
a ∈ A, we write omitting the sum sign and summation indices

ρA(a) = a(0) ⊗ a(1).

Note that all the elements a(0) are in A, while all the a(1) are in H . The
comodule property (A⊗∆H) ◦ ρA(a) = (ρA ⊗H) ◦ ρA(a) can be written as

a(0) ⊗ a(1)(1) ⊗ a(1)(2) = a(0)(0) ⊗ a(0)(1) ⊗ a(1) =: a(0) ⊗ a(1) ⊗ a(2) .

In general, after relabelling according to the same rules as for comultiplication,
symbols with positive Sweedler indices are elements of the Hopf algebra H . The
compatibility condition from Definition 5.9 can be written as

(aa′)(0) ⊗ (aa′)(1) = a(0)a
′
(0) ⊗ a(1)a

′
(1) .

Example 5.10. Since the comultiplication in a bialgebra is an algebra map, the
pair (H,∆H) is a right comodule algebra. One often refers to (H,∆H) as a
(right) regular comodule.

Example 5.11. Let G be a group, H = kG. Then A is an H-comodule algebra
if and only if A is a G-graded algebra

A =
⊕

g∈G
Ag, AgAg′ ⊆ Agg′ , 1A ∈ Ae.

If a ∈ Ag, then define
ρA(a) = a⊗ g.

Since 1A ∈ Ae, ρA(1A) = 1A ⊗ e = 1A ⊗ 1H .
Take a ∈ Ag, a

′ ∈ Ag′ . Then aa′ ∈ Agg′ , hence ρA(aa′) = aa′ ⊗ gg′ as
needed.

Example 5.12. Let H = O(G) for a monoid G. For a G-set X , take A = O(X)
and identify O(X)⊗O(G) with O(X ×G). Then A is an H-comodule algebra
with respect to

ρA(f)(x, g) = f(xg), ∀x ∈ X, g ∈ G.

5.3 Hopf–Galois extensions and Hopf algebras

Definition 5.13. If A is a right H-comodule algebra (of a bialgebra H), define
the set of coinvariants (or coaction invariants) as

AcoH := {b ∈ A | ρA(b) = b⊗ 1H} .
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Coinvariants AcoH are a subalgebra of A, because ρA is an algebra map.
Furthermore

AcoH = {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)} .

A is an AcoH -bimodule, and ρA is a left AcoH -module map. The coaction ρA is
also a right AcoH -module map, when A ⊗H has the right multiplication given
by (a⊗ h) · a′ = aa′ ⊗ h.

Example 5.14. Take a regular comodule algebra (H,∆H); see Example 5.10.
Then H has trivial coaction invariants, i.e.

HcoH = k · 1H .

Indeed, since ∆H(1H) = 1H ⊗ 1H , k1H ⊆ HcoH . On the other hand if

h(1) ⊗ h(2) = h⊗ 1H ,

then apply εH ⊗H to get h = εH(h)1H , hence h ∈ k1H .

Definition 5.15. A right H-comodule algebra is called a Hopf–Galois extension
(of the coinvariants B := AcoH) if the canonical map

can: A⊗B A→ A⊗H, a⊗B a′ 7→ aρA(a′) .

is bijective (an isomorphism of left A-modules and right H-comodules).

Example 5.16. Let G be a group, H = kG, and A =
⊕

g∈GAg be a G-graded
algebra. Then A is Hopf–Galois extension if and only if it is strongly graded,
i.e., for all g, g′ ∈ G,

AgAg′ = Agg′ , B = AcoH = Ae.

In this case, for all a ∈ Ag, a′ ∈ Ag′

can: a′ ⊗B a 7→ a′a⊗ g,
can−1 : a′ ⊗ g 7→

∑

i

a′ai ⊗B ai.

where ai ∈ Ag, ai ∈ Ag−1 are such that
∑

i aiai = 1A.

As explained in Example 5.10 (H,∆H) is a right H-comodule algebra. It is
thus tempting to ask the following

Question 3. When is (H,∆H) a Hopf–Galois extension by H?

Since the coinvariants HcoH of (H,∆H) coincide with the ground field k (see
Example 5.14), Question 3 is equivalent to determining, when

canH : H ⊗H → H ⊗H, h′ ⊗ h 7→ h′h(1) ⊗ h(2) ,

is an isomorphism.

Lemma 5.17. (H,∆H) is a Hopf–Galois extension if and only if there is a map
S : H → H such that

h(1)S(h(2)) = εH(h)1H = S(h(1))h(2) .

Such a map S is called an antipode.
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Part VII Cleft extensions

Proof. If such a map S exists, then the inverse of the canonical map is given by

can−1(h′ ⊗ h) = h′S(h(1))⊗ h(2) .

Conversely, if can−1 exists, then the linear map

S = (H ⊗ εH) ◦ can−1 ◦(1H ⊗H) ,

has the required properties.

Definition 5.18. A bialgebra with an antipode is called a Hopf algebra.

The antipode is an anti-algebra and anti-coalgebra map, and plays the role
similar to the mapping which to each element of a group assigns its inverse (and
hence can be heuristically understood as a generalised inverse).

Examples 5.19.

1. If G is a group, then kG is a Hopf algebra with the antipode S : kG→ kG
given on G by g 7→ g−1.

2. Similarly, for a group G, the antipode on O(G) is given by

S : f 7→ [g 7→ f(g−1)] .

5.4 Cleft extensions

Take an algebra B and a Hopf algebra H . Let A = B ⊗H and consider it as a
right H-comodule with coaction

ρA : B ⊗H → B ⊗H ⊗H, ρA = B ⊗∆H .

Suppose furthermore that B ⊗H is an algebra with multiplication and unit

(b ⊗ h)(b′ ⊗ h′) = bb′ ⊗ hh′ , 1B ⊗ 1H .

This makes (B ⊗H,B⊗∆H) into an H-comodule algebra. Clearly

AcoH = (B ⊗H)coH = {b⊗ 1H | b ∈ B} ∼= B.

The canonical map is

can: (B ⊗H)⊗B (B ⊗H) ∼= B ⊗H ⊗H → B ⊗H ⊗H,
b⊗ h′ ⊗ h 7→ b ⊗ h′h(1) ⊗ h(2),

and hence is bijective with the inverse

can−1 : B ⊗H ⊗H → B ⊗H ⊗H ,

b⊗ h′ ⊗ h 7→ b⊗ h′S(h(1))⊗ h(2).

Therefore, B ⊗ H is a Hopf–Galois extension (of B). More generally, one can
study Hopf–Galois extensions built on the comodule (B ⊗H,B⊗∆H).

Definition 5.20. Let A be a Hopf–Galois extension of B = AcoH . A is said
to have a normal basis property if A ∼= B ⊗ H as a left B-module and right
H-comodule.

816



Part VII Cleft extensions

Proposition 5.21. Let (A, ρA) be a right H-comodule algebra, and let B =
AcoH . The following statements are equivalent:

1. A is a Hopf–Galois extension with a normal basis property.

2. There exists a map j : H → A such that:

(a) j is a right H-comodule map, i.e. the following diagram

H
j //

∆H�� A

ρA��
H ⊗H

j⊗H
// A⊗H

is commutative;

(b) j is convolution invertible, i.e. there exists a linear map j̃ : H → A
such that, for all h ∈ H,

j(h(1))j̃(h(2)) = j̃(h(1))j(h(2)) = εH(h)1A.

Proof. (2) =⇒ (1) We prove that the inverse of the canonical map can has the
following form

can−1 : a⊗ h 7→ aj̃(h(1))⊗B j(h(2)) .

In one direction, starting with can−1, we compute

can(aj̃(h(1))⊗ j(h(2))) = aj̃(h(1))j(h(2)(1))⊗ h(2)(2)

= aj̃(h(1)(1))j(h(1)(2))⊗ h(2) = a⊗ h.

The first equality follows by the fact that the coaction ρA is an algebra map and
by the colinearity of j (condition 2(a) in Proposition 5.21). The final equality
is a consequence of condition 2(b). The proof that the composite can−1 ◦ can is
the identity map is slightly more involved. First note that

ρA(j̃(h)) = j̃(h(2))⊗ S(h(1)). (5.1)

This is verified in a few steps. Start with the equality

1A ⊗ S(h(1))⊗ j̃(h(2)) = j̃(h(1))j(h(2))⊗ S(h(3))⊗ j̃(h(4)) ,

which is a consequence of condition 2(b) (and the definition of a counit). Then
apply ρA ⊗H ⊗A and use the multiplicativity of ρA and right H-colinearity of
j to obtain

1A⊗1H⊗S(h(1))⊗ j̃(h(2)) = j̃(h(1))(0)j(h(2))⊗ j̃(h(1))(1)h(3)⊗S(h(4))⊗ j̃(h(5)) .

Next multiply elements in H and use the definition of the antipode to reduce
above equality to

1A ⊗ S(h(1))⊗ j̃(h(2)) = j̃(h(1))(0)j(h(2))⊗ j̃(h(1))(1) ⊗ j̃(h(3)) .
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Part VII Cleft extensions

Finally, equality (5.1) is obtained by multiplying elements in A and then using
the convolution inverse property 2(b). Equation (5.1) implies that, for all a ∈ A,

a(0)j̃(a(1)) ∈ B = AcoH . (5.2)

To verify this claim, simply apply ρA to a(0)j̃(a(1)), use the multiplicativity of
ρA, covariance property (5.1) and the definition of the antipode to obtain

ρA(a(0)j̃(a(1))) = a(0)j̃(a(2))(0) ⊗ a(1)j̃(a(2))(1)

= a(0)j̃(a(3))⊗ a(1)S(a(2)) = a(0)j̃(a(1))⊗ 1H .

Property (5.2) is used to compute can ◦ can−1:

can ◦ can−1 : a′ ⊗B a 7→ a′a(0) ⊗ a(1)

7→ a′ a(0)j̃(a(1))︸ ︷︷ ︸
∈B

⊗Bj(a(2))

= a′ ⊗B a(0)j̃(a(1))j(a(2))

= a′ ⊗B a(0)εH(a(1))

(by property 2(b) in Proposition 5.21)

= a′ ⊗B a .

This completes the proof that A is a Hopf–Galois extension. We need to show
that it has the normal basis property, i.e. that A is isomorphic to B ⊗ H .
Consider the map

θ : B ⊗H → A , b⊗ h 7→ bj(h) .

This is clearly a left B-module map. It is also right H-colinear since ρA is
left linear over the coaction invariants and j is right H-colinear by assumption
(2)(a). The inverse of θ is

θ−1 : A→ B ⊗H, a 7→ a(0)j̃(a(1))⊗ a(2) .

The verification that θ−1 is the inverse of θ makes use of assumption 2(b) and
is left to the reader.

(1) =⇒ (2) Given a left B-linear, rightH-colinear isomorphism θ : B⊗H ∼=−→
A, define

j : H → A, h 7→ θ(1B ⊗ h) .

Since θ is right H-colinear, so is j. The convolution inverse of j is

j̃ : H
1A⊗H−−−−→ A⊗H can−1

−−−−→ A⊗B A A⊗Bθ
−1

−−−−−−→ A⊗B B ⊗H ∼= A⊗H A⊗εH−−−−→ A .

Verification of property 2(b) is left to the reader.

Definition 5.22. A comodule algebra A such that there is a convolution invert-
ible right H-comodule map j : H → A is called a cleft extension (of AcoH). The
map j is called a cleaving map.
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Since 1H is a grouplike element j(1H)j̃(1H) = 1A, so j(1H) 6= 0, and a cleav-
ing map can always be normalised so that j(1H) = 1A. Proposition 5.21 estab-
lishes a one-to-one correspondence between cleft extensions and Hopf–Galois
extensions with a normal basis property. Note finally that the isomorphism
θ : A → B ⊗ H can be used to generate an algebra structure on B ⊗ H . In
this way one obtains an example of a twisted tensor product or crossed product
algebra.

5.5 Hopf–Galois extensions as Galois comod-
ules

In this section we would like to make a connection between Hopf–Galois exten-
sions and Galois comodules of a coring described in Chapter 4.

Take a bialgebra H . Let A be a right H-comodule algebra, i.e. an algebra
(A, µA, 1A) and an H-comodule (A, ρA) such that ρA : A→ A⊗H is an algebra
map. Then C = A⊗H is an A-bimodule with the following A-actions

a·(a′⊗h) = aa′⊗h (left A-action), (a′⊗h)·a = a′a(0)⊗ha(1) (right A-action) .

Furthermore, C is an A-coring with counit εC = A⊗ εH and comultiplication

∆C : A⊗H → (A⊗H)⊗A (A⊗H) ∼= A⊗H ⊗H, a⊗ h 7→ a⊗∆H(h) .

A is a right C-comodule with the coaction

A→ A⊗A (A⊗H) ∼= A⊗H, a 7→ ρA(a) = a(0) ⊗A (1A ⊗ a(1)) .

In other words, once the identification of A ⊗A C with C = A ⊗ H is taken
into account, A is a C-comodule by the same coaction by which A is an H-
comodule. Next we need to compute the endomorphism ring of the right C-
comodule (A, ρA). B = EndC(A) is a subalgebra of A, once the right A-module
endomorphisms of A are identified with A by the left multiplication map, i.e.

B = EndC(A) ⊆ A ∼= EndA(A), A ∋ b 7→ [lb : a 7→ ba] ∈ EndA(A) .

The element b ∈ A is an element of the subalgebra B if and only if the corre-
sponding A-linear map la is right C-colinear, i.e.

1A
� ρA //_

lb �� 1A ⊗A 1A ⊗ 1H_
lb⊗A1A⊗1H��

a �
ρA

// ρA(b) = b⊗ 1H .

Hence lb ∈ EndC(A) if and only if ρA(b) = b ⊗ 1H . This means that the
endomorphism algebra B = EndC(A) coincides with the algebra of H-comodule
invariants,

B = AcoH = {a ∈ A | ρA(a) = a⊗ 1H} .
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Part VII Hopf–Galois extensions as Galois comodules

Obviously A is a finitely generated projective right A-module and the dual
module can be identified with A,

A∗ := HomA(A,A) ∼= A .

The dual basis for A is

e = (l1A ⊗A 1A) = 1A ⊗A 1A ∈ A⊗A A .

The corresponding comatrix coring is simply the Sweedler canonical coring (as-
sociated to the inclusion of algebras B ⊆ A) A⊗B A, with the comultiplication
and counit

∆A⊗BA : a⊗B a′ 7→ (a⊗B 1A)⊗A (1A ⊗B a′) ,
εA⊗BA : a⊗B a′ 7→ aa′ .

The canonical map for the right C-comodule (A, ρA) as defined in Section 4.4
comes out as

canA : A⊗B → A⊗H, a⊗B a′ 7→ la(a′(0))⊗A (1⊗ a′(1)) = aρA(a′) ,

and hence it coincides with the canonical map for the right H-comodule algebra
(A, ρA) as defined in Definition 5.15. Consequently, a right H-comodule algebra
A is a Hopf–Galois extension (of B = AcoH) if and only if (A, ρA) is a (finite)
Galois comodule of C = A⊗H .

Right comodules of C = A⊗H are right A-modules M with a map ρM : M →
M ⊗AA⊗H ∼= M ⊗H , which is a right coaction. The coaction property means
that (M,ρM ) is a right H-comodule. The right A-module property of ρM yields
the compatibility condition

ρM (ma) = m(0)a(0) ⊗m(1)a(1) .

Right A-modules and H-comodules M with this compatibility condition are
called relative Hopf modules and their category is denoted by MH

A . Thus MH
A

is isomorphic to the category of right C = A⊗H-comodules.
The following result is often referred to as an easy part of the Schneider

Theorem I.

Theorem 5.23 (Schneider). Let A be a right H-comodule algebra, B = AcoH .
The following statements are equivalent:

1. A is a Hopf–Galois extension such that A is faithfully flat as a left B-
module.

2. The functor −⊗B A : MB →MH
A is an equivalence.

Proof. Take C = A⊗H , identify right C-comodules with relative Hopf modules
MH

A and apply the finite Galois comodule theorem, Theorem 4.15.

References for this chapter are: [bm89], [b-t02], [bw03], [dt86], [m-s93], [s-p04],
[s-h90], [s-m69], [s-k01].

820



Chapter 6

Connections in Hopf–Galois
extensions

Geometric aspects of Hopf–Galois extensions are most clearly present in the
theory of connections. The aim of this lecture is to outline the main points of
this theory.

6.1 Connections

Connections are differential geometric objects. Thus before connections in a
Hopf–Galois extension can be defined, one needs to describe what is meant by
a differential structure.

Definition 6.1. A differential graded algebra is an N ∪ {0}-graded algebra

ΩA =

∞⊕

n=0

ΩnA ,

with an operation
d : ΩnA→ Ωn+1A ,

such that d ◦ d = 0 and, for all ω ∈ ΩnA and ω′ ∈ ΩA,

d(ωω′) = d(ω)ω′ + (−1)nωd(ω′) . (6.1)

Equation (6.1) is known as the Leibniz rule.

The zero-degree part of a differential graded algebra, Ω0A, is an algebra
which is denoted by A.

Take an algebra (A, µA, 1A). One associates to A a differential graded alge-
bra ΩA as follows

Ω1A := kerµA =

{∑

i

ai ⊗ a′i ∈ A⊗A |
∑

aia
′
i = 0

}
∼= A⊗A/k ,

d(a) = 1A ⊗ a− a⊗ 1A ,

ΩnA := Ωn−1A⊗A Ω1A .
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The differential d is extended to the whole of ΩA using the Leibniz rule (6.1).
Ω1A is an A-bimodule. As an algebra ΩA = TA(Ω1A) (the tensor algebra asso-
ciated to the A-bimodule Ω1A. This (ΩA, d) is called the universal differential
envelope of A. (Ω1A, d) is known as the universal differential calculus on A. We
will only work with universal differential calculus (or envelope).

Lemma 6.2. If (A, ρA) is a comodule algebra over a bialgebra H, then Ω1A is
a right H-comodule by

ρΩ1A : Ω1A→ Ω1A⊗H,
∑

i

ai ⊗ a′i 7→
∑

i

ai(0) ⊗ a′i(0) ⊗ ai(1)a′i(1) .

Furthermore, d is a right H-comodule map. We say that (Ω1A, d) is a covariant
differential calculus on A.

Proof. To check that ρΩ1A is well-defined, we need to show that ImρΩ1A ⊆
Ω1A⊗H . Applying µA ⊗H to ρΩ1A(

∑
i ai ⊗ a′i) and using the multplicativity

of ρA we obtain

∑

i

ai(0)a
′
i(0) ⊗ ai(1)a′i(1) = ρA(

∑

i

aia
′
i) = 0, since

∑

i

aia
′
i = 0.

Furthermore, for all a ∈ A,

ρΩ1A(d(a)) = ρΩ1A(1A ⊗ a− a⊗ 1A)

= 1A ⊗ a(0) ⊗ a(1) − a(0) ⊗ 1A ⊗ a(1) = d(a(0))⊗ a(1) ,

i.e. d is a right H-comodule map as required.

Definition 6.3. Let (A, ρA) be a right H-comodule algebra, B = AcoH . The
A-subbimodule Ω1

horA of Ω1A generated by all d(b), b ∈ B, is called a module of
horizontal one-forms. Thus:

Ω1
horA = A(Ω1B)A =

{∑

i

(ai ⊗ bia′i − aibi ⊗ a′i) | ai, a′i ∈ A, bi ∈ B
}
.

Equivalently, horizontal forms can be defined by the following short exact se-
quence

0→ Ω1
horA→ A⊗A→ A⊗B A→ A ,

where A⊗A→ A⊗B A is the epimorphism defining A⊗B A.

Definition 6.4. A connection in a Hopf–Galois extension B ⊆ A is a left
A-linear map Π: Ω1A→ Ω1A, such that

(a) Π ◦Π = Π,
(b) ker Π = Ω1

horA,

(c) (Π⊗H) ◦ ρΩ1A = ρΩ1A ◦Π.

In other words, a connection is an H-covariant splitting of Ω1A into the
horizontal and vertical parts.
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6.2 Connection forms

In classical differential geometry connections in a principal bundle are in one-
to-one correspondence with connection forms, i.e. differential forms on the total
space of the bundle with values in the Lie algebra of the structure group that
are covariant with respect to the adjoint action of the Lie algebra. To be able
to establish a similar relationship between connections and connection forms in
a Hopf–Galois extension we first need to reinterpret the definition of a Hopf–
Galois extension in terms of the universal differential envelope.

Definition 6.5. Let A be a right H-comodule algebra. Set B = AcoH and
H+ = ker εH ⊆ H. Define

ver : Ω1A→ A⊗H+,
∑

i

a′i ⊗ ai 7→
∑

i

a′iρ
A(ai) .

The map ver is called a vertical lift.

Note in passing that ver is well defined (its range is in A ⊗ H+), since∑
i a
′
iai = 0 implies

∑

i

a′iai(0)εH(ai(1)) =
∑

i

a′iai = 0 .

Proposition 6.6. The following statements are equivalent:

1. B ⊆ A is Hopf–Galois extension.

2. The sequence
0→ Ω1

horA→ Ω1A
ver−−→ A⊗H+ → 0

is exact.

Proof. Note that

A⊗A ∼= Ω1A⊕A , A⊗H ∼= A⊗H+ ⊕A ,

as left A-modules. This implies that the sequence

0→ Ω1
horA→ Ω1A

ver−−→ A⊗H+ → 0

is exact if and only if the sequence

0→ Ω1
horA→ A⊗A can−−→ A⊗H → 0

is exact. Here can is the lift of the canonical map defined by the commutative
diagram

A⊗A π //
can %%JJJJJJJJJ A⊗B A

canyyssssssssss
A⊗H,

in which π is the defining projection of the tensor product A ⊗B A. Since
Ω1
horA = kerπ (compare Definition 6.3), the second sequence is exact if and

only if the canonical map can is bijective.
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The vector space H+ is a right H-comodule by the adjoint coaction,

Ad: H+ → H+ ⊗H, h 7→ h(2) ⊗ S(h(1))h(3) .

Therefore A⊗H+ is a right H-comodule by combining ρA and Ad, i.e.

ρA⊗H
+

: A⊗H+ → A⊗H+ ⊗H,
a⊗ h 7→ a(0) ⊗ h(2) ⊗ a(1)S(h(1))h(3) .

Lemma 6.7. The vertical lift is a right H-comodule map from (Ω1A, ρΩ1A) to

(A⊗H+, ρA⊗H
+

). Consequently, the sequence in Proposition 6.6 is a sequence
of left A-modules and right H-comodules.

Proof. The first statement is checked by a direct calculation that is left to the
reader as an exercise. The second statement is obvious.

Definition 6.8. A connection form in a Hopf–Galois extension B ⊆ A is a
k-linear map ω : H+ → Ω1A such that

(a) ρΩ1A ◦ ω = (ω ⊗H) ◦Ad,
(b) ver ◦ ω = 1A ⊗H+.

Theorem 6.9. Connections in a Hopf–Galois extension B ⊆ A (by a Hopf
algebra H) are in bijective correspondence with connection forms. The corre-
spondence is

ω 7→ Π, Π(a′da) = a′a(0)ω(a(1) − εH(a(1))).

Proof. Existence of Π means that Ω1
horA is a direct summand of Ω1A as a left

A-module and right H-comodule. This is equivalent to the existence of splitting
of the left A-module and right H-comodule sequence

0→ Ω1
horA→ Ω1A

ver−−→ A⊗H+ → 0.

In view of the identification

AHomH(A⊗H+,Ω1A) ∼= HomH(H+,Ω1A),

any splitting yields an ω with required properties.

6.3 Strong connections

Recall that given an algebra B and a left B-module Γ, a connection in Γ is a
k-linear map

∇ : Γ→ Ω1B ⊗B Γ,

such that, for all b ∈ B, x ∈ Γ,

∇(bx) = d(b)⊗B x+ b∇(x).

A connection in Γ exists if and only if Γ is a projective B-module (remember
that Ω1B is the universal differential calculus) if and only if there exists a left
B-module splitting (section) of the multiplication map B ⊗ Γ→ Γ.

A general connection in a Hopf–Galois extension B ⊂ A does not induce a
connection in the left B-module A. Only connections which are related to a
more restrictive notion of horizontal forms yield connections in modules.
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Definition 6.10. Given a connection Π in B ⊂ A, the right H-comodule map

D : A→ Ω1
horA, D := d−Π ◦ d ,

is called a covariant derivative corresponding to Π. The connection Π is called
a strong connection if D(A) ⊆ (Ω1B)A.

Lemma 6.11. Let D be a covariant derivative corresponding to a strong con-
nection in a Hopf–Galois extension B ⊆ A. Then D is a connection in the left
B-module A.

Lemma 6.11 is a special case of Theorem 6.15 so is left without a proof (for
the time being).

Definition 6.12. A connection form ω such that its associated connection is a
strong connection is called a strong connection form. Thus a strong connection
form is a k-linear map ω : H+ → Ω1A characterised by the following properties:

(a) ρΩ1A ◦ ω = (ω ⊗H) ◦Ad,
(b) ver ◦ ω = 1A ⊗H+,
(c) d(a)−∑ a(0)ω(a(1) − εH(a(1))) ∈ (Ω1B)A, for all a ∈ A.

Definition 6.13. Let (A, ρA) be a right H-comodule and let (V, Vρ) be a left
H-comodule. The cotensor product is defined as an equaliser

A�HV // A⊗ V ρA⊗V//
A⊗Vρ

// A⊗H ⊗ V.
This means that

A�HV = {
∑

i

ai ⊗ vi ∈ A⊗ V |
∑

i

ρA(ai)⊗ vi =
∑

i

ai ⊗ Vρ(vi)}.

The functor A�H− : HM→ Vect is a left exact functor, and A�HH ∼= A.
If (A, ρA) is a comodule algebra, B = AcoH , then A�HV is a left B-module

by

b(
∑

i

ai ⊗ vi) =
∑

i

bai ⊗ vi.

This defines a functorA�H− : HM→ BM from the category of leftH-comodules
to the category of left B-modules.

Definition 6.14. Given a left H-comodule (V, Vρ) and a Hopf–Galois extension
B ⊆ A, the left B-module Γ := A�HV is called a module associated to B ⊆ A.

Here Γ plays the role of module of sections of a vector bundle (with a standard
fibre V ) associated to the non-commutative principal bundle represented by
the Hopf–Galois extension B ⊆ A. In the case of a cleft extension B ⊆ A,
A ∼= B ⊗H , hence Γ ∼= (B ⊗H)�HV ∼= B ⊗ V , and thus it is a free B-module.
More generally,

Theorem 6.15. If Π is a strong connection, then

∇ : A�HV → Ω1B ⊗B (A�HV ), ∇ = D ⊗ V ,

is a connection in the associated left B-module Γ = A�HV . Consequently Γ is
a projective B-module.

825



Part VII Strong connections

Proof. Since D(A) ⊆ (Ω1B)A ∼= Ω1B ⊗B A and D is a right H-comodule map,
the map ∇ is well defined. For all b ∈ B and a ⊗ v ∈ A�HV (summation
suppressed for clarity) we can compute:

∇(ba⊗ v) = d(ba)⊗ v −Π(d(ba))⊗ v
= dba⊗ v + bda⊗ v −Π(dba)⊗ v −Π(bda)⊗ v
= dba⊗ v + bda⊗ v − bΠ(da)⊗ v = dba⊗ v + b∇(a⊗ v),

where the second equality follows by the Leibniz rule and the third one by
the left A-linearity of Π and the fact that (db)a is a horizontal form, hence in
the kernel of Π. We thus conclude that ∇ is a connection. The last assertion
follows since every module admitting a connection (with respect to the universal
differential calculus) is projective.

In general, the associated module A�HV in Theorem 6.15 is not finitely
generated as a left A-module, even if V is a finite dimensional vector space.
However, if H has a bijective antipode, then A�HV is finitely generated and
projective for any finite dimensional V (and, of course, provided that A has a
strong connection).

Theorem 6.16 (Da̧browski-Grosse-Hajac). A strong connection in a Hopf–
Galois extension B ⊆ A by a Hopf algebra H exists if and only if A is H-
equivariantly projective as a left B-module, i.e. if and only if there exists a left
B-module, right H-comodule section of the multiplication map µA : B ⊗A→ A
(section means s : A→ B ⊗A such that µA ◦ s = A).

Proof. Given a section s : A→ B ⊗A, define a connection by

Π(a′da) = a′da− a′ ⊗ a+ a′s(a) = a′s(a)− a′a⊗ 1A.

This map is clearly left A-linear and right H-colinear. It is an idempotent since,
using the fact that s is a section of the multiplication map B ⊗ A → A, one
easily finds that −a′⊗a+a′s(a) ∈ Ω1

horA. This also implies that ker Π ⊆ Ω1
horA.

The converse inclusion follows by the left B-linearity of s and the Leibniz rule.
Write s(a) = a(1)⊗a(2) ∈ B⊗A (summation suppressed). The splitting property
means that a(1)a(2) = a, so

D(a) = 1A ⊗ a− s(a) = 1A ⊗ a(1)a(2) − a(1) ⊗ a(2) = (da(1))a(2) ∈ (Ω1B)A.

If Π is a strong connection, then the splitting of the product is given by

s(a) = a⊗ 1A + Π(da).

The map s is obviously right H-colinear and the section of the multiplication
map. Note that s(a) = 1A ⊗ a − D(a), hence s(a) ∈ B ⊗ A as Π is a strong
connection. An easy calculation proves that s is left B-linear. That the above
assignments describe mutual inverses is immediate.

Corollary 6.17. Let B ⊆ A be a Hopf–Galois extension by H with a strong
connection. Then

1. A is projective as a left B-module;
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2. B is a direct summand of A as a left B-module;

3. A is faithfully flat as a left B-module.

Proof. The statement (1) follows by Lemma 6.11 (or is contained in Theo-
rem 6.16). For (2), let sL : A → B be a k-linear map which is identity on B.
Then the map µA◦(B⊗sL)◦s is a left B-linear splitting of the inclusion B ⊆ A.
Statements (1) and (2) imply (3); see [r-l88, 2.11.29].

To give an example of a strong connection we construct such a connection
in a cleft extension; see Section 5.4.

Proposition 6.18. Let B ⊆ A be a cleft extension, with a cleaving map j : H →
A such that j(1H) = 1A. Write j̃ : H → A for the convolution inverse of j; see
Proposition 5.21. Then

ω : H+ → Ω1A , h 7→ j̃(h(1))⊗ j(h(2)) ,

is a strong connection form.

Proof. First, for all h ∈ H+, j̃(h(1))j(h(2)) = εH(h) = 0, so ω is well defined.
We need to check if ω satisfies conditions (a)-(c) in Definition 6.12. This is done
by the following three direct calculations.

ρΩ1A ◦ ω(h) = j̃(h(1))(0) ⊗ j(h(2))(0) ⊗ j̃(h(1))(1)j(h(2))(1)

= j̃(h(1)(2))⊗ j(h(2)(1))⊗ S(h(1)(1))h(2)(2)

= j̃(h(2))⊗ j(h(3))⊗ S(h(1))h(4)

= j̃(h(2)(1))⊗ j(h(2)(2))⊗ S(h(1))h(3)

= ω(h(2))⊗ S(h(1))h(3)

= ω ◦Ad(h).

The first equality is simply the definition of ρΩ1A, the second uses the H-
colinearity of j and its consequence (5.1). Then the Sweedler indices have been
rearranged and definitions of the adjoint coaction and ω used. Next,

ver(ω(h)) = ver(j̃(h(1))⊗ j(h(2)))

= j̃(h(1))j(h(2))(0) ⊗ j(h(2))(1)

= j̃(h(1))j(h(2)(1))⊗ h(2)(2)

= j̃(h(1)(1))j(h(1)(2))⊗ h(2)

= ε(h(1))1A ⊗ h(2)

= 1A ⊗ h.
The second equality is the definition of the vertical lift, then the H-colinearity
of j is used and the Sweedler indices rearranged. The penultimate equality
is a consequence of property (2)(b) in Proposition 5.21. Finally, using the
normalisation of j (and hence also of j̃) one can compute, for all a ∈ A,

D(a) = d(a)−Π(d(a))

= d(a)− a(0)ω(a(1) − εH(a(1)))

= 1⊗ a− a⊗ 1− a(0)j̃(a(1))⊗ j(a(2)) + aj̃(1H)⊗ j(1H)

= 1⊗ a− a(0)j̃(a(1))⊗ j(a(2)).
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Since a(0)j̃(a(1)) ∈ B (see (5.2) in the proof of Proposition 5.21), we obtain
D(a) ∈ Ω1B ⊗B A ⊆ B ⊗ A.

The normalisation of a cleaving map in Proposition 6.18 is not an essential
assumption. If j(1H) 6= 1A we can choose

ω(h) = j̃(h(1))⊗ j(h(2))− j̃(1H)⊗ j(1H) + 1A ⊗ 1A.

6.4 The existence of strong connections. Prin-

cipal comodule algebras

Here we would like to determine, when a Hopf–Galois extension admits a strong
connection. In all geometrically interesting situations the antipode S of a Hopf
algebra is bijective, hence it is natural to restrict our considerations to this case.
If a Hopf algebra H has a bijective antipode, then we make a right H-comodule
algebra A into a left H-comodule via

Aρ : A→ H ⊗A, a 7→ S−1(a(1))⊗ a(0).

Theorem 6.19. If a Hopf algebra H has a bijective antipode, then strong con-
nections in a Hopf–Galois extension B ⊆ A are in bijective correspondence with
k-linear maps ℓ : H → A⊗A such that

(a) ℓ(1H) = 1A ⊗ 1A,
(b) can ◦ ℓ = 1A ⊗H (or µA ◦ ℓ = 1A ◦ εH),
(c) (ℓ ⊗H) ◦∆H = (A⊗ ρA) ◦ ℓ,
(d) (H ⊗ ℓ) ◦∆H = (Aρ⊗A) ◦ ℓ.

The correspondence is given by

Π(a′d(a)) = a′a(0)ℓ(a(1))− a′a⊗ 1.

We also refer to ℓ as a strong connection.

Proof. The idea of the proof is to show the relation between ℓ and connection
forms. First we comment on two versions of condition (b). Since (A⊗εH)◦can =
µA, the first version of condition (b) immediately implies that µA ◦ ℓ = 1A ◦ εH .
The converse follows by the use of colinearity (condition (c)).

So, using the second version of (b), if εH(h) = 0, then µA ◦ ℓ(h) = 0. This
means that given ℓ one can define a map ωℓ : H+ → Ω1A, by ωℓ(h) = ℓ(h).
Obviously, for all h ∈ H+, ver ◦ωℓ(h) = can ◦ ℓ(h) = 1A⊗ h. A straightforward

calculation reveals that (c) and (d) imply that (ωℓ⊗H)◦Ad = ρΩ1A ◦ωℓ. Hence
if ℓ exists, the corresponding ωℓ is a connection one-form. By Theorem 6.9 there
is a connection Πℓ in A with the form stated. Using explicit definition of the
universal differential, the corresponding covariant derivative comes out as

Dℓ(a) = 1A ⊗ a− a(0)ℓ(a(1)). (6.2)

Now use the fact that A is a right H-comodule algebra, conditions (c) and (d)
for ℓ and the fact that the inverse of the antipode S−1 is an anti-algebra map
to compute

(Aρ⊗H)(Dℓ(a)) = 1H ⊗ 1A ⊗ a− a(2)S
−1(a(1))⊗ a(0)ℓ(a(3))

= 1H ⊗ 1A ⊗ a− S−1(a(1)S(a(2))) ⊗ a(0)ℓ(a(3))

= 1H ⊗ 1A ⊗ a− 1H ⊗ a(0)ℓ(a(1)) = 1H ⊗Dℓ(a).
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This implies that, for all a ∈ A, Dℓ(a) ∈ B⊗A, i.e. the connection Πℓ is strong.
Conversely, given a strong connection Π with connection one-form ω : H+ →

Ω1A, define ℓω : H → A ⊗ A by ℓω(h) = εH(h)1A ⊗ 1A + ω(h − εH(h)). Such
an ℓω satisfies (a) and (b) (the latter by condition (b) of Definition 6.12). Now,
condition (a) of Definition 6.12 implies that

(ℓω ⊗H) ◦Ad = ρA⊗A ◦ ℓω, (6.3)

where ρA⊗A is the diagonal coaction of H on A⊗A, given by the same formula
as ρΩ1A. The covariant derivative D corresponding to Π has the same form as
in equation (6.2). Since the connection Π is strong,

(B ⊗ ρA)(D(a)) = ρΩ1A(D(a)), ∀a ∈ A.

In view of equation (6.2) this means that

(A⊗ ρA)(a(0)ℓω(a(1))) = ρA⊗A(a(0)ℓω(a(1))), ∀a ∈ A. (6.4)

Putting equations (6.3) and (6.4) together and using defining properties of the
antipode one obtains

(A⊗ ρA)(a(0)ℓω(a(1))) = a(0)ℓω(a(1))⊗ a(2), ∀a ∈ A. (6.5)

Since A is a Hopf–Galois extension, the canonical map is bijective. This means
that, for any h ∈ H , there exists h[1] ⊗B h[2] ∈ A ⊗B A (summation implicit)
such that 1 ⊗ h = can(h[1] ⊗B h[2]) = h[1]h[2]

(0) ⊗ h[2]
(1). Hence equation (6.5)

implies for all h ∈ H ,

(A⊗ ρA)(ℓω(h)) = (A⊗ ρA)(h[1]h[2]
(0)ℓω(h[2]

(1)))

= h[1]h[2]
(0)ℓω(h[2]

(1))⊗ h[2]
(2) = ℓω(h(1))⊗ h(2).

Therefore ℓω satisfies property (c). Finally one easily verifies that (c) combined
with equation (6.3) imply property (d).

Theorem 6.20. Let A be a comodule algebra of H, set B := AcoH , and assume
that the antipode of H is bijective. Then the following statements are equivalent.

1. There exists ℓ : H → A⊗A such that

(a) ℓ(1H) = 1A ⊗ 1A,

(b) can ◦ ℓ = 1A ⊗H (or µA ◦ ℓ = 1A ◦ εH),

(c) (ℓ ⊗H) ◦∆H = (A⊗ ρA) ◦ ℓ,
(d) (H ⊗ ℓ) ◦∆H = (Aρ⊗A) ◦ ℓ.

2. A is a faithfully flat (as a left and right B-module) Hopf–Galois extension.

Proof. (1) =⇒ (2) The inverse of the canonical map is given as the following
composite

can−1 : A⊗H A⊗ℓ−−−→ A⊗A⊗A µA⊗A−−−−→ A⊗A −→ A⊗B A .
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Since ℓ is a strong connection, A is faithfully flat as a left B-module by Corol-
lary 6.17. By symmetry, A is a left Hopf–Galois extension, ℓ is a strong connec-
tion for this left Hopf–Galois extension, hence A is faithfully flat as the right
B-module (by the left-handed version of Corollary 6.17).

(2) =⇒ (1) Since A is faithfully flat as a right B-module, for all left H-
comodules V , there is a chain of isomorphisms

A⊗B (A�HV ) ∼= (A⊗B A)�V ∼= (A⊗H)�HV ∼= A⊗ V.

The flatness of A as a B-module is crucial for the first isomorphism since, in
general, the cotensor product does not commute with the tensor product. The
second isomorphism is obtained by applying the canonical map. One uses this
chain of isomorphisms to argue that A�H− is an exact functor as follows. Any
exact sequence of left H-comodules V → W → 0 yields the exact sequence
A ⊗ V → A ⊗W → 0. By the constructed isomorphism, the sequence A ⊗B
(A�HV ) → A ⊗B (A�HW ) → 0 is exact, hence also A�HV → A�HW → 0
is an exact sequence by the faithful flatness of A as a right B-module. Hence
A�H− is right exact, and as it is always left exact, it is simply an exact functor.

For a finitely dimensional right H-comodule, (V, ρV ), the dual vector space
V ∗ := Homk(V, k) is a left H-comodule. Furthermore,

A�HV
∗ ∼= HomH(V,A).

This implies that HomH(−, A) is exact, i.e. (A, ρA) is an injective H-comodule.
In other words there is an H-colinear map π : A⊗H → A such that π ◦ρA = A.
Denote by AMH the category with objects left A-modules M that are also right
H-comodules with a left A-linear coaction ρM , provided M ⊗H is seen as a left
A-module by the diagonal action, a · (m ⊗ h) = a(0)m⊗ a(1)h. Morphisms are
maps which are both left A-linear and right H-colinear. For every (M,ρM ) ∈
AMH , there is a right H-colinear retraction of the coaction ρM : M →M ⊗H
(i.e. (M,ρM ) is injective as an H-comodule),

πM : M ⊗H →M , m⊗ h 7→ π(1A ⊗ hS−1(m(1)))m(0) .

Note that the bijectivity of the antipode plays here the most crucial role. The
existence of πM implies that every short exact sequence in AMH splits as a
sequence in MH . In particular, can : A ⊗ A → A ⊗ H is an epimorphism in

AMH , where A⊗A and A⊗H are comodules with coactions

ρA⊗A(a⊗ a′) = a(0) ⊗ a′ ⊗ a(1),

ρA⊗H(a⊗ h) = a(0) ⊗ h(2) ⊗ a(1)S(h(1)),

and left A-actions provided by the multiplication in A, a · (a′ ⊗ a′′) = aa′ ⊗ a′′,
a·(a′⊗h) = aa′⊗h. Therefore, there is an H-colinear section α : A⊗H → A⊗A
of can. The map

s : A→ B ⊗A, a 7→ a(0)α(1A ⊗ a(1)) ,

is a left B-module splitting of the multiplication B ⊗ A → A. This shows
that A is a projective left B-module. It remains to construct a section of the
multiplication B ⊗A→ A which is also right H-colinear.
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Define a left B-module, right H-comodule map

ϕ : A⊗H → A, a⊗ h 7→ a(0)π(1A ⊗ S(a(1))h).

A left B-module, right H-comodule splitting of the multiplication map B⊗A→
A is the composite

σ : A
ρA

−−→ A⊗H s⊗H−−−→ B ⊗A⊗H B⊗ϕ−−−→ B ⊗A .

This can be checked as follows. Write

s(a) = a(1)
︸︷︷︸
∈B
⊗ a(2)
︸︷︷︸
∈A

(summation implicit) ,

so that a(1)a(2) = a, and compute

a
σ7−→ a(0)

(1) ⊗ a(0)
(2)

(0)π(1A ⊗ S(a(0)
(2)

(1))a(1))
µA7−→ a(0)

(1)a(0)
(2)

(0)π(1A ⊗ S(a(0)
(2)

(1))a(1))

= (a(0)
(1)a(0)

(2))(0)π(1A ⊗ S((a(0)
(1)a(0)

(2))(1))a(1))

= a(0)π(1A ⊗ S(a(1))a(2))

= aπ(1A ⊗ 1H)

= a,

where the first equality follows by the left B-linearity of coaction ρA, the second
one follows by the splitting property of s, the third one is the antipode axiom,
and the last equality is a consequence of the fact that the composite π ◦ ρA is
the identity on A.

Thus it has been proven that A is a Hopf–Galois extension that is an H-
equivariantly projective left B-module. Theorem 6.16 now implies that there
exists a strong connection and Theorem 6.19 yields the required map ℓ.

Definition 6.21. A comodule algebra of a Hopf algebra H with a bijective an-
tipode which satisfies conditions in Theorem 6.20 is called a principal comodule
algebra.

Principal comodule algebras are a non-commutative version of principal bun-
dles which retains most of the features of the classical (commutative) objects.

Theorem 6.22 (The difficult part of Schneider’s theorem). Let (A, ρA) be an
H-comodule algebra that is injective as an H-comodule (i.e. there exists a right
H-comodule map π : A ⊗H → A, such that π ◦ ρA = A). Assume that H has
bijective antipode, and that lifted canonical map can is surjective. Then A is a
principal comodule algebra.

Proof. Follow the same steps as in the part (2) =⇒ (1) in Theorem 6.20, starting
from the existence of π.

Theorem 6.23. Let A be a principal comodule algebra, B = AcoH . For any
finitely dimensional left H-comodule V , the associated B-module Γ := A�HV
is finitely generated and projective.
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Proof. By Theorem 6.15 Γ is projective as a left B-module. By arguments in
proof of Theorem 6.20 A ⊗B Γ ∼= A ⊗ V . On the other hand A ⊗ V is finitely
generated as an A-module and A is faithfully flat right B-module, hence Γ is
finitely generated as a left B-module.

Put differently, Theorem 6.23 states that a principal comodule algebra de-
fines a functor

A�H− : HMf → BPf (6.6)

form finitely generatedH-comodules to finitely generated projective B-modules.
On the other hand, principal comodule algebras can also be understood as

monoidal functors. Start with a right H-comodule algebra (A, ρA) with coaction
invariants B. Since the coaction ρA is right B-linear, there is a right B-action
on A�HV defined by

(∑

i

ai ⊗ vi
)
· b =

∑

i

aib⊗ vi ,

i.e. A�HV inherits B-bimodule structure from that in A. Both categories –
of B-bimodules, BMB, and left H-comodules, HM – are monoidal, where the
monoidal structure in BMB is the algebraic tensor product over B, while the
monoidal structure in HM is

V⊗Wρ : V⊗W
Vρ⊗Wρ−−−−→ H⊗V⊗H⊗W H⊗flip⊗W−−−−−−−→ H⊗H⊗V⊗W µH⊗V⊗W−−−−−−−→ H⊗W ;

see the comments after the definition of a comodule algebra, Definition 5.9.
The functor A�H− : HM → BMB is lax monoidal. It is monoidal if A is a
Hopf–Galois extension such that A is faithfully flat as a right B-module.

Proposition 6.24 (Schauenburg-Ulbrich). If H has a bijective antipode, then
there is a bijective correspondence between:

1. exact monoidal functors HM→B MB (fibre functors),

2. principal comodule algebras.

Example 6.25. Let A be a Hopf algebra with bijective antipode, and let A
π−→ H

be a surjective map of Hopf algebras. Then A is a right H-comodule algebra
with the coaction ρA = (A⊗π)◦∆A, and B = AcoH = {a ∈ A | a(1)⊗π(a(2)) =
a⊗ 1H}. Suppose that there exists an H-bicomodule map ι : H → A such that
π◦ι = H and ι(1H) = 1A. Here H is understood as a left and right H-comodule
via the regular coaction ∆H and A is a left H-comodule by the induced coaction
(π ⊗A) ◦∆A. Then the map

ℓ : H → A⊗A, h 7→ S(ι(h)(1))⊗ ι(h)(2),

satisfies conditions (a)–(d) in Theorem 6.20, so A is a principal H-comodule
algebra (with a strong connection ℓ).

Example 6.26. As a particular application of Example 6.25, take A to be the
coordinate algebra of functions on the quantum group SUq(2). A = O(SUq(2))

is generated by the 2×2 matrix of generators

(
α β
γ δ

)
subject to relations

αβ = qβα, αγ = qγα, βγ = γβ, βδ = qδβ, γδ = qδγ,
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δα− q−1βγ = 1, αδ − qβγ = 1,

where q is a non-zero number. When k is the field of complex numbers and q is
real, then O(SUq(2)) is a ∗-algebra with

α∗ = δ, β∗ = −qγ, γ∗ = −q−1β, δ∗ = α.

The algebra O(SUq(2)) is a Hopf algebra with coproduct given by

∆A(α) = α⊗ α+ β ⊗ γ, ∆A(β) = α⊗ β + β ⊗ δ,
∆A(γ) = γ ⊗ α+ δ ⊗ γ, ∆A(δ) = δ ⊗ δ + γ ⊗ β,

and extended to the whole of O(SUq(2)) as an algebra map. The counit is

εA(α) = εA(δ) = 1, εA(β) = εA(δ) = 0,

and the antipode

S(α) = δ, S(β) = −q−1β, S(γ) = −qγ, S(δ) = α.

Let H = O(U(1)) = k[w,w−1], a commutative Hopf algebra generated by
the group-like elements w, w−1 (cf. Example 5.8). If H is made into a ∗-algebra
with w∗ = w−1, then H is the algebra of polynomials on the circle. One easily
finds that, similarly to the classical case, the (diagonal) map π : O(SUq(2))→ H
defined by

π(α) = w, π(δ) = w−1, π(β) = π(γ) = 0,

is a Hopf algebra map. The induced coaction makes A a Z-graded algebra with
the grading

deg(α) = deg(γ) = 1, deg(β) = deg(δ) = −1.

The coaction invariants B = AcoH are simply the degree-zero subalgebra of A.
Thus B is generated by x = −q−1βγ, z = −q−1αβ z∗ = γδ. The elements x
and z satisfy relations

zx = q2xz, xz∗ = q2z∗x, zz∗ = q2x(1− q2x), z∗z = x(1− x).

(The coefficients are chosen so that for the ∗-algebra case x is real and z∗ is the
conjugate of z). An abstract algebra generated by x, z, z∗ and the above rela-
tions is called a standard (or polar) Podleś (or quantum) sphere and is denoted
by O(S2

q ).
A unital, H-bicolinear map splitting π is defined by

ι : O(U(1))→ O(SUq(2)), ι(1) = 1, ι(wn) = αn, ι(w−n) = δn.

The corresponding strong connection comes out as

ℓ(wn) =

n∑

k=0

(
n

k

)

q−2

γ∗kα∗n−k ⊗ αn−kγk,

ℓ(1) = 1⊗ 1,

ℓ(w∗n) =

n∑

k=0

q2k
(
n

k

)

q−2

αn−kγk ⊗ γ∗kα∗n−k,
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where the deformed binomial coefficients are defined for any number ζ by
(
n

k

)

ζ

=
(ζn − 1)(ζn−1 − 1) . . . (ζk+1 − 1)

(ζn−k − 1)(ζn−k−1 − 1) . . . (ζ − 1)
.

This example describes a non-commutative version of the Hopf fibration with
the Dirac monopole connection.

6.5 Separable functors and the bijectivity of the
canonical map

The purpose of this section is to present an alternative proof of Theorem 6.22,
the so-called ‘difficult part’ of Schneider’s Theorem I in [s-h90]. Our methods
were developed in [abm07], where they were used to prove a generalization of
Schneider’s theorem to Galois extensions by Hopf algebroids (cf. [bs04]).

Definition 6.27. For any functor F : A → B, an object P of A is said to
be relative projective w.r.t. F (or shortly F -projective) provided that the map
HomA(P, p) : HomA(P,A) → HomA(P,A′) is surjective, for any morphism
p : A→ A′ in A for which F (p) is a split epimorphism.

Dually, an object I of A is said to be F -injective whenever HomA(i, I) :
HomA(A′, I) → HomA(A, I) is surjective, for any morphism i : A → A′ in A
for which F (i) is a split monomorphism.

Example 6.28. For an algebra B over a field k, let F : MB → Mk be the
forgetful functor. In Mk any epimorphism (i.e. surjective map) splits hence
a right B-module M is F -projective if and only if it is a projective B-module,
equivalently, if and only if the B-action M⊗B →M possesses a right B-module
section.

Dually, for a coalgebra C over a field k, let F : MC →Mk be the forgetful
functor. Then a right C-comoduleM is F -injective if and only if it is an injective
C-comodule i.e. if and only if the C-coaction M → M ⊗ C possesses a right
C-comodule retraction.

Proposition 6.29. Consider a functor F : A→ B, possessing a right adjoint
G : B → A. Then for any objects A of A and B of B, the object F (A) is G-
projective and G(B) is F -injective. In particular, if G(p) is a split epimorphism
for some morphism p : B → F (A), then p is a split epimorphism. If F (i)
is a split monomorphism for some morphism i : G(B) → A, then i is a split
monomorphism.

Proof. Take any morphism f : F (A)→ B′ and a morphism p : B → B′ such that
G(p) has a sectionG(p). In terms of the unit u and the counit n of the adjunction
(F,G), one constructs g := nB ◦ F (G(p)) ◦ F (G(f)) ◦ F (uA) : F (A) → B such
that p ◦ g = f . This proves that F (A) is G-projective. F -injectivity of G(B) is
proven symmetrically.

Definition 6.30. A functor F : A→ B is said to be separable relative to some
functor R : S→ A whenever the natural transformation

HomA(−, R(−))→ HomB(F (−), FR(−)), f 7→ F (f) (6.7)

(between functors Aop × S→ Set) is a split natural monomorphism.
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A functor which is separable relative to the identity functor is called sim-
ply separable, see [nbo89]. The following proposition extends the fact [nbo89,
Proposition 1.2] that separable functors reflect split epimorphisms and split
monomorphisms.

Proposition 6.31. If a functor F : A→ B is separable relative to some functor
R : S → A then, for any morphism f in S, F (R(f)) is a split epimorphism
(resp. a split monomorphism) if and only if R(f) is a split epimorphism (resp.
a split monomorphism).

Proof. If R(f) has a right (resp. left) inverse then so has F (R(f)), trivially.
Conversely, if F (R(f)) possesses a right (or left) inverse F (R(f)), then the
retraction of the natural transformation (6.7) takes F (R(f)) to a right (or left)
inverse of R(f).

The following generalization of Rafael’s theorem [r-m90, Theorem 1.2] pro-
vides criteria for the relative separability of a left adjoint functor.

Theorem 6.32. Consider an adjunction (F : A → B, G : B → A) with unit
u : A → GF and counit n : FG → B. Then F is separable relative to some
functor R : S→ A if and only if uR(−) is a split natural monomorphism.

Proof. In terms of a natural retraction uR(−) of uR(−), a retraction of (6.7) is
given by

(
g : F (A)→ F (R(S))

)
7−→

(
uR(S) ◦G(g) ◦ uA : A→ R(S)

)
.

Conversely, in terms of a natural retraction Φ of (6.7), a retraction of uR(−) is
constructed as Φ(nF (R(−))).

The next theorem clarifies the relevance of relative separable functors in
relation with Theorem 6.22.

Theorem 6.33. Let H be a Hopf algebra over a field k. A right H-comodule
algebra A is injective as an H-comodule if and only if the forgetful functor
F : MH →Mk is separable relative to the forgetful functor R : MH

A →MH.

Proof. Assume first that F is separable relative to R. The H-coaction ̺ :
A → A ⊗ H on an H-comodule algebra A is a morphism in MH

A such that
the monomorphism F (R(̺)) is split by the counit of H . Thus we conclude by
Proposition 6.31 that R(̺) is a split monomorphism in MH i.e. A is an injective
H-comodule (cf. Example 6.28).

Conversely, assume that A is an injective H-comodule i.e the H-coaction
̺ : A → A ⊗ H possesses an H-comodule retraction π. Then for any relative
Hopf module M ∈MH

A , the map

M ⊗H →M, m⊗ h 7→ m(0)π(1A ⊗ S(m(1))h)

yields an H-comodule retraction of the H-coaction M → M ⊗H – that is, of
the unit of the adjunction (F : MH → Mk, (−) ⊗H : Mk →MH) – which is
natural in M ∈ MH

A . Thus Theorem 6.32 implies that F is separable relative
to R.

Borrowing ideas from [b-t05, Theorem 4.4], one proves the following.
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Proposition 6.34. Let H be a Hopf algebra over a field k and let A be a right
H-comodule algebra. If the lifted canonical map can : A ⊗ A → A ⊗ H is a
split epimorphism in MH

A , then A is an H-Galois extension of B := AcoH and
a projective right B-module.

Proof. If χ is a section of can in MH
A , then the following diagram is commutative,

with either simultaneous choice of the up- or down-pointing vertical arrows.

(A⊗A)coH ⊗B A ≃ //
can⊗BA�� A⊗B ⊗B A ≃ // A⊗A

can��
(A⊗H)coH ⊗B A

χ⊗BA

OO
≃

// A⊗B A can
// A⊗H .

χ

OO
Thus we can construct can−1 as the composite map

A⊗H χ // A⊗A ≃ // (A⊗A)
coH ⊗

B
A

can⊗BA// (A⊗H)
coH ⊗

B
A

≃ // A⊗
B
A .

The restriction of χ yields a right B-module section χcoH : (A ⊗ H)coH ≃
A → (A ⊗ A)coH ≃ A ⊗ B of the B-action on A. Thus A is a projective right
B-module, cf. Example 6.28.

An alternative proof of Theorem 6.22. Denote by F the forgetful functor MH →
Mk and denote by R the forgetful functor MH

A →MH .
Regard A ⊗ A as a relative Hopf module via the A-action and H-coaction

on the second factor. Regard A ⊗ H as a relative Hopf module via the diag-
onal A-action (a′ ⊗ h)a := a′a(0) ⊗ ha(1) and the H-coaction induced by the
comultiplication of H . Then can is a morphism in MH

A such that F (R(can)) is
surjective – hence a split epimorphism in Mk. By Theorem 6.33, the functor F
is separable relative to R hence R(can) : A⊗A→ A⊗H is a split epimorphism
in MH by Proposition 6.31. Moreover, since the antipode S of the Hopf algebra
H is bijective by assumption, the maps

H ⊗A→ A⊗H, h⊗ a 7→ a(0) ⊗ ha(1) and

A⊗H → H ⊗A, a⊗ h 7→ hS−1(a(1))⊗ a(0)

are mutually inverse isomorphisms of relative Hopf modules, where the A-action
on H ⊗A is given by multiplication in the second factor and the H-coaction is
meant to be the diagonal one h ⊗ a 7→ h(1) ⊗ a(0) ⊗ h(2)a(1). Since the functor
R possesses a left adjoint (−)⊗ A : MH →MH

A , it follows by Proposition 6.29
that the composite map

A⊗A can // A⊗H ≃ // H ⊗A
is a split epimorphism in MH

A . Hence also can is a split epimorphism and
we conclude by Proposition 6.34 that A is an H-Galois extension of B and a
projective right B-module.

In terms of an H-comodule retraction π of the H-coaction ̺ on A, one
constructs a right B-module retraction of the inclusion B →֒ A by putting
a 7→ π(1A ⊗ S−1(a(1)))a(0). Thus A is a faithfully flat right B-module, see
[r-l88, 2.11.29].
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Since the antipode of H is bijective, the coaction

a 7→ a(0) ⊗ S−1(a(1))

makes the opposite algebra Aop a right comodule algebra for the co-opposite
Hopf algebraHcop (i.e. the Hopf algebra defined by the same algebra structure in
H , the comultiplication h 7→ h(2)⊗h(1) and the antipode S−1). The coinvariant
subalgebra is (Aop)coHcop = Bop. In terms of a right H-comodule retraction
π of the right H-coaction on A, a right Hcop-comodule retraction of the Hcop-
coaction on Aop is given by π◦(A⊗S). Hence Aop is an injective Hcop-comodule.
Moreover, the lifted canonical map

Aop ⊗Aop → Aop ⊗Hcop, a⊗ a′ 7→ aa′(0) ⊗ S−1(a′(1))

differs from can by an isomorphism, hence it is surjective. Consequently, we can
repeat the proof for the Hcop-comodule algebra Aop to conclude that Aop is a
faithfully flat right Bop-module, i.e. A is a faithfully flat left B-module.

References for this chapter are: [abm07], [bm93], [c-a85], [cq95], [dgh01], [d-y85],
[h-pm95], [s-p04], [ssxx], [s-h90], [u-k87].
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Chapter 7

Principal extensions and
the Chern–Galois character

In the preceding chapter we have explained how a principal comodule alge-
bra induces a functor from the category of finite dimensional comodules of a
Hopf algebra to the category of finitely generated and projective modules over
the coaction invariant subalgebra. When restricted to isomorphism classes this
functor gives a map from the K-group of the Hopf algebra to the K-group of
the invariant subalgebra. This can be followed by a map to the cyclic homol-
ogy (the Chern-Connes character) thus providing one with homological tools
for studying (invariants of) Hopf–Galois extensions. The composite mapping
is known as the Chern–Galois character and we describe its construction (in a
slightly more general set-up than the Hopf–Galois theory) in this chapter.

7.1 Coalgebra-Galois extensions

One of the main examples of principal bundles in classical geometry is provided
by homogenous spaces of a Lie group. The following example shows how the
classical construction of a principal bundle over a homogeneous space is per-
formed in the realm of non-commutative geometry, and how it forces one to go
beyond principal comodule algebras if one wants to develop fully an example
driven approach to non-commutative principal bundles.

Example 7.1. Let A be a Hopf algebra. A subalgebra B ⊆ A such that

∆A(B) ⊂ A⊗B

is called a left A-comodule subalgebra.
If we think of A as of an algebra of functions on a group G, B is an algebra

of functions on a homogeneous space of G.
If A is faithfully flat as a left B-module, one can construct B as a coac-

tion invariant subalgebra (this is the non-commutative counterpart of classical
identification of a homogeneous space as a quotient space). First, define

B+ = ker εA ∩B.
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Part VII Coalgebra-Galois extensions

Then J := B+A is a right ideal in A, and a coideal in A, i.e., for all x = ba ∈ J

∆A(ba) = b(1)a(1) ⊗ b(2)a(2)

= ba(1) ⊗ a(2) − b(1)a(1) ⊗ εA(b(2))a(2) + b(1)a(1) ⊗ b(2)a(2)

= ba(1) ⊗ a(2)︸ ︷︷ ︸
∈J⊗A

+ b(1)a(1) ⊗ (b(2) − εA(b(2)))a(2)︸ ︷︷ ︸
∈A⊗J

.

Hence C := A/J is a coalgebra and a right A-module, and π : A→ C is a right
A-linear coalgebra epimorphism. Note that J is not an (two-sided) ideal in A,
hence in general C is not a quotient algebra (or Hopf algebra) of A. However,
since π is a coalgebra map, A is a right C-comodule by

ρA = (A⊗ π) ◦∆A.

Define the coaction invariant subalgebra

AcoC := {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)}.

Since ρA is a right A-module map, the coaction invariant subalgebra can be
equivalently described as

AcoC = {b ∈ A | ρA(b) = bρA(1A)}.

Note that, for all b ∈ B,

ρA(b) = b(1) ⊗ π(b(2)) = b⊗ π(1A) + b(1) ⊗ π(b(2) − ε(b(2))︸ ︷︷ ︸
∈B+⊆J

) = b⊗ π(1A),

so B ⊆ AcoC . Faithful flatness implies also that AcoC ⊆ B, that is A is an
extension of B by a coalgebra C, but not necessarily by a bialgebra or a Hopf
algebra, as one would naively expect guided by the classical geometric intuition.
The reasons why the non-commutative geometry is reacher (or less rigid) than
the classical one lie in the Poisson geometry and the reader is referred to lectures
by N. Ciccoli.

The description of quantum homogeneous spaces as invariant subalgebras in
Example 7.1 justifies a generalisation of Hopf–Galois extensions in which the
symmetry is given by a coalgebra rather than a Hopf algebra.

Definition 7.2. Let C be a coalgebra and let (A, ρA) be a C-comodule. Set

B = AcoC := {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)} .

A is called a coalgebra-Galois extension if the canonical left A-linear right C-
colinear map

can: A⊗B A→ A⊗ C , a⊗B a′ 7→ aρA(a′) ,

is bijective.

Although C in a coalgebra-Galois extension does not need to be an algebra
(or have an algebra structure compatible with the coaction and the algebra
structure of A), nevertheless the fact that A is an algebra gives some more
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Part VII Coalgebra-Galois extensions

information about C. In particular, sinceA⊗BA is an A-coring (see Section 5.5),
also A⊗C can be made an A-coring via the isomorphism can in Definition 7.2.
The coproduct in A⊗B A is transported to a coproduct in A⊗ C as

∆A⊗C : A⊗ C → (A⊗ C)⊗A (A⊗ C) ∼= A⊗ C ⊗ C, ∆A⊗C = A⊗∆C .

Furthermore, the right A-module structure on A⊗BA induces a right A-module
structure on A⊗ C,

(1A ⊗ c) · a = can(can−1(1A ⊗ c)a).

Define
ψ : C ⊗A→ A⊗ C, c⊗ a 7→ can(can−1(1A ⊗ c)a).

The map ψ is called a canonical entwining associated to the coalgebra-Galois
extension B ⊆ A. The word entwining means that ψ makes the following bow-tie
diagram commute

C ⊗A⊗A

ψ⊗A��~~~~~~~~~~~~~~~~~~ C⊗µA &&MMMMMMMMMM C ⊗ C ⊗A

C⊗ψ   �����������������
�

C ⊗A

∆C⊗A
88qqqqqqqqqqq

εC⊗A &&MMMMMMMMMMMM
ψ��A⊗ C ⊗A

A⊗ψ �������������������
� C

C⊗1A

88qqqqqqqqqqqq
1A⊗C &&MMMMMMMMMMMM A C ⊗A⊗ C

ψ⊗C~~~~~~~~~~~~~~~~~~~~A⊗ C
A⊗εC

88qqqqqqqqqqqq
A⊗∆C &&MMMMMMMMMMM

A⊗A⊗ C
µA⊗C

88qqqqqqqqqq
A⊗ C ⊗ C.

The commutativity of this bow-tie diagram for the canonical entwining can be
checked by relating A ⊗ C to the Sweedler coring A ⊗B A. In particular the
right pentagon and the right triangle are a consequence of the definition of ψ
in terms of right A-action on A ⊗ C, while the left pentagon and triangle are
responsible for right A-linearity of comultiplication A⊗∆C . An entwining is a
special case of a (mixed) distributive law (in the sense of J. Beck).

Lemma 7.3. In a coalgebra-Galois extension B ⊆ A,

ρA(aa′) = a(0)ψ(a(1) ⊗ a′), for all a, a′ ∈ A,

where ψ is the canonical entwining. This means that (A, ρA) is an entwined
module (a comodule of A-coring A⊗ C).

Proof. This is checked by the following calculation which uses the left linearity
of can and can−1, and the definition of can,

a(0)ψ(a(1) ⊗ a′) = a(0) can(can−1(1⊗ a(1))a
′)

= can(can−1(a(0) ⊗ a(1))a
′) = can(1B ⊗B aa′) = ρA(aa′).
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Lemma 7.3 provides one with an explicit form of the coaction in terms of
the canonical entwining

ρA(a) = 1A(0)ψ(1A(1) ⊗ a).

To simplify further discussions, we assume that there is a grouplike element
e ∈ C such that

ρA(1A) = 1A ⊗ e, so ρA(a) = ψ(e⊗ a).

This is, for example, applicable to quantum homogeneous spaces described in
Example 7.1, where e = π(1A).

Lemma 7.4. The coaction invariant subalgebra of A can be equivalently de-
scribed as

B = {b ∈ A | ρA(b) = b⊗ e}.

Proof. If b ∈ AcoC , then ρA(b) = bρA(1A) = b⊗ e. If ρA(b) = b⊗ e, then, for all
a ∈ A,

ρA(ba) = b(0)ψ(b(1) ⊗ a) = bψ(e⊗ a) = bρA(a).

Example 7.5. Let H be a Hopf algebra, and let (A, ρA) be a Hopf–Galois ex-
tension. Then the right action in the A-coring A ⊗H induced from A ⊗B A is
given by (a′ ⊗ h)a = a′a(0) ⊗ ha(1), hence

ψ : H ⊗A→ A⊗H, h⊗ a 7→ a(0) ⊗ ha(1).

Note that this ψ is bijective if and only if the antipode S is bijective. Then

ψ−1(a⊗ h) = hS−1a(1) ⊗ a(0).

7.2 Principal extensions

While defining principal comodule algebras we assumed that the Hopf algebra
has a bijective antipode. Example 7.5 indicates that this assumption translates
to coalgebra-Galois extensions into the bijectivity of the canonical entwining ψ.
If ψ is bijective, then A is a left C-comodule by

Aρ : A→ C ⊗A , a 7→ ψ−1(a⊗ e) (e ∈ C such that ρA(1A) = 1A ⊗ e).

Definition 7.6. Let B ⊆ A be a coalgebra-Galois extension by a coalgebra C,
with a bijective canonical entwining map ψ : C ⊗ A → A ⊗ C. Assume that
ρA(1A) = 1A ⊗ e for a grouplike element e ∈ C. A k-linear map ℓ : C → A⊗A
such that

(a) ℓ(e) = 1A ⊗ 1A,
(b) µA ◦ ℓ = 1A ◦ εC ,
(c) (A⊗ ρA) ◦ ℓ = (ℓ ⊗ C) ◦∆C ,
(d) (Aρ⊗ A) ◦ ℓ = (C ⊗ ℓ) ◦∆C ,

is called a strong connection in B ⊆ A. A coalgebra extension with a strong
connection is called a principal extension.
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Following the same reasoning as in the principal comodule algebra case one
proves

Proposition 7.7. Let B ⊆ A be a principal extension. Then

1. A is a C-equivariantly projective left (or right) B-module (i.e. there is a
B-module, C-comodule splitting of the product map B ⊗A→ A).

2. A is a faithfully flat left (or right) B-module.

3. B is a direct summand in A as a left B-module.

In terms of a strong connection the left B-comodule right C-comodule split-
ting of the multiplication map is s(a) = a(0)ℓ(a(1)).

Proposition 7.8. Let B ⊆ A be a principal extension. If (V, Vρ) is a finite
dimensional left C-comodule, then Γ := A�CV is a finitely generated and pro-
jective left B-module.

Proof. One can follow the same arguments as in the case of a principal comodule
algebra. The module Γ has a connection Γ ∋ a⊗v 7→ 1A⊗a⊗v−a(0)ℓ(a(1))⊗v,
hence it is a projective B-module. Consider the sequence of isomorphisms

A⊗B (A�CV ) ∼= (A⊗B A)�CV ∼= (A⊗ C)�CV ∼= A⊗ V .

Since A⊗V is a finitely generated left A-module and B is a faithfully flat right
B-module, Γ := A�CV is a finitely generated left B-module.

In view of Proposition 7.8, a principal extension B ⊆ A can be understood
as a functor

A�C− : CMf →B Pf

from the category of finite dimensional C-comodules to the category of finitely
generated projective B-modules. Passing to the Grothendieck group one obtains
a map

Rep(C)→ K0(B)
ch−→ HCev(B),

where Rep(C) is the Grothendieck group of equivalence classes of finite dimen-
sional comodules of C, ch denotes the Chern character, and HCev(B) is the
even cyclic homology of B. This composite map is known as the Chern–Galois
character and we will describe it in the Section 7.4.
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Part VII Cyclic homology of an algebra and the Chern character

7.3 Cyclic homology of an algebra and the Chern
character

We begin by describing a cyclic homology of an algebra and the Chern character.
For any algebra B, consider a bicomplex CC∗(B):

...

∂3�� ...

−∂′
3�� ...

∂3�� ...

−∂′
3��

B⊗3

∂2�� B⊗3
τ̃2oo

−∂′
2�� B⊗3
N2oo

∂2�� B⊗3
τ̃2oo

−∂′
2�� . . .N2oo

B⊗2

∂1�� B⊗2
τ̃1oo

−∂′
1�� B⊗2
N1oo

∂1�� B⊗2
τ̃1oo

−∂′
1�� . . .N1oo

B B
τ̃0oo B

N0oo B
τ̃0oo . . . ,N0oo

where

∂′n(b0 ⊗ b1 ⊗ · · · ⊗ bn) =
n−1∑

i=0

(−1)ib0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn,

∂n(b0 ⊗ b1 ⊗ · · · ⊗ bn) = ∂′n(b0 ⊗ b1 ⊗ · · · ⊗ bn) + (−1)nbnb0 ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bn−1,

τn(b0 ⊗ · · · ⊗ bn) = (−1)nbn ⊗ b0 ⊗ · · · ⊗ bn−1,

τ̃n = B⊗(n+1) − τn,

Nn =

n∑

i=0

(τn)i.

The homology of the bicomplex CC∗(B) is known as the cyclic homology of B
and is denoted by HC∗(B). In case k is a field of characteristic 0, the cyclic
homology can be equivalently described as the homology of the Connes complex
of B defined as

Cλn(B) := B⊗(n+1)/(id− τn),

boundary: δn := the quotient of ∂n.

The homology of this complex is denoted by Hλ(B). The Chern and Chern–
Galois characters can be defined with respect to either of these homologies, hence
– for the convenience of the reader – we will describe both these constructions
in parallel. The Chern character is a map ch: K0(B) → HCev(B) defined as
follows. Take a class [P ] ∈ K0(B) of a finitely generated projective B-module
P . P has a finite dual basis, say xi ∈ P , πi ∈ B Hom(P,B), i = 1, . . . , n. Since,
for all p ∈ P ,

p =

n∑

i=1

πi(p)xi,

the matrix E := (Eij)
n
i,j=1 := (πj(xi))

n
i,j=1 is an idempotent with image P .

With the idempotent E one associates a 2n-cycle in CC∗(B). First define

c̃hn(E) :=
∑

i1,i2,...,in+1

Ei1i2 ⊗ Ei2i3 ⊗ · · · ⊗Ein+1i1 ,
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and then 2n-cycle
2n⊕

l=0

(−1)⌊
l
2 ⌋ l!

⌊ l2⌋!
c̃hl(E).

The class of this 2n-cycle does not depend on the choice of P or E in [P ]. Hence
it defines an abelian group map

ch: K0(B)→ HCev(B),

known as the Chern character.
In the case of the Connes complex, with the idempotent E one associates a

2n-cycle in Cλ∗ (B) by taking the quotient of

c̃h2n(E) :=
∑

i1,i2,...,i2n+1

Ei1i2 ⊗ Ei2i3 ⊗ · · · ⊗Ei2n+1i1 .

Note that similar construction for even number of factors yields 0 ∈ Cλ∗ (B).
The class of this 2n-cycle does not depend on the choice of E or P in [P ]. It
is also compatible with the direct sums of P ’s and additive structure of Cλ∗ (B).
Hence it defines an abelian group map

ch: K0(B)→ Hλ
ev(B),

also known as the Chern character.
If B = C∞(X), then

ch: K0(X)→ Hev
dR(X), [E] 7→ Tr(EdE . . . dE),

which is simply the Chern character in differential geometry.

7.4 The Chern–Galois character

Let B ⊆ A be a principal extension by a coalgebra C. Take a strong connection
ℓ and introduce a Sweedler-type notation for ℓ,

ℓ(c) = c〈1〉 ⊗ c〈2〉. (7.1)

Let (V, Vρ) be a finite dimensional left C-comodule with a basis {vi}. This
defines an n× n matrix of elements (eij)

n
i,j=1 by

Vρ(vi) =

n∑

j=1

eij ⊗ vj .

The trace of (eij)
n
i,j=1 is known as the character of the comodule V . The coas-

sociativity of Vρ implies that (eij) is a coidempotent matrix, i.e.,

∆C(eij) =
n∑

l=1

eil ⊗ elj , εC(eij) = δij , i, j = 1, . . . , n.

Lemma 7.9. For any c ∈ C,

ℓ(c(1))ℓ(c(2)) ∈ A⊗B ⊗A.
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Part VII The Chern–Galois character

Proof. Use the introduced notation for the strong connection (7.1) and apply
A⊗ ρA ⊗A to ℓ(c(1))ℓ(c(2)) to obtain

c(1)
〈1〉⊗ρA(c(1)

〈2〉c(2)
〈1〉)⊗c(2)〈2〉= c(1)

〈1〉⊗c(1)〈2〉(0)ψ(c(1)
〈2〉

(1)⊗c(2)〈1〉)⊗c(2)〈2〉

= c(1)
〈1〉 ⊗ c(1)〈2〉ψ(c(2) ⊗ c(3)〈1〉)⊗ c(3)〈2〉

= c(1)
〈1〉 ⊗ c(1)〈2〉ψ(Aρ(c(2)

〈1〉))⊗ c(2)〈2〉

= c(1)
〈1〉 ⊗ c(1)〈2〉ψ(ψ−1(c(2)

〈1〉 ⊗ e))⊗ c(2)〈2〉

= c(1)
〈1〉 ⊗ c(1)〈2〉c(2)〈1〉 ⊗ e⊗ c(2)〈2〉.

The first equality follows by the entwined module property of A, Lemma 7.3,
the second one is the right colinearity of ℓ (condition (c) in Definition 7.6). The
third equality follows by condition (d) in Definition 7.6 (left C-colinearity of a
strong connection), next one is the definition of left coaction Aρ. Finally, employ
Lemma 7.4 to conclude that the middle term in ℓ(c(1))ℓ(c(2)) is an element of
the coaction invariant subalgebra.

Next we describe the Chern–Galois character in Connes’ complex.

Theorem 7.10. Given a finite dimensional C-comodule V and the correspond-
ing coidempotent matrix e = (eij)

n
i,j=1, define

c̃hgn(e) :=
∑

i1,i2,...,in+1

ei1i2
〈2〉ℓ(ei2i3)ℓ(ei3i4)ℓ(ei3i4) . . . ℓ(ein+1i1)ei1i2

〈1〉 ∈ B⊗(n+1).

Then c̃hg2n(e) is a 2n-cycle in Cλ(B), c̃hg2n+1(e) = 0. It does not depend on
the choice of a basis for V and it is the same for isomorphic comodules.

Proof. Note that c̃hgn(e) is an element of B⊗(n+1) by Lemma 7.9. An easy
calculation that uses µA ◦ ℓ = 1A ◦ εC gives

∂2n(c̃hg2n(e)) = −c̃hg2n−1(e).

Since
τ2n−1(c̃hg2n−1(e)) = −c̃hg2n−1(e),

c̃hg2n−1(e) = 0 in Cλ(B). Thus c̃hg2n(e) is a 2n-cycle in Cλ(B).

The c̃hg2n(e) do not depend on the choice of basis and a representative in the
isomorphism class of comodules, since they are defined only using the character
of the comodule V , tr(e) =

∑
i eii.

Similarly in the full cyclic bicomplex

Theorem 7.11. Given a finite dimensional C-comodule V and the correspond-
ing coidempotent matrix e = (eij)

n
i,j=1, define

ĉhg2n :=

2n⊕

l=0

(−1)⌊
l
2 ⌋ l!

⌊ l2⌋!
c̃hgl(e).

Then ĉhg2n is a 2n-cycle in CC∗(B), and it does not depend on the choice of a
basis for V and is the same for isomorphic comodules.
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Proof. Since µA ◦ ℓ = 1A ◦ εC , one finds

Nn(c̃hgn(e)) = (n+ 1)c̃hgn(e),

∂n(c̃hgn(e)) = c̃hgn−1(e), if n is even,

∂′n(c̃hgn(e)) = c̃hgn−1(e),

τ̃n(c̃hgn(e)) = 2c̃hgn(e) if n is odd.

This implies that ĉhg2n is a cycle in CC∗(B) as claimed.
The independence (of the choice of a basis and a representative of an iso-

morphism class of comodules) follows by the same arguments as in the proof of
Theorem 7.10.

The cycles constructed in Theorem 7.10 or Theorem 7.11 might depend on
the choice of a strong connection (at least their form explicitly depends on this
choice). The full independence is achieved by going to homology.

Theorem 7.12. The class of the Chern–Galois cycle ĉhg2n(e) (or c̃hg2n(e) in
the case of the Connes complex) defines a map of abelian groups

chg : Rep(C)→ HCev(B) , (7.2)

known as the Chern–Galois character of the principal extension B ⊆ A. The
Chern–Galois character is independent of the choice of a strong connection.

Proof. The independence of chg on the choice of ℓ follows by observing that
there is a factorisation

Rep(C)
chg //

A�C− $$JJJJJJJJJ HCev(B)

K0(B)

ch

99ssssssssss
in which both factors are independent of ℓ.

In more detail, an idempotent for the left B-module Γ = A�CV is

E = (E(i,p),(j,q)) := ϕ(lp(eij)xq)(i,p),(j,q),

where ϕ is a left B-module retraction of B ⊆ A, which exists since B is a direct
summand in A, (eij) is the coidempotent matrix defining the comodule V , {xq}
is a finite basis of the subspace of A generated by the eij

〈1〉
ν , where ν is a

summation index in ℓ(c) =
∑
ν c
〈1〉

ν ⊗ c〈2〉ν . Finally, ℓp = (ξp ⊗ A) ◦ ℓ, where
{ξp} is a dual basis to {xq}. Then

c̃hgn(e) = c̃hn(E).

This justifies the stated factorisation property.
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7.5 Example: the classical Hopf fibration

We illustrate the construction of the Chern–Galois character on the classical
example of the Hopf fibration. The reader is encouraged to compare this exam-
ple with its non-commutative counterpart described in Example 6.26. In this
example we take k = C, and

SU(2) =

{
M =

(
w −z̄
z w̄

)
| w, z ∈ C, det(M) = 1

}
.

The condition det(M) = 1 means that |w|2 + |z|2 = 1, i.e. SU(2) is a 3-sphere.
The algebra of functions on SU(2), O(SU(2)) is generated by

a : M 7→ w, c : M 7→ z, a∗ : M 7→ w̄, c∗ : M 7→ z̄,

with the relation
(aa∗ + cc∗)(M) = ww̄ + zz̄ = 1.

Hence
A := O(SU(2)) = C[a, a∗, c, c∗]/(aa∗ + cc∗ = 1).

There is an action of the group U(1) (the unit circle {u ∈ C | |u|2 = 1}) on
SU(2): (

w −z̄
z w̄

)
· u =

(
wu −zu
zu wu

)
.

The algebra O(U(1)) is generated by

x : u 7→ u, x∗ : u 7→ ū,

with the relation xx∗ = x∗x = 1. Hence

O(U(1)) = C[x, x∗]/(xx∗ = x∗x = 1).

As a Hopf algebra

H := O(U(1)) = C[Z], xn 7→ n, x∗n = x−n 7→ −n.

A comodule of O(U(1)) can be viewed as a Z-graded vector space. In particular,
the algebra O(SU(2)) is Z-graded, deg(a) = deg(c) = 1, deg(a∗) = deg(c∗) =
−1. In fact it is strongly graded, that is O(SU(2)) is a Hopf–Galois extension by
O(U(1)). Invariant subalgebra B is a degree 0 part generated by the following
three polynomials

ξ := aa∗ − cc∗, η := ac∗ + ca∗, ζ := i(ac∗ − ca∗),

satisfying ξ2 + η2 + ζ2 = 1. This means that B is an algebra of functions on the
two-sphere, B = O(S2).

Since SU(2) is a group, A = O(SU(2)) is a Hopf algebra with comultiplication

∆A(a) = a⊗ a∗ − c∗ ⊗ c, ∆A(c) = c⊗ a+ a∗ ⊗ c.

The Z-grading comes from the Hopf algebra map

π : A→ H, π(a) = x, π(a∗) = x∗, π(c) = π(c∗) = 0.
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The algebra O(S2) is an algebra of functions on a homogenous space. The
connection is determined by an H-colinear map (see Example 6.25)

ι : H = O(U(1))→ O(SU(2)) = A, xn 7→ an, x∗n 7→ a∗n, 1 7→ 1.

The resulting strong connection form, ℓ(x) = a∗da+c∗dc, is known as the Dirac
monopole connection.

To compute the Chern–Galois character (for line bundles), take smooth func-
tions on SU(2) and define

A := Ĉ(SU(2)) = {f ∈ C∞(SU(2)) | ρ̂(f) ∈ C∞(SU(2))⊗O(U(1))}
=
⊕

n∈Z

C∞n (SU(2)),

where ρ̂(f)(x, g) = f(xg), and C∞n (SU(2)) is the algebra of smooth functions
on S2 and all polynomials of Z-degree n on SU(2) (recall that O(SU(2)) is

a strongly Z-graded algebra). Then Ĉ(SU(2)) is a Hopf–Galois extension of
B := C∞(S2) by H = O(U(1)) ∼= C[Z].

For any n ∈ Z, take a one-dimensional left H-comodule (Vn,
Vnρ) with coac-

tion
Vnρ(v) := xn ⊗ v.

Then
Γ−n = Ĉ(SU(2))�O(U(1))Vn = C∞n (SU(2))

is a line bundle over S2. The idempotents for Γ−n coming from the strong
connection induced by ι can be written explicitely. For example, for Γ−1,

E−1 =

(
aa∗ ac∗

ca∗ cc∗

)
= 1

2

(
1 + ξ η − iζ
η + iζ 1− ξ

)
.

Furthermore, the Chern–Galois character is given by the following diagram

Rep(U(1)) = Rep(O(U(1))) // K0(C∞(S2)) // Hλ
ev(C∞(S2))��

K0(S2) // HdR(S2) .

In particular, the first two terms of the Chern (or Chern–Galois) character
come out as

Tr(E−1) = 1,

Tr(E−1dE−1dE−1) = 1
2 (ξdη ∧ dζ + ηdζ ∧ dξ + ζdξ ∧ dη).

Integration over the sphere S2 gives the Chern number

ch(Γ−1) =
1

2πi

∫

S2

Tr(E−1dE−1dE−1) = −1.

Similarly, for Γ−n we compute

ch(Γ−n) =
1

2πi

∫

S2

Tr(E−ndE−ndE−n) = −n.
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7.6 Ehresmann cyclic homology

Let P be a principal H-comodule algebra, and B = P coH its coinvariants alge-
bra.

HCev(P�HP ) ''NNNNNNNNNNN
CoRep(H) //77oooooooooooo

[A�H−] ''OOOOOOOOOOOO Hλ
ev(B)

K0(B)

88ppppppppppp
Definition 7.13. Let π : X → M be a principal G-bundle. Define the Ehres-
mannn groupoid as the quotient with respect to diagonal action G̃ := (X×X)/G.
If π(y) = π(p) for some y, p ∈ X, then there exist τ̌ (p, y) ∈ G such that
y = τ̌ (p, y)p. Then we identify

[(x, y)][(p, q)] = [(x, qτ̌ (p, y))].

Definition 7.14. For a principal H-comodule algebra P define an Ehresmannn
bialgebroid

H̃ := P�HP = {p⊗ q ∈ P ⊗ P | p(0) ⊗ P(1) ⊗ q = p⊗ S−1(q(1))︸ ︷︷ ︸
q(−1)

⊗q(0)}. (7.3)

H̃ is an augmented B-bimodule, that is there is a B⊗Bop-linear map ε : H̃ →
B

P�HP //
ε �� P ⊗ P��
B // P

Define coproduct ∆: H̃ → H̃ ⊗B H̃ as

∆(p⊗ q) := p⊗ q[1](−1) ⊗ q
[2]
(−1) ⊗ q(0),

where the indices [1], [2] are Sweedler notation for

can−1(1⊗ c) = τ(c) = c[1] ⊗B c[2].

Then (H̃,∆, ε) is a B-coring with the subalgebra structure of P ⊗ P op. It is a
B-bialgebroid.

7.6.1 Precyclic complex

Let M be an ε-augmented B-bimodule. Then for every n ∈ N there are maps

δi : M
⊗n+1 →M⊗n, i = 0, . . . , n,

δi(m0 ⊗ · · · ⊗mn) = m0 ⊗ · · · ⊗mi−1 ⊗ ε(mi)mi+1 ⊗ · · · ⊗mn,

tn : M⊗n+1 →M⊗n+1, tn(m0 ⊗ · · · ⊗mn) = mn ⊗m0 ⊗ · · · ⊗mn−1.

Together they define a precyclic module (no degeneracy maps).
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7.6.2 Strong connection

H
flip◦l−−−→ P�Hp ∋ c〈1〉 ⊗ c〈2〉

c
〈1〉
(1) ⊗ c

〈2〉
(1) ⊗ c

〈1〉
(2) ⊗ c

〈2〉
(2) ∈ P ⊗ H̃ ⊗ P.

The element c :=
∑

i eii enjoys the cyclic property:

c(1) ⊗ · · · ⊗ c(n) = c(n) ⊗ c(1) ⊗ · · · ⊗ c(n−1).

Lemma 7.15. For a coaction ρ : V → H ⊗ V the element

En(ρ) := c
〈2〉
(n+1) ⊗ c

〈1〉
(1) ⊗ · · · ⊗ c

〈2〉
(n) ⊗ c

〈1〉
(2)

is a cyclic cocycle in H̃n+1/(id− (−1)ntn).

7.6.3 Ehresmannn factorisation

Proposition 7.16 (Böhm-Hajac). There is a factorisation of the Chern–Galois
character

chg2n : CoRep(H)→ HC2n(P�HP )
ε⊗2n+1

−−−−−→ HC2n(B).

References for this chapter are: [b-j69], [bb05], [bh04], [bm98], [c-a85], [l-j98].
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Chapter 8

Appendix: Remarks on
functors and natural
transformations

8.1 Natural transformations

Natural transformations can be composed vertically and horizontally, and these
operations agree via the middle interchange law. For, consider the diagram

A

F ��F ′ //
F ′′

CCB G ��G′ //
G′′

CCC (8.1)

of categories, functors, and natural transformations. While the vertical com-
posite σ′σ : F → F ′′ is defined by

(σ′σ)A = σ′AσA : F (A)→ F ′′(A), (8.2)

the vertical composite τσ : GF → G′F ′ is defined by

(τσ)A = G′(σA)τF (A) = τF ′(A)G(σA) : GF (A))G′F ′(A) (8.3)

(in both cases for all objectsA in A); here the equalityG′(σA)τF (A) = τF ′(A)G(σA)
is simply the commutativity of the naturality square

GF (A)
G(σA) //

τF (A) �� GF ′(A)

τF ′(A)��
G′F (A)

G(σA) // G′F ′(A)

(8.4)
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Furthermore, the rows and the columns of (8.4) are in fact components of the
natural transformations

Gσ : GF → GF ′ defined by (Gσ)A = G(σA) (8.5)

and
F : GF → G′F defined by (τF )A = τF (A) (8.6)

respectively. Using these natural transformations, the commutativity of (8.4)
for all A in A can be expressed as the commutativity of

GF
Gσ //

τF �� GF ′

τF ′��
G′F

G′σ

// G′F ′
(8.7)

We also have
Gσ = 1Gσ and F = τ1F , (8.8)

and the commutativity of (8.7), written as the equality

(1Gσ)(τ1F ) = (τ1F ′)(1Gσ), (8.9)

can be deduced from the middle interchange law

(τ ′τ)(σ′σ) = (τ ′σ′)(τσ), (8.10)

written here for the situation (8.1). Indeed, applying (8.10) to

A

F ��F //
F ′

CCB G ��G′ //
G′

CCC
and

A

F ��F ′ //
F ′

CCB G ��G //
G′

CCC
we obtain

(1G′τ)(σ1F ) = (1G′σ)(τ1F ) and (τ1G)(1F ′σ) = (τ1F ′)(1Gσ) (8.11)

respectively, which gives

(1G′σ)(τ1F ) = (1G′τ)(σ1F ) = τσ = (τ1G)(1F ′σ) = (τ1F ′)(1Gσ) (8.12)
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On the other hand the middle interchange law (8.10) can itself be obtained using
the appropriate commutative diagrams of the form (8.7), which is easy to show
using the diagram

GF
Gσ //

τF �� GF ′
Gσ′ //

τF ′�� GF ′′

τF ′′��
G′F

G′σ

//
τ ′F �� G′F ′

G′σ′
//

τ ′F ′�� G′F ′′

τ ′F ′′��
G′′F

G′′σ

// G′′F ′
G′′σ′

// G′′F ′′
(8.13)

whose four small squares are of the form (8.7) (for various functors involved):
one way of doing it is to write

(τ ′τ)(σ′σ) = ((τ ′τ)F ′′)(G(σ′σ))

(by the definition of the horizontal composite of τ ′τ with σ′σ)

= (τ ′F ′′)(τF ′′)(Gσ′)(Gσ)

(by obvious properties of the “usual” composition)

= (τ ′F ′′)(G′σ′)(τF ′)(Gσ)

(by commutativity of the right-hand top square in (8.13)

= (τ ′σ′)(τσ)

(by the definition of the horizontal composites of τ ′ with σ′

and of τ with σ).

Note, however, that good understanding of all these calculations requires seeing
horizontal composition as functors

Cat(B,C))×Cat(A,B)→ Cat(A,C), (8.14)

where Cat(A,B) denotes the category of all functors A→ B, etc.

8.1.1 The Hom functors

For a fixed object A in a category X one can form the covariant Hom functor

HomX(A,−) : X→ Sets, (8.15)

sending a morphism f : X→ Y of X to the map

HomX(A, f) : HomX(A,X)) HomX(A, Y ) defined by α 7→ fα

and the contravariant Hom functor

HomX(−, A) : Xop → Sets, (8.16)
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sending a morphism f : X→ Y of X to the map

HomX(f,A) : HomX(Y,A)) HomX(X,A) defined by α 7→ αf.

Moreover, these two constructions agree in the sense that one can also form the
functor

Hom: Xop ×X→ Sets (8.17)

sending a morphism (f, f ′) : (X,X ′)→ (Y, Y ′) of Xop ×X to the map

HomX(f, f ′) : HomX(X,X ′)→ HomX(Y, Y ′) defined by ϕ 7→ f ′ϕf,

and we have

HomX(A, f) = HomX(1A, f) and HomX(f,A) = HomX(f, 1A) (8.18)

in the situations (8.15) and (8.16), and

HomX(f, f ′) = HomX(Y, f ′) HomX(f,X ′) = HomX(f, Y ′) HomX(X, f ′)
(8.19)

in the situation (8.17).
Note that we use “covariant Hom functor” and “contravariant Hom func-

tor” only as convenient expressions, not as instances of “covariant/contravariant
functors” - assuming the convention that there are only functors that are al-
ways covariant, and a “contravariant functor”, say, from A to B, should either
be seen as a functor Aop→ B or as functor A→ Bop (and these two functors
are dual to each other). For instance it is important that the contravariant Hom
functor HomX(−, A) is defined as a functor Xop → Sets, and not as a functor
X→ Setsop.

8.2 Limits and colimits

8.2.1 General case

For a graph

G = G1

d //
c

// G0 (8.20)

we will write, as usually, f : x→ y when f is in G1 and d(f) = x and c(f) = y.
For a category C and a diagram D : G→ C a cone over D is a system (C,ϕ) =
(C, (ϕx : C → D(x))x∈G0), in which C is an object in C, and ϕx : C → D(x) for
x ∈ G0 morphisms in C, making the diagram

C
ϕx}}zzzzzzzz ϕy !!DDDDDDDD

D(x)
D(f)

// D(y)

(8.21)

commute for every f : x → y in G. A morphism γ : (C,ϕ) → (C′, ϕ′) of cones
over D is a morphism γ : C → C′ in C, making the diagram

C
γ //

ϕx !!CCCCCCCC C′

ϕy||zzzzzzzz
D(x)

(8.22)
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commute for every x in G. The category of cones over D will be denoted by
Con(D), and its terminal object

limD = (limD,π) (8.23)

(provided it exists) is called the limit of D. The morphisms πx are then called
the limit projections. There are many important special cases, some of which
are listed below.

8.2.2 Products

In the notation above, when G1 is empty, and therefore the graph G can be
identified with the set G0, we write

limD =
∏

x∈G
D(x) = (

∏

x∈G
D(x), π) (8.24)

and call this limit the product of the family (D(x))x∈G. In particular, it is easy
to that:

• When G is empty,
∏
x∈GD(x) is nothing but the terminal object in C.

• When G = {x} is a one-element set,
∏
x∈GD(x) = D(x).

• When G has (exactly) two elements, whose images under D are A and B,
we have

∏
x∈GD(x) = A×B.

And more generally, when G has n elements, whose images under D are
A1, . . . , An, it is convenient to write

∏
x∈GD(x) = A1 × · · · ×An.

8.2.3 Infima

If C is an ordered set considered as a category, then for every D : G → C we
have

limD =
∏

x∈G0

D(x) =
∧

x∈G
D(x) = inf{D(x) | x ∈ G0}, (8.25)

i.e. limD is the infimum of the set {D(x) | x ∈ G0} in C.

8.2.4 Equalizers

Let G be a graph that has two objects x and y, and two morphisms from x to
y, and let D be the diagram sending those two morphisms to

A
f //
g

// B (8.26)

Then to give a cone over D is to give a morphism h : X → A with fh = gh.
Therefore the limit of D can be identified with a pair (E, e), in which e : E → A
is a morphism in C such that:

1. fe = ge;

2. if fh = gh as above, then there exists a unique morphism u : X → E with
eu = h.

Such a pair (E, e) is called the equalizer of the pair (f, g).
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8.2.5 Pullbacks

Let G be a graph that has three objects x, y, and z, one morphism from x to
z, and one morphism from y to z, and let D be the diagram sending those two
morphisms to

B

g��
A

f
// C (8.27)

Then to give a cone over D is to give a morphisms h : X → A and k : X → B
with fh = gk. Therefore the limit of D can be identified with a triple (P, p, q),
in which p : P → A and q : Q→ B are morphisms in C such that:

1. fp = gq;

2. if fh = gk as above, then there exists a unique morphism u : X → P with
pu = h and qu = k.

As suggested by the display

X

k ''OOOOOOOOOOOOOOOOOOOOOOOOO
h ��/////////////
//////////// u ���������

P q
//

p�� B

g��
A

f
// C

(8.28)

the limit of D is called the pullback of f and g. One also says that:

• the square formed by f , g, p, q is a pullback square, or a cartesian square;

• p is a pullback of g along f , and q is a pullback of f along g;

• P is a fibred product of (A, f) and (B, g) (since indeed, (P, fp) = (P, gq)
is the product of (A, f) and (B, g) in the category (C ↓ C); another good
reason is that, say, for C = Sets, it turnes out that the fibres of fp = gq
are the products of the corresponding fibres of f and g). One also writes
P = A× (f, g)B = A×C B.

8.2.6 Examples of limits

In many concrete categories, including Sets, all varieties of universal algebras,
and the category of topological spaces, limits can be constructed as follows: the
products are the same as the usual cartesian products, and then

limD = {(ax)x∈G0 ∈
∏

x∈G0

D(x) | D(f)(ax) = ay for each f : x→ y in G},

(8.29)
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in the notation above, with πx : limD → D(x) being induced by the corre-
sponding usual product projection for each x in G0. In particular the equalizer
of a pair (8.26) of parallel morphisms in C can be identified with

{a ∈ A | f(a) = g(a)}, (8.30)

and for the pullback in (8.28) we can write

A×(f,g) B = {(a, b)) ∈ A×B | f(a) = g(b)} (8.31)

8.2.7 Colimits

The colimit of a diagram D : G→ C is the same as the limit of the dual diagram
Dop : Gop → Cop. That is, the notion of colimit is simply dual to the notion
of limit. And all special limits above have their dual versions: coproducts are
dual to products, coequalizers to equalizers, and pushouts to pullbacks. The
standard notation is:

• colimD - for the colimit of a diagram D;

• ∑x∈GD(x), or
∐
x∈GD(x) - for the coproduct of the family (D(x))x∈G ;

• A+B = A∐B for the coproduct of A and B, and accordingly for pushouts.

However the constructions of colimits in familiar categories are usually more
complicated than those of limits. When we say that limits in varieties of uni-
versal algebras and in the category of topological spaces are “constructed in
the same way as in the category of sets”, it first of all means that the forgetful
functors from all these categories to sets preserve limits (in the obvious sense).
This, however, is usually not the case for colimits. Say, for a variety C of univer-
sal algebras, the colimit of a diagram D : G→ C can be constructed in several
steps as follows:

• we take A to the free algebra on the disjoint union of all D(x)(x∈G0);

• define the congruence ∼ on A as the smallest congruence E for which
the composite of the canonical maps D(x) → A and A → A/E is a
homomorphism of algebras;

• then one can show that A/ ∼ becomes the colimit of D.

8.3 Galois connections

Definition 8.1. A Galois connection between ordered sets L and M is a pair
of maps

L
//
M,oo (8.32)

both written as x 7→ x∗, and satisfying the following conditions:

x ≤ y =⇒ y∗ ≤ x∗ for all x and y in L and for all x and y in M ; (8.33)

x ≤ x∗∗ for all x in L and for all x in M. (8.34)
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That is, a Galois connection between L and M is nothing but an adjunction
L→Mop, or, equivalently, an adjunction M → Lop. And just as any adjunction
X → A determines a monad on X, any Galois connection above determines
closure operators on L and on M , both given by

c(x) = x∗∗. (8.35)

Let us recall here that in general a closure operator on ordered sets is unary
operation c satisfying the following conditions:

x ≤ y =⇒ c(x) ≤ c(y) (8.36)

x ≤ c(x); (8.37)

cc(x) = c(x). (8.38)

And if c is defined via a Galois connection as above, then the conditions (8.36)
easily follow from (8.33) and (8.34) of course; the crucial observation is the
equality

x∗∗∗ = x∗, (8.39)

in which x∗ ≤ x∗∗∗ by (8.34) applied to x∗, and x∗∗∗ ≤ x∗ by (8.33) applied to
(8.34).

As usually, an element x is called closed (under a given closure operator c)
if c(x) = x. From the equality (8.39) we easily conclude:

Theorem 8.2. Any Galois connection (8.32) induces inverse to each other
bijections between the set of closed elements in L and the set of closed elements
in M . .

When L and M are power sets ordered by inclusion, the Galois connections
between L and M are nothing but binary relations between the ground sets.
More precisely, we have:

Theorem 8.3. Let X and Y be arbitrary sets and P (X) and P (Y ) their power
sets. Then:

1. For any Galois connection between P (X) and P (Y ), and x in X and y in
Y , we have:

x ∈ {y}∗ ⇔ y ∈ {x}∗ (8.40)

2. Associating to a Galois connection between P (X) and P (Y ) the binary
relation α ⊆ X × Y defined by

α = {(x, y) | x ∈ {y}∗} = {(x, y) | y ∈ {x}∗} (8.41)

determined a bijection from the set of all Galois connections between P (X)
and P (Y ) and power set P (X × Y ). The inverse bijection sends ) α ∈
X × Y to the Galois connection between P (X) and P (Y ) defined by

A∗ = {y ∈ Y | a ∈ A =⇒ (a, y) ∈ α} for A ⊆ X, (8.42)

B∗ = {x ∈ X | b ∈ B =⇒ (x, b) ∈ α} for B ⊆ Y. (8.43)

Proof.
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1. We have

x ∈ {y}∗ ⇔ {x} ⊆ {y}∗ =⇒ {y}∗∗ ⊆ {x}∗(by (8.33))

=⇒ {y} ⊆ {x}∗(by (8.34))

y =⇒ {x}∗.
Therefore x ∈ {y}∗ =⇒ y ∈ {x}∗. Similarly (and “symmetrically”) the
converse implication also holds.

2. It is easy to see that (8.42) and (8.43) indeed define a Galois connection.
That is, we have maps

Galois connections between P (X) and P (Y )
ϕ //

P (X × Y )
ψ

oo
(8.44)

sending Galois connections to the corresponding binary relations defined
by (8.41) and sending binary relations to the corresponding Galois con-
nections defined by (8.42) and (8.43), and we have to show that ψϕ and
ϕψ are the identity maps.

To show that ψϕ is the identity map is to show that, for every Galois
connection between P (X) and P (Y ), we have

A∗ = {y ∈ Y | a ∈ A =⇒ y ∈ {a}∗} for A ⊆ X,
B∗ = {x ∈ X | b ∈ B =⇒ x ∈ {b}∗} for B ⊆ Y.

or, equivalently, to show that

A∗ =
⋂

a∈A
{a}∗ for A ⊆ X, (8.45)

B∗ =
⋂

b∈B
{b}∗ for B ⊆ Y. (8.46)

We have:

y ∈ A∗ ⇐⇒ ∀ a ∈ A((a, y) ∈ α)⇐⇒ ∀ a ∈ A(y ∈ {a}∗)⇐⇒ y ∈
⋂

a∈A
{a}∗,

which proves (8.45), and (8.46) can be proved similarly.

To show that ϕψ is the identity map is (according to (8.41)) to show that,
for every binary relation α ∈ X × Y , we have

α = {(x, y) | x ∈ {y}∗}, where {y}∗ = {x ∈ X | (x, y) ∈ α},
i.e.

α = {(x, y) | (x, y) ∈ α},
which is trivial.

Remark 8.4. To construct a closure operator out of a Galois connection via
(8.35) is a special case of constructing a monad out of an adjunction. But are
there also general theorems about adjoint functors that would give Theorems
8.2 and 8.3 as special cases? Yes, but they are far more sophisticated and we
shall not need them here.
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Introduction

Noncommutative topology studies the (algebraic) topology of C*-algebras. More
precisely, this means functors from the category of C*-algebras to, say, an
Abelian category that are homotopy invariant, exact in a suitable sense, and
compatible with Morita equivalence.

The natural setting for noncommutative topology is Gennadi Kasparov’s bi-
variant K-theory. This theory can be described either concretely or abstractly.
The concrete description is used for actual computations in examples, while the
abstract description explains the fundamental role of the theory. Concretely,
Kasparov theory provides a Z/2-graded group KK∗(A,B) for two separable C*-
algebras A and B, which is generated by generalised families of elliptic pseudod-
ifferential operators. The Kasparov product turns these groups into a category.
The abstract approach characterises this category uniquely up to isomorphism
by a certain universal property. The equivalence between the abstract and con-
crete definitions of KK goes back to Joachim Cuntz [c-j87].

The universal property explains the central role of Kasparov theory in non-
commutative geometry and can also be used to construct various maps and
isomorphisms between KK-groups. To illustrate this, we show that there is,
up to a sign, only one way to construct a natural boundary map for K-theory
Mayer–Vietoris sequences.

Most applications of Kasparov theory actually use some equivariant version
of the theory, which is defined for C*-algebras with some extra structure like
a group or quantum group action. In this context, we briefly recall some basic
results about compact and locally compact quantum groups.

Noncommutative topology has a somewhat different flavour than classical
homotopy theory because the structure of the Kasparov category is much simpler
than the structure of the stable homotopy category, which is its analogue in the
classical setting. Nevertheless, there is some common ground for all of homotopy
theory, commutative or non-commutative, and homological algebra. The notion
of a triangulated category formalises common properties of these theories. From
an operator algebraist’s point of view, it formalises the properties of Kasparov
theory that are needed to manipulate long exact sequences.

Triangulated categories were invented to study localisation of categories,
and this plays an important role in noncommutative topology as well. Roughly
speaking, localisation approximates a given functor by a new one with better
properties. An example is the Baum–Connes assembly map, which replaces the
K-theory of reduced crossed products by a more computable invariant.

The localisation of functors can be described most easily in the presence of
complementary pairs of subcategories. Roughly speaking, such a pair splits a
triangulated category into two orthogonal subcategories that together generate
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the whole category. Typically, one of these two categories is already given, but
the existence of a complement is unclear. Following [?], we provide a sufficient
criterion for this that is easy to check in examples. This is useful to construct
analogues of the Baum–Connes assembly map for locally compact quantum
groups.

The most important tool used here is a variant of homological algebra that
still works in triangulated categories. Since a triangulated category does not
have a canonical notion of exact sequence, this homological algebra is relative
to a class of exact chain complexes which is defined by a homological functor.
We carry over notions like projective objects and projective resolutions from
homological algebra and use them to define derived functors. Furthermore,
there is an Abelian category in which these derived functors may be computed.
In many examples, this Abelian approximation to our category can be described
explicitly.

The machinery explained here should cover the topological tools needed to
extend the Baum–Connes conjecture to locally compact quantum groups. The
localisation approach makes it easy to construct such a map once we know what
we want to localise at. In the classical case, the category to localise at is defined
using the family of all compact subgroups. I explain here what I currently
believe to be the correct analogue of this family for a locally compact quantum
group. This choice is suggested by heuristic arguments and by the few examples
that have been treated so far.

The easiest case to consider are “torsion-free” discrete quantum groups. For
these, we construct the Baum–Connes assembly map. The dual of a compact
Lie group is torsion-free in this sense if and only if it is connected and has simply
connected fundamental group. Unpublished work by Christian Voigt shows that
deformations of simple compact groups are torsion-free as well. We also sketch
a proof of the Baum–Connes conjecture for duals of compact Lie groups of this
kind.
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Chapter 1

Noncommutative algebraic
topology

The starting point of noncommutative algebraic topology was the idea to study
C*-algebras via their K-theory and related structures, following Elliott’s clas-
sification of AF-algebras by their K-theory. These successful applications of
K-theory motivated a search for other homology theories for C*-algebras. It
turned out that all examples were closely related to K-theory and that many
remarkable properties of K-theory like Bott periodicity or Pimsner–Voiculescu
exact sequences are, in fact, general features of all noncommutative homology
theories. Kasparov’s bivariant K-theory clarified this issue completely: it is, on
the one hand, rather close to K-theory, on the other hand, it is the universal
homology theory for C*-algebras.

1.1 What is noncommutative (algebraic) topol-
ogy?

In this section we will study topological invariants for C*-algebras and their
properties. These are functors F on the category of C*-algebras and *-homomorphisms,
with certain formal properties:

Homotopy invariance A homotopy between two *-homomorphisms f0, f1 : A→
B is a *-homomorphism f : A → C([0, 1], B) such that evt ◦f = ft for
t = 0, 1. Homotopy invariance means that F (f0) = F (f1) if f0, f1 are
homotopic.

Exactness For any C*-algebra extension I  E ։ Q, the sequence

F (I)→ F (E)→ F (Q) (1.1)

is exact.

Since KK-theory does not have this property, we also allow functors that
are semi split exact, that is, the sequence (1.1) is only required exact for
semi split extensions, which we now define.

A map s : Q → E is positive if x ≥ 0 implies s(x) ≥ 0. It is completely
positive if Mn(s) : Mn(Q) → Mn(E) is positive for all n ≥ 0. A map
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Part VIII What is noncommutative topology?

s : Q → E is contractive if ‖s‖ ≤ 1. We call an extension I  E ։ Q
semi-split if it has a completely positive contractive section s : Q→ E.

Theorem 1.1 (Section 15.8 in [b-b98]). The extension I  E ։ Q is
semi-split if Q is nuclear.

Split-exact For an extension I  E ։ Q to split, we require s : Q→ E to be
a *-homomorphism. We call F split exact if for every split extension

I //
i

// E p
// // Qs}}

(1.2)

the maps F (i) and F (s) induce an isomorphism F (I)⊕ F (Q) ∼= F (E).

K-theory is homotopy invariant, exact and split exact.

Proposition 1.2 (Theorem 21.4.4 in [b-b98]). Let F be a homotopy in-
variant and (semi-split) exact functor. Then for any (semi-split) exten-
sion I  E ։ Q there is a natural long exact sequence

· · · → F (S2Q)→ F (SI)→ F (SE)→ F (SQ)→ F (I)→ F (E)→ F (Q)
(1.3)

where SA := C0((0, 1), A) is the suspension functor.

Therefore, if a functor is semi-split exact and homotopy invariant, then it
is split exact.

Morita invariance or C*-stability We call F C*-stable if for all C*-algebrasA
the corner embedding

A→ K(l2N)⊗A
induces an isomorphism F (A) ∼= F (K ⊗A).

We call two C*-algebras A, B Morita equivalent if there exists a two-sided
Hilbert module AHB over Aop ⊗B such that

(AHB)⊗B (BH∗A) ∼= AAA

(BH∗A)⊗A (AHB) ∼= BBB

Theorem 1.3 (Brown–Douglas–Rieffel). Two separable C*-algebras A,
B are Morita equivalent, A ∼M B, if and only if A⊗K ∼= B ⊗K.

Therefore, C*-stability implies that F (A) ∼= F (B) if A and B are Morita
equivalent. Morita equivalence and C*-stability are special features of the
non-commutative world.

Definition 1.4. A topological invariant for C*-algebras is a functor F : C∗−alg→
Ab which is C*-stable, split exact, semi-split exact, and homotopy invariant.

Theorem 1.5 (Higson). If F : C∗−alg→ Ab is C*-stable and split exact then
it is homotopy invariant.
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Part VIII Kasparov KK-theory

See [?] for a simple proof of this theorem.
Actually, any topological invariant has many more formal properties like

Bott periodicity, Pimsner–Voiculescu exact sequences for crossed product by Z,
Connes–Thom isomorphisms for crossed products by R, Mayer–Vietoris se-
quences.

Bott periodicity states that F (S2A) ∼= F (A) with a specified isomorphism.
The proof uses two extensions

K T ։ C(U(1)) ( Toeplitz extension),

C0((0, 1))→ C0((0, 1])
ev1−−→ C (cone extension).

These two extensions are related because U(1)\{1} ∼= (0, 1). Thus we pull back
the Toeplitz extension as follows:

K // // T // // C(U(1))

K // // T0 // //⊂

OO
C0(U(1) \ {1}),

⊂

OO
and use the extension in the second row. The long exact sequence in Proposi-
tion 1.3 yields a boundary map

F (S2A)→ F (K ⊗A) ∼= F (A)

Bott periodicity asserts that this natural map is invertible for any topological
invariant F .

Corollary 1.6. For any topological invariant F and any semi-split extension
I  E ։ Q, there is a cyclic six-term exact sequence

F (I) // F (E) // F (Q)��
F (SQ)

OO
F (SE)oo F (SI)oo .

Let F be a topological invariant and let A be a C*-algebra. Then D 7→
F (A⊗D) is also a topological invariant. Therefore, Bott periodicity is equivalent
to the assertion that F (C) ∼= F (C0(R2)) for all topological invariants F .

1.2 Kasparov KK-theory

Kasparov’s bivariant K-theory, also called KK-theory or Kasparov theory, ex-
plains why topological invariants have these nice properties and why they are
so close to K-theory. Kasparov theory associates a Z/2-graded Abelian group
KK∗(A,B) to any pair of separable C*-algebras (A,B). Both B 7→ KK(A,B)
and A 7→ KK(A,B) are topological invariants.

There is a natural product

KK(A,B) ⊗KK(B,C)→ KK(A,C)

(x, y) 7→ x⊗B y
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Part VIII Kasparov KK-theory

This turns Kasparov theory into a category, which we also denote by KK.
Since any *-homomorphism A → B has a class in KK(A,B), we get a functor
C∗−alg → KK. This functor is a topological invariant as well. The universal
property of Kasparov theory asserts that it is the universal topological invariant:

Definition 1.7. C∗−alg → KK is the universal split exact, C*-stable (homo-
topy) functor.

This means that KK is an additive category—so that split exactness makes
sense—and that the canonical functor C∗−alg→ KK is split exact, C*-stable,
and therefore homotopy invariant; moreover, any other functor F from (separa-
ble) C*-algebras to some additive category C factors uniquely through KK:

C∗−alg //
F $$IIIIIIIIII KK��

C
This abstract point of view explains why KK-theory is so important. To get a
useful theory, we also need a concrete description of KK.

This uses a certain set of cycles for KK0(A,B); homotopies of such cycles
are cycles for KK0(A,C([0, 1], B)), and the group KK0(A,B) is defined as the
set of homotopy classes of cycles. Cycles consist of

• a Hilbert B-module E that is Z/2-graded, that is, E = E+ ⊕ E−

• a *-homomorphism ϕ : A→ B(E)even

• an adjointable operator F ∈ B(E)odd

such that

• F = F ∗ (or (F − F ∗)ϕ(a) ∈ K(E) for all a ∈ A)

• F 2 = 1 (or (F 2 − 1)ϕ(a) ∈ K(E) for all a ∈ A)

• [F, ϕ(a)] ∈ K(E) for all a ∈ A.

The sum of two cycles is their direct sum.
In the odd case, we may define

KK1(A,B) ∼= KK0(A,SB) ∼= KK0(SA,B).

More concretely, we get KK1(A,B) if we drop the Z/2-grading in the definition
of KK0.

Kasparov uses Clifford algebras to unify KK0 and KK1 and extend the defini-
tion to the real case. We do not treat the real case here but mention the following
result, which often allows to reduce problems in real K-theory to problems in
complex K-theory

Theorem 1.8 ([?]). Let AR and BR be real C*-algebras. Let AC = AR ⊗R C
and BC = BR ⊗R C be their complexifications. There is a natural map

KKR(AR, BR)→ KKC(AC, BC), fR 7→ fC.

Moreover, fR is invertible if and only if fC is invertible. In particular BR ∼ 0
if and only if BC ∼ 0.
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Part VIII Kasparov KK-theory

1.2.1 Relation between the abstract and concrete descrip-
tions

Take a cycle X = (E , ϕ, F ) for KK1(A,B). Form EX = K(E) + ϕ(A)(1+F
2 ).

This is a C*-algebra because, modulo K(E), P := 1+F
2 is a projection which

commutes with ϕ(A). By construction, there is a C*-algebra extension

K(E)  EX ։ A′, A′ = EX/K(E)

and a *-homomorphism ϕ′ : A→ A′, a 7→ Pϕ(a) mod K(E); moreover,K(E) ∼M
I⊳B, where I is the ideal generated by (ξ |η) for ξ, η ∈ E . We may assume that E
is full—even E = l2N⊗B is possible by Kasparov’s Stabilisation Theorem

E ⊕ (l2N⊗B) ∼= l2N⊗B.

We may also assume that ϕ′ is injective as a map to B(E)/K(E), so that A′ ∼= A.
Under these assumptions, we get a C*-algebra extension

K ⊗B  EX ։ A,

which is semi-split by a 7→ Pϕ(a)P .
Conversely, this process can be inverted (using Stinespring’s Theorem): any

semi-split extension K ⊗B  E ։ A yields a class in KK1(A,B).
This identifies KK1(A,B) with the set of homotopy classes of semi-split

extensions of A by K ⊗ B. A deep result of Kasparov replaces homotopy in-
variance by a more rigid equivalence relation: unitary equivalence after adding
split extensions. Two extensions are unitarily equivalent if there is a commuting
diagram

K ⊗B // //
Ad(u) �� E1

// //
∼=�� A

K ⊗B // // E2
// // A

with a unitary multiplier u of K ⊗B.

Corollary 1.9. For any topological invariant F there is a map

KK1(Q, I)⊗ Fk+1(Q)→ Fk(I),

where Fk(A) := F (SkA).

Proof. Use the boundary map from Proposition 1.2 for the extension associated
to a class in KK1(Q, I).

A similar construction works in the even case. Assuming F 2 = 1 and F =
F ∗, we write

E = E+ ⊕ E−, ϕ = ϕ+ ⊕ ϕ−, F =

(
0 u
u∗ 0

)
.

The unitary u yields an isomorphism E− ∼= E+. As above, we may assume that E
is full, so that K(E±) ∼M B. The homomorphisms

ϕ+ : A→ B(E+), Ad(u) ◦ ϕ− : A→ B(E+)

875



Part VIII Kasparov KK-theory

have the property that

ϕ+(a)−Ad(u)ϕ−(a) ∈ K(E+)

for all a ∈ A. Let E = K(E+) + ϕ+(A), then we get an extension

K(E+)  E ։ A.

This extension splits in two different ways via ϕ+ and Ad(u) ◦ ϕ−.
Let F be a topological invariant, then split exactness yields

F (E) ∼= F (B)⊕ F (A),

F (ϕ+)− F (Ad(u) ◦ ϕ−) : F (A)→ F (B) ⊆ F (E).

Hence we get a map
KK0(A,B)⊗ F (A)→ F (B).

This observation leads us to the following definition of Joachim Cuntz (see [c-j87]):

Definition 1.10. Let A and D be C*-algebras and let B be an ideal in D.
A quasi-homomorphism from A to B (via D) is a pair of *-homomorphisms
f, g : A→ D with (f − g)(A) ⊆ B.

The discussion above shows that any quasi-homomorphism from A to B
induces a map K∗(A) → K∗(B). Among all quasi-homomorphisms there is a
universal one: let A ∗A be the free product C*-algebra of two copies of A. Let
qA⊳A∗A be the kernel of the homomorphism idA∗idA : A∗A→ A. The resulting
C*-algebra extension qA  A ∗A ։ A has two canonical sections: the canoni-
cal embeddings i1, i2 : A→ A ∗A. Thus i1 and i2 form a quasi-homomorphism
from A to qA via A ∗A. By the universal property of free products, any quasi-
homomorphism from A to B generates a *-homomorphism qA → B. The con-
verse implication only holds for non-degenerate *-homomorphisms qA → B,
using the extension to multiplier algebras. Nevertheless, this is good enough
to prove that KK0(A,B) is naturally isomorphic to the group [qA,B ⊗ K] of
homotopy classes of *-homomorphisms qA→ B ⊗K.

This can be interpreted as follows. The canonical *-homomorphisms πA : qA→
A and ιB : B → B ⊗ K are KK-equivalences. A given element f ∈ KK0(A,B)

factors as f = ι−1
B ◦ f̂ ◦ π−1

A for a *-homomorphism f̂ : qA→ B⊗K, that is, the
following diagram commutes in KK:

A
f // B

∼ ιB��
qA

∼ πA

OO
f̂ // B ⊗K

Consider two extensions

C  E2 ։ B, B  E1 ։ A

These give a map
F (A)→ F (S−2C) ∼= F (C).

876
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The miracle of the Kasparov product is that this composite map is described by
a quasi-homomorphism from A to C, that is, by a class in KK0(A,C). This is
the point where special features of C*-algebras are used. Extensions of KK to
non-C*-algebras either do not have a product (like Vincent Lafforgue’s theory
for Banach algebras) or they use extensions of arbitrary length (like Joachim
Cuntz’s kk).

1.2.2 Relation with K-theory

KK-theory is very close to K-theory. If some construction gives a map K∗(A)→
K∗(B) it probably gives a class in KK∗(A,B). For many C*-algebras, we may
compute KK purely in terms of K-theory.

Theorem 1.11. KK∗(C, A) ∼= K∗(A).

The proof requires the concrete description of KK. We only hint at how the
map is constructed for A = C.

Definition 1.12. An operator F is Fredholm if ker(F ) and coker(F ) have finite
dimension.

The operator F in the definition of Kasparov cycles is something like a
Fredholm operator. A cycle in KK0(C,C) consists of a Hilbert space H =
H+ ⊕ H− and an operator F : H+ → H− with FF ∗ − id ∈ K, F ∗F − id ∈ K;
thus F is Fredholm.

The index map gives an isomorphism

Index : KK0(C,C)
∼=−→ Z

Index(F ) = dim(kerF )− dim(cokerF ).

In the odd case we have KK1(C,C) = 0.
The Kasparov product yields a canonical map

γ : KK∗(A,B)→ Hom(K∗A,K∗B).

Next we relate the kernel of this map to Ext1(K∗+1A,K∗B).
Represent α ∈ KK1(Q, I) by a C*-algebra extension α = [I  E ։ Q].

Assume γ(α) = 0. There is an exact sequence

K0(I) // K0(E) // K0(Q)

γ(α)��
K1(Q)

γ(α)

OO
K1(E)oo K1(I)oo

Since γ(α) = 0, we get an extension of Z/2-graded Abelian groups

K∗(I)  K∗(E) ։ K∗(Q).

This construction defines a natural map

KK∗(A,B) ⊇ kerγ → Ext1(K∗+1(A),K∗(B)).

The following Universal Coefficient Theorem shows that this map together
with γ often describe KK completely.
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Theorem 1.13. Let B be the smallest category of separable C*-algebras closed
under suspensions, semi-split extensions, KK-equivalence, tensor products, and
containing C. Then there exists a natural exact sequence

Ext1(K∗+1 A,K∗B)  KK∗(A,B)→ Hom(K∗A,K∗B) (1.4)

for A ∈ B and any C*-algebra B.

The class B to which this theorem applies is quite big and contains, for
instance, all commutative C*-algebras. As a consequence:

Corollary 1.14. Let X and Y be locally compact spaces and let Y be a topolog-
ical invariant for C*-algebras. If K∗(X) ∼= K∗(Y ), then F (C0(X) ∼= F (C0(Y )).

Proof. There is an isomorphism

α : K∗(C0(X)) ∼= K∗(X)
∼=−→ K∗(Y ) ∼= K∗(C0(Y ))

By the Universal Coefficient Theorem, α lifts to α̂ ∈ KK0(C0(X), C0(Y )). Since
Ext1 ◦Ext1 = 0, we know that α̂ is invertible. Since KK is universal, F (α̂) is
invertible for any topological invariant F .

As a result, most of the interesting and complicated information in classical
homotopy theory is lost when we pass to C*-algebras: only K-theory remains
visible. There is not much intersection between classical and non-commutative
topology.

The analogies and contrasts between homotopy theory and noncommutative
topology are summarized in the following table:

Homotopy theory Noncommutative topology
Spaces C*-algebras
Stable homotopy category KK
Stable homotopy groups of spheres Morphisms from C to C in KK
πs∗(S

0) = Mor∗(pt, pt) KK∗(C,C) = Z[β, β−1], deg(β) = 2
Bott periodicity

Homology H∗(−) K-theory K∗(−)
Adams spectral sequence Universal Coefficient Theorem for KK
Interesting topology—no analysis Simple topology—interesting analysis

The Adams spectral sequence applies to arbitrary objects of the stable
homotopy category, its result is still quite complicated, so that stable homotopy
groups are hard to compute. In contrast, the Universal Coefficient Theorem does
not apply to all objects of KK, but whenever it applies, KK is straightforward
to compute.

1.2.3 Index maps and Mayer–Vietoris sequences

Consider an extension of C*-algebras

I // i // E p // // Q.
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There are long exact sequences in K-theory and in K-homology:

K0(I) // K0(E) // K0(Q)

∂��
K1(Q)

∂

OO
K1(E)oo K1(I),oo (1.5)

K0(Q) // K0(E) // K0(I)

δ��
K1(I)

δ

OO
K1(E)oo K1(Q),oo (1.6)

and we have pairings between K-theory and K-homology. We are going to prove
that

− 〈∂(x), y〉 = 〈x, δ(y)〉 for all x ∈ K1(Q), y ∈ K0(I), (1.7)

using only formal properties of the boundary maps. This illustrates the power
of the universal property of KK.

Theorem 1.15. Let ∂ : K1(Q) → K0(I) and δ : K0(I) → K1(Q) be natural
boundary maps for morphisms of (semi-split) extensions. There is ε ∈ {±1}
such that

〈∂(x), y〉 = ε〈x, δ(y)〉
for all (semi-split) extensions and all x ∈ K1(Q), y ∈ K0(I).

Remark 1.16. The sign ε is fixed by looking at the extension K T ։ C(S1)
and the generators of K1(C(S1)) = Z and K0(K) = Z. With the usual conven-
tions, the isomorphism K1(C(S1)) ∼= Hom(K1(C(S1))) ∼= Z maps

[K T  C(S1)] 7→ −1 ∈ Z.

Even more, up to a sign there is only one natural boundary map:

Theorem 1.17. Let ∂ : K∗+1(Q)→ K∗(I) be a natural boundary map. There
is ε ∈ {±1} such that for all semi-split extensions, ε · ∂ is the composition

K∗+1(Q) ∼= KK∗+1(C, Q)→ KK∗(C, I) ∼= K∗(I)

where the middle map is the Kasparov product with the class of the extension in
KK1(Q, I). The same holds in K-homology.

Along the way, we will recall some details of the proof that KK is semi-split
exact. These will also play a role when we introduce the triangulated category
structure on KK. It is possible to treat extensions that are not semi-split in a
similar way: this amounts to replacing KK by E-theory everywhere. Since we
do not discuss E-theory here, we added the semi-splitness assumption.

Before we prove these theorems, we consider the more general situation
of Mayer–Vietoris sequences for pullback diagrams. Consider the category of
pullback diagrams

A // //�� B��
A′ // // B′,
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that is, A = A′⊕B′ B and the map A′ → B′ is a semi-split surjection; then so is
the map A → B. Morphisms are natural transformations of such diagrams, of
course. In this context, we expect that the K-theories of our four C*-algebras
are related by a Mayer–Vietoris sequence, that is, an exact sequence of the form

K0(A) // K0(A′)⊕K0(B) // K0(B′)

δ0��
K1(B′)

δ1

OO
K0(A′)⊕K0(B)oo K0(A).oo

Here the horizontal maps are, up to signs, induced by the four maps in our
pullback diagram. There are several ways to construct the boundary maps δ0
and δ1, and one may wonder whether these yield the same result. The answer is
that, once again, its naturality already determines the boundary map uniquely
up to a sign:

Theorem 1.18. Let d : K∗(B′) → K∗+1(A) be a natural boundary map for
Mayer–Vietoris sequences. There are two signs ε0, ε1 ∈ {±1} such that, for any
pullback diagram, ε∗ · d is the composition

K∗(B
′)

δ−→ K∗(ker(A′ → B′)) ∼= K∗(ker(A→ B))→ K∗(A)

Remark 1.19. The signs are fixed by looking at the special pullback square

C0((0, 1)) //�� 0��
C0((0, 1]) // C

and its suspension.

We will prove Theorem 1.18 by reducing it to Theorem 1.17. This part of
the argument works for any homological invariant instead of K-theory.

Let F be a homological functor on separable C*-algebras and let dA′,B : F1(B′)→
F0(A) be a transformation that is natural with respect to morphisms of pullback
diagrams. We compare any given square to a simpler one:

ker p′ // //�� 0��
A′

p′ // // B′ −→ A // //�� B��
A′ // // B′

Let dA′,0 and dA′,B be the boundary maps for these two pullback diagrams.
Naturality yields a commuting diagram

F1(B′)
dA′,0 // F0(ker p′)

F0(i)��
F1(B′)

dA′,B // F0(A);
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it shows that dA′,0 determines dA′,B; here i is the canonical embedding ker p′ →
A. The category of pullback diagrams with B = 0 is equivalent to the category
of semi-split C*-algebra extensions. Hence our first reduction step shows that a
natural boundary map for Mayer–Vietoris sequences is determined by a natural
boundary map for C*-algebra extensions. Thus Theorem 1.18 follows from
Theorem 1.17, and we may consider extensions from now on.

Next we compare a given extension with a mapping cylinder extension:

I // i //
α�� E

p // //
β�� Q

Cp // ⊂ // Zp ev0 // // Q, (1.8)

where

Cp := {(e, q) ∈ E ⊕ C0((0, 1], Q) | p(e) = q(1)},
Zp := {(e, q) ∈ E ⊕ C([0, 1], Q) | p(e) = q(1)},

and the projection Zp → Q is evaluation at 0. The embedding β : E → Zp maps
e 7→

(
e, const p(e)

)
; this restricts to a map α : I → Cp, x 7→ (x, 0).

The projection onto the first factor provides another map β[−1] : Zp → E
with β[−1] ◦ β = idE . It is easy to check that β ◦ β[−1] is homotopic to the
identity map on Zp, so that β is a homotopy equivalence and hence acts by
an invertible map on any topological invariant. Using exactness and the Five
Lemma, it follows that the map α : I → Cp must act by an invertible map as
well. More precisely, α is a KK-equivalence if our extension is semi-split.

Incidentally, the quickest way to derive the exactness of KK in both variables
is by reversing this argument (see [?]). It is comparatively easy to get a long
exact sequence for KK in both variables for the second row in (1.8). It is shown
by hand that the map I → Cp is a KK-equivalence, and this yields long exact
sequences for the first row in (1.8).

Now we return to a natural boundary map for C*-algebra extensions. Since
the canonical map α above is a KK-equivalence, the naturality diagram

F1(Q)
dE // F0(I)

∼= F (α)��
F1(Q)

dZp // F0(Cp)

shows that the boundary maps dE and dZp for the two rows in (1.8) determine
each other uniquely. In particular, dE = F0(α)−1 ◦ dZp .

In the next reduction step, we compare the mapping cylinder extension to
the cone extension over Q:

Cp // // Zp // // Q
SQ

⊂

OO // // C̃Q⊂ OO // // Q
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with C̃Q := C0([0, 1), Q), which is isomorphic to the usual cone C0((0, 1], Q).
Since this involves a reflection on the ideal SQ, which acts as −1 on topological
invariants, we get dC̃Q = −dCQ, where the latter denotes the boundary map of
the usual cone extension SQ  CQ ։ Q.

Once again, the naturality of the boundary map yields

dZp = F0(j) ◦ dC̃Q = −F0(j) ◦ dCQ.

where j denotes the canonical embedding SQ→ Cp. As a consequence, a natu-
ral boundary map for extensions or for Mayer–Vietoris sequences is determined
uniquely once we specify it for the cone extensions SQ  CQ ։ Q. Since CQ
is contractible, any topological invariant vanishes on CQ, so that the boundary
map dCQ : F1(Q) → F0(SQ) is invertible. Notice also that dCQ is a natural
transformation between two functors on the category of C*-algebras because
mapping Q to the cone extension is a functor from the category of C*-algebras
to the category of (semi-split) C*-algebra extensions.

The definition F1(Q) := F0(SQ) provides us with an identical natural trans-
formation d0

CQ : F1(Q) → F0(SQ); this choice produces a natural boundary
map for extensions. Any other natural transformation must be of the form
dCQ = d0

CQ ◦ Φ where Φ: F1(Q) → F1(Q) is an invertible natural transforma-
tion. Conversely, any invertible natural transformation may arise here because
d0
CQ ◦ Φ is a natural boundary map.

Now we restrict attention to K-theory. To finish the proof, we must show
that the only invertible natural transformations Kj(Q) → Kj(Q) for j = 0, 1
are ±id. Other homology theories like K-thory with Z/p-coefficients may have
more invertible natural transformations. To begin with, our transformation is
only natural with respect to *-homomorphism. By the universal property, this
implies naturality with respect to all KK-morphisms. On the level of KK, the
functors Kj(Q) become representable because

Kj(Q) ∼= KK0(C[j], Q),

where C[j] denotes the j-fold suspension of C.
The Yoneda Lemma now identifies the rings of natural transformations with

KK0(C[j],C[j]) ∼= Z. The only invertible elements of this ring are±1 as asserted.
As a result, a natural boundary map dCQ : K1(Q)→ K0(SQ) for cone exten-

sions is unique up to a universal sign, which is computed by looking at the case
Q = C0(R). By the arguments above, the same holds for the natural boundary
maps for extensions and Mayer–Vietoris sequences. This finishes the proofs of
Theorems 1.17 and 1.18 for K-theory. The argument for K-homology is similar.
In the beginning, some arrows have to be reversed because K-homology is con-
travariant. In the final step, we use K∗(A) = KK∗(A,C) to identify the ring of
natural operations on K-homology with Z as above.

Our proof also yields formulas for the boundary maps. The Mayer–Vietoris
boundary map dA′,B : F1(B′)→ F0(A) is obtained by composing the boundary
map for the extension ker p′  A′ ։ B′ with the map induced by the embedding
ker p′ → A. The boundary map K∗+1(Q) → K∗(I) for a semi-split extension
I  E ։ Q is, up to a universal sign, the Kasparov product with the class
of the extension in KK1(Q, I). Here we use that the class of the extension in
KK1(Q, I) ∼= KK0(SQ, I) is the Kasparov product of the class of the embedding
SQ → Cp and the inverse of the KK-equivalence I → Cp. This is checked
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Part VIII Equivariant theory

directly in [?]; but our argument also shows that it could not be otherwise
because up to a sign this is the only natural way to attach a class in KK1(Q, I)
to the extension.

Finally, since the various boundary maps are unique up to a sign, the index
pairings also match up to a sign. Let x ∈ K1(Q), y ∈ K0(I), and let [E] ∈
KK1(Q, I) denote the class of the extension I  E ։ Q. Let ◦ denote Kasparov
products. Write ∂(x) = ε∂ [E] ◦ x and δ(y) = εδy ◦ [E] with certain signs. Then

〈x, δy〉 = δ(y) ◦ x = εδ(y) ◦ [E] ◦ x ∈ KK0(C,C) ∼= Z,

〈∂(x), y〉 = y ◦ ∂(x) = ε∂(y) ◦ [E] ◦ x.

Hence 〈x, δy〉 and 〈∂(x), y〉 agree up to the universal sign ǫδ · ǫ∂ , which depends
on the signs that appear in the natural boundary maps.

1.3 Equivariant theory

In equivariant bivariant Kasparov theory additional symmetries create interest-
ing topology, making tools from homotopy theory more relevant.

What equivariant situations are being considered?

• Group actions (of locally compact groups)

• Bundles of C*-algebras (Ax)x∈X over some space X

• Locally compact groupoids

• Coactions of locally compact quantum groups (Baaj–Skandalis)

• C*-algebras over non-Hausdorff space (Kirchberg)

In each case, there is an equivariant K-theory with similar properties as the
nonequivariant one, with a similar concrete description—simply add an equiv-
ariance condition—and a universal property.

We briefly explain what we mean by a groupoid action. Let G be a groupoid,
and A a C*-algebra. We say that G acts on A and write G y A, if A is a bundle
over G0 and G acts fiberwise on this bundle. The continuity of the action is
expressed by the existence of a bundle isomorphism α : s∗A → r∗A, where r
and s are the range and source maps of G ([?]).

G1
r //
s

// G0 , s∗A
α−→ r∗A, (s∗A)g = As(g).

g : x→ y =⇒ αg : Ax → Ay *-isomorphism

In each equivariant situation, there is a more or less obvious notion of equiv-
ariant ∗-homomorphism, leading to a category C∗−algG whose objects are the
C*-algebras with appropriate additional structure and whose morphisms are the
equivariant ∗-homomorphisms. For an extension, we now require all maps that
occur to be equivariant, and for a split or semi split extension, we also require
the section to be equivariant. This leads to the appropriate notions of split
exactness, semi split exactness and exactness in the equivariant case.

Stability is a bit more complicated to formulate. Recall that we can refor-
mulate Morita equivalence using linking algebras: given a Hilbert bimodule H
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Part VIII Quantum groups

that implements a Morita equivalence between two C*-algebras A and B, the
linking algebra D is the algebra of block matrices

(
A H
H∗ B

)
,

where the multiplication is given by the usual matrix multiplication, combined
with the various module structures and inner products. Let p be the projection
onto the upper left corner. This is a projection in the multiplier algebra of D,
and both p and the complementary projection 1 − p are full because H is full
both as a left Hilbert A-module and as a right Hilbert B-module. Conversely,
any full projection gives rise to a Morita equivalence between the corner pDp
and D.

The correct equivariant generalisation of Morita equivalence can be formu-
lated in several equivalent ways. In terms of linking algebras, an equivariant
Morita equivalence consists of an object D of C∗−algG with an equivariant
projection p and equivariant isomorphisms A ∼= pDp, B ∼= (1 − p)D(1 − p),
such that both p and 1− p are full. A functor on C∗−algG is called (equivari-
antly) stable if F (pDp) → F (D) is invertible whenever p is a full, equivariant
projection in the multiplier algebra of D.

Often this criterion can be simplified somewhat, using some appropriate gen-
eralisation of Kasparov’s Stabilisation Theorem. This usually allows to restrict
attention to Hilbert modules of a rather special form. For instance, if we study
C*-algebras with a group action, then it suffices to look at Hilbert modules of
the form L2(G)⊗A: a functor is equivariantly C*-stable if and only if the corner
embeddings of A and K(L2G)⊗A into K(L2G⊕ C)⊗A induce isomorphisms.

In the cases mentioned above, the bivariant Kasparov theory KKG is the uni-
versal equivariantly split exact and C*-stable functor on C∗−algG (restrict to
separable C*-algebras here); that is, any other functor with these two properties
factors uniquely through KKG, that is, we have a unique factorization

KKG(A,B) × F (A) // F (B).

HomG(A,B)× F (A)

OO 77nnnnnnnnnnnn
This universal property characterizes KKG uniquely up to equivalence.

1.4 Quantum groups

The aim of this section is to introduce the definition of a locally compact quan-
tum group. We will arrive at this definition via the example of a classical locally
compact group.

1.4.1 Motivation: from groups to multiplicative unitaries

Let G be a locally compact group. Using the right Haar measure on G we can
for the Banach algebra L1(G). For f, g ∈ L1(G) the convolution product of f
and g is defined as

(f ⋆ g)(x) =

∫

G

f(xy−1)g(y) dy
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for all x ∈ G. Let H denote the Hilbert space L2(G) defined with respect to
the right Haar measure on G. Now for any f ∈ L1(G) we can define the right
convolution operator Rf ∈ B(H) by

(Rfψ)(x) =

∫

G

f(y)ψ(xy) dy

for all ψ ∈ H and x ∈ G. One easily checks that RfRg = Rf⋆g for all f, g ∈
L1(G) and (Rf )∗ = Rf∗ , where f∗(x) = f(x−1). The C∗-algebra geberated
inside B(H) by operators {Rf | f ∈ L1(G)} is the reduced group C∗-algebra if G
and is denoted by C∗r(G). In the multiplier algebra of C∗r(G) we find the right
shift operators {Ry}y∈G which act as

(Ryψ)(x) = ψ(xy).

Let us now define the Kac-Takesaki operator of G. This operator is a unitary
W ∈ B(H⊗H) defined as the direst integral of the field of operators G ∋ y 7→
Ry ∈ B(H) acting on the direct integral of the constant field of Hilbert spaces
(the same Hilbert space H over every point of G):

W =

∫ ⊕

G

Ry dy.

With the natural identification

∫ ⊕

G

H dy = H⊗H = L2(G×G)

we find that W acts in the following way

(WΨ)(x, y) = Ψ(xy, y)

for all Ψ ∈ L2(G×G) and all x, y ∈ G.
For ϕ, ψ ∈ H we denote by ωϕ,ψ the functional on B(H) given by

ωϕ,ψ(a) = (ϕ aψ)

for all a ∈ B(H).
Take arbitrary ξ, η ∈ H. The following calculation

(ξ (id⊗ ωϕ,ψ)(W ) η) = (ξ ⊗ ϕ W η ⊗ ψ)

=

∫∫
ξ(x)ϕ(y)

(
W (η ⊗ ψ)

)
(x, y) dx dy

=

∫∫
ξ(x)ϕ(y)η(xy)ψ(y) dx dy

=

∫
ξ(x)

(∫
ϕ(y)ψ(y)η(xy) dy

)
dx

=

∫
ξ(x)(Rϕψη)(x)dx = (ξ Rϕψ η)

shows that
(id⊗ ωϕ,ψ)(W ) = Rϕψ.
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In particular the closed linear span of the set
{

(id⊗ ω)(W ) | ω ∈ B(H)∗
}

coincides with C∗r(G).
In a similar way we show that (ωϕ,ψ⊗id)(W ) is the operator of multiplication

by the function G ∋ x 7→ (ϕ Rx ψ). Using the Stone-Weierstrass theorem one
can easily show that such functions span a dense subspace of C0(G). Therefore
the closed span of the set

{
(ω ⊗ id)(W ) | ω ∈ B(H)∗

}

coinsides with the image of C0(G) in the representation by multiplication oper-
ators on H.

Let us now note another interesting property of W . We will let W act on
H⊗H⊗H in three ways: W12 is W⊗1H, W23 is 1H⊗W and W1,3 is the opreator
(Σ ⊗ 1H)W23(Σ ⊗ 1H), where Σ is the flip operator H⊗H ∋ ξ ⊗ η 7→ η ⊗ ξ ∈
H⊗H. With this nothation we can take Θ ∈ H⊗H ⊗H = L2(G×G×G) and
calculate

(W23W12Θ)(x, y, z) = (W12Θ)(x, yz, z) = Θ
(
x(yz), yz, z

)

and

(W12W13W23Θ)(x, y, z) = (W13W23Θ)(xy, y, z) = (W23Θ)
(
(xy)z, y, z

)
= Θ

(
(xy)z, yz, z

)
.

Therefore
W23W12W

∗
23 = W12W13.

The above equation is called the pentagonal equation for W . Unitary operators
satisfying the pentagonal equation are called multiplicative unitaries.

The pentagonal equation is related to the fact that the Kac-Takesaki oper-
ator W encodes the group multiplication on G. More precisely let us denote by
∆ the C∗-algebra morphism C0(G)→ C0(G×G) given by

∆(f)(x, y) = f(xy)

for all f ∈ Co(G) and x, y ∈ G (a C∗-algebra morphism is a nondegenerate ∗-
homomorphism into the multiplier algebra). If we denote by π the representation
of C0(G) by multiplication operators on H and recall that C0(G×G) = C0(G)⊗
C0(G) then we find that for any ξ, η, ϕ, ψ ∈ H and f ∈ C0(G)

(
ψ ⊗ ϕ W

(
π(f)⊗ 1H

)
W ∗ η ⊗ ξ

)

=

∫∫
ψ(x)ϕ(y)

((
π(f)⊗ 1H

)
W ∗(η ⊗ ξ)

)
(xy, y) dx dy

=

∫∫
ψ(x)ϕ(y)f(xy)

(
W ∗(η ⊗ ξ)

)
(xy, y) dx dy

=

∫∫
ψ(x)ϕ(y)f(xy)η(x)ξ(y) dx dy

= (ψ ⊗ ϕ (π ⊗ π)∆(f) η ⊗ ξ)

.

In other words the morphism ∆ is on the level of B(H) encoded by the map

a 7−→W (a⊗ 1H)W ∗.
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Moreover ∆ is coassociative in the sense that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

A similar calculation shows that for any x ∈ G

W ∗(1H ⊗Rx)W = Rx ⊗Rx

and thus the formula a 7→W ∗(1H ⊗ a)W defines a morphism C∗r(G)→ C∗r(G)⊗
C∗r(G). This morphism aslo is coassociative.

Another element of group structure on G which can be recovered from W is
the inverse. The operation G ∋ x 7→ x−1 ∈ G defines a map S : Co(G)→ C0(G)
via

(Sf)(x) = f(x−1).

Let κ denote the map acting on π
(
C0(G)

)
such that κ ◦ π = π ◦ S. Then for

any ϕ, ψ ∈ H we have

(ωϕ,ψ ⊗ id)(W ∗) = κ
(
(ωϕ,ψ ⊗ id)(W )

)

as shown by the following calculation: for ξ, η ∈ H we have

(ξ (ωϕ,ψ ⊗ id)(W ∗) η) = (ϕ⊗ ξ W ∗ ψ ⊗ η)

=

∫∫
ϕ(x)ξ(y)

(
W ∗(ψ ⊗ η)

)
(x, y) dx dy

=

∫∫
ϕ(x)ξ(y)ψ(xy−1)η(y) dx dy

=

∫
ξ(y)

(
ϕ Ry−1 ψ

)
η(y) dy =

(
ξ κ
(
(ωϕ,ψ ⊗ id)(W )

)
η
)
.

Now let us point to the last important feature of W . We describe this feature
using the complex conjugate Hilbert space H to H. However, since H = L2(G),
we can identify H and H using the complex conjugation H ∋ ψ 7→ ψ ∈ H. The
feature of W we wish to exhibit is that there exist positive selfadjoint operators
Q and Q̂ on H such that kerQ = ker Q̂ = {0} and a unitary operator W̃ on
H⊗H such that

W (Q̂⊗Q)W ∗ = Q̂⊗Q
and

(ψ ⊗ ϕ W ξ ⊗ η) =
(
ξ ⊗Qϕ W̃ ψ ⊗Q−1η

)

for all ξ, ψ ∈ H, ϕ ∈ D(Q) and η ∈ D(Q−1). To see that this is indeed the

case take Q̂ = Q = 1H and W̃ = W ∗ (using the identification of H with H we
described).

The property of W described above is called modularity of W . In other
words W is a modular multiplicative unitary.

All examples of quantum groups considered in today’s literature originate
from modular multiplicative unitaries. In particular one could define a quantum
group as object (A,∆), where A is a C∗-algebra obtained as the closed linear
span of the set {

(ω ⊗ id)(W ) | ω ∈ B(H)∗
}
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and ∆ is a morphism A→ A⊗A given by

∆(a) = W (a⊗ 1H)W ∗,

where W is some modular multiplicative unitary operator.
Locally compact quantum groups (as defined by Kustermans and Vaes) are

examples of quantum groups in the above sense. It is an open question whether
all quantum groups coming wrom multiplicative unitaries are locally compact
quantum groups.

1.4.2 MNW definition of a locally compact quantum group

The definition of a locally compact quantum group we will give below is taken
from the work of Masuda, Nakagami and Woronowicz. It is equivalent to the
Kustermans-Vaes definition.

A locally compact quantum group is a pair (A,∆) consisting of a C∗-algebra
A and a morphism ∆ : A→ A⊗A posessing a number of properties we will list
below.

The properties of (A,∆) we require are the following:

1. The morphism ∆ is coassociative: (id ⊗ ∆) ◦∆ = (∆ ⊗ id) ◦ ∆ and the
sets

{
∆(a)(1A ⊗ b) | a, b ∈ A

}
and

{
(a⊗ 1A)∆(b) | a, b ∈ A

}

are contained and linearly dense in A⊗A.

2. There exists a strictly faithful, locally finite lower semicontinuous weight
h on A such that h is right invariant : for all ϕ ∈ A∗+ and all a ∈ A+ such
that h(a) <∞

h(ϕ ∗ a) = ϕ(1A)h(a).

3. There exists a closed linear operator κ on the Banach space A such that
the strong right invariance of h holds

h
(
(ϕ ∗ a∗)b

)
= h

(
a∗
(
(ϕ ◦ κ) ∗ b

))
(1.9)

for all ϕ ∈ A∗ such that ϕ◦κ ∈ A∗ ans all a, b ∈ A such that h(a∗a), h(b∗b) <
∞.

4. The operator κ has the following decomposition

κ = R ◦ τ i
2
,

where R is an involutive ∗-antiautomorphism of A (called the unitary
antipode) and τ i

2
is the analytic continuation of a one parameter group

(τt)t∈R of ∗-automorphisms of A (called the scaling group) such that τt ◦
R = R ◦ τt for all t ∈ R.

5. There exists a constant λ > 0 (called the scaling constant) such that
h ◦ τt = λth for all t ∈ R.
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The above list demands a number of comments. First of all let us explain the
notation “ϕ∗a”. If ϕ ∈ A∗ and a ∈ a then it makes sense to write (id⊗ϕ)∆(a).
This is because ϕ can be written as ϕ′ ◦ Rb, where ϕ′ is another continuous
functional on A and Rb is the operator of right multiplication by an element
b ∈ A (this follows from Cohen’s factorization theorem). In particular we can
write

(id⊗ ϕ)∆(a) = (id⊗ ϕ′)
(
∆(a)(1A ⊗ b)

)

and the element ∆(a)(1A ⊗ b) is by assumption contained in A⊗ A, so we can
apply to it the mapping (id⊗ ϕ′).

The properties of the weight h (i.e. an additive and positive homogeneous
map A+ → [0,∞]) listed above were

• lower semicontinuity,

• local finiteness, i.e. the fact that the span of elements whose weight is
finite is norm-dense in A,

• strict faithfulness, which is the property that for any sequence (an)n∈N

of elements of A such that the sequence
(
h(a∗nan)

)
n∈N

is bounded and

lim
n→∞

h(ana
∗
n) = 0 the fact that for some b ∈ A we have

h
(
(b − an)∗(b − an)

)
≤ h(a∗nan)

for all n implies that b = 0.

In order to explain the formula describing strong right invariance let us note
that the weight h can be extended to a linear functional on the linear span of
the set {

a∗b | h(a∗a), h(b∗b) <∞
}
.

Moreover using standard facts about completely positive maps (in particular
the Kadison inequality) one can show that for any positive ϕ ∈ A∗ and a ∈ A
such that h(a∗a) <∞ we have

h
(
(ϕ ∗ a)∗(ϕ ∗ a)

)
<∞

and since and element of A∗ can be written as a linear combination of elements
of A∗+ we find that the expression

h
(
(ψ ∗ a)∗b

)

makes sense for any ψ ∈ A∗ and a, b such that h(a∗a), h(b∗b) < ∞. Therefore
both sides of (1.9) are well defined numbers and we can demand that they be
equal.

Let (A,∆) be a locally compact quantum group as defined above. One of
the main results of the theory of these objects is that the mapping

A⊗A ∋ a 7−→ ∆(a)(1A ⊗ b) ∈ A⊗A

extends to a unitary map W : H ⊗ H → H⊗H, where H is the GNS-Hilbert
space for the weight h. This operator W is a modular multiplicative unitary.
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Moreover the quantum group (A,∆) can be recovered from W as described in
Subsection 1.4.1:

A = span
{

(ω ⊗ id)(W ) | ω ∈ B(H)∗
}−‖·‖ ⊂ B(H)

and
∆(a) = W (a⊗ 1A)W ∗

for all a ∈ A.

1.4.3 More on strong right invariance

The condition of strong right invariance is at first difficult to understand. In
order to become more familiar with it we will first look at it from the point of
view of Hopf algebras. Then we will see that it holds in the motivating example
form Subsection 1.4.1, i.e. for classical locally compact groups.

Let A be a Hopf ∗-algebra with a right invariant positive integral h. Without
getting into details we will assume that the GNS-construction can be performed
for h and we have the Hilbert space H which is the completion of A in the norm
coming from the scalalr product (a b) = h(a∗b) for a, b ∈ A.

Consider the map Φ : A ⊗ A ∋ a⊗ b 7→ ∆(a)(1A ⊗ b) ∈ A⊗ A, where ∆ is
the comultiplication of A. This map has an explicite inverse:

Φ−1 : A⊗ A ∋ (r ⊗ s) 7−→ (id⊗ κ)
(
∆(r)

)
(1A ⊗ s) ∈ A⊗ A

where κ is the antipode of A. We now want to take the map Φ to the level of the
hilbert space H. Since A is dense in H, the mappings Φ and Φ−1 are densely
defined. We would like to have Φ−1 = Φ∗ which means that

(h⊗ h)
(
Φ(a⊗ b)∗(r ⊗ s)

)
= (h⊗ h)

(
(a⊗ b)∗Φ−1(r ⊗ s)

)

for all a, b, r, s ∈ A. In other words

(h⊗h)
(
(1A⊗b∗)∆(a∗)(r⊗s)

)
= (h⊗h)

(
(a∗⊗b∗)(id⊗κ)

(
∆(r)

)
(1A⊗s)

)
. (1.10)

A simple calculation shows that if ϕ(c) = h(b∗cs) then the left hand side of
(1.10) is

h
(
(ϕ ∗ a∗)r

)

while the right hand side is

h
(
a∗
(
(ϕ ◦ κ) ∗ r

))
.

Thereofre the strong right invariance of h is the key to unitarity of W (cf. Sub-
section 1.4.2).

Now let (A,∆) be the quantum group coming from a classical group G,
i.e. A = C0(G) and ∆ dualizes the group multiplication. We let h be the weight
on A which corresponds to integration with respect to the right Haar measure
and define κ : A → A as κ(f)(x) = f(x−1) foa all f ∈ A and x ∈ G. The
scaling group in this example is trival and R = κ. Clearly the weight h is right
invariant in the sense explained in Subsection 1.4.2.
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Let us check the strong right invariance of h: take f, g ∈ C0(G)∩L2(G) (this
means that h

(
|f |2

)
, h
(
|g|2
)
<∞ and let ϕ be a continuous functional on A, so

that for any u ∈ A
ϕ(u) =

∫
u(x) dµϕ(x)

for some finite measure µϕ on G. Then for any v ∈ A the convolution product
ϕ ∗ v is the function

G ∋ s 7−→
∫
v(st) dµϕ(t).

We have

h
(
(ϕ ∗ f)g

)
=

∫ (∫
f(st) dµ(t)

)
g(s) ds

=

∫∫
f(st)g(s) dµ(t) ds

=

∫ (∫
f(st)g(s) ds

)
dµ(t)

=

∫ (∫
f(s)g(st−1) ds

)
dµ(t).

On the other hand (ϕ ◦ κ)(u) =
∫
u(t−1) dµϕ(t), so that

h
(
f
(
(ϕ ◦ κ) ∗ g

))
=

∫
f(s)

(∫
g(st−1) dµϕ(t)

)
ds

=

∫∫
f(s)g(st−1) dµϕ(t) ds

=

∫ (∫
f(s)g(st−1) ds

)
dµ(t).

1.4.4 Actions of quantum groups

In this subsection we would like to propose a definition of an action of a qua-
tum group (A,∆) on a “quantum space” or simply C∗-algebra B. Although
many variations on this definition are considered in the literature we feel that
there is consensus that actions as definded below are should be included by any
reasonable definiton of a quantum group action.

Let (A,∆) be a quantum group and let B be a C∗-algebra. An action of
(A,∆) onB is a morphism α : B → B ⊗A (i.e. a nondegenerate ∗-homomorphism
B → M(B ⊗A) such that

(α ⊗ id) ◦ α = (id⊗∆) ◦ α

and the set {
α(b)(1B ⊗ a) | a ∈ A, : b ∈ B

}

is contained and linearly dense in B ⊗A.
If (A,∆) id of the form

(
C0(G),∆

)
, where G is a locally compact group and

∆ is the standard comultiplication on C0(G) then an action of (A,∆) on G is
the same thing as a continuous action of G on B.
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1.5 Some applications of the universal property

Here we use the universal property of KKG to construct the exterior product
in KKG for a groupoid G and prove that it is graded commutative. Similar
arguments yield the descent functor, induction and restriction functors, and
some identities between these. All these results can, of course, be proved also
using the concrete description of KKG, but the abstract approach yields these
assertions without computing a single Kasparov product. See also [mn06] for
more details.

Let G be a locally compact group and let C∗−algG be the corresponding
category of C*-algebras with a G-action. The minimal tensor product of two
G-C*-algebras is again a G-C*-algebra, using the diagonal action of G. This
yields a functor

⊗ : C∗−algG ×C∗−algG → C∗−algG, (A,B) 7→ A⊗B.

We claim that this tensor product descends to a tensor product on KKG:

C∗−algG ×C∗−algG //���� C∗−algG��
KKG×KKG // KKG

We describe this more concretely. Let β ∈ KKG
0 (B1, B2), α ∈ KKG

0 (A1, A2).
First we construct exterior products idAj ⊗ β ∈ KKG

0 (Aj ⊗ B1, Aj ⊗ B2) and

α⊗idBj ∈ KKG
0 (A1⊗Bj, A2⊗Bj) for j = 1, 2. Then we check that the following

diagram commutes:

A1 ⊗B1

idA1
⊗β //

α⊗idB1 �� A1 ⊗B2

α⊗idB2��
A2 ⊗B1

idA2⊗β
// A2 ⊗B2.

(1.11)

Thus we may define

α⊗ β := (α ⊗ idB2) ◦ (idA1 ⊗ β) = (idA2 ⊗ β) ◦ (α ⊗ idB1).

Notice that this involves the Kasparov product. The commutativity of (1.11)
means that the exterior product is commutative on the even parts (if we allow
odd KK-groups, then the exterior product becomes graded commutative).

In the abstract approach we first fix A and consider the functor

C∗−algG → C∗−algG → KKG, B 7→ A⊗B 7→ A⊗B.

Since it is equivariantly split exact and stable, it descends to a functor KKG →
KKG by the universal property, furnishing us with idA⊗β. The same construc-
tion provides α⊗ idB. In order to understand why (1.11) commutes, we use the
naturality of the constructions above.

In general, if F1, F2 : C∗−algG → D are split exact and stable, and Φ: F1 →
F2 is a natural transformation, then there exist F1, F2 : KKG → D and a natural
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transformation Φ: F1 → F2 such that the following diagram commutes for all
α ∈ KKG(A1, A2)

F1(A1)
ΦA1 //

F1(α) �� F2(A1)

F2(α)��
F1(A2)

ΦA2 // F2(A2)

That is, if this diagram commutes whenever α and β are equivariant *-homomorphisms,
then it also commutes if we let α, β be KKG-morphisms. This statement is a
part of the universal property of KKG.

In our case, it is clear that (1.11) commutes if α and β are ∗-homomorphisms.
Hence it still commutes if α is in KKG

0 (A1, A2) and β is a ∗-homomorphism.
Finally, another application of the same trick shows that it still commutes if
both α and β are KKG-morphisms of even degree. The odd case can then be
reduced to the even case using

KKG
0 (A,B) ∼= KKG

0 (C0(R)⊗A,B) ∼= KKG
0 (A,C0(R)⊗B),

but here signs may appear in the computation.

Proposition 1.20. The exterior product coincides with composition product
on KKG

∗ (C,C), turning this into a graded commutative Z/2-graded ring. Fur-
thermore, KKG

∗ (C,C) acts on KKG
∗ (A,B) for all A,B ∈ C∗−algG by exterior

product.

Now we turn to the descent functor KKG → KK. This is obtained from the
reduced crossed product functor

C∗−algG → C∗−alg, A 7→ G⋉r A.

This functor maps equivariantly split exact extensions to split extensions and
maps equivariantly Morita equivalent C*-algebras to Morita equivalent C*-
algebras. By the universal property, it descends to a functor KKG → KK.
This is the descent functor

KKG(A,B)→ KK(G⋉r A,G⋉r B),

which appears in any construction of the Baum–Connes assembly map.
Now let G be a locally compact group, let H ≤ G be a closed subgroup, and

let Hy A. Then we define

IndGH A := {f ∈ C0(G,A) | f(gh) = (αhf)(g), ‖f‖ ∈ C0(G/H)},

on which we let G act by left translation. (On the level of spaces, this induction
corresponds to IndGH : X 7→ G ×H X). Again, it is evident that IndGH defines
a functor C∗−algH → C∗−algG that preserves split extensions and Morita
equivalences and therefore descends to a functor

IndGH : KKH → KKG .

Green’s Imprimitivity Theorem asserts that the crossed products G⋉IndGH A
and H ⋉A are Morita equivalent; a similar statement holds for reduced crossed
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products. The Morita equivalence is easily seen to be natural for equivariant
*-homomorphisms. By the universal property, we conclude that the class of the
Morita equivalence in KK(H ⋉rA,G⋉r IndGH A) provides a natural transforma-
tion between two functors on KKH .

If H ≤ G is open, then there is a natural isomorphism

KKG(IndGH A,B) ∼= KKH(A,ResGH B),

that is, the induction and restriction functors are adjoint. This is proved by
constructing the unit and counit of the adjunction—these turn out to be certain
natural *-homomorphisms between equivariant stabilisations of A and B. The
universal property shows that they still produce natural transformations on the
KK-level, and the identities that have to be checked already hold on level of
equivariant *-homomorphisms. Thus we can also prove this property of KKG

without using its concrete description.
For several purposes, it is desirable to have an analogue of the exterior prod-

uct also for quantum group coactions. Christian Voigt has recently developed
this, following a suggestion by Ryszard Nest. Here we only indicate the idea
behind this in the somewhat simpler case of coactions of finite groups.

Let G be finite group and let A and B be algebras with a G-coaction, that
is, a grading by G. Then A⊗B carries a diagonal coaction

(A⊗B)g =
⊕

h∈G
Ah ⊗Bh−1g.

We want to equip A⊗B with a multiplication that is equivariant for the canon-
ical coaction of G on A ⊗ B. The usual product does not work unless G is
commutative, because if a ∈ Ah, b ∈ Bg, then a · b = b · a ∈ (A ⊗B)hg, but we
need b · a ∈ (A ⊗ B)gh. We must therefore impose a non-trivial commutation
relation. We make the Ansatz

bg · ah := αg(ah) · bg for ah ∈ Ah, bg ∈ Bg,

where αg : A → A for g ∈ G is some linear map. Associativity dictates that
αg(a1 · a2) = αg(a1)αg(a2), and αg1αg2 = αg1g2 . It is reasonable also to require
α1 = idA, so that α is an action of G on A by algebra automorphisms. Finally,
covariance dictates that αg(Ah) ⊆ Aghg−1 for all g, h ∈ G. Any action of G on A
with these properties yields an associative product on A⊗B that is compatible
with the diagonal coaction.

Up to Morita equivalence, the extra structure α is no serious restriction be-
cause it always exists on a stabilisation EA := End(A⊗C[G]) with the coaction
of G induced by the tensor product coaction on A ⊗ C[G]. Since Ah ⊗ |δg〉〈δl|
maps (A⊗C[G])x to Axl−1h ⊗C[G]g ⊆ (A⊗C[G])xl−1hg, this coaction is given
by

(EA)g =
∑

x,y,z∈G, x−1yz=g

Ay ⊗ |δz〉〈δx|.

Let G act on A ⊗ C[G] by the regular representation. This induces an action
α : G× EA → EA by conjugation. We check that if x−1yz = h, then

αg(Ay ⊗ |δz〉〈δx|) = Ay ⊗ |δzg−1〉〈δxg−1 | ∈ (EA)gx−1yzg−1 = (EA)ghg−1

894



Part VIII Some applications of the universal property

Thus EA⊗B carries a canonical algebra structure compatible with the diagonal
coaction of of G.

The equivariant Kasparov theory for C*-algebras with a quantum group
coaction is developed by Saad Baaj and Georges Skandalis in [?]. At least for
regular quantum groups, the same arguments as in the group case show that it
is the universal split exact stable functor. The following result is only stated
in [?] for groups and their duals because the duality theory for regular quantum
groups was not yet developed at that time:

Theorem 1.21 ( Baaj–Skandalis duality). Let (C,∆) be a strongly regular

locally compact quantum group and let (Ĉc, ∆̂c) be the C*-commutant of its
dual. Then the functors

A with C-coaction 7→ A⋊r Ĉ
c with Ĉc-coaction

B with Ĉc-coaction 7→ B ⋊r C with C-coaction

descend to an equivalence of categories

KKC ∼= KK
bCc

.

Proof. This theorem follows immediately from the duality theory for regular
quantum groups (see [?]). The main difficulty is to construct the crossed product

functors. Roughly speaking, Ĉc is the C*-algebra generated by the right regular
representation of C. We may represent both B ⊗ C and Ĉc by adjointable
operators on the Hilbert B-module B ⊗ L2(C). Assuming that the coaction is
continuous, the closure of

δ(B) · (1⊗ Ĉc) ⊆M(B ⊗K(L2C))

is a C*-algebra. By definition, this is the crossed product B⋊r Ĉ
c. It comes with

a canonical Ĉc-coaction, which acts trivially on δ(B) and by the comultiplication

of Ĉc on 1⊗ Ĉc. Here we follow the notation of Kustermans and Vaes, whereas
Baaj and Skandalis denote Ĉc by Ĉ. As C*-algebras, Ĉc and Ĉ are isomorphic,
but they usually carry different comultiplications.

Strong regularity means, more or less by definition, that there are canonical
*-isomorphisms

B ⋊r Ĉ
c ⋊r C ∼= B ⊗K(L2C),

B ⋊r C ⋊r Ĉ
c ∼= B ⊗K(L2C),

where the first isomorphism is C-equivariant, and the second Ĉc-equivariant.
To pass to equivariant KK, we must merely observe that the crossed product

functors B 7→ B ⋊r Ĉ
c and B 7→ B ⋊r C preserve equivariantly split extensions

and Morita equivalences. Therefore, these functors descend to functors KKC ↔
KK

bCc

.
The duality isomorphisms above are obviouly natural for equivariant *-

homomorphisms; by the universal property, they remain natural for KK-morphisms.
Using stability, we get natural equivariant KK-equivalences

B ⋊r Ĉ
c ⋊r C ∼= B for B ∈ KKC ,

B ⋊r C ⋊r Ĉ
c ∼= B for B ∈ KK

bCc

.
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Hence the crossed product functors are inverse to each other and provide an

equivalence of categories KKC ∼= KK
bCc

.
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Chapter 2

The Baum-Connes
conjecture

2.1 Universal G-space for proper actions

Let G be a topological group which is locally compact, Hausdorff and second
countable. A G-space is a topological space X with a given continuous action
of G

G×X → X.

If X , Y are G-spaces, then a G-map from X to Y is a continuous G-equivariant
map f : X → Y

f(gp) = gf(p), g ∈ G, p ∈ X.
Two G-maps f0, f1 : X → Y are G-homotopic if they are homotopic through
G-maps, i.e. there exists a homotopy {ft}, 0 ≤ t ≤ 1 with each ft a G-map.

Definition 2.1. A G-space X is proper if

• X is paracompact and Hausdorff,

• the quotient space X/G (with the quotient topology) is paracompact and
Hausdorff,

• for each p ∈ X there exists a triple (U,H, ρ) such that

1. U is an open neighbourhood of p in X with gu ∈ U for all g ∈ G,
u ∈ U ,

2. H is a compact subgroup of G,

3. ρ : U → G/H is a G-map from U to G/H.

Proposition 2.2 ([cem01]). If X is a locally compact Hausdorff second count-
able G-space, then X is proper if and only if the map

G×X → X ×X, (g, x) 7→ (gx, x)

is proper (i.e. the preimage of any compact set in X ×X is compact).
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Part VIII Universal G-space for proper actions

Definition 2.3. A universal G-space for proper actions, denoted EG is a proper
G-space such that if X is any proper G-space, then there exists a G-map f : X →
EG and any two G-maps from X to EG are G-homotopic.

Lemma 2.4. There exists universal G-space for proper actions.

The space EG is unique up to homotopy. Indeed, if EG and (EG)′ are both
universal examples for proper actions of G, then there exist G-maps

f : EG→ (EG)′,

f ′ : (EG)′ → EG,

with f ′ ◦ f and f ◦ f ′ G-homotopic to the identity maps of EG and (EG)′

respectively. Moreover f and f ′ are unique up to homotopy.
The following is a set of axioms for EG

1. Y is a proper G-space,

2. if H is any compact subgroup of G then there exists p ∈ Y with hp = p
for all h ∈ H ,

3. if we view Y × Y as a G-space with action

g(y0, y1) = (gy0, gy1),

ρ0, ρ1 : Y × Y → Y, ρ0(y0, y1) = y0, ρ1(y0, y1) = y1,

then ρ0 and ρ1 are G-homotopic.

Lemma 2.5. If Y satisfies the axioms 1,2,3, then Y is an EG.

Example 2.6.

• If G is compact, then EG = pt.

• If G is a Lie group with π0(G) finite, then EG = G/H , where H is maximal
compact subgroup of G.

• If G is a p-adic group then EG is the affine Bruhat-Tits building for G,
denoted by βG.

Affine Bruhat-Tits building for SL(2,Qp) is the (p+ 1)-regular tree, that
is a tree with exactly p+ 1 edges at each vertex.

• If Γ is (countable) discrete group, then

EΓ = {f : Γ→ [0, 1] | {γ ∈ Γ | f(γ) 6= 0} is finite,
∑

γ∈Γ

f(γ) = 1}

The action is given by (βf)(γ) = f(β−1γ) for β, γ ∈ Γ, f : Γ→ [0, 1]. The
space EΓ is topologized by the metric

d(f, h) =


∑

γ∈Γ

|f(γ)− h(γ)|2



1
2

.
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Part VIII The Baum-Connes Conjecture

Definition 2.7. A subset ∆ ⊂ EG is G-compact if

1. gx ∈ ∆ for all g ∈ G, x ∈ ∆,

2. the quotient space ∆/G is compact.

Set
KG
j (EG) = lim

−→∆⊂EG, ∆ is G-compact
KG
j (∆).

KG
j (EG) is the equivariant K-homology of EG with G-compact supports. There

is a map
µ : KG

j (EG)→ Kj(C
∗
rG)

(H, ψ, π, T ) 7→ Index(T ).

If X is a proper G-space with compact quotient X/G, then

EGj (X) := EjG(C0(X)) = {(H, ψ, π, T )}

and
KG
j (X) := KKj

G(C0(X),C) = {(H, ψ, π, T )}/ ∼,
for j = 0, 1, this is the Kasparov equivariant K-homology of X . If X , Y are
proper G-spaces with compact quotient spaces X/G, Y/G, and f : X → Y is a
continuous G-equivariant map, then f∗ : C0(Y )→ C0(X), f∗(α) = α◦f induces
a homomorphism of abelian groups f∗ : KG

j (X)→ KG
j (Y ),

(H, ψ, π, T ) 7→ (H, ψ ◦ f∗, π, T ).

The map
µ : KG

j (X)→ Kj(C
∗
rG)

is natural, that is there is commutativity in the diagram

KG
j (X) %%KKKKKKKKK f∗ // KG

j (Y )yysssssssss
Kj(C

∗
rG)

2.2 The Baum-Connes Conjecture

Conjecture 5. Let G be a locally compact Hausdorff second countable topolog-
ical group. Then

µ : KG
j (EG)→ Kj(C

∗
rG)

is an isomorphism for j = 0, 1.

It is known that the conjecture is true for

• compact groups,

• abelian groups,

• Lie groups (π0(G) finite),
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• p-adic groups,

• adelic groups.

It is not known if the conjecture is true for all discrete groups.

Theorem 2.8 ([s-t07]). Let Bn be tha Braid group on n strands, n ≥ 2. Then
BCC is true for Bn.

Theorem 2.9 ([hk01]). If Γ is a discrete group which is amenable (or a-t-
menable), then BCC is true for Γ.

Theorem 2.10 ([my02], [l-v99], [l-v02]). If Γ is a discrete group which is hy-
perbolic (in Gromov’s sense), then BCC is true for Γ.

Theorem 2.11 ([l-v02]). If Γ is any discrete co-compact subgroup of SL(3,R),
then BCC is true for Γ.

Theorem 2.12. If Γ is any discrete subgroup of SO(n, 1), SU(n, 1) or Sp(n, 1),
then BCC is true for Γ.

There are following corollaries of the Baum-Connes conjecture.

• Novikov conjecture

• Stable Gromov-Lawson-Rosenberg conjecture

• Idempotent conjecture

• Kadison-Kaplansky conjecture

• Mackey analogy

• Construction of the discrete series via Dirac induction (Parthasarathy,
Atiyah, Schmidt)

• Homotopy invariance of ρ-invariants ([ps07])

2.2.1 The conjecture with coefficients

Definition 2.13. A G-C*-algebra is a C*-algebra A with a given continuous
action of G

G×A→ A

by C*-algebra automorphisms. The continuity condition is: for each a ∈ A

G→ A, g 7→ ga

is continuous map from G to A.

Let A be a G-C*-algebra. Form the reduced crossed product C*-algebra
C∗r (G,A). The goal is to determine Kj(C

∗
r (G,A)). Let KG

j (EG,A) denote the
equivariant K-homology of EG with G-compact supports and coefficients A,
that is

KG
j (EG,A) := lim

−→∆⊂EG, ∆ G−compact
KKj

G(C0(∆), A).
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Conjecture 6 ([?, ?]). Let G be a locally compact Hausdorff second countable
topological group, and let A be any G-C*-algebra, then

µ : KG
j (EG,A)→ Kj(C

∗
r (G,A))

is an isomorphism for j = 0, 1.

Conjecture 6 is the Baum-Connes conjecture with coefficients.
Let Γ be a finitely presented discrete group which contains an expander in its

Cayley graph. Such a Γ is a counter-example to the conjecture with coefficients.
M. Gromov outlined a proof that such a Γ exists. A number of mathematicians
are now filling in the details.

Definition 2.14. We say that the group G is exact if for every exact sequence
of C*-algebras

0→ I → A→ B → 0

the sequence
0→ C∗r (G, I)→ C∗r (G,A)→ C∗r (G,B)→ 0

is exact.

Remark 2.15. It is very hard to find an example of a group which is not exact.
Gromov outlined a construction of a discrete group Γ which contains (in the
sense of coarse geometry) an expander graph in its Cayley graph. Such group
will not be exact. Gromov’s group Γ will be also a counterexample to the Baum-
Connes conjecture with coefficients. Consider the Stone-Čech compactification
βΓ. Then we can identify C(βΓ) with l∞(Γ), and there is an exact sequence

0→ C0(Γ)→ C(βΓ)→ C(βΓ− Γ)→ 0,

which after applying reduced crossed product ⋊rΓ will not be exact. Gromov’s
group will be a counterexample to the Baum-Connes conjecture with coefficients
because Gromov’s group will not be K-theoretically exact. All this suggests
that the class of discrete groups for which the Baum-Connes conjecture with
coefficients will be valid might be all the discrete exact groups.

2.3 Assembly map

Let ∆ ⊂ X be a proper G-space.

Definition 2.16. We say that ∆ is G-compact if ∆ is G-invariant and ∆/G is
compact and Hausdorff.

We define the equivariant K-homology of EG by means of Kasparov equiv-
ariant KK-theory

KG
j (EG) = colim ∆∈EG

G-compact
KKj

G(C0(∆),C), (2.1)

KG
j (EG,A) = colim ∆∈EG

G-compact
KKj

G(C0(∆), A). (2.2)

If A, B are separable G-C*-algebras, then there is the Kasparov descent map

KKj
G(A,B)→ KKj(C∗r (G,A), C∗r (G,B)). (2.3)
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In the definition of the assembly map

µ : KG
j (EG)→ Kj(C

∗
r (G))

we use the Kasparov product and descent map. Recall that if A,B,D are
separable G-C*-algebras, then there is a product

KKi
G(A,B)⊗KKj

G(B,D)→ KKi+j
G (A,D), i, j = 0, 1.

Let X be a proper G-compact G-space. We define a map

KKj
G(C0(X),C)→ Kj(C

∗
r (G))

as the composition of the Kasparov descent map

KKj
G(C0(X),C)→ KKj(C∗r (G,X), C∗r (G))

and the Kasparov product with

1 = X × C ∈ K0(C∗r (G,X)) = KK0(C, C∗r (G,X)).

Recall the definition of equivariant K-homology of EG

KG
j (EG) := lim

−→∆⊂EG, ∆ G-compact
KKj

G(C0(∆),C).

For each G-compact ∆ ⊂ EG we have

µ : KKj
G(C0(∆),C)→ Kj(C

∗
r (G)).

If ∆, Ω are two G-compact subsets of EG with ∆ ⊂ Ω, then the diagram

KKj
G(C0(∆),C) ((PPPPPPPPPPPP // KKj

G(C0(Ω),C)wwnnnnnnnnnnnn
Kj(C

∗
r (G))

commutes, so we obtain

µ : KG
j (EG)→ Kj(C

∗
r (G)).

If A is a G-C*-algebra then we define the equivariant K-homology of EG with
coefficients in A by

KG
j (EG;A) := lim

−→∆⊂EG, ∆ G-compact
KKj

G(C0(∆), A).

We define also a map

µ : Kj(EG;A)→ Kj(C
∗
r (G,A)).

as the composition of the Kasparov descent map

KKj
G(C0(X), A)→ KKj(C∗r (G,X), C∗r (G,A))
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and the Kasparov product with

1 = X × C ∈ K0(C∗r (G,X)) = KK0(C, C∗r (G,X)).

For each G-compact ∆ ⊂ EG we have

µ : KKj
G(C0(∆), A)→ Kj(C

∗
r (G,A)).

If ∆, Ω are two G-compact subsets of EG with ∆ ⊂ Ω, then the diagram

KKj
G(C0(∆), A) ((QQQQQQQQQQQQQ // KKj

G(C0(Ω), A)vvmmmmmmmmmmmm
Kj(C

∗
r (G,A))

commutes, so we obtain

µ : KG
j (EG), A)→ Kj(C

∗
r (G,A)).

Let A, B be G-C*-algebras. We denote by KKG the category whose ob-
jects are all (separable) G-C*-algebras with morphisms KKG(A,B). Let ϕ ∈
KKG(A,B). On the left side of the Baum-Connes conjecture ϕ induces a map

KG
j (EG,A)→ KG

j (EG,B) (2.4)

by the Kasparov product with ϕ.
For any subgroup H ≤ G there is a restriction map

KK0
G(A,B)→ KK0

H(A,B), ϕ 7→ ϕ|H . (2.5)

Theorem 2.17. Suppose ϕ is an equivalence when restricted to any compact
subgroup H ≤ G. Then the map 2.4 is an isomorphism.

Kj(EG,A) // Kj(EG,B)

colim ∆⊂EG

G-compact
KKj

G(C0(∆), A) // colim ∆⊂EG

G-compact
KKj

G(C0(∆), B)

Proof. It suffices to assume that X is a G-compact proper G-space, because
Kasparov product commutes with colim. For an H-space Y we have an induced
G-space G ×H Y , which is a quotient G × Y/H with respect to the following
H-action

h(g, y) = (gh−1, hy).

By the Mayer–Vietoris sequence, it suffices to prove the theorem for X = G×HS
with S compact. Indeed, any pullback diagram

A0 ⊗B A1
//�� A0����

A1
// B
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gives rise to the six-term exact sequence

KK0(A0 ⊗B A1,C)�� KK0(A0,C)⊕KK0(A1,C)oo KK0(B,C)oo
KK1(B,C) // KK1(A0,C)⊕KK1(A1,C) // KK1(A0 ⊗B A1,C)

OO
Now replace C by D, and consider an equivariant case to get a six-term exact
sequence for KKG(−, D).

KK0
G(A0 ⊗B A1, D)�� KK0

G(A0, D)⊕KK0
G(A1, D)oo KK0

G(B,D)oo
KK1

G(B,D) // KK1
G(A0, D)⊕KK1

G(A1, D) // KK1
G(A0 ⊗B A1, D)

OO
Using

C0(U ∪ V ) //�� C0(U)��
C0(V ) // C0(U ∩ V )

we reduce by the five-lemma to the case X = G×H S, with S compact.
Frobenius reciprocity:

G IndGH(ψ) ϕ HomG(IndGH(ψ), ϕ)

∼=��
H ψ ϕ|H HomH(ψ, ϕ|H)

Frobenius reciprocity in KKG:

G IndGH(A) B KKj
G(IndGH(A), B)

∼=��
H A B KKj

H(A,B)

Induction of H-C*-algebra is a G-C*-algebra G×H A.

KKj
G(C0(G×H S), A) //

∼= �� KKj
G(C0(G×H S), B)

∼= ��
KKj

H(C(S), A) // KKj
H(C(S), B)

904



Part VIII Meyer-Nest reformulation of the BCC with coefficients

2.4 Meyer-Nest reformulation of the Baum-Connes
conjecture with coefficients

Theorem 2.18. Let G ba a locally compact Hausdorff second countable topo-
logical group. Then the following two statements are equivalent:

1. The Baum-Connes assembly map

KG
j (EG,D)→ Kj(C

∗
r (G,D)), j = 0, 1, (2.6)

is an isomorphism for all G-C*-algebras D;

2. Whenever A,B are G-C*-algebras and φ ∈ KK0
G(A,B) is such that

φ∗ : Kj(C
∗
r (H,A))→ Kj(C

∗
r (H,B)), j = 0, 1, (2.7)

is an isomorphism for all compact subgroups H of G, then

φ∗ : Kj(C
∗
r (G,A))→ Kj(C

∗
r (G,B)), j = 0, 1, (2.8)

is an isomorphism.

Proof.

(1) =⇒ (2) Given φ ∈ KK0
G(A,B) as in (2), consider the commutative diagram

KG
j (EG,A) //�� KG

j (EG,B)��
Kj(C

∗
r (G,A)) // Kj(C

∗
r (G,B))

in which the two vertical arrows are the Baum-Connes assembly maps,
and the to horizontal arrows are given by φ. The hypothesis on φ plus
a Mayer–Vietoris argument proves that the upper horizontal arrow is an
isomorphism. (1) asserts that the two vertical arrows are isomorphisms,
so it now follows that the lower horizontal arrow is an isomorphism.

(2) =⇒ (1) Given anyG-C*-algebraD, Meyer and Nest prove that there is a projective
object P in their category and a weak equivalence φ ∈ KK0

G(P,D). Here
“weak equivalence” means that for any compact subgroup H of G the
restriction of φ to KK0

H(P,D) is invertible. In particular

φ∗ : Kj(C
∗
r (H,P ))→ Kj(C

∗
r (H,D)), j = 0, 1,

is an isomorphism, so that φ satisfies the condition of (2). Consider the
commutative diagram

KG
j (EG,P ) //�� KG

j (EG,D)��
Kj(C

∗
r (G,P )) // Kj(C

∗
r (G,D))

905



Part VIII Real Baum-Connes conjecture

in which the two vertical arrows are the Baum-Connes assembly map, and
the two horizontal arrows are given by φ. As showed above, the upper
horizontal arrow is an isomorphism. Meyer and Nest prove that for any
projective object in their category, the Baum-Connes assembly map is an
isomorphism. Thus the left vertical arrow is an isomorphism. According
to (2) the lower horizontal arrow is an isomorphism. It now follows that
the right vertical arrow is an isomorphism.

See Corollary 3.65 of Chapter 3 for further information on the equivalence
of (1) and (2).

2.5 Real Baum-Connes conjecture

2.5.1 Generalization of Paschke duality

Assume X is a compact (Hausdorff) space, and let C(X) be the ring of con-
tinuous functions from X to C. Assume that we have a C*-algebra injective
map

ψ : C(X)→ B(H),

for “large enough” Hilbert space H (e.g. H = L2(X,µ)⊗H , where H is infinite
dimensional Hilbert space). Denote

D∗(X) = {T ∈ B(H) | Tψ(f)− ψ(f)T ∈ K},
C∗(X) = {T ∈ B(H) | Tψ(f) ∈ K, ψ(f)T ∈ K}.

Theorem 2.19 (Paschke). Let K∗(X) be the K-homology of X, that is =
KK∗(C(X),C). Then

K∗(X) ∼= K∗+1(D∗(X)/C∗(X)). (2.9)

The question is how to describe KK∗(C(X), C(Y )) in terms of K-theory?.
If Γ is a discrete group acting on a locally compact X , then how to describe

KΓ
∗ (X)? Replace ψ by a representation of C0(X)⋊Γ on H = L2(X,µ)⊗ l2(Γ)⊗

H ′ for some infinite dimensional Hilbert space H ′, and define

D∗Γ(X) = {T ∈ B(H) | Tψ(T )− ψ(f)T ∈ K, T γ = γT, supp(T ) is Γ-compact},
(2.10)

C∗Γ(X) = {T ∈ B(H) | Tψ(T ) ∈ K, ψ(f)T ∈ K, T γ = γT, supp(T ) is Γ-compact}.
(2.11)

(2.12)

Here supp(T ) ⊆ X ×X is defined by

X×X−supp(T ) = {(x, y) ∈ X×X | ∃U ∋ x, V ∋ y, such that ψ(f)Tψ(g) vanish

if f is supported in U , g supported in V }.
The simplest example is to take X = pt, Γ = {1}. Then Paschke dual is the
Calkin algebra B(H)/K.
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Theorem 2.20 (J. Roe). There are isomorphisms

KΓ
∗ (X) ∼= K∗+1(D∗Γ(X)/C∗Γ(X)),

KOΓ
∗ (X) ∼= K∗+1(D∗Γ(X,R)/C∗Γ(X,R)).

2.5.2 Real K-theory

Recall that KO∗(X) denote the Grothendieck-Atiyah-Hirzerbruch real K-functor,
which is 8-periodic. Its values for X = pt are:

n KO−n(pt)

0 Z
1 Z/2
2 Z/2
3 0
4 Z
5 0
6 0
7 0

We use the convention K∗(X) = K−∗(C(X)), e.g.

KO−1(pt) = Ktop
1 (R) = π0(GL(R) ∼= Z/2, (2.13)

KO1(pt) = Ktop
7 (R) = π6(GL(R)) = 0. (2.14)

Another example is the following

KU(S1) = K(CC(S1)) = Z, (2.15)

KO(S1) = K(CR(S1)) = Z⊕ Z2. (2.16)

2.5.3 The Baum-Connes map

Consider the following commutative diagram (for X a proper Γ-space and C⋊Γ
= C∗r (Γ))

KKj
Γ(C0(X),C)−→ ϕ // KKj(C0(X) ⋊ Γ,C ⋊ Γ)

ψ��
KΓ
j (X) // KKj(C, C∗r (Γ))

In this diagram, ϕ is Kasparov’s descent map [k-g88]. The map ψ is induced by
the Kasparov product

θ : KK0(C, C0(X) ⋊ Γ) × KKj(C0(X) ⋊ Γ,C ⋊ Γ) −→ KKj(C, C∗r (Γ))

More precisely, ψ is defined by ψ(u) = θ(p, u), where p is a special idempotent
defining an element of KK0(C, C0(X) ⋊ Γ) = K0(C0(X) ⋊ Γ). This special
idempotent is defined as follows: let ϕ ∈ C0(X) such that

∑
g∈Γ g(ϕ2) = 1,

then
p =

∑

g∈G
ϕg(ϕ)[g].

If Γ acts properly on X , then at the end we get
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• the Baum-Connes map

µ : KΓ
j (X)→ Kj(C

∗
r (Γ)), (2.17)

• the Baum-Connes conjecture for a classifying space E Γ for proper actions,

µΓ : colimX⊂E Γ, compact KΓ
j (X)→ Kj(C

∗
r (Γ)). (2.18)

2.5.4 Interpretation of the Baum-Connes conjecture in
terms of Paschke duality

There is a commutative diagram

KΓ
j (X)

µ //
∼= �� Kj(C

∗
r (Γ))

∼=�����
Kj+1(D∗Γ(X)/C∗Γ(X))

∂ // Kj(C
∗
Γ(X))

in which the dashed arrow comes from J. Roe theorem about Morita equivalence
of C∗r (Γ) and C∗Γ(X), and the bottom horizontal map is the usual boundary map
for K-theory.

The Baum-Connes conjecture is then equivalent to the fact

colimX⊂EΓ, compact Kj(D
∗
Γ(X)) = 0, for all j, (2.19)

since we have the exact sequence

Kj+1(D∗Γ(X))→ Kj+1(D∗Γ(X)/C∗Γ(X))→ Kj(C
∗
Γ(X))→ Kj(D

∗
Γ(X)).

All what have been said so far can be translated into the framework of real
K-theory. We have a Baum-Connes map

µΓ
R

: KOj(EΓ)→ Kj(C
∗
r (Γ; R)

which we conjecture to be an isomorphism also. We can now state our main
theorem [bk04]:

Theorem 2.21. If µΓ
∞(C) is an isomorphism, then µΓ

∞(R) is an isomorphism.
Hence if Baum-Connes conjecture is true for C, then it is true for R.

This theorem is a consequence of the following fact: if A is a Banach algebra
such that Kj(A

′) = 0 for j = 0, 1, and A′ = A ⊗R C, then Kj(A) = 0 for
j = 0, 1, 2, 3, 4, 5, 6, 7.

This general fact about the K-theory of real Banach algebras need some
results about theKR-theory of Atiyah [a-mf66] which we adapt for our purposes.

For a Banach algebra A (real, not necessary C*) there is a classifying space
K(A) such that

πj(K(A)) = Kj(A).

Denote
Proj2n(A) = {p ∈M2n(A) | p2 = p}.
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Part VIII Real Baum-Connes conjecture

There is an embedding

Proj2n(A)→ Proj2n+2(A), p 7→



p 0 0
0 1 0
0 0 0




Then K(A) = colim Proj2n(A).
More geometrically one can consider on a compact space Z A-bundles (gen-

eralization of vector bundles) E → Z. Each fiber Eζ is a finitely generated
projective A-module. There is a Grothendieck group KA(Z) of A-bundles. For
A = R,C,H we obtain

KR(Z) = KO(Z),

KC(Z) = KU(Z),

KH(Z) = KSp(Z) = KO4(Z).

Theorem 2.22.

1. KA(Z) = [Z,K(A)],

2. KA(Z) = K(A(Z)),

where A(Z) denotes the ring of continuous functions Z → A.

If A is not unital, then

KA(X) = ker(K eA(X)→ KC(pt)) = K(A(X)), C = R,C,H.

How to go from K(A) to K(A′) where A′ = A⊗R C? Main trick is to use

K(A′)
1−t−−→ K(A′), E 7→ E − E,

where t means complex conjugation.
If U

σ−→ V is any map, then we can construct a fibration up to homotopy
T → U

σ−→ V , where

T = {(u, s) | u ∈ U, s : [0, 1]→ V, s(0) = v0, s(1) = σ(u)}
(v0 is a base point in V ).

This way we get a fibration up to homotopy

KSC(A)→ K(A′)
1−t−−→ K(A′),

and an exact sequence of homotopy groups

. . .→ Kn+1(A′)→ Kn+1(A′)→ πn(KSC(A))→ Kn(A′)→ Kn(A′)→ . . . .
(2.20)

There is another fibration

K(A′)→ K(A)×K(A⊗R H)→ KSC(A)

which leads to the exact sequence

. . .→ Kn(A′)→ Kn(A)⊕KSpn(A)→ KSCn(A)→ . . . (2.21)

How to construct and prove (2.20) and (2.21)?
Let Z be a compact space with involution ζ 7→ ζ̄. Denote by Sp,q a sphere in

Rp × Rq with the involution (x, y) 7→ (−x, y). Let KRA(Z) = K(A(Z)), where

A(Z) = {f : Z → A | f(ζ̄) = f(ζ)}.
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Example 2.23.

• If Z = S1,0, that is a two-point space with involution which interchanges
them, then

KRA(S1,0) = K(A′)

K(A′) = K(A(S1,0)).

• If Z = S2,0, then

KRA(S2,0) = KSC(A),

KSC(A) = K(A(S2,0)).

• If Z = S3,0, then

KRA(S3,0) = K(A)⊕KSp(A),

K(A)×KSp(A) = K(A(S3,0))

Theorem 2.24.

K(A(S3,0)) = K(A)×K Sp(A),

K(A(Sp,0)) = K(A)× Ω−p−1(K(A)) for p ≥ 3.

Note that Ω4K(A) = K(A⊗R H).
To prove the theorem one uses the following facts:

• There is a homeomorphism Sp,0 − Sq,0 ∼ Sp−q,0 × Rq,0, and a fibration

Ω−q(Sp−q)→ K(A(Sp,0))→ K(A(Sq,0)).

From the exact sequence

0→ A(S1,0 × R1,0)→ A(S2,0)→ A(S1,0)→ 0

we get the fibrations

Ω−1K(A(S1,0))→ K(A(S2,0))→ K(A(S1,0)),

Ω−1K(A′)→ KSC(A)→ K(A′)
1−t−−→ Ω−2K(A′)︸ ︷︷ ︸

=K(A′)

.

• Bott periodicity:

K(A(R1,1)) ∼= K(A),

Kp,q(A) ∼= K(A(Rp × Rq)),

Kp,q(A) ∼= Kp+1,q+1(A).

Proof is analogous to Atiyah–Bott proof in complex K-theory.

• There is a fibration

Ω−pK(A)
σ−→ K(A)→ K(A(Sp,0))→ Ω−p−1(K(A))
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Theorem 2.25. For p ≥ 0, σ is null-homotopic.

The map σ is induced by the cup-product with an element in Kp(R), but

this element is 0 for p ≥ 3. The map Kn(A)
σ−→ Kn+p(A) is a K∗(A)-

module map, i. e. we have the diagram.

K∗(R)×K∗(A) //
σ×1 �� K∗(A)��

K∗+p(R)×K∗(A) // K∗+p(A)

0→ Kn(A)→ Kn(A(S3,0))→ Kn+3(A)→ 0.

We can give an explicit description of the maps in the sequence:

KSCn(A)→ Kn(A)⊕KSpn(A)→ Kn(A′)→ KSCn+1(A).

but this is not necessary for our purposes.
We can give another interpretation of the homotopy fiber of

K(A′)
1−t−−→ K(A′).

In a more general framework it is the homotopy fiber Y of two maps f, g : X → Z

Y // X f //
g

// Z
Y = {(x, s) | x ∈ X, s : [0, 1]→ Z, s(0) = f(x), s(1) = g(x)}.

ΩX // ΩZ // Y // X f //
g

// Z
πn+1(X) // πn+1(Z) // πn(Y ) // πn(X)

f //
g

// πn(Z)

In our situation Y = KSC(A), X = Z = K(A′), f = Id, g = t.
A famous example is the following (Quillen):

Kalg(Fq)→ Ktop(C)
1−ψq

−−−→ Ktop(C),

where Kalg(Fq) is the algebraic K-theory of Quillen. From this we deduce that

K2n−1(Fq) = Z/(qn − 1)Z,

K2n(Fq) = 0.

We note in passing the following theorem

Theorem 2.26. If A is a stable C*-algebra (A ∼= K ⊗A)

Kalg(A) ∼ Ktop(A).

(Karoubi’s conjecture, proved by Suslin and Wodzicki).

911



Part VIII Real Baum-Connes conjecture

Theorem 2.27 (Quillen). There is a (non canonical) homotopy equivalence

Kalg(A) ∼ K0(A)× B GL(A)+.

The construction of Y +:

∨
S1 fn−→ Y → Y1 →

∨
S2 → SY

∨
S2
α → Y1 → Y + →

∨
S3
α → SY1

H∗(GL(A); Q) = S(Kalg
∗ (A))

Theorem 2.28 (Borel).

H∗(SL(Q)) = Λ[x5, x9, . . .]

with rational coefficients.

It implies that Kn(Z) is finite if n 6= 5 mod 8, and Kn(Z) = Z ⊕ (finite) if
n = 5 mod 8. Also K3(Z(i)) = Z⊕ (finite).

2.5.5 Clifford algebras and K-theory

Clifford algebra
Cp,q := R[e1, . . . , ep, ε1, . . . , εq],

with relations
(ei)

2 = −1, ε2j = 1,

eiej = −ejei, i 6= j etc.

Define
Γp,q := coker(K(Cp,q+2)→ K(Cp,q+1)).

Theorem 2.29 (Atiyah–Bott–Shapiro). There is an isomorphism

Γp,q
θ−→ KR(Rp,q).

The idea is to give another definition of higher K-theory using Clifford al-
gebras. Let Ep,q(X) be the category of vector bundles with a Cp,q-module
structure. Then by Kp,q(X) we denote the Grothendieck group of the functor
Ep,q+1(X)→ Ep,q(X).

Theorem 2.30.
Kp,q(X) = KR(X × Rp,q).

Let E = E0 ⊕ E1 be a Cp,q-graded module.

π : X ×Bp,q π−→ X

π∗E0 ⊗ C
v0+iv1−−−−→ π∗E1 ⊗ C

gives an element in the relative group KR(X ×Bp,q, X × Sp,q) = KRp,q(X).
Let

Γp,q := coker(K(Ep,q+2(X))→ K(Ep,q+1(X))).
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Corollary 2.31. For a space X the Atiyah–Bott–Shapiro map

Γp,q(X)→ KRp,q(X)

is always injective.

For a Banach algebra A

Γp,q(A) := coker(K(Cp,q+2 ⊗A)→ K(Cp,q+1 ⊗A)).

Theorem 2.32. Γp,q(A) injects in Kq−p(A).

Remark 2.33. More details may be found in [kc08].
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Chapter 3

Kasparov theory as a
triangulated category

3.1 Additional structure on Kasparov theory

Triangulated categories formalise some additional structure on the stable ho-
motopy category and derived categories that allows to study homology theories
in this context. Equivariant Kasparov theory, when viewed as a category, is a
triangulated category as well. This section introduces the additional structure
on KK that is involved here. In the following sections, we will verify the axioms
of a triangulated category for KK and explain what they mean.

To begin with, the category KK is additive. This means that morphism sets
form Abelian groups and that there exist finite products and coproducts and
that the latter are equal.

A triangulated category is an additive category T with an automorphism
Σ: T → T and a class E ⊆ Triangles(T ) of exact triangles, satisfying axioms
we will discuss later.

Example 3.1 (The homotopy category of chain complexes over an additive
category A). The objects of this category are chain complexes with entries in A,
the morphisms are homotopy classes of chain maps. This is an additive category.
The suspension automorphism is defined by Σ(Cn, dn) := (Cn−1,−dn−1) on
objects and Σ(fn) = fn−1 on chain maps.

Let

I // i // E p
// // Q,s||

be a semi-split extension of chain complexes, that is, I, E, Q are chain com-
plexes, i, p are chain maps, and s is a grading preserving map that need not
commute with the differential. Hence the chain map

δs : Q→ I[1], δs = dE ◦ s− s ◦ dQ

need not be zero. We call the diagram

I
i−→ E

p−→ Q
δs−→ I[1]
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an extension triangle. A triangle is called exact if it is isomorphic (in the
homotopy category of chain complexes) to such an extension triangle.

Alternatively, we may use mapping cones of chain maps to define the exact
triangles, compare the equivalent description of exact triangles in KK using
extensions or mapping cones of *-homomorphisms below. For chain complexes,
this comparison is quite trivial: the mapping cone of the map δs is naturally
isomorphic to the extension E.

The triangulated category structure on KKG is defined as follows:

• The translation functor or suspension functor in KKG is defined byA[−n] :=
C0(Rn)⊗A for n ≥ 0. This is an automorphism by Bott periodicity.

• A diagram C[−1]
w−→ A

u−→ B
v−→ C in KKG is called an exact triangle

if there are an equivariantly semi-split extension A′
i

 B′
p
։ C′ and

KKG-equivalences α, β, γ such that the following diagram commutes:

C[−1]
w //

∼=γ[−1] �� A
u //

∼=α �� B
v //

∼=β �� C

∼=γ ��
C′[−1]

δ
// A′

[i]
// B′

[p]
// C′;

here δ = δB′ is the class of the extension in KKG
1 (C,A) ∼= KKG

0 (C[−1], A).

The exact triangles are the correct analogue of extensions in KKG. Merely
knowing the KKG-classes of i and p in a C*-algebra extension

I // i // E p // // Q
does not yet determine the boundary maps. This is why we add the class of the
extension in KK1(Q, I) as an additional datum. Once this is done, boundary
maps and various other constructions with extensions become natural.

Theorem 3.2. With the translation automorphism and exact triangles defined
above, KKG becomes a triangulated category.

This amounts to checking that the axioms (TR0)–(TR4) of a triangulated
category are satisfied. We will formulate and verify these axioms in the following
sections. Since the equivariant case is mostly identical to the non-equivariant
one, we restrict attention to KK.

We must warn the reader about a notational problem due to the contravari-
ance of the functor Spaces → C∗−alg, X 7→ C(X). This necessarily creates
confusion at some points because the notion of a triangulated category is de-
veloped for spaces, not for C*-algebras. Fortunately, the opposite of a trian-
gulated category carries a canonical triangulated category structure as well, so
that reversing the arrows does not matter much. But this involves inverting the
suspension automorphism, and rotating certain exact triangles. For instance,
the usual notion of cone in a triangulated category refers to a suspension of the
cone in KK due to this reversal of arrows.
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3.2 Puppe sequences

First we describe the exact triangles in a different fashion using mapping cones
instead of extensions. This is helpful for checking the axioms.

Let f : A→ B be a *-homomorphism. We define its cone as in Section 1.2.3:

Cf := {(a, b) ∈ A⊕ C0((0, 1])⊗B | f(a) = b(1)}.

The maps in the exact sequence SB  Cf ։ A together with the given map f
provide a triangle B[−1] → Cf → A → B called a mapping cone triangle. On
the level of pointed spaces, if f : X → Y is a pointed map, then

Cf = X × [0, 1] ⊔ Y
/

(x, 0) ∼ (∗, 0) ∼ (∗, t), (x, 1) ∼ f(x)

Definition 3.3. A mapping cone triangle is a triangle that is isomorphic to

SB → Cf → A
f−→ B

for some f in KKG.

Theorem 3.4. A triangle in KKG is exact (isomorphic to an extension trian-
gle) if and only if it is isomorphic to a mapping cone triangle.

Proof. First we check that the mapping cone triangle of a map f is isomorphic to
an extension triangle. This uses the mapping cylinder and the extension Cf 

Zf ։ B. Recall the canonical homotopy equivalence A ≃ Zf from Section 1.2.3.
Thus the extension triangle for the mapping cylinder extension is of the form
B[−1] → Cf → A → B. It can be checked that the class of the extension in
KK1(B,Cf ) = KK0(SB,Cf ) is the class of the embedding SB → Cf and that
the maps Cf → Zf → B correspond to the maps Cf → A→ B in the mapping
cone triangle. Hence the mapping cone triangle is isomorphic to the extension
triangle of the mapping cylinder extension.

Conversely, consider a semi-split extension I
i

 E
p
։ Q. Then the canonical

map I → Cp is a KK-equivalence (compare Section 1.2.3 once again). Hence
the extension triangle is isomorphic to a triangle SQ → Cp → E → Q. It can
be checked that the maps in the latter triangle are the ones in the mapping
cone triangle. Hence any extension triangle is isomorphic to a mapping cone
triangle.

As a result, if F is a stable, semi-split exact functor, then we get a Puppe
exact sequence

· · · → F (SCf )→ F (SA)→ F (SB)→ F (Cf )→ F (A)
F (f)−−−→ F (B)

Thus we may view F (Cf ) as the relative version of F for the map f . Actually,
Puppe sequences tend to be easier to establish than long exact sequences for
extensions (see [?]).

3.3 The first axioms of a triangulated categories

A triangulated category is an additive category with a suspension automor-
phism and a class of exact triangles, subject to the axioms (TR0)–(TR4). Here
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we discuss the more elementary axioms (TR0)–(TR3). Roughly speaking, they
formalise the steps needed to establish that KK has long exact sequences in
both variables.

Axiom 3.5 (TR0). If a triangle is isomorphic to an exact triangle, then it is

exact. Triangles of the form 0→ A
id−→ A→ 0 are exact.

Axiom 3.6 (TR1). Any morphism f : A → B can be embedded in an exact
triangle

A
f−→ B → C → A[1].

We will see in Proposition 3.13 that this exact triangle is unique up to
isomorphism and call C (or C[−1]—there are different conventions) a cone for f .

Proof. We verify that KK satisfies (TR1) using extension triangles. Let f ∈
KK0(A,B) ∼= KK1(SA,B) and recall that elements of the latter group are
equivalence classes of C*-algebra extensions. Thus f generates a semi-split C*-
algebra extension B ⊗K E ։ SA, which yields an extension triangle of the
required form:

S2A //
∼= Bott�� B ⊗K

∼= stability�� // E // SA
A

f
// B,

where we use Bott periodicity and C*-stability of KK.

Axiom 3.7 (TR2). The triangle

B[−1]
u−→ C

v−→ A
w−→ B

is exact if and only if the triangle

A[−1]
−w[−1]−−−−−→ B[−1]

−u−−→ C
−v−−→ A

is exact.

We can get rid of an even number of signs because of the isomorphism

A[−1]

id �� −w[−1]// B[−1]

id �� −u // C
−id �� −v // A

−id ��
A[−1]

−w[−1]
// B[−1] u

// C v
// A

Applying (TR2) three times, we get that

B[−2]
−u[−1]−−−−→ C[−1]

−v[−1]−−−−→ A[−1]
−w[−1]−−−−−→ B[−1]

is exact if and only if B[−1]
u−→ C

v−→ A
w−→ B is exact.

The reason for the signs is that the suspension of a mapping cone triangle
for f is the mapping cone triangle for Sf , but this involves a coordinate flip
on R2 on B[−2] = C0(R2, B), which generates a sign.
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Part VIII The first axioms of a triangulated categories

Proof. Now we verify that (TR2) holds for KK. Let

B[−1]
u−→ C

v−→ A
w−→ B

be exact, that is, isomorphic to an extension triangle. We may assume that
the triangle itself is already an extension triangle of some C*-algebra extension
C  A ։ B. The mapping cone of w fits in an extension SB  Cw ։ A,
which yields an extension triangle SB → Cw → A→ B. Now recall that Cw is
canonically KK-equivalent to C. Hence the extension triangle of the extension

SB  Cw ։ A is isomorphic to A[−1]
−w[−1]−−−−−→ B[−1]

−u−−→ C
−v−−→ A which is

therefore exact. Using Bott periodicity, we also get the converse implication.

Definition 3.8. A functor F from a triangulated category to an Abelian
category is called homological if

F (C)→ F (A)→ F (B)

is exact for any exact triangle

B[−1]→ C → A→ B.

Proposition 3.9. If F is homological, then any exact triangle yields a long
exact sequence

· · · → Fn(C)→ Fn(A)→ Fn(B)→ Fn−1(C)→ · · ·

where Fn(A) := F (A[−n]), n ∈ Z.

Proof. Use axiom (TR2) repeatedly to get exactness everywhere.

If F is a semi-split exact, split-exact, C*-stable functor on C∗−alg, then
the induced functor on KK is homological and hence has long exact sequences
for extensions that extend in both directions. This automatic extension of long
exact sequences in both directions is the main point of axiom (TR2).

Axiom 3.10 (TR3). Consider a commuting solid arrow diagram with exact
rows

B[−1]

β[−1] �� // C
∃γ�� // A

α�� // B
β��

B′[−1] // C′ // A′ // B′
There exists γ : C → C′ making the diagram commutative (but it is not unique).

Proof. We verify (TR3) for KK. We may assume that the rows are mapping
cone triangles:

SB

Sβ �� // Cf // A
α�� f // B

β��
SB′ // Cf ′ // A′

f ′
// B′

We know that α is a KK-cycle for A → A′, β is a KK-cycle for B → B′, and
there is a homotopy H from β ◦ f to f ′ ◦ α (because [β ◦ f ] = [f ′ ◦ α] in KK).
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We glue these three data together to a KK-morphism from Cf to Cf ′ according
to the following picture:

More precisely, we are given the following Kasparov cycles:

α = (HαA, ϕα, Fα ∈ B(Hα)),

β = (HβB , ϕβ , F β ∈ B(Hβ)),

H = (HHC0((0,1],B′), ϕ
H , FH ∈ B(HH)).

These satisfy
H |0 = β ◦ f = (Hβ , ϕβ ◦ f, F β),

H |1 = f ′ ◦ α = (Hα ⊗f ′ B′, ϕα ⊗ idB′ , Fα ⊗ idB′).

Then
Hβ ⊗ C0((0, 1

2 ])⊕Hβ at 1
2
HH ⊕Hα⊗f′B′ Hα

is a Hilbert module over the mapping cone of f ′; here we reparametrise HH
over the interval [12 , 1]. Now ϕβ⊗C0((0, 1

2 ]), ϕH , ϕα glue to a *-homomorphism
ϕγ : A → B(Hγ). We define the operator F similarly. This yields the desired
Kasparov cycle for KK0(Cf , Cf ′).

The following proposition is the main point of axiom (TR3):

Proposition 3.11. Let D be an object of a category T . Then the functor
A → T (D,A) is homological. Dually, A 7→ T (A,B) is cohomological for every
object B in T .

Proof. Let
B[−1]→ C → A→ B

be an exact triangle in T . We have to verify the exactness of

T (D,C)→ T (D,A)→ T (D,B).

The composite map T (D,C) → T (D,A) → T (D,B) vanishes because already
the composition C → A→ B vanishes (exercise). Exactness at T (D,A) follows
from axiom (TR3):

0 //
0 �� D

f̂�� D //
f�� 0

0��
B[−1] // C u // A v // B.

If v ◦ f = 0, then we get f̂ : D → C with f = f̂ ◦ u.

In particular, this shows that KKG(−, D) is homological and KKG(D,−) is
cohomological.

Since many general results on triangulated categories only use the axioms
(TR0)–(TR3), we postpone the discussion of the last axiom (TR4).
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Lemma 3.12 (Five Lemma). Consider a morphism of exact triangles

∗ //
β[−1] �� ∗ //

γ �� ∗ //
α �� ∗

β ��∗ // ∗ // ∗ // ∗
If two of α, β, γ are invertible, then so is the third.

Proof. Assume α, β are invertible. Then T (D,α), T (D, β), and T (D,α[−1]),
T (D, β[−1]) are invertible. The exact sequences from Proposition 3.11 yield a
diagram

T (D,A[−1])

T (D,α[−1]) ∼=�� // T (D,B[−1])

T (D,β[−1]) ∼=�� // T (D,C) //
T (D,γ) �� T (D,A)

T (D,α) ∼=�� // T (D,B)

T (D,β) ∼=��
T (D,A′[−1]) // T (D,B′[−1]) // T (D,C′) // T (D,A′) // T (D,B′)

Since the rows are exact, the Five Lemma yields that T (D, γ) is invertible.

Proposition 3.13. Let f : A→ B be a morphism. There is up to isomorphism
a unique exact triangle

B[−1]→ C → A
f−→ B

Proof. Existence follows from (TR1). Given two such exact triangles, Axiom
(TR3) yields γ in the following diagram:

B[−1] // C //
γ�� A // B

B[−1] // C′ // A // B
The Five Lemma 3.12 shows that γ is invertible, which gives the asserted unique-
ness.

Hence the object C in an exact triangle B[−1]→ C → A
f−→ B is unique up

to isomorphism.
The next lemma completely classifies triangles that are trivial in the sense

that either one of the objects or one of the maps in the triangle vanishes.

Lemma 3.14. Let
B[−1]

u−→ C
v−→ A

w−→ B

be an exact triangle. Then

1. B = 0 if and only if v is invertible.

2. u = 0 if and only if w is an epimorphism, if and only if w is a split
epimorphism, if and only if C → A→ B is a split extension (A ∼= C⊕B).

Proof.
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1. If v is invertible, then
0→ C

v−→ A→ 0

is an exact triangle: use (TR0) and the isomorphism of triangles

0 // C v //
∼= �� A // 0

0 // A A // 0
Conversely, assume B = 0. The long exact sequence for T (D,−) shows
that T (D,B) = 0 if and only if T (D, v) is invertible. By the Yoneda
Lemma, T (D,B) = 0 for all D if and only if B = 0, and T (D, v) is
invertible for all D if and only if v is invertible.

2. If the triangle splits, then w is a split epimorphism and, a fortiori, an
epimorphism. If w is an epimorphism, then u = 0 because u[−1] ◦ w = 0.
It remains to show that the triangle splits if u = 0. The exactness of

T (B,A)
w∗−−→ T (B,B)

u∗=0−−−→ T (B,C[1])

shows that there is s : B → A with w ◦ s = idB. For any D, the exactness
of

· · · 0−→ T (D,C)→ T (D,A)→ T (D,B)
0−→ · · ·

implies that T (D, v) and T (D, s) give isomorphism

T (D,C)⊕ T (D,B)→ T (D,A).

By the Yoneda Lemma, (s, v) induce an isomorphism C ⊕B ∼=−→ A.

Furthermore, we claim that any split triangle is exact. Given B,C embed
the coordinate projection w : B ⊕ C → B in an exact triangle

B[−1]
u−→ D → B ⊕ C w−→ B

using axiom (TR1). Since B ⊕ C w−→ B is an epimorphism we have u = 0. The
long exact sequence

. . .
0−→ T (X,D)→ T (X,B ⊕ C)→ T (X,B)

0−→ . . .

implies T (X,D) ∼= T (X,C) for all X ∈ T . Hence D ∼= C by the Yoneda
Lemma. A similar argument yields the following additivity property:

Lemma 3.15. If
Bi[−1]→ Ci → Ai → Bi

are exact triangles for all i ∈ I, and direct sums exist, then

⊕

i∈I
Bi[−1]→

⊕

i∈I
Ci →

⊕

i∈I
Ai →

⊕

i∈I
Bi

is exact. The same holds for products.
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What are the morphisms between triangulated categories? These should
be additive functors that are compatible with suspensions and preserve exact
triangles. But there is a small issue to keep in mind here. A stable functor
T → T ′ between two triangulated categories is a pair consisting of a functor
F : T → T ′ and natural isomorphisms F (A[1]) ∼= (FA)[1] for all objects A of T .
A stable functor is called exact if it maps any exact triangle B[−1] → C →
A→ B to an exact triangle (FB)[−1]→ FC → FA→ FB; the latter involves
the map (FB)[−1] ∼= F (B[−1])→ F (A).

For instance, the restriction and induction functors provide exact functors
KKG ⇆ KKH for a closed subgroup H ⊆ G, and the descent functor is an exact
functor KKG → KK. If F : A → A′ is additive functor between two additive
categories, then the induced functor between the homotopy categories of chain
complexes

Ho(F ) : Ho(A)→ Ho(A′)
is exact. In these cases, the natural isomorphism that compares the suspen-
sions is the obvious one—this happens in most cases of interest. The following
example is an exception where the natural transformation is crucial:

Example 3.16. Let Σ: T → T be the suspension functor, and

A
u−→ B

v−→ C
w−→ A[1]

an exact triangle. The triangle

A[1]
u[1]−−→ B[1]

v[1]−−→ C[1]
w[1]−−→ A[2]

could be non-exact: we have to add signs. But when we view Σ as a stable
functor with the natural isomorphism

Σ(A[1])
−id−−→ (ΣA)[1]

then it becomes an exact functor.

3.4 Cartesian squares and colimits

Recall that a homological functor on KK is essentially the same as a semi-split
exact, split-exact C*-stable functor on the category of (separable) C*-algebras.
Besides the assertion that such functors descend to functors on KK, this asserts
that they have long exact sequences for semi-split extensions. We have already
seen that this is equivalent to the existence of Puppe sequences for mapping
cones. In this section, we examine some other basic exact sequences associated
to pullbacks, pushouts, and inductive limits, following [n-a01, mn06].

Definition 3.17. A square

X

β �� α // Y
β′��

X ′
α′ // Y ′
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is called homotopy Cartesian with differential γ : Y ′[−1]→ X if

Y ′[−1]
γ−→ X

(
α
β

)
−−−→ Y ⊕X ′ (β′,−α′)−−−−−→ Y ′ (3.1)

is exact.

We can embed any given pair of maps α, β with the same source in a
homotopy Cartesian square using axiom (TR1) for the map

( α
β

)
(homotopy

pushout). Similarly, we may embed a given pair of maps α′, β′ with the same
range into a homotopy Cartesian square (homotopy pullback).

If F is a homological functor, then the long exact sequence for the exact
triangle (3.1) is a Mayer–Vietoris exact sequence for the original homotopy
Cartesian square.

Definition 3.18. Let (An, α
n+1
n : An → An+1)n∈N be an inductive system in a

triangulated category with direct sums. We define its homotopy colimit

holim
−→

(An, α
n+1
n : An → An+1)n∈N

as the cone of the map ⊕

n∈N

An
id−S−−−→

⊕

n∈N

An,

S|An = αn+1
n : An → An+1,

That is, we require an exact triangle

⊕

n∈N

An
id−S−−−→

⊕

n∈N

An −→ holim
−→

(An, α
n+1
n ) −→

⊕

n∈N

An[1].

Since the cone of a morphism is unique up to isomorphism, homotopy pull-
backs, homotopy pushouts, and homotopy colimits are unique up to isomor-
phism. But since this isomorphism is not canonical—it merely exists—these
constructions are not functorial. This lack of functoriality of various construc-
tions sometimes creates problems when working with triangulated categories.

Proposition 3.19. If F : T → Ab is homological and commutes with direct
sums, then

F (holim
−→

An) = lim
−→

F (An).

If F̃ : T → Abop is cohomological and F̃ (
⊕
An) =

∏
F̃ (An), then there is an

exact sequence

lim
←−

1 F̃ (An)  F̃ (holim
−→

An) ։ lim
←−

F̃ (An),

called Milnor lim
←−

1-sequence.

Proof. Apply F to the exact triangle defining holim
−→

. Since F is homological

and commutes with direct sums, we get an exact sequence

⊕
Fn(Am)

id−S−−−→
⊕

Fn(Am)→ Fn(holim
−→

An)→
⊕

Fn−1(Am) 
⊕

Fn−1(Am).
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Now use that a sequence A→ B → C → D → E is exact if and only if

coker(A→ B)→ C → ker(D → E)

is an extension. Since the inductive limit functor for Abelian groups is exact,
we have

coker(id− S) = lim
−→

Fn(Am), ker(id− S) = 0.

The assertion in the homological case follows. In the cohomological case, the
argument is similar, but with arrows reversed and sums replaced by products.
By definition,

ker(id− S) = lim
←−

Fn(Am), coker(id− S) = lim
←−

1 Fn(Am),

so that we get the asserted exact sequence.

Example 3.20. Let e : A→ A be an idempotent morphism. The homotopy col-
imit of the constant inductive system A

e−→ A
e−→ A

e−→ · · · is a range object for e.
Therefore, any triangulated category with countable direct sums is idempotent
complete.

The homotopy constructions above satisfy Mayer–Vietoris sequences and
Milnor lim

←−
1-sequences by definition. If our triangulated category is the homo-

topy category of some underlying (model) category, then we may ask whether
pullbacks, pushouts, and colimits in this underlying category become homotopy
pullbacks, pushouts, and colimits in the triangulated category, respectively. For
KK, this leads to the following questions:

1. Let

X

β �� α // Y
β′��

X ′
α′ // Y ′

be a pullback diagram of C*-algebras, that is,

X = {(x′, y) ∈ X ′ × Y |α′(x′) = β′(y)}.

When is its image in KK homotopy Cartesian?

2. Let (An, αn) be an inductive system of C*-algebras. Is its inductive limit
lim
−→

(An, αn) also a homotopy colimit?

The analogous question for C*-algebra pushouts, that is, free products of C*-
algebras with amalgamation, has been studied by Germain and Thomsen.

The second question is answered by the following theorem:

Theorem 3.21 ([mn06]). If all An are nuclear, then lim
−→

(An, αn) is a homotopy

colimit.

In general, the colimit is a homotopy colimit if a certain extension built from
the data is semi-split. In the nuclear case, this is automatically the case.
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Now we discuss the answer to the first question in some detail. First we
compare the pullback X to a homotopy pullback

H = {(x′, y′, y) ∈ X ′ × C(I, Y ′)× Y | α′(x′) = y′(0), β′(y) = y′(1)}.

This really is a homotopy pullback in the sense of our definition because it fits
into a semi-split extension

SY ′  H ։ X ′ ⊕ Y,

whose class in KK1(X ′⊕Y, SY ) ∼= KK0(X ′⊕Y, Y ′) is (β′,−α′). This last claim
follows from the morphisms of exact sequences

SY ′ // // H // // X ′ ⊕ Y
SY ′ // // C̃α′

OO // // X ′OO SY ′ // // H // // X ′ ⊕ Y
SY ′ // // Cβ′

OO // // YOO
and the naturality of the boundary maps for C*-algebra extensions. Here C̃α
denotes the reflected mapping cone; the reflection is responsible for the sign.

Definition 3.22. The pullback square is called admissible if the canonical map
X → H is a KK-equivalence.

Since H is a homotopy pullback, the pullback X is a homotopy pullback as
well if and only if the pullback square is admissible.

Proposition 3.23. If α′ is a semi-split epimorphism, then so is α, and the
pullback square is admissible. Thus the pullback is a homotopy pullback in this
case and we get a Mayer–Vietoris exact sequence

· · · → Fn(X)→ Fn(X ′)⊕ Fn(Y )→ Fn(Y ′)→ Fn−1(X)→ · · ·

if F is semi-split exact, split-exact, and C*-stable.

Proof. If α′ is a semi-split epimorphism, then so is α, and both have the same
kernel. Denote this kernel by K. The canonical map H → Y is a semi-split
epimorphism, and its kernel is naturally isomorphic to the mapping cone of α′.
The Five Lemma applied to the morphism of extensions

Cα′ // α // H // // Y
K // //OO

X // //OO
Y

shows that the embedding X → H is a KK-equivalence if and only if the embed-
ding K → Cα′ is a KK-equivalence. But the latter is always the case because K
is also the kernel of α′ and α′ is a semi-split epimorphism (compare the argument
after (1.8)).
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3.5 Versions of the octahedral axiom

The fourth axiom of a triangulated category is called octahedral axiom because
its original formulation could be drawn on the surface of an octahedron. This
statement is equivalent to the following:

Axiom 3.24 (TR4). Given the solid arrows in the diagram

X
α1 // Y

β1�� α2 // Z
δ1�� α3 // X [1]

X
γ1 // Z γ2 //

β2�� V
γ3 //

δ2�� X [1]

α1[1]��
W

β3�� W
β3 //

δ3�� Y [1]

Y [1]
α2[1] // Z[1]

such that (α1, α2, α3), (β1, β2, β3) and (γ1, γ2, γ3) are exact triangles, there is
an exact triangle (δ1, δ2, δ3) so that the whole diagram commutes.

Since any map can be embedded in an exact triangle, which is unique up to
isomorphism, we can recover the solid arrows in the diagram above given only
the two composable maps α1 and β1. The assertion is that the cones of these
maps and of their composition β1 ◦ α1 = γ1 are connected by an exact triangle
whose maps make the whole diagram commute.

There are several equivalent reformulations of axiom (TR4). We mention a
particularly simple one due to Dlab, Parshall and Scott, following [?].

Axiom 3.25 (TR4’). Every pair of maps

X //�� Y

X ′

can be completed to a morphism of exact triangles

X //�� Y //�� Z
w // X [1]��

X ′ // Y ′ v′ // Z // X ′[1]

such that the first square is homotopy Cartesian with differential w ◦ v′ : Y ′ →
X [1].

Axiom 3.26 (TR4”). Any homotopy Cartesian square

X //�� Y��
X ′ // Y ′
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with differential δ : Y ′ → X [1] may be completed to a morphism of exact triangles

X //�� Y //�� Z
w // X [1]��

X ′ // Y ′ v′ // Z // X ′[1]

with δ = w ◦ v′.
Proposition 3.27 ([?]). Axioms (TR4), (TR4’), (TR4”) are equivalent.

Each of these equivalent formulations of the octahedral axiom can be checked
with moderate effort for KK (see [mn06]).

3.6 Localisation of triangulated categories

Roughly speaking, localisation enlarges a ring (or a category) by adding inverses
of certain ring elements (or morphisms). In general, strange things can happen
here due to non-commutativity. But in all examples we are going to study, the
localisation has a rather simple description.

The motivating example is the derived category of an Abelian category,
which is defined as a localisation of its homotopy category of chain complexes.
For any additive category A, the homotopy category of chain complexes in A is
a triangulated category (see Example 3.1). This is a purely formal construction
and not yet homological algebra. Only if A carries further structure, say, A is
Abelian, can we talk about things like homology of chain complexes and exact
chain complexes. On the categorical level, this allows us to pass to the derived
category, in which exact chain complexes become zero and quasi-isomorphisms
become invertible.

Definition 3.28. The localisation of a category C at a family of morphisms S
is a category C[S−1] together with a functor F : C → C[S−1] such that

1. F (s) is invertible for all s ∈ S;

2. F is universal among functors with this property, that is, if G : C → C′ is
another functor with G(s) invertible for all s ∈ S, then there is a unique
factorisation

C F //
G ��>>>>>>>> C[S−1]

∃!||
C′

In good cases, we have a calculus of fractions that allows us to describe
the morphisms in the localisation more concretely. The conditions needed for
this generalise the Ore condition for localisation of rings. Mainly, we need a
“commutation relation” that turns fractions of the form f ◦ s−1 into fractions
of the form t−1 ◦ g. More precisely, for all f ∈ C and s ∈ S, there are g ∈ C
and t ∈ S with tf = gs, that is, fs−1 = t−1g. We also assume that S is closed
under composition and that if f1s = f2s for some s ∈ S, then there is t ∈ S
with tf1 = tf2. Under these assumptions, any morphism in the localisation is
of the form s−1 ◦ f for some s ∈ S, f ∈ C.
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Example 3.29. Let A be an Abelian category, let C be the homotopy category
of chain complexes in A, and let S be the class of all quasi-isomorphisms, that
is, all chain maps that induce an isomorphism on homology. This satisfies the
above conditions.

In good cases, we expect a localisation of a triangulated category to be again
triangulated. Recall that a morphism in a triangulated category is invertible if
and only if its cone is zero. Therefore, when we want to localise a triangulated
category we may equally well specify which objects should become zero instead
of which maps should be inverted.

Definition 3.30. A class N of objects in a triangulated category T is called
thick if it satisfies the following conditions:

1. 0 ∈ N ;

2. if A⊕B ∈ N then A,B ∈ N ;

3. if the triangle A→ B → C → A[1] is exact and A,B ∈ N , then C ∈ N .

Example 3.31. The object-kernel {A ∈ T | G(A) ∼= 0} of an exact functor is
thick.

Definition 3.32. Given a thick subcategory N ∈ T , an N -equivalence is a
morphism in T whose cone belongs to N .

The localisation of T atN is defined as the localisation at theN -equivalences:

T /N := T [(N − equivalences)−1].

Theorem 3.33 ([n-a01]). Given a thick subcategory N in a (small) triangu-
lated category T , the N -equivalences have a calculus of fractions, T /N is again
a triangulated category, and the functor T → T /N is exact. Furthermore, the
kernel of the functor T → T /N is exactly N , and a morphism in T becomes
invertible in T /N if and only if it is an N -equivalence.

3.7 Complementary subcategories and localisa-

tion

Definition 3.34. The left orthogonal complement of a class of objects N in T
is

N⊢ := {L ∈ T | T (L,N) = 0 for all N ∈ N}.

Definition 3.35. A pair (L,N ) of thick subcategories in a triangulated cat-
egory T is called complementary if L ⊆ N⊢ and for each A ∈ T , there is an
exact triangle L→ A→ N → L[1] with L ∈ L and N ∈ N .

Theorem 3.36. Let (L,N ) be complementary.

(1) L = N⊢ and N = L⊣ = {N ∈ T | T (L,N) = 0 for all N ∈ N}.

(2) The exact triangle L→ A → N → L[1] with L ∈ L, N ∈ N is unique up
to canonical isomorphism and functorial in A.
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(3) The functors T → L, A 7→ L and T → N , A 7→ N are exact.

(4) L → T → T /N and N → T → T /L are equivalences of categories.

Example 3.37. Let T be the homotopy category Ho(A) of chain complexes
over an Abelian category A and let N be the subcategory of exact chain
complexes, which is thick. Let P ∈ A be projective and view it as a chain
complex concentrated in degree zero. Then homotopy classes of chain maps
P → C∗ for a chain complex C• are in bijection with maps P → Ho(C∗): a map

· · · // C1
d1 // C0

d0 // C−1
// · · ·

· · · // 0 //OO
P //f

OO
0 //OO

· · ·

is a chain map if and only if f(P ) ⊆ ker(d0), and it is a boundary if and only
if f(P ) ⊆ d1(C1) because P is projective; moreover, a map ker(d0)/d1(C1) lifts
to a map to ker(d0) because P is projective. As a consequence, P ∈ N⊢.

Notice that N⊢ is always thick and closed under direct sums. Subcategories
with both properties are called localising.

Definition 3.38. The smallest localising subcategory containing a class of ob-
jects P is called the localising subcategory generated by P and denoted by 〈P〉.

We return to Example 3.37. Let P0, P1 be projective in A, and let f be a
map P1 → P0, viewed as a chain map. Its cone is the chain complex

Cf := (· · · → 0→ P1
f−→ P0 → 0→ · · · ),

Iterating this construction, we can get any chain complex of projective modules
of finite length. All these chain complexes therefore belong to the localising
subcategory generated by the projective objects of A.

Theorem 3.39 (Spaltenstein, see also [?]). Let A be an Abelian category
with enough projectives and countable direct sums. Let N ⊆ Ho(A) be the full
subcategory of exact chain complexes, and let L be the localising subcategory of
Ho(A) generated by the projective objects of A. Then (L,N ) is complementary.

The functor L : Ho(A)→ L replaces a module M by a projective resolution

L(M) = (· · · → P2 → P1 → P0 → 0→ · · · ).

The natural map L(M)→M is the augmentation map P0 →M of the resolu-
tion. Its cone is the augmented chain complex

N(M) = (· · · → P2 → P1 → P0 →M → 0→ · · · ),

which belongs to N . Spaltenstein’s Theorem generalises this construction to
the case where M is a chain complex.

Example 3.40. Let T = KK, N = {A ∈ KK | K∗(A) = 0}. Then C ∈ N⊢
because KK∗(C, A) = K∗(A) = 0 for A ∈ N . Let B be the localising subcategory
generated by C; this subcategory is called the bootstrap category. It is exactly
the class of all C*-algebras A with the property that the Universal Coefficient
Theorem computes KK∗(A,B) for all B.
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Theorem 3.41. (B,N ) are complementary subcategories of KK.

The functor L : KK → B replaces a separable C*-algebra by one in the
bootstrap class with the same K-theory. This is determined uniquely by the
Universal Coefficient Theorem.

We will prove Theorems 3.39 and 3.41 at the end of Section 3.8 after devel-
oping some more machinery needed for the proof.

Let T be triangulated and monoidal with tensor unit 1, and let L and N be
thick subcategories with L ⊗ T ⊆ L and N ⊗ T ⊆ N . If L ⊆ N⊢ and there is
an exact triangle

L→ 1→ N → L[1]

with L ∈ L and N ∈ N , then (L,N ) is complementary because the triangle

L⊗A→ 1⊗A→ N ⊗A→ L⊗ A[1]

is exact and has L ⊗A ∈ L and N ⊗ A ∈ N for any A ∈ T . This trick reduces
the study of localisation to the study of a single exact triangle. This is the
heart of the Dirac–dual Dirac method for proving injectivity or bijectivity of
the Baum–Connes assembly map, see [mn06]. This is why some exterior tensor
product structure on KKG for a quantum group G is highly desirable.

3.7.1 Proof of Theorem 3.36

Let (L,N ) be complementary subcategories.

1. L = N⊢. The assumptions include L ⊆ N⊢. Take A ∈ N⊢ and embed it
in an exact triangle L → A → N → L[1] with L ∈ L and N ∈ N . The
map A → N vanishes because A ∈ N⊢. Lemma 3.14 shows that A is a
direct summand of L, hence A ∈ L because L is thick.

2. Consider a diagram

L // A //
f�� N // L[1]

L′ // A′ // N ′ // L′[1]

with exact rows, L,L′ ∈ L, and N,N ′ ∈ N .

In the long exact sequence

· · · → T1(L,N ′)→ T0(L,L′)→ T0(L,A′)→ T0(L,N ′)→ · · · ,

the map T0(L,L′)→ T0(L,A′) is an isomorphism because T∗(L,N ′) = 0.

Hence there is a unique map L
Lf−−→ L′ that makes the solid arrow diagram

L //
Lf�� A //

f�� N //
Nf�� L[1]

Lf [1]��
L′ // A′ // N ′ // L′[1]
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Part VIII Complementary subcategories and localisation

commute. A dual argument shows that there is a unique mapNf : N → N ′

that makes the square AA′NN ′ commute. At the same time, axiom (TR3)
yields a map Nf that extends (f, Lf ) to a morphism of exact triangles.
This can only be the unique map found above. As a result, there is a
unique morphism of exact triangles extending f . It follows from this that
the exact triangle L → A → N → L[1] is unique up to a canonical
isomorphism of exact triangles and functorial.

The argument also shows that T∗(Λ, A) ∼= T∗(Λ, L) for all Λ ∈ L, that is,
the functor T → L, A 7→ L is right adjoint to the embedding L → T .
Similarly, the functor N : T → N is left adjoint to the embedding N → T .

3. Next we check that these functors L and N are exact.

For an exact triangle
L

u−→ A
v−→ N

w−→ L[1]

the triangle

L[1]
u−→ A[1]

v−→ N [1]
−w−−→ L[2]

is exact. This shows that L and N are stable.

Let A→ B → C → A[1] be an exact triangle in T . Axiom (TR1) provides
an exact triangle

LA→ LB → X → LA[1],

and axiom (TR3) a map X
f−→ C so that

LA

πA�� // LB
πB�� // X

f�� // LA[1]��
A // B // C // A[1]

is a morphism of exact triangles. Since L is thick, X ∈ L. Let Λ ∈ L,
then the maps πA and πB induce isomorphisms on T∗(Λ,−). By the Five
Lemma, the map f also induces an isomorphism T∗(Λ, X) ∼= T∗(Λ, C).
Thus the cone of f belongs to N = L⊣. It follows that X ∼= LC. The
maps LB → X → LA[1] can only be the unique maps that lift the maps
B → C → A[1]. Hence the exact triangle we have constructed is the
L-image of A → B → C → A[1]. Thus the functor L is exact. A similar
argument shows that N is exact.

4. Let T ′ be the category with the same objects as T and T ′(A,B) :=
T (LA,LB). Let F : T → T ′ be the functor that is the identity on objects
and L on morphisms. The canonical map LA → A is an N -equivalence.
The functor L maps N -equivalences to isomorphisms because L is exact
and L(A) = 0 for A ∈ N . If another functor G maps N -equivalences to
isomorphisms, we get

G(LA) //
∼=�� G(LB)

∼=��
G(A) // G(B)
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so that elements of T ′(A,B) give maps G(A)→ G(B). This construction
shows that T ′ with the functor F : T → T ′satisfies the universal property
of T [(N − equivalences)−1].

Since the canonical map LA → A is invertible in T if A ∈ L, the map
L2A→ LA is always invertible, so that LA→ A becomes an isomorphism
in T ′. Hence the restriction of F to L is essentially surjective and fully
faithful. Therefore, T ′ is equivalent to L as claimed. The equivalence
T ′ → L is the functor F ∗ that is L on objects and the identity on mor-
phisms. There is a unique triangulated category structure on T ′ for which
the equivalence of categories F ∗ is an exact functor. Since the functor L
is exact, the functor F : T → T ′ is exact for this triangulated category
structure as well. Furthermore, if G : T → T ′′ is an exact functor vanish-
ing on N , then the induced functor G : T ′ → T ′′ is exact. Therefore, T ′
is also a localisation of T in the category of triangulated categories.

3.8 Homological algebra in triangulated categories

It is usually hard to establish that a given pair of subcategories is complemen-
tary. Even the rather classical case of Spaltenstein’s Theorem 3.39 is non-trivial.
In this section, we develop machinery that will, eventually, help us to do so; but
it will take a while until we get to that point. The following theory is developed
in [?] and [?], following earlier work by Daniel Christensen ([?]) and Apostolos
Beligiannis ([?]).

We want to use some homological functor F : T → A as a probe to study a
triangulated category T ; here A is some Abelian category.

Examples 3.42. In the following, we will consider the following examples.

• T = Ho(A) for an Abelian category A, and F is the homology functor
Ho(A)→ AZ

• T = KK and F = K∗ : KK→ AbZ/2

• T = KK(C,∆) and F = K∗ : KK → AbZ/2, where (C,∆) is a compact
quantum group

In these examples, the target category has its own translation (suspension)
automorphism, and F is a stable functor, that is, it intertwines the translation
functors (up to a natural isomorphism as in the definition of an exact functor).

Although we will use the functor F in our definitions, it is checked in [?]
that they only depend on its morphism-kernel

I(A,B) = (kerF )(A,B) := {ϕ : A→ B | F (ϕ) = 0}.

This is a finer invariant than the object-kernel {A | F (A) ∼= 0}. The morphism-
kernel kerF is an ideal in T invariant under the translation automorphism. Not
all such ideals are possible.

Definition 3.43. An ideal I in a triangulated category is called homological
if it is the morphism-kernel of a stable homological functor.

932



Part VIII Homological algebra in triangulated categories

An intrinsic characterisation of homological ideals is possible but somewhat
complicated (Beligiannis develops this in a different notation in [?]). A homo-
logical ideal allows us to carry over various notions from homological algebra
to our category T . The starting point is a good notion of exactness for chain
complexes—all other notions follow from that.

Definition 3.44. Let I = kerF . We call a chain complex (Cn, dn) in T kerF -
exact in degree n ∈ Z if

F (Cn+1)→ F (Cn)→ F (Cn−1)

is exact at F (Cn).

See [?] for a characterisation of kerF -exact chain complexes that manifestly
only depends on kerF .

Definition 3.45. An object A ∈ T is I-projective if the functor T (A,−) maps
I-exact chain complexes in T to exact chain complexes.

Lemma 3.46. The following statements are equivalent for A ∈ T :

1. A is I-projective;

2. the map T (A,B)
f∗−→ T (A,C) vanishes for all f ∈ I(B,C);

3. I(A,C) = 0 for all C ∈ T .

Definition 3.47. An I-projective resolution of A ∈ T is an I-exact chain
complex

· · · → P2 → P1 → P0 → A→ 0→ · · ·
with I-projective Pi.

Projective resolutions, if they exist, may be used to define derived functors.
The issue is whether there are enough projective objects and how to construct
them. Enough projective objects means, of course, that any object has an I-
projective resolution.

We use (partially defined) left adjoints to construct projective objects. In
good cases, this yields all I-projective objects and shows that there are enough
of them. Let F : T → A be a stable homological functor with kerF = I. Its
left adjoint F⊢ is defined on B ∈ A if there is B′ := F⊢(B) with a natural
isomorphism T (B′, D) ∼= A(B,F (D)) for all D ∈ T . This defines a functor on
a subcategory of A.

The functor T (F⊢(B),−) factors as follows:

T F−→ A A(B,−)−−−−−→ Ab

D 7→ F (D) 7→ A(B,F (D))

and therefore vanishes on I = kerF . This means that all objects of the form
F⊢(B) are I-projective. Now we examine what happens in our model examples
(Examples 3.42).
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1. Let T = Ho(A), F = H∗ : Ho(A) → AZ. Assume that the Abelian cate-
gory A has enough projective objects. Recall that if P ∈ A is projective,
then T (P,C∗) = A(P,H∗(C∗)) (see Example 3.37). Thus H⊢∗ is defined on
projective objects of A. Even more, it is defined on all projective objects
of AZ, mapping them to the corresponding chain complex with vanishing
boundary map. The general theory shows that, up to isomorphism, that
is, chain homotopy equivalence, all projective objects of Ho(A) are of this
form.

2. Let T = KK, F = K∗ : KK→ AbZ/2. By definition, we have

KK(C, A) = K0(A) = Hom(Zeven,K∗(A)).

This means that K⊢∗ (Z
even) = C. Similarly, K⊢∗ (Z

odd) = C[1] = C0(R).
Since left adjoints commute with direct sums, K⊢∗ is defined on all free Z/2
graded Abelian groups.

3. Let T = KKG be the equivariant KK-theory for some discrete group G,
and let F : KKG → AbZ/2, F (A,α) = K∗(A). If A ∈ KK, B ∈ KKG then

KKG(C0(G)⊗A,B) = KK(A,B);

this is a special case of the adjointness between induction and restriction
from open subgroups. It follows that

F⊢(Zeven) = C0(G).

As above, this implies that F⊢ is defined on all free Z/2-graded Abelian
groups.

Proposition 3.48. Let F : T → A be a stable homological functor whose left
adjoint is defined on all projective objects of an Abelian category A. If A has
enough projectives, then there are enough kerF -projective objects in T , and any
kerF -projective object is a retract of F⊢(B) for some projective object B ∈ A.

Proof. Let D ∈ T , we need a projective object B ∈ A and a morphism π ∈
T (F⊢(B), D) such that F (π) is an epimorphism. This is the beginning of a
recursive construction of a projective resolution. Let ρ : B → F (D) be an
epimorphism with projective B We have

T (F⊢(B), D) ∼= A(B,F (D))

ρ∗ ← ρ

We claim that F (ρ∗) is an epimorphism. This follows from the commuting
diagram

FF⊢(B)
F (ρ∗) // F (D),

B

εB

GGGGGGGGG ρ

<< <<yyyyyyyy
where ε : Id→ FF⊢ is the unit of adjointness.
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Once we have an I-projective resolution, we get I- derived functors and, in
particular, extension groups Ext∗T ,I(A,B) for two objects A and B of T :

Definition 3.49. Let A ∈ T and let (Pn, ∂n) be an I-projective resolution of A.
Then ExtnT ,I(A,B) is the nth cohomology of the cochain complex

· · · ← T (Pn, B)← T (Pn−1, B)← · · · ← T (P0, B)← 0.

For example
Ext0T ,I = ker(T (P0, B)→ T (P1, B)).

The diagram
P1

// P0
//   AAAAAAA A //�� 0

B

provides a natural map T (A,B)→ Ext0T ,I(A,B). But this map is almost never
invertible. For one thing, it is easy to see that its kernel is exactly I(A,B),
so that we get T (A,B)

/
I(A,B) ⊆ Ext0T ,I(A,B). The cokernel of this map

is described in [?]. Furthermore, there is a natural injective map I(A[1], B)
/

I2(A[1], B) ⊆ Ext1T ,I(A,B). These two maps generalise the maps

γ : KK∗(A,B)→ Hom
(
K∗(A),K∗(B)

)
, ker γ → Ext1

(
K∗+1(A),K∗(B)

)

that appear in the Universal Coefficient Theorem—we will establish that the
target groups here are ExtjT ,I(A[j], B) for j = 0, 1. Unless the I-projective
resolution of A has length 1, so that all higher extension groups vanish, we
cannot expect an exact sequence as in the Universal Coefficient Theorem for
Kasparov theory. Instead, we merely get a spectral sequence (see [?]). But we
will not discuss this in greater detail here.

In some of our examples, the computation of the derived functors reduces to
one in the Abelian category A, the target category of the functor F : T → A
defining our homological ideal. The crucial additional condition for this is that
F ◦ F⊢(B) ∼= B for all projective objects B in A.

Example 3.50. Let I = ker K∗. For A ∈ KK, there is a resolution of its K-theory

· · · → 0→ P1
d1−→ P0

d0−→ K∗(A)→ 0

by countable free Abelian groups. It is easy to see in this case that

KK(K⊢∗ (P1),K⊢∗ (P0)) = HomAbZ/2(P1, P0),

so that the boundary map d1 lifts to a map d̂1 : K⊢∗ (P1) → K⊢∗ (P0). Further-
more, the adjointness relation KK(K⊢∗ (P0), A) ∼= KK(P0,K∗(A)) allows us to

lift d0 to d̂0 ∈ KK(K⊢∗ (P0), A). Then

0→ K⊢∗ (P1)→ K⊢∗ (P0)→ A→ 0

is an I-projective resolution for I = ker(K∗). Both K⊢∗ (P0) and K⊢∗ (P1) are
direct sums of C and C0(R), and K∗(K

⊢
∗ (Pj)) = Pj . Hence we have lifted a

projective resolution in AbZ/2 to an I-projective resolution in KK.
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By definition, if B ∈ KK then ExtnKK,ker(K∗)(A,B) is obtained by applying
KK∗(−, B) to the projective resolution constructed above. Using the adjointness
property of K⊢∗ , we see that this yields the cochain complex

· · · ← 0← Hom
(
P1,K∗(B)

)
← Hom

(
P0,K∗(B)

)
← 0← · · · ,

which computes the extension groups of K∗(A) and K∗(B). Thus

ExtnKK,I(A,B) =





0 for n ≥ 2,

Ext(K∗(A),K∗(B)) for n = 1,

Hom(K∗(A),K∗(B)) for n = 0.

The same things happen in general:

Theorem 3.51. Let T be an idempotent complete triangulated category and
let A be a stable Abelian category with enough projective objects. Let F : T → A
be a stable homological functor whose left adjoint F⊢ is defined on all projective
objects of A. Assume, moreover, that the counit of adjunction yields isomor-
phisms F ◦ F⊢(B) ∼= B for all projective objects B of A. Then the following
holds:

(1) F and F⊢ restrict to equivalences of categories between the full subcate-
gories PIT of I-projective objects in T and PA of projective objects in A.

(2) For any A in T , a projective resolution of F (A) in A lifts to an I-projective
resolution of A in T , and this lifting is unique up to isomorphism.

(3) Ext∗T ,I(A,B) ∼= Ext∗A(F (A), F (B)) for all objects A and B of T .

(4) Let H : T → C be a homological functor. Then there is, up to natural
isomorphism, a unique right-exact functor H : A → C with H ◦ F (P ) ∼=
H(P ) for all I-projective objects P of T .

Let LpH : A → C be the pth left derived functor of H and let LpH : T → C
be the pth left derived functor of H, which is defined by applying H to a
projective resolution and taking homology. Then LIpH(A) ∼= LpH

(
F (A)

)

for all A in T .

(5) If H : T → C is a homological functor with I ⊆ kerH, then there is, up to
natural isomorphism, a unique exact functor H : A → C with H ◦ F = H.

That is, F is the universal I-exact homological functor.

We refer to [?] for the proof of this theorem. The first two points say that the
description of I-projective objects and I-projective resolutions in T is equivalent
to the study of projective objects and resolutions in A. This explains why the
computation of I- derived functors on T should reduce to the computation of
derived functors on A.

The last assertion in the theorem is particularly remarkable because the
universal property uniquely characterises the functor F . It can be shown that
for any homological ideal I with enough projective objects there is a universal
I-exact stable homological functor (this is due to Beligiannis [?]). But this is
a mere existence result. Our theorem provides a sufficient condition to detect
whether a given functor is the universal one. In fact, this condition is also
necessary:
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Theorem 3.52. Let I ⊆ T be a homological ideal with enough I-projective
objects, and let F : T → A be a stable homological functor with kerF = I. This
functor is a universal I-exact homological functor if and only if A has enough
projective objects, the left adjoint F⊢ is defined on all projective objects of A,
and F ◦ F⊢(P ) ∼= P for all projctive objects P of A.

If the defining functor F is not yet universal, then we may replace it by the
universal functor with the same morphism-kernel. Typically, this amounts to
noticing that the functor F has some internal symmetries and refining its target
category accordingly. The following examples illustrate this.

Example 3.53. Let T = KKG for a discrete group G and consider the functor
F : KKG → AbZ/2 that maps a C*-algebra A with G-action α to K∗(A). We
have seen above that the left adjoint of this functor is defined on all free Abelian
groups, so that I := kerF has enough projective objects. But F ◦ F⊢(Zeven) =
F (C0(G)) = Z[G]even 6= Zeven unless G is trivial. Thus F is not yet universal.

This is not surprising because derived functors on the target category of F
do not really see the group action at all. To remedy the situation, we notice that
the G-action on A induces an action of G on K∗(A), so that K∗(A) becomes
a module over Z[G]. Furthermore, this module is countable. Let A be the

category of all countable Z/2-graded Z[G]-modules and let F̃ : KKG → A be F

enriched appropriately. Then ker F̃ = kerF . We claim that F̃ is universal.
Since

HomZ[G](Z[G],K∗(B)) ∼= K∗(B) ∼= KKG
∗ (C0(G), B),

we get F̃⊢(Z[G]) = C0(G). This implies that F̃⊢ is defined on all projective

objects of A. Now F̃ ◦ F̃⊢(Z[G]) = Z[G], which is the desired answer. Thus F̃
is universal.

Example 3.54. Let T be the homotopy category of chain complexes over the
Abelian category of R-modules for some ring R, and let I be the kernel of the
homology functor. This is also the kernel of the stable homological functor

F = H∗ : Ho(R−Mod)→ AbZ,

where we forget the R-module structure on the homology. The latter is not
universal, of course. It is easy to check that the associated universal I-exact
homological functor is H∗ : Ho(R −Mod)→ (R −Mod)Z. Hence the passage
to the universal functor recovers the category of Z-graded R-modules and the
homology functor with values in this category from F .

Example 3.55. Let (C,∆) be a discrete quantum group; for instance, we could
consider C = C0(G) for a discrete group G or C = C∗(G) for a compact

group G. The first case is already discussed in Example 3.53. Let T = KK(C,∆)

be the associated bivariant Kasparov category, and let F (A,∆A) = K∗(A) for a
separable C*-algebra with coaction ∆A : A→M(A⊗C). We get F⊢(Zeven) = C
with coaction ∆ because

KK(C,∆)(C,B) ∼= KK(C, B) ∼= K0(B).

Hence the left adjoint F⊢ is defined on all free Abelian groups, so that I = kerF
has enough projective objects. As in Example 3.53, F ◦ F⊢(Zeven) = K∗(C) 6=
Zeven, so that F is not yet universal. What additional structure on K∗(B) does
a coaction of (C,∆) entail?
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Clearly, KK(C,∆)
∗ (C,B) is a module over the Z/2-graded ring R(C) :=

KK(C,∆)
∗ (C,C) by Kasparov composition product. Let A be the category of

countableR(C)-modules. A purely formal computation shows that F̃ : KK(C,∆) →
A, B 7→ KK(C,∆)(C,B) is universal: this works whenever F is representable and
commutes with direct sums.

It remains to understand the ring R(C). Since discrete and compact quan-
tum groups are strongly regular, Baaj–Skandalis duality implies

KK(C,∆)
∗ (C,C) ∼= KK( bCc,b∆c)

∗ (C ⋊ Ĉc, C ⋊ Ĉc) ∼= KK( bCc,b∆c)
∗ (C,C) ∼= K∗(C),

where we equip C with the trivial coaction of Ĉc and, in the last step, use
the Green–Julg Theorem for the compact quantum group Ĉc. The resulting
ring is the representation ring of Ĉc, that is, the ring of finite-dimensional
representation with tensor product as multiplication. If C = C0(G) for a discrete
group G, this is just the group ring Z[G]; if C = C∗(G) for a compact group G,
this is the representation ring of G.

3.9 From homological ideals to complementary
pairs of subcategories

The main goal of this section is to understand the following theorem.

Theorem 3.56. Let T be a triangulated category with direct sums and let
F : T → A be a stable homological functor into some Abelian category that
commutes with direct sums. Assume also that the left adjoint of F is defined
on all projecive objects of A, so that the ideal I = kerF has enough projective
objects. Let P ⊆ T be the class of projective objects and let N be the object-
kernel of F ; let 〈P〉 be the localising subcategory generated by P. Then the pair
of subcategories (〈P〉,N ) is complementary.

This theorem applies in numerous cases:

• Let A be an Abelian category with enough projective objects and exact
direct sums. Let T = Ho(Ã) and let F : T → ÃZ be the homology
functor. Then P consists of chain complexes with vanishing boundary
map and projective entries, and N consists of the exact chain complexes.
Theorem 3.56 specialises to Spaltenstein’s Theorem in this case.

• Let T = KK and let F be the K-theory functor. Again, Theorem 3.56
applies. Here P consists of direct sums of suspensions of C, so that 〈P〉
is the bootstrap category, and N consists of those separable C*-algebras
with vanishing K-theory.

• Let T = KK(C,∆) for a discrete quantum group (C,∆) and define F : KK→
AbZ/2 by F (B, β) = K∗(B). In this case, 〈P〉 is the localising subcategory
generated by F⊢(Zeven) = (C,∆), and N contains all coactions of (C,∆)
on separable C*-algebras with vanishing K-theory.

If P ∈ P is I-projective and N ∈ N , that is, idN ∈ I, then T (P,N) = 0
because I acts by 0 on T (P,−). Since the left orthogonal complement N⊢ of N
is localising, this implies 〈P〉 ⊆ N⊢. To prove Theorem 3.56, it remains to show
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Part VIII From homological ideals to complementary pairs of subcategories

that for A ∈ T can be embedded in an exact triangle L→ A→ N → L[1] with
L ∈ L := 〈P〉 and N ∈ N . This is established in [mn08]. Here we only prove
a weaker result, namely, that (N⊢,N ) is complementary. Some more work is
necessary to identify N⊢ = L; in particular, this is the only point in this lecture
where the octahedral axiom is used.

The main ingredient in the proof is the phantom tower (it has this name
because maps in kerF are also called phantom maps).

Definition 3.57. Let B ∈ T . The phantom tower is a diagram of the form

B N0

ι10 // N1

ι21 //
◦||||~~|||| N2

ι32 //
◦||||~~|||| · · ·

◦}}}}~~}}}}
P0

``BBBBBBBB
P1

``BBBBBBBB
◦oo P2

``BBBBBBBB
◦oo (3.2)

where the objects Pn are I-projective, ιn+1
n ∈ I, the triangles

Nn
ιn+1
n // Nn+1

◦yyyy||yyyy
Pn

``BBBBBBBB
are exact, and the remaining triangles commute. The circled arrows denote
maps of degree 1, that is, they actually map N1 → P0[1], and so on.

The bottom row
P0 ← P1 ← P2 ← P3 ← · · ·

in a phantom tower is a chain complex with differential of degree 1.

Proposition 3.58. Given a phantom tower as in (3.2), the complex

B ← P0 ← P1 ← P2 ← P3 ← · · ·

is an I-projective resolution. Conversely, any projective resolution embeds in a
phantom tower, which is unique up to isomorphism.

Proof. First we must check that the sequence B ← P0 ← P1 ← · · · is I-exact.
We know that

F∗+1(Nj+1)  F∗(Pj) ։ F∗(Nj)

is a short exact sequence because F∗(ι
j+1
j ) = 0. The Yoneda product of these

extensions is an exact chain complex of the form

F∗(B)← F∗(P0)← F∗(P1)← · · · .

Thus the bottom row in the phantom tower is an I-projective resolution.
Conversely, take a projective resolution

B ← P0 ← P1 ← P2 ← P3 ← · · · .
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We recursively construct Nj starting with N0 = B, and such that the maps
Pj → Nj are I-epimorphisms. In each step, we embed Nj ← Pj in an exact
triangle

Pj → Nj
ιj+1
j−−−→ Nj+1 → Pj [1].

The induction assumption yields that the map Pj → Nj is an I-epimorphism,

so that ιj+1
j ∈ I. To complete the induction step, we must lift the boundary

map Pj+1 → Pj [1] to a map Pj+1 → Nj+1 and check that this lifting is an
I-epimorphism.

The first map in the exact sequence

T (Pj+1, Nj)→ T (Pj+1, Nj+1)→ T (Pj+1, Pj [1])→ T (Pj+1, Nj [1])

vanishes because Pj+1 is I-projective and ιi+1
j ∈ I; hence the second map

is injective. This shows that our lifting is unique once it exists. Since we
started with a chain complex, the composition Pj+1 → Pj [1]→ Pj−1[2] vanishes.
Since the map Nj → Pj−1[1] from the previous step is an I-monomorphism,
T (Pj+1, Nj [1]) ⊆ T (Pj+1, Pj−1[2]), so that there is no obstruction to lifting the
boundary map. Finally, it is routine to check that the unique lifting is indeed
an I-epimorphism.

Now we check that (N⊢,N ) is complementary. Equivalently, for each A ∈ T
there is N ∈ N and a map f : A→ N that induces isomorphisms T∗(N,M)→
T∗(A,M) for all M ∈ N . This means that A 7→ N is a functor T → N that is
left adjoint to the embedding functor N → T .

We let N be the homotopy colimit of the phantom tower. Recall that this
is defined by an exact triangle

⊕

j

Nj
id−S−−−→

⊕

j

Nj → holim
−→

Nj →
⊕

j

Nj[1], S =
⊕

j

ιj+1
j .

Since F commutes with direct sums and ιj+1
j ∈ kerF , we get F (S) = 0. There-

fore, F (id− S) = F (id) is invertible. Hence F (holim
−→

Nj) = 0. this means that

N := holim
−→

Nj ∈ N .

Let M ∈ N . Then T∗(Pj ,M) = 0 because Pj is kerF -projective. Therefore

ιj+1
j induces an isomorphism T∗(Nj+1,M)

∼=−→ T∗(Nj ,M). Now we recall the
Milnor sequence

lim
←−

1 T∗−1(Nj ,M)  T∗(holim
−→

Nj ,M) ։ lim
←−
T∗(Nj ,M).

Since the maps in the relevant projective systems are all invertible, lim
←−

1 T∗−1(Nj ,M) =

0 and lim
←−
T∗−1(Nj ,M) ∼= T∗(A,M). Hence N has the required properties.

3.10 Localisation of functors

Let T be a triangulated category and let (L,N ) be a complementary pair of
thick subcategories as in the previous section. Let F : T → A be a homological
functor with values in some Abelian category D.
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Part VIII Localisation of functors

For instance, we could take T = KK, L the bootstrap category, N the class
of all separable C*-algebras with vanishing K-theory, and F (A) := F (A ⊗ B)
for some fixed C*-algebra B.

Recall that there are functors

L : T → L, N : T → N

and natural exact triangles

L(A)→ A→ N(A)→ L(A)[1]

Definition 3.59. The localisation of the functor F at N , denoted LF , is the
functor

LF := F ◦ L : T → A

We may also view this as a functor on T /N because L descends to a functor
T /N → L. The natural map L(A) → A induces a natural transformation
LF → F .

Proposition 3.60. LF → F is universal among natural transformations G→
F with G homological and G|N = 0. That is, any natural transformation from
such a functor to F factors uniquely through LF → F :

G //
∃! !! F

LF

OO
Proof. To construct the natural transformation, combine the inverse of the iso-
morphism

G(P (B))
∼=−→ G(B)

with the natural map

G(P (B))→ F (P (B)) = LF (B).

It is easy to see that this is the only natural transformation G→ LF that yields
the desired factorisation.

This universal property is used as a definition if N is not part of a comple-
mentary pair. Roughly speaking, the localisation LF is the best approximation
to F that vanishes on N .

Corollary 3.61. The transformation LF → F is invertible if and only if F |N =
0.

In practice, L is usually the localising subcategory 〈P〉 generated by a smaller
class P of objects.

Proposition 3.62. Let (〈P〉,N ) be a complementary pair of thick subcategories,
let G and F be homological functors on T that commute with direct sums, and
let Φ: G → F be a natural transformation. Assume that G|N = 0 and that
ΦB : G(B) → F (B) is invertible for all B ∈ P. Then Φ descends to a natural
isomorphism G ∼= LF .
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Part VIII The Baum–Connes conjecture

Proof. The previous proposition yields a natural transformation Ψ: G → LF .
This is invertible on P because LF (B) ∼= F (B) for B ∈ P . Since G and LF
are homological and commute with direct sums, the class of objects where Ψ is
invertible is localising. Hence it contains L = 〈P〉. It also contains N because
both G and LF vanish on N . Thus it contains T .

Example 3.63 (for Proposition 3.62). Let G be a discrete torsion-free group,
T = KKG,

N = {A ∈ KKG | A ∼= 0 in KK (non-equivariantly)},
P = {C0(G,A) with the free G-action of C*-algebra}.

Take F (A) := K∗(G ⋊r A) and a natural transformation Φ: G =⇒ F . Then
if G|N = 0 and Φ|P is invertible, then G ∼= LF , and Φ is equivalent to the
Baum-Connes assembly map.

3.11 The Baum–Connes conjecture

Usually, we do not expect the map LF → F that compares a functor to its
localisation to be an isomorphism. In noncommutative topology, this sometimes
happens for rather deep reasons. Here we explain how this is related to the
Baum–Connes conjecture (see [mn06] for more details).

Let T = KKG for a locally compact group G. In order to get started,
we need a homological ideal I in T . We let f ∈ I if ResHG (f) = 0 for all
compact subgroups H ⊆ G, where ResHG : KKG(A,B) → KKH(A,B) denotes
the restriction functor. The ideal I is, by definition, the kernel of an exact
functor, not of a stable homological functor. But it can be shown that morphism-
kernels of exact functors are homological ideals as well (see [?]). In order to find
enough projective objects for this ideal, we would like the restriction functor
ResHG to have a left adjoint. This works out nicely if H ⊆ G is open, so that
G/H is discrete: in that case, the induction functor IndGH : KKH → KKG is left
adjoint to ResHG . More generally, if G/H is a smooth manifold, then the left
adjoint is still defined on sufficiently many objects of KKH and sufficiently close
to the induction functor for the following arguments to go through. Since any
locally compact group contains sufficiently many subgroups H for which G/H
is a smooth manifold, the following discussion can be carried over to general
locally compact groups. However, we only prove assertions for discrete groups
to simplify the discussion.

The localising subcategory 〈P〉 generated by the I-projective objects is the
localising subcategory generated by compactly induced actions, that is, objects of
the form IndGH(A) for a compact subgroup H ⊆ G and A ∈ KKH ; the proof uses
that such objects are I-projective by the adjointness of induction and restriction,
and that any object A admits an I-epimorphism from

⊕
IndGH ResHG A onto it,

where H runs through a suitable set of compact subgroups of G. The object-
kernel of our homological ideal is the subcategory N of all G-C*-algebras N
with ResHG (N) ∼= 0 in KKH for all compact subgroups H of G. Theorem 3.56
shows that (〈P〉,N ) is complementary. In many examples, 〈P〉 consists of all
G-C*-algebras that are KKG-equivalent to one on which G acts properly (in
fact, this is probably always true, but the proof is not written down in complete
generality).
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Part VIII The Baum–Connes conjecture

Both P andN are closed under tensor products with arbitraryG-C*-algebras.
Hence it suffices to study a single exact triangle of the form L→ C→ N → L[1]
with L ∈ 〈P〉 and N ∈ N : tensoring with A yields such a triangle for any A.
The map L→ C is called a Dirac morphism in [mn06].

Next we compare the Baum–Connes assembly map with the localisation
at N . This is the map from

Ktop
∗ (G,B) := lim−→

X

KKG(C0(X), B), X G-compact in EG,

to K∗(C∗rG) defined as follows:

KKG
∗ (C0(X), B)→ KK∗(G⋉r C0(X), G⋉r B)→ K∗(G⋉r B),

where the first map is the descent functor and the second map is induced by
a canonical class in K0(G ⋉r C0(X)) for any proper cocompact G-space called
Mishchenko line bundle.

See also Theorem 2.18 in Chapter 2.

Theorem 3.64. Let T = KKG for a locally compact group G, let N be as above,
and let F (B) = K∗(G⋉r B). Let LF be the localisation of F at N . Then there
is a natural isomorphism LF (B) ∼= Ktop

∗ (G,B) that intertwines the canonical
map LF → F and the Baum–Connes assembly map with coefficients in B. That
is, the Baum–Connes assembly map is equivalent to the natural transformation
LF (B)→ F (B).

Proof. The proof is based on some (non-trivial) formal properties of the Baum–
Connes assembly map. First, Ktop

∗ (G,B) vanishes for B ∈ N ; even more,
Ktop
∗ (G,B) = 0 if K∗(H ⋉ B) = 0 for all compact subgroups H ⊆ G because

there is a spectral sequence computing Ktop
∗ (G,B) whose first page consists of

groups of the form K∗(H⋉B). Secondly, the Baum–Connes assembly map with
coefficients B is invertible if G acts properly on B; in particular, it is invertible
if B is of the form IndGH(B0) for some compact subgroup H . These two facts
plugged into Proposition 3.62 yield the assertion.

This description of the Baum–Connes assembly map with coefficients yields
several reformulations of the Baum–Connes property with coefficients:

Corollary 3.65. Let G be a locally compact group. The following assertions
are equivalent:

(1) the Baum–Connes assembly map is an isomorphism for all coefficient al-
gebras B;

(2) K∗(G ⋉r B) = 0 if B is H-equivariantly contractible for any compact
subgroup H ⊆ G;

(3) if a G-equivariant *-homomorphism f : A → B is an H-homotopy equiv-
alence for all compact subgroups (that is, it has an H-equivariant in-
verse up to H-equivariant homotopies), then it induces an isomorphism
K∗(G⋉r A) ∼= K∗(G⋉r B);

(4) K∗(G⋉r B) = 0 for all B ∈ N ;

943
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(5) if f ∈ KKG
0 (A,B) becomes invertible in KKH for all compact subgroups

H ⊆ G, then it induces an isomorphism K∗(G⋉r A) ∼= K∗(G⋉r B);

(6) K∗(G⋉r B) = 0 if K∗(H ⋉B) = 0 for all compact subgroups H ⊆ G;

(7) if f ∈ KKG
0 (A,B) induces an isomorphism K∗(H⋉A) ∼= K∗(H⋉B) for all

compact subgroups H ⊆ G, then it induces an isomorphism K∗(G⋉rA) ∼=
K∗(G⋉r B).

Proof. The equivalence of (1) and (4) is Corollary 3.61. Any object ofN is KKG-
equivalent to a G-C*-algebra as in (2). Therefore, (2) and (4) are equivalent.
It is clear that (6) implies (4). Conversely, (1) implies (6) because Ktop

∗ (G,B)
vanishes if B is as in (6). Therefore, (1), (2), (4), and (6) are equivalent.
Trivially, (7)=⇒(5)=⇒(3). Moreover, (3) implies (2) because if B is as in (2)
then we may apply (3) to the zero map 0→ B.

Thus it only remains to check that (6) implies (7). If f is as in (7), then we
may embed it in an exact triangle A → B → C → A[1] using Axiom (TR1).
The long exact sequence for the homological functor K∗(H ⋉ −) shows that
K∗(H⋉C) = 0 for all compact subgroups H of G. Now (6) yields K∗(G⋉rC) =
0. Finally, the long exact sequence for the homological functor K∗(G⋉r−) shows
that K∗(G⋉r f) is invertible as asserted in (7).

Let us consider the case where G is torsion-free, that is, G has no compact
subgroups besides the trivial group. Then in all statements above H can only be
the trivial group. Thus the Baum–Connes conjecture is equivalent to the follow-
ing rigidity property: if f : A → B is a G-equivariant *-homomorphism that is
also a (non-equivariant) homotopy equivalence, then f induces an isomorphism
K∗(G⋉r A) ∼= K∗(G⋉r B).

Theorem 3.66 (Higson–Kasparov). The Baum–Connes conjecture with coeffi-
cients holds for all amenable groups. Even more, if G is amenable, then N = 0,
that is, A ∼= 0 if ResHG (A) ∼= 0 for all compact subgroups H ⊆ G.

In particular, this theorem applies to all Abelian groups such as Zn for some
n ∈ N. The stronger statement in the second statement of the theorem is
equivalent, in the terminology of the dual Dirac method, to the statement that
the γ-element of the group G exists and is equal to 1. This is known to be false
for groups with property (T) such as higher rank Lie groups and lattices in such
groups.

Example 3.67. Let Z act by translation on R; we extend this action to the half-
open interval (−∞,∞] by fixing +∞. Although it is has no equivariant linear
section, the extension

C0(R)→ C0((−∞,∞])→ C

has a class in KKZ
1(C0(R),C) because this extension acquires an equivariant

completely positive contractive section after we stabilise it by K(ℓ2Z) (see [?]
for a proof using Baaj–Skandalis duality). The C*-algebra C0((−∞,∞]) in
the middle is non-equivariantly contractible and therefore belongs to N . The
Higson–Kasparov Theorem in this case predicts that C0((−∞,∞]) ∼= 0 in KKZ.
Thus the boundary map of the extension provides an invertible element in
KK1(C, C0(R)). Since the exterior tensor product defines a functor on KKZ,
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we get an invertible element in KK1(A,C0(R) ⊗ A) for any Z-C*-algebra A.
Thus any Z-C*-algebra is KKZ-equivalent to one with a proper action of Z,
namely, C0(R)⊗ SA.

Since the action of Z on R is free and proper, the crossed product Z ⋉
(C0(R) ⊗ A) = Z ⋉r (C0(R) ⊗ A) is Morita equivalent to the generalised fixed
point algebra

Tα := {f ∈ Cb(R, A) | f(x+ 1) = αf(x)} ∼= {f ∈ C([0, 1], A) | f(1) = α(f(0))},

where α ∈ Aut(A) describes the Z-action. This C*-algebra is called the mapping
torus of α. It is commutative if A is commutative. The Higson–Kasparov
Theorem implies that the mapping torus is KK-equivalent to the suspension
of the crossed product Z ⋉ A, so that the K-theories agree up to a dimension
shift. From this, it is easy to deduce the Pimsner–Voiculescu exact sequence for
crossed products by Z for any homological invariant for C*-algebras.

The only step in the above reasoning that is non-trivial is thatC0((−∞,∞]) ∼=
0 in KKZ or, equivalently, that the class η of the resulting extension in KKZ

1(C, C0(R))
is invertible. This latter fact can be checked by hand by writing down a
candidate D ∈ KKZ

1 (C0(R),C) for the inverse and checking that the two re-
sulting Kasparov products are homotopic to the identity in KKZ

0(C,C) and
KKZ

0 (C0(R), C0(R)). We only remark here that the inverse is the equivariant
K-homology class of the Dirac operator on R. Up to a dimension shift, this is
the Dirac morphism of Z, and η is the dual Dirac morphism. If we forget the
Z-action, then D and η are exactly the classes that generate the Bott periodicity
isomorphisms; the fact that they are inverse to each other is a well-known fact
of index theory. It is possible to prove the Higson–Kasparov Theorem for Z by
going through this proof of Bott periodicity and checking that all the relevant
constructions are sufficiently Z-equivariant to carry them over from KK to KKZ.

3.12 Towards an analogue of the Baum–Connes
conjecture for quantum groups

The approach to the Baum–Connes assembly map outlined above is particularly
suitable to extend the Baum–Connes conjecture to other objects than groups
such as quantum groups. For this purpose, the main achievement is that our
definitions no longer use proper actions—whose meaning for quantum groups
is unclear—but only compact subgroups. Nevertheless, the correct analogue of
the family of compact subgroups for a quantum group is still unclear because
quantum groups may have too few subgroups, so that more general objects than
subgroups have to be allowed.

Before we discuss this issue, we restrict attention to the case of a torsion-
free discrete quantum group (C,∆). We let I be the kernel of the restriction
functor KKC → KK (we drop the coactions from our notation to avoid clutter).
Since (C,∆) is assumed discrete, this restriction functor has a left adjoint, which
maps A ∈ KK to A⊗ C with the coaction idA ⊗∆; that is, KKC

∗ (A⊗ C,B) ∼=
KK∗(A,B) for any separable C*-algebraB and any coaction of (C,∆) onB. We
may argue exactly as in the group case now. Let P be the class of objects of KKC

of the form A⊗C, and let N consist of all objects A of KKC with A ∼= 0 in KK,
that is, after forgetting the coaction. Then (〈P〉,N ) is a complementary pair of
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localising subcategories of KKC . The Baum–Connes assembly map for (C,∆)
with coefficients in B is the natural map LF (B) → F (B), where F (B) is the

K-theory of the reduced crossed product, F (B) := K∗(B ⋊r Ĉ
c). This is the

unique natural transformation G → F that is invertible on objects of P for a
functor G that vanishes on N . Thus, to check that some other construction of
an assembly map G→ F agrees with this one, it suffices to check that G(N) = 0
for N ∈ N and that G(B)→ F (B) is invertible for B ∈ P .

The above assembly map can be constructed for any discrete quantum group,
torsion-free or not. But for quantum groups with torsion, we do not expect it
to be invertible. In the group case, this map is the classical assembly map
K∗(BG)→ K∗(C ∗r G), where BG is the usual . This is never an isomorphism
unless G is torsion-free. Nevertheless, there are several interesting quantum
groups where it is reasonable to conjecture that the assembly map above is
invertible or, equivalently, that K∗(B ⋊r Ĉ

c) = 0 for B ∈ N .
Here we only consider the case of duals of compact groups, following [?]. The

quantum groupC∗(G) for a groupG is discrete if and only if G is compact. Since
any open normal subgroup H in G yields a finite quantum subgroup C∗(G/H)
in C∗(G), the quantum group C∗(G) certainly has torsion unless G is connected.
Somewhat surprisingly, this assumption is not yet enough: we also need that G
should have no non-trivial projective representations. This is equivalent to
the assumption that G have torsion-free fundamental group. Thus we assume
now that G is a connected compact group with torsion-free fundamental group.
We also assume G to be a Lie group to simplify the discussion, although this
assumption may be removed. We can use, for example, G = SU(n) or G = Tn.
Since C∗(G) is amenable, it makes no difference whether we use reduced or
full crossed products, and the Higson–Kasparov Theorem for groups leads us to
expect the following theorem:

Theorem 3.68 ([?]). Let G be a connected Lie group with torsion-free funda-
mental group and let A be a C*-algebra with a coaction δ ∈ Mor(A,A⊗C∗(G)).

If K∗(A) = 0, then K∗(A⋊ C0(G)) = 0.

If A ∼= 0 in KK, then A ∼= 0 in KKC∗(G).

The first statement follows, in fact, from the second one and an inspection of
I-projective resolutions. Let L : KKC∗(G) → 〈P〉 be the localisation functor. If
(Pn, dn) is an I-projective resolution of A, then the general theory shows that L

maps A into the localising subcategory of KKC∗(G) generated by the objects Pn.
Now if K∗(A) = 0, then we can choose these such that K∗(Pn ⋊ C0(G)) = 0,
so that K∗(L(A) ⋊ C0(G)) = 0. The second statement in the theorem simply
means that L(A) ∼= A, so that we get K∗(A⋊ C0(G)) = 0 if K∗(A) = 0.

We may use Baaj–Skandalis duality to turn coactions of C∗(G) into coac-
tions of the dual C0(G), that is, group actions of G. This turns Theorem 3.68
into a statement about equivariant bivariant K-theory for compact groups. The
duality functor KKG → KKC∗(G) maps a G-C*-algebra B to B ⋊ G with
the canonical coaction. Hence the assumption of the first statement in Theo-
rem 3.68 is KG

∗ (B) := K∗(B⋊G) = 0, and the conclusion is K∗(B) = 0 because
B ⋊ G ⋊ C0(G) ∼= B ⊗ K(L2G) is Morita equivalent to B. Reformulating the
second statement similarly, we arrive at the following equivalent reformulation
of Theorem 3.68:
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Theorem 3.69 ([?]). Let G be a connected Lie group with torsion-free funda-
mental group and let A be a C*-algebra with an action of G.

If KG
∗ (A) = 0, then K∗(A) = 0.

If A⋊G ∼= 0 in KK, then A ∼= 0 in KKG.

The first statement is already known for some time, see [?], so that the
Baum–Connes conjecture for the dual of G reduces to a known statement. The
second statement is not contained in [?]; it may be used to improve the descrip-
tion of the equivariant bootstrap class in [?] and to formulate a variant of the
Universal Coefficient Theorem that appears in [?] that reduces the computa-
tion of KKG(A,B) not to KG

∗ (A) and KG
∗ (B), but to KK(A ⋊ G,B ⋊ G); this

variant has the advantage that it converges for arbitrary A and B without any
bootstrap class assumptions (see also [?, ?]).

Theorem 3.69 certainly becomes false if G is a finite group, say, G = Z/2:
there exists a Z/2-action on a contractible C*-algebraA such that K∗(A⋊Z/2) 6=
0; then the dual action of Z/2 on A⋊ Z/2 provides a counterexample.

We have already described the universal homological functor for the ho-
mological ideal I in Example 3.55: it is the K-theory functor KKC∗(G) → A,
where A is the category of all countable Z/2-graded R(G)-modules, where R(G)
denotes the representation ring of G. We view this as a functor KKG → A,
B 7→ KG

∗ (B), via Baaj–Skandalis duality; the R(G)-module structure agrees
with the one by exterior product.

The following is an application of Theorem 3.69:

Proposition 3.70. Let A be a C*-algebra with G ⋉ A in the bootstrap class.
Assume that KG

∗ (A) is free as an R(G)-module, say, KKG
0 (C, A) ∼= R(G)N and

KKG
1 (C, A) ∼= 0 as R(G)-modules. Then A ∼= CN in KKG.

Proof. Recall that KKG
0 (C,C) ∼= R(G) and KKG

1 (C,C) ∼= 0. By assumption, we
have an isomorphism R(G)N ∼= KKG

0 (C,CN ) ∼= KKG
0 (C, A). This isomorphism

corresponds to choosing N basis vectors in KKG
0 (C, A), which we may combine

to a single element of KKG
0 (CN , A) ∼= KKG

0 (C, A)N . This yields some f ∈
KKG

0 (CN , A) such that the induced map f∗ : KKG
0 (C,CN )→ KKG

0 (C, A) is the
given isomorphism. Since CN ⋊ G and A ⋊ G belong to the bootstrap class
and f ⋊ G acts by an invertible map on K-theory, f ⋊G is a KK-equivalence.
Now we use the second part of Theorem 3.69 to conclude that f is invertible in
KKG. Here we used once again the trick that invertibility of a morphism in a
triangulated category is equivalent to vanishing of its cone.

Now let T ≤ G be a maximal torus and let A = C(G/T ). Then

KG
∗ (C(G/T )) ∼= KT

∗ (pt) ∼= R(T ).

Let W be the Weyl group of G. Basic results of representation theory assert
that R(G) = R(T )W and that R(T ) ∼= R(G)N for some N ∈ N. Therefore, the
last proposition predicts that C(G/T ) is KKG-equivalent to CN . In fact, the
proof of Theorem 3.69 begins by establishing this fact directly:

Lemma 3.71. There is a KKG-equivalence CN ∼= C(G/T ).

Proof. As in the proof of the proposition above, we may lift the isomorphism
KG
∗ (CN ) ∼= KG

∗ (C(G/T )) to a class f ∈ KKG(CN , C(G/T )). We must show
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that it is invertible. Since the induced map

f∗ : KKG
∗ (CN ,CN )→ KKG

∗ (CN , C(G/T ))

is an isomorphism by construction, it suffices to establish that f∗ induces an
isomorphism

f∗ : KKG
∗ (C(G/T ),CN )→ KKG

∗ (C(G/T ), C(G/T ))

as well and then to invoke the Yoneda Lemma.
This statement may be simplified using Poincaré duality in KKG. Our as-

sumptions on G ensure that G/T has a G-equivariant spin structure. Hence
there is a natural isomorphism

KKG
∗ (C(G/T ), B) ∼= KKG

∗ (C, C(G/T )⊗B) ∼= KG
∗ (C(G/T )⊗B) ∼= KT

∗ (B),

where the last step uses the Morita equivalence G ⋉ C(G/T,B) ∼M T ⋉ B.
Thus we are reduced to proving that f∗ : KT

∗ (CN ) → rKT
∗ (C(G/T )) is invert-

ible. The domain is simply KT
∗ (CN ) ∼= R(T )N . Thus we are reduced to com-

puting the T -equivariant K-theory of the homogeneous space G/T . This has
already been done a long time ago, and the result confirms the expectation that
f∗ : KT

∗ (CN )→ rKT
∗ (C(G/T )) is invertible.

With this lemma, we can reduce the assertion of Theorem 3.69 to the cor-
responding statement for the subgroup T . For all A ∈ KKG, we get A⊗ CN =
AN ∼= A⊗C(G/T ) in KKG. As a consequence, A⋊G ∼= 0 in KK if and only if
AN ⋊G ∼= 0 in KK, if and only if A⋊T ∼M (C(G/T )⊗A) ⋊G ∼= 0 in KK; and
A ∼= 0 in KKG if and only if AN ∼= 0 in KKG if and only if C(G/T ) ⊗ A ∼= 0
in KKG. The latter can be rewritten as C(G/T ) ⊗ A = IndGT ResTG(A). If we
assume that Theorem 3.69 holds for T , then vanishing of A⋊G implies, via the
vanishing of A⋊ T and hence of ResTG(A) in KKT , the vanishing of A in KKG.
Thus Theorem 3.69 holds for G once it holds for T .

Finally, we return to the equivalent formulation of the problem in Theo-
rem 3.68. Since T is Abelian, C∗(T ) ∼= C0(Zn) for some n ∈ N. Thus The-
orem 3.68 is equivalent to the Higson–Kasparov Theorem for the group Zn.
Hence Theorem 3.69 holds for T , and the proof is finished.

Which ingredients did this proof use? First, we needed some elementary
K-theory computations to get the KKG-equivalence CN ∼= C(G/T ); then we
used the exterior tensor product in KKG to get a KKG-equivalence AN ∼=
IndGT ResTG(A) for an arbitrary G-C*-algebra A. This reduced the problem
from G to the maximal torus T , where we already know the statement be-
cause its dual is an Abelian group, for which the Baum–Connes conjecture is
known.

Christian Voigt has extended each of these steps to the compact quantum
group SUq(2). I expect that this argument works in much greater generality
for all quantum deformations of simply connected compact simple Lie groups.
The main obstacle are the elementary K-theory computations. There is always
an undeformed maximal torus, and the representation ring R(Gq) of the com-
pact quantum group and its maximal torus are related as in the classical case.
We also know that KKGq (B,C(Gq/T )) ∼= KKT (B,C). But it is not so easy to

compute KKGq (C(Gq/T ), C(Gq/T )) ∼= KKT (C(Gq/T ),C): this involves con-
structing equivariant K-homology classes on C(Gq/T ).
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Finally, we discuss what could be the replacement for the family of compact
subgroups in a quantum group. The most obvious choice uses the following
notion of subgroup:

Definition 3.72. A closed quantum subgroup of (A,∆) is a quotient A/I to
which ∆ descends.

Example 3.73. Closed quantum subgroups of C0(G) are C0(H) for closed sub-
groups H ≤ G, as it should be. But there are too few closed quantum subgroups
of C∗r (G): while we would expect to see all closed subgroups of G, we only get
C∗r (G/N) if N ≤ G is a closed, amenable, normal subgroup; this is compact if
and only if G/N is discrete, that is, N is open. Many locally compact groups
such as GL2(Qp) have lots of compact open subgroups, but no open normal
subgroup. Such groups have no compact quantum subgroups.

Definition 3.74. A proper quantum homogeneous space for (A,∆) is a C*-
subalgebra B of A that is a left ∆-coideal, that is, ∆(B) ⊆ M(B ⊗ A). (Here
“proper” means that the coaction on them is proper.)

Example 3.75. If G is a group and H ⊆ G is a compact subgroup, then B =
C0(G/H) ⊆ C0(G) is a proper quantum homogeneous space; these are the only
proper quantum homogeneous spaces in this case. C∗r (H) ⊆ C∗r (G) is a proper
quantum homogeneous space for any open subgroup H ⊆ G; again, these are
all the examples.

Let G be a compact Lie group, so that C∗(G) is a discrete quantum group.
Our description of proper quantum homogeneous spaces shows that there are
no non-trivial ones if and only if G is connected. For instance, SO(3) has no
proper quantum homogeneous spaces. This is a problem because the assembly
map constructed above is not always an isomorphism for SO(3). Since we expect
the Baum–Connes assembly map to be invertible in this case, we have to further
modify our notion of torsion. The problem for SO(3) is related to its projective
representations.

One way to approach the problem is to ask for particularly simple actions of
a quantum group. If H ⊆ G is compact, then the crossed product C0(G/H)⋊G
is Morita equivalent to C∗(H), which is isomorphic to a direct sum of matrix
algebras. In fact, the same is true for any proper quantum homogeneous space
of a regular quantum group: always, B⋊ Âc ⊆ A⋊ Âc ∼= K(L2A) is a direct sum
of matrix algebras or the algebra of compact operators. For brevity, we call such
C*-algebras elementary. Elementary C*-algebras are those for which the com-
putation of their K-theory may be considered a trivial combinatorial problem.
Therefore, it is reasonable to consider the localising subcategory they generate.
By Baaj–Skandalis duality, coactions of A with elementary crossed products
are in bijection with coactions of the dual quantum group Âc on elementary
C*-algebras.

Definition 3.76. Let (A,∆) be a strongly regular locally compact quantum

group. Let R be the set of all coactions of Âc on separable elementary C*-
algebras.

The category R is countably additive because countable direct sums of ele-
mentary C*-algebras are again elementary. Let R0 be the subset of all inde-
composable objects of R. Furthermore, R and R0 are closed under equivariant
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Morita equivalence. Let R1 be the set of equivariant Morita equivalence classes
of objects in R0.

We call (A,∆) torsion-free if R1 has only one element; equivalently, any

coaction of Âc on an elementary C*-algebra is a direct sum of coactions on
K(H) induced by a coaction on H.

By design, if A is torsion-free then Âc has no non-trivial projective represen-
tations. It can be checked that C0(G) for a discrete group G is torsion-free in
this sense if and only if G is torsion-free and that C∗(G) for a compact group G
is torsion-free if and only if G is connected and has no non-trivial projective
unitary representations. Christian Voigt has shown that deformations of C∗(G)
for simply connected simple compact Lie groups remain torsion-free; an example
of this is C∗(SUq(n)) for all n ∈ N≥2.

Currently, the best proposal for the Baum–Connes assembly map for a reg-
ular quantum group I know is the following. Let P be the collection of ob-
jects of KK(A,∆) that are Baaj–Skandalis dual to objects of R (or R1, this
makes essentially no difference). Let L be the localising subcategory they gen-
erate. Let N := L⊣ be its right orthogonal complement and assume that
(L,N ) is complementary. Then the Baum–Connes assembly map should be
the canonical map LF (B)→ F (B), where L denotes the localisation at N and

F (B) := K∗(B ⋊ Âc). For groups, this agrees with the usual Baum–Connes
assembly map. But so far we have not studied enough examples to be certain
that this is the final formulation of the assembly map.
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