Cyclic Homology Theory

Written Exam

1. (10pt) Let \mathcal{C} be a small category (i.e., the objects form a set). Define \mathcal{C}_{n} as the set of n composable morphisms:

$$
C_{0} \xrightarrow{f_{1}} C_{1} \longrightarrow \cdots \xrightarrow{f_{n}} C_{n} .
$$

(Thus $\mathcal{C}_{0}=\operatorname{Obj} \mathcal{C}, \mathcal{C}_{1}=\operatorname{Mor} \mathcal{C}$, etc.) Construct faces and degeneracies making it into a simplicial set (called the nerve of the category). Prove all the simplicial relations.
2. (10pt) Compute $H H_{*}(A)$ and $H C_{*}(A)$ of the truncated polynomial ring $A=K[t] /\left(t^{2}\right)$.
3. (15pt) Consider the cyclic bicomplex $C C_{* *}(A)$ of the algebra A whose horizontal boundary maps are alternatively $(1-t)$ and N, and whose vertical boundary maps are alternatively b and $-b^{\prime}$. Compute the E^{2} term of the spectral sequence, where $E_{p q}^{2}=H_{p}^{h} H_{q}^{v}\left(C C_{* *}(A)\right)$.
4. (10pt) Let H be a Hopf algebra, $H_{\bullet} \otimes H_{\bullet}$ a right H module vie the diagonal action $(x \otimes y) h=x h^{(1)} \otimes y h^{(2)}$, and.$H$ a left H module via the adjoint action $h \triangleright k=h^{(2)} k S\left(h^{(1)}\right)$. Remembering that $h \otimes k \mapsto h S\left(k^{(1)}\right) \otimes k^{(2)}$ is an H-linear isomorphism from $H \bullet H_{\bullet}$ to $H \otimes H$, prove that the map $\beta: H \otimes H \rightarrow\left(H \bullet \otimes H_{\bullet}\right) \otimes_{H} \cdot H, \beta(h \otimes k):=k^{(2)} \otimes 1 \otimes_{H} h k^{(1)}$ is an isomorphism. Show that it intertwines the flip map with the cyclic operator $\tau\left(h_{0} \otimes h_{1} \otimes_{H} k\right)=h_{1} k^{(2)} \otimes h_{0} \otimes_{H} k^{(1)}$, i.e., $\tau(\beta(h \otimes k))=\beta(k \otimes h)$.
5. (5pt) Let \mathfrak{g} be any Lie algebra. Define $\widetilde{\mathfrak{g}}$ as the super-Lie algebra spanned by the symbols d and $\iota_{\eta}, \mathcal{L}_{\eta}$ (linear in $\eta \in \mathfrak{g}$) of degrees $(1,-1,0)$ subject to the relations
$[d, d]=0, \quad\left[\iota_{\eta_{1}}, \iota_{\eta_{2}}\right]=0, \quad\left[d, \iota_{\eta}\right]=\mathcal{L}_{\eta}, \quad\left[d, \mathcal{L}_{\eta}\right]=0, \quad\left[\iota_{\eta_{1}}, \mathcal{L}_{\eta_{2}}\right]=-\iota_{\left[\eta_{1}, \eta_{2}\right]}, \quad\left[\mathcal{L}_{\eta_{1}}, \mathcal{L}_{\eta_{2}}\right]=\mathcal{L}_{\left[\eta_{1}, \eta_{2}\right]}$.
In the enveloping algebra of \mathfrak{g}, prove the formula

$$
\left[d, \iota_{\eta_{1}} \ldots \iota_{\eta_{p}}\right]=\sum_{1 \leq i \leq p}(-1)^{i-1} \iota_{\eta_{1}} \ldots \widehat{\iota_{\eta_{i}}} \ldots \iota_{\eta_{p}} \mathcal{L}_{\eta_{i}}+\sum_{1 \leq i<j \leq p}(-1)^{i+j-1} \iota_{\left[\eta_{i}, \eta_{j}\right]} \iota_{\eta_{1}} \ldots \widehat{\iota_{\eta_{i}}} \ldots \widehat{\iota_{\eta_{j}}} \ldots \iota_{\eta_{p}}
$$

D1. Show that, in the simplicial set S_{\bullet}^{1} representing the circle, there are $n+1$ elements of degree n. Show that there is a natural bijection with the cyclic group $\mathbb{Z} /(n+1) \mathbb{Z}$.

D2. Let $C_{*, *}$ be a complex of modules in the first quadrant. We suppose that whenever p is odd, the vertical complex $C_{p, *}$ has a homotopy which makes it acyclic. Show that $\operatorname{Tot}\left(C_{*, *}\right)$ is quasi-isomorphic to a complex made out of the modules $C_{p, q}$ for p even.

D3. Let $\mathcal{B}(A)$ be the (b, B)-bicomplex of the algebra A, made with the Hochschild boundary b and the Connes-Rinehart differential B. Give a strategy to prove that the total complex Tot $\mathcal{B}(A)$ is quasi-isomorphic to Connes' cyclic complex $C^{\lambda}(A)$, where $C_{n}^{\lambda}(A)=A^{\otimes n+1} /(1-t)$.

D4. Let A be an associative algebra and let $\mathcal{M}_{r}(A)$ be the algebra of $r \times r$-matrices with entries in A. Outline a proof that the trace map $\operatorname{tr}: \mathcal{M}_{r}(A) \rightarrow A$ can be extended to a morphism of complexes $\operatorname{Tr}: C_{*}\left(\mathcal{M}_{r}(A)\right) \rightarrow C_{*}(A)$ which is a quasi-isomorphism. Here $C_{*}(A)$ is the Hochschild complex with boundary b.

D5. Let $D: A \rightarrow A$ be a derivation of the algebra A (i.e., $D(a b)=a D(b)+D(a) b)$. Show that D can be extended to a chain map $L_{D}: C_{*}(A) \rightarrow C_{*}(A)$. Show that this map is trivial on homology when the derivation is internal (i.e., $D=\operatorname{ad} x$).

D6. Outline a proof of the equivalence of Serre's, Hochschild's and Leibniz's definitions of $\Omega_{\mathcal{O} / k}^{1}$.

D7. Describe $E_{p, q}^{2}$ for the spectral sequence abutting to the cyclic homology of the algebra of symbols.

D8. Argue that for any exhaustion $X=\bigcup_{i \in I} X_{i}$ of a manifold X by compact submanifolds X_{i} with boundary, $X_{i} \Subset X_{i+1}$,

$$
\lim _{i \in I} \frac{\Omega^{q}\left(X_{i}\right)}{d \Omega^{q-1}\left(X_{i}\right)}=\frac{\Omega^{q}(X)}{d \Omega^{q-1}(X)} .
$$

D9. Show that the differential d on $\Omega_{\mathcal{O} / k}^{\bullet}$ is well defined by the formula

$$
d\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{n}\right)=d f_{0} \wedge d f_{1} \wedge \cdots \wedge d f_{n}
$$

D10. Compute $H_{*}(\mathfrak{g l}(k))$, where k is a field.

E1. What is the relationship between Hochschild homology $H H_{*}(A)$ and differential forms $\Omega_{A / k}^{*}$?

E2. Define the multiplication of symbols. Compute products of symbols
a) $\xi_{2} \circ \log \left(1+x_{1}\right)$,
b) $\xi_{1} \circ e^{x_{1}}$.

E3. Explain the concept of cyclic duality.

E4. Let $\mathcal{A} s$ be the operad of nonunital associative algebras.
a) What is the S_{n}-representation $\mathcal{A} s(n)$?
b) Describe explicitly the composition map

$$
\mathcal{A} s(n) \otimes \mathcal{A} s\left(i_{1}\right) \otimes \cdots \otimes \mathcal{A} s\left(i_{n}\right) \rightarrow \mathcal{A} s\left(i_{1}+\cdots+i_{n}\right)
$$

E5. At what term does the spectral sequence abutting to the
a) cyclic homology,
b) Hochschild homology, of the algebra of symbols degenerate?

