BSTools

pozwala] — a session log

Przemystaw Kiciak

Version 0.27, June 20, 2011
TEX-processed June 20, 2011

0.2

This document contains screen dumps and comments written during a session with
the program pozwalaj, one of the demonstration programs of the package BSTools.
During this session a blending surface has been designed, using the interactive tools
of the program and one of the built in shape optimization procedures for such
surfaces.

The executable file, pozwalaj, by default is located in the directory

bstools-0.27/demo/bin/
where there is also the file pozwalaj_proc, containing the shape optimization
procedures; as the computations may take a long time, they are performed in-
dependently of the interaction provided by the main executable file. The program
pozwalaj_proc is supposed to be executed only when invoked by the program
pozwalaj (and run from the command line it will immediately terminate).

After invoking, the program displays two windows (some XWindow managers
may place them initially in such a way that one window obscures the other one). The
first window displays the geometric data (curves, surfaces and their control polygons
and meshes). If 3D objects are displayed, the geometry window is divided into four
areas. Three of them show orthogonal projections of the geometric objects onto the
xz, yz and xy planes, and one (lower right) shows a perspective projection. A user
may change the projection centre by moving the cursor into this area, pressing the
left button and moving the cursor.

0.3

One of the geometric objects (curves or surfaces, none are present at the begin-
ning of program execution) is distinguished as current. The second window allows
the user to make actions specific for the current object, via menus specific for that

object. After clicking the button labelled | Objects | and then in the popup

menu, the window looks like this:

Then, after clicking the button and then in yet another
popup, the program creates a new object, which is a spline surface represented by
a mesh. Initially this mesh has one facet with four vertices and edges.

After clicking the buttons | Data| and |cube |, we choose a mesh, whose facets
form the boundary of a cube; the length of its edges is 2. Then clicking the
button returns to the menu making it possible to edit the mesh topology. Resizing

the window (making it slightly higher) causes all widgets of this menu to fit in.

0.4

With the cursor back in the first window, on the object images, typing makes
the program find a bounding cube of the object and fit it in the visible area.

Now we edit the mesh. In the second window, click twice (using the left mouse
button) the green widget labelled (to decrease the number, use the right
button, also the mouse wheel works here). This will distinguish the facet number 1,
which will be displayed as follows:

EFE] Ipozwalaj j‘ 3

In the second window, click the | double edges | button. This executes the Eule-
rian operation, which produces four new facets surrounding the distinguished facet.
The new facets are quadrangular, but they are degenerated to line segments.

0.5

In the first window, click the button. Then, using the text editing
widgets (the blue ones, they are activated by clicking on them, and deactivated by

clicking aside), type in the coordinates of the reference vector [0,—1,0], and then

click the button. Then, in the second window, click | double edges | and

in the first window click again. Then click the button below
the number widget. The window now looks as follows:

0.6

After removing the facet, another facet became number 1. We click the button

double edges |, then in the first window we enter the reference vector [1,0,0] and

click , we double edges and translate once more and again we remove the
facet. After removing it, we double the edges of the new facet number one, translate
its vertices by the vector [0,1,0], again we double and translate and remove the
facet. For the fourth facet, which became number 1, twice we double the edges and
translate the vertices by the vector [—1,0, 0], then we remove the facet. The result

is shown on the next picture:

0.7

The mesh has now four closed boundaries, each formed by four edges adjacent
to the removed facets. Now, in the second window, we click the button. It
invokes the procedure implementing the mesh refinement operator, the composition
of mesh doubling followed by three averaging operations (actually, the number of
averagings is the surface degree, 3 by default). Here is what we obtain:

The light grey lines are constant parameter curves of the bicubic patches, cor-
responding to the regular elements of the surface domain. The binonic patches,
represented by special elements of the mesh, are drawn in light blue. For conve-
nience, we may click the m button in the second window and turn off (by
clicking) the switches which control displaying the surface (i.e. the bicubic patches)
and the hole filling (binonic patches), thus leaving only the mesh vertices and edges
on the picture.

We are going to obtain a blending surface, which is a junction of two crossing
cylindric tubes. Of course, bicubic splines cannot represent cylinders of revolution
exactly, but if the mesh is dense enough and the vertices are located on a cylinder of
revolution, the spline surface may approximate a cylinder with an arbitrarily small
error. Therefore in the next step the mesh vertices will be projected onto cylinders.
Here is the method: click the button in the top menu of the first window.

Then click the switch to turn it on. Now move the cursor to one of
the object image windows. Vertices may be marked individually by clicking with

0.8

the left mouse button and unmarked by clicking with the right button. Also it
is possible to press the button, move the cursor and release the button in order
to mark or unmark all vertices in the rectangular area indicated by this mouse
movement.

The marking of each vertex consists of five bits. They may be selected for
manipulating by five switches just below the switch. We process
two groups of vertices, so we need two bits. At first we mark the vertices shown
below (the marked vertices are red):

0.9

Then we click the button. There we have the coordinates of the
reference point [0, 0, 0] and reference vector [—1,0,0], which determine the axis of

the cylinder, and radius 1. Clicking the project button makes the

program project all the marked vertices on this cylinder. Then we click
again, and choose the second bit to mark/unmark (and we turn off switching the
first bit). We mark the second set of vertices, then we click , we enter
the reference vector (direction of the cylinder axis) [0, 1,0] and again we project the
vertices on the second cylinder. The result is as on the picture:

0.10

Now we click the button in the second window and then . The
refinement clears any vertex marking, therefore we go to the first window and in the
similar way we mark the vertices and then we project them onto two cylinders, but
this time we choose the cylinder radius 0.9267795297. After projecting the vertices
we may inspect the surface. To do this, we click the | View | button in the second
window, where we turn on displaying the surface and patches filling the holes in

it. Then in the first window we click the button labelled , then ,

and we may choose the shape function to visualise. Clicking starts the
rendering process (which is ray tracing). An image of mean curvature obtained in
this way is as follows:

Shape function min =

Time to optimise the surface shape. To do this, we need both marked bits to
be selected in the editing menu, as the constraints, which we want, are imposed
by fixing all vertices having one of the currently selected bits set. The boundary
vertices (which we also marked in order to project them on the cylinders) are always
fixed for the optimization procedure.

0.11

In the second window we click and then we turn on the | blending
switch. Then we turn on the switch labelled . Here is, how the second

window should look:

0.12

Now we click the button. Some data are written out in the terminal,
from which the program has been invoked. Intermediate results (after subsequent
iterations of the optimization procedure) are displayed in the first window, and the
user may still interact, e.g. in order to look at these results from different sides
(this is useful during the optimization of surfaces represented by meshes with large
numbers of vertices). The computations on a PC with 3.0GHz Intel Core 2 processor
took less than 20 seconds, after which we may render the surface again. To obtain
a bigger picture, before doing that we may move the cursor to the perspective image
area and type . The result is the following:

So far, it is the only existing documentation of the program pozwalaj. A de-
tailed description of all widgets etc. is yet to be written, which is a tough job,
especially as the program may (and will) continuously change. Any reader of this
document is encouraged to contact the author (i.e. me), ask questions and give
comments. This could really help.

Przemystaw Kiciak

