
BSTools

procedure libraries

Przemysław Kiciak

Version 0.35, January, 26, 2015,

TEX-processed December 9, 2019.

Most of this file contains a quick and dirty translation

of the Polish documentation,

which is also quick and dirty.

Caution: This documentation is incomplete and it needs a thorough revision.

The distribution of the software described in this document is subject to the terms

of the GNU licenses published by Free Software Foundation. The procedures, whose

sources are in the ../src and ../include subdirectories are distributed on terms of

the GNU Lesser General Public License, whose full text is in the file COPYING.LIB.

The demonstration programs, test programs and the programs which generate the

pictures for this documentation (in the directories ../demo, ../test and ./pict)

are distributed on the terms of the GNU General Public License, given in the file

COPYING.

Copyright c


 by Przemysław Kiciak, 2005–2015.



Contents

1 Overview 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Short description of the libraries . . . . . . . . . . . . . . . . . . . . 2

1.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Linking order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Principles of modification . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The libpkvaria library 1

2.1 Various small gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Scratch memory management . . . . . . . . . . . . . . . . . . . . . . 2

2.4 Square angle measure . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Data exchanging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6.1 CountSort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6.2 QuickSort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6.3 Heap priority queue . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Multidimensional array management . . . . . . . . . . . . . . . . . . 8

2.8 Line segment rasterization . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Wrappings of malloc and free . . . . . . . . . . . . . . . . . . . . . 16

2.11 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 The libpknum library 1

3.1 Full matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1.1 Elementary operations . . . . . . . . . . . . . . . . . . . . . . 1

3.1.2 Solving systems of linear equations . . . . . . . . . . . . . . . 5

3.1.3 The QR decomposition and least-squares problems . . . . . . 7

3.2 Band matrix processing . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.2

3.2.1 The representation and basic procedeures . . . . . . . . . . . 11

3.2.2 Solving linear least squares problems . . . . . . . . . . . . . . 15

3.2.3 Solving regular problems with constraints . . . . . . . . . . . 16

3.2.4 Solving dual linear least squares problems . . . . . . . . . . . 18

3.2.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Processing “packed” symmetric and triangular matrices . . . . . . . . 21

3.4 Processing symmetric and triangular matrices

with a nonregular band . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Processing block symmetric matrices . . . . . . . . . . . . . . . . . . 30

3.5.1 Matrices of the first type block structure . . . . . . . . . . . 30

3.5.2 Matrices of the second block type structure . . . . . . . . . . 32

3.5.3 Matrices of the third block type structure . . . . . . . . . . . 36

3.6 Irregular sparse matrices . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Multiplication of a matrix and a vector . . . . . . . . . . . . 39

3.6.2 Multiplication of two sparse matrices . . . . . . . . . . . . . . 39

3.7 Conjugate gradient method for linear equations . . . . . . . . . . . . 51

3.8 Triangular bit matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Solving nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Computing derivatives of composite functions . . . . . . . . . . . . . 56

3.11.1 Computing derivative transformation matrices . . . . . . . . 57

3.11.2 Computing derivatives of composite functions . . . . . . . . . 58

3.11.3 Computing derivatives of compositions with inverse functions 59

3.11.4 Computing derivatives of inverse functions . . . . . . . . . . 61

3.12 Quadratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 The libpkgeom library 1

4.1 Point and vector operations . . . . . . . . . . . . . . . . . . . . . . . 1

4.2 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Finding the convex hull . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 The libcamera library 1

5.1 The camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.1.1 A description of the camera and the projection algorithm . . 1

5.1.2 Camera procedures . . . . . . . . . . . . . . . . . . . . . . . . 4

5.2 Stereo camera pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 The libpsout library 1

6.1 Basic procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.2 Additional procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 7



0.3

7 The libmultibs library 1

7.1 Basic definitions and representations of curves and patches . . . . . 1

7.1.1 Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

7.1.2 Tensor product Bézier patches . . . . . . . . . . . . . . . . . 2

7.1.3 B-spline curves . . . . . . . . . . . . . . . . . . . . . . . . . . 3

7.1.4 Tensor product B-spline patches . . . . . . . . . . . . . . . . 6

7.1.5 NURBS curves and patches . . . . . . . . . . . . . . . . . . . 6

7.1.6 Coons patches . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7.1.7 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . 9

7.2 Knot sequence processing . . . . . . . . . . . . . . . . . . . . . . . . 12

7.2.1 Searching knot sequences . . . . . . . . . . . . . . . . . . . . 12

7.2.2 Generating knot sequences . . . . . . . . . . . . . . . . . . . 13

7.2.3 Reparameterization of curves and patches . . . . . . . . . . . 14

7.2.4 Knot modifications . . . . . . . . . . . . . . . . . . . . . . . . 15

7.2.5 Verifying correctness . . . . . . . . . . . . . . . . . . . . . . . 15

7.3 Evaluating B-spline functions . . . . . . . . . . . . . . . . . . . . . . 16

7.4 Computing points of curves and patches . . . . . . . . . . . . . . . . 17

7.4.1 The de Boor algorithm . . . . . . . . . . . . . . . . . . . . . . 17

7.4.2 Horner scheme for Bézier curves and patches . . . . . . . . . 24

7.4.3 Computing curvatures and the Frenet frames of curves . . . . 33

7.4.4 Computing the patch normal vector . . . . . . . . . . . . . . 34

7.4.5 Computing the fundamental forms and curvatures of patches 34

7.5 Evaluating curves at a number of points . . . . . . . . . . . . . . . . 37

7.6 Computing the representation of derivatives . . . . . . . . . . . . . . 39

7.7 Knot insertion and removal . . . . . . . . . . . . . . . . . . . . . . . 41

7.7.1 The Boehm algorithm . . . . . . . . . . . . . . . . . . . . . . 41

7.7.2 Removing knots . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.7.3 The Oslo algorithm . . . . . . . . . . . . . . . . . . . . . . . 46

7.7.4 Maximal knot insertion . . . . . . . . . . . . . . . . . . . . . 49

7.7.5 Conversion of curves and patches to the piecewise Bézier form 51

7.8 Lane-Riesenfeld algorithm . . . . . . . . . . . . . . . . . . . . . . . . 54

7.9 Bézier curves and patches subdivision . . . . . . . . . . . . . . . . . 56

7.10 Degree elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.10.1 Degree elevation of Bézier curves and patches . . . . . . . . . 59

7.10.2 Degree elevation of B-spline curves and patches . . . . . . . . 61

7.11 Degree reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.12 Algebraic operations on spline functions and curves . . . . . . . . . . 70

7.12.1 Addition of splines . . . . . . . . . . . . . . . . . . . . . . . . 70

7.12.2 Transformation between Bernstein and scaled Bernstein bases 75

7.12.3 Multiplication of spline functions and curves . . . . . . . . . 76

7.12.4 Computing normal vector patches . . . . . . . . . . . . . . . 79

7.13 B-spline end knots change . . . . . . . . . . . . . . . . . . . . . . . . 81

0.4

7.14 Constructing curves of interpolation . . . . . . . . . . . . . . . . . . 83

7.14.1 Cubic spline curves of interpolation . . . . . . . . . . . . . . 83

7.14.2 Hermite curves of interpolation . . . . . . . . . . . . . . . . . 86

7.15 Constructing curves of approximation . . . . . . . . . . . . . . . . . 88

7.16 Bézier curve clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.17 Polyline shape testing . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.18 Curve rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.19 Processing Coons patches . . . . . . . . . . . . . . . . . . . . . . . . 96

7.19.1 Polynomial patches . . . . . . . . . . . . . . . . . . . . . . . . 96

7.19.2 Spline patches . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.20 Spherical product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.21 Drawing trimmed patches . . . . . . . . . . . . . . . . . . . . . . . . 114

7.21.1 Domain representation . . . . . . . . . . . . . . . . . . . . . . 114

7.21.2 Domain boundary compilation . . . . . . . . . . . . . . . . . 117

7.21.3 Line pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 The libraybez library 1

8.1 Common definitions and procedures . . . . . . . . . . . . . . . . . . 1

8.2 Binary subdivision trees for polynomial patches . . . . . . . . . . . . 2

8.3 Binary subdivision trees for rational Bézier patches . . . . . . . . . . 4

9 The libeghole library 1

9.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

9.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . 3

9.2.1 Bases used in the constructions . . . . . . . . . . . . . . . . . 3

9.2.2 Optimisation criteria for surfaces of class G1 . . . . . . . . . 5

9.2.3 Optimisation criteria for surfaces of class G2 . . . . . . . . . 5

9.2.4 Optimisation criteria for surfaces of class G1Q2 . . . . . . . . 7

9.2.5 Constraint equations . . . . . . . . . . . . . . . . . . . . . . . 7

9.2.6 Table of procedures of surface construction . . . . . . . . . . 8

9.3 Using the procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9.3.1 The basic construction . . . . . . . . . . . . . . . . . . . . . . 10

9.3.2 The nonlinear construction . . . . . . . . . . . . . . . . . . . 11

9.3.3 Extending the space . . . . . . . . . . . . . . . . . . . . . . . 11

9.3.4 Imposing constraints . . . . . . . . . . . . . . . . . . . . . . . 12

9.4 Main procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.5 Entering options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9.6 Imposing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9.6.1 Filling holes with B-spline patches . . . . . . . . . . . . . . . 24

9.7 Nonlinear constructions procedures . . . . . . . . . . . . . . . . . . . 24

9.8 Visualisation procedures . . . . . . . . . . . . . . . . . . . . . . . . . 27



0.5

10 The libbsmesh library 1

10.1 Mesh representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

10.2 Mesh refinement procedures . . . . . . . . . . . . . . . . . . . . . . . 4

10.3 Eulerian and non-Eulerian operations . . . . . . . . . . . . . . . . . 10

10.4 Extracting regular and special subnets . . . . . . . . . . . . . . . . . 15

10.5 Other procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11 The libg1blending library 1

12 The libg2blending library 1

12.1 Triharmonic tensor product B-spline patches . . . . . . . . . . . . . 2

12.2 Tensor product patches optimized using

a shape-dependent functional . . . . . . . . . . . . . . . . . . . . . . 4

12.2.1 Main procedures . . . . . . . . . . . . . . . . . . . . . . . . . 4

12.2.2 Auxiliary procedures . . . . . . . . . . . . . . . . . . . . . . . 5

12.3 Optimization of surfaces represented by irregular meshes . . . . . . . 8

12.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

12.3.2 Nonblock algorithm . . . . . . . . . . . . . . . . . . . . . . . 11

12.3.3 Two-level block algorithm . . . . . . . . . . . . . . . . . . . . 13

12.3.4 Multilevel algorithm . . . . . . . . . . . . . . . . . . . . . . . 14

12.3.5 Additional procedures . . . . . . . . . . . . . . . . . . . . . . 18

12.3.6 Example of using the optimization procedures . . . . . . . . 19

13 The libbsfile library 1

14 The libmengerc library 1

14.1 Demo programs in the package . . . . . . . . . . . . . . . . . . . . . 1

14.2 Library contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

14.2.1 Symbolic constants . . . . . . . . . . . . . . . . . . . . . . . . 2

14.2.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

14.2.3 Main optimization procedures . . . . . . . . . . . . . . . . . . 3

14.2.4 Auxiliary and private procedures . . . . . . . . . . . . . . . . 4

15 The libxgedit library 1

15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

15.2 Auxiliary #definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 1

15.3 Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

15.4 Xlib procedure wrappers . . . . . . . . . . . . . . . . . . . . . . . . . 6

15.5 Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

15.6 Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

15.6.1 Generic widget constructor . . . . . . . . . . . . . . . . . . . 9

15.6.2 Empty widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

15.6.3 Menu widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.6

15.6.4 Switch widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

15.6.5 Button widget . . . . . . . . . . . . . . . . . . . . . . . . . . 10

15.6.6 Slidebar widgets . . . . . . . . . . . . . . . . . . . . . . . . . 10

15.6.7 Dial widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

15.6.8 Quaternion ball widget . . . . . . . . . . . . . . . . . . . . . 12

15.6.9 Text output widget . . . . . . . . . . . . . . . . . . . . . . . . 12

15.6.10Colour sample widget . . . . . . . . . . . . . . . . . . . . . . 12

15.6.11Text editing widget . . . . . . . . . . . . . . . . . . . . . . . 13

15.6.12 Integer widget . . . . . . . . . . . . . . . . . . . . . . . . . . 13

15.6.13List widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

15.6.14 2D geometry editing widget . . . . . . . . . . . . . . . . . . . 15

15.6.15Four window widget . . . . . . . . . . . . . . . . . . . . . . . 16

15.6.16 3D geometry editing widget . . . . . . . . . . . . . . . . . . . 17

15.6.17Knot sequence editing widget . . . . . . . . . . . . . . . . . . 19

15.6.18Two knot sequences editing widget . . . . . . . . . . . . . . . 20

15.6.19Scrolling widget . . . . . . . . . . . . . . . . . . . . . . . . . 22

15.7 Input focus processing . . . . . . . . . . . . . . . . . . . . . . . . . . 23

15.8 Popup widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

15.9 Application initialisation, message loop and closing . . . . . . . . . . 23

15.10Other procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

15.11OpenGL support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

15.12Interprocess communication . . . . . . . . . . . . . . . . . . . . . . . 26

15.12.1Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15.12.2Common variables . . . . . . . . . . . . . . . . . . . . . . . . 26

15.12.3Parent side procedures . . . . . . . . . . . . . . . . . . . . . . 26

15.12.4Child side procedures . . . . . . . . . . . . . . . . . . . . . . 26

16 Demonstration programs 1

16.1 The pokrzyw program . . . . . . . . . . . . . . . . . . . . . . . . . . 1

16.2 The pognij program . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

16.3 The pomnij program . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

16.4 The polep program . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

16.5 The policz program . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

16.6 The pozwalaj program . . . . . . . . . . . . . . . . . . . . . . . . . 4

16.6.1 A session log . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

17 Obsolete projects 1

17.1 Filling polygonal holes . . . . . . . . . . . . . . . . . . . . . . . . . . 1



1. Overview

1.1 Introduction

I wrote the BSTools procedure package in order to make experiments being part

of my scientific work, and for pleasure. The main part of the package consists of

the procedures processing Bézier and B-spline curves and surfaces, hence the name.

The mathematical properties of the curves and surfaces and the theoretical bases

of the procedures processing these objects are described in my book

Podstawy modelowania krzywych i powierzchni

zastosowania w grafice komputerowej

published by Wydawnictwa Naukowo-Techniczne1. The BSTools package (version

0.12) is an appendix to the second edition of this book (of the year 2005). As

opposed to the book (whose copying, even fragments, must be preceded by getting

a permision of the publisher), this package may be freely copied and distributed,

and it may be moodified and used in any programs, on terms of the FSF Lesser

GNU Public License, to be read in the file COPYING.LIB.

My second book,

Konstrukcje powierzchni gładko wypełniających

wielokątne otwory

published by Oficyna Wydawnicza Politechniki Warszawskiej (prace naukowe, Elek-

tronika, z. 159, 2007) contains a description of the constructions of surfaces of

class G1 and G2, implemented in the library libeghole (the version 0.18 of the

package, accompanying the book, contains two libraries, libg1hole and libg2hole,

which have been merged and considerably extended).

The procedures of this package may be used for any (hopefully decent) purpose,

for example to write a modelling system or a graphical application. To do this, they

must be made robust, i.e. it is necessary to implement and test a full system of error

detection and signalling. As it is known, the last person appropriate for making

tests of any procedure is its author (but there is no justification for him if he does

not do it). People interested in participation in this enterprise and interested in

using the package in applications are welcome.

1Apart from my book there are also many other books, which describe the algorithms im-
plemented in the procedures described here; to my knowledge, none of those books has been
translated yet (before 2005) to Polish.

1.2

1.2 Short description of the libraries

The BSTools package currently consists of the following libraries:

libpkvaria — varieties, like scratch memory management, sorting etc.

libpknum — numerical procedures used in various constructions of B-spline curves,

but suitable for general use.

libpkgeom — geometric procedures.

libcamera — perspective and parallel projections.

libpsout — PostScript(TM) picture generation.

libmultibs — processing of Bézier and B-spline curves and surfaces.

libraybez — ray tracing (computing ray/patch intersections).

libeghole — filling polygonal holes in piecewise bicubic spline surfaces with G1,

G2 and G1Q2 continuity.

libbsmesh — procedures for processing meshes representing surfaces.

libg1blending — procedures of shape optimization of B-spline patches of de-

gree (2, 2), of class G1.

libg2blending — procedures of shape optimization of bicubic B-spline patches

and mesh surfaces of class G2.

libmengerc — shape optimization by minimization of integral Menger curvature

of closed B-spline curves.

libbsfile — Reading/writing files with data describing curves and surfaces.

libxgedit — support for interaction (using windows and widgets) with an XWin-

dow application (mainly for demonstration programs).

The procedures are written in C, with no hardware or system dependencies,

with one exception: the sorting procedure in the libpkvaria library assumes the

little-endian byte ordering. A migration to a big-endian processor (e.g. Motorola)

requires the appropriate reimplementation of this procedure (this has been done,

but it has not been tested yet).
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1.3 Compilation

The Makefiles are written for the Linux system. To compile the package, the

documentation and the demos, it is necessary to have

� the GNU make program,

� the gcc compiler and the ar program,

� XWindow and OpenGL libraries (for demonstration programs),

� the TEX system (for the documentation, which uses the LATEX2ε package and

Concrete Roman and Euler font packages),

� plus Ghostscript and Ghostview programs for convenient browsing of the doc-

umentation and the pictures generated by test programs.

To compile the full package, run make from the main package directory. This may

be preceded by make clean, in order to force the compilation of all sources.

The demonstration programs work in the XWindow system. There are no special

requirements (like Motif etc.). Some demonstration programs use OpenGL, and the

following libraries are needed: libGL, libGLU and libGLX.

1.4 Header files

The header files are stored in the ../include directory. Each library may have

more than one header file, to shorten the compilation time for programs not using

all procedures.

libpkvaria — the file pkvaria.h.

libpknum — the files pknumf.h and pknumd.h, with procedure prototypes of IEEE-

754 single precision (float) and double precision (double) floating-point

arithmetic versions respectively. Including the pknum.h file causes includ-

ing both above files, which helps to compile programs using procedures of

both precisions.

libpkgeom — the files pkgeomf.h, pkgeomd.h and pkgeom.h, which make it pos-

sible to use the procedures of the single, double and both precisions.

The convex hull procedures have a separate file convh.h, with the prototypes

for both precisions.

libcamera — the files cameraf.h, camerad.h and camera.h with the descriptions

of the cameras, i.e. objects, which implement perspective and parallel projec-

tions, in single, double, and both precisions.

The files stereof.h, stereod.h and stereo.h describe pairs of such cameras,

which may be used for the generation of stereo pairs of pictures.
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libpsout — the file psout.h contains the prototypes of all procedures in this

library.

libmultibs — the files multibsf.h, multibsd.h and multibs.h describe proce-

dures of single, double and both precisions.

libraybez — the files raybezf.h (single precision), raybezd.h (double precision)

and raybez.h (both versions).

libeghole — the files eg1holef.h, eg2holef.h (single precision), eg1holed.h

and eg2holed.h (double precision). There are no header files for both preci-

sion versions together.

libbsmesh — the file bsmesh.h

libg1blending — the files g1blengingf.h and g1blendingd.h (single and double

precision respectively).

libg2blending — the files g2blendingf.h, g2blendingd.h and g2mblendingd.h.

Some procedures have the double precision version only, because of the insuf-

ficient range of the single precision numbers.

libbsfile — the file bsfile.h, the input/output procedures implemented at this

point use double precision only.

libxgedit — the files xgedit.h and xgledit.h. Additional files, xgergb.h and

xglergb.h are not supposed to be included directly by applications (they

are included by xgedit.h and xgledit.h). These files contain some colour

definitions, with English colour names.

The procedures are compiled as C programs and the header files contain the

code, which causes the C++ compiler to see them in this way. Therefore the C++

programs should be linked with these libraries without problems.

1.5 Linking order

The procedures of some libraries refer to procedures of other libraries. To link

the program it is necessary to list the libraries in the proper order (otherwise the

compiler may fail to resolve some references). The proper order of the libraries is

xgedit raybez bsfile g2blending g1blending bsmesh camera

eghole multibs psout pkgeom pknum pkvaria

and it should be preserved in the user-written Makefiles. Unused libraries may of

course be omitted.
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1.6 Principles of modification

The GNU license does not limit the modifications, which one might want to do (but

the fact of modifying the software must be notified in the source code, to make clear

that it was not the original author, who made the mess). Therefore any principles

of making the modifications are only the authors wishes.

1. Except of PostScript file generation and the libxgedit library all procedures

are totally independent of any environment, in which they might work (and

this should be preserved).

2. Making a change in a procedure of the single or double precision, should be

accompnied by a similar modification of the other version (if it exists; if not,

it is desired to write that other version, using the same algorithm, though for

some algorithms the single precision may be insufficient).

3. After each change the documentation should be updated, and a test program

should be written. I would be grateful for notifying me about changes, so

that I can incorporate them into the future versions of the package.



2. The libpkvaria library

The header file with the prototypes of procedures from the libpkvaria library is

pkvaria.h.

2.1 Various small gadgets

#define false 0

#define true 1

#define EXP1 2.7182818284590452353

#define PI 3.1415926535897932384

#define SQRT2 1.4142135623730950488

#define SQRT3 1.7320508075688772935

typedef unsigned char boolean;

typedef unsigned char byte;

For boolean data it is better to use the name boolean than e.g. unsigned char

for its type, and to write true and false instead of 0 and 1. Preserving this rule

in the library procedures is however not quite perfect.

It is good to establish some conventions used in programs. It is known, that if

one thing may be done in a number of ways, each person will do it in a different

way. A team may thus commit a program with procedures, whose parameters are

specified in inches and meters. For humans, degrees are more convenient as the

angle measure unit. In the program code — radians. I am using the convention,

that all angles are processed by the program in radians, and they are input and

output in degrees, though e.g. PostScript and OpenGL use a different convention.

#define min(a,b) ((a)<(b) ? (a) : (b))

#define max(a,b) ((a)>(b) ? (a) : (b))

Two extremely useful macros.

double pkv_rpower ( double x, int e );

The procedure pkv_rpower computes xe.

void pkv_HexByte ( byte b, char *s );

The procedure pkv_HexByte finds the hexadecimal representation of the value

of the parameter b. The hexadecimal digits are stored in the array s, whose length

must be at least 3.
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2.2 Boxes

typedef struct Box2i {

int x0, x1, y0, y1;

} Box2i;

typedef struct Box2s {

short x0, x1, y0, y1;

} Box2s;

2.3 Scratch memory management

Many procedures of this package use the scratch memory for storing intermediate

results of computations, and the memory blocks are deallocated in the order reverse

to that of allocating. The memory management is implemented with use of a stack,

which is a very fast and flexible method.

The scratch memory pool serviced by the procedures described below may also

be used by other procedures — the only condition is creating a pool large enough at

the beginning of the program execution and using this memory in a strictly “stack”

manner.

char pkv_InitScratchMem ( int size );

The procedure pkv_InitScratchMem allocates (with malloc) a memory block of

size size bytes and initializes the scratch memory management in this block. The

procedure returns 0 if malloc failed and 1 if the memory pool has been successfully

initialized.

This procedure must be called before calling any procedures using the scratch

memory, i.e. which call pkv_GetScratchMem, pkv_GetScratchMemTop,

pkv_FreeScratchMem or pkv_SetScratchMemTop).

Currently there is no extending of the scratch memory pool if it turns out to be

too small during the program execution. The programmer therefore has to calculate

the size of this pool large enough for doing the computations. Some help in doing

this is experimenting and calling the procedure pkv_MaxScratchTaken.

void pkv_DestroyScratchMem ( void );

The procedure pkv_DestroyScratchMem deallocates (with free) the scratch

memory pool created by a call to pkv_InitScratchMem.

void *pkv_GetScratchMem ( int size );

The procedure mbs_GetScratchMem allocates a memory block of size size bytes

in the scratch memory pool and it returns the pointer to this block. If the allocation
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is impossible (because the scratch memory pool is too small), the procedure returns

the empty pointer (NULL).

void pkv_FreeScratchMem ( int size );

The procedure pkv_FreeScratchMem deallocates the last size bytes allocated

earlier by calls to pkv_GetScratchMem.

The memory blocks deallocation is always done in the order reverse to that of

their allocation. It is possible to deallocate a number of memory blocks with a single

call to this procedure, by specifying the parameter, whose value is the sum of sizes

of the blocks to be deallocated.

#define pkv_GetScratchMemi(size) \

(int*)pkv_GetScratchMem ( (size)*sizeof(int) )

#define pkv_FreeScratchMemi(size) \

pkv_FreeScratchMem ( (size)*sizeof(int) )

#define pkv_ScratchMemAvaili() \

(pkv_ScratchMemAvail()/sizeof(int))

#define pkv_GetScratchMemf(size) \

(float*)pkv_GetScratchMem ( (size)*sizeof(float) )

#define pkv_FreeScratchMemf(size) \

pkv_FreeScratchMem ( (size)*sizeof(float) )

#define pkv_ScratchMemAvailf() \

(pkv_ScratchMemAvail()/sizeof(float))

#define pkv_GetScratchMemd(size) \

(double*)pkv_GetScratchMem ( (size)*sizeof(double) )

#define pkv_FreeScratchMemd(size) \

pkv_FreeScratchMem ( (size)*sizeof(double) )

#define pkv_ScratchMemAvaild() \

(pkv_ScratchMemAvail()/sizeof(double))

The macros above may be used to allocate memory blocks for arrays of floating

point numbers. Using them makes the source code shorter and better readable.

void *pkv_GetScratchMemTop ( void );

void pkv_SetScratchMemTop ( void *p );

An alternative for remembering the number of allocated bytes (to be deallo-

cated with pkv_FreeScratchMem) is to remember the pointer to the end of the

allocated area in the pool. To do this, one may call pkv_GetScratchMemTop and

store the value returned in a local variable. Then one or more memory blocks

may be allocated with pkv_GetScratchMem). Their deallocation is done by calling

pkv_SetScratchMemTop with the pointer given by pkv_GetScratchMemTop.
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int pkv_ScratchMemAvail ( void );

The value of pkv_ScratchMemAvail is the current number of available bytes in

the scratch memory pool. An attempt of allocating a greater block will fail — the

procedure pkv_GetScratchMem will return NULL.

int pkv_MaxScratchTaken ( void );

The value of the procedure pkv_MaxScratchTaken is the greatest number of

bytes allocated at a certain moment in the scratch memory pool, since the pool was

created (with pkv_InitScratchMem), beforre calling this procedure.

2.4 Square angle measure

double pkv_SqAngle ( double x, double y );

The procedure pkv_SqAngle computes a measure of the angle between the

vector [x, y] and the Ox axis. This measure is computed with a couple of arithmetic

operations, which is faster than using the cyclometric functions. The function values

are in the interval [0, 4).

The properties of this measure: if two vectors make the right angle, then the

differences of the values of this measure is 1. Similarly, for the straight angle the

difference is 2. The measure of the full angle is 4.

2.5 Data exchanging

void pkv_Exchange ( void *x, void *y, int size );

The procedure pkv_Exchange swaps the contents of two memory blocks of size

size pointed by the parameters x and y. The blocks must be disjoint.

The procedure uses a buffer, whose length is not greater than 1KB, allo-

cated with the pkv_GetScratchMem procedure, therefore to use this procedure

it is necessary to create the large enough scratch memory pool (by calling

pkv_InitScratchMem at the beginning of the program execution).

void pkv_Sort2f ( float *a, float *b );

void pkv_Sort2d ( double *a, double *b );

The procedures pkv_Sort2f and pkv_Sort2d swap the values of the variables

*a and *b, if the first of them is greater than the second.



2.5

2.6 Sorting

2.6.1 CountSort

The procedures described below sort arrays of structures with numerical data (keys),

integer or floating point. The sorting method depends on the length of the array.

For a small number, InsertionSort is used. For longer arrays the CountSort algo-

rithm is used.

The sorting method is stable, i.e. it does not swap the array elements whose

keys have equal values, except that it puts the floating point +0.0s after the −0.0s.

#define ID_SHORT 0

#define ID_USHORT 1

#define ID_INT 2

#define ID_UINT 3

#define ID_FLOAT 4

#define ID_DOUBLE 5

The identifiers above denote the possible types of the keys. The types short

and unsigned short are 16-bit integers. The types int and unsigned int are 32-

bit integers. The types float and double are 32-bit and 64-bit IEEE-754 floating

point numbers. The sorting procedures assume that the byte ordering is little-

endian (Intel processors use this byte ordering).

#define SORT_OK 1

#define SORT_NO_MEMORY 0

#define SORT_BAD_DATA 2

The identifiers above denote possible values of the sorting procedures described

below. If there is no error, the value returned is SORT_OK. The other possibilities

indicate not enough scratch memory or invalid data.

char pkv_SortKernel ( void *ndata, int item_length, int num_offset,

int num_type, int num_data, int *permut );

The procedure pkv_SortKernel finds the proper sequence of the elements in the

ndata array, i.e. the permutation, which puts the elements in the sorted (nonde-

creasing) order. The ndata array consists of structures of size item_length bytes.

The key, i.e. the integer or floating point number with respect to which the data

are to be sorted, is located in each structure num_offset bytes from the structure

beginning. The number n of the structures (i.e. the length of the ndata array) is

the value of the parametr num_data.

The array permut contains numbers from 0 to n−1. At the return (when there is

no error), the array permut contains the same numbers, in the order corresponding

to the proper permutation. The initial ordering of the numbers in this array is

important if the data have to be sorted with respect to a number of keys. For
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example, if the structures consist of two numbers, x and y, and the array has to be

sorted so that the x-s form a nondecreasing sequence, and for x-s equal the y-s have

to form a nondecreasing sequence, one should initialize the permut array by filling

it with the numbers 0, . . . , n− 1 (in an arbitrary order), then call pkv_SortKernel

twice: first to sort the array with respect to y and then with respect to x. Then

one can call pkv_SortPermute to set the data in the array in the right order.

void pkv_SortPermute ( void *ndata, int item_length, int num_data,

int *permut );

The procedure pkv_SortPermute permutes the structures in the array ndata

according to the contents of the permut array, which has to contain the integer

numbers from 0 to n− 1. The number of structures n is the value of the parameter

num_data, the length of the array element (in bytes) is specified by the parameter

item_length.

char pkv_SortFast ( void *ndata, int item_length, int num_offset,

int num_type, int num_data );

The procedure pkv_SortFast sorts the array ndata, which contains num_data

structures of size item_length bytes, which contain numeric keys of type speci-

fied with the parameter num_type, located num_offset bytes from the structure

beginning.

2.6.2 QuickSort

The procedure described below sorts elements of a given sequence by comparisons.

It is an implementation of the QuickSort algorithm, and two basic operations on

the sequence—comparing and swapping two elements—are done by application-

supplied procedures given by parameters. The QuickSort algorithm is not stable,

ie. the order of two equal elements after sorting may be changed.

void pkv_QuickSort ( int n, boolean (*less)(int,int),

void (*swap)(int,int) );

Thew parameter n specifies the length of the sequence to be sorted; the elements

are numbered from 0 to n − 1. The parameter less points to a procedure, whose

value true indicates that the i-th element of the sequence is less that the j-th

element (where the numbers i and j are the values of parameters of the procedure).

The parameter swap points to a procedure swapping the elements of the sequence

indicated by its parameters.
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2.6.3 Heap priority queue

The priority queue implemented with the procedures described in this section is

an array of pointers to arbitrary objects; both inserting and removing an object

is addind or deleting a pointer in the array.The priorities are defined by the ap-

plication, which ought to supply a procedure, cmp, with two pointer parameters;

the procedure must return true if the priority of the object pointed by the first

parameter is higher.

int pkv_UpHeap ( void *a[], int l, boolean (*cmp)(void*,void*) );

int pkv_DownHeap ( void *a[], int l, int f,

boolean (*cmp)(void*,void*) );

int pkv_HeapInsert ( void *a[], int *l, void *newelem,

boolean (*cmp)(void*,void*) );

void pkv_HeapRemove ( void *a[], int *l, int el,

boolean (*cmp)(void*,void*) );

void pkv_HeapOrder ( void *a[], int n,

boolean (*cmp)(void*,void*) );

void pkv_HeapSort ( void *a[], int n,

boolean (*cmp)(void*,void*) );
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2.7 Multidimensional array management

The procedures for processing curves and surfaces in the libmultibs library process

the control points stored in one-dimensional arrays of floating point numbers. Such

an array may be declared for example as n points in the three-dimensional space,

but the memory area occupied by these data contains 3n numbers stored one-by-

one.

Two-dimensional arrays of points have a similar contents and usually they are

used for storing rectangular nets of control points. Such an array contains the

coordinates of the points of the first column of the control net, then the second etc.

The basic parameter, which makes it possible to access the right places in such an

array is the pitch, which is the distance between the beginnings of two consecutive

columns. Obviously, the pitch is irrelevant for one-dimensional arrays (or arrays

with only one column).

From the point of view of the data processing arrays it is better to interpret

them as two-dimensional arrays, without taking care of the actual number of points

and the dimension of the space, whose elements are these points. The array cosists

of rows of some fixed length (usually not greater than the pitch). After each row

there may be an unused area, whose length is the difference of the pitch and the

row length. The procedures and macros described below may be used to change

the pitch, by moving closer or farther the rows, which changes the length of the

unused areas, to copy the data between two arrays of various pitches, or to move

the rows in an array without changing its pitch.

For special purposes it may be necessary to process arrays of bytes in this way

(i.e. the smallest directly addressable memory cells). Therefore the C procedures are

implemented for the arrays of char. The arrays of float or double are processed

with macros, which multiply the row lengths and pitches by the size of float or

double.

void pkv_Rearrangec ( int nrows, int rowlen,

int inpitch, int outpitch,

char *data );

The procedure pkv_Rearrangec moves the data in the array in order to change

the pitch. The array consists of nrows rows. Each of them consists of rowlen

bytes. The parameter inpitch specifies the initial pitch (the distance between the

beginnings of consecutive rows). The parameter outpitch is the target pitch. Both

pitches cannot be shorter than the row length.

void pkv_Selectc ( int nrows, int rowlen,

int inpitch, int outpitch,

const char *indata, char *outdata );

The procedure pkv_Selectc copies the data from the array indata to the array

outdata. The data are stored in nrows rows of length rowlen. The pitch of the
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data outpitch

inpitchrowlen

Figure 2.1. The effect of the procedures pkv_Rearrangec and pkv_Selectc

indata array is specified by the parameter inpitch, and the pitch of the outdata

by outpitch. The arrays must occupy disjoint memory areas.

The effect of the procedure pkv_Selectc may be illustrated with the same

picture (fig. 2.1) as the pkv_Rearrangec procedure, keeping in mind that the data

are copied to a different array.

data pitch

pitchrowlen

Figure 2.2. Moving data by the procedure pkv_Movec

void pkv_Movec ( int nrows, int rowlen,

int pitch, int shift, char *data );

The procedure pkv_Movec “moves” data in the array by shift bytes. The pa-

rameter nrows specifies the number of rows, rowlen is the row length, pitch is the

array pitch (which remains unchanged). The parameter data is a pointer to the

beginning of the firsy row before moving it. The value of the shift parameter may

be positive or negative.

The contents of the array between the rows, if it is not overwritten by the row

contents moved by pkv_Movec onto that place, are left unchanged. This makes it

possible to “extend” all rows (with shortening the unused area), in order to make

space in the rows for additional elements, or to remove some elements from all rows

(which extends the unused areas).
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void pkv_ZeroMatc ( int nrows, int rowlen, int pitch, char *data );

The procedure pkv_ZeroMatc initializes an array of bytes, by assigning the

value 0 to all its elements. The contents of the unused areas is left unchanged.

void pkv_ReverseMatc ( int nrows, int rowlen,

int pitch, char *data );

The procedure pkv_ReverseMatc puts the rows of an array of bytes in the reverse

order. The parameters nrows and rowlen specify the dimensions of this array. The

parameter pitch is the pitch of the array data.

#define pkv_Rearrangef(nrows,rowlen,inpitch,outpitch,data) \

pkv_Rearrangec(nrows,(rowlen)*sizeof(float), \

(inpitch)*sizeof(float),(outpitch)*sizeof(float),(char*)data)

#define pkv_Selectf(nrows,rowlen,inpitch,outpitch,indata,outdata) \

pkv_Selectc(nrows,(rowlen)*sizeof(float), \

(inpitch)*sizeof(float),(outpitch)*sizeof(float), \

(char*)indata,(char*)outdata)

#define pkv_Movef(nrows,rowlen,pitch,shift,data) \

pkv_Movec(nrows,(rowlen)*sizeof(float),(pitch)*sizeof(float), \

(shift)*sizeof(float),(char*)data)

#define pkv_ZeroMatf(nrows,rowlen,pitch,data) \

pkv_ZeroMatc(nrows,(rowlen)*sizeof(float), \

(pitch)*sizeof(float),(char*)data)

#define pkv_ReverseMatf(nrows,rowlen,pitch,data) \

pkv_ReverseMatc ( nrows, (rowlen)*sizeof(float),

(pitch)*sizeof(float), (char*)data )

#define pkv_Rearranged(nrows,rowlen,inpitch,outpitch,data) \

pkv_Rearrangec(nrows,(rowlen)*sizeof(double), \

(inpitch)*sizeof(double),(outpitch)*sizeof(double),(char*)data)

#define pkv_Selectd(nrows,rowlen,inpitch,outpitch,indata,outdata) \

pkv_Selectc(nrows,(rowlen)*sizeof(double), \

(inpitch)*sizeof(double),(outpitch)*sizeof(double), \

(char*)indata,(char*)outdata)

#define pkv_ZeroMatd(nrows,rowlen,pitch,data) \

pkv_ZeroMatc(nrows,(rowlen)*sizeof(double), \

(pitch)*sizeof(double),(char*)data)

#define pkv_Moved(nrows,rowlen,pitch,shift,data) \

pkv_Movec(nrows,(rowlen)*sizeof(double),(pitch)*sizeof(double), \

(shift)*sizeof(double),(char*)data)

#define pkv_ReverseMatd(nrows,rowlen,pitch,data) \

pkv_ReverseMatc ( nrows, (rowlen)*sizeof(double),

(pitch)*sizeof(double), (char*)data )
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The macros above may be used for processing arrays of float or double in the

way described earlier.

The macros pkv_Rearrangef and pkv_Rearranged change the array pitch.

The macros pkv_Selectf and pkv_Selectd copy data between arrays of differ-

ent pitches.

The macros pkv_Movef and pkv_Moved move the rows in the array.

The macros pkv_ZeroMatf and pkv_ZeroMatd initiaalize the contents of arrays

by setting to 0.0 all the elements (floating point numbers — this is a trick based

on the fact that all bits of a floating point 0 are 0).

The macros pkv_ReverseMatf and pkv_ReverseMatd reverse the order of rows

of floating point arrays.

void pkv_Selectfd ( int nrows, int rowlen,

int inpitch, int outpitch,

const float *indata, double *outdata );

void pkv_Selectdf ( int nrows, int rowlen,

int inpitch, int outpitch,

const double *indata, float *outdata );

The above procedures copy data (floating point numbers) between arrays of

elements of different precisions. This is similar to the effect of using pkv_Selectf,

except that a conversion between float and double is done.

The array pitches (i.e. distances between the beginnings of consecutive rows)

are expressed in the units being the lengths of float and double as appropriate.

The procedure pkv_Selectfd should work correctly for all possible data (rep-

resenting numbers). The other procedure may cause the floating point overflow or

underflow. Moreover, there may be rounding errors, which result from the fact that

the set of floats is a subset of the set of doubles.

void pkv_TransposeMatrixc ( int nrows, int ncols, int elemsize,

int inpitch, const char *indata,

int outpitch, char *outdata );

The procedure pkv_TransposeMatrixc makes the transposition of a matrixm×
n. The parameters nrows and ncols specify the numbers m and n respectively.

The size (in bytes) of the matrix element is the value of the elemsize parameter.

The consecutive rows of the input matrix (whose elements are packed one-by-one)

are given in the indata array, whose pitch (in bytes) is inpitch. The procedure

writes the consecutive rows of the matrix transposition to the array outdata, whose

pitch is outpitch.
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#define pkv_TransposeMatrixf(nrows,ncols,inpitch,indata, \

outpitch,outdata) \

pkv_TransposeMatrixc ( nrows, ncols, sizeof(float), \

(inpitch)*sizeof(float), (char*)indata, \

(outpitch)*sizeof(float), (char*)outdata )

#define pkv_TransposeMatrixd(nrows,ncols,inpitch,indata, \

outpitch,outdata) ...

The two macros above may be used to transpose conveniently numeric matri-

ces, consisting of float or double floating point numbers. The parameters of those

macros correspond to the parameters of the procedure pkv_TransposeMatrixc (ex-

cept of elemsize). The pitch unit is the size of float or double.
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2.8 Line segment rasterization

The procedure of line rasterization is placed in this library, because so far there is no

better place. In future it is desirable to write a procedure of polygon rasterization,

and if this is further developed, then making a separate library with raster graphics

routines will be worth doing.

typedef struct {

short x, y;

} xpoint;

The structure xpoint is intended to represent pixels; it is identical to the Xpoint

structure defined in the file Xlib.h. Due to this, the pixels computed by the line ras-

terization procedures (and by the curve rasterization procedures of the libmultibs

library) may be displayed by an XWindow application without further conversion.

On the other hand, due to presence of this definition in the pkvaria.h file it is not

necessary to include Xlib.h and it is possible to use this procedure in non-XWindow

applications.

extern void (*_pkv_OutputPixels)(const xpoint *buf, int n);

extern xpoint *_pkv_pixbuf;

extern int _pkv_npix;

The variables above are used during the rasterization; these are: pointer to

the pixel outputting procedure (which must be supplied by the application), pixel

buffer pointer and pixel buffer counter. The application should not refer to these

variables directly.

#define PKV_BUFSIZE 256

#define PKV_FLUSH ...

#define PKV_PIXEL(p,px) ...

#define PKV_SETPIXEL(xx,yy) ...

The macros above define the pixel buffer capacity (256 causes reserving 1KB for

that buffer) and implement the buffer servicing. They are made available in the

header file for the needs of the curve rasterization procedures from the libmultibs

library.

void _pkv_InitPixelBuffer ( void );

void _pkv_DestroyPixelBuffer ( void );

Auxiliary procedures, of which the first allocates the pixel buffer, and the second

deallocates it. The buffer is allocated in the scratch memory pool (by a call to

pkv_GetScratchMem), therefore all the scratch memory allocated after its allocation

must be deallocated up to the last byte before the pixel buffer deallocation.

2.14

void _pkv_DrawLine ( int x1, int y1, int x2, int y2 );

void pkv_DrawLine ( int x1, int y1, int x2, int y2,

void (*output)(const xpoint *buf, int n) );

The procedure _pkv_DrawLine implements the Bresenham algorithm of line

segment rasterization. The procedure assumes that the pixel buffer has been

allocated prior to the call to it (by _pkv_InitPixelBuffer), and the variable

_pkv_OutputPixels points to the proper pixel output procedure (e.g. drawing the

pixels on the screen).

The procedure intendeded to be called by applications is pkv_DrawLine, whose

parameters: x1, y1, x2, y2 specify the line segment end points, and the parameter

output points to the proper pixel output routine. The procedure pkv_DrawLine

allocates and initializes the pixel buffer and assigns the value of the parameter

output to the variable _pkv_OutputPixels, then it calls _pkv_DrawLine, flushes

the buffer and deallocates it.

The procedure pointed by output must have two parameters; the first is the

pointer to the first pixel of the sequence to output, and the second indicates the

number of those pixels. The output procedure may allocate scratch memory, but

it must deallocate it before the return.
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2.9 Exception handling

During the program execution there may appear exceptional situations, and the

program must be able to deal with them. A typical problem is the memory shortage;

if no large enough memory block is available, the program has to do at least one of

the following actions:

� Halt (by a call to exit); not doing that would cause the program abortion

by the operating system because of its improper behaviour, i.e. an attempt

to access memory at a random address.

� Inform the user (before halting) about the appearance, place and nature of the

exceptional situation. Without that the user will have no idea of the reason

of getting a (guten) abend.

� Terminate the computation impossible of the error appearance without halt-

ing the program. In that case the user should also be informed, why the

program refused to do something, but it is still at the user command with

some other services.

In case of exceptional situations the procedures of the bstools package call the

pkv_SignalError procedure. Its default action is writing (on stderr) a message

and halting the program. Applications may (by calling the pkv_SetErrorHandler

procedure) install their own exception handling procedures, which may display

messages in a dialog box, and which may (with use of the procedures setjmp and

longjmp, see their description in man pages) abort the unsuccessful computation

by terminating a number of unfinished procedures and reset the program to some

default state.

#define LIB_PKVARIA 0

#define LIB_PKNUM 1

#define LIB_GEOM 2

#define LIB_CAMERA 3

#define LIB_PSOUT 4

#define LIB_MULTIBS 5

#define LIB_RAYBEZ 6

The above symbolic names denote the library with the procedure signalling

the exception. Applications may define its own identifiers, which should better be

different from the above.

void pkv_SignalError (

int module, int errno, const char *errstr );

The procedure pkv_SignalError by default prints a message to stderr and

halts the program (with a call to exit ( 1 );). The message consists of the error
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number (internal for the module, i.e. the library), being the value of the errno pa-

rameter, the module number (the parameter module) and the message text (pointed

by the parameter errstr).

If an exception handling procedure is installed (with pkv_SetErrorHandler),

then the procedure pkv_SignalError will call it, passing it its parameters.

void pkv_SetErrorHandler (

void (*ehandler)( int module, int errno, const char *errstr ) );

The procedure pkv_SetErrorHandler installs an exception handling proce-

dure, which henceforth will be called by pkv_SignalError. Setting the parameter

ehandler the NULL value causes “uninstalling” any previously installed exception

handler, i.e. restoring the default action of the pkv_SignalError procedure.

2.10 Wrappings of malloc and free

Some demonstration programs (pomnij and pozwalaj) launch a child process (us-

ing fork and exec), whose purpose is to perform the time-consuming numerical

computations without locking the user interaction. In particular it is possible to

terminate the computations before they are complete. If the child process gets

the signal SIGUSR1, it must break the computations (this is done with setjmp

and longjmp) and free all memory allocated dynamically in order to prepare for

the next job.

The dynamic allocation/deallocation is a critical phase of the computation;

longjmp is prohibited when malloc or free is working, and in particular after

memory block allocation, but before assignment of its address to a variable. Also

an application must register somehow all blocks currently allocated in order to clean

up.

To make it possible, malloc and free may be called via the macros described

below. They provide hooks for the application, i.e. pointers to procedures to be

called when necessary.

Remark: so far not all procedures in the libraries use these macros.

extern boolean pkv_critical, pkv_signal;

extern void (*pkv_signal_handler)( void );

extern void (*pkv_register_memblock)( void *ptr, boolean alloc );

The variable pkv_signal_handler is NULL by default; an application may assign

it the address of a signal handler, which will be called at once, except the signall

arrived in the critical phase; then this procedure will be called after return from

malloc or free.

A signal handler (registered with the signal procedure) should test the value

of the variable pkv_critical. If it is true, then only the assignment pkv_signal

= true; must be done. If the value of pkv_critical is false, then the procedure
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pointed by pkv_signal_handler may be called, and this procedure is allowed to

call longjmp. If after leaving the critical phase pkv_signal is true, the macro calls

this procedure (so the signal is processed later, but it is done).

The variable pkv_register_memblock, if not NULL, must point to a procedure,

which is called with the address of each block allocated or deallocated via the macro

PKV_MALLOC or PKV_FREE (only if pkv_signal_handler is not NULL).

#define PKV_MALLOC(ptr,size) \

{ \

if ( pkv_signal_handler ) { \

pkv_signal = false; \

pkv_critical = true; \

(ptr) = malloc ( size ); \

if ( pkv_register_memblock ) \

pkv_register_memblock ( (void*)(ptr), true ); \

pkv_critical = false; \

if ( pkv_signal ) \

pkv_signal_handler (); \

} \

else \

(ptr) = malloc ( size ); \

}

#define PKV_FREE(ptr) \

{ \

if ( pkv_signal_handler ) { \

pkv_signal = false; \

pkv_critical = true; \

free ( (void*)(ptr) ); \

if ( pkv_register_memblock ) \

pkv_register_memblock ( (void*)(ptr), false ); \

(ptr) = NULL; \

pkv_critical = false; \

if ( pkv_signal ) \

pkv_signal_handler (); \

} \

else { \

free ( (void*)(ptr) ); \

(ptr) = NULL; \

} \

}

The macro PKV_FREE, apart from deallocation of a memory block pointed by

the macro parameter (using free), assings NULL to this parameter.
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2.11 Debugging

void WriteArrayf ( const char *name, int lgt, const float *tab );

void WriteArrayd ( const char *name, int lgt, const double *tab );

The two above procedures may be used to produce control printouts during

the program debugging. They print out (to stdout) a text name and lgt floating

point numbers from the array tab.

void *DMalloc ( size_t size );

void DFree ( void *ptr );

These procedures may be called instead of malloc and free, if there is a sus-

picion, that the program writes outside of the allocated memory blocks. The pro-

cedure DMalloc allocates (with malloc) a memory block with additional 16 bytes,

fills it with zeroes, stores (in the first four bytes) the size and returns the address

of the eighth byte of the allocated block.

The procedure DFree verifies, whether the bytes 4, . . . , 7 and the last 8 bytes of

the block to deallocate are 0 and it writes out a warning.



3. The libpknum library

This library contains procedures with various general numerical algorithms. Cur-

rently most of them are related with the linear algebra, but this may change if new

needs have to be satisfied.

TODO: In the future it would be desirable to optimize these proceures or to

reimplement them as the interface to the BLAS procedures of the LAPACK package.

This should be accompanied with the appropriate changes of procedures in the

libmultibs library, as many of them contain matrix operations instead of calls to

specialized procedures.

3.1 Full matrix operations

The procedures described in this section process matrices represented as ordinary

arrays with all coefficients. Sparse matrices, whose most coefficients are 0, may and

often should be represented in a different way. In Section 3.2 there are descriptions

of procedures for so called band matrices, being some kind of sparse matrices.

In Section 3.6 there are procedures of processing sparse matrices, whose nonzero

coefficients may be distributed in a completely irregular way.

The rows and columns of an m × n matrix are indexed from 0 to m − 1 and

from 0 to n− 1 respectively.

3.1.1 Elementary operations

void pkn_AddMatrixf ( int nrows, int rowlen,

int inpitch1, const float *indata1,

int inpitch2, const float *indata2,

int outpitch, float *outdata );

void pkn_SubtractMatrixf ( int nrows, int rowlen,

int inpitch1, const float *indata1,

int inpitch2, const float *indata2,

int outpitch, float *outdata );

void pkn_AddMatrixMf ( int nrows, int rowlen,

int inpitch1, const float *indata1,

int inpitch2, const float *indata2,

double a,

int outpitch, float *outdata );
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void pkn_MatrixMDifferencef ( int nrows, int rowlen,

int inpitch1, const float *indata1,

int inpitch2, const float *indata2,

double a,

int outpitch, float *outdata );

void pkn_MatrixLinCombf ( int nrows, int rowlen,

int inpitch1, const float *indata1,

double a,

int inpitch2, const float *indata2,

double b,

int outpitch, float *outdata );

The procedures above compute the matrices

A+ B pkn_AddMatrixf,

A− B pkn_SubtractMatrixf,

A+ aB pkn_AddMatrixMf,

a(A− B) pkn_MatrixMDifferencef,

aA+ bB pkn_MatrixLinCombf.

Both given matrices and the result have nrows rows and rowlen columns. The

coefficients of A and B are given in the arrays indata1 and indata2. The result

is stored in the array outdata. The pitches of the arrays are inpitch1, inpitch2

and outpitch respectively.

Remark: The important property of the array processing procedures is the fact

that if there are unused areas between the rows, their contents are unchanged. This

property is assumed by various other procedures, which may store some other data

in these areas, with a guarantee of not destroying them. For instance, to initialize

the zero matrix, only rows sholud be filled with zeros, not the whole array. In

addition, it is legal to specify negative pitches, as long as it does not cause reading

or writing outside of the area reserved for this purpose.

void pkn_MultMatrixNumf ( int nrows, int rowlen,

int inpitch, const float *indata,

double a,

int outpitch, float *outdata );

The procedure pkn_MultMatrixNumf computes the product of the matrix A of

dimensions m× n (m = nrows, n = rowlen), and the number a.

The coefficients of the matrix are given in the array indata, with the pitch

inpitch, and the result is stored in the array outdata, whose pitch is outpitch.

The number a is the value of the parameter a.

If the pitch of the array outdata is greater than the row length, the contents of

the unused areas between the rows is left unchanged.
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void pkn_MultArrayf ( int nrows, int rowlen,

int pitch_a, const float *a,

int pitch_b, const float *b,

int pitch_c, float *c )

The procedure pkn_MultArrayf multiplies the coefficients of the matrices A and

B, i.e. it computes the numbers cij = aijbij. These matrices and the matrix of the

products C have the dimensions nrows×rowlen. The pitches of the arrays a, b and

c with the coefficients of the matrices A, B and C are equal to pitch_a, pitch_b

and pitch_c respectively.

void pkn_MultMatrixf ( int nrows_a, int rowlen_a,

int pitch_a, const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

The procedure pkn_MultMatrixf multiplies the rectangular matrices, i.e. it com-

putes the product matrix C = AB, where A ∈ R
m,n, B ∈ R

n,l, and consequently

C ∈ R
m,l.

The parameters nrows_a, rowlen_a and rowlen_b have the values m, n and l

respectively. The coefficients of A and B are given in the arrays a and b, with the

pitches pitch_a and pitch_b. The parameter pitch_c specifies the pitch of the

array c, in which the procedure stores the result.

void pkn_MultMatrixAddf ( int nrows_a, int rowlen_a,

int pitch_a, const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

void pkn_MultMatrixSubf ( int nrows_a, int rowlen_a,

int pitch_a, const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

The procedure pkn_MultMatrixAddf computes the sum of a matrix and the

product of two matrices, i.e. the matrix D = C + AB, where A ∈ R
m,n, B ∈ R

n,l,

and C,D ∈ R
m,l.

The procedure pkn_MultMatrixSubf computes the matrix D = C−AB, for the

matrices A, B, C having the dimensions as above.

The values of the parameters nrows_a, rowlen_a and rowlen_b are m, n and l

respectively. The coefficients of A and B are given in the arrays a and b, whose

pitches are pitch_a and pitch_b. The parameter pitch_c specifies the pitch of

the array c, which initially contains the coefficients of C, and the coefficients of D

on exit.
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void pkn_MultTMatrixf ( int nrows_a, int rowlen_a,

int pitch_a, const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

The procedure pkn_MultTMatrixf multiplies the rectangular matrices, i.e. it

computes the product matrix C = ATB, where A ∈ R
m,n, B ∈ R

m,l, and conse-

quently C ∈ R
n,l.

The parameters nrows_a, rowlen_a and rowlen_b have the values m, n and l

respectively. The coefficients of A and B are given in the arrays a and b, with the

pitches pitch_a and pitch_b. The parameter pitch_c specifies the pitch of the

array c, in which the procedure stores the result.

void pkn_MultTMatrixAddf ( int nrows_a, int rowlen_a, int pitch_a,

const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

void pkn_MultTMatrixSubf ( int nrows_a, int rowlen_a, int pitch_a,

const float *a,

int rowlen_b, int pitch_b, const float *b,

int pitch_c, float *c );

double pkn_ScalarProductf ( int spdimen,

const float *a, const float *b );

The value of the above procedure is the scalar product of two vectors, a and b

in the space R
n. The dimension n is the value of the parameter spdimen.

double pkn_SecondNormf ( int spdimen, const float *b );

The value of this procedure is the second norm (square root of the sum of squares

of the coordinates) of the vector b, in the space R
n of dimension n =spdimen.

double pkn_detf ( int n, float *a );

The value of this procedure is the determinant of the matrix A, of dimensions

n × n. The parameter n specifies the dimensions of the matrix, whose coefficients

are given in the array a (of length n2; its pitch is n), containing the subsequent

rows or columns. The contents of this array is destroyed.

The determinant is evaluated with the Gaussian elimination with full pivoting.

void pkn_MVectorSumf ( int m, int n, float *sum, ... );

void pkn_MVectorLinCombf ( int m, int n, float *sum, ... );

The procedures pkn_MVectorSumf and pkn_MVectorLinCombf compute respec-

tively the sum and linear combination of m vectors in R
n. The parameters m and n

specify the numbers m and n, which must be positive. The parametr sum points to
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the array in which the result is to be stored. At the call of pkn_MVectorSumf this

parameter must be followed by m pointers to the arrays of floats, to be added.

At the call to pkn_MVectorLinCombf the parameter sum must be followed by

m pairs of parameters; each pair consists of a pointer (of type float*) and the

coefficient of the linear combination of type double.

3.1.2 Solving systems of linear equations

A system of linear equations Ax = b with a full nonsingular square matrix A may

be solved with the Gaussian elimination method; the procedures described in this

section implement this algorithm with full pivoting.

boolean pkn_GaussDecomposePLUQf ( int n, float *a,

int *P, int *Q );

The procedure pkn_GaussDecomposePLUQf computes the factors of decomposi-

tion of a square matrix A = P−1LUQ with n rows and columns. These factors are:

a permutation matrix P−1, a lower triangular matrix L with diagonal coefficients

equal to 1, an upper triangular matrix U and a permutation matrix Q.

The parameter n specifies the matrix dimensions. Its coefficients have to be

stored in the array a of length n2; the array contains consecutive rows. The pro-

cedure stores in this array the computed coefficients of the matrices L and U. The

permutation matrices P and Q are represented by the numbers stored in the arrays

P and Q of length n− 1.

The procedure returns true, if the computation is successful, or false, in case

the matrix A turned out to be singular.

void pkn_multiSolvePLUQf ( int n, const float *lu,

const int *P, const int *Q,

int spdimen, int pitch, float *b );

The procedure pkn_multiSolvePLUQf solves the system of linear equations

AX = B, where the matrix A with n rows and columns is nonsingular. The matrix B

has d columns and n rows.

The matrix A is represented with its decomposition factors found by the pro-

cedure pkn_GaussDecomposePLUQf. The parameter n specifies its dmensions. The

parameter spdimen specifies the number of columns d of the matrices B and X.

The coefficients of B are stored in the array b, whole pitch is pitch. The computed

solution is stored in this array.

boolean pkn_multiGaussSolveLinEqf ( int n, const float *a,

int spdimen, int pitch, float *b );

The procedure pkn_multiGaussSolveLinEqf solves the system of equations

AX = B with a nonsingular matrix A with respect to the matrix X. To do this, the
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procedure makes a copy of the array a (in order to leave its contents intact) and then

it calls the procedures pkn_GaussDecomposePLUQf and pkn_multiSolvePLUQf. The

value returned is true if the computation has been successful, or false otherwise.

The cause of the failure may be a singular matrix A, or insufficient scratch memory.

As for d < n the most time-consuming part of the algorithm is finding the

decomposition of A, if it is necessary to solve a number of systems with the

same matrix A and different matrices B, it is better not to use this procedure.

Instead, the matrix A should be decomposed once, and then for each matrix B

pkn_multiSolvePLUQf may be called.

boolean pkn_GaussInvertMatrixf ( int n, float *a );

The procedure pkn_GaussInvertMatrixf computes the inverse of a given ma-

trix A of dimensions n× n. It is best not to use it at all.
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3.1.3 The QR decomposition and least-squares problems

The procedures described in this section compute the decomposition of a rectangu-

lar metrix A into the orthogonal factor Q and the upper triangular factor R, and

use this decomposition to solve the linear least squares problem for a system of

linear equations Ax = b with a full matrix A.

The orthogonal matrix Q represents the transformation, which is the composi-

tion of a sequence of symmetric reflections with respect to some hyperplanes. The

correct method of representing such a matrix is to store the normal vectors of the

hyperplanes.

The reflection with respect to a hyperplane is a mapping R
m → R

m, whose

matrix is given by the formula

Hi = Im −wiγiw
T
i , where γi =

2

wT
i wi

.

Im is the identity matrix m ×m. The reflection hyperplane normal vector is wi.

The reflections constructed in order to find the matrix decomposition are called

the Householder reflections. They are chosen so as to obtain the images of

consecutive columns being the columns of a triangular matrix. To spped up solving

the least squares problems, apart from the vectors wi also the numbers γi are

stored; computing them based on wi is possible, but it takes time.

boolean pkn_QRDecomposeMatrixf ( int nrows, int ncols,

float *a, float *aa );

The procedure pkn_QRDecomposeMatrixf finds the decomposition of the ma-

trix A, which has nrows rows and ncols columns, into the factors Q (orthogonal)

and R (upper triangular). The coefficients of A have to be stored in the array a, of

length nrows×ncols, which contains the subsequent rows of the matrix A.

Upon the return from the procedure, the array a contains the representations

of these factors. The coefficients of the matrix R on the diagonal and above it are

stored in the appropriate places of the array (the coefficient rij for i ≤ j replaces the

coefficient aij). The orthogonal matrix Q is represented as a sequence of the normal

vectors of the Householder reflection hyperplanes, which transform the matrix A

into R. The coordinates of these vectors are stored on the places of the array a,

initially used to hold the coefficients aij for i > j. The remaining ncols coordinates,

which do not fit there, and additional ncols numbers γi are stored in the array

aa. The way of storing the coefficients of R and of the reflections representation is

shown in the figure.

The procedure returns true in case of success. Failure, signalled by false,

occurs when the columns of the matrix A are linearly dependent. The contents of

the arrays a and aa are then undefinite.
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a = {r00, r01, r02, r03,

w10,r11, r12, r13,

w20,w21,r22, r23,

w30,w31,w32,r33,

w40,w41,w42,w43,

w50,w51,w52,w53};

aa = {w00,w11,w22,w33,

γ0, γ1, γ2, γ3};
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Figure 3.1. Storing the representation of the matrices Q and R for a matrix 6× 4

void pkn_multiReflectVectorf ( int nrows, int ncols,

const float *a, const float *aa,

int spdimen, int pitch, float *b );

The procedure pkn_multiReflectVectorf computes the product of the matri-

ces Q−1 and B; the factor Q is an orthogonal matrix, whose representation com-

puted by the procedure pkn_QRDecomposeMatrixf (in the form of a sequence of

Householder reflections) is stored in the arrays a and aa. The matrix B having

ncols rows and spdimen columns is stored in the array b. The pitch of the array b,

i.e. the distance between the first coefficients of consecutive rows, is the value of

the parameter pitch.

void pkn_multiInvReflectVectorf ( int nrows, int ncols,

const float *a, const float *aa,

int spdimen, int pitch, float *b );

The procedure pkn_multiInvReflectVectorf computes the product of the ma-

trices Q and B; the factor Q is an orthogonal matrix, whose representation has been

computed by the procedure pkn_QRDecomposeMatrixf (in the form of a sequence

of Householder reflections), is stored in the arrays a and aa. The matrix B having

ncols rows and spdimen columns is stored in the array b. The pitch of the array b,

i.e. the distance between the first coefficients of two consecutive rows, is the value

of the parameter pitch.

void pkn_multiMultUTVectorf ( int nrows, const float *a,

int spdimen, int bpitch, float *b,

int xpitch, float *x );

The procedure pkn_multiMultUTVectorf computes the product of the matri-

ces R and B; the factor R is a triangular matrix, whose representation found e.g.

by the procedure pkn_QRDecomposeMatrixf is stored in the array a. The matrix B

having nrows rows and spdimen columns is stored in the array b. The pitch of the

array b, i.e. the distance between the first coefficients of two consecutive rows, is

the value of the parameter bpitch.
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The result of the multiplication is stored in the array x, whose pitch is the vaalue

of the parameter xpitch.

void pkn_multiMultInvUTVectorf ( int nrows, const float *a,

int spdimen, int bpitch, float *b,

int xpitch, float *x );

The procedure pkn_multiMultUTVectorf computes the product of the matri-

ces R−1 and B; the matrix R is triangular, and its representation, perhaps computed

by the procedure pkn_QRDecomposeMatrixf, is stored in the array a. The matrix B,

having nrows rows and spdimen columns is stored in the array b. The pitch of the

array b, i.e. the distance between the first coefficients of two consecutive rows, is

the value of the parameter bpitch.

The result of the multiplication is stored in the array x, whose pitch is the vaalue

of the parameter xpitch.

void pkn_multiMultTrUTVectorf ( int nrows, const float *a,

int spdimen, int bpitch, float *b,

int xpitch, float *x );

void pkn_multiMultInvTrUTVectorf ( int nrows, const float *a,

int spdimen, int bpitch, float *b,

int xpitch, float *x );

boolean pkn_multiSolveRLSQf ( int nrows, int ncols, float *a,

int spdimen, int bpitch, float *b,

int xpitch, float *x );

The procedure pkn_multiSolveRLSQf solves a linear least-squares problem for

the system of equations AX = B, i.e. it decomposes the matrix A (whose columns

must be linearly independent) into the factors Q and R, and then it computes the

matrix Y = Q−1B, and finally X = R−1
1 Y, where the square matrix R1 is the upper

block of the matrix R.

The numbers of rows and columns of the matrix A are specified by the pa-

rameters nrows and ncols. Its coefficients have to be stored in an array a (the

consecutive rows must be stored without unused areas between them). The dimen-

sions of the matrix B are nrows rows and spdimen columns. Its coefficients are to

be stored in an array b, whose pitch is bpitch.

The result, i.e. the coefficients of the matrix X of dimensions ncols×spdimen
are stored by the procedure in the array x, whose pitch is xpitch.

If the computation has been successful, the procedure returns true. Failure,

indicated by false, occurs when the problem is nonregular, i.e. when the columns

of the matrix A are linearly dependent.
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void pkn_QRGetReflectionf ( int nrows, int ncols,

const float *a, const float *aa,

int nrefl, float *w, float *gamma );

The procedure pkn_QRGetReflectionf „extracts” the representation of one

Householder reflection from the arrays a and aa, in which this representation has

been stored by the procedure pkn_QRDecomposeMatrixf.

The parameters nrows and ncols describe the dimensions of the matrix A,

whose QR decomposition factors are given in the arrays a and aa. The parametr

nrefl, whose value i must be between 0 and ncols-1, specifies the number of the

reflection. The coordinates of the reflection hyperplane normal vector w are stored

in the array w of length l =nrows-i; they are the last l of nrows coordinates of this

vector, and the first i coordinates are 0.

The variable *gamma obtains the value of the parameter γi. One may call the

procedure with gamma=NULL, and then the parameter gamma is ignored.
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3.2 Band matrix processing

3.2.1 The representation and basic procedeures

A band matrixm×n is a matrix which satisfies the following condition: there exists

a number w and two nondecreasing sequences of numbers, j0 < · · · < jm−1 and

k0 < · · · < km−1, such that the coefficient aij (in the i-th row and j-th column) is 0,

if j < ji or j ≥ ki, and for all i there is ki−ji ≤ w. The number w is called the band

width and if it is much smaller than the number of columns n, then representing

such a matrix requires significantly less memory. Moreover, many algorithms of

processing such matrices are much faster than the algorithms of processing full

matrices.

typedef struct bandm_profile {

int firstnz;

int ind;

} bandm_profile;

The parameters, which describe a band matrix are: the numbers of columns

and (not always necessary) rows, and two arrays. The first array, prof, of length

n + 1 (greater by 1 than the number of columns) consists of structures of type

bandm_profile, which describe consecutive columns of the matrix. The second

array, a, is used for storing the array coefficients, according to the description in

the first array.

The value of prof[j].firstnz (from 0 to m− 1) is the index of the row, which

contains the first nonzero coefficient of the j-th column. The value of prof[j].ind

is the index of the array a, indicating the position of that coefficient. The con-

secutive cells of the array a hold the consecutive coefficients of this column. The

number of consecutive coefficients from this column, which may be nonzero, is equal

to prof[j+1].ind-prof[j].ind. An example of such a representation is shown in

Figure 3.2.

To represent a sequence of reflections with respect to hyperplanes, whose normal

vectors are w0, . . . ,wn−1, it is necessary to create the arrays a and prof, just like

these for a band matrix. The array a is used to store the numbers γi, followed

by the nonzero coordinates of the normal vectors wi (just as if they were columns

of a band matrix). The contents of the array prof makes it possible to find these

coordinates. An example is in Figure 3.3.

The representation described above is intended to save storage space in case of

reflections constructed in order to solve a linear least squares problem for a system

of equations with a band matrix A. The composition of all reflections in the order

of columns is the transformation described by the orthogonal matrix QT . By com-

posing these reflections in the reverse order we obtain the matrix Q: the matrix R

such that A = QR, is upper triangular.
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int ncols = 5;

bandm_profile prof[6] =

{{0,0},{1,4},{1,10},{5,17},{8,23},{*,27}};

float a[27] = { a0,...,a26 };

Figure 3.2. A band matrix and the arrays, which represent it
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int ncols = 5;

bandm_profile prof[6] =

{{0,5},{1,9},{2,15},{3,21},

{4,29},{*,37}};

float a[37] =

{ γ0,...,γ4,w5,...,w36 };

Figure 3.3. A representation of a sequence of reflections. The columns of the

matrix on the left side are the normal vectors of the reflection hyperplanes

void pkn_BandmFindQRMSizes ( int ncols,

const bandm_profile *aprof,

int *qsize, int *rsize );

The procedure pkn_BandmFindQRMSizes computes the lengths of the arrays nec-

essary to represent the coefficients of the matrices Q and R, being the factors of

the orthogonal-triangular decomposition of a band matrix A. The matrix R will

be represented as a band matrix in the „ordinary” way (i.e. the appropriate array

will contain its nonzero coefficients, just like the matrix A to be decomposed), and
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the matrix Q, which describes the composition of teh Householder reflections, will

be represented by the normal vectors of the reflection hyperplanes. Both ways of

representing these matrices are described above.

void pkn_BandmQRDecomposeMatrixf ( int nrows, int ncols,

const bandm_profile *aprof,

const float *a,

bandm_profile *qprof, float *q,

bandm_profile *rprof, float *r );

The procedure pkn_BandmQRDecomposeMatrixf finds the factors of decomposi-

tion of a band matrix A, i.e. the orthogonal matrix Q and the uupper triangular

matrix R. The matrix A of dimensions nrows×ncols is represented with the ar-

ray aprof, whose contents describes the positions of the nonzero coefficients in its

columns, and the array a, where these coefficients are stored.

The computed upper triangular matrix R is also a band matrix. The procedure

stores its representation in the arrays rprof and r. The former array must be of

length at least ncols+1. The length of the latter array must be at least equal to

that computed by the procedure pkn_BandmFindQRSizes, which should be called

first.

The orthogonal matrix Q is the product of the matrices of the Householder

reflections, which transform the matrix A to the triangular form. The number of

reflections is ncols, therefore the array qprof must be of length at least ncols+1.

The length of the array q for storing the coordinates of the reflection hyper-

planes normal vectors, must not be less than the appropriate number computed

by pkn_BandmFindQRSizes.

Remark: The number of columns, ncols, must be less than the number of rows,

nrows; square matrices are decomposed with an error (to be fixed some time in the

future).

void pkn_multiBandmReflectVectorf ( int ncols,

const bandm_profile *qprof,

const float *q,

int spdimen, float *b );

The procedure pkn_multiBandmReflectVectorf performs ncols reflections of

the columns of a matrix B, having spdimen columns. The consecutive rows of this

matrix are stored in the array b, which upon return will hold the result. The order

of the reflections is the same that the order of vectors in the array q (i.e. first with

respect to w0, then w1 etc.).

The representation of the reflections is given in the arrays qprof and q, as

described before.
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void pkn_multiBandmInvReflectVectorf ( int ncols,

const bandm_profile *qprof,

const float *q,

int spdimen, float *b );

The procedure pkn_multiBandmReflectVectorf performs ncols reflections of

the columns of a matrix B, which has spdimen columns. The consecutive rows of

this matrix are stored in the array b, which upon return will hold the result. The

order of the reflections is reverse to the ordering of vectors in the array q (i.e. if

n = ncols, then the reflection with respect to the hyperplane, whose normal vector

is wn−1 is done first, then wn−2 etc.).

The representation of the reflections is given in the arrays qprof and q, as

described before.

void pkn_multiBandmMultVectorf ( int nrows, int ncols,

const bandm_profile *aprof,

const float *a,

int spdimen, const float *x,

float *y );

The procedure pkn_multiBandmMultVectorf performs the multiplication of

a band matrix A of dimensions nrows×ncols, represented with the arrays aprof

and a and the matrix X of dimensions ncols×spdimen. The result — the matrix

Y = AX of dimensions nrows×spdimen is stored in the array y. The arrays x and y

hold consecutive rows of the matrices X and Y.

void pkn_multiBandmMultInvUTMVectorf ( int nrows,

const bandm_profile *rprof,

const float *r,

int spdimen, const float *x,

float *y );

The procedure pkn_multiBandmMultInvUTMVectorf computes the matrix Y =

A−1X. The matrix A of dimensions nrows×nrows must be nonsingular upper

triangular. The matrix X of dimensions nrows×spdimen is represented with the

array x, containing the consecutive rows. The result is stored in the array y.

void pkn_multiBandmMultTrVectorf ( int ncols,

const bandm_profile *aprof,

const float *a,

int spdimen, const float *x,

float *y )

The procedure pkn_multiBandmMultTrVectorf multiplies the transposition of

a band matrix A of dimensions m × n, represented with the arrays aprof and a,

and the matrix X of dimensions n × d. The result — the matrix Y = ATX of



3.15

dimensions nrows×spdimen — is stored in the array y. The arrays x and y contain

the consecutive rows of the matrices X and Y.

The number m is represented by the profile of the matrix A, n is the value of

the parameter ncols and d is the value of spdimen.

void pkn_multiBandmMultInvTrUTMVectorf ( int nrows,

const bandm_profile *rprof,

const float *r,

int spdimen, const float *x,

float *y )

The procedure pkn_multiBandmMultInvTrUTMVectorf computes the matrix

Y = A−TX. The matrix A of dimensions nrows×nrows must be nonsingular upper

triangular. The matrix X of dimensions nrows×spdimen is represented with the

array x, containing the consecutive rows. The result is stored in the array y.

3.2.2 Solving linear least squares problems

An example of using the procedures described above to solve a regular linear least

squares problem Ax = b, with a column-regular band matrix A:

1. Create a representation of the matrix A.

2. Call pkn_BandmFindQRMSizes and then allocate arrays, whose lengths are

computed by this procedure, for the representations of the arrays Q and R,

being the decomposition factors of A.

3. Call pkn_BandmQRDecomposeMatrixf to find the decomposition of the ma-

trix A.

4. Compute the vector y = QTb by calling pkn_multiBandmReflectVectorf.

5. Compute x = R−1
1 y1, where the matrix R1 is the block n × n, consisting of

the initial rows of R and the vector y1 consists of the first n coordinates of y.

To do this, call pkn_multiBandmMultInvUTMVectorf.
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void pkn_multiBandmSolveRLSQf ( int nrows, int ncols,

const bandm_profile *aprof,

const float *a,

int nrsides, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

The procedure pkn_multiBandmSolveRLSQf solves in the way described above

z linear least squares problems, posed by the system of equations

A[x0, . . . , xz−1] = [b0, . . . ,bz−1].

The band matrix A of dimensions m× n (given by the parameters nrows i ncols)

is represented with use of the arrays aprof and a. The array b, whose length is

bpitch×z, describes the right-hand sides of the systems of equations, i.e. z matri-

ces b0, . . . ,bz−1, each of dimensions m × d, whose consecutive rows are stored in

the array without gaps; there are z =nrsides such matrices in the array, and the

positions of the first coefficients of two consecutive matrices differ by bpitch. Each

of the d columns of each matrix is one right-hand side vector of the system (thus

in fact the procedure solves zd = nrsides×spdimen least squares problems with

the same matrix A and a number of right-hand side vectors).

The solutions are the columns of the matrix x, whose coefficients (in consecutive

rows) are stored in the array x. This array must have length at least xpitch×z. The

parameter xpitch specifies the distance between the first coefficients of consecutive

matrices xi in the array x.

3.2.3 Solving regular problems with constraints

A regular linear least squares problem with constraints is to find the vector x, which

satisfies the system of equations

Cx = d,

called the constraints equations, such that the vector r = Ax − b has the smallest

second norm, assuming that the matrix A ∈ R
m,n is columnwise-regular and the

matrix C ∈ R
w,n is rowwise regular.

The linear independence of the rows of C implies the consistency of the con-

straints equations and such a problem has a unique solution. It may be found by

solving the following system:
[

A CT

C 0

] [

x

y

]

=

[

b

d

]

.

A numerical method appropriate for doing this follows:

1. Decompose the matrix A to the factors Q and R, such that Q is an orthogonal

matrix and R is upper triangular.
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2. Solve the system of equations RTE = CT .

3. Decompose the matrix E to the factors U and F, such that U is an orthogonal

matrix and F is upper triangular. By F1 denote the w × w matrix, which is

the block of F consisting of its w initial rows.

4. Using the factors QR of A compute the solution x0 of the regular least squares

problem, by solving the system R1x0 = y1 (see Section 3.2.2).

5. Solve the systems of equations FT1e = d− Cx0 and F1f = e.

6. Solve the systems RT1g = CT f and R1h = g.

7. Compute x = x0 + h.

void pkn_multiBandmSolveCRLSQf ( int nrows, int ncols,

const bandm_profile *aprof, const float *a,

int nconstr, int cpitch, const float *c,

int nrsides, int spdimen,

int bpitch, const float *b,

int dpitch, const float *d,

int xpitch, float *x );

The procedure pkn_multiBandmSolveCRLSQf solves z regular least squares prob-

lems with constraints, for the system of linear equations

A[x0, . . . , xz−1] = [b0, . . . ,bz−1],

with a band matrix A where the constraints are described by the system

C[x0, . . . , xz−1] = [d0, . . . ,dz−1],

with a full matrix C.

The parameters: nrows, ncols — numbers of rows m and columns n of the

matrix A, aprof, a — profile (i.e. the representation of the positions of nonzero

coefficients) and the array with the nonzero coefficients of A, nconstr — number w

of constraints (must be less than n), cpitch — pitch (i.e. distance of the beginnings

of consecutive rows) of the array c with the coefficients of C, nrsides — number z,

spdimen — length d of rows of the matrices bi (and also xi and di), bpitch —

pitch of the array b with the coefficients of the matrices b0, . . . ,bz−1 (the distance

between the beginnings of the consecutive matrices; the rows of each matrix are

stored without gaps), dpitch — pitch of the array d with the coefficients of the

matrices d0, . . . ,dz−1, xpitch — pitch of the array x to store the result.

The parameter d may be NULL — then the constraint equations are homogeneous.
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3.2.4 Solving dual linear least squares problems

A dual linear least-squares problem is finding the solution x of a system of equations

Ax = b with a matrix A ∈ R
m,n row-regular, such that for a given vector x0 ∈ R

n

the number ‖x−x0‖2 is minimal. The procedures described earlier may be used to

solve such a problem, if the program creates a band representation of the matrix AT .

1. Create a band representation of the matrix AT .

2. Call pkn_BandmFindQRSizes and allocate arrays of appropriate lengths for

storing the representations of the factors Q and R of the decomposition of

AT .

3. Call pkn_BandmQRDecomposeMatrixf to find the decomposition of AT (which

is equivalent to decomposing A into the factors RT and QT ).

4. Compute the vector z0 = QTx0, by calling pkn_multiBandmReflectVectorf.

If x0 = 0, then it is possible instead to set z0 = 0 (without any computation).

5. Call pkn_multiBandmMultInvTrUTMVectorf in order to solve the system

RT1z1 = b. If b = 0, then it is possible instead to set z1 = 0 (without

any computation). Compute the vector z, whose first m coordinates are the

corresponding coordinates of z1, and the other coordinates are the coordinates

of z0.

6. Call pkn_multiBandmInvReflectVectorf to compute the solution, i.e. the

vector x = Qz.

void pkn_multiBandmSolveDLSQf ( int nrows, int ncols,

const bandm_profile *atprof,

const float *at,

int nrsides, int spdimen,

int bpitch, const float *b,

int x0pitch, const float *x0,

int xpitch, float *x );

The procedure pkn_multiBandmSolveDLSQf solves dual linear least squares

problems in the way described above. The parameters nrows (the number of

rows, n), ncols (the number of columns, m), atprof (the profile) and at (the

array of coefficients) describe the matrix AT .

There are zd =nrsides×d right-hand sides of the system, i.e. the matrices b,

with m rows and d =spdimen columns; each column is the right-hand side of one

problem (thus the procedure solves d problems with the matrix A). The consecutive

rows of b must be stored in the array b. The positions of the first coefficients of

two consecutive matrices b differ by bpitch. The parameter b may also be NULL,

which means that the right-hand sides of the systems are the zero vector.
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The approximations of the solutions are the columns of z matrices x0 of di-

mensions n × d. The consecutive rows of these matrices must be given in the

array x0, the positions of the first coefficients of two consecutive matrices x0 differ

by x0pitch. If the parameter x0 is NULL, then the matrices x0 are assumed to be

zero.

The solutions are the columns of the matrices x. The consecutive rows of these

matrices are stored in the array x, whose length must be at least z×xpitch.
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3.2.5 Debugging

The procedures described in this section print out into stdout matrices in the text

form. These procedures are sometimes quite helpful in detecting bugs.

void pkn_PrintMatf ( int nrows, int ncols, const float *a );

The procedure pkn_PrintMatf prints the coefficients of a full matrix A, repre-

sented explicitly in an array.

The parameters nrows and ncols specify the numbers of rows and columns

respectively. The array a contains the coefficients of A, row by row.

void pkn_PrintBandmf ( int ncols, const bandm_profile *aprof,

const float *a );

The procedure pkn_PrintBandmf prints a band matrix represented by the arrays

aprof and a.

void pkn_PrintBandmRowSumf ( int ncols, const bandm_profile *aprof,

const float *a );

The procedure pkn_PrintBandmRowSumf prints a band matrix represented by

the arrays aprof and a. The sum of coefficients for each row is written at the end

of the row.

void pkn_PrintProfile ( int ncols, const bandm_profile *prof );

The procedure pkn_PrintProfile prints out the contents of the array prof, i.e.

the profile of a band matrix.
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3.3 Processing “packed” symmetric
and triangular matrices

A square symmetric matrix n×n may be represented with 1
2
(n+1)n numbers, i.e.

almost twice less than a general matrix of the same dimensions. Also, triangular

matrices (lower and upper) may be represented without storing the zero coefficients

above or below the diagonal. The procedures described in this section process

matrices represented in such a space-saving way.

A =
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



a00 a10 a20 a30
a10 a11 a21 a31
a20 a21 a22 a32
a30 a31 a32 a33









int n = 4;

float a[] = {a00,a10,a11,a20,a21,a22,

a30,a31,a32,a33};

Figure 3.4. The space saving representation of a symmetric matrix

L =









l00 0 0 0

l10 l11 0 0

l20 l21 l22 0

l30 l31 l32 l33
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LT =
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l00 l10 l20 l30
0 l11 l21 l31
0 0 l22 l32
0 0 0 l33






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int n = 4;

float l[] = {l00,l10,l11,l20,l21,l22,l30,l31,l32,l33};

Figure 3.5. The space saving representations of triangular matrices

#define pkn_SymMatIndex(i,j) \

( (i) >= (j) ? (i)*((i)+1)/2+(j) : (j)*((j)+1)/2+(i) )

The macro pkn_SymMatIndex computes the index of the coefficient aij of a sym-

metric matrix A in the array used to store the coefficients. This is also the index

of the coefficient lij of a lower triangular matrix L, provided that i ≥ j (otherwise

lij = 0).

boolean pkn_CholeskyDecompf ( int n, float *a );

The procedure pkn_CholeskyDecompf decomposes a symmetric positive-definite

matrix A (i.e. such that AT = A and ∀x6=0 x
TAx > 0) into triangular factors:

A = LLT . The coefficients of the lower triangular matrix L are stored in the array a,

initially occupied by the coefficients of the matrix A.

The parameter n specifies the dimensions of the matrices. The procedure returns

true, if the decomposition has been computed successfully, and false, if during

the computations the matrix A turned out not to be positive-definite. In that case

the contents of the array a is indefinite.
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void pkn_SymMatrixMultf ( int n, const float *a, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

void pkn_LowerTrMatrixMultf ( int n, const float *l, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

void pkn_UpperTrMatrixMultf ( int n, const float *l, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

The procedures pkn_SymMatrixMultf, pkn_LowerTrMatrixMultf and

pkn_UpperTrMatrixMultf compute respectively the product X of a symmetric,

lower triangular and upper triangular matrix A of dimensions n × n and the ma-

trix B of dimensions n× d, whose representation is „full”.

The parameters n and spdimen specify the dimensions n and d of the matrices.

The parameter a or l points to an array with the coefficients of the matrix A,

stored in the space saving way. The parameter b is a pointer to an array with the

coefficients of B, whose pitch is bpitch. The parameters x and xpitch are the

pointer to an array for the result and the pitch of this array respectively.

Remark: There is no specific procedure of multiplication of symmetric matrices,

because in general the product of symmetric matrices does not have to be symmet-

ric. Also, there are no procedures of multiplication of two lower or upper triangular

matrices, because so far I did not need them. If necessary, one can convert the

matrices to the full representation (with the procedures described later) and use

the procedure of multiplication of general matrices.

void pkn_LowerTrMatrixSolvef ( int n, const float *l, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

void pkn_UpperTrMatrixSolvef ( int n, const float *l, int spdimen,

int bpitch, const float *b,

int xpitch, float *x );

The procedures pkn_LowerTrMatrixSolvef and pkn_UpperTrMatrixSolvef

solve systems of linear equations with a lower triangular matrix L and an upper

triangular matrix LT , represented in the space saving way. This is equivalent to

multiplying the right-hand side matrix B by the matrix L−1 or L−T .

The parameters n and spdimen specify the dimensions of the matrices L : n×n
and B and X : n × d. The arrays l and b contain the coefficients of L and B. The

procedures store the results in the array x. The parameters bpitch and xpitch

specify the pitches of the arrays b and x.

One can pass the same array as both parameters: b and x; in this case the

result will replace the right-hand side matrix, but then both parameters, bpitch
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and xpitch must have the same value. If the arrays are different, then the contents

of b remains unchanged.

To solve a system of linear equations Ax = b with a symmetric positive-

definite matrix A, one can call the procedure pkn_CholeskyDecompf, which com-

putes the matrix L such that A = LLT , and then solve the system Ly = b with

pkn_LowerTrMatrixSolvef and LTx = y with pkn_UpperTrMatrixSolvef. This is

a faster method than using an algorithm appropriate for general matrices (like the

Gaussian elimination or Householder reflections).

void pkn_SymToFullMatrixf ( int n, const float *syma,

int pitch, float *fulla );

void pkn_FullToSymMatrixf ( int n, int pitch, const float *fulla,

float *syma );

#define pkn_FullToLTrMatrixf(n,pitch,fulla,ltra) \

pkn_FullToSymMatrixf(n,pitch,fulla,ltra)

void pkn_LTrToFullMatrixf ( int n, const float *ltra,

int pitch, float *fulla );

void pkn_UTrToFullMatrixf ( int n, const float *utra,

int pitch, float *fulla );

void pkn_FullToUTrMatrixf ( int n, int pitch, const float *fulla,

float *utra );

The procedures and the macro above make the conversion between the space

saving and full representations of symmetric and triangular matrices.

void pkn_ComputeQSQTf ( int m, const float *s,

int n, const float *a, const float *aa,

float *b );

void pkn_ComputeQTSQf ( int m, const float *s,

int n, const float *a, const float *aa,

float *b );

The procedures pkn_ComputeQSQTf and pkn_ComputeQTSQf compute respec-

tively the products of the matrices

QSQT and QTSQ,

where S is a symmetric matrix m × m, represented in the packed form, and the

matrix Q is orthogonal m × m. The matrix Q represents the composition of n

Householder reflections, obtained by orthogonal-triangular decomposition of a ma-

trix A, having dimensions m× n, as described in Section 3.1.3.

The parameters m and n describe the dimensions of the matrices S and A. The

array s contains the coefficients of the matrix S. The arrays a and aa contain the

representations of the reflections (i.e. of the matrix Q), as described in Section 3.1.3.

The coefficients of the product, which is a symmetric matrix, are stored in in the
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array b. One may call the procedure with b=s; then the coefficients of S will be

replaced in the array by the coefficients of the product.

The procedures implement the Ortega-Householder algorithm; for each subse-

quent reflection, represented by the matrix Hi = Im−viβiv
T
i , where i = 0, . . . , n−1,

the procedures compute

the vector u = Bi−1viβi,

the wector p = u− viv
T
i uβi/2,

the matrix Bi = Bi−1 − (vip
T + pvTi ),

where B0 = S and vi = wi, βi = γi for the procedure pkn_ComputeQTSQf, and

vi = wn−i−1, βi = γn−i−1 for the procedure pkn_ComputeQSQTf. The final result

is the matrix Bn−1.

void pkn_MatrixLowerTrMultf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixUpperTrMultf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixLowerTrSolvef ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixUpperTrSolvef ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixLowerTrMultAddf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixUpperTrMultAddf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

boolean pkn_MatrixLowerTrSolveAddf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

boolean pkn_MatrixUpperTrSolveAddf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixLowerTrMultSubf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_MatrixUpperTrMultSubf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

boolean pkn_MatrixLowerTrSolveSubf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

boolean pkn_MatrixUpperTrSolveSubf ( int m, int n, int bpitch,

const float *b, const float *l, int xpitch, float *x );

void pkn_SymMatSubAATf ( int n, float *b, int m, int pitch_a,

const float *a );
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3.4 Processing symmetric and triangular matrices
with a nonregular band

Matrices n × n, symmetric or triangular with a nonregular band are represented

with two arrays: the profile and the coefficient array. The profile is an array of

n integers; its i-th element is the index of the first nonzero coefficient of the i-th

row (rows and columns are numbered from 0). Examples are shown in Figures 3.6

and 3.7.
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int n = 6;

float a[] = {a00,a10,a11,a21,a22,a32,

a33,a41,a42,a43,a44,a53,a54,a55};

int prof[] = {0,0,1,2,1,3};

Figure 3.6. Representtion of a symmetric matrix with a nonregular band
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int n = 6;

float l[] = {l00,l10,l11,l21,l22,l32,l33,l41,l42,l43,l44,l53,l54,l55};

int prof[] = {0,0,1,2,1,3};

Figure 3.7. Representation of triangular matrices with nonregular bands

int pkn_NRBArraySize ( int n, const int *prof );

The procedure pkn_NRBArraySize computes the length of the array for storing

the matrix coefficients, based on the profile.

boolean pkn_NRBFindRowsf ( int n, const int *prof, const float *a,

float **row );

The procedure pkn_NRBFindRowsf stores in the array row of length n pointers to

virtual rows; the access to the coefficient aij is given by the expression row[i][j],

assuming that the following condition is satisfied: prof[i] ≤ j ≤ i.
The procedures described below have the parameter row, which may be NULL;

then they call pkn_NRBFindRowsf. One can also create the array row once, call
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pkn_NRBFindRowsf, and then pass this array as the parameter to these procedures.

This saves some time (and may be useful also during the computation of the coef-

ficients of the matrix in the application).

boolean pkn_NRBSymCholeskyDecompf ( int n, const int *prof,

float *a, float **row );

The procedure pkn_NRBCholeskyDecompf decomposes a symmetric, positive-

definite matrix A into triangular factors L and LT , using the Cholesky’s method.

The coefficients of the matrix L are stored in the array a, where they replace the

coefficients of the given matrix A. The profile of both matrices, A and L are the

same.

boolean pkn_NRBSymMultf ( int n, const int *prof,

const float *a, const float **row,

int spdimen, int xpitch, const float *x,

int ypitch, float *y );

boolean pkn_NRBLowerTrMultf ( int n, const int *prof,

const float *a, const float **row,

int spdimen, int xpitch, const float *x,

int ypitch, float *y );

boolean pkn_NRBUpperTrMultf ( int n, const int *prof,

const float *a, const float **row,

int spdimen, int xpitch, const float *x,

int ypitch, float *y );

The procedures pkn_NRBSymMultf, pkn_NRBLowerTrMultf

and pkn_NRBUpperTrMultf compute respectively the product of a symmetric, lower

triangulad or upper triangular matrix with a nonregular band, and of the full ma-

trix X.

boolean pkn_NRBLowerTrSolvef ( int n, const int *prof,

const float *l, const float **row,

int spdimen, int bpitch, const float *b,

int xpitch, float *x );

boolean pkn_NRBUpperTrSolvef ( int n, const int *prof,

const float *l, const float **row,

int spdimen, int bpitch, const float *b,

int xpitch, float *x );

The procedures pkn_NRBLowerTrSolvef and pkn_NRBUpperTrSolvef solve re-

spectively a system of linear equations with a lower or upper triangular matrix with

a nonregular band.
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boolean pkn_NRBSymFindEigenvalueIntervalf ( int n, const int *prof,

float *a, float **row,

float *amin, float *amax );

The procedure pkn_NRBSymFindEigenvalueIntervalf finds, based on the Ger-

shgorin theorem, an interval containing all eigenvalues of a symmetric matrix with

irregular band.

The parameters n, prof, a and row represent the matrix.

The parameters amin, amax point to the variables, to which the procedure has

to assign the interval limits.

Return value true signals a success, false — a failure, which may be caused

by insufficient scratch memory, when the parameter row is NULL and the procedure

must itself construct the array of pointers to virtual rows based on the profile (an

error may then be detected by the procedure pkn_NRBFindRowsf).

boolean pkn_NRBComputeQTSQf ( int n, int *prof, float *Amat,

float **Arows,

int w, float *Bmat, float *bb,

int *qaprof, float **QArows );

boolean pkn_NRBComputeQSQTf ( int n, int *prof, float *Amat,

float **Arows,

int w, float *Bmat, float *bb,

int *qaprof, float **QArows );

The input data for the above procedures are: a symmetric n×n matrix S with

irregular band and an orthogonal matrix Q, represented by a sequence of w House-

holder reflections of Rn (where w < n). The matrix Q may be obtained by a QR

decomposition of an n×wmatrix B, using the procedure pkn_QRDecomposeMatrixf.

The procedure pkn_NRBComputeQTSQf has to compute the matrix C = QTSQ.

The procedure pkn_NRBComputeQSQTf has to compute the matrix D = QSQT .

In both cases the result is represented as a symmetric matrix with irregular

band.

Input parameters: n, prof, Amat, Arows — representation of the matrix S.

Caution: currently the parameter Arows must not be NULL, it must point to an

array of n pointers to virtual rows of the matrix S.

The parameters n, w, Bmat, bb represent the matrix Q in the way described in

Section 3.1.3. The number w is the number of reflections the columns of the matrix

in the array Bmat contain the coordinates of the normal vectors of reflection hyper-

planes wi (except for initial zeros and the first nonzero coordinate), the array bb

contains the first nonzero coordinate of each vector wi and the numbers γi.

Output parameters: qaprof — pointer to an array of length n, in which the

profile of the array C or D will be stored (this array has to be allocated by the

caller), QArows — pointer to an array of length n, to hold the pointers of virtual

rows of the computed matrix. Its coefficients are stored in an array allocated by
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malloc; the address of the beginning of this array (to be passed to free when the

time comes) is the address of the first virtual row.

The return value true signals a success and false signals a failure, which may

be caused by insufficient memory in the scratch pool or in the heap processed by

malloc and free.

Remark: in practical applications more useful may be the procedures

pkn_NRBComputeQTSQblf and pkn_NRBComputeQSQTblf described below. They do

the same task, but the result is conveniently divided into separate blocks.

boolean pkn_NRBComputeQTSQblf ( int n, int *prof, float *Amat,

float **Arows,

int w, float *Bmat, float *bb,

int *qa11prof, float **QA11rows,

int *qa22prof, float **QA22rows,

float **QA21 );

boolean pkn_NRBComputeQSQTblf ( int n, int *prof, float *Amat,

float **Arows,

int w, float *Bmat, float *bb,

int *qa11prof, float **QA11rows,

int *qa22prof, float **QA22rows,

float **QA21 );

The input data for the above procedures are: a symmetric n×n matrix S with

irregular band and an orthogonal matrix Q, represented by a sequence of w House-

holder reflections of Rn (where w < n). The matrix Q may be obtained by a QR

decomposition of an n×wmatrix B, using the procedure pkn_QRDecomposeMatrixf.

The procedure pkn_NRBComputeQTSQblf has to compute blocks of the matrix

C = QTSQ.

The procedure pkn_NRBComputeQSQTblf has to compute blocks of the matrix

D = QSQT .

The result, e.g. the matrix C, has the block structure

C =

[

C11 CT
21

C21 C22

]

.

The blocks C11 and C22, of dimensions w×w and n−w×n−w respectively, are

symmetric matrices represented with irregular band. The block C21 of dimensions

n−w×w is represented as a full matrix.

Input parameters are identical as these of the procedures described before: n,

prof, Amat, Arows — representation of the matrix S.

Caution: currently the parameter Arows must not be NULL, it must point to an

array of n pointers to virtual rows of the matrix S.

The parameters n, w, Bmat, bb represent the matrix Q in the way described in

Section 3.1.3. The number w is the number of reflections the columns of the matrix
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in the array Bmat contain the coordinates of the normal vectors of reflection hyper-

planes wi (except for initial zeros and the first nonzero coordinate), the array bb

contains the first nonzero coordinate of each vector wi and the numbers γi.

Output parameters: qa11prof and qa22prof — pointers to arrays of lengths w

and n − w respectively, in which the profiles of the matrices C11 and C22 will be

stored (these arrays have to be allocated by the caller) QA11rows and QA22rows—

pointers to the arrays of lengthsw and n−w, in which pointers to virtual rows of the

matrices C11 and C22 will be stored. The parameterr QA21 points to the variable,

to which the address of the first coefficient of the block C12 will be assigned (this

is a full matrix, stored row by row, without gaps).

All coefficients of the result matrix are stored in a memory block allocated with

malloc; the address of the beginning of this block (to be passed to free when

necessary) is the address of the beginning of the first virtual row of C11.

The return value true signals a success and false signals a failure, which may

be caused by insufficient memory in the scratch pool or in the heap processed by

malloc and free.
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3.5 Processing block symmetric matrices

3.5.1 Matrices of the first type block structure

The procedures of filling polygonal holes in the library libg2hole need to solve

systems of linear equations with symmetric positive-definite matrices having a block

structure — with zero blocks apart from the diagonal and the last row and column.

An example is shown in Figure 3.8
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Figure 3.8. Structure of a block symmetric matrix and a lower triangular block matrix

The structure of such a matrix is described by three numbers. The first (k) is

the number of diagonal blocks except for the last one, the second (r) specifies the

dimensions of those blocks and the third number (s) specifies the dimensions of the

last diagonal block. The matrix has therefore kr+ s rows and columns.

The coefficients of such a matrix are stored in an array A. The diagonal blocks are

represented in the „packed” form, discussed in the previous section, the subdiagonal

blocks are stored as full matrices. The length of the array A must be at least

kr(r+ 1)/2+ s(s+ 1)/2+ krs.

To do most computations the procedures described below call the procedures of

processing full matrices and packed symmetric matrices described in the preceding

sections.

boolean pkn_Block1CholeskyDecompMf ( int k, int r, int s,

float *A );

The procedure pkn_Block1CholeskyDecompMf finds the decomposition of the

block matrix A into triangular factors L and LT . The coefficients of the lower

triangular matrix L are stored in the array A, where they replace the coefficients

of the matrix A. This is possible, because the matrix L has zero blocks where the

matrix A has the zero blocks.

The procedeure returns true after a successful computation, and false oth-

erwise. Failure may be caused by a non-positive definite matrix A or by an ill-

conditioned matrix, for which rounding errors may produce a nonpositive diagonal

coefficient.
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void pkn_Block1LowerTrMSolvef ( int k, int r, int s,

const float *A,

int spdimen, int xpitch, float *x );

void pkn_Block1UpperTrMSolvef ( int k, int r, int s,

const float *A,

int spdimen, int xpitch, float *x );

The procedures above solve the systems of equations Lx = b and LTx = b

respectively. The right-hand side and the solution are matrices n × d (where n =

kr+s). The procedures replace the coefficients of the right-hand side in the array x,

whose pitch is xpitch, by the coefficients of the solution.

To solve a system of linear equations with a symmetric positive definite block

matrix A, one should decompose it into triangular factors (using the procedure

pkn_Block1CholeskyDecompMf), and then call the above two procedures.

void pkn_Block1SymMatrixMultf ( int k, int r, int s,

float *A,

int spdimen, int xpitch, float *x,

int ypitch, float *y );

The procedure pkn_Block1SymMatrixMultf multiplies the matrices, i.e. it com-

putes the product y = Ax, where A is a symmetric block matrix n × n (where

n = kr + s), and the matrix x (and y) is full, of dimensions n × d. The array x

contains the coefficients of the matrix x. The array y is the place, where the result

is stored. The pitches of the two arrays (i.e. distances between the first coefficients

of consecutive rows) are equal to xpitch and ypitch respectively. The parameter

spdimen specifies d.
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3.5.2 Matrices of the second block type structure

The block structure of the third type processed by the libpknum library is shown

in Figure 3.9. Such matrices are symmetric and they consist of 2k + 1 × 2k + 1

blocks, where k ≥ 3.
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Figure 3.9. Second type block matrix structure for a symmetric matrix

Nonzero blocks are placed as shown, and the rows and columns are numbered

from 0 to 2k:

� The blocks A00, . . . , Ak−1,k−1 are r× r.

� The blocks Akk, . . . , A2k−1,2k−1 are s× s.

� The block A2k,2k is t× t.

If the matrix A is positive-definite, then the lower triangular matrix L, such that

LLT = A, has zero blocks corresponding to the zero blocks of the matrix A.

The whole matrix has dimensions k(r + s) + t × k(r + s) + t. To store the

coefficients of its nonzero blocks one needs

� k · 1
2
(r+ 1)r cells for the diagonal blocks A00, . . . , Ak−1,k−1,

� k · 1
2
(s+ 1)s cells for the diagonal blocks Akk, . . . , A2k−1,2k−1,
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�

1
2
(t+ 1)t cells for the diagonal block A2k,2k,

� 2k · rs cells for the blocks Ak,k−1, Ak,0, Ak+1,k, Ak+1,k+1, . . . , A2k−1,2k−2,

A2k−1,2k−1,

� (2k− 3) · s2 cells for the blocks Ak+1,k, . . . , A2k−2,2k−3 and

A2k−1,k, . . . , A2k−1,2k−2.

� k · (r+ s)t cells for the blocks A2k,0, . . . , A2k,2k−1.

This fits in an array of length

k
(1

2
(r+ 1)r+

1

2
(s+ 1)s+ (r+ s)(t+ 2s)

)

+
1

2
(t+ 1)t− 3s2.

Computing block positions in the array

Having two indices i, j ∈ {0, . . . , 2k}, where i ≥ j, one has to compute the position

of the first element of the block Aij in the array.

1. If i = j < k, then p = i1
2
(r+ 1)r.

2. If k ≤ i = j < 2k, then p = k1
2
(r+ 1)r+ i1

2
(s+ 1)s.

3. If i = j = 2k, then p = 1
2
k
(

(r+ 1)r+ (s+ 1)s
)

.

4. Let N1 = 1
2

(

k(r+ 1)r+ k(s+ 1)s+ (t+ 1)t
)

.

If k ≤ i < 2k, 0 ≤ j < k and i− j mod k ∈ {0, 1}, then

p = N1 +
(

2(i− k) + 1− (i− j) mod k
)

rs.

5. Let N2 = N1 + 2krs.

If k < i < 2k − 1 and j = i− 1, then p = N2 + (i− k − 1)s2.

6. If i = 2k − 1 and k ≤ j < 2k− 2, then p = N2+ (j− 2)s2.

7. Let N3 = N2 + (2k− 3)s2.

If i = 2k and j < k, then p = N3 + jrt.

8. If i = 2k and k ≤ j < 2k, then p = N3 + krt+ (j− k)st.

9. Else the block Aij is a zero block, whose coefficients are not stored.

For diagonal blocks only the lower triangle is stored in the packed form. The

subdiagonal blocks are stored rowwise, like other full matrices.
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Triangular decomposition of a symmetric matrix A

If the matrix L is lower-triangular and it consists of the blocks Li,j (i.e. for i < j

the block Li,j is zero), then the matrix A = LLT consists of the blocks

Ai,j =

j∑

l=0

Li,lL
T
l,j.

The blocks of L may be found using the following algorithm:

Consecutively for i = 0, . . . , 2k compute (with the Cholesky’s method) the lower

triangular block Li,i, such that Li,iL
T
i,i = Ai,i −

∑i−1
l=0 Li,lL

T
i,l, and then for j =

i+ 1, . . . , 2k compute the block Lj,i = (Aj,i −
∑i−1

l=0 Lj,lL
T
i,l)L

−T
i,i .

For a matrix A having block structure discussed above, one may compute

1. For i = 0, . . . , k− 1 the matrix Li,i such that Li,iL
T
i,i = Ai,i,

and then Lj,i = Aj,iL
−T
i,i , where j ∈ {i+ k, i+ (k+ 1) mod k, 2k}.

2. The matrix Lk,k, such that Lk,kL
T
k,k = Ak,k − Lk,0L

T
k,0 − Lk,k−1L

T
k,k−1,

and then Lk+1,k, L2k−1,k i L2k,k.

3. For i = k+ 1, . . . , 2k− 3 the matrix Li,i such that

Li,iL
T
i,i = Ai,i − Li,i−k−1L

T
i,i−k−1 − Li,i−kL

T
i,i−k − Li,i−1L

T
i,i−1,

and then Li+1,i, L2k−1,i i L2k,i.

4. The matrix L2k−2,2k−2, such that

L2k−2,2k−2L
T
2k−2,2k−2 = A2k−2,2k−2

−L2k−2,k−3L
T
2k−2,k−3 − L2k−2,k−2L

T
2k−2,k−2 − L2k−2,2k−3L

T
2k−2,2k−3,

and then L2k−1,2k−2 =

(A2k−1,2k−2 − L2k−1,k−2L
T
2k−2,k−2 − L2k−1,2k−3L

T
2k−2,2k−3)L

−T
2k−2,2k−2

and L2k,2k−2 = (A2k,2k−2−L2k,k−2L
T
2k−2,k−2−L2k,2k−3L

T
2k−2,2k−3)L

−T
2k−2,2k−2.

5. The matrix L2k−1,2k−1, such that

L2k−1,2k−1L
T
2k−1,2k−1 = A2k−1,2k−1 −

∑2k−2
l=k−2 L2k−1,lL

T
2k−1,l,

and then L2k,2k−1 = (A2k,2k−1 −
∑2k−2

l=k−2 L2k,lL
T
2k−1,l)L

−T
2k−1,2k−1.

6. The matrix L2k,2k, such that L2k,2kL
T
2k,2k = A2k,2k −

∑2k−1
l=0 L2k,lL

T
2k,l.

Procedures

int pkn_Block2ArraySize ( int k, int r, int s, int t );

int pkn_Block2FindBlockPos ( int k, int r, int s, int t,

int i, int j );

int pkn_Block2FindElemPos ( int k, int r, int s, int t,

int i, int j );
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boolean pkn_Block2CholeskyDecompMf ( int k, int r, int s, int t,

float *A );

void pkn_Block2LowerTrMSolvef ( int k, int r, int s, int t,

const float *L,

int spdimen, int xpitch, float *x );

void pkn_Block2UpperTrMSolvef ( int k, int r, int s, int t,

const float *L,

int spdimen, int xpitch, float *x );

void pkn_Block2SymMatrixMultf ( int k, int r, int s, int t,

float *A,

int spdimen, int xpitch, const float *x,

int ypitch, float *y );
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3.5.3 Matrices of the third block type structure

The third block structure of matrices (Block3) differs from the first structure by

the presence of nonzero co-diagonal blocks. A symmetric, positive-definite matrix

having such a structure may be decomposed into triangular factors, A = LLT ,

example is in Figure 3.10. The matrix is divided into (k + 1) × (k + 1) blocks, in
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Figure 3.10. Block structure of the third type for a symmetric matrix

and a lower triangular matrix

rows and columns numbered from 0 to k. The blocks in the columns 0, . . . , k − 1

have r columns each, the blocks in the k-th column have s columns. The blocks in

the rows 0, . . . , k− 1 have r rows, the blocks in the k-th row have s rows. If k = 2,

then such a matrix is full, but the storage of its coefficients in the array used to

represent it is specific.

Symmetric diagonal blocks A00, . . . , Akk are represented in the packed form

(lower triangle only, see Section 3.3). Other blocks, having dimensions s × r (in

the bottom row) and r × r (under the diagonal, except for the bottom row) are

represented like full matrices.

int pkn_Block3ArraySize ( int k, int r, int s );

int pkn_Block3FindBlockPos ( int k, int r, int s, int i, int j );

int pkn_Block3FindElemPos ( int k, int r, int s, int i, int j );

boolean pkn_Block3CholeskyDecompMf ( int k, int r, int s,

float *A );

void pkn_Block3LowerTrMSolvef ( int k, int r, int s,

const float *L,

int spdimen, int xpitch, float *x );

void pkn_Block3UpperTrMSolvef ( int k, int r, int s,

const float *L,

int spdimen, int xpitch, float *x );



3.37

void pkn_Block3SymMatrixMultf ( int k, int r, int s,

const float *A,

int spdimen, int xpitch, const float *x,

int ypitch, float *y );
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3.6 Irregular sparse matrices

A sparse matrix, whose nonzero coefficients may be a small fraction of all coeffi-

cients, may (and often have to) be represented using memory saving data structures.

The representation of matrices used by the procedures described in this section is

the following: two numbers, m and n, are the numbers of rows and columns re-

spectively. Then nnz is the number of nonzero coefficients (it must be between 0

and mn). The array nzi, whose entries are of type index2, contains positions of

the nonzero coefficients aij, where 0 ≤ i < m, 0 ≤ j < n. The actual coefficients

are stored in a separate array a, so that if k ∈ {0, . . . , nnz − 1} and nzi[k] ==

{i,j}, then aij == a[k]. The ordering of entries in these arrays is irrelevant (in

particular it is not assumed that the row or column indices are stored in ascending

or any at all order).

Due to the separation of the distribution of the nonzero coefficients from the ac-

tual coefficients, the coefficients may be of various types: float, double, complex,

vectors or matrices. Currently the procedures in the library implement multiplica-

tion algorithms for sparse matrices, whose coefficients are float and double.

There is another possibility—using submatrices. The nzi array in a submatrix

representation has entries of type index3. The fields i and j are the indices of

the row and column of the coefficient aij. The field k is the index to the array in

which the coefficients are stored. In this way it is possible to define a number of

submatrices of a sparse matrix without copying the coefficients.

typedef struct {

int i, j;

} index2;

typedef struct {

int i, j, k;

} index3;

Apart from the two arrays mentioned above, additional arrays may be used;

permutation arrays, which hold orderings of the entries (sorted by rows and by

columns in each row, or sorted by columns and by rows in each column), and

additional arrays, with indices to the permutation arrays, pointing the first entry for

each row or column. These arrays are used by procedures of matrix multiplication

described later.

void pkn_SPMindex2to3 ( int nnz, index2 *ai, index3 *sai );

void pkn_SPMindex3to2 ( int nnz, index3 *sai, index2 *ai );

The procedures convert indices, which is sometimes useful. The parameter nnz is

the length of the arrays being the next two parameters.
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The procedure pkn_SPMindex2to3 for each entry of ai copies the fields i and j

and assigns sai[k] = k;

The procedure pkn_SPMindex3to2 for each entry of sai copies the fields i and j

and forgets k.

3.6.1 Multiplication of a matrix and a vector

boolean pkn_MultSPMVectorf ( int nrows, int ncols, int nnz,

const index2 *ai, const float *ac,

int spdimen, const float *x,

float *y );

boolean pkn_MultSPMTVectorf ( int nrows, int ncols, int nnz,

const index2 *ai, const float *ac,

int spdimen, const float *x,

float *y );

boolean pkn_MultSPsubMVectorf ( int nrows, int ncols, int nnz,

const index3 *ai, const float *ac,

int spdimen, const float *x,

float *y );

boolean pkn_MultSPsubMTVectorf ( int nrows, int ncols, int nnz,

const index3 *ai, const float *ac,

int spdimen, const float *x,

float *y );

The procedures above compute the product Ax or ATx, where A is a sparse

matrix or submatrix, and x is a vector or a full matrix, whose rows have the length

d =spdimen and are stored in an array x without gaps in between.

The parametersm =nrows and n =ncols specify the dimensions of the array A.

The parameter nnz is the number of nonzero coefficients of A. The array ai contains

positions of these coefficients and ac are the actual coefficients.

The array y is the place to store the result. Its length must be respectively md

or nd if Ax or ATx is computed.

3.6.2 Multiplication of two sparse matrices

Multiplication of two sparse matrices may be done in a number of ways, which is

the reason of providing that many procedures for that operation. First of all, as

the product of two sparse matrices is usually also a sparse matrix, and the sparse

representation is used for it, it is necessary to count the nonzero coefficients of the

result before computing them—the application must allocate sufficient arrays and

then the multiplication may be done.
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There are two approaches to the multiplication of sparse matrices implemented

so far. The first method is to do it directly, i.e. to obtain the result in the allo-

cated arrays. Here the numerical computations are done together with finding the

distribution of nonzero ceofficients of the product. The second approach separates

these two computations. As each coefficient of the product is the sum of product

of some coefficients of the factors, it is possible to find the list of the entries of

the factors to multiply and add for each nonzero coefficients, and then store these

lists in an additional array. The numerical computations, which take much less

time, are done by a separate procedure. This approach is particularly effective, if

there are a number of products of matrices, which have the same distributions of

nonzero coefficients. A drawback is the amount of memory needed for storing the

multiplication lists, which may be prohibitive for huge matrices.

Sorting by rows and columns

boolean pkn_SPMSortByRows ( int nrows, int ncols, int nnz,

index2 *ai, int *permut );

boolean pkn_SPMSortByCols ( int nrows, int ncols, int nnz,

index2 *ai, int *permut );

The parametersm =nrows and n =ncols specify the dimensions of a matrix A, the

number nnz =nnz is the number of nonzero coefficients, whose distribution is given

in the array ai. The array permut of length nnz on exit contains the permuted

numbers from 0 to nnz − 1.

The procedure pkn_SPMSortByRows finds the permutation such that if k < l then

ai[k].i < ai[l].i or (ai[k].i == ai[l].i and ai[k].j <= ai[l].j). This

permutation establishes the ordering by rows.

The procedure pkn_SPMSortByCols finds the permutation such that if k < l then

ai[k].j < ai[l].j or (ai[k].j == ai[l].j and ai[k].i <= ai[l].i). This

permutation establishes the ordering by columns.

The return value is true if the computation has been successful, or false if the

sorting procedure failed because of insufficient scratch memory.

boolean pkn_SPMFindRows ( int nrows, int ncols, int nnz,

index2 *ai, int *permut, boolean ro,

int *rows );

boolean pkn_SPMFindCols ( int nrows, int ncols, int nnz,

index2 *ai, int *permut, boolean co,

int *cols );

The parameters m =nrows and n =ncols specify the dimensions of a matrix A,

the number nnz =nnz is the number of nonzero coefficients, whose distribution is

given in the array ai.
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If the next parameter, ro or co, is nonzero (e.g. true), the array permut on

entry must contain the odering by rows or by columns, respectively. If the param-

eter ro or co is zero (false), then the sorting procedure pkn_SPMSortByRows or

pkn_SPMSortByCols will be called.

The array rows must be of length m + 1, the array cols must be of length

n + 1. On exit, this array contains indices of the first entries to the permut array,

corresponding to the rows or columns (and the last entry is nnz).

The return value is true if the computation has been successful, or false if an

error has been detected or the sorting procedure failed.

boolean pkn_SPsubMSortByRows ( int nrows, int ncols, int nnz,

index3 *ai, int *permut );

boolean pkn_SPsubMSortByCols ( int nrows, int ncols, int nnz,

index3 *ai, int *permut );

boolean pkn_SPsubMFindRows ( int nrows, int ncols, int nnz,

index3 *ai, int *permut, boolean ro,

int *rows );

boolean pkn_SPsubMFindCols ( int nrows, int ncols, int nnz,

index3 *ai, int *permut, boolean co,

int *cols );

The four procedures above do the same things for sparse submatrices, that the

previous four procedures for sparse matrices. The fields k of the index3 structures

are ignored.

Counting the nonzero coefficients of the product

The algorithm of multiplying two sparse matrices has two variants, using respec-

tively the row and the column ordering of the nonzero coefficients. The procedures

implementing the first variant have names ending with the letter R, and these with

the second variant have names with the suffix C (the suffix may be followed by

the letter f or d, indicating the floating point precision; procedures with names

without this letter do not make any floating point operations and they serve for

both precisions). The complete set of multiplication procedures is only for the “C”

version.

The number of procedures is increased by the fact that having two matrices,

A and B, one may be interested in computing AB, ABT or ATB (there are no

procedures for ATBT , but they might be added if necessary). Which procedure

does what is indicated by the infix MM, MMT or MTM in the procedure identifier.

Also there are variants for multiplying submatrices, which doubles the number of

multiplication procedures.
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boolean pkn_SPMCountMMnnzR ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index2 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPMCountMMnnzC ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

boolean pkn_SPMCountMMTnnzR ( int nra, int nca, int nrb,

int nnza, index2 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index2 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

boolean pkn_SPMCountMMTnnzC ( int nra, int nca, int nrb,

int nnza, index2 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPMCountMTMnnzR ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPMCountMTMnnzC ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index2 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

The procedures, whose headers are shown above, count the nonzero coefficients of

the product of two sparse matrices and the total number of floating point multipli-

cation of coefficients necessary to compute the product.

The parameters of these procedures are: nra, nca—numbers of rows and columns

of the matrix A, nrb, ncb—numbers of rows and columns of the matrix B (always
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one of those parameters is absent, as the dimensions of the matrices to multiply

must match).

The parameters nnza and nnzb are numbers of nonzero coefficients, the arrays

ai and bi contain distributions of the nonzero coefficients.

The arrays apermut and bpermut are used to store the permutations establishing

the orderings of coefficients of the matrices. If the parameter ra is nonzero, then

the permutation in apermut must represent the row ordering, and the array arows

must contain indices to the apermut array, pointing to the first entries of subsequent

rows (see the procedure pkn_SPsubMFindRows).

If the parameter ca is nonzero, then the permutation in apermut must rep-

resent the column ordering, and the array acols must contain indices to the

apermut array, pointing to the first entries of subsequent columns (see the pro-

cedure pkn_SPsubMFindCols).

If the parameter ra or ca is zero (false), the proper ordering and indices to

the rows or columns will be found, but the caller must provide arrays of sufficient

capacity.

The same rules apply to the parameters bpermut, brows, bcols, rb and cb.

The number of nonzero coefficients of the product is assigned to the variable

pointed by parameter nnzab, and the total number of floating point multiplications

is assigned to the variable pointed by nmultab.

The procedures return true if the computation was successful, or false if an

error has been detected or there was insufficient scratch memory.

boolean pkn_SPsubMCountMMnnzR ( int nra, int nca, int ncb,

int nnza, index3 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index3 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPsubMCountMMnnzC ( int nra, int nca, int ncb,

int nnza, index3 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index3 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

boolean pkn_SPsubMCountMMTnnzR ( int nra, int nca, int nrb,

int nnza, index3 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index3 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

boolean pkn_SPsubMCountMMTnnzC ( int nra, int nca, int nrb,

int nnza, index3 *ai,
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int *apermut, int *acols, boolean ca,

int nnzb, index3 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPsubMCountMTMnnzR ( int nra, int nca, int ncb,

int nnza, index3 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index3 *bi,

int *bpermut, int *brows, boolean rb,

int *nnzab, int *nmultab );

boolean pkn_SPsubMCountMTMnnzC ( int nra, int nca, int ncb,

int nnza, index3 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index3 *bi,

int *bpermut, int *bcols, boolean cb,

int *nnzab, int *nmultab );

These procedures count the number of nonzero coefficients of the product and

the total number of floating point multiplications for sparse submatrices. See the

description of the procedures described in this section, whose names do not have

the infix sub.

Finding the distribution of nonzero coefficients of the product

boolean pkn_SPMmultMMCempty ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi,

int *bpermut, int *bcols, boolean cb,

index2 *abi );

boolean pkn_SPMmultMMTCempty ( int nra, int nca, int nrb,

int nnza, index2 *ai,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi,

int *bpermut, int *brows, boolean rb,

index2 *abi );

boolean pkn_SPMmultMTMCempty ( int nra, int nca, int ncb,

int nnza, index2 *ai,

int *apermut, int *arows, boolean ra,

int nnzb, index2 *bi,

int *bpermut, int *bcols, boolean ba,

index2 *abi );
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The procedures above find the distribution of nonzero coefficients of the product

of two matrices, AB, ABT or ATB respectively, based on the distribution of the

nonzero coefficients of the matrices A and B.

The parameters of these procedures are: nra, nca—numbers of rows and columns

of the matrix A, nrb, ncb—numbers of rows and columns of the matrix B (always

one of those parameters is absent, as the dimensions of the matrices to multiply

must match).

The parameters nnza and nnzb are numbers of nonzero coefficients, the arrays

ai and bi contain distributions of the nonzero coefficients.

The arrays apermut and bpermut are used to store the permutations establishing

the orderings of coefficients of the matrices. If the parameter ra is nonzero, then

the permutation in apermut must represent the row ordering, and the array arows

must contain indices to the apermut array, pointing to the first entries of subsequent

rows (see the procedure pkn_SPsubMFindRows).

If the parameter ca is nonzero, then the permutation in apermut must rep-

resent the column ordering, and the array acols must contain indices to the

apermut array, pointing to the first entries of subsequent columns (see the pro-

cedure pkn_SPsubMFindCols).

If the parameter ra or ca is zero (false), the proper ordering and indices to

the rows or columns will be found, but the caller must provide arrays of sufficient

capacity.

The same rules apply to the parameters bpermut, brows, bcols, rb and cb.

The array abi of length determined by procedure pkn_SPMCountMMnnzC (for

AB), pkn_SPMCountMMTnnzC (for ABT ), or pkn_SPMCountMTMnnzC (for ATB—this

length is assigned to the variable pointed by the parameter nnzab of these proce-

dures) must be allocated by the caller. On exit it contains the distribution of the

nonzero coefficients of the product. No actual multiplication of the coefficient is

done.

The fast matrix multiplication

boolean pkn_SPMmultMMCf ( int nra, int nca, int ncb,

int nnza, index2 *ai, float *ac,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi, float *bc,

int *bpermut, int *bcols, boolean cb,

index2 *abi, float *abc );

boolean pkn_SPMmultMMTCf ( int nra, int nca, int nrb,

int nnza, index2 *ai, float *ac,

int *apermut, int *acols, boolean ca,

int nnzb, index2 *bi, float *bc,

int *bpermut, int *brows, boolean rb,
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index2 *abi, float *abc );

boolean pkn_SPMmultMTMCf ( int nra, int nca, int ncb,

int nnza, index2 *ai, float *ac,

int *apermut, int *arows, boolean ra,

int nnzb, index2 *bi, float *bc,

int *bpermut, int *bcols, boolean cb,

index2 *abi, float *abc );

The procedures above compute the product of two sparse matrices, AB, ABT orATB

respectively, which involves finding the distribution of nonzero coefficients of the

product.

The parameters of these procedures are: nra, nca—numbers of rows and columns

of the matrix A, nrb, ncb—numbers of rows and columns of the matrix B (always

one of those parameters is absent, as the dimensions of the matrices to multiply

must match).

The parameters nnza and nnzb are numbers of nonzero coefficients, the arrays

ai and bi contain distributions of the nonzero coefficients.

The arrays apermut and bpermut are used to store the permutations establishing

the orderings of coefficients of the matrices. If the parameter ra is nonzero, then

the permutation in apermut must represent the row ordering, and the array arows

must contain indices to the apermut array, pointing to the first entries of subsequent

rows (see the procedure pkn_SPsubMFindRows).

If the parameter ca is nonzero, then the permutation in apermut must rep-

resent the column ordering, and the array acols must contain indices to the

apermut array, pointing to the first entries of subsequent columns (see the pro-

cedure pkn_SPsubMFindCols).

If the parameter ra or ca is zero (false), the proper ordering and indices to

the rows or columns will be found, but the caller must provide arrays of sufficient

capacity.

The same rules apply to the parameters bpermut, brows, bcols, rb and cb.

The arrays abi and abc, whose length ought to be determined by the procedure

pkn_SPMCountMMnnzC (for AB), pkn_SPMCountMMTnnzC (for ABT ), or

pkn_SPMCountMTMnnzC (for ATB—this length is assigned to the variable pointed by

the parameter nnzab of these procedures) must be allocated by the caller. On exit

the array abi contains the distribution of the nonzero coefficients of the product,

and the coefficients are stored in the array abc.

boolean pkn_SPsubMmultMMCf ( int nra, int nca, int ncb,

int nnza, index3 *ai, float *ac,

int *apermut, int *acols, boolean ca,

int nnzb, index3 *bi, float *bc,

int *bpermut, int *bcols, boolean cb,

index2 *abi, float *abc );
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boolean pkn_SPsubMmultMMTCf ( int nra, int nca, int nrb,

int nnza, index3 *ai, float *ac,

int *apermut, int *acols, boolean ca,

int nnzb, index3 *bi, float *bc,

int *bpermut, int *brows, boolean rb,

index2 *abi, float *abc );

boolean pkn_SPsubMmultMTMCf ( int nra, int nca, int ncb,

int nnza, index3 *ai, float *ac,

int *apermut, int *arows, boolean ra,

int nnzb, index3 *bi, float *bc,

int *bpermut, int *bcols, boolean cb,

index2 *abi, float *abc );

The procedures above multiply two sparse submatrices, in the way analoguous to

that used by the three procedures without the infix “sub” in their names, which are

described above. Note that the result of the multiplication is a sparse matrix, not

a submatrix, i.e. the distribution of the product is represented by the structures of

type index2, not index3. For description of the parameters see the procedures for

matrix multiplication.

The very fast matrix multiplication

A very fast matrix multiplication is possible if the distribution of the nonzero coef-

ficients of the product is known and for each nonzero coefficient of the product a list

of coefficients of the factors, to be multiplied and added, is known. In some applica-

tions this information may be found once, and then the floating point computations

are instant.

The preparation involves counting the nonzero coefficients and multiplications,

by calling one of the procedures pkn_SPMCountMMnnzR, pkn_SPMCountMMTnnzR,

pkn_SPMCountMTMnnzR, pkn_SPMCountMMnnzC, pkn_SPMCountMMTnnzC,

pkn_SPMCountMTMnnzC, or an analoguous procedure with the “sub” infix.

These procedures find the numbers nnz and nmult, which are the number of

nonzero coefficients of the product and the total number of multiplications to

compute them.

Then it is necessary to allocate the arrays abi of length nnz (to store the distri-

bution of nonzero coefficients of the product), abpos of length nnz + 1 (to store the

indices to the next array) and aikbkj of length nmult (to store the lists of coeffi-

cients to multiply and add). The last stage of the preparation is calling one of the

procedures, whose headers are shown below, to find the distribution of the nonzero

product coefficients and the lists of coefficients of the factors to multiply.

After the preparation, the procedure pkn_SPMFastMultMMf may be called. This

procedure makes only the floating point operations, and it is appropriate for all

cases—AB, ABT , ATB, using the row and column ordering. Time savings are
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considerable if the preparation is done once and then a number of matrices with

the same distributions of nonzero coefficients are to be multiplied, on the other

hand the lists of coefficients to multiply need much memory, which may be not

available for huge matrices.

boolean pkn_SPMFindMMnnzR ( int nra, int nca, int ncb,

int nnza, index2 *ai, int *apermut, int *arows,

int nnzb, index2 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPMFindMMnnzC ( int nra, int nca, int ncb,

int nnza, index2 *ai, int *apermut, int *acols,

int nnzb, index2 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPMFindMMTnnzR ( int nra, int nca, int nrb,

int nnza, index2 *ai, int *apermut, int *arows,

int nnzb, index2 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPMFindMMTnnzC ( int nra, int nca, int nrb,

int nnza, index2 *ai, int *apermut, int *acols,

int nnzb, index2 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPMFindMTMnnzR ( int nra, int nca, int ncb,

int nnza, index2 *ai, int *apermut, int *acols,

int nnzb, index2 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPMFindMTMnnzC ( int nra, int nca, int ncb,

int nnza, index2 *ai, int *apermut, int *arows,

int nnzb, index2 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

The procedures above find the distributions of nonzero coefficients of the product

of two sparse matrices, and the lists of factor coefficients to multiply, as a part

of preparation for the fastest procedure of multiplying the sparse matrices in this

package.

The parameters of these procedures are: nra, nca—numbers of rows and columns

of the matrix A, nrb, ncb—numbers of rows and columns of the matrix B (always

one of those parameters is absent, as the dimensions of the matrices to multiply

must match).

The parameters nnza and nnzb are numbers of nonzero coefficients, the arrays

ai and bi contain distributions of the nonzero coefficients.

The arrays apermut and bpermut are used to store the permutations establishing

the orderings of coefficients of the matrices. If the parameter ra is nonzero, then

the permutation in apermut must represent the row ordering, and the array arows
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must contain indices to the apermut array, pointing to the first entries of subsequent

rows (see the procedure pkn_SPsubMFindRows).

The permutation in apermut must represent the column ordering, and the array

acols must contain indices to the apermut array, pointing to the first entries of

subsequent columns (see the procedure pkn_SPsubMFindCols).

The same rules apply to the arrays bpermut and brows or bcols.

Results are stored in the arrays abi, abpos and aikbkj, which must be provided

by the caller. The lengths of these arrays may be found in the way described above

the headers.

The procedures return true in case of success or false after a failure.

boolean pkn_SPsubMFindMMnnzR ( int nra, int nca, int ncb,

int nnza, index3 *ai, int *apermut, int *arows,

int nnzb, index3 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPsubMFindMMnnzC ( int nra, int nca, int ncb,

int nnza, index3 *ai, int *apermut, int *acols,

int nnzb, index3 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPsubMFindMMTnnzR ( int nra, int nca, int nrb,

int nnza, index3 *ai, int *apermut, int *arows,

int nnzb, index3 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPsubMFindMMTnnzC ( int nra, int nca, int nrb,

int nnza, index3 *ai, int *apermut, int *acols,

int nnzb, index3 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPsubMFindMTMnnzR ( int nra, int nca, int ncb,

int nnza, index3 *ai, int *apermut, int *acols,

int nnzb, index3 *bi, int *bpermut, int *brows,

index2 *abi, int *abpos, index2 *aikbkj );

boolean pkn_SPsubMFindMTMnnzC ( int nra, int nca, int ncb,

int nnza, index3 *ai, int *apermut, int *arows,

int nnzb, index3 *bi, int *bpermut, int *bcols,

index2 *abi, int *abpos, index2 *aikbkj );

The procedures with headers shown above do the same thing as their corresponding

procedures without the infix “sub”, in order to prepare the fast multiplication of

sparse submatrices. Note that the product is represented as a sparse matrix (not

a submatrix), whose distribution of nonzero coefficients is represented by structures

of type index2.

To see a description of the parameters, see the procedures above.
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void pkn_SPMFastMultMMf ( float *ac, float *bc,

int nnzab, int *abpos, index2 *aikbkj,

float *abc );

The procedure pkn_SPMFastMultMMf performs multiplication and summing of float-

ing point numbers in order to compute the coefficients of the product of two sparse

matrices. Before calling it it is necessary to prepare the computation, using the

procedures described above.
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3.7 Conjugate gradient method for linear equations

Systems of linear equations Ax = b with a large matrix A should be solved using

iterative methods; sometimes it is the only approach having a chance to work. If

the matrix A is symmetric and positive-definite, then an algorithm worth using

is the conjugate gradient method. The numerical operations in this method are:

computation of the products Av for some vectors v, and computing scalar products

and linear combination of vectors. It is also possible to introduce a preconditioner,

i.e. a matrix Q, which has three properties: it is symmetric and positive definite, it

is an approximation of A, and it is easy to compute the product of Q−1w for any

vector w (i.e. to solve the system of equations Qu = w, which must be possible

and much easier than solving Ax = b).

boolean pkn_PCGf ( int n, void *usrdata, float *b, float *x,

boolean (*multAx)( int n, void *usrdata,

const float *x, float *Ax ),

boolean (*multQIx)( int n, void *usrdata,

const float *x, float *Qix ),

int maxit, float eps, float delta, int *itm );

The procedure pkn_PCGf implements the conjugate gradient method of solving

systems of linear equations Ax = b with symmetric positive-definite matrices A,

using a preconditioner Q.

Parameters: n—number of equations and unknown variables, usrdata—pointer

to any data structure, which is passed to the subprograms pointed by the parameters

multAx and multQIx, b—array of coordinates of the vector b.

The array x on entry contains an initial approximation of the solution (it must

be initialised—set all entries to 0 if there is no better idea), on exit it contains the

solution, or rather an approximation of the solution obtained after the last iteration.

The subprogram pointed by multAx must multiply the array A by vector x,

whose coordinates are in the array x, and store the result in the array Ax. The

representation of the matrix A and the implementation of the multiplication is

completely irrelevant. The data representing A may be accessible via the pointer

usrdata, which is passed to this subprogram whenever pkn_PCGf calls it.

Similarly the subprogram pointed by multQIx must compute the product Q−1x

and store it in the array Qix. The way of representing the preconditioner Q or its

inverse is irrelevant. If the parameter multQIx is NULL, then it is assumed that the

preconditioner is the n× n identity matrix.

The values returned by the subprograms pointed by multAx and multQIx should

be true in case of success and false in case of any failure. Returning false will

result in termination of the conjugate gradient method iterations.

The parameter maxit is the limit of the number of iterations (it must be pos-

itive and not greater than n). The parameters eps (ε) and delta (δ) specify the
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stop criterions—iterations are terminated if ‖v‖2 < ε or ‖r‖2 < δ or the limit of

iterations has been reached. Here v denotes the vector constructed by the conjugate

gradient method, which determines the direction of the next line, along which the

quadratic polynomial 1
2
xTAx− xTb is minimised, and r = b−Ax is the residuum

vector.

The parameter itm points to a variable, to which pkn_PCGf assigns the number

of iterations made.

The returned value of pkn_PCGf is true in case of success, or false if one of

the subprograms passed as parameters failed (i.e. returned false) or there was

insufficient scratch memory.
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3.8 Triangular bit matrices

Matrices, whose elements are bits, may be used to represent the distribution of

nonzero coefficients of sparse matrices, whose elements are numbers. This is useful

e.g. to renumber the equations and variables of a system of equations in order

to obtain a band matrix (with a narrow band, containing relatively few zeros),

such that the system may be solved using a direct method. This approach was

used in the procedures of shape optimization of the surfaces represented by meshes

(in the libg2blending library—see Section 12.3). As the matrices used there

are symmetric, the procedures described below process a packed representation

of triangular matrices (such a matrix may be interpreted as the lower triangle of

a symmetric matrix, and it takes a half of the storage space necessary for a square

matrix).

int pkn_TMBSize ( int n );

The procedure pkn_TMBsize computes the number of bytes necessary to represent

an n × n bit matrix. An application is supposed to call it prior to the memory

allocation for the bit matrix.

boolean pkn_TMBElem ( byte *bittm, int i, int j );

The procedure pkn_TMBElem returns true if bij = 1 of false if bij = 0. The bits

of the matrix are stored in the array bittm, and i and j are indices of the row and

column, which are numbered from 0 to n− 1.

void pkn_TMBElemSet ( byte *bittm, int i, int j );

void pkn_TMBElemClear ( byte *bittm, int i, int j );

The two procedures above assign 1 or 0 respectively to the bit bij of the bit matrix.

The bits are stored in the array bittm, and i and j are indices of the row and

column, which are numbered from 0 to n− 1.

boolean pkn_TMBTestAndSet ( byte *bittm, int i, int j );

boolean pkn_TMBTestAndClear ( byte *bittm, int i, int j );

The two procedures above assign 1 or 0 respectively to the bit bij of the bit matrix,

and their return value is the previous value of that bit. The bits are stored in the

array bittm, and i and j are indices of the row and column, which are numbered

from 0 to n− 1.

These operations are not uninterruptible, as is often necessary in concurrent

programming. Joining the two operations is motivated by saving time of computing

the proper byte and mask, which would have to be done twice if the two operations

(extracting the bit and assigning the new value) were separated.
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3.9 Solving nonlinear equations

boolean pkn_SolveSqEqf ( float p, float q, float *x1, float *x2 );

The procedure pkn_SolveSqEqf computes the zeros of the polynomial x2 +

2px + q with real coefficients. The parameters p and q specify the coefficients

p and q. The parameters x1 and x2 are used to return the result.

If the zeros of the polynomial are real, then the procedure returns true. Then

the value of *x1 is the smaller zero and the value of *x2 is the greater zero.

If the zeros are complex, then the value of the procedure is false. In this case

the value of *x1 is the real part and the value of *x2 is the absolute value of the

imaginary part of the zeros.

float pkn_Illinoisf ( float (*f) (float), float a, float b,

float eps, boolean *error );

The procedure pkn_Illinoisf computes with the accuracy up to ε a zero of

a real function f in the interval [a, b]. The function must be continuous in this

interval and its values at a and b must have different signs. If the function f has

more than one zero in [a, b], then the procedure will compute one of them. The

numerical algorithm for smooth functions with zeros of multiplicity 1 is usually

faster than the bisection.

The parameter f is a procedure computing the value of f for a given argument.

The parameters a and b specify the interval [a, b], in which the zero is searched.

The parameter eps specifies the required accuracy ε of the solution (it must be

a positive number, and it should not be less than the maximal limit accuracy,

depending on the rounding errors of evaluation of the function f). The parameter

error on return is false if there was no error detected, and true if the values of f

at both ends of the interval [a, b] have the same sign.

The zero of the function is returned as the value of the procedure.
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3.10 Optimization

float pkn_GoldenRatf ( float (*f) (float), float a, float b,

float eps, boolean *error );

The procedure pkn_GoldenRatf uses the golden ratio method to find a minimum

of a real function f of one variable in the interval [a, b]. The parameters a, b specify

the ends of this interval the parameter eps specifies the required accuracy (its value

must be positive), the procedure *f has to compute the value of the function f at

the given point.

The parameter *error is assigned true, if the procedure does not detect any

error (currently it does not detect any errors, but after tests this parameter may

find its uses).

The value of the procedure is the computed minimal point of f; it is an approx-

imation of some local minimum in the interval [a, b].
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3.11 Computing derivatives of composite functions

The procedures described in this section compute partial derivatives of order 1, . . . , 4

of a function h, being the composition of a function f : R2 → R
2 and g : R2 →

R
d, based on the partial derivatives of these functions. The procedures deal with

functions of two variables, though the approach used here may be used for functions

of other number of variables (but so far I did not need that).

Let f(u, v) = [x(u, v), y(u, v)]T . The formulae expressing the derivatives of the

composition of consecutive orders may be derived recursively, using the formulae

for the derivatives of the first order:

hu = xugx + yugy,

hv = xvgx + yvgy,

and the formulae for the derivative of a product of functions. The formulae

huu = x2ugxx + 2xuyugxy + y2ugyy + xuugx + yuugy,

huv = xuxvgxx + (xuyv + xvyu)gxy + yuyvgyy + xuvgx + yuvgy,

hvv = x2vgxx + 2xvyvgxy + y2vgyy + xvvgx + yvvgy,

and the formulae for the derivatives of higher orders, which are significantly longer,

may be rewritten in matrix form, e.g.

[

hu

hv

]

= A11

[

gx

gy

]

, (3.1)





huu

huv

hvv



 = A21

[

gx

gy

]

+A22





gxx

gxy

gyy



 , (3.2)









huuu

huuv

huvv

hvvv









= A31

[

gx

gy

]

+A32





gxx

gxy

gyy



+A33









gxxx

gxxy

gxyy

gyyy









, (3.3)













huuuu

huuuv

huuvv

huvvv

hvvvv













= A41

[

gx

gy

]

+A42





gxx

gxy

gyy



+A43









gxxx

gxxy

gxyy

gyyy









+A44













gxxxx

gxxxy

gxxyy

gxyyy

gyyyy













. (3.4)

The coefficients of the matrices A11, . . . , A44 are expressions of the partial deriva-

tives of the functions x and y.
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3.11.1 Computing derivative transformation matrices

void pkn_Setup2DerA11Matrixf (

float xu, float yu, float xv, float yv, float *A11 );

void pkn_Setup2DerA21Matrixf ( float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv, float *A21 );

void pkn_Setup2DerA22Matrixf (

float xu, float yu, float xv, float yv, float *A22 );

void pkn_Setup2DerA31Matrixf (

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float *A31 );

void pkn_Setup2DerA32Matrixf (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv, float *A32 );

void pkn_Setup2DerA33Matrixf (

float xu, float yu, float xv, float yv, float *A33 );

void pkn_Setup2DerA41Matrixf (

float xuuuu, float yuuuu, float xuuuv, float yuuuv,

float xuuvv, float yuuvv, float xuvvv, float yuvvv,

float xvvvv, float yvvvv, float *A41 );

void pkn_Setup2DerA42Matrixf (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float *A42 );

void pkn_Setup2DerA43Matrixf (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv, float *A43 );

void pkn_Setup2DerA44Matrixf (

float xu, float yu, float xv, float yv, float *A44 );

The above procedures compute the matrices, which arrear in Formulae (3.1)–

(3.4). The parameters of type float specify the derivatives of the functions x

and y, e.g. the value of the parameter xu is xu, i.e. ∂x
∂u

, the value of yuuv is

yuuv = ∂3y
∂2u∂v

etc. The coefficients of the matrices are stored in the arrays pointed

by the parameters A11. . . A44.
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3.11.2 Computing derivatives of composite functions

void pkn_Comp2Derivatives1f (

float xu, float yu, float xv, float yv,

int spdimen, const float *gx, const float *gy,

float *hu, float *hv );

void pkn_Comp2Derivatives2f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

int spdimen, const float *gx, const float *gy,

const float *gxx, const float *gxy, const float *gyy,

float *huu, float *huv, float *hvv );

void pkn_Comp2Derivatives3f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

int spdimen, const float *gx, const float *gy,

const float *gxx, const float *gxy, const float *gyy,

const float *gxxx, const float *gxxy,

const float *gxyy, const float *gyyy,

float *huuu, float *huuv, float *huvv, float *hvvv );

void pkn_Comp2Derivatives4f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float xuuuu, float yuuuu, float xuuuv, float yuuuv,

float xuuvv, float yuuvv, float xuvvv, float yuvvv,

float xvvvv, float yvvvv,

int spdimen, const float *gx, const float *gy,

const float *gxx, const float *gxy, const float *gyy,

const float *gxxx, const float *gxxy,

const float *gxyy, const float *gyyy,

const float *gxxxx, const float *gxxxy, const float *gxxyy,

const float *gxyyy, const float *gyyyy,

float *huuuu, float *huuuv, float *huuvv,

float *huvvv, float *hvvvv );

The above procedures compute the partial derivatives of order 1, . . . , 4 of the

function h = f ◦ g based on the partial derivatives of the function f : R2 → R
2,
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described by two scalar functions, x(u, v) and y(u, v), and of the function g : R2 →
R

d.

The dimension d of the space, whose elements are the values of g, is (for all

these procedures) specified by the parameter spdimen.

The names of the other parameters denote their meaning. For example the value

of xu is equal to the derivative of x with respect to u; similarly, the parameter yuuvv

specifies the value yuuvv = ∂4y
∂2u∂2v

etc.

Similarly, the parameter gx points to the array of d coordinates of the vector

gx = ∂g
∂x

, and the parameter hu points to the array, in which the procedure will

store the d coordinates of the vector ∂h
∂u

etc.

As the computation of the derivatives of h of order n requires only the matrices

An1, . . . , Ann (see Formulae (3.1)–(3.4)), each procedure computes computes only

the derivatives of one order — 1, 2, 3 or 4 respectively. These derivatives are

computed based on the derivatives of f and g of orders 1, . . . , n.

Remark: If the function f is an affine mapping, then its derivatives of order higher

than 1 are 0. In that case the matrices Aij for j < i are zero matrices and it is better

(namely, a bit faster) to compute the derivatives of the n-th order of h by computing

the matrix Ann (with the appropriate procedure described in Section 3.11.1), and

by multiplying it by the matrix, whose rows are the appropriate derivatives of the

n-th order of the function g.

3.11.3 Computing derivatives of compositions with inverse functions

void pkn_Comp2iDerivatives1f (

float xu, float yu, float xv, float yv,

int spdimen, const float *hu, const float *hv,

float *gx, float *gy );

void pkn_Comp2iDerivatives2f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

int spdimen, const float *hu, const float *hv,

const float *huu, const float *huv, const float *hvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy );
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void pkn_Comp2iDerivatives3f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

int spdimen, const float *hu, const float *hv,

const float *huu, const float *huv, const float *hvv,

const float *huuu, const float *huuv,

const float *huvv, const float *hvvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy,

float *gxxx, float *gxxy, float *gxyy, float *gyyy );

void pkn_Comp2iDerivatives4f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float xuuuu, float yuuuu, float xuuuv,

float yuuuv, float xuuvv, float yuuvv,

float xuvvv, float yuvvv, float xvvvv, float yvvvv,

int spdimen, const float *hu, const float *hv,

const float *huu, const float *huv, const float *hvv,

const float *huuu, const float *huuv, const float *huvv,

const float *hvvv, const float *huuuu, const float *huuuv,

const float *huuvv, const float *huvvv, const float *hvvvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy,

float *gxxx, float *gxxy, float *gxyy, float *gyyy,

float *gxxxx, float *gxxxy, float *gxxyy,

float *gxyyy, float *gyyyy );

The above procedures compute the partial derivatives of the function g =

f−1 ◦ h, which is the composition of a function f−1 : R2 → R
2 with h : R2 → R

d.

The function f, given by two scalar functions, x(u, v) and y(u, v), must be regular

(i.e. its partial derivative vectors of the first order must be linearly independent).

Moreover, the functions f and h must be smooth enough.

The parameter spdimen of all the procedures specifies the dimension d of the

space, whose elements are the values of g and h. The other parameters have names,

which explain their meanings. For example the parameter yu specifies the value of

yu = ∂y
∂u

etc. Similarly, the parameter huv is the pointer to the array with the

d coordinates of the vector huv = ∂2h
∂u∂v

, and the parameter gyyyy points to the

array, in which the d coordinates of the vector gyyyy = ∂4g
∂y4 are to be stored by

the procedure.
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The algorithm is based on the interpretation of Formulae (3.1)–(3.4)) as systems

of linear equations with unknown derivatives of the function g. These equations

are solved with the procedure pkn_multiGaussSolveLinEqf, which is an imple-

mentation of the Gaussian elimination method with full pivoting. Because the

computation of the derivatives of order n of the function g must be preceded by

computing the derivatives of order lower than n, the procedures have the parame-

ters — pointers to the arrays intended to store all these derivatives (this is different

than with the procedures described in the previous section).

3.11.4 Computing derivatives of inverse functions

void pkn_f2iDerivatives1f (

float xu, float yu, float xv, float yv,

float *gx, float *gy );

void pkn_f2iDerivatives2f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy );

void pkn_f2iDerivatives3f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy,

float *gxxx, float *gxxy, float *gxyy, float *gyyy );

void pkn_f2iDerivatives4f (

float xu, float yu, float xv, float yv,

float xuu, float yuu, float xuv,

float yuv, float xvv, float yvv,

float xuuu, float yuuu, float xuuv, float yuuv,

float xuvv, float yuvv, float xvvv, float yvvv,

float xuuuu, float yuuuu, float xuuuv,

float yuuuv, float xuuvv, float yuuvv,

float xuvvv, float yuvvv, float xvvvv, float yvvvv,

float *gx, float *gy, float *gxx, float *gxy, float *gyy,

float *gxxx, float *gxxy, float *gxyy, float *gyyy,

float *gxxxx, float *gxxxy, float *gxxyy,

float *gxyyy, float *gyyyy );

The above procedures compute the partial derivatives of the function g =

f−1, where f : R2 → R
2 is a regular and sufficiently smooth function, described by
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two scalar functions, x(u, v) and y(u, v). The actual computation is done by the

procedures described in the previous section, which compute the derivatives of the

composition of f−1 with the function h, being the identity mapping of R2.
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3.12 Quadratures

boolean pkn_QuadRectanglesf ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadSimpsonf ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre4f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre6f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre8f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre10f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre12f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre14f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre16f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre18f ( float a, float b, int n,

float *qknots, float *qcoeff );

boolean pkn_QuadGaussLegendre20f ( float a, float b, int n,

float *qknots, float *qcoeff );



4. The libpkgeom library

The libpkgeom library consists of procedures, which implement basic operations

on points and vectors in two-, three- and four-dimensional spaces. The operations

are: addition, subtraction, multiplication, interpolation and affine transformations.

In addition, there is a procedure of computing the convex hull of a set of points in

the plane. Other procedures of computational geometry will also be placed in this

library.

All names of data types and procedures end with the letter f or d, which in-

dicates the representation of coordinates — of single (float) or double (double)

precision.

4.1 Point and vector operations

typedef struct point2f {

float x, y;

} point2f vector2f;

typedef struct point3f {

float x, y, z;

} point3f vector3f;

typedef struct point4f {

float X, Y, Z, W;

} point4f vector4f;

Points and vectors are represented with pairs, triples and quadruples of num-

bers. An essential property of these representations is the absence of any additional

data. Due to that, for example an array of n points in a plane may be passed to

a procedure, which processes an array of 2n numbers. Therefore these structures

should not be converted to C++ classes, and in particular no classes with additional

attributes may be defined.

A structure of type point3f may represent a point in the 3D space or a point of

a plane. In the latter case the fields x, y, z describe homogeneous coordinates of this

point — its cartesian coordinates are equal to x/z and y/z. Analoguously, a struc-

ture of type point4f consists of fields, whose values are homogeneous coordinates

of a point in the three-dimensional space.

4.2

typedef struct ray3f {

point3f p;

vector3f v;

} ray3f;

Structures of type ray3f represent rays, i.e. halflines in R
3, with the origin at

the point p and with the direction described by the vector v.

typedef union trans2f {

struct {

float a11, a12, a13;

float a21, a22, a23;

} U0;

struct {

float a[2][3];

short detsgn;

} U1;

} trans2f;

typedef union trans3f {

struct {

float a11, a12, a13, a14;

float a21, a22, a23, a24;

float a31, a32, a33, a34;

} U0;

struct {

float a[3][4];

short detsgn;

} U1;

} trans3f;

Structures of type trans2f and trans3f represent affine transformations of the

two- and three-dimensional spaces. The representation consists of a matrix 3×3 or

4× 4, whose last row is either [0, 0, 1] or [0, 0, 0, 1]. Therefore this row is not stored.

The field detsgn describes the sign of the determinant of this matrix.

void SetPoint2f ( point2f *p, float x, float y );

#define SetVector2f(v,x,y) SetPoint2f ( v, x, y )

void SetPoint3f ( point3f *p, float x, float y, float z );

#define SetVector3f(v,x,y,z) SetPoint3f ( v, x, y, z )

void SetPoint4f ( point4f *p, float X, float Y, float Z, float W );

#define SetVector4f(v,X,Y,Z,W) SetPoint4f ( v, X, Y, Z, W )

The above procedures and macros initialize point and vector representations.
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void TransPoint2f ( const trans2f *tr, const point2f *p,

point2f *q );

void TransPoint3f ( const trans3f *tr, const point3f *p,

point3f *q );

The above procedures compute the image q of a point p in an affine transfor-

mation of the two- or three-dimensional space.

void TransVector2f ( const trans2f *tr, const vector2f *v,

vector2f *w );

void TransVector3f ( const trans3f *tr, const vector3f *v,

vector3f *w );

The above procedures compute the image w of the vector v in a linear trans-

formation, which is the linear part of the affine transformation represented by the

variable *tr.

void TransContra3f ( const trans3f *tri, const vector3f *v,

vector3f *w );

The procedure TransContra3f computes the image w of the vector v in a linear

transformation, whose matrix is the transposition of the matrix of the linear part

of the affine transformation represented by the parameter *tri. If the vector v is

the normal vector of some plane π, and the transformation represented by *tri is

the inverse of some transformation A, then the computed vector w is the normal

vector of the plane A(π).

void Trans3Point2f ( const trans3f *tr, const point2f *p,

point2f *q );

The procedure Trans3Point2f applies the affine transformation *tr to the point

p ∈ R
3, whose first two coordinates are the values of the fields x and y of the

parameter *p, and the third coordinate is 0. The coordinates x and y of the image

are assigned to the appropriate fields of the parameter *q.

void Trans2Point3f ( const trans2f *tr, const point3f *p,

point3f *q );

The procedure Trans2Point3f computes the image of a point p ∈ R
2, repre-

sented by homogeneous coordinates, in an affine transformation.

void Trans3Point4f ( const trans3f *tr, const point4f *p,

point4f *q );

The procedure Trans3Point4f applies the affine transformation *tr to the

point p ∈ R
3, whose four homogeneous coordinates are the values of the fields

of the parameter *p.

4.4

The homogeneous coordinates of the image (such that the weight coordinates of

the point and its image are the same) are assigned to the appropriate fields of the

parameter *q.

void IdentTrans2f ( trans2f *tr );

void IdentTrans3f ( trans3f *tr );

The procedures IdentTrans2f and IdentTrans3f initialize the structures *tr

to the values representing the identity mappings of the two- and three-dimensional

spaces respectively.

void CompTrans2f ( trans2f *s, trans2f *t, trans2f *u );

void CompTrans3f ( trans3f *s, trans3f *t, trans3f *u );

The procedures CompTrans2f and CompTrans3f compute the composition of the

affine transformations represented by the parameters *t and *u, and assign it to

the parameter *s. This composition is equivalent to the transformation *u followed

by *t.

void GeneralAffineTrans3f ( trans3f *tr,

vector3f *v1, vector3f *v2, vector3f *v3 );

The procedure GeneralAffineTrans3f computes the composition of the trans-

formation represented by the parameter *tr with the transformation, whose linear

part is represented by the matrix [v1, v2, v3] (and the translation vector is 0). The

composition is assigned to the parameter *tr.

void ShiftTrans2f ( trans2f *tr, float tx, float ty );

void ShiftTrans3f ( trans3f *tr, float tx, float ty, float tz );

The procedures ShiftTrans2f and ShiftTrans3f compute the composition of

the transformation represented by the parameter *tr and the translation by the

vector [tx, ty]
T or [tx, ty, tz]

T . The composition is assigned to the parameter *tr.

void RotTrans2f ( trans2f *tr, float angle );

The procedure RotTrans2f computes the composition of the affine transforma-

tion represented by *tr with the rotation around the point [0, 0]T by the angle

angle. The composition is assigned to the parameter *tr.

void Rot3f ( trans3f *tr, byte j, byte k, float angle );

The procedure Rot3f computes the composition of the transformation repre-

sented by the parameter *tr with the rotation around one of the axes of the system

of coordinates. The axis is specified by the parameters j and k, which must be

different numbers from the set {1, 2, 3}. For example the rotation in the plane xy

(around the z axis) corresponds to j = 1, k = 2. The rotation angle is equal to

angle. The composition is assigned to the parameter *tr.
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#define RotXTrans3f(tr,angle) Rot3f ( tr, 2, 3, angle )

#define RotYTrans3f(tr,angle) Rot3f ( tr, 3, 1, angle )

#define RotZTrans3f(tr,angle) Rot3f ( tr, 1, 2, angle )

The above macros call the procedure Rot3f in order to compute the composi-

tion of the affine transformation represented by the parameter *tr with a rotation

around the x, y, z axes, i.e. in the planes yz, zx and xy respectively.

void RotVTrans3f ( trans3f *tr, vector3f *v, float angle );

The procedure RotVTrans3f computes the composition of the affine transfor-

mation represented by the parameter *tr with the rotation around the line, which

passes through the point [0, 0, 0]T and has the direction of the unit vector v, by the

angle angle. The composition is assigned to the parameter *tr.

void FindRotVEulerf ( const vector3f *v, float angle,

float *psi, float *theta, float *phi );

The procedure FindRotVEulerf computes the Euler angles (precession *psi,

nutation *theta and revolution *phi), representing the rotation around the line,

whose direction is specified by the unit vector v by the angle angle.

float TrimAnglef ( float angle );

The procedure TrimAnglef returns the number α, which is an element of the in-

terval [−π, π], and which differs from the parameter angle by an integer multiplicity

of 2π plus the rounding error.

void CompEulerRotf ( float psi1, float theta1, float phi1,

float psi2, float theta2, float phi2,

float *psi, float *theta, float *phi );

The procedure CompEulerRotf computes the Euler angles ψ, θ, ϕ of the rota-

tion, which is the composition of two rotations represented by the Euler angles ψ1,

θ1, ϕ1 and ψ2, θ2, ϕ2 respectively.

void CompRotV3f ( const vector3f *v1, float a1,

const vector3f *v2, float a2,

vector3f *v, float *a );

The procedure CompRotV3f computes the composition of two rotations in R
3,

given by unit vectors of their axes, v1, v2 and the angles α1, α2. The procedure

computes the vector v of the composition axis and the angle α.

void EulerRotTrans3f ( trans3f *tr,

float psi, float theta, float phi );

The procedure EulerRotTrans3f computes the composition of the affine trans-

formation represented by the initial value of the parameter *tr with the rotation

represented by the Euler angles ψ, θ, ϕ.
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void ScaleTrans2f ( trans2f *t, float sx, float sy );

void ScaleTrans3f ( trans3f *tr, float sx, float sy, float sz );

The procedures ScaleTrans2f and ScaleTrans3f compute the composition of

the affine transformation represented by the initial value of the parameter *tr with

the scaling, whose coefficients are sx and sy or sx, sy and sz.

void MirrorTrans3f ( trans3f *tr, vector3f *n );

The procedure MirrorTrans3f computes the composition of the affine transfor-

mation represented by the initial value of the parameter *tr with the symmetric

reflection with respect to the plane, which contains the origin of the coordinate

system and whose normal vector is n.

boolean InvertTrans2f ( trans2f *tr );

boolean InvertTrans3f ( trans3f *tr );

The procedures InvertTrans2f and InvertTrans3f compute the inversion of

the affine transformation represented by the initial value of the parameter *tr, if

it exists. In this case the procedure returns true, otherwise it returns false.

void MultVector2f ( double a, const vector2f *v, vector2f *w );

void MultVector3f ( double a, const vector3f *v, vector3f *w );

void MultVector4f ( double a, const vector4f *v, vector4f *w );

The above procedures compute the vector w = av.

void AddVector2f ( const point2f *p, const vector2f *v,

point2f *q );

void AddVector3f ( const point3f *p, const vector3f *v,

point3f *q );

The above procedures compute the point q = p+ v.

void AddVector2Mf ( const point2f *p, const vector2f *v, double t,

point2f *q );

void AddVector3Mf ( const point3f *p, const vector3f *v, double t,

point3f *q );

The above procedures compute the point q = p+ tv.

void SubtractPoints2f ( const point2f *p1, const point2f *p2,

vector2f *v );

void SubtractPoints3f ( const point3f *p1, const point3f *p2,

vector3f *v );

void SubtractPoints4f ( const point4f *p1, const point4f *p2,

vector4f *v );

The above procedures compute the vector v = p1 − p2.
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void InterPoint2f ( const point2f *p1, const point2f *p2, double t,

point2f *q );

void InterPoint3f ( const point3f *p1, const point3f *p2, double t,

point3f *q );

void InterPoint4f ( const point4f *p1, const point4f *p2, double t,

point4f *q );

The above procedures compute the point q = p1 + t(p2 − p1).

void MidPoint2f ( const point2f *p1, const point2f *p2,

point2f *q );

void MidPoint3f ( const point3f *p1, const point3f *p2,

point3f *q );

void MidPoint4f ( const point4f *p1, const point4f *p2,

point4f *q );

The above procedures compute the point q = 1
2
(p1 + p2).

void Interp3Vectors2f ( const vector2f *p0, const vector2f *p1,

const vector2f *p2,

const float *coeff, vector2f *p );

void Interp3Vectors3f ( const vector3f *p0, const vector3f *p1,

const vector3f *p2,

const float *coeff, vector3f *p );

void Interp3Vectors4f ( const vector4f *p0, const vector4f *p1,

const vector4f *p2,

const float *coeff, vector4f *p );

The above procedures compute the linear combination of three vectors given as

parameters; the coefficients of the combination are given in the array coeff.

void NormalizeVector2f ( vector2f *v );

void NormalizeVector3f ( vector3f *v );

The above procedures compute *v := 1
‖v‖2

v.

double DotProduct2f ( const vector2f *v1, const vector2f *v2 );

double DotProduct3f ( const vector3f *v1, const vector3f *v2 );

double DotProduct4f ( const vector4f *v0, const vector4f *v1 );

The above procedures compute the appropriate scalar products.
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double det2f ( const vector2f *v1, const vector2f *v2 );

double det3f ( const vector3f *v1, const vector3f *v2,

const vector3f *v3 );

double det4f ( const vector4f *v0, const vector4f *v1,

const vector4f *v2, const vector4f *v3 );

The above procedures compute the determinants of the matrices 2 × 2, 3 × 3
and 4× 4 respectively, whose columns are given as the parameters.

void Point3to2f ( const point3f *P, point2f *p );

void Point4to3f ( const point4f *P, point3f *p );

The above procedures compute the cartesian coordinates of a point p based on

its homogeneous coordinates.

void Point2to3f ( const point2f *p, float w, point3f *P );

void Point3to4f ( const point3f *p, float w, point4f *P );

The above procedures compute the homogeneous coordinates of a point p with

the weight coordinate w, based on the cartesian coordinates.

void CrossProduct3f ( const vector3f *v1, const vector3f *v2,

vector3f *v );

The procedure CrossProduct3f computes the vector product of the vectors v1
and v2.

void OrtVector2f ( const vector2f *v1, const vector2f *v2,

vector2f *v );

void OrtVector3f ( const vector3f *v1, const vector3f *v2,

vector3f *v );

The procedures OrtVector2f and OrtVector3f compute the vector v = v2 −
〈v1,v2〉
〈v1,v1〉

v1.

void CrossProduct4P3f ( const vector4f *v0, const vector4f *v1,

const vector4f *v2, vector3f *v );

The procedure CrossProduct4P3f computes the first three coordinates of the

vector in R
4, which is the vector product of three vectors v1, v2 and v3.

void OutProduct4P3f ( const vector4f *v0, const vector4f *v1,

vector3f *v );

The procedure OutProduct4P3f computes the vector

v =





X0W1 −W0X1

Y0W1 −W0Y1
Z0W1 −W0Z1



 .
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4.2 Boxes

Rectangles and rectangular parallelpipeds are useful in various applications, espe-

cially for estimating the locations of more complicated geometrical figures. The

types defined below describe such boxes. In the future basic procedures of process-

ing such boxes will be developed as a part of the libpkgeom library.

typedef struct Box2f {

float x0, x1, y0, y1;

} Box2f;

typedef struct Box3f {

float x0, x1, y0, y1, z0, z1;

} Box3f;

4.3 Finding the convex hull

The headers of the procedures of finding the convex hull (for both versions: of the

single and double precision) are in the file convh.h.

void FindConvexHull2f ( int *n, point2f *p );

The procedure FindConvexHull2f finds the convex hull of a set of n points of

the plane. These points are given in the array p. The initial value of the parameter

*n is the number of the points. The final contents of the array consists of some of

the points, namely the subsequent vertices of the polygon being the convex hull of

the points. The number of vertices of the hull is the final value of the parameter *n.



5. The libcamera library

The libcamera library consists of procedures, which manage the cameras, i.e. ob-

jects, which represent projections of the 3d space onto a plane, in order to make

pictures. There are two kinds of projections: perspective and parallel. The for-

mer are intended to make “photographs”, the latter are better to produce technical

drawings.

5.1 The camera

5.1.1 A description of the camera and the projection algorithm

The data structure and the headers of procedures are giben in the header files

cameraf.h andf camerad.h. Both files may be included via the file camera.h.

typedef struct CameraRecf {

boolean parallel, upside, c_fixed;

byte magnification;

short xmin, ymin, width, height;

float aspect;

point3f position;

float psi, theta, phi;

point3f g_centre, c_centre;

float xscale, yscale;

trans3f CTr, CTrInv;

vector4f cplane[6];

union {

struct {

float f;

float xi0, eta0;

float dxi0, deta0;

} persp;

struct {

float wdt, hgh, diag;

boolean dim_case;

} para;

} vd;

} CameraRecf;

The CameraRecf structure describes the camera, i.e. an object representing

a perspective or a parallel projection.

5.2

Figure 5.1. The camera system of coordinates and the frame for a perspective projection

The structure fields contain the following information:

parallel — if its value is false (0), then the projection is perspective, else it is

parallel.

upside — if its value is false, then the y axis of the image system of coordinates

is oriented downward (like in XWindow system windows), else it is oriented up

(like in the OpenGL library or in the default PostScript system of coordinates).

c_fixed — this parameter specifies the changes of the camera rotations centre

when the camera is moved — if false, then this point is fixed in the global

system of coordinates, else if is fixed in the camera system.

magnification — by default this field has the value 1, which means that the

axis unit in the image system of coordinate is the width or height of one pixel.

Greater values select appropriately shorter units, which may be useful for su-

persampling.

xmin, ymin, width, height — coordinates of the upper left point of the frame and

its dimensions in pixels.

aspect — the aspect factor, i.e. the ratio of the width and height of one pixel.

position — position of the view point (in global coordinates).

psi, theta, phi — Euler angles ψ, ϑ, ϕ, which describe the direction of the camera.

g_centre, c_centre — coordinates of the centre of rotations of the camera, i.e. the

point on the axes of rotations of the camera, in global and camera coordinates

respectively.

xscale, yscale — factors of scaling of the axes x and y of the camera system of

coordinates.

Ctr, CTrInv — the transformation from the global to camera coordinates and its

inverse.
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cplane — representations of four halfspaces, ahose intersection is the visibility

frustum. The halfspace ax+by+cz+d > 0 is represented by the vector, whose

coordinates are a, b, c, d.

So far only four halfspaces are used, the other two (near and far) are to be done.

vd — a union with data specific for the methods of projection. The structure

vd.persp contains the data specific for perspective projections, while vd.para

for the parallel ones.

vd.persp.f — focal length of the camera, in the units such that the diagonal of the

frame has the length 1. Focal length 1 corresponds to a standard photographic

objective.

vd.persp.xi0, vd.persp.eta0 — shift of pixels after the perspective projection.

vd.persp.dxi0, vd.persp.deta0 — coordinates x, y (in the camera system) of

the frame centre. By default they are zero, and then the frame centre is located

on the “optical axis” of the camera. Other values are necessary with cameras

forming a stereo pair.

vd.para.wdt, vd.para.hgh, vd.para.diag — dimensions (width, height, diago-

nal) of the frame, measured in the units of the global system of coordinates.

vd.para.dim_case — the parameter, which specifies, which of the three above

dimensions of the frame is specified by the user; 0 — diagonal, 1 — width, 2 —

height. The other two dimensions will be computed by the library procedures.

By default this parameter obtains the value 0, and the parameter vd.para.diag

is set to 1.

Projection algorithm:

The image of the point p, represented in the global coordinates, is computed as

follows:

1. The point p is subject to the affine transformation represented by the CTr

attribute of the camera. In this way the camera coordinates are obtained.

2. For a perspective projection the x and y coordinates are divided by the z

coordinate. Then the values of xi0 and eta0 are added to the quotients.

For parallel projections this step is omitted.

3. If the y axis is oriented upward (the upside attribute is nonzero) then the y

coordinate is replaced by 2ymin+h−y, where ymin is the value of the attribute

ymin, and h is the value of the attribute height.

5.4

Setting up the transformation to the camera coordinates:

The transformation from the global to camera coordinates (done in the first step of

the algorithm describd above) is the composition of thee affine transformations:

1. Scaling of the axes x and y by the factors, being values of the attributes

xscale and yscale.

2. Rottaion described with use of the Euler angles, being values of the attributes

psi, theta, phi.

3. Translation, which sets the origin of the system at the point position.

The values of the attributes, which specify the above transformations, should be

assigned by the procedures described later. These procedures may compute the

proper values representing a composition of a series of camera movements from the

default initial position.

5.1.2 Camera procedures

void CameraInitFramef ( CameraRecf *CPos,

boolean parallel, boolean upside,

short width, short height, short xmin, short ymin,

float aspect );

The procedure CameraInitFramef sets initial values of the *CPos attributes,

which specify the kind of projection and the size of the frame (in pixels), and the

aspect factor (ratio of the width and height of one pixel).

The parameter parallel equal to false determines the prespective projection,

its value true results in a paralell projection.

The parameter upside equal to false causes assuming the downward orienta-

tion of the y axis of the image, its value true — upward.

The parameters width and height describe the width and height of the frame

(in pixels), and the parameters xmin and ymin the position of the upper left corner.

The call to this procedure should precede calling all other actions with a cam-

era, but it is insufficient to fully specify the projection. This must be done by

calling CameraInitPosf and perhaps a number of calls to the procedures chang-

ing the camera position. If the frame size is to be changed without changing the

current position (e.g. after changing the size of a program window), after calling

CameraInitFramef it is necessary to call the procedure CameraSetMappingf.

void CameraSetMagf ( CameraRecf *CPos, byte mag );

The procedure CameraSetMagf sets the magnification factor, e.g. for supersam-

pling. The default units of the image axes are the width and height of a pixel. By

calling this procedure with the parameter mag = n (where n is a positive integer),
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we decrease these units n times, which may be useful during an image synthesis

with supersampling.

void CameraSetMappingf ( CameraRecf *CPos );

The procedure CameraSetMappingf computes the transformation matrices be-

tween the global and camera coordinate systems. This procedure is called by all

procedures setting or changing the camera position, and therefore calling it directly

from applications is usually unnecessary. One exception is after changing the size

of the frame (with use of CameraInitFramef) and the current camera position is

to be left unchanged.

void CameraProjectPoint3f ( CameraRecf *CPos, const point3f *p,

point3f *q );

The procedure CameraProjectPoint3f computes the image of a point *p in

a perspective or parallel projection. The coordinates of this image are assigned to

the attributes x and y of the parameter *q. Its z attribute is the depth of the point,

i.e. its signed distance from the plane contatining the camera position and parallel

to the projection plane. This may be needed by a hidden line or surface algorithm.

void CameraUnProjectPoint3f ( CameraRecf *CPos, const point3f *p,

point3f *q );

The procedure CameraUnProjectPoint3f computes the counterimage of a point

p. The coordinates x, y of the point *q are specified in the image coordinates, the

z coordinate is the depth (in the camera system). This is thus the inversion of the

transformation computed by the procedure CameraProjectPoint3f.

The coordinates x, y, z of the counterimage are assigned to the appropriate

attributes of the parameter *q.

void CameraProjectPoint2f ( CameraRecf *CPos, const point2f *p,

point2f *q );

The procedure CameraProjectPoint2f computes a projection of the point p,

whose coordinates x, y are these of the parameter p, and the coordinate z is 0.

The coordinates x, y of the image are assigned to the attributes of the parame-

ter *q.

In principle using this procedure makes sense only with parallel projections.

void CameraUnProjectPoint2f ( CameraRecf *CPos, const point2f *p,

point2f *q );

The procedure CameraUnProjectPoint2f computes a counterimage of the

point p, whose coordinates x, y (in the image system) are given by the param-

eter p, and the z coordinate (in the camera system) is 0.
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The coordinates of the counterimage are assigned to the attributes of the pa-

rameter *q.

This procedure may be used only with parallel projections.

void CameraRayOfPixelf ( CameraRecf *CPos, float xi, float eta,

ray3f *ray );

The procedure CameraRayOfPixel for a point of the projection plane, whose

image coordinates are x = xi, y = eta, finds the representation of a ray, i.e.

a halfline, whose origin (for a perspective projection) is the viewer position, and

which intersect the projection plane at that point. For a parallel projection the ray

origin is that point and its direction is the projection direction.

The ray origin is assigned to the p attribute of the structure *ray and the unit

vector, representing the ray direction is assigned to the attribute v. The ray is

specified in the global system of coordinates. The main use of this procedure is ray

tracing.

void CameraInitPosf ( CameraRecf *CPos );

The procedure CameraInitPosf sets the camera to the default initial position,

in which the axes x, y and z of the camera system of coordinates coincide with the

axes x, y, z of the global system. The focal length is set to 1. Before calling this

procedure it is necessary to specify the frame dimensions and the image aspect, by

calling CameraInitFramef.

After calling CameraInitPosf the camera is ready to projecting points and to

the manipulations with the position, direction and the focal length.

void CameraSetRotCentref ( CameraRecf *CPos, point3f *centre,

boolean global_coord, boolean global_fixed );

The procedure SetCameraRotCentref may be used to specify the point of axes

of rotations of the camera. The parameter *centre is this point, global_coord

specifies, whether its coordinates are specified in the global system (true) or in the

camera system (false). The parameter global_fixed specifies, whether this point

is fixed in the global (true), or in the camera (false) system, when the camera is

moved.

void CameraMoveToGf ( CameraRecf *CPos, point3f *pos );

The procedure CameraMoveToGf translates (without rotation) the camera to the

position *pos, specified in the global system.

void CameraTurnGf ( CameraRecf *CPos,

float psi, float theta, float phi );

The procedure CameraTurnGf sets the camera orientation specified by the Eu-

ler angles (precession, psi, nutation, theta, and revolution phi), in the global

coordinate system.
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Remark: The way of representing the camera orientation will some day be changed,

and using this procedure is therefore not recommended.

void CameraMoveGf ( CameraRecf *CPos, vector3f *v );

The procedure CameraMoveGf translates the camera by the vector v, specified

in the global system of coordinates.

void CameraMoveCf ( CameraRecf *CPos, vector3f *v );

The procedure CameraMoveGf translates the camera by the vector v, specified

in the camera system of coordinates.

void CameraRotGf ( CameraRecf *CPos,

float psi, float theta, float phi );

The procedure CameraRotGf turns the camera. The rotation is specified by the

Euler angles in the global system of coordinates. The axis of the rotation passes

through the point set with the procedure SetCameraRotCentref (default is the

origin of the global system of coordinates).

#define CameraRotXGf(Camera,angle) \

CameraRotGf(Camera, 0.0, angle, 0.0)

#define CameraRotYGf(Camera,angle) \

CameraRotGf(Camera, 0.5 * PI, angle, -0.5 * PI)

#define CameraRotZGf(Camera,angle) \

CameraRotGf(Camera, angle, 0.0, 0.0)

Three macrodefinitions, which turn the camera around the three axes of the

global system of coordinates.

void CameraRotVGf ( CameraRecf *CPos, vector3f *v, float angle );

The procedure CameraRotVGf turns the camera around the axis, whose direction

is that of the vector v, by the angle angle. The coordinates of the vector v are

specified in the global system of coordinates.

void CameraRotCf ( CameraRecf *CPos,

float psi, float theta, float phi );

The procedure CameraRotCf turns the camera. The rotation is specified by the

Euler angles in the camera system of coordinates. The axis of the rotation passes

through the point set with the procedure SetCameraRotCentref (default is the

origin of the global system of coordinates).
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#define CameraRotXCf(Camera,angle) \

CameraRotCf ( Camera, 0.0, angle, 0.0 )

#define CameraRotYCf(Camera,angle) \

CameraRotCf ( Camera, 0.5 * PI, angle, -0.5 * PI )

#define CameraRotZCf(Camera,angle) \

CameraRotCf ( Camera, angle, 0.0, 0.0 )

Three macrodefinitions, which turn the camera around the three axes of the

camera system of coordinates.

void CameraRotVCf ( CameraRecf *CPos, vector3f *v, float angle );

The procedure CameraRotVCf turns the camera around the axis, whose direction

is that of the vector v, by the angle angle. The coordinates of the vector v are

specified in the camera system of coordinates.

void CameraSetFf ( CameraRecf *CPos, float f );

The procedure CameraSetFf sets the focal length of the camera.

void CameraZoomf ( CameraRecf *CPos, float fchange );

The procedure CameraZoomf changes the focal length of the camera by the factor

fchange, which must be positive.

boolean CameraClipPoint3f ( CameraRecf *CPos,

point3f *p, point3f *q );

The procedure CameraClipPoint3f checks, whether the image of the point p

fits into the frame and if it does, then it computes the image. Its coordinates are

passed using the parameter q. The value true indicates that the image has been

computed, false is returned for points outside the visibility pyramid.

boolean CameraClipLine3f ( CameraRecf *CPos,

point3f *p0, float t0, point3f *p1, float t1,

point3f *q0, point3f *q1 );

The procedure CameraClipLine3f clips the line segment { (1− t)p0 + tp1 : t ∈
[t0, t1] } to the visibility pyramid. If the intersection is nonempty, its end points

are projected and returned with use of the parameters q0 and q1. The procedure

value is then true.

The procedure is an implementation of the Liang-Barsky algorithm.

boolean CameraClipPolygon3f ( CameraRecf *CPos,

int n, const point3f *p,

void (*output)(int n, point3f *p) );

The procedure CameraClipPolygon3f finds the intersection of a polygon with

the visibility pyramid, using the Sutherland-Hodgman algorithm. The parameter n
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specifies the number of vertices in the space, whose coordinates are given in the

array p; the polygon boundary is one closed polyline.

The parameter output points to a procedure, which will be called if the inter-

section is nonempty. The parameter n of this procedure specifies the number of

vertices of the intersection. Projections of those vertices are given in the array p.

5.10

5.2 Stereo camera pair

To make a stereo pair of images it is necessary to place two cameras in the space,

and then to render the images using the cameras. The procedures described in this

section make it easier to manipulate with such a pair of cameras; each procedure

corresponds to some procedure of manipulating with one camera and it should be

used instead of that procedure. To project points or to cast rays one should use

the procedures described in the previous section for each camera of the pair.

Figure 5.2. Stereo pair of cameras and their common frame

The data structure and the headers of procedures related with the stereo pair

of cameras are described in the header file stereo.h.

typedef struct StereoRecf {

point3f position;

float d;

float l;

CameraRecf left, right;

trans3f STr, STrInv;

} StereoRecf;

The structure StereoRecf contains two data structures, which describe the left

and the right camera.

void StereoInitFramef ( StereoRecf *Stereo, boolean upside,

short width, short height, short xmin, short ymin,

float aspect );

The procedure StereoInitFramef initializes the dimensions of the frame of the

cameras (in pixels) and the aspect factor. This is done by calling CameraInitFramef

for each camera of the pair, with these parameters. This procedure should be called
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first in the sequence of procedure calls of the camera initialization. After calling it

the cameras are not ready to use.

The parameter upside specifies the orientation of the y axis in the image system

of coordinates — see the description of the procedure CameraInitFramef.

void StereoSetDimf ( StereoRecf *Stereo,

float f, float d, float l );

The procedure SetStereoDimf initialize the dimensions of the cameras, using

the units of length of the global system of coordinates (used to represent objects to

be drawn). The parameter f specifies the focal length, i.e. the ratio of the distance

of the frame from the central points of projection and the diagonal of the frame.

The parameter d specifies the distance between the pupils of the eyes of the viewer

(i.e. the distance between the centres of projections), and the parameter l specifies

the distance of the viewer from the plane of the frame (i.e. from the monitor screen).

The length of diagonal of the frame is therefore l/f units of the global system. The

same length in inches depends on the monitor.

Remark. The procedure StereoInitPosf initialises the attributes f = 1, d = 0

and l = 1, and these values are not very useful. A more proper values must therefore

be assigned, by calling StereoSetDimf.

void StereoSetMagf ( StereoRecf *Stereo, char mag );

The procedure StereoSetMagf sets the magnification factor of the cameras (e.g.

for antialiasing) by calling CameraSetMagf for each camera. The default value of

this factor (after this procedure has not been called) is 1.

void StereoSetMappingf ( StereoRecf *Stereo );

The procedure StereoSetMappingf computes the positions of the centres of

projections of the cameras and it prepares the cameras for using (e.g. projecting

points), by calling CameraSetMappingf. Before calling this procedure one should

call StereoInitFramef and StereoInitPosf.

The procedures described below, which manipulate with the cameras, call this

procedure, therefore typical applications need not call it directly.

void StereoInitPosf ( StereoRecf *Stereo );

The procedure StereoInitPosf moves both cameras to the default position.

Both cameras get the same position, assigned by the procedure CameraInitPosf.
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void StereoSetRotCentref ( StereoRecf *Stereo,

point3f *centre,

boolean global_coord, boolean global_fixed );

The procedure sets the point, through which axes of rotations of the cameras

pass. The way of specifying it is the same as in case of a single camera.

void StereoMoveGf ( StereoRecf *Stereo, vector3f *v );

The procedure StereoMoveGf translates the pair of cameras (without rotating)

by the vector v, specified in the global system of coordinates.

void StereoMoveCf ( StereoRecf *Stereo, vector3f *v );

The procedure StereoMoveCf translates the pair of cameras (without rotating)

by the vector v, specified in the system of coordinates of the stereo pair.

void StereoRotGf ( StereoRecf *Stereo,

float psi, float theta, float phi );

The procedure StereoRotGf turns the pair of cameras. The rotation is specified

by the Euler angles ψ, ϑ, ϕ in the global system of coordinates.

#define StereoRotXGf(Stereo,angle) \

StereoRotGf ( Stereo, 0.0, angle, 0.0 )

#define StereoRotYGf(Stereo,angle) \

StereoRotGf ( Stereo, 0.5*PI, angle, -0.5*PI )

#define StereoRotZGf(Stereo,angle) \

StereoRotGf ( Stereo, angle, 0.0, 0.0 )

The above macrodefinitions turn the stereo pair around axes parallel to the axes

x, y and z of the global system of coordinates.

void StereoRotVGf ( StereoRecf *Stereo, vector3f *v, float angle );

The procedure StereoRotVGf turns the stereo pair around the axis, whose di-

rection is given by the vector v, specified in the global system of coordinates.

void StereoRotCf ( StereoRecf *Stereo,

float psi, float theta, float phi );

The procedure StereoRotCf turns the stereo pair of cameras. The rotation is

specified by the Euler angles ψ, ϑ, ϕ in the stereo pair system of coordinates.
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#define StereoRotXCf(Stereo,angle) \

StereoRotCf ( Stereo, 0.0, angle, 0.0 )

#define StereoRotYCf(Stereo,angle) \

StereoRotCf ( Stereo, 0.5*PI, angle, -0.5*PI )

#define StereoRotZCf(Stereo,angle) \

StereoRotCf ( Stereo, angle, 0.0, 0.0 )

The above macrodefinitions turn the stereo pair around axes parallel to the axes

x, y and z of the stereo pair system of coordinates.

void StereoRotVCf ( StereoRecf *Stereo, vector3f *v, float angle );

The procedure StereoRotVCf turns the stereo pair of cameras around the axis,

whose direction is given by the vector v, specified in the system of coordinates of

the stereo pair.

void StereoZoomf ( StereoRecf *Stereo, float fchange );

The procedure StereoZoomf multiplies the focal length of the cameras by the

parameter fchange. It is better not to use it at all.



6. The libpsout library

The libpsout library consists of procedures, which write PostScript(TM) code to

a text file. The file represents a picture, defined by subsequent calls of the library

procedures, which produce commands of drawing lines etc.

The library procedures are basic, which actually write the PostScript commands,

and additional, which make it simpler to draw line segments — one can draw their

parts of various widths, mark some points, draw arrows etc.

6.1 Basic procedures

The phrase „the procedure draws a line segment” or whatever is to be interpreted

in such a way that based on the parameter values the procedure writes the text,

whose processing by a PostScript interpreter will cause the appearance of the line

segment on the picture.

extern short ps_dec_digits;

The variable ps_dec_digits determines the number of decimal digits in the

fractional parts of coordinates of points written to the PostScript file. The default

value is 3; if the resolution is set to 600DPI and there are no large scaling, this

should be enough.

void ps_WriteBBox ( float x1, float y1, float x2, float y2 );

The procedure ps_WriteBBox called before opening the PostScript file sets up

the dimensions of the bounding box, to be written in the preamble. The picture

should (but does not have to) fit in the bounding box, which will be used by

a typesetting system (TEX) to place the picture on a page. The first two parameters

are coordinates of the lower left corner, and the last two parameters are coordinates

of the upper right corner. The parameters are specified in “big points” (1 big point

(1bp in TEX) is 1/72").

The appropriate numbers are easy to find using GhostView. The procedure call

with these numbers may be added to the program producing the picture, which

may then be recompiled and executed again.

void ps_OpenFile ( const char *filename, unsigned int dpi );

void ps_CloseFile ( void );

The procedure ps_OpenFile creates a file, whose name is specified by the pa-

rameter filename (if a file of than name already exists, then it is deleted) and writes

a PostScript header. The header contains the coordinates of the bounding box (if

the procedure ps_WriteBBox has been previously called) and a scaling command,
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which sets the initial unit length. This unit is determined by the parameter dpi,

e.g. if its value is 600, then the unit length is 1/600". Some procedures are written

in such a way that symbols they draw (arrows etc.) look best with the unit that

long.

The procedure ps_CloseFile closes the PostScript file. It should be called when

the picture is finished.

void ps_Write_Command ( char *command );

The procedure ps_Write_Command writes an arbitrary text in the PostScript file.

Any PostScript command may be appended to the file, even if there is no “ready”

procedure in the library to write such a command. Therefore all possibilities of

PostScript are available.

void ps_Set_Gray ( float gray );

The procedure ps_Set_Gray sets the specified gray level int the current graphics

state. The value of the parameter gray should be in the interval [0, 1].

void ps_Set_RGB ( float red, float green, float blue );

The procedure ps_Set_RGB sets the colour with the specified red, green and

blue components in the current graphics state. The values of the parameters red,

green and blue should be in the interval [0, 1].

void ps_Set_Line_Width ( float w );

The procedure ps_Set_Line_Width sets the specified line width in the current

graphics state. The parameter w should have a positive value.

void ps_Draw_Line ( float x1, float y1, float x2, float y2 );

The procedure ps_Draw_Line draws a line segment, whose end points have the

coordinates x1, y1 and x2, y2. The line width, colour and other properties are

determined by the current settings in the graphics state.

void ps_Set_Clip_Rect ( float w, float h, float x, float y );

The procedure ps_Set_Clip_Rect sets the clipping rectangle of dimensions w

(width) and h (height), whose lower left vertex has the coordinates x, y.

The clipping is done in addition to all clipping paths specified before. Cancella-

tion of clipping may be done only in such a way, that we save the graphics state by

calling ps_GSave ();, then we set the clipping path and after drawing we restore

the initial graphics state by calling ps_GRestore ();.

void ps_Draw_Rect ( float w, float h, float x, float y );

The procedure ps_Draw_Rect draws the edges of the rectangle of dimensions w

(width) and h (height), whose lower left vertex has the coordinates x, y. The width

and colour of the lines drawn are determined by the current graphics state.
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void ps_Fill_Rect ( float w, float h, float x, float y );

The procedure ps_Fill_Rect fills the rectangle of dimensions w (width) and h

(height), whose lower left vertex has the coordinates x, y. The colour of the rect-

angle is determined by the current graphics state.

void ps_Hatch_Rect ( float w, float h, float x, float y,

float ang, float d );

The procedure ps_Hatch_Rect draws a number of lines to hatch the rectangle

of dimensions w (width) and h (height), whose lower left vertex has the coordinates

x, y. The angle of inclination of the lines is specified by the parameter ang (in

radians), and their distance is the value of the parameter d. The colour and width

of the lines is determined by the current graphics state.

void ps_Draw_Polyline2f ( int n, const point2f *p );

void ps_Draw_Polyline2d ( int n, const point2d *p );

The procedures ps_Draw_Polyline2f and ps_Draw_Polyline2d draw (open)

polylines consisting of n−1 line segments, whose vertices (n points, i.e. 2n floating

point numbers) are given in the array p. The colour and line width are determined

by the current graphics state.

void ps_Draw_Polyline2Rf ( int n, const point3f *p );

void ps_Draw_Polyline2Rd ( int n, const point3d *p );

The procedures ps_Draw_Polyline2Rf and ps_Draw_Polyline2Rd draw (open)

polylines consisting of n−1 line segments, whose vertices (n points, i.e. 3n floating

point numbers, the homogeneous coordinates) are given in the array p. The colour

and line width are determined by the current graphics state.

void ps_Set_Clip_Polygon2f ( int n, const point2f *p );

void ps_Set_Clip_Polygon2d ( int n, const point2d *p );

The procedures ps_Set_Clip_Polygon2f and ps_Set_Clip_Polygon2d set the

clipping path, being a closed polyline with n vertices given in the array p. The

PostScript interpreter clips to all clipping paths set before (except for the patchs

set after saving the graphics state, which has then been restored).

void ps_Set_Clip_Polygon2Rf ( int n, const point3f *p );

void ps_Set_Clip_Polygon2Rd ( int n, const point3d *p );

The procedures ps_Set_Clip_Polygon2Rf and ps_Set_Clip_Polygon2Rd set

the clipping path, being a closed polyline with n vertices given in the array p,

which contains their homogeneous coordinates.
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void ps_Fill_Polygon2f ( int n, const point2f *p );

void ps_Fill_Polygon2d ( int n, const point2d *p );

The procedures ps_Fill_Polygon2f and ps_Fill_Polygon2d fill a polygon

with n vertices given in the array p.

void ps_Fill_Polygon2Rf ( int n, const point3f *p );

void ps_Fill_Polygon2Rd ( int n, const point3d *p );

The procedures ps_Fill_Polygon2Rf and ps_Fill_Polygon2Rd fill a polygon

with n vertices (the homogeneous coordinates) given in the array p.

void ps_Draw_BezierCf ( const point2f *p, int n );

void ps_Draw_BezierCd ( const point2d *p, int n );

The procedures ps_Draw_BezierCf and ps_Draw_BezierCd draw Bézier curves

of degree n, whose n+1 control points are given in the array p. For n > 1 a polyline

of 50 line segments is drawn.

The points of the curve are computed without using the libmultibs library.

void ps_Draw_Circle ( float x, float y, float r );

The procedure ps_Draw_Circle draws the circle with the radius r and the centre

(x,y).

void ps_Fill_Circle ( float x, float y, float r );

The procedure ps_Draw_Circle fills the circle with the radius r and the centre

(x,y).

void ps_Draw_Arc ( float x, float y, float r, float a0, float a1 );

The procedure ps_Draw_Arc draws an arc of a circle with the centre (x,y),

radius r and the angles of beginning and end point a0 and a1. The meaning of

all parameters is just like of the parameters of the PostScript operator arc, except

that the angles are specified in radians (not in degrees).

void ps_Mark_Circle ( float x, float y );

The procedure ps_Mark_Circle draws a mark (small circle with a white dot)

at (x,y).

void ps_Init_Bitmap ( int w, int h, int x, int y, byte b );

void ps_Out_Line ( byte *data );

The procedure ps_Init_Bitmap prepares outputting of a monochrome bitmap

image (black–grey–white). The image is w pxels wide, h pixels high (the pixel width

and height are 1 unit of the current system of coordinates), and the lower left corner

is at (x,y). The parameter b specifies the number of bits per pixel, which has to

be 1, 2, 4 or 8.



6.5

After calling the procedure ps_Init_Bitmap it is necessary to call h times the

procedure ps_Out_Line, whose parameter is an array of ⌈w/b⌉ bytes. Each byte

describes 8/b packed pixels. Each call of this procedure causes writing one row of

pixels to the PostScript file, from top of the image to the bottom.

The data are output in hexadecimal form, without any compression. Therefore

the PostScript file with such an image may be large.

void ps_Init_BitmapP ( int w, int h, int x, int y );

void ps_Out_LineP ( byte *data );

The procedure ps_Init_BitmapP prepares outputting of a monochrome bitmap

image (black–grey–white) in a packed form. The image is w pxels wide, h pixels

high (the pixel width and height are 1 unit of the current system of coordinates),

and the lower left corner is at (x,y). The colour of each pixel is specified by one

byte.

After calling the procedure ps_Init_BitmapP it is necessary to call h times the

procedure ps_Out_LineP, whose parameter is an array of w bytes. Each call of this

procedure causes writing one row of pixels to the PostScript file, from top of the

image to the bottom.

The data are output in hexadecimal form, with a simple run-length encoding

compression. Therefore the PostScript file with such an image may smaller.

void ps_Init_BitmapRGB ( int w, int h, int x, int y );

void ps_Out_LineRGB ( byte *data );

The procedure ps_Init_BitmapRGB prepares outputting of a colour bitmap im-

age. The image is w pxels wide, h pixels high (the pixel width and height are 1 unit

of the current system of coordinates), and the lower left corner is at (x,y). The

colour of each pixel is specified by three bytes.

After calling the procedure ps_Init_BitmapRGB it is necessary to call h times

the procedure ps_Out_LineRGB, whose parameter is an array of 3w bytes. Each

call of this procedure causes writing one row of pixels to the PostScript file, from

top of the image to the bottom.

The data are output in hexadecimal form, without any compression.

void ps_Init_BitmapRGBP ( int w, int h, int x, int y );

void ps_Out_LineRGBP ( byte *data );

The procedure ps_Init_BitmapRGBP prepares outputting of a colour bitmap

image in a packed form. The image is w pxels wide, h pixels high (the pixel width

and height are 1 unit of the current system of coordinates), and the lower left corner

is at (x,y). The colour of each pixel is specified by three bytes.

After calling the procedure ps_Init_BitmapRGBP it is necessary to call h times

the procedure ps_Out_LineRGBP, whose parameter is an array of 3w bytes. Each

call of this procedure causes writing one row of pixels to the PostScript file, from

top of the image to the bottom.
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The data are output in hexadecimal form, with a simple run-length encoding.

The decompression procedure is coded in PostScript. It is not extremely fast nor

effective, but often sufficient. Some day it might be replaced by something better.

void ps_Newpath ( void );

The procedure ps_Newpath causes writing the command newpath, which ini-

tializes a path. This path may then be built with the procedures ps_MoveTo and

ps_LineTo, and then it may be processed by the PostScript interpreter in the way

described by the procedure ps_Write_Command (it may write stroke or anything

else).

void ps_MoveTo ( float x, float y );

void ps_LineTo ( float x, float y );

The procedures ps_MoveTo and ps_LineTo output the PostScript commands

which build a path: respectively moveto and lineto with appropriate parameters.

The path constructed with these procedures may be used in an arbitrary way.

void ps_ShCone ( float x, float y, float x1, float y1,

float x2, float y2 );

The procedure ps_ShCone draws a shaded (grey) cone, i.e. triangle, whose ver-

tices are (x,y), (x+x1,y+y1) and (x+x2,y+y2).

void ps_GSave ( void );

void ps_GRestore ( void );

The procedure ps_GSave writes the command gsave, which causes saving the

current graphics state (on the appropriate stack of the PostScript interpreter).

The procedure ps_GRestore writes the command grestore, which restores the

graphics state previously saved on the stack.

void ps_BeginDict ( int n );

void ps_EndDict ( void );

The procedure ps_BeginDict writes the command n dict begin, where n is

the number given as the parameter. For the PostScript interpreter it is the order

of creating a new dictionary with the capacity of n symbols, and opening it on top

of the stack of open dictionaries.

The procedure ps_EndDict writes the command end, which causes removing

the dictionary from the top of the dictionary stack. Each call of ps_BeginDict

should be compelemnted by a call to ps_EndDict.

void ps_DenseScreen ( void );

The procedure ps_DenseScreen causes changing the current rasterization pat-

tern to the pattern of twice as large liniature. Thin grey lines may look better



6.7

printed with such a pattern, though the precision of reproducing grey levels is

worse.

void ps_GetSize ( float *x1, float *y1, float *x2, float *y2 );

The procedure ps_GetSize may help to get the dimensions of the rectangle

bounding the picture (or rather its elements drawn before calling this procedure).

Howevet, this procedure does not take into account any effects of the commands

output by ps_Write_Command (which may be scale, translate or drawing com-

mands), and it does not take into account clipping. Therefore it is not a very useful

procedure (using GhostView is much better).

The parameters obtain the values of coordinates of the rectangle, into which, as

it seems to the library, the picture fits. The units are determined by the resolution

specified when the file has been created.

6.2 Additional procedures

Additional procedures make it easier to draw line segments, whose parts have vari-

ous colours and widths. They may also have some parts marked with symbols like

dots, arrows, ticks etc.

#define tickl 10.0

#define tickw 2.0

#define tickd 6.0

#define dotr 12.0

#define arrowl 71.0

#define arroww 12.5

The abobe symbolic constants determine a half of length (tickl) and width

(tickw) of a bar (tick) drawn across the current line, dot radius and length and

half of width of arrows.

These dimensions are chosen so that the symbols look good, if the unit length

(specified by the second parameter of ps_OpenFile) is 1/600".

void psl_SetLine ( float x1, float y1, float x2, float y2,

float t1, float t2 );

The procedure psl_SetLine sets the line, whose segments and points will be

drawn and marked. The line passes through the points (x1,y1) and (x2,y2),

which must be different. To these two points correspond the parameters t1 and t2,

which must be different.

Setting such a line causes computing also its unit directional vector v, which

will be used by other procedures in various constructions.

6.8

void psl_GetPointf ( float t, float *x, float *y );

The procedure psl_GetPointf computes the point of the line recently set by

the procedure psl_SetLine, corresponding to the parameter t. Its coordinates are

assigned to the parameters *x and *y.

float psl_GetDParam ( float dl );

The procedure psl_GetDParam computes the increment of the line parameter,

which corresponds to the translation by a vector of length dl.

void psl_GoAlong ( float s, float *x, float *y );

The procedure psl_GoAlong on entry gets the point p =(*x,*y). On return the

parameters *x and *y have values of coordinates of the image of p in the translation

along the current line by the distance s.

void psl_GoPerp ( float s, float *x, float *y );

The procedure psl_GoPerp on entry gets the point p =(*x,*y). On return the

parameters *x and *y have values of coordinates of the image of p in the translation

prependicular to the current line by the distance s.

void psl_Tick ( float t );

The procedure psl_Tick draws a tick on the current line, at the point corre-

sponding to the parameter t, which is a bar perpendicular to the line.

void psl_BTick ( float t );

The procedure psl_BTick draws a tick on the current line, at the point corre-

sponding to the parameter t, which is a bar perpendicular to the line. This bar is

thicker and longer than that drawn by psl_Tick. The idea is to draw it using the

background colour and then to draw the ordinary bar on that background.

void psl_HTick ( float t, boolean left );

The procedure psl_HTick draws a tick on the current line, at the point cor-

respoding to the parameter t, which is a half of the bar drawn by the procedure

psl_Tick. The parameter left determines the side of the line to draw this half

tick.

void psl_Dot ( float t );

The procedure psl_Dot marks the point of the current line corresponding to

the parameter t. The mark is a circle, whose radius is dotr.

void psl_HDot ( float t );

The procedure psl_HDot marks a point of the current line corresponding to the

parameter t, by a circle of slightly greater radius. It is intended to draw the circle

using the background colour before drawing the proper circle using psl_Dot.
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void psl_TrMark ( float x, float y );

The procedure psl_TrMark marks the point (x,y) (not related with the current

line) by a white isoscelses triangle with black edges. One edge is horizontal and the

top vertex is at the marked point.

void psl_BlackTrMark ( float x, float y );

The procedure psl_BlackTrMark marks the point (x,y) (not related with the

current line) by a black isoscelses triangle. One edge is horizontal and the top

vertex is at the marked point.

void psl_HighTrMark ( float x, float y );

The procedure a psl_HighTrMark marks the point (x,y) (not related with the

current line) by a white triangle with black edges. One edge is horizontal and the

top vertex is at the marked point. The height of this triangle is greater than of that

drawn by psl_TrMark.

void psl_BlackHighTrMark ( float x, float y );

The procedure a psl_BlackHighTrMark marks the point (x,y) (not related with

the current line) by a black triangle. One edge is horizontal and the top vertex is

at the marked point. The height of this triangle is greater than of that drawn by

psl_BlackTrMark.

void psl_LTrMark ( float t );

void psl_BlackLTrMark ( float t );

void psl_HighLTrMark ( float t );

void psl_BlackHighLTrMark ( float t );

The above procedures mark the point of the current line corresponding to

the parameter t, using the symbols drawn by psl_TrMark, psl_BlackTrMark,

psl_HighTrMark and psl_BlackHighTrMark respectively. Essentially, they are ap-

propriate for horizontal lines.

void psl_Arrow ( float t, boolean sgn );

The procedure psl_Arrow marks the point of the current line corresponding to

the parameter t, by an arrow (which is a triangle) having the direction of the line.

The parameter sgn selects the orientation of the arrow.

void psl_BkArrow ( float t, boolean sgn );

The procedure psl_BkArrow marks the point of the current line corresponding

to the parameter t, drawing the area which is a background of the arrow to be

drawn bypsl_Arrow. The parameter sgn selects the orientation of the arrow.
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void psl_Draw ( float ta, float tb, float w );

The procedure psl_Draw draws a segment of the current line, between the points

corresponding to the parameters ta and tb. The parameter w specifies the width

of the line segment.

void psl_ADraw ( float ta, float tb, float ea, float eb, float w );

The procedure psl_ADraw draws a segment of the current line, whose end points

are obtained as follows: first, the point pa, which corresponds to ta is computed,

and then the unit vector having direction of the current line, multiplied by the

parameter ea is added (see the description of the procedure psl_SetLine). The

other end point of the segment is obtained in a similar way, using the parameters

tb and eb. The parameter w specifies the width of the line.

void psl_MapsTo ( float t );

The procedure psl_MapsTo marks the point of the current line corresponding

to the parameter t with an arrow having a shape different than that of psl_Arrow,

more appropriate for commutative diagrams.

void psl_DrawEye ( float t, byte cc, float mag, float ang );

The procedure psl_DrawEye marks the point of the current line corresponding

to the parameter t with an eye symbol. It may be used to denote the viewer position

on various schematic pictures.

The parameter cc should be 0, 1, 2 or 3, and it determines the orientation of

the symbol. The parameter mag specifies the magnification, and the parameter ang

specifies the angle (in radians) of additional rotation of the image, which may be

necessary to obtain a good looking effect.



6.11

Figure 6.1. A line with marked points

Example: The program below draws the picture shown in Figure 6.1.

#include <string.h>

#include "psout.h"

int main ( void )

{

ps_WriteBBox ( 12, 13, 264, 80 );

ps_OpenFile ( "psout.ps", 600 );

psl_SetLine ( 200, 600, 2200, 100, 0.0, 4.0 );

psl_Draw ( 0.5, 1.5, 2.0 );

psl_Draw ( 2.0, 3.0, 6.0 );

psl_ADraw ( 3.5, 4.0, 0.0, -arrowl, 1.0 );

psl_DrawEye ( 0.0, 1, 1.2, 0.15 );

psl_HTick ( 1.0, false );

psl_HTick ( 1.5, true );

psl_Tick ( 2.0 );

psl_BlackHighLTrMark ( 2.5 );

psl_LTrMark ( 3.0 );

psl_Dot ( 3.5 );

psl_Arrow ( 4.0, true );

ps_CloseFile ();

exit ( 0 );

} /*main*/



7. The libmultibs library

7.1 Basic definitions and representations
of curves and patches

7.1.1 Bézier curves

A Bézier curve is defined by the formula

p(t) =

n∑

i=0

piB
n
i (t), (7.1)

with control points p0, . . . ,pn and Bernstein polynomials

Bn
i (t)

def
=

(

n

i

)

ti(1− t)n−i, i = 0, . . . , n. (7.2)

The polyline, whose consecutive vertices are the points p0, . . . ,pn, is called the

control polygon of the curve. Each control point has d coordinates and then the

curve is located in the d-dimensional space. In particular, for d = 1 the formula (7.1)

describes a polynomial of the variable t of degree at most n.

The representation of a Bézier curve consists of the number n and of the sequence

of n + 1 control points, whose coordinates ((n + 1)d floating-point numbers) are

packed in an array (i.e. first come d coordinates of p0, then p1 etc.).

A rational Bézier curve is given by

p(t) =

∑n
i=0wipiB

n
i (t)∑n

i=0wiB
n
i (t)

, (7.3)

with the Bernstein polynomials, control points p0, . . . ,pn and weights w0, . . . , wn.

Such a curve is located in the same space as the control points.

If wi = 0 for some i, then the expression wipi may be replaced by an arbitrary

vector vi, thus extending the definition of the curve, but at least one weight must

be nonzero.

The control points pi of the rational curve are convenient for the program user,

which may interactively modify them, but the procedures of this library process the

homogeneous representation. For a curve in a d-dimensional space it is a polynomial

curve in the space of dimension d + 1:

P(t) =

n∑

i=0

PiB
n
i (t), (7.4)
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whose control points Pi are given by

Pi =

[

wipi

wi

]

. (7.5)

The last (i.e. d + first) homogeneous coordinate is thus the weight. If wi = 0 then

Pi =

[

vi
0

]

. (7.6)

The cartesian coordinates of the point p(t) of a rational curve are obtained by

dividing the first d coordinates of the point P(t) by its last coordinate.

The representation of a rational curve e.g. in a three-dimensional space consists

of the number n (which determines the degree of the representation) and of an

array of 4(n + 1) floating point numbers, being the coordinates of the consecutive

points Pi. As the homogeneous curves are ordinary polynomial curves, in most

cases they may be processed with the procedures appropriate for the polynomial

Bézier curves.

7.1.2 Tensor product Bézier patches

A tensor product (rectangular) Bézier patch is defined by the formula

p(u, v) =

n∑

i=0

m∑

j=0

pijB
n
i (u)B

m
j (v), (7.7)

with the Bernstein polynomials Bn
i and Bm

j of degrees n and m respectively and

with the control points pij. By convention, the row of the control net is the polyline

with the vertices p0j, . . . ,pnj (for j ∈ {0, . . . ,m}), and the column is the polyline

with the vertices pi0, . . . ,pim (for all i ∈ {0, . . . , n}).

The representation of a Bézier patch consists of two positive numbers n and m

and of (n + 1)(m + 1) control points, i.e. (n + 1)(m + 1)d floating point numbers,

stored in the array in the following sequence: first d coordinates of p00, then d

coordinates of p01 etc. After the coordinates of the point p0m there ought to be

the coordinates of p10 etc., up to the point pnm. In other words, the control net

is stored in the array columnwise.

The array described above may be seen in many different ways. For instance, to

apply an affine transformation to the patch, it is necessary to transform its control

points. In that case the array may be seen as a one-dimensional array of points.

We can also divide this patch using the de Casteljau algorithm, by halving the

interval of the parameter u or v. In the latter case we apply the algorithm to all

columns, as if they were control polygons of Bézier curves. The array contains thus

n + 1 curves and its pitch is equal to (m + 1)d (where d is the space dimension),

i.e. the second curve representation begins (m+ 1)d places after the first, etc.
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To divide the interval of u, it is necessary to apply the de Casteljau algorithm

to all rows of the control net. It turns out that the patch representation may be

interpreted as a representation of a Bézier curve in the space of dimension (m+1)d

(each column of the control net is a point of this space). In this case we process

only one Bézier curve of degree n in the (m+ 1)d-dimensional space, and the pitch

is irrelevant, as there is only one curve.

A rational Bézier patch is given by the formula

p(u, v) =

∑n
i=0

∑m
j=0wijpijB

n
i (u)B

m
j (v)

∑n
i=0

∑m
j=0wijB

n
i (u)B

m
j (v)

,

where apart from the Bernstein polynomials and the control points there are weights

wij. The procedures processing rational Bézier patches in the libmultibs library,

process their homogeneous representations i.e. the arrays of control points Pij of

polynomial Bézier patches

P(u, v) =

n∑

i=0

m∑

j=0

PijB
n
i (u)B

m
j (v), (7.8)

in the space of dimension d + 1. The relation between the control points pij and

weights wij of the rational patch with the points Pij here is the same as in the case

of the rational Bézier curves. The method of storing the control points Pij of the

homogeneous patch is the same as in the case of the nonrational patch (except that

the space dimension, where the homogeneous patch is located is greater by 1).

7.1.3 B-spline curves

Let n ≥ 0 and let the nondecreasing sequence of knots (real numbers) u0, . . . , uN,

such that N > 2n and un < uN−n be fixed. A B-spline curve of degree n based on

this knot sequence is defined by the formula

s(t) =

N−n−1∑

i=0

diN
n
i (t), (7.9)

with the control points d0, . . . ,dN−n−1 and B-spline functions Nn
0 , . . . , N

n
N−n−1.

These functions have a number of equivalent definitions, e.g. they may be defined

by the recursive Mansfield-de Boor-Cox formula:

N0
i (t) =

{
1 dla ui ≤ t < ui+1,

0 w przeciwnym razie,
(7.10)

Nj
i(t) =

t− ui

ui+j − ui
Nj−1

i (t) +
ui+j+1 − t

ui+j+1 − ui+1
Nj−1

i+1(t) dla j = 1, . . . , n. (7.11)

The domain of the curve is the interval [un, uN−n−1). In each interval [uk, uk+1)

(for n ≤ k < N− n) the B-spline curve is a polynomial arc of degree at most n.

7.4

The representation of a B-spline curve consists of the integer numbers n and

N, which determine respectively the degree and the number of the last knot, the

sequence of knots (array of floating point numbers) u0, . . . , uN and the control

points d0, . . . ,dN−n−1, located in the same space that the curve — if the dimension

of this space is d, then the array of control points must contain (N − n)d floating

point numbers.

To describe the details of procedures the following naming convention is used:

boundary knots are the knots, which bound the curve domain, i.e. un, uN−n and

all knots equal to one of the two. The boundary knots are left and right. The

internal knots are all knots in the open interval (un, uN−n); these knots have the

corresponding junction points of polynomial arcs. Apart from the above there are

also the external knots, which are not elements of the closed interval [un, uN−n].

Apart from the above, the knots u0 and uN are called the extremal knots. For

example, if n = 3, N = 15 and

u0 < u1 = u2 < u3 = u4 = u5 < u6 ≤ · · · ≤ u11 < u12 = u13 = u14 = u15,

then the knots u0, u1 i u2 are external, the knots u3, u4 and u12, . . . , u15 are

boundary, and the other knots are internal. the extremal knots are u0 and u15.

The extremal knots are necessary to define the functions Nn
0 and Nn

N−n−1, but

they do not have any influence on the values of those functions in [un, uN−n), and

thus they do not affect the shape of the curve. Various software packages either

require supplying these knots or not. The libmultibs library requires specifying

them (it suffices that the conditions u0 ≤ u1 and uN−1 ≤ uN are satisfied).

A given spline curve may have various representations, which may differ with

the degree and with the knot sequence. The construction of a representation with

additional knots is called knot insertion. In particular, the representation, whose

all knots have the multiplicity (the number of appearances) n + 1 (i.e. there is

u0 = · · · = un, un+1 = · · · = u2n+1, u2n+2 = · · · = u3n+2 etc.), is a piecewise

Bézier representation.

If the last (with the greatest index) left knot has the index k > n, then the initial

k−n knots (starting from the left extremal) and the initial k−n control points are

unnecessary in the curve representation and they may (must in certain situations)

be rejected. Similarly, if the first (with the smallest index) right boundary knot

has the index k < N − n, then the last N − n − k knots and control points are

unnecessary. The representations with unnecessary knots and control points may

be the effect of knot insertion (i.e. during the conversion to the piecewise Bézier

representation) or of constructing the B-spline representation of the derivatives of

a B-spline curve.

A B-spline curve of degree n, whose boundary knots have the multiplicity n or

greater is called the curve with clamped ends. If the last (with the greatest index)

left boundary knot has the index k (the knots are numbered from 0, therefore
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obviously k ≥ n), then the control point dk−n is the curve point corresponding to

the parameter uk, i.e. the left end of the domain. If k = n, then it is the point d0;

otherwise the points d0, . . . ,dk−n−1 have no influence on the shape of the curve

(and they may be rejected together with the knots u0, . . . , uk−n−1). A similar

rule concerns the right knot with the smallest index — if it is the knot uN−n of

multiplicity n or n+1, then the control point dN−n−1 is the end point of the curve

(it corresponds to t = uN−n).

A curve, whose boundary knots have the multiplicity less than n is called

a free end curve. Each end of the curve may be clamped or free, independently

on the other end.

Closed B-spline curves are represented in the same way as the other B-spline

curves. To be closed, a B-spline curve of degree n must satisfy the following condi-

tions: the knot sequence u1, . . . , uN−1 has to consist of subsequent elements of an

infinite sequence of numbers, such that the sequence of differences is nonnegative

and periodic, with the period

K = N− 2n,

where N > 3n. The knot sequence must be nondecreasing and there must be

a positive number T , such that

uk+K − uk = T for k = 1, . . . , 2n− 1.

The knots u0 and uN have no influence on the shape of the curve, but they must

satisfy the conditions u0 ≤ u1 and uN−1 ≤ uN.

The sequence d0, . . . ,dN−n−1 has to consist of consecutive elements of an infi-

nite periodic sequence with the period N− 2n, i.e. there must be

dk+K = dk for k = 0, . . . , n− 1.

An application may use space saving representations of closed B-spline curves,

where the knots uK+1, . . . , uN−1 and the control points dK, . . . ,dN−n−1, possible

to reproduce based on the above conditions are absent. To use the libmultibs pro-

cedures it is necessary to create a “working” representation, with arrays containing

all the knots and control points.

Finding a point and many other computations for closed B-spline curves may

be done with the procedures intended to use with “ordinary” B-spline curves with

free ends. The representation changes like knot insertion or removal and degree

elevation must be done with the procedures which ensure that the new representa-

tion satisfies the conditions described above. Such procedures have names with the

word “Closed”, and in most cases they still have to be written.

7.6

7.1.4 Tensor product B-spline patches

A B-spline patch is defined with the formula

s(u, v) =

N−n−1∑

i=0

M−m−1∑

j=0

dijN
n
i (u)N

m
j (v), (7.12)

with two sets of B-spline functions of degrees n and m (different in general), based

on the knot sequences u0, . . . , uN and v0, . . . , vM respectively (also different in

general, even if n = m). Both sequences must be nondecreasing and long enough

(there must be N > 2n, M > 2m, un < uN−n and vm < vM−m). The terminology

and remarks from the previous section apply to both these sequences.

The array of control points dij, which together with the knots represent

the patch, contains the coordinates of the points d00,d01, . . . ,d0,N−n−1, then

d10,d11, . . . ,d1,N−n−1 etc., i.e. the consecutive columns of the control net of the

patch.

Between the consecutive columns there may be unused spaces, which make it

possible to insert knots to the sequence “v” of the initial representation. This is

done as if the new knot was inserted to the representations of many B-spline curves,

whose control polygons are the columns of the patch control net. After the knot

insertion the length of the unused spaces is decreased by the length of d floating

point numbers (where d is the dimension of the space, in which the patch is located).

The pitch of the array in this case is the distance of the beginnings of consecutive

columns (measured in floating point numbers).

The curves with clamped end and free end curves correspond to the patches with

clamped boundary and with free boundary. For example, if the “u” knot sequence

satisfies the condition u1 = · · · = un < un+1, then the constant parameter curve

for u = un (one of the four boundary curves of the patch) is a B-spline curve of

degreem, based on the knot sequence “v”, whose control polygon is the first column

of the patch control net. Obviously, each of the four patch boundary curves may

be clamped or free, independently of the others.

The closed curves correspond to the closed patches, which may be tubes or tori.

One or both knot sequences, and the sequence of rows or columns of the control net

(interpreted as points) have to satisfy the conditions formulated for closed B-spline

curves.

7.1.5 NURBS curves and patches

NURBS (non-uniform rational B-spline) curves and patches are the curves and

patches piecewise rational, whose relation with the B-spline curves and patches

is the same as the relation of the rational Bézier curves and patches with the poly-

nomial Bézier curves and patches. One can choose one or two knot sequences and

the control points di or dij in the d-dimensional space and associate the weight wi
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or wij with each control point. Then the vectors in the d+ 1-dimensional space

Di =

[

widi

wi

]

or Dij =

[

wijdij

wij

]

(7.13)

define a curve or a patch in this space; after dividing the first d coordinates of

a point of the homogeneous curve or patch by the d+ first (weight) coordinate one

obtains the cartesian coordinates of the point of the rational curve or patch.

The libmultibs procedures process such homogeneous representations of the

rational curves and surfaces.

7.1.6 Coons patches

Coons patches of class Ck are tensor product patches defined by sufficiently smooth

curves, which describe the boundary of the patch and so called cross derivatives of

order 1, . . . , k. For any k ∈ N a Coons patch is defined by the formula

p(u, v) = p1(u, v) + p2(u, v) − p3(u, v), (7.14)

where

p1(u, v) = C(u)Ĥ(v)T , p2(u, v) = H̃(u)D(v)T , p3(u, v) = H̃(u)PĤ(v)
T ,

and

C(u) = [c00(u), c10(u), c01(u), c11(u), . . . , c0k(u), c1k(u)],

D(v) = [d00(v),d10(v),d01(v),d11(v), . . . ,d0k(v),d1k(v)],

H̃(u) = [H̃00(u), H̃10(u), H̃01(u), H̃11(u), . . . , H̃0k(u), H̃1k(u)],

Ĥ(v) = [Ĥ00(v), Ĥ10(v), Ĥ01(v), Ĥ11(v), . . . , Ĥ0k(v), Ĥ1k(v)].

The curves c00, . . . , c1k describe two opposite boundaries of the patch and the cross

derivatives at these boundaries. These curves must have the same domain, denoted

here by [a, b]. Similarly, the curves d00, . . . ,d1k describe the other pair of opposite

boundaries and cross derivatives and they also must have the same domain, say

[c, d]. The domain of the Coons patch is the rectangle [a, b]× [c, d].

The matrix P of dimensions (2k+2)×(2k+2) consists of the points of the given
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curves and the vectors of their derivatives of order 1, . . . , k:

P =

















c00(a) c10(a) . . . c0k(a) c1k(a)

c00(b) c10(b) . . . c0k(b) c1k(b)
...

...
...

...

c
(k)
00 (a) c

(k)
10 (a) . . . c

(k)
0k (a) c

(k)
1k (a)

c
(k)
00 (b) c

(k)
10 (b) . . . c

(k)
0k (b) c

(k)
1k (b)

















=

















d00(c) d00(d) . . . d0k(c) d0k(d)

d10(c) d10(d) . . . d1k(c) d1k(d)
...

...
...

...

d
(k)
00 (c) d

(k)
00 (d) . . . d

(k)
0k (c) d

(k)
0k (d)

d
(k)
10 (c) d

(k)
10 (d) . . . d

(k)
1k (c) d

(k)
1k (d)

















. (7.15)

The curves, which define a Coons patch, must satisfy the compatibility conditions,

expressed by the equality of the matrices above.

The functions H̃mj(u) and Ĥmj(v) are elements of so called local Hermite bases.

It is assumed that these functions are polynomials of degree 2k+1, where k ∈ {1, 2},

though one might use other functions of class Ck instead, e.g. spline functions of

degree k + 1. These functions are given by the formula

H̃mj(u) = (b− a)jHmj

(u− a

b− a

)

, Ĥmj(v) = (d− c)jHmj

( v− c

d − c

)

.

For k = 1 there is

H00(t) = B
3
0(t) + B

3
1(t), H10(t) = B

3
2(t) + B

3
3(t),

H01(t) =
1

3
B3
1(t), H11(t) = −

1

3
B3
2(t).

As the polynomials used to define a patch, i.e. in the interpolation of the given

curves for k = 1 in both directions are cubic, the Coons patches of class C1 are

called bicubic Coons patches, though such a patch may be defined with curves

of any degree.

For k = 2 the patch is defined with the polynomials of degree 5,

H00(t) = B
5
0(t) + B

5
1(t) + B

5
2(t), H10(t) = B

5
3(t) + B

5
4(t) + B

5
5(t),

H01(t) =
1

5
B5
1(t) +

2

5
B5
2(t), H11(t) = −

2

5
B5
3(t) −

1

5
B5
4(t),

H02(t) =
1

20
B5
2(t), H12(t) =

1

20
B5
3(t),

and therefore the Coons patches of class C2 are called biquintic Coons patches.

Coons patches (bicubic and biquintic) may be defined with polynomial or spline

curves. In the former case the curves are Bézier curves and the domain of the patch
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is the unit square [0, 1]2. The individual curves defining a patch do not have to

have the same degree.

The domain of a patch defined with spline curves (represented as B-spline

curves) may be dan arbitrary rectangle [a, b] × [c, d]. The individual curves do

not need to have the same degree and they may be represented with various knot

sequences (but they must have the same domain, determined by the boundary

knots).

The library libmultibs contains procedures, which convert the Coons repre-

sentation of a patch to the Bézier or B-spline form, and fast procedures computing

points and derivatives of Coons patches at the points of a regular net in the patch

domain; these procedures found their application in the constructions implemented

in the libraries libg1hole and libg2hole.

7.1.7 Naming conventions

The naming conventions are intended to simplify the package user (the programmer)

guessing the action done by a procedure and guessing the use of parameters (if two

procedures have a parameter with the same name, its rôle is the same in both these

procedures).

Each procedure and a macro intended to be called as a procedure in the

libmultibs library has the name beginning with the prefix mbs_.

If after the prefix there is the word multi, the procedure is intended to pro-

cess a number of curves simultaneously. The number of curves is specified by the

parameter named ncurves.

The suffix consists of two parts. The first part may be empty (if there is the

“multi” after the prefix), or it indicates the kind of the curve or patch processed

by the procedure. The letter C denotes a curve, and P denotes a patch. The digit

denotes the dimension of the space, in which the curve or the patch resides (e.g.

2 denotes a plane). The letter R after the digit denotes a curve or a patch in the

homogeneous representation. Caution: the control points in this case have one

coordinate more. The second part of the suffix is the letter f, which denotes the

single precision (float) or d, which denotes the double precision1 of the floating

point arithmetic used by the procedure to represent the data and results and in the

computations.

The main part of the name denotes the algorithm implemented by the procedure.

The macros and procedures with the same name differ with the destination — they

are universal (if there is the multi part) or specific for curves or patches in the

space with the fixed dimension. The most important main parts of the names are

deBoor — computing points of B-spline curves and patches with the de Boor algo-

rithm.

1In the professional applications only double precision should be used, unless even such a pre-
cision is insufficient.
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deBoorDer — computing points of B-spline curves and patches together with the

first order derivatives, using the be Boor algorithm.

BCHorner — computing points of Bézier curves and patches using the Horner

scheme.

BCHornerDer — computing points of Bézier curves and patches together with the

first order derivatives, using the Horner scheme.

BCFrenet — computing curvatures and Frenet frame vectors of Bézier curves.

BCHornerNv — computing the normal vector of a Bézier patch.

KnotIns — insertion of a single knot to B-spline curves using the Boehm algorithm.

KnotRemove — removing a single knot.

*Oslo* — procedures related with inserting and removing a number of knots si-

multaneously, using the Oslo algorithm.

MaxKnotIns — inserting knots so as to obtain a B-spline representation with all

internal knots of multiplicity n+ 1 and the boundary knots of multiplicity n or

n+ 1, which is a piecewise Bézier representation.

BisectB — division of Bézier curves into arcs, related with the division of the do-

main into two line segments of the same length, with the de Casteljau algorithm.

DivideB — division of Bézier curves into arcs, related with the division of the

domain into two line segments of arbitrary lengths, with the de Casteljau algo-

rithm.

BCDegElev — degree elevation of Bézier curves and patches.

BSDegElev — degree elevation of B-spline curves and patches.

MultBez — multiplication of polynomials and Bézier curves.

MultBS — multiplication of splines and B-spline curves.

BezNormal — computing normal vector Bézier patches.

BSCubicInterp — construction of cubic B-spline curves of interpolation.

ConstructApproxBS — construction of B-spline curves of approximation.

Closed — procedures, whose name contains this word, are intended to process

closed B-spline curves.

The formal parameters of the procedures and macros may have the following

names:

spdimen — specifies the dimension d of the space in which the curves reside, i.e.

the number of coordinates of each point of this space. If the suffix of the name of

a procedure or a macro contains the letter R, which indicates a rational object,

then the control points have spdimen = d + 1 coordinates.
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degree — specifies the degree of the curve representation. The degrees of a patch

with respect to its two parameters are specified by the parameters named

degreeu and degreev.

lastknot — specifies the number N, which is the index of the last knot in the knot

sequence. The knot sequence consists of N+ 1 knots. For patches there are two

parameters, lastknotu and lastknotv.

knots — array of floating point numbers, with the knots. Two arrays with two

knot sequences being parts of a B-spline patch representation are passed to the

procedure as the parameters named knotsu and knotsv.

ctlpoints — array of control points. If the space dimension d is 1 (the procedure

or macro processes scalar functions), the parameter pointing the appropriate

array is called coeff.

pitch — pitch of the control point array, i.e. the difference between the indexes

of the first coordinates of the first control points of two consecutive curves or

columns of the control net in the ctlpoints array. Such arrays are always

treated as arrays of floating point numbers, therefore the pitch unit is always

the length of one floating point number (even if the formal parameter type is

e.g. point3f*).

If the formal parameters are used to pass two representations, e.g. the procedure

constructs a result representation based on the given one, the parameter names are

extended by in and out. The given representations are described by the parameters,

which appear in the formal parameter list before the parameters used to describe

the result.
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7.2 Knot sequence processing

This section describes procedures, which perform various auxiliary actions witj knot

sequences, like searching, generating and computing their length (before generating,

which is necessary for the allocation of appropriate memory blocks).

7.2.1 Searching knot sequences

Knot sequences u0, . . . , uN pased in arrays to all procedures must be nondecreasing

and they must satisfy the condition un < uN−n. The responsability for that belongs

to the calling procedures, as data correctness is not verified each time in order not

to slow down the computations.

int mbs_KnotMultiplicityf ( int lastknot, const float *knots,

float t );

The procedure mbs_KnotMultiplicityf obtains the array knots, with a non-

decreasing sequence of N + 1 numbers, where N is the value of the parameter

lastknot. The value of the procedure is the number of appearances of the number

t in this sequence.

int mbs_FindKnotIntervalf ( int degree,

int lastknot, const float *knots,

float t, int *mult );

The procedure mbs_FindKnotIntervalf obtains the array knots, with a non-

decresaing sequence of N+ 1 numbers (the number N is the value of the parameter

lastknot). If the parameter degree is equal to −1, then the procedure returns the

index k, pointing the position such that knots[k] ≤ t < knots[k + 1]. It may

also return −1 if t < knots[0] or N if t ≥ knots[N].

If the value n of the parameter degree is nonnegative, then the smallest value

returned by the procedure may be n, and the greatest N−n−1. It is assumed that

the procedure has been called in order to find the interval between two consecutive

knots, which is the domain of a polynomial or a polynomial arc, which describes

a spline function or a curve of degree n. After finding this interval it is possible

to compute the points of the arc (e.g. with the de Boor algorithm). In this way, if

t /∈ [un, uN−1), then points of the first or the last arc of the curve will be computed.

The parameter mult is used to output the multiplicity of the knot t. If it is

NULL, then it is ignored. Otherwise if t = uk (for k equal to the value returned by

the procedure) then the variable *mult is assigned the number of appearances of

the number t in the knot sequence.
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7.2.2 Generating knot sequences

int mbs_NumKnotIntervalsf ( int degree, int lastknot,

const float *knots );

The procedure mbs_NumKnotIntervalsf computes the number of intervals be-

tween the consecutive knots, which form the domain of spline functions (or curves)

of degree degree, defined with the knot sequence of length *lastknot+1, given in

the array knots.

int mbs_LastknotMaxInsf ( int degree, int lastknot,

const float *knots,

int *numknotintervals );

The procedure mbs_LastknotMaxInsf returns the index of the last knot of

the representation of the curves, which will be constructed by the procedure

mbs_MaxKnotInsf.

int mbs_NumMaxKnotsf ( int degree, int lastknot,

const float *knots );

The procedure mbs_NumMaxKnotsf computes the length of the knot sequence

necessary to represent in the local Bernstein bases of degree degree spline functions

or curves defined with the knot sequence of length lastknot+1, given in the array

knots.

void mbs_SetKnotPatternf ( int lastinknot, const float *inknots,

int multipl,

int *lastoutknot, float *outknots );

The procedure mbs_SetKnotPatternf generates the knot sequence, which con-

sists of the numbers given in the array inknots (of length lastinknot + 1), and

such that all knots have the multiplicity multipl.

The knot sequence is stored in the array outknots, and the index of its last

knot is returned with the parameter *lastoutknot.
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7.2.3 Reparameterization of curves and patches

void mbs_TransformAffKnotsf ( int degree, int lastknot,

const float *inknots,

float a, float b, float *outknots );

The procedure mbs_TransformAffKnotsf applies an affine transformaation of

the domain of a spline curve, i.e. it computes the knot sequence associated with the

new domain, which is equivalent to the affine reparameterization of the curve. The

original domain is the interval [un, uN−n], and the new domain is the interval [a, b].

The parameter degree specifies the degree n of the curve, the parameter lastknot

specifies the index of the last knot, the array inknots contains the original knots

u0, . . . , uN.

The parameter a, b specify the interval [a, b], and there must be a < b (the pro-

cedure does not verify it). The new knot sequence is stored in the array outknots.

The parameters inknots and outknots may point two different (disjoint) ar-

rays of length N + 1, or they may point the same array. In the latter case the

reparameterization is done “in situ”.

void mbs_multiReverseBSCurvef ( int degree, int lastknot,

float *knots,

int ncurves, int spdimen,

int pitch, float *ctlpoints );

The procedure mbs_multiReverseBSCurvef reparameterizes B-spline curves of

degree n, corresponding to substituting the parameter −t instead of t.

The parameter degree specifies the degree n of the curves. The parameters

lastknot and knots specify the knot sequence of the curve representation. The

parameter ncurves specifies the number of curves, and spdimen specifies the di-

mension of the space, in which the curves are located.

If the parameter knots is NULL, then the procedure reverses only the order of

control points of the curves. Therefore it may be used also for “reversing” the

Bézier curves or patches. In this case the parameter lastknot is ignored (a curve

of degree n has n + 1 control points).

The parameter pitch specifies the pitch of the array ctlpoints, which contains

the control points of the curves.

The computation is done “in situ”, and it consists of changing the sign and

reversing the knot sequence and reversing the sequences of the control points of all

the curves. No rounding errors appear in this computation.
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7.2.4 Knot modifications

int mbs_SetKnotf ( int lastknot, float *knots,

int knotnum, int mult, float t );

The procedure mbs_SetKnotf modifies a knot in a given sequence, with the ordering

preserved. The parameters: lastknot — number of the last knot in the sequence,

knots — pointer to the array with the knots, knotnum — index of the knot modified,

mult — multiplicity (the new value is assigned to the entries from knotnum-i+1 to

knotnum), t — new value of the knot.

After the assignment the sequence is sorted. The return value is the new position

of the knot in the sequence, i.e. the number k, such that t = uk < uk+1.

The return value −1 denotes invalid parameter knotnum; its value must be

between 0 and lastknot.

int mbs_SetKnotClosedf ( int degree, int lastknot, float *knots,

float T, int knotnum, int mult, float t );

The procedure mbs_SetKnotClosedf modifies a knot in a given sequence, with

the ordering and periodicity required by the closed B-spline curve representationpre-

served. The parameters: degree — degree, lastknot — number of the last knot in

the sequence, knots — pointer to the array with the knots, T — length of the curve

domain (after the change there must be T=knots[lastknot-degree]-knots[degree])

knotnum — index of the knot modified, mult — multiplicity (the new value is as-

signed to the entries from knotnum-i+1 to knotnum), t — new value of the knot.

After the assignment the sequence is sorted. The return value is the new position

of the knot in the sequence, i.e. the number k, such that t = uk < uk+1.

The return value −1 denotes invalid parameter knotnum; its value must be

between 0 and lastknot, or lastknot, which must be greater than 3*degree.

7.2.5 Verifying correctness

boolean mbs_ClosedKnotsCorrectf ( int degree, int lastknot,

float *knots,

float T, int K, float tol );

The procedure mbs_ClosedKnotsCorrectf verifies the correctness of a sequence of

knots intended to represent a closed B-spline curve. A correct knot sequence must

be nondecreasing and satisfy the condition ui+K = ui + T for i = 1, . . . , n, where

K = N − 2n, N > 3n. The knot multiplicitiescannot exceed the degree n. The

parameter tol specifies the tolerance (i.e. the maximal difference ui+K − T − ui);

it must be a small positive number, not 0 because of rounding errors.
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7.3 Evaluating B-spline functions

The values of B-spline functions may be necessary in interpolation problems. The

functions are evaluated based on Formulae (7.10) and (7.11).

void mbs_deBoorBasisf ( int degree, int lastknot,

const float *knots,

float t, int *fnz, int *nnz, float *bfv );

The procedure mbs_deBoorBasisf evaluates the B-spline functions of degree n

(specified by the parameter degree) at the point t. The functions are defined by

specifying a nondecreasing sequence of knots u0, . . . , uM in the array knots. The

number of knots is lastknot+1. The parameter t must have the value from the

interval [un, uN−n].

The computed values of the B-spline functions are stored in the array bfv, and

the parameter *fnz is assigned the number of the first function, whose value is

nonzero at t; the length of the array bfv must be at least degree+1.

The parameter *nnz is used to pass the information about the number of the

functions having nonzero values at t. The contents of the array bfv starting from

the position *nnz is indefinite (but the procedure may use degree+1 places of this

array to store some intermediate results of the computations).
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7.4 Computing points of curves and patches

7.4.1 The de Boor algorithm

The de Boor algorithm of computing the point s(t) of a curve s given by For-

mula (7.9), for t ∈ [uk, uk+1), k ∈ {n, . . . ,N − n − 1}, is based on recursive com-

puting the points d
(j)
i for j = 1, . . . , n − r and i = k − n, . . . , k − r, using the

formula

d
(j)
i = (1− α

(j)
i )d

(j−1)
i−1 + α

(j)
i d

(j−1)
i , (7.16)

gdzie α
(j)
i =

t− ui

ui+n+1−j − ui
.

The points d
(0)
i = di are the curve control points, and the number r is the number

of occurrences (the multiplicity) of the number t in the knot sequence u0, . . . , uN.

int mbs_multideBoorf ( int degree, int lastknot,

const float *knots,

int ncurves, int spdimen,

int pitch, const float *ctlpoints,

float t, float *cpoints );

The procedure mbs_multideBoorf is an implementation of the de Boor algo-

rithm of computing points of B-spline curves. The input data are ncurves B-spline

curves of degree degree, located in the space of dimension spdimen. Each curve is

defined with the same nondecreasing sequence of lastknot+1 knots, given in the

array knots.

The control polygons are given in the array ctlpoints; each of them is described

by (lastknot-degree)*spdimen floating point numbers, and the beginning of de-

scription of the next polyline is pitch places after the previous one.

The parameter t specifies the argument, to which correspond the points of the

curves to be computed. The procedure stores the coordinates of those points in the

array cpoints, whose length must be at least ncurves*spdimen.

The value returned by the procedure is the number n − r, i.e. the difference of

the degree of the curves anf the multiplicity of the number t in the knot sequence.

If it is nonnegative then it is the minimal class of continuity of the curves in the

neighbourhood of the point t.

#define mbs_deBoorC1f(degree,lastknot,knots,coeff,t,value) \

mbs_multideBoorf(degree,lastknot,knots,1,1,0,coeff,t,value)

#define mbs_deBoorC2f(degree,lastknot,knots,coeff,t,value) \

mbs_multideBoorf(degree,lastknot,knots,1,2,0,coeff,t,value)

#define mbs_deBoorC3f(degree,lastknot,knots,coeff,t,value) ...

#define mbs_deBoorC4f(degree,lastknot,knots,coeff,t,value) ...
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The four macros above call the procedure mbs_multideBoorf in order to com-

pute the value of jednej spline function or a B-spline curve located in the plane,

in the 3D or 4D space. The parameters of the macros must satisfy the conditions

given in the description of the procedure mbs_multideBoorf.

void mbs_deBoorC2Rf ( int degree,

int lastknot, const float *knots,

const point3f *ctlpoints, float t,

point2f *cpoint );

The procedure mbs_deBoorC2Rf computes the point of a planar rational B-

spline (NURBS) curve of degree degree, defined for a nondecreasing sequence of

lastknot+1 knots given in the array knots. The array ctlpoints contains the

homogeneous coordinates the control points (i.e. the control points of the homo-

geneous curve located in R
3).

The number t is the value of the parameter t, and it must be and element of

the interval [knots[degree], knots[lastknot-degree]]. The procedure stores the

cartesian coordinates of the computed point of the curve in the array cpoint.

The main computation is done by the procedure mbs_multideBoorf.

void mbs_deBoorC3Rf ( int degree,

int lastknot, const float *knots,

const point4f *ctlpoints, float t,

point3f *cpoint );

The procedure mbs_deBoorC3Rf computes the point of a rational B-spline

(NURBS) curve of degree degree in a 3D space, defined for a nondecreasing se-

quence of lastknot+1 knots given in the array knots. The array ctlpoints con-

tains the homogeneous coordinates the control points (i.e. the control points of the

homogeneous curve located in R
4).

The number t is the value of the parameter t, and it must be and element of

the interval [knots[degree], knots[lastknot-degree]]. The procedure stores the

cartesian coordinates of the computed point of the curve in the array cpoint.

The main computation is done by the procedure mbs_multideBoorf.

void mbs_deBoorP3f ( int degreeu,

int lastknotu, const float *knotsu,

int degreev,

int lastknotv, const float *knotsv,

int pitch,

const point3f *ctlpoints,

float u, float v, point3f *ppoint );

The procedure mbs_deBoorP3f computes a point of a B-spline patch in the 3D

space. The degrees of the patch with respect to the parameters u and v are degreeu
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and degreev respectively. The “u” knot sequence, of length lastknotu+1 is given

in the array knotsu, and the “v” knot sequence, of length lastknotv+1 is given in

the array knotsv.

The control points of the patch are given in the array ctlpoints, in the following

order: the points of the first column of the control net are followed by the points of

the second column etc, where each column consists of lastknotv-degreev points.

The parameters u and v specify the point of the patch domain, whose corre-

sponding patch point is to be computed. The coordinates of the computed patch

point are storedy by the procedure in the array ppoint.

The main computation is done by the procedure mbs_multideBoorf.

void mbs_deBoorP3Rf ( int degreeu,

int lastknotu, const float *knotsu,

int degreev,

int lastknotv, const float *knotsv,

int pitch,

const point4f *ctlpoints,

float u, float v, point3f *ppoint );

The procedure mbs_deBoorP3Rf computes the point of a rational B-spline patch

(a NURBS patch) in the 3D space. The degrees of the patch with respect to the

parameters u and v are equal to degreeu and degreev respectively. The “u” knot

sequence of length lastknotu+1 is given in the array knotsu, and the “v” knot

sequence of length lastknotv+1 is given in the array knotsv.

The array ctlpoints contains the control points of the homogeneous patch, in

the following order: the cpoints of the first column are followed by the points of the

second column etc. Each column consists of lastknotv-degreev control points.

The parameters u and v specify the point in the patch domain, to which cor-

responds the patch point to be computed. The cartesian coordinates of this point

are stord by the procedure in the array ppoint.

The main computation is done by the procedure mbs_multideBoorf.

void mbs_deBoorP4f ( int degreeu,

int lastknotu, const float *knotsu,

int degreev,

int lastknotv, const float *knotsv,

int pitch,

const point4f *ctlpoints,

float u, float v, point4f *ppoint );

The procedure mbs_deBoorP4f computes a point of a B-spline patch in the 4D

space. The degrees of the patch with respect to the parameters u and v are equal to

degreeu and degreev respectively. The “u” knot sequence of length lastknotu+1

is given in the array knotsu, and the “v” knot sequence of length lastknotv+1 is

given in the array knotsv.
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The control points are given in the array ctlpoints; the points of the first

column come first, followed by the points of the second column etc. Each column

consists of lastknotv-degreev points.

The parameters u and v specify the point in the patch domain, to which cor-

responds the patch point to be computed. The cartesian coordinates of this point

are stord by the procedure in the array ppoint.

The main computation is done by the procedure mbs_multideBoorf.

The derivative of a spline curve s defined with Formula (7.9) at the point t is

equal to

s ′(t) =
n

uk+1 − uk
(d

(n−r−1)
k−r − d

(n−r−1)
k−r−1 ), (7.17)

where the points d
(n−r−1)
k−r and d

(n−r−1)
k−r−1 are the intermediate results of the de Boor

algorithm. The procedures described below use this algorithm to compute the point

of a curve together with the derivative.

int mbs_multideBoorDerf ( int degree, int lastknot,

const float *knots,

int ncurves, int spdimen,

int pitch,

const float *ctlpoints,

float t, float *cpoints,

float *dervect );

The procedure mbs_multideBoorDerf computes points of ncurves B-spline

curves of degree degree, located in the space of dimension spdimen. Addition-

ally, the procedure computes the derivative vectors of the curves at the point t.

The data, which represents the curves is identical as in the case of the procedure

mbs_multideBoorf. The computed points of the curves are stored by the procedure

in the array cpoints. The derivative vectors are stored in the array dervect.

If the value t of the parameter t is equal to a knot of multiplicity degree

or greater, then the procedure computes the right-side derivatives at t, ex-

cept for the case, when t is the end point of the curve domain (i.e. t =

knots[lastknot-degree]). In this case the procedure computes the left-side

derivatives. The value returned by the procedure is the difference of the degree

of the curves and the multiplicity of the number t in the knot sequence. This dif-

ference indicates the minimal class of continuity of the curves in a neighbourhood

of the point t.
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#define mbs_deBoorDerC1f(degree,lastknot,knots,ctlpoints,t,\

cpoint,cder)\

mbs_multideBoorDerf(degree,lastknot,knots,1,1,0,ctlpoints,t,\

cpoint,cder)

#define mbs_deBoorDerC2f(degree,lastknot,knots,ctlpoints,t,\

cpoint,cder)\

mbs_multideBoorDerf(degree,lastknot,knots,1,2,0,ctlpoints,t,\

cpoint,cder)

#define mbs_deBoorDerC3f(degree,lastknot,knots,ctlpoints,t,\

cpoint,cder) ...

#define mbs_deBoorDerC4f(degree,lastknot,knots,ctlpoints,t,\

cpoint,cder) ...

The four macros above call the procedure mbs_multideBoorDerf in order to

compute the value of one spline function or the point of one curve together with

the derivative at the point t. The parameters must satisfy the conditions given in

the decription of the procedure mbs_multideBoorDerf.

int mbs_multideBoorDer2f ( int degree,

int lastknot, const float *knots,

int ncurves, int spdimen,

int pitch, const float *ctlpoints,

float t, float *p, float *d1, float *d2 );

The procedure mbs_multideBoorDer2f computes the points si(t) and the vec-

tors s ′
i(t) and s ′′

i (t) of B-spline curves si of degree n for a given t.

Input parameters: degree — the degree n, lastknot — the number N of the

last knot, knots — array of knots, ncurves — the number of curves, pitch — the

pitch of the array of control points, ctlpoints — array of control points, t — the

number t.

Output parameters: p — the array, in which the procedure stores the points

si(t), d1 — the array, in which the procedure stores the vectors s ′
i(t), d2 — the

array in which the procedure stores the vectors s ′′
i (t). The pitch of all those arrays

is equal to the space dimension, spdimen.

The value returned by the procedure is the number n − r, where r is the mul-

tiplicity of the number t in the knot sequence. This value indicates the minimal

class of continuity of the curves si in a neightbourhood of the point t.

If the curve or one of its derivatives is discontinuous at t, then the computed

point or vector is the left side limit (e.g. limxցt s
′(x)).
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#define mbs_deBoorDer2C1f(degree,lastknot,knots,coeff,t,p,d1,d2) \

mbs_multideBoorDer2f(degree,lastknot,knots,1,1,0,coeff,t,p,d1,d2)

#define mbs_deBoorDer2C2f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2) \

mbs_multideBoorDer2f(degree,lastknot,knots,1,2,0, \

(float*)ctlpoints,t,(float*)p,(float*)d1,(float*)d2)

#define mbs_deBoorDer2C3f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2) ...

#define mbs_deBoorDer2C4f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2) ...

The above macros call the procedure mbs_multideBoorDer2f in order to com-

pute the point and the first two derivatives of one B-spline curve located in the

space of dimension 1, 2, 3 or 4.

int mbs_multideBoorDer3f ( int degree,

int lastknot, const float *knots,

int ncurves, int spdimen,

int pitch, const float *ctlpoints, float t,

float *p, float *d1, float *d2, float *d3 );

The procedure mbs_multideBoorDer3f computes the points si(t) and the vec-

tors s ′
i(t), s

′′
i (t) and s ′′′

i (t) for B-spline curves si of degree n for a given t.

Input parameters: degree — the degree n, lastknot — the number N of the

last knot, knots — array of knots, ncurves — the ni=umber of curves, pitch —

the pitch of the array of control points, ctlpoints — array of control points, t —

the number t.

Output parameters: p — the array in which the procedure stores the points

si(t), d1 — the aray in which the procedure stores the vectors s ′
i(t), d2 — the

array in which the procedure stores the vectors s ′′
i (t), d3 — the array in which the

procedure stores the vectors s ′′′
i (t). All these arrays have the pitch equal to the

space dimension, spdimen.

The value returned by the procedure is the number n − r, where r is the mul-

tiplicity of the number t in the knot sequence. This value indicates the minimal

class of continuity of the curves si in a neightbourhood of the point t.

If the curve or one of its derivatives is discontinuous at t, then the computed

point or vector is the left side limit (e.g. limxցt s
′(x)).
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#define mbs_deBoorDer3C1f(degree,lastknot,knots,coeff,t, \

p,d1,d2,d3) \

mbs_multideBoorDer3f(degree,lastknot,knots,1,1,0,coeff,t, \

p,d1,d2,d3)

#define mbs_deBoorDer3C2f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2,d3) \

mbs_multideBoorDer3f(degree,lastknot,knots,1,2,0, \

(float*)ctlpoints,t,(float*)p,(float*)d1,(float*)d2,(float*)d3)

#define mbs_deBoorDer3C3f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2,d3) ...

#define mbs_deBoorDer3C4f(degree,lastknot,knots,ctlpoints,t, \

p,d1,d2,d3) ...

The above macros call the procedure mbs_multideBoorDer3f in order to com-

pute the point and derivatives up to the order 3 of one B-spline curve located in

the space of dimension 1, 2, 3 or 4.

Figure 7.1. Derivative vectors of order 1, 2 and 3 of a B-spline curve

of degree 5, computed by the procedures mbs_multideBoorDerf,

mbs_multideBoorDer2f and mbs_multideBoorDer3f
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char mbs_deBoorDerPf ( int degreeu, int lastknotu,

const float *knotsu,

int degreev, int lastknotv,

const float *knotsv,

int spdimen, int pitch, const float *ctlpoints,

float u, float v,

float *ppoint,

float *uder, float *vder );

The procedure mbs_deBoorDerPf computes the point of a B-spline patch, to-

gether with its first order partial derivatives.

char mbs_deBoorDer2Pf ( int degreeu, int lastknotu,

const float *knotsu,

int degreev, int lastknotv,

const float *knotsv,

int spdimen, int pitch, const float *ctlpoints,

float u, float v,

float *ppoint,

float *uder, float *vder,

float *uuder, float *uvder, float *vvder );

The procedure mbs_deBoorDer2Pf computes the point of a B-spline patch, to-

gether with its first and second order partial derivatives.

char mbs_deBoorDer3Pf ( int degreeu, int lastknotu,

const float *knotsu,

int degreev, int lastknotv,

const float *knotsv,

int spdimen, int pitch, const float *ctlpoints,

float u, float v,

float *ppoint,

float *uder, float *vder,

float *uuder, float *uvder, float *vvder,

float *uuuder, float *uuvder, float *uvvder, float *vvvder );

The procedure mbs_deBoorDer3Pf computes the point of a B-spline patch, to-

gether with its first, second and third order partial derivatives.

7.4.2 Horner scheme for Bézier curves and patches

The Horner scheme is an algorithm of evaluating a polynomial (or computing a point

of a curve), whose complexity is proportional to the degree (the cost of the de Castel-

jau and de Boor algorithms is proportional to the square of degree). To use this

algorithm for B-spline curves (which makes sense if many points are to be com-
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puted), it is necessary to find a piecewise Bézier representation, using e.g. the

mbs_multiMaxKnotInsf procedure (see e.g. Section. 7.7.4).

void mbs_multiBCHornerf ( int degree, int ncurves,

int spdimen, int pitch,

const float *ctlpoints,

float t, float *cpoints );

The procedure mbs_multiBCHornerf computes points of ncurves Bézier curves

of degree degree in the space of dimension spdimen. The control points of the

curves are given in the array ctlpoints. The coordinates of the control points of

each curve are stored in such a way, that the distance between the beginnings of

representations of two consecutive curves is the value of the parameter pitch. The

parameter t specifies the parameter of the curves to which correspond the points

to be computed. The procedure stores these points in the array cpoints, whose

length must be at least ncurves*spdimen.

#define mbs_BCHornerC1f(degree,coeff,t,value) \

mbs_multiBCHornerf ( degree, 1, 1, 0, coeff, t, value )

#define mbs_BCHornerC2f(degree,coeff,t,value) \

mbs_multiBCHornerf ( degree, 1, 2, 0, coeff, t, value )

#define mbs_BCHornerC3f(degree,coeff,t,value) ...

#define mbs_BCHornerC4f(degree,coeff,t,value) ...

The above macros call the procedure mbs_multiBCHornerf in order to evaluate

a polynomial represented by its coefficients in the Bernstein basis, or to compute

the point of one Bézier curve in the space of dimension 2, 3 or 4.

void mbs_BCHornerC2Rf ( int degree,

const point3f *ctlpoints,

float t, point2f *cpoint );

void mbs_BCHornerC3Rf ( int degree,

const point4f *ctlpoints,

float t, point3f *cpoint );

The above procedures compute a point of a planar or a 3D rational Bézier curve,

using the Horner scheme (applied to the homogeneous representation).

void mbs_FindBezPatchDiagFormf ( int degreeu, int degreev,

int spdimen, const float *cpoints,

int k, int l, float u, float v,

float *dfcp );

The procedure mbs_FindBezPatchDiagFormf computes the diagonal form of

degree (k, l) of a Bézier patch p of degree (n,m) at the point (u, v); it is a tensor

product Bézier patch of degree (k, l), which may be obtained after n−k steps of the
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de Casteljau algorithm on the rows and m − l steps on the columns of the control

net. This patch may be used to compute the point of the patch p and its derivatives

of order 1, . . . , k with respect to u and 1, . . . , l with respect to v. Instead of the

de Casteljau algorithm, this procedure uses the faster Horner scheme (by calling

mbs_multiBCHornerf).

All procedures of computing points and derivatives (and also curvatures) of

Bézier patches described below should call this procedure, though currently only

the procedure mbs_BCHornerDer3Pf is written so (and it must still be improved).

void mbs_BCHornerPf ( int degreeu, int degreev, int spdimen,

const float *ctlpoints,

float u, float v, float *ppoint );

The procedure mbs_BCHornerPf computes the point p(u, v) of the Bézier

patch p of degree (n,m), located in the space of dimension d. The parameters

degreeu and degreev specify the degrees of the patch (their values are n and m).

The parameter spdimen specifies the dimension d of the space containing the patch.

The array ctlpoints contains the control points of the patch ((n+1)(m+1)d float-

ing point numbers).

The result (the point of the patch) is stored in the array ppoint, whose length

must be at least spdimen.

#define mbs_BCHornerP1f(degreeu,degreev,coeff,u,v,ppoint) \

mbs_BCHornerPf ( degreeu, degreev, 1, coeff, u, v, ppoint )

#define mbs_BCHornerP2f(degreeu,degreev,ctlpoints,u,v,ppoint ) \

mbs_BCHornerPf ( degreeu, degreev, 2, (float*)ctlpoints, \

u, v, (float*)ppoint )

#define mbs_BCHornerP3f(degreeu,degreev,ctlpoints,u,v,ppoint ) ...

#define mbs_BCHornerP4f(degreeu,degreev,ctlpoints,u,v,ppoint ) ...

The above macros call mbs_BCHornerPf in order to compute a point of a Bézier

patch in the space of dimension 1, 2, 3 or 4.

void mbs_BCHornerP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints, float u, float v,

point3f *p );

The procedure mbs_BCHornerP3Rf computes a point of a rational Bézier patch

in the 3D space, represented in the homogeneous form.

void mbs_multiBCHornerDerf ( int degree, int ncurves,

int spdimen, int pitch,

const float *ctlpoints,

float t, float *p, float *d );
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The procedure mbs_multiBCHornerDerf uses the Horner scheme to compute

the points ci(t) and the vectors c ′
i(t) for Bézier curves ci located in the space of

dimension d.

The parameters: degree — degree of the curve, ncurves — number of curves,

spdimen — dimension d of the space, pitch — pitch of the array ctlpoints with

the control points of the curves. the value of the parameter t is the number t.

The coordinates of the points ci(t) and the vectors c ′
i(t) are stored in the arrays

p and d respectively. Their length must be at least ncurves*spdimen.

#define mbs_BCHornerDerC1f(degree,coeff,t,p,d) \

mbs_multiBCHornerDerf ( degree, 1, 1, 0, coeff, t, p, d )

#define mbs_BCHornerDerC2f(degree,ctlpoints,t,p,d) \

mbs_multiBCHornerDerf ( degree, 1, 2, 0, (float*)ctlpoints, t, \

(float*)p, (float*)d )

#define mbs_BCHornerDerC3f(degree,ctlpoints,t,p,d) ...

#define mbs_BCHornerDerC4f(degree,ctlpoints,t,p,d) ...

The above macros call mbs_multiBCHornerDerf in order to compute a point

and derivative of a Bézier curve in the space of dimension 1, 2, 3 or 4.

void mbs_BCHornerDerC2Rf ( int degree, const point3f *ctlpoints,

float t, point2f *p, vector2f *d );

void mbs_BCHornerDerC3Rf ( int degree, const point4f *ctlpoints,

float t, point3f *p, vector3f *d );

The procedures mbs_BCHornerDerC2Rf and mbs_BCHornerDerC3Rf compute the

point p(t) and the vector p ′(t) of a rational Bézier curve p in the 2D or 3D space

respectively.

The parameters: degree — degree of the curves, ctlpoints — array of control

points, t — the number t. The procedures assign the coordinates of the point p(t)

to the parameter p, and the vector p ′(t) to the parameter d.

void mbs_BCHornerDerPf ( int degreeu, int degreev, int spdimen,

const float *ctlpoints,

float u, float v,

float *p, float *du, float *dv );

The procedure mbs_BCHornerDerPf computes the point p(u, v) and the partial

derivatives ∂
∂u

p(u, v) and ∂
∂v

p(u, v) of a Bézier patch p of degree (n,m), located

in the space of dimension d.

The parameters: degreeu, degreev — specify the degrees of the patch (the

numbers n and m). The parameter spdimen specifies the dimension d of the space,

the array ctlpoints contains the coordinates of the control points.

The results (the coordinates of the point and derivatives) are stored in the arrays

p, du and dv, whose length must be at least spdimen.
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#define mbs_BCHornerDerP1f(degreeu,degreev,coeff,u,v,p,du,dv) \

mbs_BCHornerDerPf ( degreeu, degreev, 1, coeff, u, v, p, du, dv )

#define mbs_BCHornerDerP2f(degreeu,degreev,ctlpoints,u,v,p,du,dv) \

mbs_BCHornerDerPf ( degreeu,degreev,2,(float*)ctlpoints,u,v, \

(float*)p, (float*)du, (float*)dv )

#define mbs_BCHornerDerP3f(degreeu,degreev,ctlpoints,u,v,p,du,dv) \

...

#define mbs_BCHornerDerP4f(degreeu,degreev,ctlpoints,u,v,p,du,dv) \

...

The above macros call mbs_BCHornerDerPf in order to compute the points and

partial derivatives of Bézier patches in the space of dimension 1, 2, 3 or 4 respec-

tively.

void mbs_BCHornerDerP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

point3f *p, vector3f *du, vector3f *dv );

The procedure mbs_BCHornerDerP3Rf computes the point p(u, v) and the par-

tial derivative vectors of a rational Bézier patch located in the 3D space.

The parameters: degreeu, degreev — degrees with respect to the parameters

u and v, ctlpoints — array of control points of the homogeneous patch, u, v —

the numbers u and v, *p, *du, *dv — variables in which the results are stored.

void mbs_multiBCHornerDer2f ( int degree, int ncurves,

int spdimen, int pitch,

const float *ctlpoints, float t,

float *p, float *d1, float *d2 );

The procedure mbs_multiBCHornerDerf uses the Horner scheme to compute

the points ci(t) and the vectors c ′
i(t) and c ′′

i (t) for Bézier curves ci located in the

space of dimension d.

The parameters: degree — degree of the curve, ncurves — number of curves,

spdimen — dimension d of the space, pitch — pitch of the array ctlpoints with

the control points of the curves. the value of the parameter t is the number t.

The coordinates of the points ci(t) and the vectors c ′
i(t) and c ′′

i (t) are stored

in the arrays p, d1 and d2 respectively. The length of these arrays must not be less

than ncurves*spdimen.
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#define mbs_BCHornerDer2C1f(degree,coeff,t,p,d1,d2) \

mbs_multiBCHornerDer2f ( degree, 1, 1, 0, coeff, t, p, d1, d2 )

#define mbs_BCHornerDer2C2f(degree,ctlpoints,t,p,d1,d2) \

mbs_multiBCHornerDer2f ( degree, 1, 2, 0, (float*)ctlpoints, \

t, (float*)p, (float*)d1, (float*)d2 )

#define mbs_BCHornerDer2C3f(degree,ctlpoints,t,p,d1,d2) ...

#define mbs_BCHornerDer2C4f(degree,ctlpoints,t,p,d1,d2) ...

The above macros call mbs_multiBCHornerDer2f in order to compute a point

and derivatives of order 1 and 2 of a Bézier curve in the space of dimension 1, 2, 3

or 4.

void mbs_BCHornerDer2C2Rf ( int degree, const point3f *ctlpoints,

float t, point2f *p, vector2f *d1, vector2f *d2 );

void mbs_BCHornerDer2C3Rf ( int degree, const point4f *ctlpoints,

float t, point3f *p, vector3f *d1, vector3f *d2 );

The procedures mbs_BCHornerDer2C2Rf and mbs_BCHornerDer2C3Rf compute

the point p(t) and the vectors p ′(t) and p ′′(t) of a rational Bézier curve p in the

2D or 3D space respectively.

The parameters: degree — degree of the curves, ctlpoints — array of control

points, t — the number t. The procedures assign the coordinates of the point p(t)

to the parameter p, and the vectors p ′(t) and p ′′(t) to the parameters d1 and d2.

void mbs_BCHornerDer2Pf ( int degreeu, int degreev, int spdimen,

const float *ctlpoints,

float u, float v,

float *p, float *du, float *dv,

float *duu, float *duv, float *dvv );

The procedure mbs_BCHornerDer2Pf computes the point p(u, v) and the partial

derivatives of order 1 and 2 of a Bézier patch p of degree (n,m), located in the

space of dimension d.

The parameters: degreeu, degreev — specify the degrees of the patch (the

numbers n and m). The parameter spdimen specifies the dimension d of the space,

the array ctlpoints contains the coordinates of the control points.

The results (the coordinates of the point and derivatives) are stored in the arrays

p, du, dv, duu, duv and dvv, whose length must be at least spdimen.
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#define mbs_BCHornerDer2P1f(degreeu,degreev,coeff,u,v, \

p,du,dv,duu,duv,dvv) \

mbs_BCHornerDer2Pf ( degreeu, degreev, 1, coeff, u, v, \

p, du, dv, duu, duv, dvv )

#define mbs_BCHornerDer2P2f(degreeu,degreev,ctlpoints, \

u,v,p,du,dv,duu,duv,dvv) \

mbs_BCHornerDer2Pf ( degreeu, degreev, 2, (float*)ctlpoints, \

u, v, (float*)p, (float*)du, (float*)dv, \

(float*)duu, (float*)duv, (float*)dvv )

#define mbs_BCHornerDer2P3f(degreeu,degreev,ctlpoints,u,v, \

p,du,dv,duu,duv,dvv) ...

#define mbs_BCHornerDer2P4f(degreeu,degreev,ctlpoints,u,v, \

p,du,dv,duu,duv,dvv) ...

The above macros call mbs_BCHornerDerPf in order to compute the points and

partial derivatives of order 1 and 2 of Bézier patches in the space of dimension 1,

2, 3 or 4 respectively.

void mbs_BCHornerDer2P3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

point3f *p, vector3f *du, vector3f *dv,

vector3f *duu, vector3f *duv,

vector3f *dvv );

The procedure mbs_BCHornerDer2P3Rf computes the point p(u, v) and the par-

tial derivative vectors of order 1 and 2 of a rational Bézier patch located in the 3D

space.

The parameters: degreeu, degreev — degrees with respect to the parameters

u and v, ctlpoints — array of control points of the homogeneous patch, u, v

— the numbers u and v, *p, *du, *dv, *duu, *duv, *dvv — variables in which the

results are stored, which are the point p(u, v), and the vectors ∂
∂u

p(u, v), ∂
∂v

p(u, v),
∂2

∂u2p(u, v),
∂2

∂u∂v
p(u, v) and ∂2

∂v2p(u, v) respectively.

Figure 7.2. A Bézier patch and its derivative vectors of the first and second order.
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void mbs_multiBCHornerDer3f ( int degree, int ncurves,

int spdimen, int pitch,

const float *ctlpoints, float t,

float *p, float *d1, float *d2, float *d3 );

The procedure mbs_multiBCHornerDerf uses the Horner scheme to compute

the points ci(t) and the vectors c ′
i(t), c

′′
i (t) and c ′′′

i (t) for Bézier curves ci located

in the space of dimension d.

The parameters: degree — degree of the curve, ncurves — number of curves,

spdimen — dimension d of the space, pitch — pitch of the array ctlpoints with

the control points of the curves. the value of the parameter t is the number t.

The coordinates of the points ci(t) and the vectors c ′
i(t) and c ′′

i (t) are stored

in the arrays p, d1, d2 and d3 respectively. The length of those arrays must be at

least ncurves*spdimen.

#define mbs_BCHornerDer3C1f(degree,coeff,t,p,d1,d2,d3) \

mbs_multiBCHornerDer3f ( degree, 1, 1, 0, coeff, t, \

p, d1, d2, d3 )

#define mbs_BCHornerDer3C2f(degree,ctlpoints,t,p,d1,d2,d3) \

mbs_multiBCHornerDer3f ( degree, 1, 2, 0, (float*)ctlpoints, \

t, (float*)p, (float*)d1, (float*)d2, (float*)d3 )

#define mbs_BCHornerDer3C3f(degree,ctlpoints,t,p,d1,d2,d3) ...

#define mbs_BCHornerDer3C4f(degree,ctlpoints,t,p,d1,d2,d3) ...

The above macros call mbs_multiBCHornerDer3f in order to compute a point

and derivatives of order 1, 2 and 3 of a Bézier curve in the space of dimension 1, 2,

3 or 4.

void mbs_BCHornerDer3Pf ( int degreeu, int degreev, int spdimen,

const float *ctlpoints,

float u, float v,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv,

float *puuu, float *puuv, float *puvv,

float *pvvv );

The procedure mbs_BCHornerDer3Pf computes the point p(u, v) of a Bézier

patch p located in the space of dimension spdimen, and its partial derivatives of

order 1, . . . , 3. The current version assumes that the degree of both parameters in

not less than 3; the implementation of other cases is still to be done.
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#define mbs_BCHornerDer3P1f(degreeu,degreev,coeff,u,v, \

p,pu,pv,puu,puv,pvv,puuu,puuv,puvv,pvvv) \

mbs_BCHornerDer3Pf ( degreeu, degreev, 1, coeff, u, v, \

p, pu, pv, puu, puv, pvv, puuu, puuv, puvv, pvvv )

#define mbs_BCHornerDer3P2f(degreeu,degreev,ctlpoints,u,v, \

p,pu,pv,puu,puv,pvv,puuu,puuv,puvv,pvvv) \

mbs_BCHornerDer3Pf ( degreeu, degreev, 2, (float*)ctlpoints, \

u, v, (float*)p, (float*)pu, (float*)pv, (float*)puu, \

(float*)puv, (float*)pvv, (float*)puuu, (float*)puuv, \

(float*)puvv, (float*)pvvv )

#define mbs_BCHornerDer3P3f(degreeu,degreev,ctlpoints,u,v, \

p,pu,pv,puu,puv,pvv,puuu,puuv,puvv,pvvv) ...

#define mbs_BCHornerDer3P4f(degreeu,degreev,ctlpoints,u,v, \

p,pu,pv,puu,puv,pvv,puuu,puuv,puvv,pvvv) ...

The above macros call mbs_BCHormerDer3Pf in order to compute the point

and the derivatives of Bézier patches located in the spaces of dimensions 1, . . . , 4

respectively.
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7.4.3 Computing curvatures and the Frenet frames of curves

Computing curvatures and vectors of the Frenet frame is programmed only for

Bézire curves. To compute the curvature of a B-spline curve, one has to do the

maximal knot insertion (e.g. with the trocedure mbs_multiMaxKnotInsf) to obtain

the Bézier representation of its polynomial arcs. The curvature will probably be

computed at a number of points, and then it is better to do the conversion once.

Therefore there are no procedures computing it directly for B-spline curves. The

procedures described below call mbs_multiBCHornerf.

void mbs_BCFrenetC2f ( int degree, const point2f *ctlpoints,

float t, point2f *cpoint,

vector2f *fframe, float *curvature );

The procedure mbs_BCFrenetC2f computes the curvature, the tangent vector t

and the normal vector n of the Frenet frame of a planar Bézier curve of degree

degree, whose control points are given in the array ctlpoints. The parameter of

the curve is t. The array fframe must be long enough for two vectors. In addition,

the procedure computes the point of the curve, and it assigns it to the variable

*cpoint.

void mbs_BCFrenetC2Rf ( int degree, const point3f *ctlpoints,

float t, point2f *cpoint,

vector2f *fframe, float *curvature );

The procedure mbs_BCFrenetC2f computes the curvature, the tangent vector t

and the normal vector n of the Frenet frame of a planar rational Bézier curve of de-

gree degree, whose (homogeneous) control points are given in the array ctlpoints.

The parameter of the curve is t. The array fframe must be long enough for two

vectors. In addition, the procedure computes the point of the curve and it assigns

it to the variable *cpoint.

void mbs_BCFrenetC3f ( int degree, const point3f *ctlpoints,

float t, point3f *cpoint,

vector3f *fframe, float *curvatures );

The procedure mbs_BCFrenetC3f computes the curvature and the torsion of

a polynomial Bézier curve of degree degree and the vectors of the Frenet frame:

tangent t, normal n and binormal b at the point corresponding to the parameter t.

The array ctlpoints contains the control points of the curve. The curvature and

torsion are stored in the array curvatures, and the vectors are stored in the array

fframe. In addition the procedure computes the point of the curve and it assigns

it to the variable *cpoint.

void mbs_BCFrenetC3Rf ( int degree, const point4f *ctlpoints,

float t, point3f *cpoint,

vector3f *fframe, float *curvatures );
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The procedure mbs_BCFrenetC3f computes the curvature and the torsion of

a rational Bézier curve of degree degree and the vectors of the Frenet frame: tan-

gent t, normal n and binormal b at the point corresponding to the parameter t.

The array ctlpoints contains the control points of the homogeneous curve. The

curvature and torsion are stored in the array curvatures, and the vectors are stored

in the array fframe. In addition the procedure computes the point of the curve

and it assigns it to the variable *cpoint.

7.4.4 Computing the patch normal vector

void mbs_BCHornerNvP3f ( int degreeu, int degreev,

const point3f *ctlpoints,

float u, float v,

point3f *p, vector3f *nv );

The procedure mbs_BCHornerNvP3f computes a point of a Bézier patch in the

3D space and its normal vector at this point. The normal vector is the vector

product of the partial derivatives, and it may be zero, if there is a singularity, even

if the tangent plane is defined.

void mbs_BCHornerNvP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

point3f *p, vector3f *nv );

The procedure mbs_BCHornerNvP3f computes a point of a rational Bézier patch

in the 3D space and its normal vector at this point. The coordinates of the normal

vector are the first three coordinates of the vector P∧Pu ∧Pv (the product of the

point of the homogeneous patch and its partial derivatives), and it may be zero, if

there is a singularity, even if the tangent plane is defined.

7.4.5 Computing the fundamental forms and curvatures of patches

Computing the fundamental forms and curvatures is implemented only for Bézier

patches (and not for B-spline patches), for the same reasons that these concerning

the curvatures and the Frenet frames of curves.

void mbs_FundFormsBP3f ( int degreeu, int degreev,

const point3f *ctlpoints,

float u, float v,

float *firstform, float *secondform );

The procedure mbs_FundFormsBP3f computes the coefficients of the matrices of

the first and the second fundamental forms of a polynomial Bézier patch in the 3D

space.
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The parameters: degreeu, degreev — degrees of the patch with respect to

u and v, ctlpoints — array of control points (packed, i.e. without unsed areas

between the consecutive columns of the control net). The parameters u and v

specify the point, for which the forms are to be computed.

The parameters firstform and secondform point the arrays, (of length at

least 3) in which the form coefficients are to be stored, g11 = 〈pu,pu〉, g12 = g21 =

〈pu,pv〉, g22 = 〈pv,pv〉, and b11 = 〈n,puu〉, b12 = b21 = 〈n,puv〉 b22 = 〈n,pvv〉
respectively (n denotes the unit normal vector ot the patch at the point (u, v)).

void mbs_GMCurvaturesBP3f ( int degreeu, int degreev,

const point3f *ctlpoints,

float u, float v,

float *gaussian, float *mean );

The procedure mbs_GMCurvaturesBP3f computes the curvatures: Gaussian and

mean of a polynomial Bézier patch in R
3. The parameters degreeu, degreev,

ctlpoints, u and v are identical as the corresponding parameters of the previous

procedure.

The parameters *gaussian and *mean are used to return the result; the proce-

dures assigns the curvatures to them.

void mbs_PrincipalDirectionsBP3f ( int degreeu, int degreev,

const point3f *ctlpoints,

float u, float v,

float *k1, vector2f *v1,

float *k2, vector2f *v2 );

The procedure mbs_PrincipalDirectionsBP3f computes the principal curva-

tures and directions of a polynomial Bézier patch in the 3D space. The parameters

degreeu, degreev, ctlpoints, u and v are identical as in the case of two previous

procedures.

The parameters *k1 and *k2 obtain the values of the principal curvatures, and

the corresponding directions (in the space tangent to the patch domain) are assigned

to the parameters *v1 and *v2.

void mbs_FundFormsBP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

float *firstform, float *secondform );
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Figure 7.3. Vectors corresponding to the principal directions at a point of a Bézier patch.

void mbs_GMCurvaturesBP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

float *gaussian, float *mean );

void mbs_PrincipalDirectionsBP3Rf ( int degreeu, int degreev,

const point4f *ctlpoints,

float u, float v,

float *k1, vector2f *v1,

float *k2, vector2f *v2 );

The above procedures respectively compute the coefficients of the matrices of

the first and second fundamental form, the Gaussian and mean curvatures and the

principal curvatures and directions for a rational Bézier patch p. The procedures di-

rectly correspond to the procedures mbs_FundFormsBP3f, mbs_GMCurvaturesBP3f

and mbs_GMCurvaturesBP3f, and they have the same parameters, except for the

array ctlpoints, which has to contain the coordinates of the control points of

a homogeneous patch in R
4.
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7.5 Evaluating curves at a number of points

The procedures described below compute a sequence of points of a Béziera or B-

spline curve together with their derivatives of order 1 and 2, or 1, 2 and 3, for

a sequence of values of the parameter: t0, . . . , tk−1. This is done by calling in

a loop the appropriate procedures described before. The main application of these

procedures is evaluatind Coons patches at a rectangular net by the procedures

described in Section 7.19.

void mbs_TabBezCurveDer2f ( int spdimen, int degree,

const float *cp,

int nkn, const float *kn,

int ppitch,

float *p, float *dp, float *ddp );

The procedure mbs_TabBezCurveDer2f evaluates a Bézier curve and its deriva-

tives of order 1 and 2 using the procedure mbs_multiBCHornerDer2f.

The parameters: spdimen — space dimension, degree — degree of the curve,

cp — array of control points, nkn — number k, kn — array with k numbers (values

of the curve parameter), ppitch — pitch of the arrays p, dp and ddp, in which

the points and derivative vectors of order 1 and 2 respectively are to be stored.

The first coordinates of the consecutive points or vectors are stored at the positions

distant by the value of ppitch.

void mbs_TabBezCurveDer3f ( int spdimen, int degree,

const float *cp,

int nkn, const float *kn,

int ppitch,

float *p, float *dp, float *ddp, float *dddp );

The procedure mbs_TabBezCurveDer3f evaluates a Bézier curve and its deriva-

tives of order 1, 2 and 3 using the procedure mbs_multiBCHornerDer3f.

The parameters: spdimen — space dimension, degree — degree of the curve,

cp — array of control points, nkn — number k, kn — array with k numbers (values

of the curve parameter), ppitch — pitch of the arrays p, dp, ddp, and dddp, in

which the points and derivative vectors of order 1, 2 and 3 respectively are to be

stored. The first coordinates of the consecutive points or vectors are stored at the

positions distant by the value of ppitch.

void mbs_TabBSCurveDer2f ( int spdimen, int degree, int lastknot,

const float *knots, const float *cp,

int nkn, const float *kn, int ppitch,

float *p, float *dp, float *ddp );

The procedure mbs_TabBSCurveDer2f evaluates a B-spline curve and its deriva-

tives of order 1 and 2 using the procedure mbs_multideBoorDer2f.
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The parameters: spdimen — space dimension, degree — degree of the curve,

lastknot — number of the last knot, knots — array of curve knots, cp — array

of control points, nkn — number k, kn — array with k numbers (values of the

curve parameter), ppitch — pitch of the arrays p, dp and ddp, in which the points

and derivative vectors of order 1 and 2 respectively are to be stored. The first

coordinates of the consecutive points or vectors are stored at the positions distant

by the value of ppitch.

void mbs_TabBSCurveDer3f ( int spdimen, int degree, int lastknot,

const float *knots, const float *cp,

int nkn, const float *kn, int ppitch,

float *p, float *dp, float *ddp, float *dddp );

The procedure mbs_TabBSCurveDer3f evaluates a B-spline curve and its deriva-

tives of order 1 2 and 3 using the procedure mbs_multideBoorDer3f.

The parameters: spdimen — space dimension, degree — degree of the curve,

lastknot — number of the last knot, knots — array of curve knots, cp — array of

control points, nkn — number k, kn — array with k numbers (values of the curve

parameter), ppitch — pitch of the arrays p, dp, ddp and dddp, in which the points

and derivative vectors of order 1, 2 and 3 respectively are to be stored. The first

coordinates of the consecutive points or vectors are stored at the positions distant

by the value of ppitch.
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7.6 Computing the representation of derivatives

Computing the derivative vector at a point is something different than constructing

a representation of the curve, which describes the derivative. The procedures in

this section use the following formulae:

d

dt

n∑

i=0

piB
n
i (t) =

n−1∑

i=0

n(pi+1 − pi)B
n−1
i+1 (t), (7.18)

for Bézier curves, and

d

dt

N−n−1∑

i=0

diN
n
i (t) =

N−n−2∑

i=0

n

ui+n+1 − ui+1
(di+1 − di)N

n−1
i+1 (t), (7.19)

for B-spline curves. The B-spline functions Nn
i and Nn−1

i are defined with the same

knot sequence.

void mbs_multiFindBezDerivativef ( int degree,

int ncurves, int spdimen,

int pitch, const float *ctlpoints,

int dpitch, float *dctlpoints );

The procedure mbs_multiFindBezDerivativef computes the control points of

Bézier curves of degree n− 1, which describe the derivatives of given Bézier curves

of degree n.

Input parameters: degree — degree n of the given curves (must be positive),

ncurves — number of curves, spdimen — dimension of the space, in which the

curves are located, pitch — pitch of the array ctlpoints, which is the distance

between the beginnings of the representations of the consecutive curves in the array

ctlpoints, with the control points.

The parametr dpitch specifies the pitch of the array dctlpoints, in which the

procedure stores the control points of the curves representing the derivatives.

#define mbs_FindBezDerivativeC1f(degree,coeff,dcoeff) \

mbs_multiFindBezDerivativef ( degree, 1, 1, 0, coeff, 0, dcoeff )

#define mbs_FindBezDerivativeC2f(degree,ctlpoints,dctlpoints) \

mbs_multiFindBezDerivativef ( degree, 1, 2, 0, \

(float*)ctlpoints, 0, (float*)dctlpoints )

#define mbs_FindBezDerivativeC3f(degree,ctlpoints,dctlpoints) \

mbs_multiFindBezDerivativef ( degree, 1, 3, 0, \

(float*)ctlpoints, 0, (float*)dctlpoints )

#define mbs_FindBezDerivativeC4f(degree,ctlpoints,dctlpoints) \

mbs_multiFindBezDerivativef ( degree, 1, 4, 0, \

(float*)ctlpoints, 0, (float*)dctlpoints )
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The above macros call mbs_multiFindBezDerivativef in order to compute the

control points of the derivative of one Bézier curve of degree n in the space of

dimension 1, 2, 3, 4.

void mbs_multiFindBSDerivativef ( int degree, int lastknot,

const float *knots,

int ncurves, int spdimen,

int pitch, const float *ctlpoints,

int *lastdknot, float *dknots,

int dpitch, float *dctlpoints );

The procedure mbs_multiFindBSDerivativef computes the control points of

B-spline curves of degree n − 1, which describe the derivatives of given B-spline

curves of degree n.

Input parameters: degree — degree n of the given curves, lastknot — index N

of the last knot, knots — array of knots u0, . . . , uN, ncurves — number of curves

spdimen — dimension of the space, pitch — pitch of the array ctlpoints (spec-

ifying the distance between the beginnings of the consecutive curves), ctlpoints

— array with the control points of the given curves.

The output parameter *lastdknot takes the value N − 2, and the procedure

copies the knots u1, . . . , uN−1 to the array dknots. The parameters lastdknot

and dknots may be NULL, and then they are ignored.

The parameter dpitch specifies the pitch of the array dctlpoints, in which the

procedure stores the control points of the curves, which describe the derivatives.

#define mbs_FindBSDerivativeC1f(degree,lastknot,knots,coeff, \

lastdknot,dknots,dcoeff) \

mbs_multiFindBSDerivativef ( degree, lastknot, knots, 1, 1, 0, \

coeff, lastdknot, dknots, 0, dcoeff )

#define mbs_FindBSDerivativeC2f(degree,lastknot,knots,ctlpoints, \

lastdknot,dknots,dctlpoints) \

mbs_multiFindBSDerivativef ( degree, lastknot, knots, 1, 2, 0, \

(float*)ctlpoints, lastdknot, dknots, 0, (float*)dctlpoints )

#define mbs_FindBSDerivativeC3f(degree,lastknot,knots,ctlpoints, \

lastdknot,dknots,dctlpoints) ...

#define mbs_FindBSDerivativeC4f(degree,lastknot,knots,ctlpoints, \

lastdknot,dknots,dctlpoints) ...

The above macros call mbs_multiFindBSDerivativef in order to find the rep-

resentation of the derivative of one B-spline curve in the space of dimension 1, 2, 3

or 4.
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7.7 Knot insertion and removal

7.7.1 The Boehm algorithm

The purpose of the procedure and the macros described below is to insert a single

knot into the representation of B-spline curves, using the Boehm algorithm. The

representation of the curves is modified, i.e. the memory area occupied by the

initial representation (knot sequence and control points) after return contains the

new representation, with the additional knot. If both representations are necessary,

then the original representation should be copied by the application, and then the

copy may be modified.

int mbs_multiKnotInsf ( int degree, int *lastknot,

float *knots,

int ncurves, int spdimen,

int inpitch, int outpitch,

float *ctlpoints, float t );

The procedure mbs_multiKnotInsf inserts the knot t to the representation of

B-spline curves of degree n =degree. In this way a new representation of those

curves is constructed, and it replaces the original representation. The number t

must be from the interval [knots[degree], knots[lastknot-degree]].

Initially the parameter *lastknot specifies the index N of the last knot of the

initial knot sequence; on return it is increased by 1, which indicates the growth of

the knot sequence by one number — the value of the parameter t, inserted into the

array knots. Therefore this array must have the capacity at least *lastknot+2, to

accomodate the longer knot sequence.

The parameter ncurves specifies the number of curves, and the parameter

spdimen is the dimension d of the space with the curves. Each curve is initially

represented by N − n points in the d-dimensional space. The coordinates of those

points ((N−n)d numbers) are stored in the array ctlpoints. The first coordinate

of the first control point of the first curve is at the begining of the array. As on

return the representation of each curve has one control point more, there are two

parameters to describe the pitch, i.e. the distance between the beginnings of rep-

resentations of two consecutive curves: inpitch specifies the initial pitch, at least

(N−n)d, the parameter outpitch specifies the final pitch, which must not be less

than (N− n+ 1)d.

The value returned by the procedure is the number k of the interval [uk, uk+1)

for the initial knot sequence, whose element is the new knot t. Upon return it is

inserted into the array knots at the position k + 1 and *lastknot is increased by

one.

Remark: To insert a knot into the representation of a closed curve, instead of

mbs_multiKnotInsf one should use the procedure mbs_multiKnotInsClosedf.
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#define mbs_KnotInsC1f(degree,lastknot,knots,coeff,t) \

mbs_multiKnotInsf(degree,lastknot,knots,1,1,0,0,coeff,t)

#define mbs_KnotInsC2f(degree,lastknot,knots,coeff,t) \

mbs_multiKnotInsf(degree,lastknot,knots,1,2,0,0,coeff,t)

#define mbs_KnotInsC3f(degree,lastknot,knots,coeff,t) ...

#define mbs_KnotInsC4f(degree,lastknot,knots,coeff,t) ...

The four macros above call mbs_multiKnotInsf in order to insert a knot to

the representation of one scalar spline function or B-spline curve in the space of

dimension 2, 3 and 4. The parameters must satisfy the conditions given in the

description of the procedure mbs_multiKnotInsf.

int mbs_multiKnotInsClosedf ( int degree, int *lastknot,

float *knots,

int ncurves, int spdimen,

int inpitch, int outpitch,

float *ctlpoints, float t );

The procedure mbs_multiKnotInsClosedf inserts a knot t to the representation

of closed B-spline curves of degree degree. It may also be used to insert a knot to

a closed B-spline patch (being a tube or a torus). The main conputation is done by

the procedure mbs_multiKnotInsf. After it returns, the result is further processed

in order to restore the periodicity of the curves representation.

The parameters: degree — degree of the curves, *lastknot — on entry its

value is the number of the last knot in the initial sequence, on return its value is in-

creased by 1. The array knots contains the knot sequences, the initial and final one

respectively. The parameter ncurves specifies the number of curves. The parame-

ter spdimen specifies the space dimension. The parameters inpitch and outpitch

specify the pitch of the array ctlpoints with the control points, before and after

the knot insertion, see the description of the procedure mbs_multiKnotInsf. The

parameter t specifies the new knot, to be inserted.

#define mbs_KnotInsClosedC1f(degree,lastknot,knots,coeff,t) \

mbs_multiKnotInsClosedf(degree,lastknot,knots,1,1,0,0,coeff,t)

#define mbs_KnotInsClosedC2f(degree,lastknot,knots,coeff,t) \

mbs_multiKnotInsClosedf(degree,lastknot,knots,1,2,0,0,coeff,t)

#define mbs_KnotInsClosedC3f(degree,lastknot,knots,coeff,t) ...

#define mbs_KnotInsClosedC4f(degree,lastknot,knots,coeff,t) ...

The four macros above call mbs_multiKnotInsClosedf in order to insert a knot

to the representation of one periodic spline function or a closed B-spline curve in

the spaces of dimension 2, 3 and 4. The parameters must satisfy the condition given

in the description of the procedure mbs_multiKnotInsClosedf.



7.43

7.7.2 Removing knots

This section describes a procedure of removing a single knot from the representa-

tion of B-spline curves, and the macros, which make it easier to use this procedure

for a single curve in the spaces of dimensions 1–4. The procedure sets up a sys-

tem of equations related with two representations of the curves, with the matrix

corresponding to the change of representation by the Boehm algorithm, and then

it solves this system as a linear least-squares problem. The curves obtained by

removing a knot may differ from the original curves.

The knot removal takes place “at the spot”, i.e. the memory area initially occu-

pied by the given representation, upon return contains a new, shorter knot sequence

and new control points. If both representations are necessary, then the application

should copy the original representation of the curves and remove a knot from the

copy.

int mbs_multiKnotRemovef ( int degree, int *lastknot,

float *knots,

int ncurves, int spdimen,

int inpitch, int outpitch,

float *ctlpoints,

int knotnum );

The procedure mbs_multiKnotRemovef removes a knot from the representation

of B-spline curves of degree degree, located in the space of dimension spdimen. The

representation is defined for a knot sequence of length *lastknot+1, given in the ar-

ray knots. The control points of the curves are given in the array ctlpoints. The

parameter inpitch specifies the pitch, i.e. the initial distance between the begin-

nings of the areas in the array ctlpoints with the control points of the consecutive

curves. The parameter outpitch specifies the final pitch of this array (rearranged

after the knot removal).

The knot to be removed is indicated by the parameter knotnum, whose value

must be from degree+1 to lastknot-degree-1.

The new representation of the curves replaces the initial one in the arrays knots

and ctlpoints. The parameter *lastknot is decreased by 1.

If the multiplicity of the knot being removed is equal to r and the derivative

of the curve of order degree − r + 1 is not continuous at this knot, then the knot

removal will change the curve. The new control points are computed by solving

a linear least squares problem, which is a method of solving an approximation

problem (see example given below).

The value of the procedure is the number k, such that the removed knot is the

element of the interval [uk, uk+1) determined by the final knot sequence. If the

knot, whose number is knotnum is less than the next knot in the sequence, then

k = knotnum − 1, but in general it may not be the case.

Remark: To remove a knot from the representation of closed curves one should
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call mbs_multiKnotRemoveClosedf. Using the procedure mbs_multiKnotRemovef

may result in getting non-closed curves.

#define mbs_KnotRemoveC1f(degree,lastknot,knots,coeff,knotnum) \

mbs_multiKnotRemovef(degree,lastknot,knots,1,1,0,0,coeff,knotnum)

#define mbs_KnotRemoveC2f(degree,lastknot,knots,ctlpoints, \

knotnum) \

mbs_multiKnotRemovef(degree,lastknot,knots,1,2,0,0, \

(float*)ctlpoints,knotnum)

#define mbs_KnotRemoveC3f(degree,lastknot,knots,ctlpoints, \

knotnum) ...

#define mbs_KnotRemoveC4f(degree,lastknot,knots,ctlpoints, \

knotnum) ...

The four macros above call mbs_multiKnotRemovef in order to remove a knot

from the representation of one scalar spline function or one B-spline curve in the

space of dimension 2, 3 and 4. The parameters must be as described in the descrip-

tion of the procedure mbs_multiKnotRemovef.

Figure 7.4. Example of knot removal.
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Example of knot removal for a planar cubic B-spline curve is shown in Figure 7.4

(see the program test/knotrem.c). The initial multiplicity of the knot being

removed is the degree of the curve plus two; the curve consists of two disjoint

pieces and one of its control points does not influence its shape. Removing the knot

causes rejecting this point, without changing the curve.

Removing the knot of multiplicity degree plus one causes connecting the curve

pieces — two control points are replaced by one, their midpoint. Subsequent knot

removal is done by solving the appropriate linear least squares problems.

int mbs_multiKnotRemoveClosedf ( int degree, int *lastknot,

float *knots,

int ncurves, int spdimen,

int inpitch, int outpitch,

float *ctlpoints,

int knotnum );

The procedure mbs_multiKnotRemoveClosedf removes knots from representa-

tions of closed B-spline curves.

The parameters degree, ncurves and spdimen specify the degree and number

of curves and space dimension respectively. The parameters *lastknot and knots

initially describe the initial knot sequence. After return these parameters describe

the final knot sequence. The parameter knotnum specifies the number of knot to be

removed. The parameters inpitch and outpitch specify the initial and final pitch

of the array of control points, ctlpoints, i.e. the distances between the beginnings

of control polygons of consecutive curves. The array ctlpoints initially contains

the control points of the initial representation of the curves; the procedure replaces

them by the control points of the final representation, obtained by removing the

knot.

#define mbs_KnotRemoveClosedC1f(degree,lastknot,knots,coeff, \

knotnum) \

mbs_multiKnotRemoveClosedf(degree,lastknot,knots,1,1,0,0,coeff, \

knotnum)

#define mbs_KnotRemoveClosedC2f(degree,lastknot,knots,ctlpoints, \

knotnum) \

mbs_multiKnotRemoveClosedf(degree,lastknot,knots,1,2,0,0, \

(float*)ctlpoints,knotnum)

#define mbs_KnotRemoveClosedC3f(degree,lastknot,knots,ctlpoints, \

knotnum) ...

#define mbs_KnotRemoveClosedC4f(degree,lastknot,knots,ctlpoints, \

knotnum) ...

The four macros above call mbs_multiKnotRemoveClosedf in order to remove

the indicated knot from the representation of one periodic spline function or closed
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B-spline curve in the space of dimension two, three and four. The parameters are

described with the procedure mbs_multiKnotRemoveClosedf.

void mbs_multiRemoveSuperfluousKnotsf ( int ncurves,

int spdimen, int degree,

int *lastknot,

float *knots,

int inpitch, int outpitch,

float *ctlpoints );

The procedure mbs_multiRemoveSuperfluousKnotsf removes knots from the

representation of B-spline curves in such a way, that all the remaining knots have

multiplicity of the degree (the parameter degree) plus one. The curves are not

changed, but problems caused by the presence of such knots, may be avioded (e.g.

a B-spline function, whose all knots are the same, is the zero function, hence any set

of B-spline functions with a knot of multiplicity greater than n+ 1 is not a basis).

The computation is done „at the spot”, i.e. the area initially occupied by the

initial representation, after return contains the new representation of the curves.

The knots are removed by moving the data (knots and control points) in the arrays,

without any numerical computations.

7.7.3 The Oslo algorithm

The Oslo algorithm is a method of finding a representation of B-spline curves cor-

responding to a knot sequence û0, . . . , ûN̂ given a representation based on a subse-

quence u0, . . . , uN. As opposed to the Boehm algorithm (see Section 7.7.1), which

inserts one knot at a time (and which may be used a number of times if necessary),

here all knots are inserted at the same time.

If the control points di of a B-spline curve of degree n correspond to the knots

u0, . . . , uN, and the control points d̂l correspond to the knots û0, . . . , ûN̂, then

d̂l =

N−n−1∑

i=0

anildi, (7.20)

where the coefficients ankl are given by the recursive formulae

a0kl =

{
1 for uk ≤ ûl < uk+1,

0 else,
(7.21)

anil =
ûl+n − ui

ui+n − ui
an−1
il +

ui+n+1 − ûl+n

ui+n+1 − ui+1
an−1
i+1,l. (7.22)

The implementation of the Oslo algorithm in the library libmultibs is such that

initially the matrix A, whose coefficients are anil, is computed and then it is multi-

plied by the matrix of the control points d0, . . . ,dN−n−1.



7.47

Figure 7.5. Inserting knots with the Oslo algorithm.

The matrix A makes it possible also to remove a number of knots at a time,

by solving an over-definite system of linear equations (with more equations than

unknowns). Such a system, even when it is consistent, is solved best as a linear

least squares problem.

The matrix A is represented as a band matrix, by an array with its profile (i.e.

table of positions of nonzero coefficients in consecutive columns) and an array with

nonzero coefficients. A detailed description of this representation and the related

procedures is in Section 3.2.

boolean mbs_OsloKnotsCorrectf ( int lastuknot, const float *uknots,

int lastvknot, const float *vknots );

The procedure mbs_OsloKnotsCorrectf verifies, whether two given sequences

of knots make it possible to construct the matrix A. The conditions verified are as

follows: both sequences are nondecreasing, and the first sequence of (lastuknot+1
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numbers, given in the array uknots), is a subsequence of the second sequence of

length (lastvknot+1, given in the array vknots). If these conditions are satisfied,

the procedure returns true, otherwise it returns false.

int mbs_BuildOsloMatrixProfilef ( int degree,

int lastuknot, const float *uknots,

int lastvknot, const float *vknots,

bandm_profile *prof );

The procedure mbs_BuildOsloMatrixProfilef, given the degree of the rep-

resentation (degree) and two knot sequences (see description of the procedure

mbs_OsloKnotsCorrectf above), constructs the profile of the matrix of the rep-

resentation transformation. The profile is stored in the array prof, whose length

must be at least lastuknot− degree + 1 (the number of columns plus one).

The procedure returns the number of nonzero coefficients of the matrix, which

is the length of the array to be allocated for storing the coefficients.

void mbs_BuildOsloMatrixf ( int degree, int lastuknot,

const float *uknots,

const float *vknots,

const bandm_profile *prof, float *a );

The procedure mbs_BuildOsloMatrixf computes the coefficients of the matrix

of curve representation transformation, using the Oslo algorithm. The parameters

are: degree — degree of the curve, uknots — array of knots of the initial represen-

tation, of length lastuknot+1, vknots — array of knots of the final representation,

whose length is determined based on the contents of the arrays, therefore there is no

parameter to specify it. The knot sequences have to satisfy the conditions verified

by the procedure mbs_OsloKnotsCorrectf.

The array prof contains the description of the matrix structure (the profile),

which has to be found earlier, with the procedure mbs_BuildOsloMatrixProfilef.

The coefficients computed by the mbs_BuildOsloMatrixf are stored in the array

a, whose length has been computed by mbs_BuildOsloMatrixProfilef.

void mbs_multiOsloInsertKnotsf ( int ncurves, int spdimen,

int degree,

int inlastknot, const float *inknots,

int inpitch, float *inctlpoints,

int outlastknot, const float *outknots,

int outpitch, float *outctlpoints );

The procedure mbs_multiOsloInsertKnotsf inserts a number of knots to

the representation of ncurves B-spline curves located in the space of dimension

spdimen. The degree of the curves is specified by the parameter degree. The

initial representation consists of the knots given in the array inknots (of length
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inlastknot+ 1) and the control polygons stored in the array inctlpoints, whose

pitch is given by inpitch.

The final representation is based on the knot sequence of length outlastknot+1,

given in the array outknots, and the initial knot sequence must be a subsequence

of this sequence.

The procedure sets up the appropriate matrix with the Oslo algorithm, and then

it multiplies it by the matrix of the given control points of the curves.

If the values of the parameters inlastknot and outlastknot are the same,

then the procedure assumes that the knot sequences are identical (which is not

verified) only copies data from the array inctlpoints to outctlpoints (according

to the pitches of the arrays, specified by the parameters inpitch and outpitch

respectively).

void mbs_multiOsloRemoveKnotsLSQf ( int ncurves, int spdimen,

int degree,

int inlastknot, const float *inknots,

int inpitch, float *inctlpoints,

int outlastknot, const float *outknots,

int outpitch, float *outctlpoints );

The procedure mbs_multiOsloRemoveKnotsLSQf removes a number of knots

from the representation of given ncurves B-spline curves located in the space

of dimension spdimen. The degree of the curves is the value of the parameter

degree. The initial representation constsis of the knot sequence stored in the array

inknots (of length inlastknot + 1) and the control polygons stored in the array

inctlpoints, whose pitch is inpitch.

The final representation is based on the knot sequence of length outlastknot+1,

given in the array outknots, and this sequence must be a subsequence of the initial

sequence. Moreover, no knot of the final knot sequence may have multiplicity

greater than degree+1 (otherwise the matrix described above would have columns

linearly dependent).

The procedure constructs the appropriate matrix, and then it solves a linear

least squares problem with this matrix.

If the parameters inlastknot and outlastknot have the same value, then the

procedure assumes that the knot sequences are identical (which is not verified)

and it only copies data from the array inctlpoints to outctlpoints according

to the pitches of the arrays, specified by the parameters inpitch and outpitch

respectively).

7.7.4 Maximal knot insertion

The procedures described in this section may be used to insert knots into the rep-

resentation of B-spline curves and patches in such a way, that the multiplicity of
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each knot be equal to the degree plus one. In this way a particular B-spline repre-

sentation is obtained; it consists of the representations of polynomial arcs in local

Bernstein bases, i.e. a piecewise Bézier representation. Such a representation makes

it possible e.g. to quickly compute points of the curves (with the Horner scheme)

and algebraic operations (like multiplication) on spline functions and curves. The

procedures described here do not remove unnecessary knots (of multiplicity greater

than degree+1). The procedures which do remove the unnecessary knots (thus

producing a “clean” result) are described in the next section.

void mbs_multiMaxKnotInsf ( int ncurves, int spdimen, int degree,

int inlastknot, const float *inknots,

int inpitch, const float *inctlpoints,

int *outlastknot, float *outknots,

int outpitch, float *outctlpoints,

int *skipl, int *skipr );

The procedure mbs_multiMaxKnotInsf inserts knots to the representation of

ncurves B-spline curves of degree degree in the space of dimension spdimen.

The initial representation of the curves is given by the parameters inlastknot

(number of the last knot), inctlpoints (array with the knots), inpitch (pitch,

i.e. the distance between the beginnings of the given control polylines), and

inctlpoints (array with the control points).

The procedure constructs the representation of the curves corresponding to the

knot sequence with all internal knots (see Section 7.1.3) of multiplicity degree+ 1,

and the boundary knots have multiplicity degree or degree + 1.

The multiplicities of the extremal knots remain unchanged, therefore the result-

ing representation may contain unnecessary knots and control points. The parame-

ters *skipl and *skipr upon return indicate the number of unnecessary knots and

control points from the left side and the right side respectively.

The new representation is stored in the arrays outknots (knot sequence, the in-

dex of the last knot is assigned to the parameter *outlastknot) and outctlpoints

(control polygons, the pitch of this array is specified by the input parameter

outpitch).

If the initial knot sequence contains knots of multiplicity greater than desired,

the procedure begins the computations with removing them (from a copy of the

data), with use of the procedure mbs_multiRemoveSuperfluousKnots). Then the

procedure mbs_multiOsloInsertKnotsf) is called in order to insert the knots using

the Oslo algorithm.

The lengths of the arrays necessaty to accomodate the new representation of

the curves may be found with use of the procedure mbs_LastknotMaxInsf, which

computes the index of the last knot of the new representation.
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#define mbs_MaxKnotInsC1f(degree,inlastknot,inknots,incoeff, \

outlastknot,outknots,outcoeff,skipl,skipr) \

mbs_multiMaxKnotInsf(1,1,degree,inlastknot,inknots,0,incoeff, \

outlastknot,outknots,0,outcoeff,skipl,skipr)

#define mbs_MaxKnotInsC2f(degree,inlastknot,inknots,inctlpoints, \

outlastknot,outknots,outctlpoints,skipl,skipr) \

mbs_multiMaxKnotInsf(1,2,degree,inlastknot,inknots,0, \

(float*)inctlpoints,outlastknot,outknots,0, \

(float*)outctlpoints,skipl,skipr)

#define mbs_MaxKnotInsC3f(degree,inlastknot,inknots,inctlpoints, \

outlastknot,outknots,outctlpoints,skipl,skipr) ...

#define mbs_MaxKnotInsC4f(degree,inlastknot,inknots,inctlpoints, \

outlastknot,outknots,outctlpoints,skipl,skipr) ...

The four macros above call mbs_multiMaxKnotInsf in order to construct the

representation of one scalar spline function or a B-spline curve in the space of

dimension 2, 3, 4, with all internal knots of multiplicity equal to the degree plus

one. The parameters are described with the procedure mbs_multiMaxKnotInsf.

7.7.5 Conversion of curves and patches to the piecewise Bézier form

The procedures described below convert B-spline curves and patches to the piece-

wise Bézier form, using the procedure mbs_multiMaxKnotInsf. They may help to

draw curves and patches.

void mbs_multiBSCurvesToBezf ( int spdimen, int ncurves,

int degree, int lastinknot,

const float *inknots,

int inpitch, const float *inctlp,

int *kpcs, int *lastoutknot,

float *outknots,

int outpitch, float *outctlp );

The procedure mbs_multiBSCurvesToBezf converts ncurves B-spline curves of

degree degree, located in the space of dimension spdimen to the piecewise Bézier

form.

The parameters, which describe the given representation are lastinknot (index

of the last knot), inknots (array with the knot sequence), inpitch and inctlp

(pitch and the array with the control points).

The value of *kpcs upon return from the proceure is equal to the number of

polynomial arcs of each curve. The parameter *lastoutknot is the index of the last

knot of the sequence of the resulting representation, the array outknots contains

these knots, the input parameter outpitch specifies the pitch of the array outctlp,

in which the procedure stores the control points of the Bézier representations of the
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polynomial arcs. More precisely, to each of the B-spline curves there correspond

*kpcs*(degree+1)*spdimen floating point numbers; each polynomial arc is rep-

resented by (degree+1)*spdimen consecutive numbers (coordinates of degree+1

points); the value of the parameter outpitch is the distance between the beginnings

of the representations of the first arcs of the consecutive B-spline curves.

If the parameter kpcs, lastoutknot or outknots is NULL, then the procedure

does not output the corresponding information.

#define mbs_BSToBezC1f(degree,lastinknot,inknots,incoeff,kpcs, \

lastoutknot,outknots,outcoeff) \

mbs_multiBSCurvesToBezf(1,1,degree,lastinknot,inknots,0,incoeff,\

kpcs,lastoutknot,outknots,0,outcoeff)

#define mbs_BSToBezC2f(degree,lastinknot,inknots,inctlp,kpcs, \

lastoutknot,outknots,outctlp) \

mbs_multiBSCurvesToBezf(2,1,degree,lastinknot,inknots,0, \

(float*)inctlp,kpcs,lastoutknot,outknots,0,(float*)outctlp)

#define mbs_BSToBezC3f(degree,lastinknot,inknots,inctlp,kpcs, \

lastoutknot,outknots,outctlp) ...

#define mbs_BSToBezC4f(degree,lastinknot,inknots,inctlp,kpcs, \

lastoutknot,outknots,outctlp) ...

The above macros call mbs_multiBSCurvesToBezf in order to obtain the piece-

wise Bézier representation of one spline function or a B-spline curve in the space

of dimension 2, 3 and 4. The parameters are described with the procedure

mbs_multiBSCurvesToBezf.

void mbs_BSPatchToBezf ( int spdimen,

int degreeu, int lastuknot,

const float *uknots,

int degreev, int lastvknot,

const float *vknots,

int inpitch, const float *inctlp,

int *kupcs, int *lastoutuknot,

float *outuknots,

int *kvpcs, int *lastoutvknot,

float *outvknots,

int outpitch, float *outctlp );

The procedure mbs_BSPatchToBezf finds the representation of a B-spline patch

with knots of multiplicities equal to the degree plus one, for both parameters. In

other words, it is a piecewise Bézier representation. Such a represnetation may be

convenient when the patch is to be drawn. The procedure may process patches

with clamped boundary as well as with free boundary.

The parameter spdimen specifies the space dimension. The degree of the patch

is given by the parameters degreeu and degreev, the knot sequences of the given
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representation are given by the parameters lastuknot, uknots, lastvknot and

vknots, and the control points are given in the array inctlp, whose pitch (distance

between the beginnings of consecutive columns of the control net) specified with

the parameter inpitch.

The parameters *kupcs and *kvpcs may be used to pass the information

about the number of polynomial pieces of the patch; the patch consists of *kupcs

“strips”, each of which consisting of *kvpcs polynomial patches. The parameters

lastoutuknot, outuknots, lastvknot and outvknots are used to output the knot

sequences of the final representation. If any of the four parameters is NULL, then

the corresponding information is not output by the procedure (it is unnecessary for

drawing the patch).

The control points of the final patch representation are stored in the array

outctlp, whose pitch is outpitch (it is an input parameter). The pitch should

be greater than d(m + 1)kv, where d is the dimension of the space (the value

of the parameter spdimen), m (the value of degreev) is the degree of the patch

with respect to v, and kv is the number of intervals between knots in the interval

[vm, vM−m] (the number M is the value of the parameter lastvknot). The number

kv is assigned by the procedure mbs_BSPatchToBezf to the parameter kvpcs, but

it may be obtained before calling it, with the mbs_NumKnotIntervalsf procedure.

The number of columns of the final representation of the patch is (n + 1)ku,

where n is the degree of the patch with respect to u, and ku is the number of

“strips”, of which the patch consists. It may also be computed earlier, by calling

mbs_NumKnotIntervalsf.

The main computation (mainly knot insertion) is done by the procedure

mbs_multiMaxKnotInsf.

Example. Suppose that the patch is defined by Formula (7.12) with two non-

decreasing knot sequences, u0, . . . , uN and v0, . . . , vM, stored respectively in the

arrays u and v. The degree is n with respect to u and m with respect to v. The

control points in the d-dimensional space are orgaanized in the columns and stored

in the array cp. The i-th column, for i ∈ {0, . . . , N − n − 1}, consists of M −m

points, therefore it is represented by (M−m)d floating point answers.

ku = mbs_NumKnotIntervalsf ( n, N, u );

kv = mbs_NumKnotIntervalsf ( m, M, v );

pitch = (m+ 1)d*kv;

b = pkv_GetScratchMemf ( pitch*ku*(n+1) );

mbs_BSPatchToBezf ( d, n, N, u, m, M, v, d*(M−m), cp,

&ku, NULL, NULL, &kv, NULL, NULL, pitch, b );

After executing the above code the array b contains the Bézier control points of

the polynomial pieces of the B-spline patch. To move the control points of the j-th

Bézier patch from the i-th strip (counting from 0) to the array c (of length at least

(n+ 1)(m+ 1)d), and obtain a “packed” control net (without unused areas between
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he columns), one may use the code

md = (m+ 1)d; /* length of one column of each Bézier patch */

start = (n+ 1)i*pitch + md*j; /* position of the first point */

pkv_Selectf ( n+ 1, md, pitch, md, &b[start], c );

Figure 7.6. A B-spline patch and its piecewise Bézier representation.

7.8 Lane-Riesenfeld algorithm

boolean mbs_multiLaneRiesenfeldf ( int spdimen, int ncurves,

int degree,

int inlastknot, int inpitch, const float *incp,

int *outlastknot, int outpitch, float *outcp );

#define mbs_LaneRiesenfeldC1f(degree,inlastknot,incp,outlastknot, \

outcp) \

mbs_multiLaneRiesenfeldf ( 1, 1, degree, inlastknot, 0, incp, \

outlastknot, 0, outcp )

#define mbs_LaneRiesenfeldC2f(degree,inlastknot,incp,outlastknot, \

outcp) \

mbs_multiLaneRiesenfeldf ( 2, 1, degree, inlastknot, 0, \

(float*)incp, outlastknot, 0, (float*)outcp )

#define mbs_LaneRiesenfeldC3f(degree,inlastknot,incp,outlastknot, \

outcp) ...

#define mbs_LaneRiesenfeldC4f(degree,inlastknot,incp,outlastknot, \

outcp) ...
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Figure 7.7. Application of the Lane-Riesenfeld algorithm to a B-spline patch
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7.9 Bézier curves and patches subdivision

Bézier curves and patches may be divided into pieces with the de Casteljau algo-

rithm, and there are two cases implemented separately. The first case is bisection

of the domain (e.g. the division of the interval [0.25, 0.5] into the parts [0.25, 0.375]

and [0.375, 0.5], of equal length), and the algorithm computes only averages of pairs

of numbers. The second case is general; the domain may be divided into intervals

or rectangles at any place, which includes also the possibility of extrapolation.

void mbs_multiBisectBezCurvesf ( int degree, int ncurves,

int spdimen, int pitch,

float *ctlp, float *ctlq );

The procedure mbs_multiBisectBezCurvesf divides ncurves Bézier curves of

degree degree in the space of dimension spdimen. The domain (an interval [a, b])

is divided into two parts of equal length.

The control points are given in the array ctlp, whose pitch is pitch. Upon

return this array contains the control points of the second arc of each curve (the

one corresponding to the interval [a+b
2
, b]). In the array ctlq the procedure stores

the control points of the arcs corresponding to the interval [a, a+b
2

]. The pitch of

this array is the same as the pitch of ctlp (i.e. equal to the value of the parameter

pitch).

#define mbs_BisectBC1f(degree,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degree,1,1,0,ctlp,ctlq)

#define mbs_BisectBC2f(degree,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degree,1,2,0,(float*)ctlp,(float*)ctlq)

#define mbs_BisectBC3f(degree,ctlp,ctlq) ...

#define mbs_BisectBC4f(degree,ctlp,ctlq) ...

The above macros call mbs_multiBisectBezCurvesf in order to bisect one poly-

nomial or Bézier curve in the space of dimension 2, 3 or 4, i.e. to compute its local

representations corresponding to the halves of the initial interval.

#define mbs_BisectBP1uf(degreeu,degreev,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degreeu,1,(degreev+1),0,ctlp,ctlq)

#define mbs_BisectBP1vf(degreeu,degreev,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degreev,degreeu+1,1,degreev+1, \

ctlp,ctlq)

#define mbs_BisectBP2uf(degreeu,degreev,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degreeu,1,2*(degreev+1),0, \

(float*)ctlp,(float*)ctlq)
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#define mbs_BisectBP2vf(degreeu,degreev,ctlp,ctlq) \

mbs_multiBisectBezCurvesf(degreev,degreeu+1,2,2*(degreev+1), \

(float*)ctlp,(float*)ctlq)

#define mbs_BisectBP3uf(degreeu,degreev,ctlp,ctlq) ...

#define mbs_BisectBP3vf(degreeu,degreev,ctlp,ctlq) ...

#define mbs_BisectBP4uf(degreeu,degreev,ctlp,ctlq) ...

#define mbs_BisectBP4vf(degreeu,degreev,ctlp,ctlq) ...

The above macros call mbs_multiBisectBezCurvesf in order to divide the rect-

angular domain of one bivariate polynomial (given in a tensor product Bernstein

basis) or a Bézier patch (of dimension 2, 3 or 4) into two equal parts and to compute

the local representations of the polynomial or the patch related with the two parts.

The macros with the letter u in the identifier bisect the interval of the first param-

eter, and the macros with the letter v bisect the interval of the second parameter

of the polynomial or the patch.

void mbs_multiDivideBezCurvesf ( int degree, int ncurves,

int spdimen, int pitch, float t,

float *ctlp, float *ctlq );

The procedure mbs_multiDivideBezCurvesf divides ncurves Bézier curves of

degree degree in the space of dimension spdimen. The domain (the interval [0, 1])

is divided at the point t, specified by the parameter t, and if t /∈ [0, 1], then the

division is in fact an extrapolation.

The control points are given in the array ctlp, whose pitch is pitch. Upon

return this array contains the control points of the second arc of each curve (related

with the interval [t, 1]). The array ctlq is filled with the control points of the first

arcs, related with the interval [0, t]. The pitch of this array is the same as the pitch

of ctlp (it is equal to the value of the parameter pitch).

#define mbs_DivideBC1f(degree,t,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degree,1,1,0,t,ctlp,ctlq)

#define mbs_DivideBC2f(degree,t,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degree,1,2,0,t, \

(float*)ctlp,(float*)ctlq)

#define mbs_DivideBC3f(degree,t,ctlp,ctlq) ...

#define mbs_DivideBC4f(degree,t,ctlp,ctlq) ...

The above macros call mbs_multiDivideBezCurvesf in order to divide the do-

main of one polynomial or one Bézier curve (two-, three- or four-dimensional) at

the proportion t : 1 − t, where t is the value of the parameter t, and to find the

local representations of the polynomial or the curve.
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#define mbs_DivideBP1uf(degreeu,degreev,u,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degreeu,1,(degreev)+1,0,u,ctlp,ctlq)

#define mbs_DivideBP1vf(degreeu,degreev,v,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degreev,(degreeu)+1,1,degreev+1,v, \

ctlp,ctlq)

#define mbs_DivideBP2uf(degreeu,degreev,u,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degreeu,1,2*(degreev)+1,0,u, \

(float*)ctlp,(float*)ctlq)

#define mbs_DivideBP2vf(degreeu,degreev,v,ctlp,ctlq) \

mbs_multiDivideBezCurvesf(degreev,(degreeu)+1,2,2*(degreev)+1,v, \

(float*)ctlp,(float*)ctlq)

#define mbs_DivideBP3uf(degreeu,degreev,u,ctlp,ctlq) ...

#define mbs_DivideBP3vf(degreeu,degreev,v,ctlp,ctlq) ...

#define mbs_DivideBP4uf(degreeu,degreev,u,ctlp,ctlq) ...

#define mbs_DivideBP4vf(degreeu,degreev,v,ctlp,ctlq) ...

The macros calling mbs_multiDivideBezCurvesf in order to divide a bivariate

polynomial or a Bézier patch in the space of dimension 2, 3 or 4 — in the “u”

direction (i.e. the interval of the first patch parameter is to be divided) or in the “v”

direction (the interval of the second parameter is to be divided). The number u or

v, which is the value of the parameter u or v is the point of division of the interval

[0, 1] (the interval of the parameter is divided in the proportion e.g. u : 1− u).
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7.10 Degree elevation

Degree elevation is a computation of a new representation of curves in the Bernstein

or B-spline basis of degree greater by a specified amount.

7.10.1 Degree elevation of Bézier curves and patches

void mbs_multiBCDegElevf ( int ncurves, int spdimen,

int inpitch, int indegree,

const float *inctlpoints,

int deltadeg,

int outpitch, int *outdegree,

float *outctlpoints );

The procedure mbs_multiBCDegElevf performs the degree elevation of ncurves

Bézier curves of degree indegree in the space of dimension spdimen, to the

degree indegree + deltadeg (the resulting degree is assigned to the parameter

*outdegree).

The control polygons of the curves are given in the array inctlpoints, whose

pitch is inpitch. The computed control polygons are stored by the procedure in

the array outctlpoints, with the pitch outpitch.

#define mbs_BCDegElevC1f(indegree,incoeff,deltadeg, \

outdegree,outcoeff) \

mbs_multiBCDegElevf ( 1, 1, 0, indegree, incoeff, deltadeg, \

0, outdegree, outcoeff )

#define mbs_BCDegElevC2f(indegree,inctlpoints,deltadeg, \

outdegree,outctlpoints) \

mbs_multiBCDegElevf ( 1, 2, 0, indegree, (float*)inctlpoints, \

deltadeg, 0, outdegree, (float*)outctlpoints )

#define mbs_BCDegElevC3f(indegree,inctlpoints,deltadeg, \

outdegree,outctlpoints) ...

#define mbs_BCDegElevC4f(indegree,inctlpoints,deltadeg, \

outdegree,outctlpoints) ...

The four macros above may be used for degree elevation of one polynomial

(given by the coefficients in the Bernstein basis) or a Bézier curve in the space of

dimension 2, 3 or 4. The parameters of the macros are described with the procedure

mbs_multiBCDegElevf.
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void mbs_BCDegElevPf ( int spdimen,

int indegreeu, int indegreev,

const float *inctlp,

int deltadegu, int deltadegv,

int *outdegreeu, int *outdegreev,

float *outctlp );

The procedure mbs_BCDegElevPf performs the degree elevation of a Bézier patch

in the space of dimension spdimen, with respect to one or both parameters.

The parameters indegu and indegv specify the degree of the initial patch rep-

resentation, with respect to its two parameters. The array inctlp contains the

control points of the patch, organized in subsequent columns. The array is packed,

i.e. without unused areas between consecutive columns, hence the pitch is equal to

the length of the column representation: (indegu+1)∗spdimen. The array outctlp,

in which the procedure stores the control points of the resulting representation, is

packed in a similar way.

The parameters deltadegu and deltadegv must be nonnegative. They specify

the numbers, by which the degrees of the patch are to increase. The final degrees

(sums of the initial degrees and the increments) are assigned to the parameters

*outdegu and outdegv.

#define mbs_BCDegElevP1f(indegreeu,indegreev,incoeff, \

deltadegu,deltadegv,outdegreeu,outdegreev,outcoeff) \

mbs_BCDegElevPf ( 1, indegreeu, indegreev, incoeff, \

deltadegu, deltadegv, outdegreeu, outdegreev, outcoeff )

#define mbs_BCDegElevP2f(indegreeu,indegreev,inctlp, \

deltadegu,deltadegv,outdegreeu,outdegreev,outctlp) \

mbs_BCDegElevPf ( 2, indegreeu, indegreev, (float*)inctlp, \

deltadegu, deltadegv, outdegreeu, outdegreev, (float*)outctlp )

#define mbs_BCDegElevP3f(indegreeu,indegreev,inctlp, \

deltadegu,deltadegv,outdegreeu,outdegreev,outctlp) ...

#define mbs_BCDegElevP4f(indegreeu,indegreev,inctlp, \

deltadegu,deltadegv,outdegreeu,outdegreev,outctlp) ...

The above macros may be used for degree elevation of a bivariate polynomial

or a Bézier patch in the space of dimension 2, 3 or 4. They call the procedure

mbs_BCDegElevPf.
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7.10.2 Degree elevation of B-spline curves and patches

void mbs_multiBSDegElevf ( int ncurves, int spdimen,

int indegree, int inlastknot,

const float *inknots,

int inpitch, const float *inctlpoints,

int deltadeg,

int *outdegree, int *outlastknot,

float *outknots,

int outpitch, float *outctlpoints,

boolean freeend );

The procedure mbs_multiBSDegElevf performs the degree elevation of ncurves

B-spline curves of degree indegree in the space of dimension spdimen, up to the

degree indegree + deltadeg, which is assigned to the parameter *outdegree.

The procedure is able to process curves with clamped or free ends. If the value

of the parameter freeend is false, then the resulting representation of the curves

has clamped ends, with the only external knots being the extremal knots (see

Section 7.1.3). If the value of freeend is true, then the resulting representation

has free ends. The knot sequence of this representation is obtained by increasing

the multiplicities of all knots by the value of the parameter deltadeg, and then by

rejecting knots from the beginning and end of the sequence so as to obtain ûn <

ûn+1 and ûN−n > ûN−n−1 (n here denotes the degree of the result representation,

and N is the number of its last knot).

The method of degree elevation does not depend on the value of freeend.

The representation obtained after the degree elevation if one with clamped

ends. For freeend=true the procedure calls mbs_multiBSChangeLeftKnotsf and

mbs_multiBSChangeRightKnotsf. This involves additional rounding errors. The

procedure mbs_multiBSDegElevf may be used for degree elevation of a closed curve;

the parameter freeend should then be true, to obtain a closed representation of

higher degree. In such a representation the appropriate number of initial control

points coincide with the final control points up to the rounding errors.

The initial representation is given in the arrays inknots (knots, their number

is inlastknot + 1) and inctlpoints (control points the pitch of this array is

inpitch).

The resulting representation is stored in the arrays outknots (knots, their num-

ber is assigned to *outlastknot) and outctlpoints (control poitns, the pitch of

this array is specified by outpitch).

It is necessary to provide the arrays long enough to accomodate the result.

The rule is as follows: if the last knot of the representation of degree n has the

number N, the number of polynomial arcs of the curve is l (it may be found using

the procedure mbs_NumKnotIntervalsf), and the resulting representation has the
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degree n ′, then the last knot of this representation has the number

N ′ = N+ (l+ 1− d0 − d1)(n
′ − n),

where d0 and d1 are numbers such that

un = · · · = un+d0
< un+d0+1 and uN−n−d1−1 < uN−n−d1

= · · · = uN−n.

The number of control points of the new curve representation is is N ′ − n ′. For

m curves in the space of dimension d it is necessary to allocate an array of length

N ′ + 1 floating point numbers for the knots and an array of length (N ′ − n)md

floating point numbers for the control points.

#define mbs_BSDegElevC1f(indegree,inlastknot,inknots,incoeff, \

deltadeg,outdegree,outlastknot,outknots,outcoeff,freeend) \

mbs_multiBSDegElevf(1,1,indegree,inlastknot,inknots,0,incoeff, \

deltadeg,outdegree,outlastknot,outknots,0,outcoeff,freeend)

#define mbs_BSDegElevC2f(indegree,inlastknot,inknots,inctlpoints, \

deltadeg,outdegree,outlastknot,outknots,outctlpoints,freeend) \

mbs_multiBSDegElevf(1,2,indegree,inlastknot,inknots, \

0,(float*)inctlpoints,deltadeg, \

outdegree,outlastknot,outknots,0,(float*)outctlpoints,freeend)

#define mbs_BSDegElevC3f(indegree,inlastknot,inknots,inctlpoints, \

deltadeg,outdegree,outlastknot,outknots,outctlpoints,freeend) ...

#define mbs_BSDegElevC4f(indegree,inlastknot,inknots,inctlpoints, \

deltadeg,outdegree,outlastknot,outknots,outctlpoints,freeend) ...

Four macros, which call mbs_multiBSDegElevf for degree elevation of one scalar

spline function of B-spline curve in the space of dimension 2, 3 or 4.
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Figure 7.8. Degree elevation of a planar B-spline curve from 3 to 4.

void mbs_multiBSDegElevClosedf ( int ncurves, int spdimen,

int indegree, int inlastknot, const float *inknots,

int inpitch, const float *inctlpoints,

int deltadeg,

int *outdegree, int *outlastknot,

float *outknots, int outpitch, float *outctlpoints );

The procedure mbs_multiBSDegElevClosedf performs degree elevation of

closed B-spline curves.

The parameter ncurves specifies the number of curves, the value of the param-

eter spdimen is the dimension of the space in which they are located.

The parameters indegree, inlastknot, inknots, inpitch, inctlpoints de-

scribe the input data — degree n, number N of the last knot, the knot se-

quence u0, . . . , uN the pitch of the array with the control points and that array

respectively. The parameter deltadeg (whose value must be nonnegative) specifies

the degree increment.

The parameters *outdegree and *outlastknot are variables, to which the as-

signs the final representation degree and the number of the last knot of this rep-

resentation. The final knot sequence is stored in the array outknots. The pa-

rameter outpitch specifies the pitch of the array outctlpoints, used to store the

control points of the final representation.
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The number of the last knot of the resulting representation of the closed curve

is

N ′ = N+ (l+ 1+ r− d0 − d1)(n
′ − n),

where r is the multiplicity of the knot un in the given representation of degree n

(without counting u0), and d0 and d1 are nmbers such that

un = · · · = un+d0
< un+d0+1 and uN−n−d1−1 < uN−n−d1

= · · · = uN−n.

#define mbs_BSDegElevClosedC1f(indegree,inlastknot,inknots, \

incoeff,deltadeg,outdegree,outlastknot,outknots,outcoeff) \

mbs_multiBSDegElevClosedf(1,1,indegree,inlastknot,inknots,0, \

incoeff,deltadeg,outdegree,outlastknot,outknots,0,outcoeff)

#define mbs_BSDegElevClosedC2f(indegree,inlastknot,inknots, \

inctlpoints,deltadeg,outdegree,outlastknot,outknots, \

outctlpoints) \

mbs_multiBSDegElevClosedf(1,2,indegree,inlastknot,inknots,0, \

(float*)inctlpoints,deltadeg,outdegree,outlastknot,outknots, \

0,(float*)outctlpoints)

#define mbs_BSDegElevClosedC3f(indegree,inlastknot,inknots, \

inctlpoints,deltadeg,outdegree,outlastknot,outknots, \

outctlpoints) ...

#define mbs_BSDegElevClosedC4f(indegree,inlastknot,inknots, \

inctlpoints,deltadeg,outdegree,outlastknot,outknots, \

outctlpoints) ...

Four macros calling the procedure mbs_multiBSDegElevClosedf in order to

perform degree elevation of one closed B-spline curve located in the space of dimen-

sion 1, 2, 3, 4 respectively. For the description of the parameters see the description

of that procedure.

Example — degree elevation of a B-spline patch

The degree of a patch may be elevated with respect to the first („u”) or the second

(„v”) parameter. The methods of calling the appropriate procedures for both cases,

shown in the example below, are based on assumption that all control nets of the

patch (the initial and the final ones) are “packed”, i.e. the pitch of each array with

the control points is equal to the length of representation of one column.

We have the numbers n and m, which specify the degree of the initial repre-

sentation of the patch, the numbers N and M, which specify the lengths of knot

sequences, the arrays uknots and vknots (of length N+ 1 and M+ 1 respectively)

with the knots, and the array ctlp with (N−n)(M−m)d floating point numbers,
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the coordinates of the control points of the patch. The pitch of the last array is

(M−m)d.

To raise the degree with respect to the “u” parameter, we can see this patch

as a B-spline curve in the space of dimension (M −m)d. Then we compute the

lengths of the necessary arrays, we allocate the memory and we call the procedure

of degree elevation (here the degree increment is 1):

ku = mbs_NumKnotIntervalsf ( n, N, uknots );

for ( d0 = 0; uknots[n + d0+ 1] == uknots[n]; d0++ )

;

for ( d1 = 0; uknots[N − n− d1− 1] == unkots[N − n]; d1++ )

;

ua = pkv_GetScratchMemf ( N+ 2+ ku− d0− d1 );

cpa = pkv_GetScratchMemf ( (N− n+ ku− d0− d1)(M−m)d );

mbs_multiBSDegElevf ( 1, (M−m)d, n, N, uknots, 0, ctlp, 1,

&na, &Na, ua, 0, cpa, false );

The pitches of the arrays cp and cpa are irrelevant (the parameters which specify

them are 0), because here only one curve is subject to the degree elevation. The

variables na and Na are assigned the degree (equal to n+ 1) and the number of the

last knot (equal to N+ku−d0−d1+1) of the resulting representation of the patch.

The degree with respect to the parameter “v” and the knot sequence related with

this parameter are identical as in the initial representation of the patch.

Degree elevation with respect to the parameter “v” is equivalent to the degree

elevation of B-spline curves represented by the columns of the control net. The

appropriate code, which raises the degree by 1, looks like this:

kv = mbs_NumKnotIntervalsf ( m, M, vknots );

for ( d0 = 0; vknots[m + d0 + 1] == vknots[m]; d0++ )

;

for ( d1 = 0; vknots[M−m− d1− 1] == vnkots[M −m]; d1++ )

;

va = pkv_GetScratchMemf ( M+ 2+ kv− d0 − d1 );

cpa = pkv_GetScratchMemf ( (N− n)(M−m+ kv− d0− d1)d );

pitch1 = (M−m)d;

pitch2 = (M−m+ kv− d0 − d1)d;

mbs_multiBSDegElevf ( N− n, d, m, M, vknots, pitch1, ctlp, 1,

&ma, &Ma, va, pitch2, cpa, false );

If degree elevation by an increment greater than 1 is needed, one can execute the

code above a number of times, but it is much faster and more accurate to specify

the appropriate parameter deltadeg. It is necessary then to compute correctly the

lengths and pitches of the arrays to accomodate the resulting representation of the

patch. The sufficient information may be found in the description of the procedure

mbs_multiBSDegElevf
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Figure 7.9. Degree elevation of a B-spline patch.

7.11 Degree reduction

Degree reduction of a B-spline curve is a problem of approximation (somewhat like

knot removing). The aim is to obtain a B-spline curve s̃ of degree ñ = n − d (for

d ∈ {1, . . . , n}), which is close to a given curve s of degree n. A delicate point

of this construction is the arbitrary choice of the knot sequence for the resulting

curve, because of its influence on the curve shape. The following assumptions seem

obvious:

� The resulting curve must have the same domain.

� If the given curve s was obtained by degree elevation by d of a curve s̃ of

degree n ′, then the result of degree reduction must be the curve s̃.

In the constructions implemented in the procedures described in this section the

set of knots of the resulting curve is a subset of the set of knots of the given curve.

The rule of choosing the multiplicities of the knots is as follows: let a knot ui of

the given curve has multiplicity r. If r <= d, then the multiplicity r̃ of this knot in
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the result representation is 1. If d < r <= n + 1, then r̃ = r− d, and if r > n + 1,

then r̃ = n− d+ 1.

For a non-closed curve the knot sequence obtained based on the rule above

is modified so as to obtain a sequence ũ0, . . . , ũÑ such that ũn ′ < ũn ′+1 and

ũÑ−n ′−1 < ũÑ−n ′−1. To do this, at both ends of the sequence some knots may be

rejected or appended (the first and the last knot may be appended).

The next step is to find an auxiliary knot sequence û0, . . . , ûN̂, which con-

tains all knots of the resulting sequence, with multiplicities greater by d. By knot

insertion (with the Oslo algorithm, the procedure mbs_multiOsloInsertKnotsf)

and removing knots of multiplicities exceeding n + 1, (with the procedure

mbs_multiRemoveSuperfluousKnotsf) the auxiliary representation of the given

curve s, based on the auxiliary knot sequence, is obtained:

s(t) =

N−n−1∑

i=0

diN
n
i (t) =

N̂−n−1∑

i=0

d̂iN̂
n
i (t).

Then the matrix A, which describes degree elevation by d of the B-spline curve of

degree n ′ based on the resulting knot sequence, is constructed. The control points

d̃0, . . . , d̃Ñ−n ′−1 of the resulting curve s̃ are computed by solving the linear least

squares problem for the system of equations

Ax = b,

where x = [d̃0, . . . , d̃Ñ−n ′−1]
T and b = [d̂0, . . . , d̂N̂−n−1]

T .

boolean mbs_multiBSDegRedf ( int ncurves, int spdimen,

int indegree, int inlastknot, const float *inknots,

int inpitch, const float *inctlpoints,

int deltadeg,

int *outdegree, int *outlastknot, float *outknots,

int outpitch, float *outctlpoints );

The procedure mbs_multiBSDegRedf reduces the degree of non-closed B-spline

curves, as described above. The input parameters specify: ncurves — the number

of curves, spdimen — dimension of the space with the curves, indegree — degree n,

inlastknot — the index N of the last knot of the given curves, inknots — the

knot sequence of the given curves (in an array of length N + 1), inpitch — pitch

of the array with the given control points, deltadeg — the number d, by which

the degree is to be reduced.

Output parameters: *outdegree — the variable, to which the degree n ′ of the

result curves will be assigned, *outlastknot — the variable, to which the index Ñ

of the last knot of the result knot sequence will be assigned, outknots — an array

for storing these knots ũ0, . . . , ũÑ, outpitch — pitch of the array outctlpoints,

in which the control points of the resulting curves will be stored.
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Caution: Currently there is no procedure to compute the length of the resulting

knot sequence, which might be called before the allocation of the arrays for the

result knots and control points. Before such a procedure is implemented, one has

to guess the sufficient sizes for these arrays and guess the sufficiently large pitch for

the array outctlpoints.

The return value is true if the construction succeeded and false otherwise.

However, in case of error the procedure pkv_SignalError is called, and its default

behaviour causes the program termination.

Figure 7.10. Degree reduction of a B-spline curve from 5 to 4

#define mbs_BSDegRedC1f(indegree,inlastknot,inknots,incoeff, \

deltadeg,outdegree,outlastknot,outknots,outcoeff) \

mbs_multiBSDegRedf(1,1,indegree,inlastknot,inknots,0,incoeff, \

deltadeg,outdegree,outlastknot,outknots,0,outcoeff)

#define mbs_BSDegRedC2f(indegree,inlastknot,inknots,incpoints, \

deltadeg,outdegree,outlastknot,outknots,outcpoints) \

mbs_multiBSDegRedf(1,2,indegree,inlastknot,inknots,0, \

(float*)incpoints, \

deltadeg,outdegree,outlastknot,outknots,0,(float*)outcpoints)

#define mbs_BSDegRedC3f(indegree,inlastknot,inknots,incpoints, \

deltadeg,outdegree,outlastknot,outknots,outcpoints) ...

#define mbs_BSDegRedC4f(indegree,inlastknot,inknots,incpoints, \

deltadeg,outdegree,outlastknot,outknots,outcpoints) ...

The macros above call the procedure mbs_multiBSDegRedf in order to reduce

the degree of one curve in the space of dimension 1, . . . , 4.
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boolean mbs_multiBSDegRedClosedf ( int ncurves, int spdimen,

int indegree, int inlastknot, const float *inknots,

int inpitch, const float *inctlpoints,

int deltadeg,

int *outdegree, int *outlastknot, float *outknots,

int outpitch, float *outctlpoints );

The procedure mbs_multiBSDegRedClosedf reduces degree of closed B-spline

curves. Its parameters have identical descriptions as the parameters of the proce-

dure mbs_multiBSDegRedf.

#define mbs_BSDegRedClosedC1f(indegree,inlastknot,inknots, \

incoeff,deltadeg,outdegree,outlastknot,outknots,outcoeff) \

mbs_multiBSDegRedClosedf(1,1,indegree,inlastknot,inknots,0, \

incoeff,deltadeg,outdegree,outlastknot,outknots,0,outcoeff)

#define mbs_BSDegRedClosedC2f(indegree,inlastknot,inknots, \

incpoints,deltadeg,outdegree,outlastknot,outknots,outcpoints) \

mbs_multiBSDegRedClosedf(1,2,indegree,inlastknot,inknots,0, \

(float*)incpoints, \

deltadeg,outdegree,outlastknot,outknots,0,(float*)outcpoints)

#define mbs_BSDegRedClosedC3f(indegree,inlastknot,inknots, \

incpoints,deltadeg,outdegree,outlastknot,outknots,outcpoints) ...

#define mbs_BSDegRedClosedC4f(indegree,inlastknot,inknots, \

incpoints,deltadeg,outdegree,outlastknot,outknots,outcpoints) ...

The macros above call mbs_multiBSDegRedClosedf in order to reduce degree

of one closed curve located in the space of dimension 1, . . . , 4.

Figure 7.11. Degree reduction of a closed B-spline curve from 5 to 4
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7.12 Algebraic operations on spline functions and curves

The purpose of the procedures described in this section is computing a B-spline

representation of the sum of (vector) B-spline curves and the product of (scalar)

functions and (vector) curves. These operations are necessary in various applica-

tions, e.g. in constructing surfaces, which prescribed order of geometric continuity.

7.12.1 Addition of splines

Adding, i.e. computing the representation of a sum of B-spline curves must be

preceded by finding the degree of this representation. The degree of the sum is

the greatest of degrees of the terms. The knot sequence is determined by the knot

sequence of the terms, which must determine the same domain. To add two curves

(which must reside in the same space), it is necessary to find the representation

of those curves, with the degree and the knot sequence, which will be used to

represent the result. This auxiliary task is the most complicated and costly part

of the procedure of adding the spline curves. The last and the simplest part of the

computation is summing the coefficients (the control points) of the terms.

boolean mbs_FindBSCommonKnotSequencef ( int *degree, int *lastknot,

float **knots, int nsequences, ... );

The procedure mbs_FindBSCommonKnotSequencef obtains k knot sequences,

used to represent B-spline curves of given degrees. The task of this procedure

is to find a minimal degree and a knot sequence suitable to represent the sum of

the curves. This degree n is the greatest of the given degrees or the initial value

of the variable *degree, if it is greater (it is thus possible to enforce the greater

degree of the common representation of the curves). The knot sequence found by

this procedure has the following properties:
� The boundary knots have multiplicities n + 1 (thus the external knots, in-

cluding the extremal ones, coincide with the boundary knots).

� The sequence contains all internal knots from the given sequences.

� The multiplicities of the internal knots are chosen so that after the degree

elevation up to n it is possible to represent each curve with this knot sequence.

The parameters degree, lastknot and knots are used to output the result

(due to the C language syntax they appear at the beginning of the parameter list,

which deviates from the convention assumed in the BSTools package). The variables

pointed by these parameters obtain values, which are the degree, the number of the

last knot and a pointer to the array with knots respectively.

Caution: The procedure allocates this array on the scratch memory stack, and the

calling subprogram is responsible for its deallocation, (using pkv_FreeScratchMem

or pkv_SetScratchMemTop).
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The parameter nsequences specifies the number k of given knot sequences (there

must be k ≥ 1). At the calling point it must be followed by 3k parameters. The

consecutive triples of parameters describe the knot sequences. The first element of

a triple is the degree ni (of type int), the second element is the index Ni of the

last knot (of type int), and the third element is a pointer to the array with the

knots (Ni + 1 floating point numbers — this parameter is of type float*).

All given knot sequences must have the same knot with the number ni; the

same concerns the knot with the number Ni − ni.

The value returned is true if the computation was successful, and false in case

of failure. The possible reasons of failure are invalid data or insufficient space on

the stack of scratch memory.

boolean mbs_multiAdjustBSCRepf ( int ncurves, int spdimen,

int indegree, int inlastknot, const float *inknots,

int inpitch, const float *inctlpoints,

int outdegree, int outlastknot, const float *outknots,

int outpitch, float *outctlpoints );

The procedure mbs_multiAdjustBSCRepf „adjusts” the representation of B-

spline curves, i.e. it finds a representation of a given degree, based on the given

knot sequence. If necessary, degree elevation is done, followed by inserting knots

(with the Oslo algorithm). To add k B-spline curves with different representations

(but with the same domain), one has to find the degree and knot sequence suitable

to represent them all (using mbs_FindBSCommonKnotSequencef), and then find the

proper representation of each term, by calling mbs_multiAdjustBSCRepf.

The parameters: ncurves — number of curves, spdimen — space dimension,

indegree, inlastknot, inknots — degree, index of the last knot and pointer to

the array with knots of the given representation, inpitch — pitch of the array

inctlpoints, with the control points of the curve.

The parameters outdegree, outlastknot and outknots describe the degree

and knot sequence of the representation to be found. The control points of this

representation will be stored in the array outctlpoints, whose pitch is outpitch.

The value returned is true in case of success and false in case of failure (caused

by invalid data or insufficient space on the scratch memory stack).
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#define mbs_AdjustBSCRepC1f(indegree,inlastknot,inknots, \

inctlpoints,outdegree,outlastknot,outknots,outctlpoints) \

mbs_multiAdjustBSCRepf (1,1,indegree,inlastknot,inknots,0, \

inctlpoints,outdegree,outlastknot,outknots,0,outctlpoints)

#define mbs_AdjustBSCRepC2f(indegree,inlastknot,inknots, \

inctlpoints,outdegree,outlastknot,outknots,outctlpoints) \

mbs_multiAdjustBSCRepf (1,2,indegree,inlastknot,inknots,0, \

(float*)inctlpoints,outdegree,outlastknot,outknots,0, \

(float*)outctlpoints)

#define mbs_AdjustBSCRepC3f(indegree,inlastknot,inknots, \

inctlpoints,outdegree,outlastknot,outknots,outctlpoints) ...

#define mbs_AdjustBSCRepC4f(indegree,inlastknot,inknots, \

inctlpoints,outdegree,outlastknot,outknots,outctlpoints) ...

void mbs_multiAddBSCurvesf ( int ncurves, int spdimen,

int degree1, int lastknot1, const float *knots1,

int pitch1, const float *ctlpoints1,

int degree2, int lastknot2, const float *knots2,

int pitch2, const float *ctlpoints2,

int *sumdeg, int *sumlastknot, float *sumknots,

int sumpitch, float *sumctlpoints );

The procedure mbs_multiAddBSCurvesf computes the sums of ncurves pairs

of B-spline curves in the space of dimension spdimen.

The first curve of each pair is described with the parameters degree1 (degree),

lastknot1 (the index of the last knot), knots1 (array of knots) i ctlpoints1 (array

with control points, whose pitch is pitch1).

The second curve of each pair is similarly described by the parameters degree2,

lastknot2, knots2, pitch2 and ctlpoints2.

The output parameters are *sumdeg (it is assigned the degree of the sum)

*sumlastknot (the index of the last knot of the sum representation) sumknots

(array in which the procedure stores the knots of the sum representation),

sumctlpoints (array in which the procedure stores the control points of the sums;

its pitch is sumpitch).
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#define mbs_AddBSCurvesC1f(degree1,lastknot1,knots1,ctlpoints1, \

degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) \

mbs_multiAddBSCurvesf (1,1,degree1,lastknot1,knots1,0, \

ctlpoints1,degree2,lastknot2,knots2,0,ctlpoints2, \

sumdeg,sumlastknot,sumknots,0,sumctlpoints)

#define mbs_AddBSCurvesC2f(degree1,lastknot1,knots1,ctlpoints1, \

degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) \

mbs_multiAddBSCurvesf (1,2,degree1,lastknot1,knots1,0, \

(float*)ctlpoints1, \

degree2,lastknot2,knots2,0,(float*)ctlpoints2, \

sumdeg,sumlastknot,sumknots,0,(float*)sumctlpoints)

#define mbs_AddBSCurvesC3f(degree1,lastknot1,knots1,ctlpoints1, \

degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) ...

#define mbs_AddBSCurvesC4f(degree1,lastknot1,knots1,ctlpoints1, \

degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) ...

Figure 7.12. Spline functions of degrees 3 and 4 and their sum

void mbs_multiSubtractBSCurvesf ( int ncurves, int spdimen,

int degree1, int lastknot1, const float *knots1,

int pitch1, const float *ctlpoints1,

int degree2, int lastknot2, const float *knots2,

int pitch2, const float *ctlpoints2,

int *sumdeg, int *sumlastknot, float *sumknots,

int sumpitch, float *sumctlpoints );
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#define mbs_SubtractBSCurvesC1f(degree1,lastknot1,knots1, \

ctlpoints1,degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) \

mbs_multiSubtractBSCurvesf (1,1,degree1,lastknot1,knots1,0, \

ctlpoints1,degree2,lastknot2,knots2,0,ctlpoints2, \

sumdeg,sumlastknot,sumknots,0,sumctlpoints)

#define mbs_SubtractBSCurvesC2f(degree1,lastknot1,knots1, \

ctlpoints1,degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) \

mbs_multiSubtractBSCurvesf (1,2,degree1,lastknot1,knots1,0, \

(float*)ctlpoints1,degree2,lastknot2,knots2,0, \

(float*)ctlpoints2,sumdeg,sumlastknot,sumknots,0, \

(float*)sumctlpoints)

#define mbs_SubtractBSCurvesC3f(degree1,lastknot1,knots1, \

ctlpoints1,degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) ...

#define mbs_SubtractBSCurvesC4f(degree1,lastknot1,knots1, \

ctlpoints1,degree2,lastknot2,knots2,ctlpoints2, \

sumdeg,sumlastknot,sumknots,sumctlpoints) ...
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7.12.2 Transformation between Bernstein and scaled Bernstein bases

This section contains the description of auxiliary procedures used by the procedures

of multiplication of spline functions and curves.

To multiply the polynomials given by the coefficients in the Bernstein bases, it is

convenient to transform the data to the scaled bases. The scaled basis of degree n

consists of the polynomials

bni (t)
def
=

1
(

n
i

)Bn
i (t) = t

i(1− t)n−i. (7.23)

The coefficients in this basis are obtained by multiplying the coefficients of the

polynomial in the Bernstein basis by
(

n
i

)

.

The result of multiplication of the polynomials represented in the scaled bases

of degrees n andm is the sequence of coefficients in the scaled basis of degree n+m.

Having it, we can transform it to the Bernstein basis of degree n +m, with the

appropriate divisions.

void mbs_multiBezScalef ( int degree, int narcs,

int ncurves, int spdimen,

int pitch, float *ctlpoints );

The procedure mbs_multiBezScalef obtains an array of Bézier curves of degree

degree in the space of dimension spdimen and it computes the coefficients of the

curves in the scaled basis. An assumption is made that these curves are consecutive

arcs of B-spline curves, which have been obtained by the appropriate knot insertions

(e.g. with the mbs_multiMaxKnotInsf procedeure).

The parameters: degree — degree of the curves, narcs — the number of

Bézier arcs making each B-spline curve, ncurves — the number of B-spline curves,

spdimen — the dimension d of the space, in which the curves reside.

The parameter pitch specifies the pitch of the array ctlpoints, which before

calling the procedure contains the control points of the curves (i.e. their coefficients

in the Bernstein bases of degree n = degree), and on return it contains the coeffi-

cients in the scaled bases. The parameter pitch specifies the distance between the

beginnings of the first control points of consecutive B-spline curves. The represen-

tations of consecutive Bézier curves always occupy (n+ 1)d places, without unused

areas between them. The pitch of this array cannot be less than (n+ 1)d*narcs.

void mbs_multiBezUnscalef ( int degree, int narcs,

int ncurves, int spdimen,

int pitch, float *ctlpoints );

The procedure mbs_multiBezUnscalef obtains the array with the representa-

tions of polynomial curves in the scaled bases and it does the transformation to the

Bernstein bases, i.e. to the Bézier representation. The parameters of this procedure

(except for the description of the initial and final contents of the array ctlpoints)

are identical as the parameters of the procedure mbs_multiBezScalef.
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7.12.3 Multiplication of spline functions and curves

The procedures described in this section multiply polynomial and spline curves (i.e.

vector functions) by scalar polynomials and splines. The data for the procedures

consist of representations of one or more scalar functions (polynomial or splines) si
and one or more vector functions (polynomials or splines) vi. Both these numbers

have to be equal or one of them must be 1. The procedures compute the Bézier or

B-spline representations of the vector functions

wi(t) = si(t)vi(t),

and if there is only one scalar sunction s0 and more vector functions, then each

vector function will be multiplied by s0, and similarly if there are many scalar

functions si and one vector function v0 then the procedures compute the products

of the functions si with v0.

The procedures described here may be applied in various advanced construc-

tions. The simplest is the degree elevation of a curve, by multiplying it by the

constanf scalar function s0(t) = 1 (the degree of representation of s0 is the dif-

ference between the degrees of the initial and final curve representations). How-

ever, in this case it is better to use the specific procedure of degree elevation

(e.g. mbs_multiBSDegElevf), which makes this computation in a less heavy-handed

manner.

int mbs_BSProdRepSizef ( int degree1, int lastknot1,

const float *knots1,

int degree2, int lastknot2,

const float *knots2 );

The procedure mbs_BSProdRepSizef gets two knot sequences, knots1 of length

lastknot1+1 and knots2 of length lastknot2+1. The first sequence is the part

of representation of spline functions of degree degree1, and the second — of the

functions of degree degree2. The sequences should determine the same domain of

the spline curves. The value of the procedure is the index of the last element of the

shortest knot sequence sufficient to represent the product of any spline functions

possible to represent with the two given knot sequences.

void mbs_SetBSProdKnotsf ( int degree1, int lastknot1,

const float *knots1,

int degree2, int lastknot2,

const float *knots2,

int *degree, int *lastknot,

float *knots );

The procedura mbs_SetBSProdKnotsf gets two knot sequences and it generates

another sequence, which is sufficient to represent the product of splines defined

with the given two knot sequences.
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Figure 7.13. Multiplication of a planar vector B-spline curve by a spline function.

void mbs_multiMultBezCf ( int nscf, int degscf, int scfpitch,

const float *scfcoeff,

int spdimen,

int nvecf, int degvecf, int vecfpitch,

const float *vecfcp,

int *degprod, int prodpitch,

float *prodcp );

The procedure mbs_multiMultBezCf multiplies the polynomials represented in

the Bernstein polynomial basis of degree degscf and polynomial vector functions

(Bézier curves) of degree degvecf. The parameter spdimen specifies the dimension

of the space, in which the curves reside. The number of the scalar functions is

determined by the parameter nscf, and the number of the vector curves is specified

by the parameter nvecf. The number of products computed by the procedure is

the greater number of the two, see remarks at the beginning of this section.

The array scfcoeff contains the coefficients of the polynomials in the Bernstein

basis; the coefficients of each polynomial occupy the consecutive places in the array,

and its pitch (difference between the indexes of the first coefficients of two consecu-

tive polynomials) is specified by the parameter scfpitch. Similarly, the parameter

vecfpitch specifies the pitch of the array vecfcp with the vector coefficients of the
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curves (each coefficient consists of spdimen numbers).

The products are represented in the Bernstein basis of degree equal to the sum

of degrees of the arguments (i.e. degscf + degvecf); this degree is returned as

the value of the parameter degprod. The representations of consecutive products

consist of the sequences of spdimen ∗ (stopie"n + 1) numbers, which are stored by

the procedure to the array prodcp, whose pitch is prodpitch.

void mbs_multiMultBSCf ( int nscf, int degscf,

int scflastknot, const float *scfknots,

int scfpitch, const float *scfcoeff,

int spdimen,

int nvecf, int degvecf,

int vecflastknot, const float *vecfknots,

int vecfpitch, const float *vecfcp,

int *degprod, int *prodlastknot,

float *prodknots,

int prodpitch, float *prodcp );

The procedure mbs_multiMultBSCf computes the representations of the prod-

ucts of nscf scalar spline functions si and nvecf vector spline functions vi. The

numbers of the scalar functions and the vector functions may be different (one of

them must be then 1), see the remarks at the beginning of this section.

The scalar functions are represented with the parameters degscf (representation

degree), scflastknot and scfknots (index of the last knot and the array with these

knots), scfcoeff and scfpitch (array with the coefficients in the B-spline basis

and the pitch of this array).

The vector functions in the space of dimension spdimen are similarly represented

by the parameters degvecf, vecflastknot, vecfknots, vecfpitch and vecfcp.

The result is stored in the arrays prodknots (knots) and prodcp (vector coef-

ficients in the B-spline basis of degree equal to the sum of degrees of the factors;

this degree is returned using the parameter degprod). The pitch of the latter ar-

ray is specified by the parameter prodpitch. The initial value of the parameter

*prodlastknot specifies the amount of space in the array prodknots (it has to

be greater by 1 than the value of this parameter). It is necessary to compute this

length and to allocate the array before calling the procedure mbs_multiMultBSCf.

It is best to do it using the procedure mbs_BSProdRepSizef, which scans the knot

sequences of the arguments of the multiplication, passed as its parameters.
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7.12.4 Computing normal vector patches

void mbs_BezP3NormalDeg ( int degreeu, int degreev,

int *ndegu, int *ndegv );

char mbs_BezP3Normalf ( int degreeu, int degreev,

const point3f *ctlpoints,

int *ndegu, int *ndegv, vector3f *ncp );

The procedure mbs_BezP3Normalf computes the control points of the patch

n = pu∧pv, which describes the normal vector of a given polynomial Bézier patch

p of degree (n,m) in R
3. The parameters degreeu = n and degreev = m specify

the degree of the patch p. Its control points are given in the array ctlpoints,

which contains the subsequent columns without unused areas between them.

The degree of the patch n is *ndegu= 2n − 1 with respect to u and *ndegv=

2m− 1 with respect to v, and its control points are stored by the procedure in the

array ncp (without unused areas between the columns).

The value returned by the procedure mbs_BezP3Normalf is 0 in case of failure

(invalid parameters or not enough scratch memory), or 1 if the computation has

been successful.

The procedure mbs_BezP3NormalDeg computes the degree of the normal vector

patch. It may be used to allocate a sufficient memory block for storing the control

points of this patch.

void mbs_BezP3RNormalDeg ( int degreeu, int degreev,

int *ndegu, int *ndegv );

char mbs_BezP3RNormalf ( int degreeu, int degreev,

const point4f *ctlpoints,

int *ndegu, int *ndegv, vector3f *ncp );

The procedure mbs_BezP3RNormalf computes the control points of the polyno-

mial Bézier patch n, which describes the normal vector of a given rational Bézier

patch p of degree (n,m) in R
3. These control points are obtained by rejecting

the weight coordinate of the control points of the patch N = P ∧ Pu ∧ Pv in R
4.

The parameters degreeu = n and degreev = m specify the degree of the given

patch p. The control points of its homogeneous representation are given in the

array ctlpoints, which contains the subsequent columns without unused areas

between them.

The degree of the normal vector patch is *ndegu= 3n − 2 with respect to u

and *ndegv= 3m − 2 with respect to v, and its control points are stored in the

array ncp (without unused areas between the columns).

The procedure mbs_BezP3RNormalf returns 0 in case of failure (invalid param-

eters or not enough scratch memory), or 1, in case of success.

The procedure mbs_BezP3RNormalDeg computes the degree of the patch n. It

may be used to allocate a sufficient memory block for the control points of n.
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a)

b)

Figure 7.14. Control nets of Béziera patches and their

normal vector patches: a) polynomial patch, b) rational patch.
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7.13 B-spline end knots change

void mbs_multiBSChangeLeftKnotsf ( int ncurves, int spdimen,

int degree, float *knots,

int pitch, float *ctlpoints,

float *newknots );

The procedure mbs_multiBSChangeLeftKnotsf changes the representation of

B-spline curves of degree n, by replacing the initial n+ 1 knots by the knots given

in the array newknots. It may cause extending or trimming the domain and in this

case the first polynomial arc of each curve is extended or shortened.

The new knots must be given in the nondecreasing order, and there must be

un < un+1

void mbs_multiBSChangeRightKnotsf ( int ncurves, int spdimen,

int degree,

int lastknot, float *knots,

int pitch, float *ctlpoints,

float *newknots );

The procedure mbs_multiBSChangeRightKnotsf changes the representation

of B-spline curves of degree n, by replacing its last n + 1 knots (i.e. the knots

uN−n, . . . , uN) by the knots given in the array newknots. It may cause extending

or trimming the domain and in this case the last polynomial arc of each curve is

elongated or shortened.

The new knots must be given in the nondecreasing order, and there must be

uN−n > uN−n−1.

#define mbs_BSChangeLeftKnotsC1f(degree,knots,coeff,newknots) \

mbs_multiBSChangeLeftKnotsf(1,1,degree,knots,0,coeff,newknots)

#define mbs_BSChangeLeftKnotsC2f(degree,knots,ctlpoints,newknots) \

mbs_multiBSChangeLeftKnotsf(1,2,degree,knots,0, \

(float*)ctlpoints,newknots)

#define mbs_BSChangeLeftKnotsC3f(degree,knots,ctlpoints,newknots) \

...

#define mbs_BSChangeLeftKnotsC4f(degree,knots,ctlpoints,newknots) \

...

#define mbs_BSChangeRightKnotsC1f(degree,lastknot,knots,coeff, \

newknots) ...

#define mbs_BSChangeRightKnotsC2f(degree,lastknot,knots, \

ctlpoints,newknots) ...

#define mbs_BSChangeRightKnotsC3f(degree,lastknot,knots, \

ctlpoints,newknots) ...

#define mbs_BSChangeRightKnotsC4f(degree,lastknot,knots, \

ctlpoints,newknots)
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The macros shown above call the procedure mbs_multiBSChangeLeftKnotsf

and mbs_multiBSChangeRightKnotsf in order to change the representation of one

B-spline curve in the space of dimension 1, . . . , 4.

Figure 7.15. A B-spline curve before and after the end representation change.
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7.14 Constructing curves of interpolation

The construction of a curve of interpolation is sometimes the main problem, and

sometimes it is a part of a bigger problem, like the construction of lofted surfaces

or filleting surfaces.

7.14.1 Cubic spline curves of interpolation

This section is devoted to the procedure of computing of a B-spline representation

of cubic spline curves of interpolation. The interpolation knots (given as input

data) will be the knots of the curves, and the first and last interpolation knots will

be the curve (boundary) knots of multiplicity 3. In addition, there will be two

extremal knots, necessary in the B-spline representation.

Apart from the knots and interpolation conditions it is necessary to specify

boundary conditions. The conditions which may be processed by the current

version of the procedure are described later.

void mbs_multiBSCubicInterpf ( int lastinterpknot,

float *interpknots,

int ncurves, int spdimen,

int xpitch, const float *x,

int ypitch,

char bcl, const float *ybcl,

char bcr, const float *ybcr,

int *lastbsknot,

float *bsknots,

int bspitch,

float *ctlpoints );

The procedure mbs_multiBSCubicInterpf constructs cubic B-spline curves of

interpolation of class C2.

The parameters: lastinterpknot specifies the index of the last interpolation

knot, which will be denoted by N. The interpolation knots u0, . . . , uN, which have

to form an increasing sequence, are to be specified in the array interpknots.

The parameters ncurves and spdimen specify the number of curves and the

space dimension. The array x contains the coordinates of points to be interpolated;

for each curve it is necessary to supply spdimen(lastinterpknot+1) floating point

numbers. The pitch of this array (i.e. the distance between the beginnings of data

for consecutive curves) is specified by the parameter xpitch.

The parameter ypitch specifies the pitch of the arrays ybcl and ybcr, which

contain the data describing the boundary conditions.

The parameters bcl and bcr are used to select the boundary conditions at the

left and right end of the curves respectively; all the curves are constructed with

the boundary conditions of the same kind, but at each end the boundary condition
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a) b)

c) d)

e) f)

Figure 7.16. Cubic B-spline curves of interpolation.

The knots are the numbers 0, 1, . . . , 10. The boundary conditions are:

a) given derivatives at end points, b) Bessel end conditions,

c) given second order derivatives, d) natural spline,

e) not-a-knot condition, f) third order derivatives at end points equal to 0.

may be different. The valid values of the two parameters are defined (as macros)

in the file multibs.h, and their current list is as follows:

BS3_BC_FIRST_DER — the boundary condition is given by specifying the derivative

vector of each curve at the left or right interpolation knot (i.e. at u0 or uN). The

coordinates of those vectors for all the curves must be given in the array ybcl

(for the knot u0) or ybcr (for the knot uN). Thus the arrays ybcl and ybcr

for each curve contain spdimen floating point numbers, being the coordinates

of those vectors.
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BS3_BC_FIRST_DER0 — the boundary condition is as above, with zero derivative

vector at the appropriate interpolation knot. The parameter ybcl or ybcr is

then ignored, so its value may be NULL.

BS3_BC_SECOND_DER — the boundary condition is given by specifying the second

order derivative vector at the knot u0 or uN. The coordinates of this vector

(or vectors, if there is more than one curve to construct) are given in the array

ybcl or ybcr respectively.

BS3_BC_SECOND_DER0 — The boundary condition is as above, with the zero deriva-

tive vector at the appropriate knot. The parameter ybcl or ybcr is ignored and

its value may be NULL.

A curve satisfying such a condition at both ends is called a natural spline

curve.

BS3_BC_THIRD_DER — the boundary condition is given by specifying the third order

derivative vector of the curves. Their coordinates are given in the array ybcl

or ybcr.

BS3_BC_THIRD_DER0 — the boundary condition is given by requiring that the third

order derivative at the end be the zero vector. As the third order derivative of

a cubic polynomial arc is constant, this boundary condition means that the first

or the last polynomial arc of the curve is a piece of a parabola. The parameter

ybcl or ybcr for this boundary condition is ignored, and its value may be NULL.

BS3_BC_BESSEL — selects the so called Bessel boundary condition. The derivative

of the curve at the first or the last interpolation knot is the derivative of the

quadratic curve of interpolation for the first three or the last three knots and

points.

The parameter ybcl or ybcr in case of the Bessel end condition is ignored, and

its value may be NULL.

BS3_BC_NOT_A_KNOT — the not-a-knot boundary condition; the interpolation knot

u1 or uN−1 is not a knot of the spline curve, i.e. the polynomial arcs of the

curve meet at that knot with the C∞ continuity. The parameter ybcl or ybcr

is ignored, and its value may be NULL.

The representation of the curves of interpolation constructed with this procedure

is given by the following parameters: *lastbsknot — the number of the last knot

of the spline curve, bsknots — array with the knots (these are the interpolation

knots, but the knots u0 and uN in this array are of multiplicity 3, and there are

two extremal knots in addition, whose presence is required by the representation).

The input parameter bspitch specifies the pitch of the array ctlpoints, in which

the control points of conescutive curves of interpolation are stored.
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7.14.2 Hermite curves of interpolation

The procedures described in this section implement a quite particular construction:

they find Bézier and B-spline curves of degree n, which satisfy the Hermite inter-

polation conditions imposed at two knots, 0 and 1 or un and uN−n respectively.

There is an application, in which Ineeded such procedures, and the algorithm for

this case is faster than the general algorithm of solving the Hermite interpolation

problem for a B-spline curve.

void mbs_multiInterp2knHermiteBezf ( int ncurves, int spdimen,

int degree,

int nlbc, int lbcpitch, const float *lbc,

int nrbc, int rbcpitch, const float *rbc,

int pitch, float *ctlpoints );

The procedure mbs_multiInterp2knHermiteBezf constructs ncurves Bézier

curves of degree n (the degree is specified by the parameter degree) in the space

of dimension d (specified by the parameter spdimen).

The number of interpolation conditions for each curve at the knot 0 is equal to

nlbc, and at the knot 1 is nrbc. Both parameters must be nonnegative and their

sum must be n + 1 (this ensures the uniqueness of solution of the interpolation

problem).

The interpolation conditions are given in the arrays lbc (for the knot 0) and rbc

(for the knto 1). The initial d numbers in each array specify the point of the

first curve, the next d numbers are coordinates of the derivative vector, then the

second order derivative etc. The data, which describe the interpolation conditions

for the second curve are stored starting at the position lbcpitch and rbcpitch

respectively.

The control points of the curves (i.e. the construction result) are stored in the

array ctlpoints, whose pitch (the distance between the beginnings of data which

describe the consecutive curves) is the value of the parameter pitch.

void mbs_multiInterp2knHermiteBSf ( int ncurves, int spdimen,

int degree,

int lastknot, const float *knots,

int nlbc, int lbcpitch, const float *lbc,

int nrbc, int rbcpitch, const float *rbc,

int pitch, float *ctlpoints );

The procedure mbs_multiInterp2knHermiteBSf constructs ncurves B-spline

curves of degree n (the degree is the value of the parameter degree) in the space

of dimension d (specified by the parameter spdimen). The curve is defined with

the knot sequence of length N+ 1, goven in the array knots (the number N is the

value of the parameter lastknot).
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The number of the interpolation conditions for each curve at the knot un is the

value of the parameter nlbc, and at the knot uN−n is specified by nrbc, and none

of the parameters may have the value greater than n. Their sum must be N−n to

ensure that the interpolation problem has a unique solution.

The knots in the array knots must satisfy the conditions u1 = · · · = un < un+1

and uN−n−1 < uN−n = · · · = uN−1, which are not verified by the procedure. The

interpolation conditions are given in the arrays lbc (for the knot un) and rbc (for

the knot uN−n). The first d numbers in each array specify the appropriate point of

the first curve, the next d numbers describe the derivative vector, then the second

order derivative etc. The data, which decsribe the interpolation conditions for the

next curve begin at the positions lbcpitch and rbcpitch respectively.

The control points of the curves (i.e. the result of the construction) are stored

in the array ctlpoints, whose pitch (distance between the beginnings of the data

for consecutive curves) is specified by the input parameter pitch.
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7.15 Constructing curves of approximation

One can impose more interpolation conditions for a function or a curve than the

dimension of the appropriate space. The resulting system of equations is overde-

terminate and often inconsistent. By solving the related least squares problem

we obtain a function or a curve, which satisfies the interpolation conditions with

some error. Such a construction may be done with the procedures described in this

section.

Figure 7.17. Planar B-spline curve of approximation.

A spline curve of approximation may be constructed by the procedure

mbs_multiConstructApproxBSCf described later. The procedures described below

are auxiliary and probably they will not be called directly by application programs.

boolean mbs_ApproxBSKnotsValidf ( int degree, int lastknot,

const float *knots,

int lastiknot, const float *iknots );

The procedure mbs_ApproxBSKnotsValidf verifies, whether the sequences of in-

terpolation knots and spline curve knots satisfy the assumptions of the Schoenberg-

Whitney theorem. If they do, then the construction of the curve of approximation

is feasible.

int mbs_ApproxBSBandmSizef ( int degree, const float *knots,

int lastiknot, const float *iknots );

The procedure mbs_ApproxBSBandmSizef computes the length of the array

needed to represent the band matrix of the system of linear equations solved as

a linear least squares problem in the construction of the approximation curve.

The parameters degree and knots describe the space of spline functions, whose

elements are to describe the curve (degree and the array of knots respectively; the

length of this sequence is determined by the interpolation knots). The parame-

ter lastiknot and iknots describe the interpolation knots of the curve — the

interpolation conditions specified at these knots will be satisfied with some error.
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The value returned by the procedure is the length of the array for storing the

nonzero coefficients of the matrix of the system of equations.

boolean mbs_ConstructApproxBSProfilef ( int degree, int lastknot,

const float *knots,

int lastiknot, const float *iknots,

bandm_profile *prof );

The procedure mbs_ConstructApproxBSProfilef constructs the profile of the

band matrix (see Section 3.2) of the system of equations solved in the construction

of the approximation curve. The parameters degree, lastknot, knots, lastiknot,

iknots describe the knots of the spline curve and the interpolation knots (see the

description of the procedure mbs_ApproxBSBandmSizef).

The parameter prof points to the array of length lastknot−degree+1. The

procedure stores the profile of the matrix in this array.

boolean mbs_ConstructApproxBSMatrixf ( int degree, int lastknot,

const float *knots,

int lastiknot, const float *iknots,

int *nrows, int *ncols,

bandm_profile *prof,

float *a );

The procedure mbs_ConstructApproxBSMatrixf computes the coefficients of

the matrix of the system of equations, whose least squares solution represents the

spline function or curve of approximation.

boolean mbs_multiConstructApproxBSCf ( int degree, int lastknot,

const float *knots,

int lastpknot, const float *pknots,

int ncurves, int spdimen,

int ppitch, const float *ppoints,

int bcpitch, float *ctlpoints );

The procedure mbs_multiConstructApproxBSCf constructs spline functions or

curves of approximation, by setting up the appropriate system of linear equations

and solving it as a linear least squares problem.

Parameters: degree — degree of the curves, lastknot — number of the last

knot, knots — array of knots, lastpknot — number of the last interpolation

knot, pknots — array with the interpolation knots, ncurves — number of curves,

spdimen — dimension of the space with the curves.

The parameters ppitch and ppoints describe the interpolation conditions;

ppitch is the pitch of the array ppoints with the points corresponding to the

subsequent interpolation knots.

The parameter bcpitch is the pitch of the array ctlpoints, in which the pro-

cedure stores the control points of the curves of approximation.
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The value returned by the procedure is true if the computation has been success-

ful, or false otherwise. The reason of the failure may be that the knot sequences

do not satisfy the assumptions of the Schoenberg-Whitney theorem (which leads to

an irregular least squares problem), or insufficient scratch memory.

#define mbs_ConstructApproxBSC1f(degree,lastknot,knots,\

lastpknot,pknots,ppoints,ctlpoints) \

mbs_multiConstructApproxBSCf (degree,lastknot,knots,lastpknot,\

pknots,1,1,0,(float*)ppoints,0,(float*)ctlpoints)

#define mbs_ConstructApproxBSC2f(degree,lastknot,knots,\

lastpknot,pknots,ppoints,ctlpoints) \

mbs_multiConstructApproxBSCf (degree,lastknot,knots,lastpknot,\

pknots,1,2,0,(float*)ppoints,0,(float*)ctlpoints)

#define mbs_ConstructApproxBSC3f(degree,lastknot,knots,\

lastpknot,pknots,ppoints,ctlpoints) ...

#define mbs_ConstructApproxBSC4f(degree,lastknot,knots,\

lastpknot,pknots,ppoints,ctlpoints) ...

The above macros call mbs_multiConstructApproxBSCf in order to construct

one curve of approximation in the space of dimension 1, . . . , 4.



7.91

7.16 Bézier curve clipping

boolean mbs_FindPolynomialZerosf ( int degree, const float *coeff,

int *nzeros, float *zeros, float eps );

The procedure mbs_FindPolynomialZerosf computes real zeros of a polynomial

of degree n in the interval [0, 1].

Input parameters: degree — degree n of the polynomial, coeff — coefficients

of the polynomial in the Bernstein basis of degree n, eps — required accuracy of

the results (it must be a positive number).

Output parameters: *nzeros — the variable, which will be assigned the number

of zeros found, *zeros — array in which the zeros will be stored. The length of

this array must be at least n.

The value of the procedure is true, after the computation has been successful,

and false otherwise, i.e. if not enough scratch memory was available.

void mbs_ClipBC2f ( int ncplanes, const vector3f *cplanes,

int degree, const point2f *cpoints,

void (*output) (int degree, const point2f *cpoints) );

The procedure mbs_ClipBC2f clips a planar polynomial Bézier curve to a convex

polygon, i.e. it computes and outputs the arcs of the curve located inside that

polygon.

The parameters: ncplanes — number of halfplanes, whose intersection is the

polygon, cplanes — array with the representations of the halfplanes. For the

halfplane ax + by + c > 0 the numbers a, b, c are coordinates of the appropriatre

vector in the array cplanes.

The parameters degree and cpoints specify the curve, i.e. its degree and the

control points respectively. The parameter output points to the procedure to be

called in order to output (e.g. draw) each arc of the curve, located inside the polygon.

void mbs_ClipBC2Rf ( int ncplanes, const vector3f *cplanes,

int degree, const point3f *cpoints,

void (*output) (int degree, const point3f *cpoints) );

The procedure mbs_ClipBC2Rf clips a planar rational Bézier curve to a convex

polygon, i.e. it computes and outputs the arcs of the curve located inside that

polygon.

The parameters: ncplanes — number of halfplanes, whose intersection is the

polygon, cplanes — array with the representations of the halfplanes. For the

halfplane ax + by + c > 0 the numbers a, b, c are coordinates of the appropriatre

vector in the array cplanes.

The parameters degree and cpoints specify the curve, i.e. its degree and the

control points of the homogeneous curve respectively. The parameter output points
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to the procedure to be called in order to output (e.g. draw) each arc of the curve,

located inside the polygon.

void mbs_ClipBC3f ( int ncplanes, const vector4f *cplanes,

int degree, const point3f *cpoints,

void (*output) (int degree, const point3f *cpoints) );

The procedure mbs_ClipBC3f clips a polynomial Bézier curve in the 3D space

to a convex polyhedron, i.e. it computes and outputs the arcs of the curve located

inside that polyhedron.

The parameters: ncplanes — number of halfspaces, whose intersection is the

polyhedron, cplanes — array with the representations of the halfspaces. For the

halfspace ax + by + cz + d > 0 the numbers a, b, c, d are coordinates of the

appropriatre vector in the array cplanes.

The parameters degree and cpoints specify the curve, i.e. its degree and the

control points respectively. The parameter output points to the procedure to be

called in order to output (e.g. draw) each arc of the curve, located inside the polygon.

void mbs_ClipBC3Rf ( int ncplanes, const vector4f *cplanes,

int degree, const point4f *cpoints,

void (*output) (int degree, const point4f *cpoints) );

The procedure mbs_ClipBC3Rf clips a rational Bézier curve in the 3D space to

a convex polyhedron, i.e. it computes and outputs the arcs of the curve located

inside that polyhedron.

The parameters: ncplanes — number of halfspaces, whose intersection is the

polyhedron, cplanes — array with the representations of the halfspaces. For the

halfspace ax + by + cz + d > 0 the numbers a, b, c, d are coordinates of the

appropriatre vector in the array cplanes.

The parameters degree and cpoints specify the curve, i.e. its degree and the

control points of the homogeneous curve respectively. The parameter output points

to the procedure to be called in order to output (e.g. draw) each arc of the curve,

located inside the polygon.
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7.17 Polyline shape testing

boolean mbs_MonotonicPolylinef ( int spdimen, int npoints,

int pitch, const float *points,

const float *v );

boolean mbs_MonotonicPolylineRf ( int spdimen, int npoints,

int pitch, const float *points,

const float *v );

The procedures mbs_MonotonicPolylinef and mbs_MonotonicPolylineRf

test, whether a polyline is monotonic with respect to the vector v.

The polyline is in the space R
d, whose dimension is specified by the parameter

spdimen. For the procedure mbs_MonotonicPolylinef its value must be d, and for

the procedure mbs_MonotonicPolylineRf it must be d+ 1.

The parameter npoints specifies the number of points. The cartesian coordi-

nates (for the procedure mbs_MonotonicPolylinef) or the homogeneous coordi-

nates mbs_MonotonicPolylineRf) of those points are given in the array points.

The parameter pitch specifies the distance of the beginnings of the representations

of consecutive points (which may be other than spdimen).

The parameter v points to the array with d numbers, the coordinates of the

vector v.

Each procedure returns true after detecting that the projections of consecutive

points on the line, whose direction is given by the vector v are ordered along this line

(and, in case of the procedure mbs_MonotonicPolylineRf, the weight coordinates

of the points have the same sign) and false otherwise.

The procedures may be used to test, whether the control polylines of curves are

monotonic with respect to the vector v. This is a sufficient condition of monotonic-

ity of Bézier and B-spline curves (assuming, for the rational curves, that all weight

coordinates have the same sign).
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7.18 Curve rasterization

The procedures of rasterization of curves represent pixels as structures of type

xpoint and they use the buffer and its macros defined in the file pkvaria.h. In

particular the curves of degree 1 are rasterized as line segments, using the procedure

_pkv_DrawLine from the libpkvaria library.

void mbs_RasterizeBC2f ( int degree, const point2f *cpoints,

void (*output)(const xpoint *buf, int n),

boolean outlast );

void mbs_RasterizeBC2Rf ( int degree, const point3f *cpoints,

void (*output)(const xpoint *buf, int n),

boolean outlast );

The procedures mbs_RasterizeBC2f and mbs_RasterizeBD2Rf rasterize Bézier

curves, i.e. they compute pixels which form eight-connected approximate images of

the curves.

The parameters: degree — degree of the curve, cpoints — control points (for

a rational curve must be represented with the homogeneous coordinates), output —

an output procedurw (called to output pixels, i.e. on the screen). The parameter

outlast specifies, whether the last pixel of the curve is to be output. Drawing

a spline curve (consisting of more than one polynomial arc) or a closed curve one

should not output the last pixel of each arc.

The number of calls of the output procedure depends on the number of pixels

to draw and on the capacity of the internal buffer. The parameter n of the output

procedure is the number of pixels to output.

Figure 7.18. Raster images of polynomial and rational cubic Bézier curves.
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void mbs_RasterizeBS2f ( int degree, int lastknot,

const float *knots,

const point2f *cpoints,

void (*output)(const xpoint *buf, int n),

boolean outlast );

void mbs_RasterizeBS2Rf ( int degree, int lastknot,

const float *knots,

const point3f *cpoints,

void (*output)(const xpoint *buf, int n),

boolean outlast );

The procedures mbs_RasterizeBS2f and mbs_RasterizeBS2Rf rasterize planar

B-spline curves. The parameters degree (degree), lastknot (number of the last

knot), knots (array with the knots) and cpoints (array with the control poitns)

describe the curve. The parameter output points to the procedure which will be

called in order to output or otherwise process the pixels. The parameter outlast

specifies, whether the last pixel of the curve should be output or not.

TO DO: Clipping the curves before the rasterization. Testing, whether the curve

is so short that its image consists of one pixel. Postprocessing the pixels in order

to improve the smoothness of the image.

Figure 7.19. Raster images of cubic polynomial and rational B-spline curves.
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7.19 Processing Coons patches

7.19.1 Polynomial patches

Polynomial Coons patches are represented with Bézier curves, whose degrees need

not be the same. The domain of the patch is the square [0, 1]2, thus the numbers

a, b, c, d discussed in Section 7.1.6 are 0, 1, 0, 1 respectively.

void mbs_BezC1CoonsFindCornersf ( int spdimen,

int degc00, const float *c00,

int degc01, const float *c01,

int degc10, const float *c10,

int degc11, const float *c11,

float *pcorners );

The procedure mbs_BezC1CoonsFindCornersf computes the matrix P of di-

mensions 4 × 4, whose elements are the points and derivatives of the curves

c00, c10, c01, c11.

Parameters: spdimen — dimension d of the space with the curves and the

bicubic polynomial Coons patch (of class C1) represented by these curves. Each

pair of the parameters degc?? and c?? describes one of the curves, its degree and

the control points.

The parameter pcorners points to the array, in which the result is to be stored;

the array length must be at least 16d.

boolean mbs_BezC1CoonsToBezf ( int spdimen,

int degc00, const float *c00,

int degc01, const float *c01,

int degc10, const float *c10,

int degc11, const float *c11,

int degd00, const float *d00,

int degd01, const float *d01,

int degd10, const float *d10,

int degd11, const float *d11,

int *n, int *m, float *p );

The procedure mbs_BezC1CoonsToBezf finds the Bézier representation of the

bicubic Coons patch (of class C1), defined by given polynomial curves. The pro-

cedure value is true, if the computation was successful and false otherwise; the

reason of failure may be insufficient space on the scratch memory stack.

The value of the parametr spdimen is the dimension d of the space, in which

the curves and the patch are located. Each pair of parameters degc?? and c??

describes one of the curves c00, c01, c10, c11, by specifying its degree and Bézier

control points. Each pair of parameters degd?? and d?? describe in the same
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way one of the curves d00,d01,d10,d11. The curves must satisfy (up to rounding

errors) the compatibility conditions (7.15), which is not verified.

The variables *n and *m obtain values, which describe the degree of the Bézier

patch representation. The value n assigned to *n is the greatest value of the param-

eters degc?? or 3 (if the number 3 is greater). Similarly the value m assigned to

*m is the greatest value of the parameters degd??, or 3. The Bézier control points

of the patch are stored in the array pointed by the parameter p; it must be long

enough (at least (n+ 1)(m+ 1)d).

void mbs_TabCubicHFuncDer2f ( float a, float b,

int nkn, const float *kn,

float *hfunc, float *dhfunc, float *ddhfunc );

The procedure mbs_TabCubicHFuncDer2f evaluates the polynomials H̃00, H̃10,

H̃01 and H̃11, being the basis of definition of bicubic Coons patches, and their

derivatives of order 1 and 2. The result of this computation may be used to compute

a number of points of a Coons patch corresponding to a rectangular net in the

domain, using the procedure mbs_TabBezC1CoonsDer2f (a polynomial patch) or

mbs_TabBSC1CoonsDer2f (a spline patch).

The parameters a and b describe the end points of the interval taken as the

domain of the curves cij or dij; for polynomial Coons patches these parameters

must have values 0 and 1 respectively.

The parameter nkn specifies the number k of points um ∈ [a, b], at which the

polynomials are to be evaluated; these points (floating point numbers) are given in

the array kn.

The values of the polynomials and their derivatives of order 1 and 2 are stored

in the arrays hfunc, dhfunc and ddhfunc respectively. The arrays must have length

at least 4k; to each subsequent four positions in the array the values of the four

polynomials or their derivatives at the subsequent point um are assigned.

void mbs_TabCubicHFuncDer3f ( float a, float b, int nkn,

const float *kn,

float *hfunc, float *dhfunc, float *ddhfunc,

float *dddhfunc );
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boolean mbs_TabBezC1CoonsDer2f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degc10, const float *c10,

int degc11, const float *c11,

int degd00, const float *d00,

int degd01, const float *d01,

int degd10, const float *d10,

int degd11, const float *d11,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv );

The procedure mbs_TabBezC1CoonsDer2f performs a fast computation of points

and derivatives of order 1 and 2 of a bicubic polynomial Coons patch, at the points

(ui, vj), where i ∈ {0, . . . , k− 1}, j ∈ {0, . . . , l− 1}.

The parameter spdimen specifies the dimension d of the space with the patch.

The parameter nknu specifies the number k, the array knu contains the numbers

u0, . . . , uk−1. The contents of the arrays hfuncu, dhfuncu, ddhfuncu must be

respectively the values of the polynomials H00, H10, H01, H11 and their derivatives

of order 1 and 2 at the points u0, . . . , uk−1; these values are simplest to obtain

by calling the procedure mbs_TabCubicHFuncDer2f (with the parameters a = 0,

b = 1).

The numbers v0, . . . , vl−1 and the values of the functions Hij and their deriva-

tives at vj are analoguously specified by the parameters nknv, knv, hfuncv, dhfuncv,

ddhfuncv.

The pairs of parameters degc??, c?? and degd??, d?? describe the Bézier

curves, which define the patch. These curves must satisfy (up to the rounding

errors) the compatibility conditions (7.15).

In the arrays pointed by the parameters p, pu, pv, puu, puv, pvv the procedure

stores the computed points and derivatives of order 1 and 2; if any of the parameters

is NULL, then the corresponding points or vectors are not computed. Otherwise the

pointed array must have length at least k2d.

The value returned is true in case of success and false after failure (caused by

insufficient space on the scratch memory stack).
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boolean mbs_TabBezC1CoonsDer3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degc10, const float *c10,

int degc11, const float *c11,

int degd00, const float *d00,

int degd01, const float *d01,

int degd10, const float *d10,

int degd11, const float *d11,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

boolean mbs_TabBezC1Coons0Der2f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degd00, const float *d00,

int degd01, const float *d01,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv );

The procedure mbs_TabBezC1Coons0Der2f is a simplified version of the proce-

dure mbs_TabBezC1CoonsDer2f for the case, when the curves c10, c11,d10 and d11

are null (i.e. when all their control points have all coordinates zero). Computing

points of such a patch may be done in a shorter time; this procedure is used by the

library libg1hole.

The parameters of mbs_TabBezC1Coons0Der2f are the same as the parameters

of the procedure mbs_TabBezC1CoonsDer2f with the same names.
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boolean mbs_TabBezC1Coons0Der3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degd00, const float *d00,

int degd01, const float *d01,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

void mbs_BezC2CoonsFindCornersf ( int spdimen,

int degc00, const float *c00,

int degc01, const float *c01,

int degc02, const float *c02,

int degc10, const float *c10,

int degc11, const float *c11,

int degc12, const float *c12,

float *pcorners );

The procedure mbs_BezC2CoonsFindCornersf computes the matrix P of di-

mensions 6 × 6, whose elements are the points and derivatives of the curves

c00, c10, c01, c11, c02, c12.

Parameters: spdimen — dimension d of the space with the curves and the

biquintic polynomial Coons patch (of class C2) represented by these curves. Each

pair of the parameters degc?? and c?? describes one of the curves, its degree and

the control points.

The parameter pcorners points to the array, in which the result is to be stored;

the array length must be at least 36d.
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boolean mbs_BezC2CoonsToBezf ( int spdimen,

int degc00, const float *c00,

int degc01, const float *c01,

int degc02, const float *c02,

int degc10, const float *c10,

int degc11, const float *c11,

int degc12, const float *c12,

int degd00, const float *d00,

int degd01, const float *d01,

int degd02, const float *d02,

int degd10, const float *d10,

int degd11, const float *d11,

int degd12, const float *d12,

int *n, int *m, float *p );

The procedure mbs_BezC2CoonsToBezf converts a biquintic Coons patch to the

Bézier form. The patch is represented by 12 polynomial curves, which describe its

boundary (the curves c00, c10, d00, d10) and the cross derivatives of the first (c01,

c11, d01, d11) and second (c02, c12, d02, d12)) order. All these curves are given in

Bézier form, their degrees are specified respectively by the parameters degc00, . . . ,

degd12, their control points (in the space of dimension spdimen) are given in the

arrays c00, . . . , d12.

The output parameters are *n and *m, which obtain the values indicating the

degree and the array p, in which the Bézier control points of the patch are stored.

void mbs_TabQuinticHFuncDer3f ( float a, float b,

int nkn, const float *kn,

float *hfunc, float *dhfunc,

float *ddhfunc, float *dddhfunc );

The procedure mbs_TabQuinticHFuncDer3f evaluates the polynomials H̃00,

H̃10, H̃01, H̃11, H̃02 and H̃12, being the basis of definition of biquintic Coons

patches, and their derivatives of order 1, 2 and 3. The result of this computation

may be used to compute a number of points of a Coons patch corresponding to

a rectangular net in the domain, using the procedure mbs_TabBezC2CoonsDer3f

(a polynomial patch) or mbs_TabBSC2CoonsDer3f (a spline patch).

The parameters a and b describe the end points of the interval taken as the

domain of the curves cij or dij; for polynomial Coons patches these parameters

must have values 0 and 1 respectively.

The parameter nkn specifies the number k of points um ∈ [a, b], at which the

polynomials are to be evaluated; these points (floating point numbers) are given in

the array kn.

The values of the polynomials and their derivatives of order 1, 2 and 3 are stored

in the arrays hfunc, dhfunc, ddhfunc and dddhfunc respectively. The arrays must
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have length at least 4k; to each subsequent four positions in the array the values of

the four polynomials or their derivatives at the subsequent point um are assigned.

boolean mbs_TabBezC2CoonsDer3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degc02, const float *c02,

int degc10, const float *c10,

int degc11, const float *c11,

int degc12, const float *c12,

int degd00, const float *d00,

int degd01, const float *d01,

int degd02, const float *d02,

int degd10, const float *d10,

int degd11, const float *d11,

int degd12, const float *d12,

float *p, float *pu, float *pv, float *puu,

float *puv, float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

The procedure mbs_TabBezC2CoonsDer3f performs a fast computation of points

and derivatives of order 1, 2 and 3 of a biquintic polynomial Coons patch, at the

points (ui, vj), where i ∈ {0, . . . , k− 1}, j ∈ {0, . . . , l− 1}.

The parameter spdimen specifies the dimension d of the space with the patch.

The parameter nknu specifies the number k, the array knu contains the numbers

u0, . . . , uk−1. The contents of the arrays hfuncu, dhfuncu, ddhfuncu, dddhfuncu

must be respectively the values of the polynomials H00, H10, H01, H11, H02, H12 and

their derivatives of order 1, 2 and 3 at the points u0, . . . , uk−1; these values are

simplest to obtain by calling the procedure mbs_TabQuinticHFuncDer3f (with the

parameters a = 0, b = 1).

The sequence v0, . . . .vl−1 and the values of Hij at the points of this sequence are

analoguously represented by the parameters nknv, knv, hfuncv, dhfuncv, ddhfuncv,

dddhfuncv.

The pairs of parameters degc??, c?? and degd??, d?? describe the Bézier

curves, which define the patch. These curves must satisfy (up to the rounding

errors) the compatibility conditions (7.15).

In the arrays pointed by the parameters p, pu, pv, puu, puv, pvv, puuu, puuv,
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puvv, pvvv the procedure stores the computed points and derivatives of order 1, 2

and 3; if any of the parameters is NULL, then the corresponding points or vectors

are not computed. Otherwise the pointed array must have length at least k2d.

The value returned is true in case of success and false after failure (caused by

insufficient space on the scratch memory stack).

boolean mbs_TabBezC2Coons0Der3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, const float *c00,

int degc01, const float *c01,

int degc02, const float *c02,

int degd00, const float *d00,

int degd01, const float *d01,

int degd02, const float *d02,

float *p, float *pu, float *pv, float *puu, float *puv,

float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

The procedure mbs_TabBezC2Coons0Der3f is a simplified version of the proce-

dure mbs_TabBezC2CoonsDer3f for the case, when the curves c10, c11, c12,d10,d11

and d12 are null (i.e. when all their control points have all coordinates zero). Com-

puting points of such a patch may be done in a shorter time; this procedure is used

by the library libg1hole.

The parameters of mbs_TabBezC2Coons0Der3f are the same as the parameters

of the procedure mbs_TabBezC2CoonsDer3f with the same names.
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7.19.2 Spline patches

Spline Coons patches are defined with B-spline curves; they may have different

degrees and different knot sequences; the only restriction is that all curves cij must

have the same domain (determined by their boundary knots) and the same concerns

the curves dij.

void mbs_BSC1CoonsFindCornersf ( int spdimen,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

float *pcorners );

The procedure mbs_BSC1CoonsFindCornersf computes the matrix P of di-

mensions 4 × 4, whose elements are the points and derivatives of the curves

c00, c10, c01, c11.

Parameters: spdimen — dimension d of the space with the curves and the bicu-

bic spline Coons patch (of class C1) represented by these curves. Each quadruple

of the parameters degc??, lastknotc??, knotsc?? and c?? describes one of the

curves, its degree, number of the last knot, knots and the control points respectively.

The parameter pcorners points to the array, in which the result is to be stored;

the array length must be at least 16d.
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boolean mbs_BSC1CoonsToBSf ( int spdimen,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

int degd10, int lastknotd10, const float *knotsd10,

const float *d10,

int degd11, int lastknotd11, const float *knotsd11,

const float *d11,

int *degreeu, int *lastuknot, float *uknots,

int *degreev, int *lastvknot, float *vknots, float *p );

The procedure mbs_BSC1CoonsToBSf finds a B-spline representation of a bicubic

Coons patch (of class C1), defined by given spline curves. The value returned is

true if the computation has been successful and false otherwise (the reason of

failure may be insufficient space on the scratch memory stack or incorrect knot

sequences of the given curves).

The value of the parametes spdimen is the dimension d of the space with the

curves and the patch. Subsequent quadruples of parameters degc??, lastknotc??,

knotsc?? and c?? describe the appropriate curve of the family c00, c01, c10, c11,

by specifying the degree, number of the last knot, knot sequence and the array

of control points. The quadruples of parameters degd??, lastknotd??, knotsd??

and d?? in the same way describe the curves of the family d00,d01,d10,d11. The

curves must satisfy (up to rounding errors) the compatibility conditions (7.15),

which is not verified.

The variables *n and *m are assigned the values, which describe the degree of the

B-spline representation of the patch. The value n of the variable *n is the greatest

of the values of the parameters degc?? or 3 (if the number 3 is greater). Similarly,

the value m of the variable *m is the greatest of the values of the parameters degd??

or 3. The parameters lastuknot, uknots, lastvknot i vknots are used to output

the knot sequences of the B-spline representation. In the array pointed by the

parameter p the procedure stores the control points.

The arrays unkots, vknots and p must be long enough; their lengths may be

computed before the allocation by calling mbs_FindBSCommonKnotSequencef for

the families of curves cij and dij; the variables pointed by the parameter lastknot
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of this procedure must have the initial value 3.

boolean mbs_TabBSC1CoonsDer2f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

int degd10, int lastknotd10, const float *knotsd10,

const float *d10,

int degd11, int lastknotd11, const float *knotsd11,

const float *d11,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv );

The procedure mbs_TabBSC1CoonsDer2f performs a fast computation of points

and derivatives of order 1 and 2 of a bicubic spline Coons patch, at the points

(ui, vj), where i ∈ {0, . . . , ku − 1}, j ∈ {0, . . . , kv − 1}.

The parameter spdimen specifies the dimension d of the space with the patch.

The parameters nknu and nknv specify the numbers ku and kv, the arrays knu

and knv contain respectively the numbers u0, . . . , uku−1 and v0, . . . , vkv−1. The

contents of the arrays hfuncu, dhfuncu, ddhfuncu must be respectively the values

of the polynomials H̃00, H̃10, H̃01, H̃11 and their derivatives of order 1 and 2 at the

points u0, . . . , uku−1. The arrays hfuncv, dhfuncv and ddhfuncv must contain

the values of the polynomials Ĥ00, Ĥ10, Ĥ01, Ĥ11 at v0, . . . , vkv−1; these values are

simplest to obtain by calling the procedure mbs_TabCubicHFuncDer2f.

The quadruples of parameters degc??, lastknotc??, knotsc??, c?? and

degd??, lastknotd??, knotsd??, d?? describe the B-spline curves, which define

the patch. These curves must satisfy (up to the rounding errors) the compatibility

conditions (7.15).

In the arrays pointed by the parameters p, pu, pv, puu, puv, pvv the procedure

stores the computed points and derivatives of order 1 and 2; if any of the parameters
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is NULL, then the corresponding points or vectors are not computed. Otherwise the

pointed array must have length at least kukvd.

The value returned is true in case of success and false after failure (caused by

insufficient space on the scratch memory stack or incorrect knot sequences of the

curves).

boolean mbs_TabBSC1Coons0Der2f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv );

The procedure mbs_TabBSC1Coons0Der2f is a simplified version of the procedure

mbs_TabBSC1CoonsDer2f for the case, when the curves c10, c11,d10 and d11 are

null (i.e. when all their control points have all coordinates zero). Computing points

of such a patch may be done in a shorter time.

The parameters of mbs_TabBSC1Coons0Der2f are the same as the parameters of

the procedure mbs_TabBSC1CoonsDer2f with the same names.

void mbs_BSC2CoonsFindCornersf ( int spdimen,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc02, int lastknotc02, const float *knotsc02,

const float *c02,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

int degc12, int lastknotc12, const float *knotsc12,

const float *c12,

float *pcorners );
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The procedure mbs_BSC2CoonsFindCornersf computes the matrix P of di-

mensions 6 × 6, whose elements are the points and derivatives of the curves

c00, c10, c01, c11, c02, c12.

Parameters: spdimen — dimension d of the space with the curves and the

biquintic spline Coons patch (of class C2) represented by these curves. Each quadru-

ple of the parameters degc??, lastknotc??, knotsc?? and c?? describes one of

the curves, its degree, number of the last knot, knots and the control points respec-

tively.

The parameter pcorners points to the array, in which the result is to be stored;

the array length must be at least 36d.

boolean mbs_BSC2CoonsToBSf ( int spdimen,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

Aint degc02, int lastknotc02, const float *knotsc02,

const float *c02,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

int degc12, int lastknotc12, const float *knotsc12,

const float *c12,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

int degd02, int lastknotd02, const float *knotsd02,

const float *d02,

int degd10, int lastknotd10, const float *knotsd10,

const float *d10,

int degd11, int lastknotd11, const float *knotsd11,

const float *d11,

int degd12, int lastknotd12, const float *knotsd12,

const float *d12,

int *degreeu, int *lastuknot, float *uknots,

int *degreev, int *lastvknot, float *vknots, float *p );

The procedure mbs_BSC2CoonsToBSf finds a B-spline representation of a biquin-

tic Coons patch (of class C2), defined by given spline curves. The value returned

is true if the computation has been successful and false otherwise (the reason

of failure may be insufficient space on the scratch memory stack or incorrect knot
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sequences of the given curves).

The value of the parametes spdimen is the dimension d of the space with the

curves and the patch. Subsequent quadruples of parameters degc??, lastknotc??,

knotsc?? and c?? describe the appropriate curve of the family c00, c01, c10, c11,

by specifying the degree, number of the last knot, knot sequence and the array

of control points. The quadruples of parameters degd??, lastknotd??, knotsd??

and d?? in the same way describe the curves of the family d00,d01,d10,d11. The

curves must satisfy (up to rounding errors) the compatibility conditions (7.15),

which is not verified.

The variables *n and *m are assigned the values, which describe the degree of the

B-spline representation of the patch. The value n of the variable *n is the greatest

of the values of the parameters degc?? or 5 (if the number 5 is greater). Similarly,

the value m of the variable *m is the greatest of the values of the parameters degd??

or 5. The parameters lastuknot, uknots, lastvknot i vknots are used to output

the knot sequences of the B-spline representation. In the array pointed by the

parameter p the procedure stores the control points.

The arrays unkots, vknots and p must be long enough; their lengths may be

computed before the allocation by calling mbs_FindBSCommonKnotSequencef for

the families of curves cij and dij; the variables pointed by the parameter lastknot

of this procedure must have the initial value 5.
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boolean mbs_TabBSC2CoonsDer3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc02, int lastknotc02, const float *knotsc02,

const float *c02,

int degc10, int lastknotc10, const float *knotsc10,

const float *c10,

int degc11, int lastknotc11, const float *knotsc11,

const float *c11,

int degc12, int lastknotc12, const float *knotsc12,

const float *c12,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

int degd02, int lastknotd02, const float *knotsd02,

const float *d02,

int degd10, int lastknotd10, const float *knotsd10,

const float *d10,

int degd11, int lastknotd11, const float *knotsd11,

const float *d11,

int degd12, int lastknotd12, const float *knotsd12,

const float *d12,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

The procedure mbs_TabBSC2CoonsDer3f performs a fast computation of points

and derivatives of order 1, 2 and 3 of a biquintic spline Coons patch, at the points

(ui, vj), where i ∈ {0, . . . , ku − 1}, j ∈ {0, . . . , kv − 1}.

The parameter spdimen specifies the dimension d of the space with the patch.

The parameters nknu and nknv specify the numbers ku and kv, the arrays knu

and knv contain respectively the numbers u0, . . . , uku−1 and v0, . . . , vkv−1. The

contents of the arrays hfuncu, dhfuncu, ddhfuncu and dddhfuncu must be re-

spectively the values of the polynomials H̃00, H̃10, H̃01, H̃11, H̃02, H̃12 and their
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derivatives of order 1, 2 and 3 at the points u0, . . . , uku−1. The arrays hfuncv,

dhfuncv, ddhfuncv and dddhfuncv must contain the values of the polynomials

Ĥ00, Ĥ10, Ĥ01, Ĥ11, Ĥ02, Ĥ12 at v0, . . . , vkv−1; these values are simplest to obtain

by calling the procedure mbs_TabQuinticHFuncDer3f.

The quadruples of parameters degc??, lastknotc??, knotsc??, c?? and

degd??, lastknotd??, knotsd?? d?? describe the B-spline curves, which define

the patch. These curves must satisfy (up to the rounding errors) the compatibility

conditions (7.15).

In the arrays pointed by the parameters p, pu, pv, puu, puv, pvv, puuu, puuv,

puvv and pvvv the procedure stores the computed points and derivatives of order 1,

2 and 3; if any of the parameters is NULL, then the corresponding points or vectors

are not computed. Otherwise the pointed array must have length at least kukvd.

The value returned is true in case of success and false after failure (caused by

insufficient space on the scratch memory stack or incorrect knot sequences of the

curves).

boolean mbs_TabBSC2Coons0Der3f ( int spdimen,

int nknu, const float *knu, const float *hfuncu,

const float *dhfuncu, const float *ddhfuncu,

const float *dddhfuncu,

int nknv, const float *knv, const float *hfuncv,

const float *dhfuncv, const float *ddhfuncv,

const float *dddhfuncv,

int degc00, int lastknotc00, const float *knotsc00,

const float *c00,

int degc01, int lastknotc01, const float *knotsc01,

const float *c01,

int degc02, int lastknotc02, const float *knotsc02,

const float *c02,

int degd00, int lastknotd00, const float *knotsd00,

const float *d00,

int degd01, int lastknotd01, const float *knotsd01,

const float *d01,

int degd02, int lastknotd02, const float *knotsd02,

const float *d02,

float *p, float *pu, float *pv,

float *puu, float *puv, float *pvv,

float *puuu, float *puuv, float *puvv, float *pvvv );

The procedure mbs_TabBSC2Coons0Der3f is a simplified version of the proce-

dure mbs_TabBSC2CoonsDer3f for the case, when the curves c10, c11, c12,d10,d11

and d12 are null (i.e. when all their control points have all coordinates zero). Com-

puting points of such a patch may be done in a shorter time.
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The parameters of mbs_TabBSC2Coons0Der3f are the same as the parameters of

the procedure mbs_TabBSC2CoonsDer3f with the same names.
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7.20 Spherical product

The spherical product of two planar parametric curves, p(t) = [xp(t), yp(t)]
T

and q(t) = [xq(t), yq(t)]
T , is the parametric surface in R

3, given by

s(u, v) =





xp(u)xq(v)

yp(u)xq(v)

yq(v)



 .

The curves p and q are called respectively equator and meridian. The procedures

described below compute the control points of the B-spline representation of the

spherical product of planar B-spline curves, piecewise polynomial and piecewise

rational respectively.

The knot sequence of the equator is the „u” knot sequence and the knot sequence

of the meridian is the „v” knot sequence of the spherical product.

void mbs_SphericalProductf (

int degree_eq, int lastknot_eq, const point2f *cpoints_eq,

int degree_mer, int lastknot_mer, const point2f *cpoints_mer,

int pitch, point3f *spr_cp );

void mbs_SphericalProductRf (

int degree_eq, int lastknot_eq, const point3f *cpoints_eq,

int degree_mer, int lastknot_mer, const point3f *cpoints_mer,

int pitch, point4f *spr_cp );
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7.21 Drawing trimmed patches

7.21.1 Domain representation

The domain of a trimmed B-spline patch of degree (n,m), with the knots u0, . . . , uN

and v0, . . . , vM is a subset of the rectangle [un, uN−n]× [vm, vM−m]. In particular,

it is always a bounded area. The boundary of the domain is the sum of planar

curvilinear closed polylines. Every such a polyline may consist of

� polylines (sequences of line segments),

� Bézier curves,

� B-spline curves,

called hereafter the boundary elements. The points (vertices of the polylines and

control points of the curves) may be given with the cartesian coordinates (then

they are of type point2f) or homogeneous coordinates (in this case they are of

type vector3f).

The data describing every such a polyline must satisfy the following condition:

the B-spline curves must be continuous and the end point of each boundary element

(polyline or curve) is the first point of the of the element that follows (the last

element is followed by the first one). If this condition is not satisfied then the

procedures of drawing trimmed patches will insert the appropriate line segments.

Another condition is the absence of points at infinity. It is sufficient that all

weight coordinates are positive, though it is not required. However, specifying

an unbounded patch boundary may cause a program execution error. Therefore

all polylines and curves must lie in the rectangle specified as the domain of the

untrimmed patch.

The boundary of the domain is represented with an array containing structures

of type polycurvef.

typedef struct{

boolean closing;

byte spdimen;

short degree;

int lastknot;

float *knots;

float *points;

} polycurvef;

The attribute closing specifies the boundary element following the current one.

If its value is false, then there is a new element after the current one (and it is

described by the next structure in the array). If closing is true, then the end of

the current element should be connected with the beginning of the first element in
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the array, or with the last of the preceding elements, preceded by an element with

the closing attribute true (in this way the curvilinear polygon is closed).

The attribute spdimen may be equal to 2 or 3. In the former case the attribute

points points to an array of structures point2f with the cartesian coordinates of

points in the plane. In the latter case it points to an array of structures vector3f,

with the homogeneous coordinates of points (the curve, whose control points are

represented in this way is rational, and its representation is homogeneous).

The attribute degree specifies the degree n of the curve, it must not be less

than 1.

The attribute lastknot specifies the number N of the last vertex of the polyline

or the last knot of the B-spline curve.

The attribute knots points to an array with the knots of the B-spline curve, of

length N+ 1.

The attribute points points to an array with the vertices of the polyline or

the control polygon. Depending on the value of the attribute spdimen this array

contains pairs of triples of floating point numbers.

To specify a polyline consisting ofN line segments, one should set the attributes

degree=1, lastknot=N, knots=NULL. The array pointed by points must contain

spdimen*(N + 1) floating point numbers (or N + 1 structures of type point2f or

vector3f).

To specify a Bézier curve of degree n > 0, the attributes should be degree=n,

lastknot=-1, knots=NULL. The array pointed by points must contain

spdimen*(n + 1) floating point numbers (or n + 1 structur of type point2f or

vector3f).

To specify a B-spline curve of degree n > 0, one should set up the attributes

degree=n, lastknot=N. The attribute knots must point an array with N + 1

floataing point numbers, being the knots, and points must point an array with

spdimen*(N− n) floating point numbers, the coordinates of the control points.

It is not required that B-spline curves be represented with clamped knots, but

the curve should be connected with the neighbouring boundary elements. In par-

ticular one can specify a connected part of the boundary domain as a single closed

B-spline curve.

The boundary of the domain may (but it does not have to) be oriented. One

can use the convention that moving along the boundary according to their natural

parameterization one has the inside of the domain on the left hand (or right hand)

side. The drawing procedures must be implemented in such a way that the appro-

priate information is available. The boundary elements may intersect, and it must

not cause execution errors.

Example. The boundary of the domain in Figure 7.20 is described as follows:

#define n 3

#define NNt1a 10
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Figure 7.20. A trimmed domain and a trimmed B-spline patch.

float ut1a[NNt1a+1] =

{-0.5, 0.0, 0.0, 0.0, 1.4, 2.8, 4.2, 5.6, 5.6, 5.6, 6.1};

point2f cpt1a[NNt1a-n] =

{{4.0,0.4},{3.5,0.4},{2.8,0.8},{2.6,2.0},{2.8,3.2},{3.5,3.6},

{4.0,3.6}};

point2f cpd1a[3] = {{4.0,3.6},{4.0,4.0},{1.2,4.0}};

point3f cpt1b[4] = {{1.2,4.0,1.0},{1.5,3.0,1.0},{0.5,2.5,0.75},

{0.0,2.5,1.0}};

point2f cpd1b[4] = {{0.0,2.5},{0.0,0.0},{4.0,0.0},{4.0,0.4}};

point2f cpd1c[5] = {{0.3,1.1},{1.6,1.6},{2.1,1.1},{1.6,0.6},

{0.3,1.1}};

point3f cpt1c[4] = {{2.0,3.3,1.0},{0.6,1.65,0.5},{0.6,1.25,0.5},

{2.0,2.5,1.0}};

point3f cpt1d[4] = {{2.0,2.5,1.0},{1.25,1.25,0.5},{1.25,1.5,0.5},

{2.0,3.0,1.0}};

point2f cpd1e[2] = {{2.0,3.0},{2.0,3.3}};

polycurvef boundary1[8] =

{{false,2,n,NNt1a,&ut1a[0],(float*)&cpt1a[0]}, /* B-spline */

{false,2, 1, 2, NULL,(float*)&cpd1a[0]}, /* polyline */

{false,3, 3, -1, NULL,(float*)&cpt1b[0]}, /* Bézier curve */

{true, 2, 1, 3, NULL,(float*)&cpd1b[0]}, /* polyline */

{true, 2, 1, 4, NULL,(float*)&cpd1c[0]}, /* polyline */

{false,3, 3, -1, NULL,(float*)&cpt1c[0]}, /* Bézier curve */

{false,3, 3, -1, NULL,(float*)&cpt1d[0]}, /* Bézier curve */

{true, 2, 1, 1, NULL,(float*)&cpd1e[0]}}; /* line segment */

The boundary in this example consists of four closed curves. The first is the

“outer border” and it consists of four elements: a B-spline curve, a polyline of two

line sements, a rational Bézier curve and a polyline of three line segments. The

second curve is one closed polyline and the third curve consists of two halfcircles
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(represented as rational cubic Bézier curves) and a polyline consisting of one line

segment.

The index of a point of a plane is the number of circulations (in the counter-

clockwise direction) of this point along the boundary according to the orientation

of this boundary. The first two of the three closed curves above are oriented so that

moving along these curves we have the inside of the domain on the left hand side.

The third curve has the opposite orientation. Therefore the index of all points out-

side the “outer border” is 0 and the index of the points inside the polygon bounded

by the second curve is 2. The domain is defined as the set of points, whose index is 1.

7.21.2 Domain boundary compilation

To draw a trimmed patch it is necessary to compute many times the common points

of straight lines with the boundary of the domain. To save time the representation

described in the previous section is translated into a code, which describes the

polylines and Bézier curves, which form the boundary.

int mbs_TrimCVBoundSizef ( int nelem, const polycurvef *bound );

The procedure mbs_TrimCVBoundSizef computes the length (in bytes) of the

code, which describes the boundary of the trimmed patch domain. The given

boundary representation is as described in the previous section. Its parts are poly-

lines, Bézier curves and B-spline curves, described with the elements of the array

bound of length nelem.

This procedure may be used for allocation of the sufficient memory block.

void *mbs_CompileTrimPatchBoundf ( int nelem,

const polycurvef *bound,

void *buffer );

The procedure mbs_CompileTrimPatchBoundf “compiles” the boundary repre-

sentation, i.e. it produces the code representing the polylines and Bézier curves (the

B-spline curves are replaced with the appropriate sequences of Bézier arcs).

The parameter nelem specifies the length of the array bound, whose elements

describe the domain boundary. The parameter buffer points to the array, in which

the code is to be stored. The array must be long enough (one can compute the

necessary length using mbs_TrimCVBoundSizef). If the parameter buffer is (NULL),

then the procedure allocates a long enough memory block from the scratch memory

pool (using pkv_GetScratchMem).

The procedure returns the pointer to the array with the code (i.e. the given value

of the parameter buffer or the address of the allocated memory block, if buffer

was NULL). It may also return NULL, which indicates an error (e.g. insufficient scratch

memory).
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7.21.3 Line pictures

A line picture of a patch or its domain consists of the curves being the images

of the parts of domain boundary and of lines of constant parameters. To draw

such a picture one should find these lines, i.e. find the intersections of appro-

priate straight lines with the domain boundary. This is done by the procedure

mbs_FindBoundLineIntersectionsf, described below. The “higher level” proce-

dure mbs_DrawTrimBSPatchDomf generates a set of straight lines and it computes

their intersections with the domain. Each such an intersection is output by calling

the output procedure given as a parameter. That procedure should draw or

display in some way the line segment in the domain or its image (a piece of a curve

of a constant parameter) on the patch.

typedef struct {

float t;

char sign1, sign2;

} signpoint1f;

The structure of type signpoint1f is used to describe an intersection point of

a straight line with the domain boundary. The line is given in the parametric form,

and it divides the plane into two halfplanes. The attribute t of the structure is set

to the value of the parameter of the line corresponding to the intersection point,

and the attributes sign1 and sign2 describe the orientation of the intersection.

Their possible values are 0, −1 and +1, which correspond to the cases when the

initial point (sign1) or the end point (sign2) of a small part of the boundary is

located on the line or in one of the two halfplanes.

void mbs_FindBoundLineIntersectionsf ( const void *bound,

const point2f *p0, float t0,

const point2f* p1, float t1,

signpoint1f *inters,

int *ninters );

The procedure mbs_FindBoundLineIntersectionsf computes the intersection

points of the straight line given by its two points, p0 and p1, with the boundary

of the domain of the trimmed patch, represented by the code in the array bound

(generated by mbs_CompileTrimPatchBoundf). The intersection points are stored

in the array inters. If the boundary has a common line segment with the straignt

line, then it is represented in the array inters by two elements, corresponding to

the end points of the segment. In that case the attributes sign1 and sign2 of the

two elements are set to 0.

The numbers t0 and t1 are the parameters of the straight line corresponding to

the points p0 and p1. Both these points and their corresponding parameters must

be different.
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The initial value of the parameter *ninters specifies the length (capacity) of the

array inters, i.e. the maximal number of the intersection points that the program

expects to find. Upon exit this parameter has the value of the intersection points

found. In case of error (e.g. in the code, or the overflow of the array inters), the

parameter inters is assigned a negative value.

The array inters after finding all the intersection points is sorted in the order

of increasing values of the attributes t.

void mbs_DrawTrimBSPatchDomf ( int degu, int lastuknot,

const float *uknots,

int degv, int lastvknot,

const float *vknots,

int nelem, const polycurvef *bound,

int nu, float au, float bu,

int nv, float av, float bv,

int maxinters,

void (*NotifyLine)(char,int,point2f*,point2f*),

void (*DrawLine)(point2f*,point2f*,int),

void (*DrawCurve)(int,int,const float*) );

The procedure mbs_DrawTrimBSPatchDomf may be used to draw a line image

of the domain of a trimmed B-spline patch, or the patch itself. Its purpose is to

generate a set of line segments in the domain and to pass each line segment to

and output procedure. The details of further processing of the line segments (e.g.

displaying on the screen or writing in a PostScript file) is thus kept away from the

procedure mbs_DrawTrimBSPatchDomf.

The first 8 parameters of the procedure describe the boundary of the trimmed

B-spline patch. They are: degree n of the patch with respect to the parameetr u

(degu), the numberN of the last knot in the knot sequence u0, . . . , uN (lastuknot),

the array with these knots (uknots), the degree m of the patch with respect to v

(degv), the number M of the last knot in the sequence v0, . . . , vM, the array

with these knots (vknots), the number of boundary elements (nelem) and the

array bound, whose elements describe the domain boundary, as described in Sec-

tion 7.21.1.

The six parameters that follow specify the set of lines, whose intersections with

the patch boundary are to be found. The set consists of “vertical” and “horizontal”

lines (lines of constant parameters u and v respectively).

The “vertical” lines correspond to the knots un, . . . , uN−n (and thus they have

nonempty intersections with the domain) and in addition to the numbers, which

divide each interval [ui, ui+1], i = n, . . . ,N − n − 1, into equal subintervals. The

default number of the subintervals is the value of nu, but it may be modified so

that the length of each subinterval be not less than the value of the parameter au

and not greater than the value of bu.
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In a similar way the parameters nv, av and bv specify the set of “horizontal”

lines (of constant parameter v), generated by the procedure.

The parameter maxinters is the maximal expected number of intersection

points od a single line with the domain boundary. According to its value the

procedure allocates a buffer for these points. In case of overflow in this buffer the

procedure may fail.

The last three parameters point to the output procedures. Each of them may

be NULL, which causes ignoring the appropriate result of the computations.

The first output procedure, NotifyLine, is called for each subsequent “vertical”

or “horizontal” line from the set generated by the procedure. Its first parameter (of

type char) is 1 if the line is vertical, and 2 if horizontal. The second parameter

specifies the number of the appropriate interval between the knots, and the next

two parameters are the end points of the intersection of the line with the domain

of the untrimmed patch. For example, if the first parameter is 1, and the second

is k, then the line is vertical, i.e. it is a line of constant parameter u, which is the

number from the interval [uk, uk+1). This number is the value of the x coordinate

of the points passed as the third and the fourth parameter.

The output procedure DrawLine is called after finding the intersections of the

domain boundary with the line, for each pair of consecutive intersection points.

The points are passed as the first two parameters. The third parameter is the index

of the points inside the line segment (see Section 7.21.1). If the boundary is oriented

in such a way that moving along it according to the orientation we have the inside

of the domain on the left hand side, then this index will always be 1 (for the line

segments inside the domain) or 0 (for the line segments outside the domain). In

general the orientation of the particular closed curves, which describe the domain

boundary, may be arbitrary. The decision, which line segments are inside and which

are outside the domain is left to the procedure DrawLine (it may implement e.g.

the parity rule: the domain contains the line segments with the index odd).

The procedure DrawCurve is called in order to draw the elements of the domain

boundary. The first parameter is always d = 2 or 3, to distinguish between planar

polynomial and rational (represented in the homoheneous form) Bézier curves. The

second parameter specifies the degree n of the curve (if it is 1 then the curve is

a line segment, the procedure may take advantage of that). The third parameter is

an array with the control points. It contains (n + 1)d floating point numbers, the

coordinates of the control points.

Example — output proceures for line pictures

Example procedures below were used to draw the domain and the patch shown in

Figure 7.20, using PostScript.

The picture on the left hand side shows the domain of a B-spline patch, i.e. the

intersections of the constant parameter lines corresponding to the knots of the patch,
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and the domain boundary. The line segments are drawn with the procedure shown

below. It calls some procedure MapPoint in order to map (scale and translate) the

line segments.

void DrawLine1 ( point2f *p0, point2f *p1, int index )

{

point2f q0, q1;

if ( index == 1 ) {

ps_Set_Line_Width ( 2.0 );

MapPoint ( frame, p0, &q0 );

MapPoint ( frame, p1, &q1 );

ps_Draw_Line ( q0.x, q0.y, q1.x, q1.y );

}

} /*DrawLine1*/

The domain boundary has been drawn by the procedure DrawCurve1, whose

shortened version follows (the full version is in the file trimpatch.c):

void DrawCurve1 ( int dim, int degree, const float *cp )

{

#define DENS 50

int i, size;

float t;

point2f *c, p;

ps_Set_Line_Width ( 6.0 );

if ( degree == 1 ) {

/* A Bézier curve of degree 1 is a line segment, so this case */

/* is treated in a special way. The array cp contains 4 */

/* or 6 numbers, the cartesian or homogeneous coordinates */

/* (depending on the value of dim) of the end points. */

...

}

else /* degree > 1, we draw a polyline */ {

if ( c = pkv_GetScratchMem ( size=(DENS+1)*sizeof(point2f) ) ) {

if ( dim == 2 ) {

for ( i = 0; i <= DENS; i++ ) {

t = (float)i/(float)DENS;

mbs_BCHornerC2f ( degree, cp, t, &p );

MapPoint ( frame, &p, &c[i] );

}

}

else if ( dim == 3 ) {

for ( i = 0; i <= DENS; i++ ) {

t = (float)i/(float)DENS;
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mbs_BCHornerC2Rf ( degree, (point3f*)cp, t, &p );

MapPoint ( frame, &p, &c[i] );

}

}

else goto out;

ps_Draw_Polyline ( c, DENS );

out:

pkv_FreeScratchMem ( size );

}

}

#undef DENS

} /*DrawCurve1*/

The call of mbs_DrawTrimBSPatchDomf, which produced this picture, looks like

this:

mbs_DrawTrimBSPatchDomf ( n1, NN1, u1, m1, MM1, v1, 8, boundary1,

1, 2.0, 2.0, 1, 2.0, 2.0,

20, NULL, DrawLine1, DrawCurve1 );

The first 6 parameters specify the degree and knots, and also the untrimmed

domain, as described before. The domain is the rectangle [0, 4] × [0, 4], and the

lengths of the intervals between the knots are between 1 and 1.5. Therefore the

values of the parameters nu, au, bu, nv, av, bv ensure drawing only the lines of

constant parameters corresponding to the knots.

To draw the picture of the trimmed patch as on the right hand side of Fig-

ure 7.20 one must map the lines in the domain onto the patch, and then to use the

appropriate perspective projection. The procedure DrawLine2 used in this case is

the following:

void DrawLine2 ( point2f *p0, point2f *p1, int index )

{

#define LGT 0.05

void *sp;

int i, k;

float t, d;

vector2f v;

point2f q, *c;

point3f p, r;

if ( index == 1 ) {

ps_Set_Line_Width ( 2.0 );

SubtractPoints2f ( p1, p0, &v );

d = sqrt ( DotProduct2f(&v,&v) );

k = (int)(d/LGT+0.5);

sp = pkv_GetScratchMemTop ();
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c = (point2f*)pkv_GetScratchMem ( (k+1)*sizeof(point2f) );

for ( i = 0; i <= k; i++ ) {

t = (float)i/(float)k;

InterPoint2f ( p0, p1, t, &q );

mbs_deBoorP3f ( n1, NN1, u1, m1, MM1, v1, 3*(MM1-m1),

&cp1[0][0], q.x, q.y, &p );

PhotoPointUDf ( &CPos, &p, &r );

c[i].x = r.x; c[i].y = r.y;

}

ps_Draw_Polyline ( c, k );

pkv_SetScratchMemTop ( sp );

}

#undef LGT

} /*DrawLine2*/

An explanation: instead of a curve the procedure draws a polyline. The number

of its line segments depends on the length of the line segment in the domain of the

patch. One can take into account also the shape of the patch, which is a bit more

complicated. The procedure DrawLine2 has an access to the representation of the

patch (its knots and control points) via global variables. The points of the patch

are computed using the de Boor algorithm (by the mbs_deBoorP3f procedure). One

can decrease the computational cost, by specifying with the parameter NotifyLine

a procedure, whose task would be to find the B-spline (or even a piecewise Bézier)

representation of the curve of constant parameters u or v. The procedure specified

as the parameter DrawLine after calling NotifyLine would then just draw the arcs

of this curve of the constant parameter.
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The libraybez library consists of procedures, whose main (but not only) purpose

is supporting ray tracing, and more precisely computing intersections of rays with

Bézier patches. To do this, the procedures build trees of recursive patch subdivision,

to accelerate solving the appropriate nonlinear equations, by eliminating multiple

computations of the same thing.

Possible extensions of this library should include constructing trees for B-spline

patches (also trimmed) and trees with additional attributes, which would help in

computing intersections of surfaces.

8.1 Common definitions and procedures

typedef struct {

float xmin, xmax, ymin, ymax, zmin, zmax;

} Box3f;

The structure Box3f represents a rectangular parallelpiped. In the representa-

tion of a piece of a patch it is used to locate this piece in the space (the piece is in

the associated parallelpiped).

typedef struct {

point3f p;

vector3f nv;

float u, v, t;

} RayObjectIntersf, *RayObjectIntersfp;

The structure RayObjecIntersf represents a point of intersection of a ray with

a patch. It consists of the following fields: p — the point of intersection, nv —

normal vector of the patch at this point, u, v, t — parameters pf the patch and the

ray corresponding to the intersection point.

8.2

8.2 Binary subdivision trees for polynomial patches

typedef struct _BezPatchTreeVertexf {

struct _BezPatchTreeVertexf

*left, *right, *up;

point3f *ctlpoints;

float u0, u1, v0, v1;

Box3f bbox;

point3f pcent;

float maxder;

short int level;

char divdir;

char pad;

} BezPatchTreeVertexf, *BezPatchTreeVertexfp;

The structure _BezPatchTreeVertexf represents a vertex of a binary tree of

recursive subdivision of a polynomial Bézier patch p.

The fields of this structure are used to store the following data: left, right,

up — pointers to the vertices of the left and right subtrees and to the parent vertex

(the vertex, whose the current vertex is the root of one of the subtrees) respectively,

ctlpoints — pointer to the array with the control points of the piece represented

by this vertex, u0, u1, v0, v1 — numbers which describe the domain of the piece,

[u0, u1] × [v0, v1], bbox — bounding box (rectangular parallelpiped) of the piece,

pcent — the point p((u0 +u1)/2, (v0 + v1)/2), maxder — upper estimation of the

length of the vectors of both partial derivatives of this piece with respect to local

parameters, level — level of the vertex in the tree, divdir — indicator of the

direction of further division of the piece, pad — unused (it aligns the size of the

structure to an even number of bytes).

typedef struct {

unsigned char n, m;

unsigned int cpsize;

BezPatchTreeVertexfp root;

} BezPatchTreef, *BezPatchTreefp;

The structure BezPatchTreef represents a tree of recursive binary subdivision

of a polynomial Bézier patch. Its fields are the following: n, m — degree of the

patch with respect to the variables u and v, cpsize — amount of memory needed

to store the control points, root — pointer to the root of the tree.
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BezPatchTreefp

rbez_NewBezPatchTreef ( unsigned char n, unsigned char m,

float u0, float u1, float v0, float v1,

point3f *ctlpoints );

The procedure rbez_NewBezPatchTreef creates a tree of binary subdivision

of a polynomial Bézier patch and it returns the pointer to the structure, which

represents this tree. Initially the tree consists only of the root, which represents

the entire patch.

The parameter n and m specify the degree of the patch with respect to u and v

respectively. The parameters u0, u1, v0 and v1 specify the domain of the patch, i.e.

the rectangle [u0, u1]×[v0, v1] (if the patch has been obtained by dividing a B-spline

patch, then these numbers should be the appropriate knots).

The parameter ctlpoints points to the array of control points of the patch.

The value returned by the procedure is the pointer to the structure, which

describes the tree. The memory blocks for this structure and for the structures

representing the vertices are allocated with malloc.

void rbez_DestroyBezPatchTreef ( BezPatchTreefp tree );

The procedure rbez_DestroyBezPatchTreef deallocates (by calling free) the

memory blocks used to represent a tree of binary patch division. The parameter

tree is a pointer to the structure representing the tree.

BezPatchTreeVertexp

rbez_GetBezLeftVertexf ( BezPatchTreefp tree,

BezPatchTreeVertexfp vertex );

BezPatchTreeVertexfp

rbez_GetBezRightVertexf ( BezPatchTreefp tree,

BezPatchTreeVertexfp vertex );

The procedures rbez_GetBezLeftVertexf and rbez_GetBezRightVertexf re-

turn pointers to the vertex of the left and right subtree of a vertex of a tree of patch

subdivision respectively.

The parameters: tree — pointer to the structure representing the tree, vertex

— pointer to one of the vertices of this tree.

The procedures return the pointers to the appropriate (left or right) vertices. If

it does not exist, then the procedures divide the piece of the patch represented by

the vertex pointed by vertex, they create both root vertices of the subtrees and

they return the pointer to one of those new vertices. For each vertex, either both

subtrees exist or both are empty.

8.4

int rbez_FindRayBezPatchIntersf ( BezPatchTreef *tree,

ray3f *ray,

int maxlevel, int maxinters,

int *ninters, RayObjectIntersf *inters );

The procedure FindRayBezPatchIntersf computes the common points of a ray

(a halfline) with a polynomial Bézier patch in R
3.

The parameters: tree — pointer to the tree of patch subdivision; ray — pointer

to the ray (the structure ray3f is defined in the header file geomf.h; maxlevel —

limit of the height of the tree (the procedure will not require vertices beyond that

level, therefore they will not be created if the only reason to call the procedures

returning pointers to the vertices is the ray tracing); maxinters — capacity of the

array inters, in which the results are to be stored. The array must have at least

that length, and the procedure will terminate after computing at most that many

intersections. The number of intersection points found on return is assigned to

*ninters.

The number of intersection points is also the value of the procedure.

8.3 Binary subdivision trees for rational Bézier patches

Binary trees of recursive subdivision of rational Bézier patches are constructed and

processed in an almost identical way as the trees for the polynomial patches. All

structures and procedures described in the previous section have their counterparts

here.

typedef struct _RBezPatchTreeVertexf {

struct _RBezPatchTreeVertexf

*left, *right, *up;

point4f *ctlpoints;

float u0, u1, v0, v1;

Box3f bbox;

point3f pcent;

float maxder;

short int level;

char divdir;

char pad;

} RBezPatchTreeVertexf, *RBezPatchTreeVertexfp;

The structure _BezPatchTreeVertexf represents a vertex of a binary tree

of recursive subdivision of a rational Bézier patch p.

The fields of this structure are used to store the following data: left, right,

up — pointers to the vertices of the left and right subtrees and to the parent vertex

(the vertex, whose the current vertex is the root of one of the subtrees) respectively,

ctlpoints — pointer to the array with the control points of the homogeneous patch
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representing the piece corresponding to this vertex, u0, u1, v0, v1 — numbers which

describe the domain of the piece, [u0, u1]× [v0, v1], bbox — bounding box (rectan-

gular parallelpiped) of the piece, pcent — the point p((u0 + u1)/2, (v0 + v1)/2),

maxder — upper estimation of the length of the vectors of both partial derivatives

of this piece with respect to local parameters, level — level of the vertex in the

tree, divdir — indicator of the direction of further division of the piece, pad —

unused (it aligns the size of the structure to an even number of bytes).

typedef struct {

unsigned char n, m;

unsigned int cpsize;

RBezPatchTreeVertexfp root;

} RBezPatchTreef, *RBezPatchTreefp;

The structure RBezPatchTreef representuje a binary tree of recursive subdivi-

sion of a rational Bézier patch. Its fields are as follows: n, m — degrees of the patch

with respect to the cariables u and v, cpsize — amount of memory needed to store

the control points, root — pointer to the root of the tree.

RBezPatchTreefp

rbez_NewRBezPatchTreef ( unsigned char n, unsigned char m,

float u0, float u1, float v0, float v1,

point4f *ctlpoints );

The procedure rbez_NewRBezPatchTreef creates a tree of binary subdivision of

a rational Bézier patch and it returns the pointer to the structure, which represents

this tree. Initially the tree consists only of the root, which represents the entire

patch.

The parameter n and m specify the degree of the patch with respect to u and v

respectively. The parameters u0, u1, v0 and v1 specify the domain of the patch, i.e.

the rectangle [u0, u1]×[v0, v1] (if the patch has been obtained by dividing a NURBS

patch, then these numbers should be the appropriate knots).

The parameter ctlpoints points to the array of control points of the homoge-

neous patch in R
4.

The value returned by the procedure is the pointer to the structure, which

describes the tree. The memory blocks for this structure and for the structures

representing the vertices are allocated with malloc.

void rbez_DestroyRBezPatchTreef ( RBezPatchTreefp tree );

The procedure rbez_DestroyRBezPatchTreef deallocates (by calling free) the

memory blocks used to represent a tree of binary patch division. The parameter

tree is a pointer to the structure representing the tree.
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RBezPatchTreeVertexp

rbez_GetRBezLeftVertexf ( RBezPatchTreefp tree,

RBezPatchTreeVertexfp vertex );

RBezPatchTreeVertexfp

rbez_GetRBezRightVertexf ( RBezPatchTreefp tree,

RBezPatchTreeVertexfp vertex );

The procedures rbez_GetRBezLeftVertexf and rbez_GetRBezRightVertexf

return pointers to the vertex of the left and right subtree of a vertex of a tree of

patch subdivision respectively.

The parameters: tree — pointer to the structure representing the tree, vertex

— pointer to one of the vertices of this tree.

The procedures return the pointers to the appropriate (left or right) vertices. If

it does not exist, then the procedures divide the piece of the patch represented by

the vertex pointed by vertex, they create both root vertices of the subtrees and

they return the pointer to one of those new vertices. For each vertex, either both

subtrees exist or both are empty.

int rbez_FindRayRBezPatchIntersf ( RBezPatchTreef *tree,

ray3f *ray,

int maxlevel, int maxinters,

int *ninters, RayObjectIntersf *inters );

The procedure FindRayRBezPatchIntersf computes the common points of

a ray (a halfline) with a rational Bézier patch in R
3.

The parameters: tree — pointer to the tree of patch subdivision; ray — pointer

to the ray (the structure ray3f is defined in the header file geomf.h; maxlevel —

limit of the height of the tree (the procedure will not require vertices beyond that

level, therefore they will not be created if the only reason to call the procedures

returning pointers to the vertices is the ray tracing); maxinters — capacity of the

array inters, in which the results are to be stored. The array must have at least

that length, and the procedure will terminate after computing at most that many

intersections. The number of intersection points found on return is assigned to

*ninters.

The number of intersection points is also the value of the procedure.

Figure 8.1 shows an image of a rational Bézier patch of degree (5, 5) obtained

with use of this procedure. The full source code of the program which rendered

this image is given in the file ../cpict/raybez.c.
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Figure 8.1. Image of a rational Bézier patch rendered by ray tracing

with use of the procedure rbez_FindRayRBezPatchIntersf. On the right

side the pieces of the domain divided during the computation are shown



9. The libeghole library

The libeghole library contains procedures of filling polygonal holes in a piecewise

bicubic spline surfaces. The theory and the algorithm are described in the book

Konstrukcje powierzchni gładko wypełniających wielokątne otwory.

9.1 Data preparation

The data for hole filling procedures consists of four elements:

� The number of hole sides, k,

� k eleven-element sequences of knots,

� 12k+ 1 domain control points,

� 12k+ 1 surface control points.

In addition to the data mentioned above, one can specify constraints, i.e. linear

equations to be satisfied by the filleting surface. Their representation is described

in Section 9.3.4.

The integer number k must not be less than 3 and not greater than 16. The

surface constsis of 3k bicubic polynomial patches, which surround a k-sided hole.

The knot sequences u
(n)

0 , . . . , u
(n)

10 , for n = 0, . . . , k − 1, must satisfy the

conditions

u
(n)

0 ≤ u(n)

1 < · · · < u(n)

9 ≤ u(n)

10 ,

and

u
(n)

i − u
(n)

1 = u
(m)

0 − u
(m)

10−i,

for m = (n + 2) mod k and i = 4, . . . , 9. The sequences should be given in a one-

dimensional array of length 11k; the subsequent elements of the sequences must be

stored without gaps.

The domain control points, c0, . . . , c12k are points of a plane; they are ver-

tices of the domain control net. A scheme of such a net and the method of number-

ing them is shown in Figure 9.1. This net contains k control nets of planar bicubic

B-spline patches, which have common polynomial pieces.

For n = 0, . . . , k−1 the n-th B-spline patch is represented by the knot sequences

u
(n)

0 , . . . , u
(n)

10 and u
(m)

0 , . . . , u
(m)

7 , wherem = (n+1) mod k, and the control points

c
(n)

ij , i = 0, . . . , 6, j = 0, . . . , 3, such that:
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Figure 9.1. Representation of a domain of a surface filling a hole

� c
(n)

ij = c12(n+1)−3j−i for i = 0, . . . , 2, j = 0, . . . , 3

� c
(n)

ij = c12m−3i−j for i = 3, . . . , 6, j = 0, . . . , 2, where m = (n+ 1) mod k,

� c
(n)

3,3 = c0,

� c
(n)

ij = c12m+i−3 for i = 4, . . . , 6, j = 3, where m = (n+ 2) mod k.

The B-spline patches represented by these knots and control points must be regular

and apart from the common pieces determined by the representation they must be

disjoint.

The set of points of the B-spline patches represented by the knots and control

points described above is the domain of some parameterization of the surface with

the hole, and the area Ω surrounded by these patches, which is a curvilinear k-

sided polygon, is the domain of a parameterization of the filleting surface to be

constructed. For such a parameterization a functional F is defined; its value mea-

sures the quality (or rather badness) of the surface (the minimum will be searched).

By changing the control points ci one changes this functional, which affects the con-

struction result.

The surface control points, b0, . . . ,b12k, are located in the space of dimen-

sion d (usually in practice it will be d = 3 for polynomial surfaces, or d = 4, if

the hole to be filled is in a homogeneous surface representing a piecewise rational

surface). The surface control net is bulit in a similar way to the domain control

net, i.e. one can distinguish in it k control nets of B-spline patches of degree (3, 3).

For n = 0, . . . , k − 1 the n-th patch is represented by the knots u
(n)

0 , . . . , u
(n)

10

and u
(m)

0 , . . . , u
(m)

7 , where m = (n + 1) mod k, and by the control points b
(n)

ij ,

i = 0, . . . , 6, j = 0, . . . , 3, being the points bl with the subscripts l defined in the

same way as the indexes of the control points c
(n)

ij of the B-spline patches surround-

ing the domain.
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The array with the control points of the surface, which is to be passed to the

procedures filling the hole, consists of (12k + 1)d floating point numbers — con-

secutive d numbers are the coordinates of one control point bl. The points c
(n)

ij

and b
(n)

ij for i ∈ {0, 6} and for j = 0 have no influence on the construction result

(i.e. on the filleting surface), as well as the knots u
(n)

0 and u
(n)

10 , but they must be

specified. In Figure 9.1 the points, which are relevant, are marked with black dots.

9.2 Theoretical background

A detailed description of theory underlying the constructions done by the proce-

dures of the libeghole library may be found in the paper Konstrukcje powierzchni

gładko wypełniających wielokątne otwory (Constructions of surfaces filling

smoothly polygonal holes, in Polish). Below only the information necessary for

correct preparation of data for the procedures are given.

9.2.1 Bases used in the constructions

To construct a surface filling a hole, the library procedures construct a basis

φ0, . . . , φn+m of some linear vector space, whose elements are scalar functions

of class C1 or C2, which describe the coordinates of the hole filling surface. The

surface may be described by the formula

p =

n−1∑

i=0

aiφi +

m−1∑

i=0

biφn+i. (9.1)

The vectors bi ∈ R
d are given control points of the surface with the hole. The

control net of this surface is a graph isomorphic with the control net of the domain

shown in Figure 9.1 and its vertices are numbered analoguously. The vertices are

passed to the construction procedures (in that order) in an array given as a param-

eter. The array contains 12k+ 1 control points, of which m = 6k+ 1 influence the

surface filling the hole.

The purpose of the surface construction procedures is to compute the vectors

a0, . . . ,an−1 ∈ R
d, which minimise some functionals, taken as measures of „bad-

ness” of the surface. The basis functions φ0, . . . , φn+m−1 are defined in the area

Ω ∈ R
2, which is the hole in the planar surface represented by the domain control

net, described in the previous section. The area Ω is divided into k curvilinear

quadrangles Ω0, . . . ,Ωk−1, which are images of the unit square under the map-

pings d0, . . . ,dk−1, called domain patches. The function φi is defined by the

formula

φi(x) = pli(d
−1
l (x)) for x ∈ Ωi,
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with use of the domain patches and the functions pi0, . . . , pi,k−1, called basis

function patches. The surface filling the hole consists of k polynomial or spline

patches p0, . . . ,pk−1, given by

pl =

n−1∑

i=0

aipli +

m−1∑

i=0

bipl,i+n.

The Bézier or B-spline representation of these patches is the final result of the

constructions.

The basis functions φ0, . . . , φn+m−1 may be divided into two subsets. The

functions φ0, . . . , φn satisfy the homogeneous boundary condition, i.e. their values

and partial derivatives of order 1 (or 1 and 2) at the boundary of Ω are 0. The

functions φn, . . . , φn+m−1 satisfy the boundary conditions chosen in such a way,

that for arbitrary vectors a0, . . . ,an−1 the surface given by Formula (9.1) was joined

with the given surface with tangent plane or curvature continuity. The functions

φn, . . . , φn+m−1 and their derivatives of order 1 and 2 (or 1, . . . , 4) at the central

point, i.e. the comon point of all areas Ωl are equal to 0.

The halflines tangent to the common curves of the areas Ω0, . . . ,Ωk−1 are in-

clined at the angles α0, . . . , αk−1, where α0 < α1 < · · · < αk−1 < α0 + 2π. The

set ∆ = {α0, . . . , αk−1} is called the partition of the full angle. Let h denote the

number of pairs {αi, αi + π} ⊂ ∆. For the case of construction of surfaces of class

G1 or G1Q2, let

n ′ = 3+ max{k, h+ 3}.

The number n ′ is the number of elements of the basic basis, whose all elements

have basis function patches being bicubic Coons patches, described by polynomials

of degree 5 (thus they are polynomials of degree (5, 5)).

One can take n = n ′ or n = n ′ + 4k; in the former case we have so called

extended basis of the correspondingly wider space V0 = lin{φ0, . . . , φn−1} ⊂ V.

The basis function patches of the additional basis functions are tensor products of

the Bernstein polynomials B5
2 and B5

3. Just like in the case of using the basic basis,

the result of the construction consists of k Bézier patches of degree (5, 5).

There is also a possibility of filling the hole with B-spline patches of degree (5, 5).

The basis of the appropriate space V0, apart from the elements of the basic basis

contains two subsets of functions: the functions of first subset have basis func-

tion patches being tensor products of the B-spline functions N5
i and N5

j for i, j ∈
{2, . . . , 3 + nkm2}. There must be 1 ≤ m2 ≤ 4. The basis function patches of the

functions from the second subset are bicubic Coons patches, determined by quintic

spline functions and having nkm1 knots, where 1 ≤ m1 ≤ 2. The dimension of

the space V0 is then equal to n ′ + k
(

(2 + nkm2)
2 + 2nkm1

)

. The result of the

construction consists of k B-spline patches of degree (5, 5).

For the constructions of surfaces of class G2, let

n ′ = 6+ max{k, h+ 4}+ max{2k, 2h+ 5}.
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If n = n ′, then we have the basic basis, whose all elements have basis function

patches being biquintic Coons patches of degree (9, 9).

The extended basis has additional 16k functions, whose basis function patches

are tensor products of the Bernstein polynomials B9
3, . . . , By6. In both cases the re-

sult of the construction consists of k polynomial patches of degree (9, 9), represented

in Bézier form.

One can use also a spline basis, defined with three parameters, nk, m1 i m2; in

this case the space V0 has the dimension

n ′ + k
(

(4+ nkm2)
2 + 3nkm1

)

,

and the result of the construction consists of k B-spline patches of degree (9, 9).

There must be 1 ≤ m1 ≤ 3, 1 ≤ m2 ≤ 7.

9.2.2 Optimisation criteria for surfaces of class G1

The filling surfaces of class G1 have degree (5, 5). There are obtained by minimisa-

tion of the folowing functionals

Fa(p)
def
=

∫

Ω

‖∆p‖22 dΩ,

Fb(p)
def
=

∫

Ω

H2
√

detG dΩ,

where G denotes the matrix of the first fundamental form and H denotes the mean

curvature. The functional Fa is a quadratic form, with a unique minimum (also for

arbitrary consistent constraints). The functional Fb is nonlinear, and its value de-

pends only on the shape of the surface. The minimisation of Fb is more troublesome

and time consuming. It may fail for some surfaces.

9.2.3 Optimisation criteria for surfaces of class G2

The vectors a0, . . . ,an−1 are chosen so as to minimise one of the following func-

tionals:

Fc(p) =

∫

Ω

‖∇∆p‖2F dΩ,

Fd(p) =

∫

Ω

‖∇MH‖22
√

detG dΩ.

Subsequent rows of the matrix ∇∆p are gradients of Laplacians of the d scalar

functions, which describe the parameterisation p; the symbol ‖ · ‖F denotes the

Frobenius norm, i.e. square root of the sum of squares of all coefficients of the

matrix.

The functional Fc is defined for surfaces in d-dimensional spaces for any d, while

in case of Fd there must be d = 3. The symbol H denotes the mean curvature of the
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surface, ∇MH denotes the mean curvature gradient on the surface, and G denotes

the matrix of the first fundamental form.

The functional Fc is a quadratic form, whose minimum may be found by solving

a system of linear equations

Aa = −Bb, (9.2)

with the matrices A = [aij]i,j and B = [bij]i,j, having dimensions n×n and n×m,

whose coefficients

aij = a(φi, φj), bij = a(φi, φj+n),

are the values of the bilinear form

a(f, g) =

∫

Ω

〈∇∆f,∇∆g〉 dΩ.

The matrix b,m×d consists of the control points of the given surface, the matrix a,

n×d consists of the unknown vectors a0, . . . ,an−1. The number d is the dimension

of the space, in which the surface is located, e.g. 3 (but it may also be 4 if a piecewise

polynomial surface, being a homogeneous representation of a rational surface, is

constructed).

The value of the functional Fd does not depend on the parameterisation of the

surface (which must be in R
3), it depends only on the shape. Finding its minimum

is more difficult, more time consuming and not always possible (this depends on the

given surface with the hole). To do it, the following nonlinear system of equations

is solved

∇F(a0, . . . , an−1) = 0, (9.3)

where the function F is given by

F(a0, . . . , an−1) = Fd(p),

for a parameterisation p defined as

p(u, v) =





u

v

p(u, v)



 , p(u, v) =

n−1∑

i=0

aiφi +

m−1∑

i=0

biφn+i.

The surface with the hole is transformed to such a coordinate system uvw, that it is

the graph of a scalar function, w = q(u, v). The domainΩ is obtained by projecting

the surface onto the plane uv. The numbers b0, . . . , bm−1 are the coordinates w of

the control points of the given surface.
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9.2.4 Optimisation criteria for surfaces of class G1Q2

9.2.5 Constraint equations

The constructions make it possible to impose constraints described by linear equa-

tions, e.g. interpolation conditions. The minimua of the functional Fc or Fd may

be searched in the set of surfaces, whose coefficients satisfy the system of equations

Ca = d. (9.4)

The w× n matrix C must have linearly indeopendent rows. The matrix d, whose

dimensions are w × d, describes the right hand side of the constraint equations

system, where w is the number of constraints and d is the dimension of the space

containing the surface; for the functional Fd there must be d = 3.

The subsequent rows of the unknown matrix a are the vectors a0, . . . ,an−1,

which appear in Formula (9.1). If the i-th constraint has the form p(x) = p0

(this is an interpolation condition, which fixes the point of the surface corre-

sponding to some point x ∈ Ω), then the coefficients of the i-th row of the ma-

trix C are φ0(x), . . . , φn−1(x), and the i-th row of the matrix d must be p0 −∑m−1
i=0 biφn+i(x). Similarly, fixing the value v of the partial derivative with re-

spect to e.g. u at the point x is done by the constraint equation with the row of C

consisting of the numbers ∂
∂u
φ0(x), . . . ,

∂
∂u
φn−1(x), and the right hand side (i.e.

the row of d) is v−
∑m−1

i=0 bi
∂
∂u
φn+i(x).

For the functional Fd, if the extended basis is used, it is possible only to impose

constraints in the form of interpolation conditions at the central point of the domain

(i.e. at the common point of all the areas Ωi). The library is equipped with the

procedures of computing the basis functions and their partial derivatives at this

point. There are also procedures giving access to the full representation of the

basis functions, which make it possible to evaluate any linear functional for all the

basis functions. These values may then be used as the coefficients in the constraint

equations.

The method described above imposes constraints of the same kind simultane-

ously and independently on all the coordinates of the surface filling the hole. An

alternative form of the constraint equations is the following:

C0a0 + · · ·+ Cd−1ad−1 = d. (9.5)

The matrices C0, . . . , Cd−1 have dimensions w× n, the matrix C = [C0, . . . , Cd−1]

(w×nd) must have linearly independent rows. This form of constraints is more gen-

eral and it allows one to fix the value of an arbitrary linear functional for the param-

eterisation p. One can e.g. fix only the value of the first coordinate of the point p(x),

by taking the i-th row of the matrix C0 made of the coefficients φ0(x), . . . , φn−1(x),

and putting zeroes in the i-th row of C1, . . . , Cd−1.
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9.2.6 Table of procedures of surface construction

The available procedures of surface construction are gathered in the following table:

Coons Bézier B-spline Coons Bézier B-spline Coons Bézier B-spline

G1 1. 2. 3. 4. 5. 7. 8.

G2 10. 11. 12. 13. 14. 16. 17.

G1Q2 19. 20. 21. 22. 23. 25. 26.

G1 28. 29. 30. 31. 32. 34. 35.

G2 37. 38. 39. 40. 41. 43. 44.

G1Q2 46. 47. 48.

L






NL





︸ ︷︷ ︸

without constraints
︸ ︷︷ ︸

constraints (9.4)
︸ ︷︷ ︸

constraints (9.5)

The procedures indicated in the first three rows construct the minimal surfaces

of quadratic forms (by solving systems of linear equations).

The procedures in next three rows solve nonlinear equations in order to minimise

the functionals independent of the parameterisation.

The procedures in the first three columns construct surfaces without constraints.

The following three columns contain the procedures of constructions with con-

straints of the form (9.4), and the last three columns with the constraints (9.5).

At the top of each column there is the form of the basis used in the constructions.

The procedure names are the following:

1. g1h_FillHolef.

2. g1h_ExtFillHolef.

3. g1h_SplFillHolef.

4. g1h_FillHoleConstrf.

5. g1h_ExtFillHoleConstrf.

7. g1h_FillHoleAltConstrf.

8. g1h_ExtFillHoleAltConstrf.

10. g2h_FillHolef.

11. g2h_ExtFillHolef.

12. g2h_SplFillHolef.

13. g2h_FillHoleConstrf.

14. g2h_ExtFillHoleConstrf.
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16. g2h_FillHoleAltConstrf.

17. g2h_ExtFillHoleAltConstrf.

19. g1h_Q2FillHolef.

20. g1h_Q2ExtFillHolef.

21. g1h_Q2SplFillHolef.

22. g1h_Q2FillHoleConstrf.

23. g1h_Q2ExtFillHoleConstrf.

25. g1h_Q2FillHoleAltConstrf.

26. g1h_Q2ExtFillHoleAltConstrf.

28. g1h_NLFillHolef.

29. g1h_NLExtFillHolef.

30. g1h_NLSplFillHolef.

31. g1h_NLFillHoleConstrf.

32. g1h_NLExtFillHoleConstrf.

34. g1h_NLFillHoleAltConstrf.

35. g1h_NLExtFillHoleAltConstrf.

37. g2h_NLFillHolef.

38. g2h_NLExtFillHolef.

39. g2h_NLSplFillHolef.

40. g2h_NLFillHoleConstrf.

41. g2h_NLExtFillHoleConstrf.

43. g2h_NLFillHoleAltConstrf.

44. g2h_NLExtFillHoleAltConstrf.

46. g1h_Q2NLFillHolef.

47. g1h_Q2NLExtFillHolef.

48. g1h_Q2NLSplFillHolef.
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9.3 Using the procedures

9.3.1 The basic construction

The construction of a filleting surface consists of two main parts. The first part

is the construction of a basis of a linear space V, whose elements are functions,

which describe a parameterization of the surface (i.e. each of its coordinates), and

the computation of the matrices, which appear in the systems of linear equations

solved in the second part. This computation is rather time-consuming, but the only

data needed in this part represent the domain.

In the second part, based on the surface control points and perhaps constraints

(in case they have been imposed), the right-hand side of the system of equation is

computed. The system is then solved and the solution is used to obtain k Bézier

patches of degree (9, 9), which fill the hole in the surface. The second part takes

much less time and in practice it may be repeated many times while the user of

an interactive program manipulates with the surface control points or with the

constraints (however, a modification of knots causes the necessity of repeating the

first part of the construction).

The first part of the construction will be done by executing the following in-

structions:

GHoleDomainf *domain;

...

if ( !(domain = gh_CreateDomainf ( k, knots, domain_cp )) )

exit ( 1 );

if ( !g2h_ComputeBasisf ( domain ) )

exit ( 1 );

if ( !g2h_DecomposeMatrixf ( domain ) )

exit ( 1 );

The parameter k specifies the number of sides of the hole, and the arrays knots

and domain_cp contain respectively the knot sequences and the domain control

points. The procedure gh_CreateDomainf allocates a data structure, used to store

the representation of the domain Ω of the filleting surface parameterization, the

way of decomposing it into parts (k curvilinear quadrangles) and the basis of the

space V. This data structure is called the domain record.

After creating the domain record (before calling g2h_ComputeBasisf), the pro-

gram may call the procedure g2h_SetOptionProcf in order to use construction

options other than default. The procedure g2h_ComputeBasisf computes repre-

sentations of functions being elements of the space V (the options affect the result

of this computation), and this computation takes a moderate amount of time.

The procedure g2h_DecomposeMatrixf computes the coefficients of the matrices

A and B, which appear in the system of equations (9.2). These coefficients are values

of the bilinear form in the space V for pairs of the basis functions. The vector b
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consists of the surface control points (which will be introduced in the second part

of the construction), and the unknown vector a consists of the other parameters of

the filleting surface representation used in the construction. The matrix A, which

is symmetric and positive-definite, is then decomposed (with the Cholesky method)

into the triangular factors: A = LLT . These factors will be used to solve the system.

Computing the coefficients of the matrices A and B is the most time-consuming step

of the construction — for k = 8 a Pentium IV processor with a 1.8GHz clock may

spend on it about 0.15s.

The second part of the construction is done by executing the code

if ( !g2h_FillHolef ( domain, d, surf_cp, acoeff, output ) )

exit ( 1 );

The parameter domain points to the domain record, for which the first part of

the construction has been (successfully) completed. The parameter d specifies the

dimension of the space, in which the surface is located, the array surf_cp contains

the control points of the surface and the parameter output is a pointer to the

procedure, which will be called k times. Each call is made with the parameters,

which describe one Bézier patch, being part of the surface filling the hole.

The parameter acoeff is an array, in which the soultion of the system (9.2)

should be stored. This solution is necessary, if someone is interested in the value

of the functional F for the constructed surface (actually, in the sum of values of

the functional for the functions, which describe the surface coordinates). This

parameter may be NULL and then it is ignored.

9.3.2 The nonlinear construction

To obtain the filling surface, being the minimal point of the functional Fd, one

should create the domain representation, construct the basis and compute the co-

efficients of the matrices A and B, and then call the procedure g2h_NLFillHolef

instead of g2h_FillHolef.

The computations done by this procedure are much more time consuming, more-

over the feasibility of this construction depends on the given surface with the hole.

If this surface is not flat enough or it has singularities, the construction may fail.

9.3.3 Extending the space

The patches filling the hole, obtained in the way described above, are defined as

biquintic Coons patches, whose boundary curves and cross derivatives have degree

up to 9. The Coons representation used internally is eventually converted to the

Bézier form. As the dimension of the space of bivariate polynomials of degree (9, 9)

is 100 and the polynomials representable in the biquintic Coons form form a sub-

space of degree 84, it is possible to extend the space used to represent the filleting
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surfaces so that its dimension is increased by 16k. The surfaces obtained by mini-

mization of the functional F in the extended space may have (and often they have

indeed) a better shape.

To use this possibility, after creating the domain record with use of the

procedure gh_CreateDomainf and perhaps after registering the options enter-

ing procedure, it is necessary to construct the basic space basis, by calling

g2h_ComputeBasisf as before (the construction of additional functions, which are

elements of a basis of the extended space does not involve any computations).

Then, instead of g2h_DecomposeMatrixf, the program has to call the procedure

g2h_DecomposeExtMatrixf, which computes the matrices A and B of the appro-

priately enlarged system of equations (9.2) and decomposes the matrix A into tri-

angular factors.

The second part of the construction using the extended space is done by the

procedure g2h_ExtFillHolef, which should be called instead of g2h_FillHolef.

These procedures have identical parameter lists.

The data used in both constructions are computed and stored in the domain

record independently, therefore one can compute and decompose the matrices for

both constructions, and then complete them (in any order) and compare the re-

sults. The computation time for the extended space is longer, though the difference

is hard to notice. However, the computations for the extended space require more

memory — for the results (matrix coefficients, stored in memory blocks allocated

by malloc) and the workspace (in the scratch memory pool, managed by the pro-

cedures described in Section 2.3). The double precision version for k = 8 may need

about 2MB of workspace.

To construct the minimal surface of the functional Fd using the extended space,

one should call the procedure g2h_NLExtFillHolef. The scratch memory needed

for this construction may be up to 8MB.

9.3.4 Imposing constraints

To construct a surface with constraints it is necessary to create the domain rep-

resentation (using gh_CreateDomainf), construct the basis and then to enter the

matrix C of the system of constraint equations, and then call the procedure of

construction with constraints.

For the basic space the matrix C of the system (9.4) is entered by the pro-

cedure g2h_SetConstraintMatrixf. The minimal surface of the functional Fc
with constraints is constructed by the procedure g2h_FillHoleConstrf. The min-

imal surface of the functional Fd with constraints is constructed by the procedure

g2h_NLFillHoleConstrf.

To enter the matrix of the system of constraint equations having the form (9.5)

one should use the procedure g2h_SetAltConstraintMatrixf. The minimal sur-

face of the functional Fc with such constraints is obtained by the procedure
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g2h_FillHoleAltConstrf, and the minimal surface of the functional Fd is con-

structed by the procedure g2h_NLFillHoleAltConstrf.

For the extended space, to enter the matrix of the system (9.4) use the proce-

dure g2h_SetExtConstraintMatrixf. The minimal surface of the functional Fc is

constructed by the procedure g2h_ExtFillHoleConstrf, and the minimal surface

of the functional Fd is constructed by the procedure g2h_NLExtFillHoleConstrf.

The matrix of the system (9.5) for the extended space is entered by the proce-

dure g2h_SetExtAltConstraintMatrixf. The minimal surface of the functionals

Fc and Fd are constructed by the procedures g2h_ExtFillHoleAltConstrf and

g2h_NLExtFillHoleAltConstrf respectively.

The matrix of each of the four konds of constraints (i.e. of the form (9.4) and (9.5)

for the basic and the extended spaces) may be entered independently of each other.

To change the matrix of the system of constraints, one can call the appropriate

procedure (one of the above) again.

9.4 Main procedures

#define G2H_FINALDEG 9

#define GH_MAX_K 16

The two symbolic constants above specify the degree of the final patches filling

the hole and the maximal number of sides of this hole.

The above constants cannot simply be modified — the degree 9 results from the

implemented interpolation scheme. The library procedures may use also a scheme,

which produces patches of degree 10. To use this possibility, one should remove

the definition of the symbol G2H_FINALDEG9 from the header file and recompile the

procedures.

The domain of the parameterization of a surface filling a polygonal hole is di-

vided into k parts. Sets of those parts are represented with short integers, i.e. 16-bit

variables. To fill holes having more than 16 sides one has to modify the appropriate

part of the procedures, so that e.g. 32-bit words are used, which would make it

possible to fill up to thirty two-sided holes.
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typedef struct GHoleDomainf {

int hole_k;

float *hole_knots;

point2f *domain_cp;

boolean basisG1, basisG2;

void *privateG;

void *privateG1;

void *SprivateG1;

void *privateG2;

void *SprivateG2;

int error_code;

} GHoleDomainf;

The structure type GHoleDomainf describes the domain record, i.e. an object

with all data necessary to fill holes. An application should declare only pointer

variables for such structures, as the responsability for creation and consistency of

data stored in such an object belongs to the library procedures.

The attribute hole_k specifies the number of sides of the hole (from 3 to 16).

The attribute hole_knots points to the array with 11k numbers, being knots

of the surface representation.

The attribute domain_cp points to the array with 12k+ 1 control points of the

domain representation.

The attributes privateG, privateG1, SprivateG1, privateG2, SprivateG2

point to records (whose structure and contents is invisible for applications) with all

other data necesary to fill the hole.

The attribute error_code is used to store the information about the success or

the reason of failure of the computation.

GHoleDomainf* gh_CreateDomainf ( int hole_k,

float *hole_knots,

point2f *domain_cp );

void gh_DestroyDomainf ( GHoleDomainf *domain );

The procedure gh_CreateDomainf creates an object of type GHoleDomainf,

which represents the domain of a surface filling a polygonal hole, and returns its

address. The memory blocks for this object and for all data pointed by the pointers

in it are allocated by the procedure malloc.

The parameter hole_k specifies the number k of sides of the hole (must be from

3 to 16).

The parameter hole_knots is an array with 11k floating point numbers — knots

of the surface and domain representation.

The parameter domain_cp is an array with 12k+1 control points of the domain

representation. The contents of the two arrays are copied to the arrays allocated

by the procedure gh_CreateDomainf.
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If a sufficient memory cannot be allocated, or a data error has been detected,

the procedure returns NULL.

The object just after the creation is not ready to use — the procedure does not

construct the basis necessary to obtain the filleting surfaces. These computations

take some time, and it may be convenient to separate them from the creation of

this object in an application.

The procedure gh_DestroyDomainf deallocates (using the procedure free) the

memory occupied by the domain representation (which includes all memory blocks

allocated while this representation was processed).

void g2h_SetOptionProcf ( GHoleDomainf *domain,

int (*OptionProc)( GHoleDomainf *domain, int query, int qn,

int *ndata, int **idata, float **fdata ) );

The procedure g2h_SetOptionProcf registers the application-supplied proce-

dure, which selects options for the construction and transfers the necessary data.

If this procedure is not called after creating the domain representation, the default

procedure (which gives the default answer to all option queries) is used.

This method of introducing options was chosen in order to fix the parameter lists

of the library procedures, while the construction method was under development.

The advantage is that an application not using nonstandard options does not have

to call the library procedures with the parameters having no significance for that

application.

The principles of specifying options are described in Section 9.5.

boolean g2h_ComputeBasisf ( GHoleDomainf *domain );

The procedure g2h_ComputeBasisf constructs the basis functions, which will

be used to obtain surfaces filling polygonal holes in surfaces. The parameter points

to the object created by gh_CreateDomainf. The value true of the procedure

indicates a success, while false is returned in case of failure.

If for the object passed as the parameter an option procedure has been registered,

that procedure will be called a number of times. The responses of this procedure

affect the result of the computation (i.e. the form of the basis functions), which

influences the surfaces filing the holes, constructed with use of this basis.

The procedure g2h_ComputeBasisf ought to be called only once for the domain

reprezentation created by gh_CreateDomainf. If it is necessary to construct bases

for the same domain more than once (e.g. using various options), then the domain

representation must be deallocated each time (by gh_DestroyDomainf) and created

again.

The computations in this procedure take a moderate amount of time, therefore

they might be done as a part of processing a single message from the system in an

interactive program. The delay involved should be unnoticeable for the user.
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boolean g2h_ComputeFormMatrixf ( GHoleDomainf *domain );

boolean g2h_DecomposeMatrixf ( GHoleDomainf *domain );

The procedure g2h_ComputeFormMatrixf computes the coefficients of the ma-

trices of the system of equations solved in order to construct the filleting surface

using the basic space. The parameter of the procedure is the domain representa-

tion created by gh_CreateDomainf, for which the procedure g2h_ComputeBasisf

has successfully constructed the representation of the basis functions.

The procedure g2h_DecomposeMatrixf decomposes (with use of the Cholesky

method) the matrix computed by g2h_ComputeFormMatrixf. If this matrix has not

been computed yet, the procedure g2h_DecomposeMatrixf begins with computing

them, by calling g2h_ComputeFormMatrixf.

Both these procedures return true to indicate the success and false to indicate

a failure.

boolean g2h_FillHolef ( GHoleDomainf *domain,

int spdimen, const float *hole_cp, float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g2h_FillHolef constructs a surface filling the polygonal hole,

using the basic space.

The parameter domain points to a domain representation created by the pro-

cedure gh_CreateDomainf, for which the procedure g2h_ComputeBasisf has con-

structed (successfully) the representation of the basis functions. The number k of

the hole sides and the knot sequences, which are part of the surface representation,

have been specified during the call to gh_CreateDomainf.

The parameter spdimen specifies the dimension d of the space, in which the

surface resides. For a polynomial surface in R
3, this parameter will have the value 3.

For a polynomial surface in R
4, being a homogeneous representation of a rational

surface in R
3, this parameter will be 4.

The parameter hole_cp is an array with (12k + 1)d floating point numbers,

being the coordinates of 12k+ 1 control points of the surface.

The parameter acoeff may be NULL (and then it is ignored), or it may point an

array, in which the procedure will store the solution of the system of equations (9.2).

This array must have length at least nd, where d is the space, in which the surface

resides (i.e. the value of the parameter spdimen), and n is the dimension of the

basic space — it may be obtained by calling the procedure g2h_V0SpaceDimf.

The parameter outpatch is a pointer to the procedure (supplied by the applica-

tion), which will be called k times in order to output the control points of k Bézier

patches of degree (9, 9), filling the hole.

boolean g2h_ComputeExtFormMatrixf ( GHoleDomainf *domain );

boolean g2h_DecomposeExtMatrixf ( GHoleDomainf *domain );
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The procedure g2h_ComputeExtFormMatrixf computes the coefficients of the

matrices of the system of equations solved in order to construct the filleting

surface using the extended space. The parameter of the procedure is the

domain representation created by gh_CreateDomainf, for which the procedure

g2h_ComputeBasisf has successfully constructed the representation of the basis

functions.

The procedure g2h_DecomposeMatrixf decomposes (with use of the Cholesky

method) the matrix computed by g2h_ComputeExtFormMatrixf. If this matrix

has not been computed yet, the procedure g2h_DecomposeExtMatrixf begins with

computing them, by calling g2h_ComputeExtFormMatrixf.

Both these procedures return true to indicate the success and false to indicate

a failure.

boolean g2h_ExtFillHolef ( GHoleDomainf *domain,

int spdimen, const float *hole_cp, float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g2h_ExtFillHolef constructs a surface filling the polygonal hole,

using the extended space.

The parameter domain points to a domain representation created by the pro-

cedure gh_CreateDomainf, for which the procedure g2h_ComputeBasisf has con-

structed (successfully) the representation of the basis functions. The number k of

the hole sides and the knot sequences, which are part of the surface representation,

have been specified during the call to gh_CreateDomainf.

The parameter spdimen specifies the dimension d of the space, in which the

surface resides. For a polynomial surface in R
3, this parameter will have the value 3.

For a polynomial surface in R
4, being a homogeneous representation of a rational

surface in R
3, this parameter will be 4.

The parameter hole_cp is an array with (12k + 1)d floating point numbers,

being the coordinates of 12k+ 1 control points of the surface.

The parameter acoeff may be NULL (and then it is ignored), or it may point

an array, in which the procedure will store the solution of the system of equa-

tions (9.2). This array must have length at least nd, where d is the space, in

which the surface resides (i.e. the value of the parameter spdimen), and n is the

dimension of the extended space — it may be obtained by calling the procedure

g2h_ExtV0SpaceDimf.

The parameter outpatch is a pointer to the procedure (supplied by the applica-

tion), which will be called k times in order to output the control points of k Bézier

patches of degree (9, 9), filling the hole.

int g2h_GetErrorCodef ( GHoleDomainf *domain,

char **ErrorString );
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The procedure g2h_GetErrorCodef may be called in case of failure of some

step of the construction, in order to find out what was the reason. The value

returned is the error code. If the parameter ErrorString is not NULL, the variable

*ErrorString after return points to a character string, which is an error description.

9.5 Entering options

The procedure g2h_SetOptionProcf described in the previous section may register

a procedure (supplied by the application), which will „answer the queries” about

construction options to be used. This procedure has to have the following header

(the names of the procedure and of the parameters may be different):

int SetOptionf ( GHoleDomainf *domain, int query, int qn,

int *ndata, int **idata, float **fdata );

During the construction of the basis this procedure will be called a number of

times. Its first parameter will point to the representation of domain of the surface

being constructed. The second parameter (query) is the number of option to be

specified by the procedure. The parameter qn is an additional number, which will

perhaps be necessary with options introduced in future versions of the library, and

now it may be ignored.

The value returned is interpreted as the answer to the query about the option to

be used. Possible numbers of options (i.e. the values of the parameter query) and

answers are symbolic constants, whose names begin respectively with G2HQUERY_

and G2H_). They are listed below. The list may change in future versions of the

library libeghole.

#define G2H_DEFAULT 0

#define G2HQUERY_CENTRAL_POINT 1

#define G2H_CENTRAL_POINT_GIVEN 1

#define G2HQUERY_CENTRAL_DERIVATIVES1 2

#define G2H_CENRTAL_DERIVATIVES1_ALT 1

#define G2H_CENTRAL_DERIVATIVES1_GIVEN 2

#define G2HQUERY_DOMAIN_CURVES 3

#define G2H_DOMAIN_CURVES_DEG4 1

#define G2HQUERY_BASIS 4

#define G2H_USE_RESTRICTED_BASIS 1

After each call, the option procedure may return the value G2H_DEFAULT. In par-

ticular, this is the value, which must be returned for each option (indicated by the
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parameter query) not recognized by the procedure. This will give the application

a chance of working correctly after recompilation with future versions of the library.

If the parameter query is equal to G2HQUERY_CENTRAL_POINT, then the answer

(i.e. the value returned) G2H_DEFAULT will cause taking the central point of the

domain (i.e. the common corner of the areas, to which the domain will be divided)

at the gravity centre of the domain edge midpoints (this is the construction de-

scribed in the papers). If the value returned is G2H_CENTRAL_POINT_GIVEN, then

the variable *ndata must be assigned the value 2, and the variable *fdata must

point to the array with two floating point numbers, being the coordinates of the

central point given by the application.

If the value of the parameter query is G2HQUERY_CENTRAL_DERIVATIVES1 and

the procedure returns the value G2H_DEFAULT, then the first order derivative vec-

tors of the domain division curves and the cross derivative vectors of the auxil-

iary domain patches will be constructed as described in the articles. Returning

G2H_CENTRAL_DERIVATIVES_ALT will cause taking the curve derivatives as before,

and the cross derivative vectors will be orthogonal to the curve derivatives. Re-

turning G2H_CENTRAL_DERIVATIVES_GIVEN means that the application produced

the curve derivatives at the central point. The variable *ndata must then have the

value 2k (for a k-sided hole), and the table pointed by the variable *fdata must

consist of 2k floating point numbers. The consecutive pairs are the coordinates of

the first order derivative vectors of the consecutive curves.

The parameter query equal to G2HQUERY_DOMAIN_CURVES denotes the query for

the method of constructing derivatives of domain division curves of order higher

than 1. In response to this query G2H_DEFAULT should be returned, which will

cause taking zero derivatives of order 2, 3 and 4. Other options for this step of

construction are still under development and need not work correctly.

If the value of the parameter query is equal to G2HQUERY_BASIS, then returning

G2H_DEFAULT enables all degrees of freedom of choice of partial derivatives of the

patches filling the hole at their common point (their number is the dimension of

the basic space). Depending on the number of hole sides and the division of the

domain, their number may range from 16 to 30 (for holes with three to eight sides).

Returning G2H_USE_RESTRICTED_BASIS causes restricting the number of degrees of

freedom to 15 (i.e. to the dimension of the space of bivariate polynomials of degree

up to 4).

9.6 Imposing constraints

int g2h_V0SpaceDimf ( GHoleDomainf *domain );

int g2h_ExtV0SpaceDimf ( GHoleDomainf *domain );

The procedures g2h_V0SpaceDimf and g1h_ExtV0SpaceDimf compute respec-

tively the dimensions of the basic and extended space, used in the constructions of

surfaces filling the hole. The parametr domain must point to the domain record,
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for which the basis of the basic space has successfully been constructed.

boolean g2h_GetBPDerivativesf ( GHoleDomainf *domain,

int cno, float *val );

The procedure g1h_GetBPDerivativesf evaluates the basis functions (of the

basic space) at the central point and the derivatives of order 1, . . . , 4 of the bound-

ary curves of the basis function patches. The number of the curve is specified by

the parameter cno (it must be from 0 to k − 1). The values computed are stored

in the array val, of length 5n, where n id the dimension of the basic space. Sub-

sequent five-tuples of numbers stored in this array correspond to the subsequent

basis functions.

boolean g2h_GetBFuncPatchf ( GHoleDomainf *domain,

int fn, int pn, float *bp );

The procedure g1h_GetBFuncPatchf evaluates and stores in the array bp the

coefficients of the j-th patch of the i-th basis function. The parameter fn specifies

the number i ∈ {0, . . . , n− 1} of the basis function, and pn specifies the number j ∈
{0, . . . , k − 1} of its patch. This procedure may be useful, when the constraints

imposed on the surface are not interpolation conditions at the central point of the

surface.

The basis function patches are bivariate polynomials of degree G2H_FINALDEG

with respect to each variable. Their coefficients represent the patches in the tensor

product Bernstein basis.

boolean g2h_SetConstraintMatrixf ( GHoleDomainf *domain,

int nconstr, const float *cmat );

The procedure g2h_SetConstraintMatrixf associates with the domain of the

surface a matrix of the system of equations, which describe constraints imposed on

the surface. The parameter nconstr is the number of constraints (i.e. equations),

which is the number of rows of the matrix. The number of columns is the dimension

of the basic space. Subsequent rows must be given in the array cmat. They have

to be linearly independent.

The procedure returns true in case of success, and false if the matrix is not

rowwise-regular.

boolean g2h_FillHoleConstrf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp,

int nconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g1h_FillHoleConstrf constructs a surface filling the hole, which

satisfies the constraints imposed on it, with use of the basic space. Before call-

ing it, the matrix of the constraint equations must be speficied (this fixes also
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the number of constraints). The parameters domain, spdimen, hole_cp, acoeff

and outpatch have the same meaning as for the procedure g2h_FillHolef. The

patameter nconstrf specifies the number of constraints (it must match with the

number given at the call of g2h_SetConstraintMatrixf. The array constr con-

tains the right-hand side matrix of the constraint equations — nconstr rows, each

with spdimen numbers.

The change of constraints (both the left- and the right-hand side may be done

without reconstructing the domain record. To modify the constraints, it suffices to

call again g2h_SetConstraintMatrixf and g1h_FillHoleConstrf.

boolean g2h_SetAltConstraintMatrixf ( GHoleDomainf *domain,

int spdimen,

int nconstr, const float *cmat );

The procedure g2h_SetAltConstraintMatrixf enters the matrix C of the sys-

tem of constraint equations (9.5) for the construction with the basic space. The

matrix has dimensions nd×w, where n is the space dimension (it may be obtained

by calling the procedure g2h_V0SpaceDimf), d is the dimension of the space, in

which the surface is located (e.g. 3), and w is the number of constraints.

The parameter spdimen specifies the dimension d, the parameter nconstr speci-

fies the number of knots. The coefficients of the matrix C are given it the array cmat.

The pitch of this array is equal to the length of its row, i.e. nd. The matrix C must

be rowwise regular.

The return value true of the procedure g2h_SetAltConstraintMatrixf signalls

the rowwise regularity of the matrix. The value false means that the matrix is

not regular (i.e. the numerical procedure classified the matrix as one with linearly

dependent rows) and it is not suitable for the construction.

boolean g2h_FillHoleAltConstrf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp,

int naconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g2h_FillHoleAltConstrf constructs thhe filling surface being

the minimal point of the functional Fc in the set of surfaces representable with use

of the basic space and satisfying the constraint equations (9.5). The matrix C of

this system of equations must be entered before the call to this procedure.

The parameter spdimen specifies the dimension d of the space, in which the sur-

face is located. The array hole_cp contains the control points of this surface. The

parameter naconstr specifies the number of constraints w. In the array constr one

has to supply the coefficients of the right hand side vector of the system of constraint

equations (w numbers). The numbers d and w must agree with the values of the

appropriate parameters of the preceding call to g2h_SetAltConstraintMatrixf.
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If the parameter acoeff is not NULL, then it has to point to an array, in which

the procedure will store the vectors a0, . . . ,an−1 obtained by the optimisation.

The procedure pointed by the parameter output will be called k times in order to

output the result of the construction, i.e. the Bézier patches filling the hole.

boolean g2h_SetExtConstraintMatrixf ( GHoleDomainf *domain,

int nconstr, const float *cmat );

The procedure g2h_SetExtConstraintMatrixf associates with the domain of

the surface a matrix of the system of equations, which describe constraints imposed

on the surface. The parameter nconstr is the number of constraints (i.e. equations),

which is the number of rows of the matrix. The number of columns is the dimension

of the extended space. Subsequent rows must be given in the array cmat. They

have to be linearly independent.

The procedure returns true in case of success, and false if the matrix is not

rowwise-regular.

boolean g2h_ExtFillHoleConstrf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp,

int nconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g1h_ExtFillHoleConstrf constructs a surface filling the hole,

which satisfies the constraints imposed on it, with use of the extended space. Before

calling it, the matrix of the constraint equations must be speficied (this fixes also

the number of constraints). The parameters domain, spdimen, hole_cp, acoeff

and outpatch have the same meaning as for the procedure g2h_ExtFillHolef.

The patameter nconstrf specifies the number of constraints (it must match with

the number given at the call of g2h_SetExtConstraintMatrixf. The array constr

contains the right-hand side matrix of the constraint equations — nconstr rows,

each with spdimen numbers.

The change of constraints (both the left- and the right-hand side may be done

without reconstructing the domain record. To modify the constraints, it suffices to

call again g2h_SetExtConstraintMatrixf and g1h_ExtFillHoleConstrf.

The constraints for the basic and extended space are specified independently.

boolean g2h_SetExtAltConstraintMatrixf ( GHoleDomainf *domain,

int spdimen,

int nconstr, const float *cmat );

The purpose of the procedure g2h_SetExtAltConstraintMatrixf is to enter

the matrix C of the system of constraint equations (9.5) for the constructions of

the filling surface represented with use of the extended space. The dimensions of

this matrix are nd ×w, where n is the dimension of the extended space, d is the
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dimension of the space in which the surface is located (e.g. 3), and the number of

rows w is the number of constraints.

Parameters: spdimen — dimension d, naconstr — number of constraints w,

acmat — array of coefficients of the matrix C. This matrix has the pitch equal to

the row length, i.e. nd.

The matrix C may be divided into blocks C0, . . . , Cd−1, whose dimensions are

w × d. If the constraints are imposed on a surface, which minimises the func-

tional Fd, then it must be d = 3. In each row of the each block the first 16k coeffi-

cients must be zeros, and the rows of the matrix C must be linearly independent.

This limitation is a consequence of a numerical method used in the construction.

The return vaalue true signalls the acceptance of the matrix, and false means

that by the numerical computation the rows of the matrix are considered linearly

dependent.

boolean g2h_ExtFillHoleAltConstrf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp,

int naconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const float *cp ) );

The procedure g2h_ExtFillHoleAltConstrf constructs the surface filling the

hole, which is the minimal point of the functional Fc in the set of surfaces satisfying

the constraint equations having the form (9.5). The matrix of this system must be

entered by a preceding call to the procedure g2h_SetExtAltConstraintsf.

The parameters spdimen and naconstr specify the dimension d of the space

containing the surface and the number of constraints w. These numbers must match

the values of parameters of the preceding call to g2h_SetExtAltConstraintsf. In

the array hole_cp one has to specify the coordinates of the control points of the

surface. In the array constr there must be the coefficients of the right hand side

of the system (9.5). If the parameter acoeff is not NULL, then it must point to an

array, in which the vectors a0, . . . ,an−1 will be stored. The parameter outpatch

points to a procedure called in order to output the construction result in the form

of Bézier patches.

The return value true indicates the success of the construction, while false

signalls failure.

float g2h_FunctionalValuef ( GHoleDomainf *domain, int spdimen,

const float *hole_cp, const float *acoeff );

float g2h_ExtFunctionalValuef ( GHoleDomainf *domain, int spdimen,

const float *hole_cp, const float *acoeff );

The procedures g2h_FunctionalValuef and g2h_ExtFunctionalValuef com-

pute the values of the functional Fc for a filling surface given by the control points

given in the array hole_cp and the vectors a0, . . . ,an−1 given in the array acoeff,
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being respectively the coefficients of the representation using the basic and the

extended space.

After constructing the surface with any of the procedures described here or in

the next section, one may call one of the above procedures. To do this, it is necessary

to allocate an array long enough to accomodate dn float numbers, where d id the

dimension of the space with the surface and n is the dimension of the space V0,

pass this array as the parameter acoeff to the construction procedure, and then

pass it to the procedure computing the functional value.

9.6.1 Filling holes with B-spline patches

#define G2H_S_MAX_NK 4

#define G2H_S_MAX_M1 3

#define G2H_S_MAX_M2 7

boolean g2h_ComputeSplBasisf ( GHoleDomainf *domain,

int nk, int m1, int m2 );

boolean g2h_ComputeSplFormMatrixf ( GHoleDomainf *domain );

boolean g2h_DecomposeSplMatrixf ( GHoleDomainf *domain );

boolean g2h_SplFillHolef ( GHoleDomainf *domain,

int spdimen, const float *hole_cp,

float *acoeff,

void (*outpatch) ( int n, int lknu, const float *knu,

int m, int lknv, const float *knv,

const float *cp ) );

9.7 Nonlinear constructions procedures

The procedures described in this section construct the filling surface by minimisa-

tion of the functional Fd. The feasibility of those constructions depends on the given

surface with the hole. The constructions are also more time consuming. The surface

must be located in R
3 (therefore it cannot be e.g. a homogeneous representation of

a rational surface).

boolean g2h_ComputeNLNormalf ( GHoleDomainf *domain,

const point3f *hole_cp,

vector3f *anv );

The procedure g2h_ComputeNLNormalf constructs the unit vector of one of the

axes of the coordinate system, in which the surface will be represented during the

construction; the given surface and the filling surface are supposed to form a graph
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od a scalar function of two variables in this system. The input parameters are

domain — pointer to the domain representation and hole_cp — array of control

points of the surface. The parameter anv points to the variable, in which the result

is stored.

The return value true indicates success, and false — lack of success (if the

surface determined by the given control points is not flat enough). The procedure

g2h_ComputeNLNormalf in principle is not intended to be called from applications.

boolean g2h_NLFillHolef ( GHoleDomainf *domain,

const point3f *hole_cp, float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_NLFillHolef constructs the filling surface, being the min-

imal point of the functional Fd in the basic space, without constraints. This pro-

cedure corresponds to g2h_FillHolef and it has the same parameters except for

spdimen.

boolean g2h_NLFillHoleConstrf ( GHoleDomainf *domain,

const point3f *hole_cp,

int nconstr, const vector3f *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedureg2h_NLFillHoleConstrf constructs the filling surface, which

minimises the functional Fd in the basic space, with constraints described by the

systemw przestrzeni (9.4). This procedure corresponds to g2h_FillHoleConstrf.

boolean g2h_NLFillHoleAltConstrf ( GHoleDomainf *domain,

const point3f *hole_cp,

int nconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_NLFillHoleAltConstrf constructs the filling surface, which

minimises the functional Fd in the basic space with constraints described by the

system (9.5). It corresponds to g2h_FillHoleAltConstrf.

boolean g2h_NLExtFillHolef ( GHoleDomainf *domain,

const point3f *hole_cp,

float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_NLExtFillHolef constructs the filling surface, being the

minimal point of the functional Fd in the extended space, without constraints.

This procedure corresponds to g2h_ExtFillHolef and it has the same parameters

except for spdimen.
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boolean g2h_NLExtFillHoleConstrf ( GHoleDomainf *domain,

const point3f *hole_cp,

int nconstr, const vector3f *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_NLExtFillHoleConstrf constructs the filling surface, which

minimises the functional Fd in the extended space, with constraints described by

the system (9.4). This procedure corresponds to g2h_ExtFillHoleConstrf.

The matrix C (entered by g2h_SetExtConstraintMatrixf) allowed for the con-

struction done by this procedure must have the first 16k coefficients of each row

equal to 0.

boolean g2h_NLExtFillHoleAltConstrf ( GHoleDomainf *domain,

const point3f *hole_cp,

int naconstr, const float *constr,

float *acoeff,

void (*outpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_NLExtFillHoleAltConstrf constructs the filling surface,

which minimises the functional Fd in the extended space with constraints described

by the system (9.5). It corresponds to g2h_ExtFillHoleAltConstrf.

The blocks C0, C1, C2 of the matrix C = [C0, C1, C2] allowed for the construction

done by this procedure (entered by g2h_SetExtAltConstraintMatrixf) must have

the first 16k coefficients of each row equal to 0.

boolean g2h_NLFunctionalValuef ( GHoleDomainf *domain,

const point3f *hole_cp,

const vector3f *acoeff,

float *funcval );

The procedure g2h_NLFunctionalValuef computes the value of the functional

Fd for a surface represented by the control points goven in the array hole_cp and

the vectors a0, . . . ,an−1 (coefficients in the basic space basis).

boolean g2h_NLExtFunctionalValuef ( GHoleDomainf *domain,

const point3f *hole_cp,

const vector3f *acoeff,

float *funcval );

The procedure g2h_NLExtFunctionalValuef computes the value of the func-

tional Fd for a surface represented by the control points goven in the array hole_cp

and the vectors a0, . . . ,an−1 (coefficients in the extended space basis).
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boolean g2h_NLSplFillHolef ( GHoleDomainf *domain,

const point3f *hole_cp,

float *acoeff,

void (*outpatch) ( int n, int lknu, const float *knu,

int m, int lknv, const float *knv,

const point3f *cp ) );

9.8 Visualisation procedures

The name “visualisation procedures” concerns the procedures, which extract various

data from the domain record. These data may be used to get insight into the

construction, by showing them on various pictures.

void g2h_DrawDomSurrndPatchesf ( GHoleDomainf *domain,

void (*drawpatch) ( int n, int m, const point2f *cp ) );

The procedure g2h_DrawDomSurrndPatchesf extracts the Bézier representa-

tions of bicubic patches surrounding the domain, i.e. the polynomial pieces of the

B-spline patches represented by the knots and domain control points specified when

the domain record has been created.

The parameter domain points to the domain record, the parameter drawpatch

is a pointer to the procedure, which for a k-sided hole will be called 3k times, with

the parameters representing consecutive domain surrounding patches.

void g2h_DrawDomAuxPatchesf ( GHoleDomainf *domain,

void (*drawpatch) ( int n, int m, const point2f *cp ) );

The procedure g2h_DrawDomAuxPatchesf extracts the Bézier representations of

the domain auxiliary patches. The parameter domain points to the domain record,

and the parameter drawpatch points to the procedure to be called k times in order

to output the subsequent patches.

void g2h_DrawBasAuxPatchesf ( GHoleDomainf *domain, int fn,

void (*drawpatch) ( int n, int m, const float *cp ) );

The procedure g2h_DrawBasAuxPatchesf extracts the Béziera reprezentations

of the basis function auxiliary patches. These are bivariate polynomials, for each

basis function of the basic space there are k such polynomials. The dimension n of

this space may be obtained by calling the procedure g2h_V0SpaceDimf.

The parameter domain points to the domain record, the parameter fn is the

number of the basis function (its value must be from 0 to n − 1), the parameter

drawpatch points to the procedure, which will be called k times in order to output

the subsequent auxiliary patches of the basis function, whose number is fn.
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void g2h_DrawJFunctionf ( GHoleDomainf *domain, int i, int l,

void (*drawpoly) ( int deg, const float *f ) );

The procedure g2h_DrawJFunctionf extracts the coefficients (in the Bernstein

basis of the appropriate degree) of a junction function used to construct the basis

functions. For each subarea Ωi of the domain there are 16 such polynomials.

The parameter domain points to the domain record. The parameter i is the

number of the subarea (it must be from 0 to k − 1), the parameter l identi-

fies the junction function to be output by the procedure pointed by the param-

eter drawpoly.

The value of the parameter l from 0 to 15 selects one of the sixteen junction

functions, and from 16 to 27 the product of appropriate functions, used in the

construction. For the information about numbering the junction functions, refer to

the procedure source code.

void g2h_DrawDiPatchesf ( GHoleDomainf *domain,

void (*drawpatch) ( int n, int m, const point2f *cp ) );

The procedure g2h_DrawDiPatchesf extracts the Bézier representations of de-

gree (9, 9) of the domain patches. The parameter domain points to the domain

record, and the parameter drawpatch points to the procedure to be called k times,

in order to output the subsequent patches.

void g2h_ExtractPartitionf ( GHoleDomainf *domain,

int *hole_k, int *hole_m,

float *partition, float *part_delta, float *spart_alpha,

float *spart_malpha, float *spart_salpha,

float *spart_knot, float *alpha0,

boolean *spart_sgn, boolean *spart_both );

The procedure g2h_ExtractPartitionf extracts the information about the the

partition of the full angle at the central point of the domain Ω, divided into sub-

areas Ωi.

void g2h_ExtractCentralPointf ( GHoleDomainf *domain,

point2f *centp, vector2f *centder );

The procedure g2h_ExtractCentralPointf extracts the central point of the

domain and the first order derivatives of the domain division curves at the central

point.

The parameter domain points to the domain record, the parameter centp points

to the variable, to which the central point is to be assigned, and the parameter

centder is an array of length k, in which the derivative vectors will be stored.

void g2h_DrawBasAFunctionf ( GHoleDomainf *domain, int fn,

void (*drawpatch) ( int n, int m, const point3f *cp ) );
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The procedure g2h_DrawBasAFunctionf may be used to obtain the information

about the basis function, whose number is fn∈ {0, . . . , n ′ − 1}. The procedure

*drawpatch is called k times, each time its parameters describe one of the domain

patches (the coordinates x, y of the points in the array cp) and the corresponding

basis function patch (the z coordinate). The parameters of this procedure describe

the degree and the Bézier control ppoints in the array cp.

void g2h_DrawBasBFunctionf ( GHoleDomainf *domain, int fn,

void (*drawpatch) ( int n, int m, const point3f *cp ) );

The procedure g2h_DrawBasBFunctionf may be used to obtain the information

about the basis function, whose number is fn∈ {n, . . . , n +m − 1}. The procedure

*drawpatch, called to pass this information, is called in the same way as the proce-

dure passed to g2h_DrawBasAFunctionf (and it may be just the same procedure).

void g2h_DrawBasCNetf ( GHoleDomainf *domain, int fn,

void (*drawnet) ( int n, int m, const point3f *cp ) );

The procedure g2h_DrawBasCNetf may be used to obtain the B-spline control

nets representing the functions ϕi for i =fn.

void g2h_DrawMatricesf ( GHoleDomainf *domain,

void (*drawmatrix)(int nfa, int nfb,

float *amat, float *bmat) );

The procedure g2h_DrawMatricesf extracts the matrices A and B of the system

of equations (9.2), for the basic space basis. As the matrix A is symmetric, its

representation is packed, as described in Section 3.3.

The parameter drawmatrix points to a procedure to be called with the param-

eters describing the matrices; nfa is the number of rows of both matrices and the

number of columns of A. The parameter nfb id the number of columns of the

matrix B. The parameters amat and bmat are arrays with the coefficients.

void g2h_DrawExtMatricesf ( GHoleDomainf *domain,

void (*drawmatrix)(int k, int r, int s,

float *Aii, float *Aki, float *Akk,

float *Bi, float *Bk) );

The procedure g2h_DrawMatricesf may be used to obtain the matrices A and B

of the system of equations (9.2), for the basis of the extended space. The matrix A

is symmetric, it has the block structure, which may be (and is) represented as

described in Section 3.5. The matrix B is full, it is represented in a block form.

The parameter drawmatrix points to a procedure, which will be called with the

parameters describing the matrices; its parameters k, r and s describe the number

ans sizes of the blocks of the matrix A. In the arrays Aii, Aki and Akk there are

coefficients of A, and the coefficients of B are given in the arrays Bi and Bk.
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int g2h_DrawBFcpnf ( int hole_k, unsigned char *bfcpn );

The procedure g2h_DrawBFcpnf stores in the array bfcpn the indexes of these

control points of the surface (and domain), which are relevant for the shape of the

domain and the hole in the surface, and the tangent planes and curvatures at the

hole boundary. The total number of the control points for a k-sided hole is 12k+1,

and there are 6k + 1 relevant ones; they are marked by black dots in Figure 9.1.

The ordering of the numbers corresponds to the ordering of the basis functions

φn, . . . , φn+m−1.

The return value is 6k+ 1.

boolean g2h_GetFinalPatchCurvesf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp, float *acoeff,

void (*outcurve) ( int n, const float *cp ) );

boolean g2h_GetExtFinalPatchCurvesf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp, float *acoeff,

void (*outcurve) ( int n, const float *cp ) );

boolean g2h_GetSplFinalPatchCurvesf ( GHoleDomainf *domain,

int spdimen, const float *hole_cp, float *acoeff,

void (*outcurve) ( int n, int lkn,

const float *kn, const float *cp ) );



10. The libbsmesh library

10.1 Mesh representation

A mesh is an object consisting of vertices, edges and facets. It may be used e.g.

to represent a polyhedron or a spline surface. An edge is a line segment between

two vertices. A facet is a closed polyline made of the edges. An edge may belong

to one or two facets; in the former case it is called a boundary edge, and in the

latter case it is an internal edge.

In the mesh representation processed by procedures of this library a boundary

and internal edge is represented by one or two halfedges respectively. A halfedge is

oriented; one of its vertices is the first, the other one is the second. The orientation

of the other halfedge in the pair representing an internal edge is the opposite. Each

halfedge is associated with one facet.

The vertices, halfedges and facets are stored in arrays (indexed from 0), and

identified by the array indices. The complete representation of the mesh consists

of three numbers: the number of vertices, nv, the number of halfedges, nh, and

the number of facets, nf, and of six arrays: the array of vertices v, the array of

vertex positions pos, the array of indices of the halfedges having origins at the

vertices vhei, the array of halfedges he, the array of facets fac and the array of

indices of the halfedges forming the facets fhei. The vertices, halfedges and facets

are described by the following structures:

typedef struct {

char degree;

int firsthalfedge;

} BSMfacet, BSMvertex;

typedef struct {

int v0, v1;

int facetnum;

int otherhalf;

} BSMhalfedge;

An example of a mesh representation is shown in Figure 10.1; the array with

vertex positions is omitted. The numbers on the picture are indices to the arrays,

which identify the vertices, halfedges and facets. For each halfedge its orientation is

shown. The degree of the internal vertex 0 is 3. The three halfedges, whose origin is

this vertex, are 7, 3 and 0—their indices are the first three numbers in the vhei ar-

ray. Vertex 1 is a boundary vertex. It is incident with three edges, however it is the
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int nv = 6, nhe = 11, nf = 3;

BSMvertex v[6] = {{3,0},{2,3},

{2,5},{2,7},{1,9},{1,10}};

int vhei[11] = {7,3,0,4,6,8,

10,1,2,5,9};

BSMhalfedge he[11] = {{0,3,1,1},

{3,0,0,0},{3,4,1,-1},

{0,1,2,4},{1,0,1,3},

{4,1,1,-1},{1,5,2,-1},

{0,2,0,8},{2,0,2,7}

{5,2,2,-1},{2,3,0,-1}};

BSMfacet fac[3] = {{3,0},

{4,3},{4,7}};

int fhei[11] = {1,7,10,5,4,0,2,9,8,3,6};

Figure 10.1. An example of a mesh

origin of only two halfedges, 4 and 6. The indices of halfedges for the i-th vertex

are the v[i].degree numbers in the vhei array, from the v[i].firsthalfedge-th

entry. Note that there is only one correct ordering of halfedge indices in the vhei

array, as the last halfedge of a boundary vertex must be the one without a pair.

The ordering of the halfedge indices for each vertex must reflect the orientation of

all vertices—note that for each vertex on the picture this ordering is clockwise.

The representation of a facet is just the same as that of a vertex—only two num-

bers are necessary, the number of halfedges (degree) and the index (firsthalfedge)

of the first entry in the fhei array with the indices of the halfedges. Their order-

ing is important—on the picture it is counterclockwise for all facets (for any part

of a mesh in space, if it is flattened and drawn, the orderings of halfedges for all

vertices and facets must be opposite). Currently the meshes must be orientable, so

no part of a mesh may be a Möbius band.

There is no explicit list of vertices for a facet—to find them, one has to find

subsequent halfedges of the facet and then take the vertices, which are the origins

of the halfedges.

In the data structure representing a halfedge the fields v0 and v1 identify the

origin and end of the halfedge, facetnum is the number of facet, the halfedge belongs

to, and otherhalf is the index of the other halfedge in the pair. The orientations

of the halfedges in a pair must be opposite. If the halfedge represents a boundary

edge, it does not have a pair, and the value of the otherhalf field must be −1.
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boolean bsm_CheckMeshIntegrity (

int nv, const BSMvertex *v, const int *vhei,

int nh, const BSMhalfedge *he,

int nf, const BSMfacet *fac, const int *fhei );

The procedure bsm_CheckMeshIntegrity verifies the topological consistency of

a mesh described by the parameters. The value returned is true is the mesh has

passed the test, and false if errors have been detected or if the test was impossible

to complete because of insufficient scratch memory. The following conditions are

verified:

� The mesh has to have at least 1 facet, 3 halfedges and 3 vertices.

� The arrays vhei and fhei must contain permutations of the set of numbers

{0, . . . , nh − 1}.

� Each halfedge must belong to some facet (its facetnum field must have the

value from 0 to nf − 1). The values of the fields v0 and v1 must be from 0 to

nv − 1.

� Each halfedge must either be a boundary halfedge (with otherhalf = −1) or

make a consistent pair with another halfedge (the two halfedges must point

each other with the otherhalf field and have opposite orientations—the ori-

gin of one of them must be the end of the other).

� Each vertex must be the origin of at least one halfedge, but if it is an internal

vertex (its last halfedge has a pair), then its degree must be at least 3. Each

halfedge in the list of halfedges of the i-th vertex must have the field v0 with

the value i.

� For each facet, the halfedges must form a closed polyline, i.e. the end of

a halfedge must be the origin of the next halfedge of this facet (and the end of

the last halfedge must be the origin of the first halfedge). The number i of the

facet must be the value of the field facetnum of each of the facet’s halfedges.

� The last thing to verify is the orientation, represented with the ordering of

the halfedges and facets. The rule is briefly described with the example in

Figure 10.1.

void bsm_TagMesh ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

char *vtag, char *ftag,

int *vi, int *vb, int *ei, int *eb );

10.4

The bsm_TagMesh procedure is an auxiliary routine, whose purpose is to find and

count the boundary vertices and facets. A boundary vertex or facet has at least

one boundary halfedge (having no pair). The first 8 parameters describe the mesh.

The arrays vtag and ftag must have at least nv and nf entries respectively. Each

entry is set to 0 if the vertex or facet is internal, or to 1 if it is boundary. The last

four parameters must point to variables, in which the total numbers of inner and

boundary vertices and inner and boundary edges are stored.

10.2 Mesh refinement procedures

Mesh refinement is an operation, which produces a new mesh, usually with more

vertices, halfedges and facets. By repeating this operation one may get a sequence

of meshes convergent to a limiting surface. The mesh refinement is a generalization

of the Lane-Riesenfeld algorithm of inserting knots to B-spline surfaces (represented

with uniform knots—the result is the representation with a twice denser uniform

knot sequence). One can use this operation to display an approximation of the

limiting surface, i.e. one of the fine meshes from the sequence obtained with refine-

ment, or to do something else (e.g. modify by repositioning vertices or by editing

the topology) with a fine mesh obtained by refinement.

Note that the numbers of vertices, halfedges and facets of the subsequent ob-

tained by iterating of refinement meshes grow exponentially, and it is easy to exceed

the capacity of the computer’s memory.

The refinement operation is a composition of two more elementary operations,

called doubling and averaging. One step of doubling is followed by n averaging

steps, where n is a parameter. If the refinement with n averaging steps is iterated,

the limiting surface consists of polynomial patches of degree (n,n).

There are two sets of procedures implementing these operations. The first set

consists of procedures, which perform the operations directly, i.e. they produce

the new mesh representation, in particular with an array of vertex positions in

a d-dimensional space. The procedures of the second set, instead of computing the

coordinates of the vertices, produce appropriate arrays. If the vertices v ′
0, . . . , v

′
n ′

v
−1

of the given mesh and v0, . . . , vnv−1 are organised in the column matrices, then

there exists a matrix R, such that

V = RV ′,

where

V ′ =









v ′
0
...

v ′
n ′

f









, V =











v0
......

vnf











.
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The matrix R is usually sparse (e.g. each row of the doubling matrix contains one

coefficient equal to 1 and zeros, and the numbers of nonzero coefficients in rows of

the averaging matrix are the degrees of the facets), therefore the irregular sparse

matrix representation is used (see Section 3.6). The refinement matrices may be

used to compute directly the vertices of the new mesh (which is useful e.g. with

a multiresolution representation of a surface) and to construct a preconditioner used

by procedures of optimization of the surface shape, in the libg2blending library.

boolean bsm_DoublingNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, int *onhe, int *onfac );

boolean bsm_Doublingd ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex *omv, int *omvhei, double *optc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

The procedure bsm_DoublingNum computes the numbers of vertices, halfedges and

facets, which will be produced by doubling. It may (and should) be used before

calling the doubling procedure, to tell the application, how long arrays to allocate.

The procedure returns true if the computation was successful, and false if the

mesh representation is inconsistent or there was insufficient scratch memory for the

computation.

The procedure bsm_Doublingd implements the doubling operation. The value

returned is true after success, or false after failure, due to the inconsistency of

the input mesh representation or to insufficient scratch memory.

Parameters: spdimen—dimension of the space, in which the mesh vertices re-

side, i.e. number of coordinates of each vertex (usually 3, but not necessarily), inv,

inhe, infac—numbers of the input mesh vertices, halfedges and facets respectively;

imv—array of input mesh vertices, imvhei—array with lists of indices of halfedges

with origins at input mesh vertices, iptc—array with coordinates of the input

mesh vertices, imhe—array with input mesh halfedges, imfac—array with input

mesh facets, imfhei—indices of halfedges for the input mesh facets.

The parameters onv, onhe, onfac point to the variables, in which the numbers of

vertices, halfedges and facets are stored. The arrays omv, omvhei, optc, omhe, omfac

and omfhei must be allocated by the caller, which stores the mesh representation

there.

int bsm_DoublingMatSize ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,
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int infac, BSMfacet *imfac, int *imfhei );

boolean bsm_DoublingMatd ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex *omv, int *omvhei,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei,

int *ndmat, index2 *dmi, double *dmc );

The procedure bsm_DoublingMatSize computes the number of nonzero coefficients

of the doubling matrix, for a mesh represented by the parameters. This number

is returned as the function value (and it is non-positive if the procedure failed,

because of the input mesh inconsistency or insufficient scratch memory).

The procedure bsm_DoublingMatd is an implementation of doubling, which

matches precisely the operation of the bsm_Doublingd procedure (i.e. it produces

the same ordering of the output mesh vertices, halfedges and facets). Instead of

computing the positions of the output mesh vertices, the procedure produces the

doubling matrix (represented as a sparse matrix).

Parameters: inv, imv, imvhei, inhe, imhe, infac, imfac, imfhei—represent

the input mesh, see the description of the bsm_Doublingd procedure.

The output mesh representation is stored in the variables *onv, *onhe, *onfac

and in the arrays omv, omvhei, omhe, omfac and omfhei, just like in the procedure

bsm_Doublingd.

The doubling matrix representation is stored in the variable *ndmat—number

of nonzero coefficients, the array dmi—distributions of nonzero coefficients, and

dmc—the actual coefficients. All nonzero coefficients of the doubling matrix are

equal to 1.

The doubling matrix has m rows, where m is the number of the output mesh

vertices, and n columns, where n is the number of the input mesh vertices.

The value returned by bsm_DoublingMatd is true in case of success, and false

in case of failure, caused by the input data inconsistency or by insufficient scratch

memory.

boolean bsm_AveragingNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, int *onhe, int *onfac );

boolean bsm_Averagingd ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex *omv, int *omvhei, double

*optc,
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int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

The procedure bsm_AveragingNum computes the numbers of vertices, halfedges and

facets, which will be produced by averaging. It may (and should) be used before

calling the averaging procedure, to tell the application, how long arrays to allocate.

The procedure returns true if the computation was successful, and false if the

mesh representation is inconsistent or there was insufficient scratch memory for the

computation.

The procedure bsm_Averagingd implements the averaging operation. The value

returned is true after success, or false after failure, due to the inconsistency of

the input mesh representation or to insufficient scratch memory.

Parameters: spdimen—dimension of the space, in which the mesh vertices re-

side, i.e. number of coordinates of each vertex (usually 3, but not necessarily), inv,

inhe, infac—numbers of the input mesh vertices, halfedges and facets respectively;

imv—array of input mesh vertices, imvhei—array with lists of indices of halfedges

with origins at input mesh vertices, iptc—array with coordinates of the input

mesh vertices, imhe—array with input mesh halfedges, imfac—array with input

mesh facets, imfhei—indices of halfedges for the input mesh facets.

The parameters onv, onhe, onfac point to the variables, in which the numbers of

vertices, halfedges and facets are stored. The arrays omv, omvhei, optc, omhe, omfac

and omfhei must be allocated by the caller, which stores the mesh representation

there.

int bsm_AveragingMatSize ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei );

boolean bsm_AveragingMatd ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex *omv, int *omvhei,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei,

int *namat, index2 *ami, double *amc );

The procedure bsm_AveragingMatSize computes the number of nonzero coeffi-

cients of the averaging matrix, for a mesh represented by the parameters. This

number is returned as the function value (and it is non-positive if the procedure

failed, because of the input mesh inconsistency or insufficient scratch memory).

The procedure bsm_AveragingMatd is an implementation of averaging, which

matches precisely the operation of the bsm_Averagingd procedure (i.e. it produces

the same ordering of the output mesh vertices, halfedges and facets). Instead of

computing the positions of the output mesh vertices, the procedure produces the
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averaging matrix (represented as a sparse matrix).

Parameters: inv, imv, imvhei, inhe, imhe, infac, imfac, imfhei—represent

the input mesh, see the description of the bsm_Averagingd procedure.

The output mesh representation is stored in the variables *onv, *onhe, *onfac

and in the arrays omv, omvhei, omhe, omfac and omfhei, just like in the procedure

bsm_Averagingd.

The averaging matrix representation is stored in the variable *ndmat—number

of nonzero coefficients, the array dmi—distributions of nonzero coefficients, and

dmc—the actual coefficients. Each nonzero coefficient of the averaging matrix is

a fraction 1/k, where k is the degree of an input mesh facet.

The averaging matrix has m rows, where m is the number of the output mesh

vertices, and n columns, where n is the number of the input mesh vertices.

The value returned by bsm_AveragingMatd is true in case of success, and false

in case of failure, caused by the input data inconsistency or by insufficient scratch

memory.

boolean bsm_RefineBSMeshd ( int spdimen, int degree,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex **omv, int **omvhei, double **optc,

int *onhe, BSMhalfedge **omhe,

int *onfac, BSMfacet **omfac, int **omfhei );

The bsm_RefineBSMeshd procedure is an implementation of the mesh refinement

operation, which is the composition of doubling and n averaging steps; the num-

ber n is specified by the degree parameter. The computation is done by a call to the

bsm_Doublingd procedure, followed by n calls to the bsm_Averagingd procedure.

There is no procedure to compute the lengths of arrays for the representation

of the output mesh, as it is impossible to find these numbers without the actual

representations of all-but-last intermediate meshes. Therefore the procedure al-

locates the suitable arrays using malloc (wrapped in the PKV_MALLOC macro, see

Section 2.10).

Parameters: spdimen—dimension of the space, in which the mesh vertices re-

side, inv, imv, imvhei, iptc, inh, imh, infac, imfac, imfhei—representation of

the input mesh.

The parameters onv, onhe, onfac point to the variables, to which the numbers

of vertices, halfedges and facets of the output mesh are assigned. The parameters

omv, omvhei, optc, omhe, omfac and omfhei point to the variables, to which the

addresses of arrays allocated by the procedure bsm_RefineBSMeshd are assigned.

The contents of these arrays is the representation of the output (refined) mesh.

The procedure returns true if the computation was successful, or false in case

of failure, caused by insufficient memory or by failure of the doubling or averaging
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procedure.

boolean bsm_RefinementMatd ( int degree,

int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int *onv, BSMvertex **omv, int **omvhei,

int *onhe, BSMhalfedge **omhe,

int *onfac, BSMfacet **omfac, int **omfhei,

int *nrmat, index2 **rmi, double **rmc );

The procedure bsm_RefinementMatd implements mesh refinement (doubling fol-

lowed by n averaging operations), but instead of computing the vertices of the out-

put mesh, it produces the refinement matrix. This is done by a call to bsm_DoublingMatd

followed by n calls to bsm_AveragingMatd. The doubling and averaging matrices

are multiplied by procedures described in Section 3.6.

The parameters with the same names are the same as in the bsm_RefineBSMeshd

procedure; instead of arrays with coordinates of the vertices of the input and output

mesh there are the following three output parameters: nrmat, which points to the

variable, to which the number of nonzero coefficients is assigned, and rmi and rmc,

which point to pointers to the arrays with the distribution of nonzero coefficients

of the refinement matrix and the actual coefficients (all arrays, whose addresses are

assigned to the variables pointed by the parameters, are allocated with PKV_MALLOC

by bsm_RefinementMatd, which also computes their lengths).

The nonzero coefficients of the refinement matrix are positive, their sum in each

row is 1. The number of rows of the refinement matrix is the number of vertices of

the output mesh, and the number of columns is the number of vertices of the input

mesh.

The procedure returns true in case of success, and false in case of failure,

caused by inconsistency of the input data or by insufficient memory.
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10.3 Eulerian and non-Eulerian operations

The procedures described in this section may be used to edit the meshes, which

may produce meshes with the same or different topology. These procedures may

be invoked by an interactive program, which allows the user e.g. to point a facet

and then let the program delete this facet or to double its edges. The repertoire of

these operations is rather small, and it is my intention to extend it—when I find

enough time.

void bsm_MergeMeshesd ( int spdimen,

int nv1, BSMvertex *mv1, int *mvhei1, double *vpc1,

int nhe1, BSMhalfedge *mhe1,

int nfac1, BSMfacet *mfac1, int *mfhei1,

int nv2, BSMvertex *mv2, int *mvhei2, double *vpc2,

int nhe2, BSMhalfedge *mhe2,

int nfac2, BSMfacet *mfac2, int *mfhei2,

int *onv, BSMvertex *omv, int *omvhei, double *ovpc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

The procedure bsm_MergeMeshesd makes a mesh, which is a sum of two meshes.

The numbers of vertices, halfedges and facets of the resulting mesh are respectively

sums of numbers of the vertices, halfedges and facets of the two meshes. Before

calling this procedure, an application must allocate suitable arrays for the result.

The result consists of a copy of the first mesh, and the “shifted” copy of the

second mesh, whose vertices, halfedges and facets obtain new numbers.

Parameters: spdimen—dimension of the space (i.e. the number of coordinates

of each vertex),

nv1, mv1, mvhei1, vpc1, nhe1, mhe1, nfac1, mfac1, mfhei1—representation of the

first mesh,

nv2, mv2, mvhei2, vpc2, nhe2, mhe2, nfac2, mfac2, mfhei2—representation of the

second mesh.

The output parameters onv, omv, omvhei, ovpc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

boolean bsm_RemoveFacetNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nfr,

int *onv, int *onhe, int *onfac );

boolean bsm_RemoveFacetd ( int spdimen,
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int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nfr,

int *onv, BSMvertex *omv, int *omvhei, double *optc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

The procedures above may be used to remove a facet from a mesh. Removing

a facet involves removing all its halfedges and all vertices, which do not belong to

any other halfedges, and renumbering the remaining vertices, halfedges and facets.

The procedure bsm_RemoveFacetNum computes the numbers of remaining ver-

tices, halfedges and facets, which are necessary to allocate arrays for the result.

The procedure bsm_RemoveFacetd removes the facet, i.e. it produces a new

mesh, without the indicated facet.

Parameters: spdimen—dimension of the space, i.e. the number of coordinates

of each vertex.

inv, imv, imvhei, iptc, inhe, imhe, infac, imfac, imfhei—representation of the

input mesh,

nfr—number of the facet to remove (must be between 0 and nf − 1).

The output parameters onv, omv, omvhei, optc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

void bsm_FacetEdgeDoublingNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int fn,

int *onv, int *onhe, int *onfac );

boolean bsm_FacetEdgeDoublingd ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int fn,

int *onv, BSMvertex *omv, int *omvhei,

double *optc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

Doubling edges of a facet is an Eulerian operation, which replaces each edge of the

facet with a quadrangular facet degenerated to a line segment. Each vertex of the

facet is replaced by two vertices (at the same position). After this operation one
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can “extrude” the new facets, i.e. move the vertices of the facet, whose edges have

been doubled.

The procedure bsm_FacetEdgeDoublingNum computes the numbers of vertices,

halfedges and facets of the mesh, which is the result of this operation. It should be

called in order to allocate suitable arrays for the result.

The procedure bsm_FacetEdgeDoublingd doubles the edges of the indicated

facet, i.e. it produces the new mesh, being the result of this operation.

Parameters: spdimen—dimension of the space, i.e. the number of coordinates

of each vertex.

inv, imv, imvhei, iptc, inhe, imhe, infac, imfac, imfhei—representation of the

input mesh,

fn—number of the facet, whose edges are to be doubled (must be between 0 and

nf − 1).

The output parameters onv, omv, omvhei, optc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

void bsm_RemoveVertexNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nvr,

int *onv, int *onhe, int *onfac );

boolean bsm_RemoveVertexd ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nvr,

int *onv, BSMvertex *omv, int *omvhei, double *optc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

Removing a vertex causes removing all halfedges incident with this vertex and all

facets made of these halfedges. It may also cause removal of other vertices, if there

are some, incident only with the halfedges to be removed.

The procedure bsm_RemoveVertexNum computes the number of vertices, halfedges

and facets remaining in the mesh. It should be called by an application in order to

allocate suitable arrays for the result.

Parameters: spdimen—dimension of the space, i.e. the number of coordinates

of each vertex.

inv, imv, imvhei, iptc, inhe, imhe, infac, imfac, imfhei—representation of the

input mesh,

nvr—number of the vertex to remove (must be between 0 and nv − 1).
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The output parameters onv, omv, omvhei, optc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

void bsm_ContractEdgeNum ( int inv, BSMvertex *imv, int *imvhei,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nche,

int *onv, int *onhe, int *onfac );

int bsm_ContractEdged ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *iptc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int nche,

int *onv, BSMvertex *omv, int *omvhei, double *optc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

Edge contraction is an Eulerian operation, which removes an edge, and replaces its

two vertices by one vertex. It may delete one or two facets adjacent to this edge, if

any of the two facets is a triangle.

The procedure bsm_ContractEdgeNum computes the numbers of vertices, halfedges

and facets of the mesh being the result of edge contraction. It should be called by

an application in order to allocate suitable arrays of this result.

The procedure bsm_ContractEdged performs the contracting an edge, i.e. it

produces a mesh, which is the result of this operation.

Parameters: spdimen—dimension of the space, i.e. the number of coordinates

of each vertex.

inv, imv, imvhei, iptc, inhe, imhe, infac, imfac, imfhei—representation of the

input mesh,

nche—number of one of the halfedges, which represent the edge to be contracted

(must be between 0 and nh − 1).

The output parameters onv, omv, omvhei, optc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

The value returned by bsm_ContractEdged is the number of the vertex, which

replaced the two vertices of the edge, or −1 in case of failure.
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int bsm_HalfedgeLoopLength ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int he );

The procedure bsm_HalfedgeLoopLength counts the boundary edges making a closed

polyline (boundary of the mesh). The procedure bsm_GlueHalfedgeLoopsd, de-

scribed below, may join into pairs the halfedges of two such polylines, which have

the same number of edges.

Parameters nv, mv, mvhei, nhe, mhe represent the vertices and halfedges of the

mesh (the algorithm implemented by this procedure does not need facets).

The parameter he is the number of a halfedge, which represents a boundary

edge (it is necessary to indicate, which closed polyline is of interest, as there may

be more than one).

boolean bsm_GlueHalfedgeLoopsd ( int spdimen,

int inv, BSMvertex *imv, int *imvhei, double *ivc,

int inhe, BSMhalfedge *imhe,

int infac, BSMfacet *imfac, int *imfhei,

int he1, int he2,

int *onv, BSMvertex *omv, int *omvhei,

double *ovc,

int *onhe, BSMhalfedge *omhe,

int *onfac, BSMfacet *omfac, int *omfhei );

The procedure bsm_GlueHalfedgeLoopsd joins into pairs the halfedges representing

boundary edges of two closed polylines, which have the same number of edges. The

result is a new mesh, whose boundary consists of two polylines less. The number

of facets remains unchanged, but the number of vertices is smaller, as joining the

halfedges causes identification of their vertices.

The orientation of the mesh is preserved, i.e. it is possible to obtain a torus,

but it is impossible to obtain the Klein bottle (which, as well as all non-orientable

surfaces, is prohibited by the procedures in this library).

Parameters: spdimen—dimension of the space, i.e. the number of coordinates

of each vertex.

inv, imv, imvhei, ivc, inhe, imhe, infac, imfac, imfhei—representation of the

input mesh.

The parameters he1 and he2 are numbers of two halfedges to be joined (these

halfedges will represent a single edge in the resulting mesh). The two halfedges

must have no pairs in the input mesh, and they must belong to two different closed

polylines made of boundary edges. The number of edges in these polylines must

be the same. The matching of halfedges in these polylines is determined by these

parameters and the orientation conditions, which must be satisfied by the mesh.
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—number of one of the halfedges, which represent the edge to be contracted

(must be between 0 and nh − 1).

The output parameters onv, omv, omvhei, ovc, onhe, omhe, onfac, omfac,

omfhei point to the variables, to which the numbers of vertices, halfedges and

facets are assigned and to arrays, in which the vertices, halfedges and facets are to

be stored.

Tre value returned is true in case of success or false in case of failure, which

may be caused by invalid data (i.e. the polylines with different numbers of edges)

or by insufficient scratch memory pool.

10.4 Extracting regular and special subnets

The procedures described in this section are useful when the mesh represents

a spline surface and it is necessary to convert this representation so as to find poly-

nomial patches (in B-spline representation, which may be converted to the Bézier

form), the surface consists of. An extensive use of these procedures is made by the

procedures of shape optimization in the libg2blending library (see Chapter 12).

boolean bsm_FindRegularSubnets ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

int d, void *usrptr,

void (*output)( int d, int *vertnum, int *mtab,

void *usrptr ) );

The procedure bsm_FindRegularSubnets searches the mesh in order to find all rect-

angular (square) subnets made of d2 vertices, (d− 1)2 facets and 2d(d− 1) edges.

Such a net is a B-spline representation (with uniform knots) of a polynomial patch

of degree (d− 1, d− 1). This representation may be converted to the Bézier repre-

sentation, which may be used to obtain the picture of the patch.

The parameters nv, mv, mvhei, nhe, mhe, nfac, mfac, mfhei are the usual rep-

resentation of the mesh (no array with vertex positions is needed).

The value of the parameter d is the number d, which determines the size of the

subnets to be found.

The parameter usrptr is a pointer to an arbitrary data structure, which will be

passed to the subprogram pointed by the parameter output.

The parameter output points to the subprogram, whose purpose is to do some-

thing with the subnets found in the mesh. This subprogram is called after finding

each subnet, with the parameter d, whose value is the number d, two arrays with

the information about the subnet and the pointer to the data structure given by

the caller.

The array vertnum contains d2 numbers, which are identifiers of the vertices of

the subnet. This array should be seen as a square array with d columns and d rows
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of the vertices (the numbers of vertices neighbouring in a column are neighbours in

the array, the numbers of neighbours in a row take positions at a distance d in the

array).

The array mtab contains (2d−1)2 numbers, which are identifiers of the vertices,

halfedges and facets. It is also a square array with rows and columns of length

2d − 1, numbered from 0. Let the index entry be (2d− 1)i+ j; if i and j are both

even, the array entry contains a vertex number. If both numbers i and j are odd,

then the array entry contains a facet number. If i + j is odd, then the contents of

the array entry is a halfedge number. In this way the index of a facet is surrounded

by the indices of halfedges (either belonging to this facet or the facet sharing an

edge) and vertices.

The return value is true if the computation is successful, or false in case of

error, caused by invalid data or insufficient scratch memory.

boolean bsm_FindSpecialVSubnets ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

int d, void *usrptr,

void (*output)( int d, int k, int *vertnum,

int *mtab, void *usrptr ) );

The procedure bsm_FindSpecialVSubnets searches the mesh described by the pa-

rameters in order to find all special elements, having the form of an internal ver-

tex of degree k 6= 4 surrounded by k regular (square) subnets, each consisting of

d2 quadrangular facets. Such a subnet is called here a Sabin net of radius d.

If a mesh has special elements, then the spline surface represented by this mesh

has polygonal (k-sided) holes, which may be filled in some special way. The proce-

dure bsm_FindSpecialVSubnets may be used to find such special elements in order

to construct the surfaces filling the holes.

The parameters nv, mv, mvhei, nhe, mhe, nfac, mfac, mfhei are the usual rep-

resentation of the mesh (no array with vertex positions is needed).

The value of the parameter d is the number d, which determines the size of the

Sabin nets to be found.

The parameter usrptr is a pointer to an arbitrary data structure, which will be

passed to the subprogram pointed by the parameter output.

The parameter output points to the subprogram, whose purpose is to do some-

thing with the subnets found in the mesh. This subprogram is called after finding

each subnet, with the parameter d, whose value is the number d, the number k,

which is the degree of the central vertex of the subnet just found, and two arrays

with the information about the subnet and the pointer to the data structure given

by the caller.

The array vertnum contains 1+ kd(d+ 1) indices of the vertices of the subnet.

First comes the index of the central vertex, then the surrounding vertices.
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The array mtab contains k(2d+1)2 numbers, which are the indices of the vertices,

halfedges and facets of k square subnets around the special vertex.

The value returned is true in case of success, or false in case of failure caused

by a data error or by insufficient scratch memory.

boolean bsm_FindSpecialFSubnets ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

int d, void *usrptr,

void (*output)( int d, int k, int *vertnum,

int *mtab, void *usrptr ) );

Another type of a special element in a mesh is a non-quadrangular facet. The

procedure bsm_FindSpecialFSubnets searches a mesh in order to find all such

facets surrounded by kd(d + 1) quadrangular facets, forming a Sabin net of the

second type (with a special facet of degree k 6= 4) of radius d. Such a special

element also leaves a k-sided hole in the surface represented by the mesh, and

special methods are needed to fill such holes.

The parameters nv, mv, mvhei, nhe, mhe, nfac, mfac, mfhei are the usual rep-

resentation of the mesh (no array with vertex positions is needed).

The value of the parameter d is the number d, which determines the size of the

Sabin nets to be found.

The parameter usrptr is a pointer to an arbitrary data structure, which will be

passed to the subprogram pointed by the parameter output.

The parameter output points to the subprogram, whose purpose is to do some-

thing with the subnets found in the mesh. This subprogram is called after finding

each subnet, with the parameter d, whose value is the number d, the number k,

which is the degree of the central facet of the subnet just found, and two arrays

with the information about the subnet and the pointer to the data structure given

by the caller.

The array vertnum contains k(d+ 1)2 indices of the vertices of the subnet.

The array mtab contains k(2d + 1)(2d + 3) numbers, which are the indices of

the vertices, halfedges and facets of k rectangular subnets around the special facet.

The value returned is true in case of success, or false in case of failure caused

by a data error or by insufficient scratch memory.

The procedures described below make lists of special elements of a mesh, or

more precisely, they search the mesh in order to find the Sabin nets of the first and

second type, and store their identifiers and identifiers of their vertices in arrays.

typedef struct {

byte el_type;

byte degree;
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byte snet_rad;

short snet_nvert;

int first_snet_vertex;

} bsm_special_el;

typedef struct {

int nspecials;

int nspvert;

int nextravert;

bsm_special_el *spel;

int *spvert;

} bsm_special_elem_list;

boolean bsm_CountSpecialVSubnets ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte snet_rad,

int *nspecials, int *nspvert );

boolean bsm_FindSpecialVSubnetList (

int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte snet_rad,

boolean append,

bsm_special_elem_list *list );

The procedure bsm_CountSpecialVSubnets searches the mesh in order to count the

Sabin net of the first type (with the central vertex of degree k 6= 4) of radius d and

their vertices. One should use this procedure before calling bsm_FindSpecialVSubnetList

in order to allocate the arrays for the list of the special elements. The addresses

of the first elements of those arrays must be assigned to the fields spel and spvert of

the data structure of type bsm_special_elem_list, passed to bsm_FindSpecialVSubnetList

with use of the parameetr list.

The procedure bsm_FindSpecialVSubnetList searches the mesh and finds all

Sabin nets of the first type of radius d =snet_rad. The information about the

Sabin nets found is stored in the arrays pointed by the fields spel and spvert of

the structure pointed by the parameter list.

The parameters nv, mv, mvhei, nhe, mhe, nfac, mfac, mfhei are the usual rep-

resentation of the mesh (no array with vertex positions is needed).

The return value true signals a success, and false indicates a failure of the

computation.
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boolean bsm_CountSpecialFSubnets ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte snet_rad,

int *nspecials, int *nspvert );

boolean bsm_FindSpecialFSubnetLists (

int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

boolean append,

byte snet_rad,

bsm_special_elem_list *list );

The procedure bsm_CountSpecialFSubnets searches the mesh in order to count the

Sabin net of the second type (with the central facet of degree k 6= 4) of radius d and

their vertices. One should use this procedure before calling bsm_FindSpecialFSubnetList

in order to allocate the arrays for the list of the special elements. The addresses

of the first elements of those arrays must be assigned to the fields spel and spvert of

the data structure of type bsm_special_elem_list, passed to bsm_FindSpecialFSubnetList

with use of the parameetr list.

The procedure bsm_FindSpecialFSubnetList searches the mesh and finds all

Sabin nets of the second type of radius d =snet_rad. The information about the

Sabin nets found is stored in the arrays pointed by the fields spel and spvert of

the structure pointed by the parameter list.

The parameters nv, mv, mvhei, nhe, mhe, nfac, mfac, mfhei are the usual rep-

resentation of the mesh (no array with vertex positions is needed).

The return value true signals a success, and false indicates a failure of the

computation.

10.5 Other procedures

void bsm_TagBoundaryZoneVertices ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

char d, char *vtag );

The purpose of the procedure bsm_TagBoundaryZoneVertices is to find all vertices,

whose distance from the mesh boundary is less than a number d. The boundary

vertices (incident with halfedges having no twins) are at the distance 0 from the

boundary, and the distance between two different vertices is defined as the number

of edges of the shortest path between them. If the mesh represents a spline surface

made of patches of degree (d, d), then the vertices, whose distance from the mesh
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boundary is less than d determine the boundary of the surface (and cross derivatives

of the surface up to the order d−1; if d = 2 then this determines the tangent plane

and curvature at each point of the boundary).

The procedure, for each vertex, stores in the array vtag the smaller of the two

numbers: d or the distance of the vertex from the boundary.

boolean bsm_FindVertexDistances1 ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

int v, int *dist );

boolean bsm_FindVertexDistances2 ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

int v, int *dist );

The two procedures above find distances of all vertices of the mesh from a given

vertex. The distances are defined using two metrics, defined as follows:

For two vertices, v1 and v2, which are end points of an edge, the metric ρ1 takes

the value 1.

For two vertices, v1 and v2, which belong to one facet, the metric ρ2 takes the

value 1.

Both metrics are defined as the maximal functions defined in the set of pairs

of the vertices of a mesh, which satisfy the conditions above and the triangle’s

inequality.

For each vertex vi, the procedures above store in the array dist the value of the

metric ρ1(v, vi) or ρ2(v, vi) respectively. If this value is infinite (which is possible,

if the mesh is not connected), then the number of vertices nv is stored.



11. The libg1blending library

This chapter is waiting until I have enough time to write it. A great part of this

library has been written by Mateusz Markowski.

boolean g1bl_SetupBiharmAMatrixf ( int lastknotu, int lastknotv,

int *n, int **prof, float **Amat, float ***arow );

boolean g1bl_SetupBiharmRHSf ( int lastknotu, int lastknotv,

int spdimen, int pitch, const float *cpoints,

float *rhs );

int g1bl_NiSize ( int nkn );

int g1bl_NijSize ( int nkn );

int g1bl_MijSize ( int nkn );

void g1bl_TabNid ( int nkn, double *bf, double *dbf, double *ddbf,

double *Nitab );

void g1bl_TabNijd ( int nkn, double *bf, double *dbf, double *ddbf,

double *Nijtab );

double g1bl_UFuncd ( int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv, int pitch, point3d *cp,

char *dirty,

double tC, double *ftab );

double g1bl_QFuncd ( int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv, int pitch, point3d *cp,

char *dirty,

double tC, double *ftab );

double g1bl_biharmFuncd ( int nkn, const double *qcoeff,

double *Nitab,

int lastknotu, int lastknotv, int pitch, point3d *cp,

char *dirty,

double tC, double *ftab );

void g1bl_UFuncGradd ( int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab,

double *func, double *grad );

void g1bl_UFuncGradHessiand ( int nkn, const double *qcoeff,
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double *Nitab, double *Nijtab, double *Mijtab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab,

double *htab, double *func, double *grad,

int hsize, const int *prof, double **hrows );

double g1bl_SurfNetDiameterSqd ( int lastknotu, int lastknotv,

int pitch, const point3d *cp );

boolean g1bl_InitBlSurfaceOptLMTd ( int lastknotu, int lastknotv,

int pitch, point3d *cp,

double C, double dO, double dM,

int nkn1, int nkn2,

void **data );

boolean g1bl_IterBlSurfaceOptLMTd ( void *data, boolean *finished );

void g1bl_OptLMTDeallocated ( void **data );

boolean g1bl_FindBlSurfaceLMTd ( int lastknotu, int lastknotv,

int pitch, point3d *cp,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

boolean g1bl_ClosedInitBlSurfaceConstrOptLMTd (

int lastknotu, int lastknotv, int pitch, point3d *cp,

int nconstr, double *constrmat, double *constrrhs,

double C, double dO, double dM, int nkn1, int nkn2,

void **data );

boolean g1bl_ClosedIterBlSurfaceConstrOptLMTd ( void *data,

boolean *finished );

void g1bl_ClosedConstrOptLMTDeallocated ( void **data );

boolean g1bl_ClosedFindBlSurfaceConstrLMTd (

int lastknotu, int lastknotv, int pitch, point3d *cp,

int nconstr, double *constrmat, double *constrrhs,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

boolean g1bl_SetupULConstraintsd ( int lastknotu, int lastknotv,

int spdimen, int ppitch, double *cp,

int nucurv, double *ucknots,

int cpitch, double *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g1bl_SetupUNLConstraintsd ( int lastknotu, int lastknotv,
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int ppitch, point3d *cp,

int nucurv, double *ucknots,

int cpitch, point3d *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g1bl_SetupClosedULConstraintsd (

int lastknotu, int lastknotv,

int spdimen, int ppitch, double *cp,

int nucurv, double *ucknots,

int cpitch, double *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g1bl_SetupClosedUNLConstraintsd (

int lastknotu, int lastknotv,

int ppitch, point3d *cp,

int nucurv, double *ucknots,

int cpitch, point3d *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g1bl_FuncTSQFd ( int nkn,

int lastknotu, int lastknotv, int pitch, point3d *cp,

double tC,

double *fT, double *fS, double *fQ, double *fF );



12. The libg2blending library

The libg2blending library is made of procedures whose purpose is to optimise

the shape of spline surfaces of class G2. If the surface is represented by a param-

eterization p, whose domain is Ω, then the simplest quality measure (i.e. badness

measure, which grows with the surface undulations) is described by the following

functional:

T(p) =

∫

Ω

‖∇∆p‖2F dΩ. (12.1)

The Euler-Lagrange equation for this functional is the homogeneous triharmonic

equation

−∆3p = 0, (12.2)

and the minimal surface of the functional T is found by solving this equation with

the Dirichlet boundary condition
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where n is the unit normal vector of the boundary ∂Ω of the domain Ω, and q is

some fixed parameterization.

The functional T is actually a badness measure for a parameterization, and

a good surface shape, if obtained by minimization of T , is only a side effect. On

the other hand, the triharmonic equation is a linear differential equation, which

is reduced by the finite element method (FEM) to a system of linear algebraic

equations. The procedures of the libg2blending library allow one to use this

criterion for bicubic B-spline patches with uniform knots. As only a direct numerical

method of solving a system of linear equations (Cholesky’s decomposition) is used,

the number of control points of the patches must be limited. These procedures of

finding triharmonic patches are described in Section 12.1.

The second criterion explicitly depends on the surface shape:

S(p) =

∫

M

‖∇MH‖22 dM. (12.4)

Finding a minimum of this functional is a nonlinear problem. There is an additional

trouble, as any surface may be represented using various parameterizations, which

leads to ill-posed numerical problems. This difficulty is solved in two ways. The
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optimization criterion is modified by adding a regularization term, and a minimum

of the following functional is searched

F(p) = S(p) + cQ(p). (12.5)

The presence of the term cQ(p), where c is a positive constant,

Q(p) =

∫

Ω

‖P∇∆p‖2F du, (12.6)

and P is the orthogonal projection of R3 onto the tangent plane of the surface M
at the point p(u), where u ∈ Ω, discriminates parameterizations. The term cQ(p)

is a penalty imposed on undulations of curves of constant parameters of the param-

eterization p. Minimization of the functional F is often a well-posed problem (that

depends on the boundary conditions).

The presence of the regularization term affects the result (the projection P was

introduced in order to decrease as much as possible that effect). It is possible to

get rid of this term, by restricting the space in which the minimum is searched.

This approach has been implemented for surfaces represented by meshes. The

optimization procedures for the meshes are described in Section 12.3.

The algorithms, whose implementations are the procedures of this library, are

described in the following publications:

[1] Kiciak P.: Bicubic B-spline blending patches with optimized shape, Computer-

Aided Design 43 (2011), p. 133–144,

[2] Kiciak P.: Shape optimization of smooth surfaces of arbitrary topology, IM-

ProVE 2011 Conference Proceedings, Venice, Italy, June 15–17, 2011,

[3] Kiciak P.: Spline surfaces of arbitrary topology with continuous curvature and

optimized shape, CAD-D-11-00233, a paper submitted to Computer-Aided

Design.

12.1 Triharmonic tensor product B-spline patches

Minimization of the functional T is done by solving linear equations, obtained by

applying the finite element method approach to the triharmonic equation. Cur-

rently only rather small size problems may be solved in this way, as the method of

solving linear equations, which may be used along with the procedures described

below is the Cholesky’s decomposition.

boolean g2bl_SetupTriharmAMatrixd ( int lastknotu, int lastknotv,

int *n, int **prof, double **Amat, double ***arow );

boolean g2bl_SetupTriharmRHSd ( int lastknotu, int lastknotv,

int spdimen, int pitch, const double *cpoints,

double *rhs );
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The procedures g2bl_SetupTriharmAMatrixd and g2bl_SetupTriharmRHSd set up

respectively the matrix A and the right-hand side vector b of the system of equa-

tions, which is a discterized (with FEM) triharmonic equation for a tensor product

bicubic B-spline patch with uniform knots.

Parameters: lastknotu and lastknotv are the numbers N and M, which de-

termine the sequences 0, . . . , N and 0, . . . ,M of equidistant knots, being parts of

the patch representation. The domain Ω of the patch is the rectangle [3,N − 3]×
[3,M− 3]. The numbers N and M must be greater than 9.

The parameter n points to a variable, to which the number of equations is

assigned; it is (N− 9)(M− 9).

.....................

boolean g2bl_SetupClosedTriharmAMatrixd (

int lastknotu, int lastknotv,

int *n, int **prof, double **Amat, double ***arow );

boolean g2bl_SetupClosedTriharmRHSd ( int lastknotu, int lastknotv,

int spdimen, int pitch, const double *cpoints,

double *rhs );

12.4

12.2 Tensor product patches optimized using
a shape-dependent functional

12.2.1 Main procedures

boolean g2bl_InitBlSurfaceOptLMTd ( int lastknotu, int lastknotv,

int pitch, point3d *cp,

double C, double dO, double dM,

int nkn1, int nkn2,

void **data );

boolean g2bl_IterBlSurfaceOptLMTd ( void *data, boolean *finished );

void g2bl_OptLMTDeallocated ( void **data );

boolean g2bl_FindBlSurfaceLMTd ( int lastknotu, int lastknotv,

int pitch, point3d *cp,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

boolean g2bl_InitBlSurfaceConstrOptLMTd (

int lastknotu, int lastknotv, int pitch,

point3d *cp,

int nconstr, double *constrmat,

double *constrrhs,

double C, double dO, double dM,

int nkn1, int nkn2,

void **data );

boolean g2bl_IterBlSurfaceConstrOptLMTd ( void *data,

boolean *finished );

void g2bl_ConstrOptLMTDeallocated ( void **data );

boolean g2bl_FindBlSurfaceConstrLMTd (

int lastknotu, int lastknotv, int pitch,

point3d *cp,

int nconstr, double *constrmat,

double *constrrhs,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

boolean g2bl_ClosedInitBlSurfaceOptLMTd (

int lastknotu, int lastknotv, int pitch,

point3d *cp,

double C, double dO, double dM,

int nkn1, int nkn2,
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void **data );

boolean g2bl_ClosedIterBlSurfaceOptLMTd ( void *data,

boolean *finished );

void g2bl_ClosedOptLMTDeallocated ( void **data );

boolean g2bl_ClosedFindBlSurfaceLMTd (

int lastknotu, int lastknotv, int pitch,

point3d *cp,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

boolean g2bl_ClosedInitBlSurfaceConstrOptLMTd (

int lastknotu, int lastknotv, int pitch, point3d *cp,

int nconstr, double *constrmat, double *constrrhs,

double C, double dO, double dM, int nkn1, int nkn2,

void **data );

boolean g2bl_ClosedIterBlSurfaceConstrOptLMTd ( void *data,

boolean *finished );

void g2bl_ClosedConstrOptLMTDeallocated ( void **data );

boolean g2bl_ClosedFindBlSurfaceConstrLMTd (

int lastknotu, int lastknotv, int pitch, point3d *cp,

int nconstr, double *constrmat, double *constrrhs,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );

12.2.2 Auxiliary procedures

int g2bl_NiSize ( int nkn );

int g2bl_NijSize ( int nkn );

int g2bl_MijSize ( int nkn );

The procedures above return the sizes of arrays necessary to hold the values of the

expressions

Ni
α =

dα1

duα1

N3
i1
(u)

dα2

dvα2

N3
i2
(v),

Nij
αβ = Ni

αN
j
β +Nj

αN
i
β,

Mij
αβ = Ni

αN
j
β −Nj

αN
i
β,

where α = (α1, α2), β and γ are biindices and the functions N3
i are cubic B-

spline functions with uniform knots being consecutive integers, at the n2 quadra-

ture knots, where n is the value of the parameter nkn. These expressions are
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evaluated and stored in the arrays to accelerate the computations during the actual

optimization.

int _g2bl_SetupHessian1Profile ( int lastknotu, int lastknotv,

int *prof );

double g2bl_UFuncd ( int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv, int pitch, point3d *cp,

char *dirty,

double tC, double *ftab );

void g2bl_UFuncGradd ( int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab,

double *func, double *grad );

void g2bl_UFuncGradHessiand (

int nkn, const double *qcoeff, double *Nitab,

double *Nijtab, double *Mijtab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab, double *htab,

double *func, double *grad,

int hsize, const int *prof, double **hrows );

void g2bl_ClosedUFuncGradd (

int nkn, const double *qcoeff, double *Nitab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab,

double *func, double *grad );

void g2bl_ClosedUFuncGradHessiand (

int nkn, const double *qcoeff, double *Nitab,

double *Nijtab, double *Mijtab,

int lastknotu, int lastknotv,

int pitch, point3d *cp, char *dirty,

double tC, double *ftab, double *gtab, double *htab,

double *func, double *grad,

int hsize, const int *prof, double **hrows );

double g2bl_SurfNetDiameterSqd ( int lastknotu, int lastknotv,

int pitch, const point3d *cp );

double g2bl_ClosedSurfNetDiameterSqd ( int lastknotu, int lastknotv,

int pitch, const point3d *cp );
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boolean g2bl_SetupULConstraintsd (

int lastknotu, int lastknotv, int spdimen,

int ppitch, double *cp,

int nucurv, double *ucknots,

int cpitch, double *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g2bl_SetupUNLConstraintsd ( int lastknotu, int lastknotv,

int ppitch, point3d *cp,

int nucurv, double *ucknots,

int cpitch, point3d *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g2bl_SetupClosedULConstraintsd (

int lastknotu, int lastknotv, int spdimen,

int ppitch, double *cp,

int nucurv, double *ucknots,

int cpitch, double *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g2bl_SetupClosedUNLConstraintsd (

int lastknotu, int lastknotv,

int ppitch, point3d *cp,

int nucurv, double *ucknots,

int cpitch, point3d *uccp,

int *nconstr, double *cmat, double *crhs );

boolean g2bl_FuncTSQFd ( int nkn,

int lastknotu, int lastknotv, int pitch, point3d *cp,

double tC,

double *fT, double *fS, double *fQ, double *fF );
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12.3 Optimization of surfaces
represented by irregular meshes

12.3.1 Overview

The optimization of a surface represented by a mesh is done as follows: an applica-

tion prepares the mesh, and then it calls an optimization procedure. The mesh is

represented as described in Section 10.1. The mesh must have a boundary, made of

one or more closed polylines; the surface represented by such a mesh has a boundary

made of the same number of closed curves. The boundary of the surface is fixed, by

fixing all vertices, whose distance from the mesh boundary (measured by the num-

ber of edges from the closest boundary vertex) is less than 3. These vertices also

determine the tangent plane and curvature at each point of the surface boundary.

The optimization procedures will not modify these vertices.

Apart from the mesh, the application may pass an array of bytes—one byte for

each vertex. A nonzero value in this array marks the corresponding vertex as fixed

in addition to the vertices, which determine the boundary conditions for the surface.

In this way one can impose constraints. The other vertices, whose positions may

be modified by the optimization procedures, are called non-fixed in the following

text.

Instead of calling a single procedure, which does the entire job, the application

may call a preparation procedure, which creates an auxiliary data structure holding

all necessary data, and then, in a loop, call the procedure, which makes a single

iteration of the numerical optimization algorithm. In this way the application has

access to the positions of mesh vertices after each iteration. As the computations

with fine meshes, having thousands of vertices take much time, it makes sense to

display the mesh after each iteration, and allow the user to have an insight of

the computations. When the optimization is complete, the application should call

a procedure of deallocation of the data structure; it consists of a number of arrays,

which take a considerable amount of memory, and not doing that would cause

a massive memory leakage.

The following sets of procedures are available now:

� g2mbl_InitBlSurfaceOptLMTd—preparation,

g2mbl_IterBlSurfaceOptLMTd—one iteration,

g2mbl_OptLMTDeallocated—deallocation of the auxiliary data structure,

g2mbl_FindBlSurfaceLMTd—full optimization procedure, calling the former

three procedures.

These procedures optimize the shape of surfaces by finding minima of the

functional F given by Formula (12.5).

The algorithm implemented by these procedures is appropriate for meshes

with a rather small number of non-fixed vertices—up to 5000. The optimiza-

tion is done using the Newton method, accompanied by minimization along
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the Levenberg-Marquardt trajectories, and all systems of linear equations are

solved using the Cholesky’s decomposition, which is inefficient beyond that

limit.

� g2mbl_InitBlSurfaceOptAltBLMTd—preparation,

g2mbl_IterBlSurfaceOptAltBLMTd—one iteration,

g2mbl_OptLMTDeallocated— deallocation of the auxiliary data structure,

g2mbl_FindBlSurfaceAltBLMTd—full optimization procedure, calling the for-

mer three procedures.

These procedures optimize the shape of surfaces by finding minima of the

functional F given by Formula (12.5).

The algorithm implemented by these procedures is appropriate for finer meshes,

whose numbers of non-fixed vertices are between 3500 and 20000. The algo-

rithm uses blocks, which are overlapping subsets covering the set of non-fixed

vertices of the mesh. The number of blocks, specified by the caller, must be

between 2 and the maximal number of blocks, which is the constant hidden

beyond the symbolic name G2MBL_MAX_BLOCKS (currently 32, it may change

in future). It is best to specify the number of blocks so as to obtain blocks

having about 3000 vertices (the blocks may consist of different numbers of

vertices).

� g2mbl_InitBlCMPSurfaceOptd—preparation,

g2mbl_IterBlSurfaceOptAltBLMTd—one iteration,

g2mbl_OptLMTDeallocated—deallocation of the auxiliary data structure.

Two of the above procedures are the same as in the previous set of optimization

procedures. A minimum of the functional F given by Formula 12.5 is searched.

The algorithm implemented by these procedures is appropriate for meshes

having between 3500 and 30000 vertices; the algorithm uses blocks. The

difference is using another preconditioner, constructed with a refinement ma-

trix. This preconditioner is used in the final stage of optimization, when the

Newton method is applied to the entire system of nonlinear equations, whose

solution is the minimal point of the functional F; the Newton method steps

use the conjugate gradient method to solve systems of linear equations (the

procedure pkn_PCGd procedure is used, see Section 3.7). This preconditioner

may be used if the mesh to optimise has been obtained from a coarse mesh

by one or more refinement steps (and optional repositioning of vertices), and

the matrix, which describes this operation (the refinement or the composition

of the refinement steps) is available. If the number of blocks is 4 or greater,

then the convergence of the conjugate gradient method may be considerably

faster.

The procedure bsm_RefineBSMeshd may be used to obtain the refinement ma-

trix bsm_RefineBSMeshd (see Section 10.2). The composition of subsequent
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refinements is represented by the product of the appropriate matrices, which

may be computed using the procedure pkn_SPMmultMMCd (see Section 3.6.2).

� g2mbl_MLOptInitd—preparation,

g2mbl_MLOptIterd—one iteration,

g2mbl_MLOptDeallocated—deallocation of the auxiliary data structure.

These procedures use the multilevel algorithm to find a minimum of the func-

tional F. The set of non-fixed vertices is recursicely divided into overlapping

subsets, called blocks, which form a balanced binary tree. For large blocks the

conjugate gradient method is used to solve the systems of linear equations in

the Newton method iterations. The preconditioner is constructed using small

blocks.

In particular, if the height of the block tree is 1, the algorithm implemented

by these procedures is the non-block one; the number of non-fixed vertices

should be rather small (up to 5000, but preferably not greater than 3500). For

very fine meshes the height of the tree should be chosen so as to obtain the

smallest blocks having no more than 3500 vertices. The height of the block

tree (which determines the number of blocks) may be taken as suggested by

the proceure g2mbl_MLSuggestNLevels.

� g2mbl_MLCMPOptInitD—preparation,

g2mbl_MLOptIterd—one iteration,

g2mbl_MLOptDeallocated—deallocation of the auxiliary data structure.

These procedures use the multilevel algorithm to find a minimum of the func-

tional F. For large blocks the conjugate gradient method is used to solve the

systems of linear equations in the Newton method iterations. The precondi-

tioner is constructed using small blocks and a refinement matrix, which must

be available to use this possibility.

The procedure g2mbl_MLCPSuggestNLevels may be used to suggest the height

of the block tree (the block overlaps in this case are smaller, which may result

in a lower tree than that suggested by g2mbl_MLSuggestNLevels).

In one of experiments these procedures found a minimum of a function of

216027 variables (coordinates of 72009 non-fixed vertices of a mesh), which

took about 6 hours and 20 minutes.

� g2mbl_MLSOptInitd—preparation,

g2mbl_MLSOptIterd—one iteration,

g2mbl_MLOptDeallocated—deallocation of the auxiliary data structure.

These procedures use the multilevel algorithm to find a minimum of the func-

tion S in a restricted space. It is recommended that the starting point for the

minimisation be a mesh, which is a minimal point of teh functional F, found

using one of the sets of procedures described above.
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If the tree height is 1, the algorithm is just the non-block algorithm, which

solves a global system of equations in each iteration. The number of non-fixed

vertices in this case should not exceed 15000, but it better be not greater

than 10000. If there are large blocks, such that the linear equations have to

be solved using the conjugater gradient method, a preconditioner constructed

with small blocks is used.

The procedure g2mbl_MLSSuggestNLevels may be used to establish the height

of the block tree.

� g2mbl_MLSCMPOptInitD—preparation,

g2mbl_MLSOptIterd—one iteration,

g2mbl_MLOptDeallocated—deallocation of the auxiliary data structure.

These procedures use the multilevel algorithm to find a minimum of the func-

tion S in a restricted space. It is recommended that the starting point (i.e.

initial mesh vertices) be a minimal point of the function F, found by one of

the sets of procedures described above.

The preconditioner used by the conjugate gradient method for large blocks is

constructed using the small blocks and the refinement matrix, which must be

available, if this set of optimisation procedures is to be used.

A simple example showing how to use the optimization procedures mentioned

above is the program optblmesh, which is briefly described in Section 12.3.6; its

source code (see the file test/optblmesh/optblmesh.c) is a recommended lecture

accompanying the documentation below.

12.3.2 Nonblock algorithm

boolean g2mbl_InitBlSurfaceOptLMTd (

int nv, BSMvertex *mv, int *mvhei,

point3d *mvcp, int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

double C, double dO, double dM,

int nkn1, int nkn2, void **data );

boolean g2mbl_IterBlSurfaceOptLMTd ( void *data, boolean *finished );

void g2mbl_OptLMTDeallocated ( void **data );

boolean g2mbl_FindBlSurfaceLMTd ( int nv, BSMvertex *mv, int *mvhei,

point3d *mvcp, int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2 );
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The procedures above may be used to find a minimum of F using the simplest

(nonblock) algorithm, which is appropriate for meshes with a rather small number

of non-fixed vertices (up to 3500). The procedure g2mbl_FindBlSurfaceLMTd calls

the other three, which may also be called directly by an application.

Parameters: nv, nhe, nfac—numbers nv, nh and nf of vertices, halfedges and

facets, respectively, mv—array of vertices, mvhei—array of indices of halfedges hav-

ing origins at subsequent vertices, mhe—array of halfedges, mfac—array of facets,

mfhei—array of indoces of halfedges forming the facets.

The parameter mkcp may be NULL or it may point to an array of length nv, which

marks (by nonzero values) vertices fixed in addition to the ones, which determine

boundary conditions.

The parameters C, dO and dM are used to compute the constant c in For-

mula (12.5). Their values are the numbers C, DΩ and DM respectively. The

number C is a user-specified positive constant; in many experiments good results

were obtained with C = 0. The number DΩ should be the diameter of the do-

main Ω of a parameterization of the surface, and DM should be the diameter of

the surface. If these two parameters are less than or equal to 0, the procedure will

compute approximations of these diameters, which is preferable.

The parameter maxit specifies the limit of number of iterations made by the

g2mbl_FindBlSurfaceLMTd proceure.

The parameters nkn1 and nkn2 determine the orders of quadratures used to

evaluate the function F and its gradient and Hessian. Their values, n1 and n2

must be between 4 and 10, and there should be n1 ≤ n2. The quadratures are

tensor product Gauss-Legendre quadratures with n2
1 and n2

2 knots in each domain

square—the domain Ω of a parameterization of the surface represented by the

mesh is a manifold made of these squares. Greater values of these parameters mean

greater accuracy and longer computation times. The quadrature with n2
1 knots is

used to compute the Hessian coefficients, and also to compute the function value

and its gradient in the beginning of search of the minimum. In the final phase, the

quadrature with n2
2 knots in each domain square is used to get a better accuracy.

The parameter data of the procedures g2mbl_InitBlSurfaceOptLMTd and

g2mbl_OptLMTDeallocated points to a pointer to the auxiliary data struc-

ture, created by the first and destroyed by the second of the two procedures.

The pointer to this data structure is the parameter data of the procedure

g2mbl_IterBlSurfaceOptLMTd, which makes a single iteration.

The variable pointed by the parameter finished is assigned true when the stop

criterion of the procedure is satisfied. One should not continue iterations after that

event.

The non-void procedures return true in case of success, or false in case of

failure of their missions.
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12.3.3 Two-level block algorithm

boolean g2mbl_InitBlSurfaceOptAltBLMTd (

int nv, BSMvertex *mv, int *mvhei,

point3d *mvcp, int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

double C, double dO, double dM,

int nkn1, int nkn2, int nbl,

void **data );

boolean g2mbl_InitBlCMPSurfaceOptd (

int fnv, BSMvertex *fmv, int *fmvhei, point3d *fmvcp,

int fnhe, BSMhalfedge *fmhe,

int fnfac, BSMfacet *fmfac, int *fmfhei,

byte *fmkcp,

int cnv,

int rmnnz, index2 *rmnzi, double *rmnzc,

double C, double dO, double dM,

int nkn1, int nkn2, int nbl,

void **data );

boolean g2mbl_IterBlSurfaceOptAltBLMTd ( void *data,

boolean *finished );

boolean g2mbl_FindBlSurfaceAltBLMTd (

int nv, BSMvertex *mv, int *mvhei,

point3d *mvcp, int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

double C, double dO, double dM,

int maxit, int nkn1, int nkn2, int nbl );

The auxiliary data structure for the two-level block algorithm may be created in

two alternative ways: by calling the procedure g2mbl_InitBlSurfaceOptAltBLMTd

or g2mbl_InitBlCMPSurfaceOptd. In the former case the preconditioner used by

the conjugate gradient method is made of solvers of systems of linear equations

of small blocks. In the latter case the preconditioner has a term defined with

a refinement matrix. For meshes with many non-fixed vertices this preconditioner

is more efficient.

The procedure g2mbl_IterBlSurfaceOptAltBLMTd should be called in a loop,

after creating the auxiliary data structure, until it assigns true to the variable

pointed by the parameter finished. Then the non-fixed mesh vertices are moved

to the positions, which correspond to the minimal point of the functional F. The

auxiliary data structure must be destroyed by calling g2mbl_OptLMTDeallocated.
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Parameters: nv, mv, mvhei, mvcp, nhe, mhe, nfac, mfac, mfhei—representation

of the mesh, mkcp—if not NULL, then is is an array which specifies the vertices fixed

in addition to the ones describing boundary conditions, C, dO, dM—three numbers

used to calculate the constant c in Formula (12.5), maxit—limit of number of iter-

ations, nkn1, nkn2—specify the quadratures. More details about these parameters

are in Section 12.3.2.

The parameter nbl specifies the number of small blocks used by the algorithm.

This number must be between 2 and G2MBL_MAX_BLOCKS. It should be chosen in

such a way that the blocks have about 3500 vertices; in this algorithm small blocks

differ in size. Perhaps a good choice of the number of blocks is ⌈nnfv/2500⌉, where

nnfv is the number of non-fixed vertices of the mesh.

The parameters fnv, fmv, fmvhei, fmvcp, fnhe, fmhe, fnfac, fmfac, fmfhei

of the procedure g2mbl_InitBlCMPSurfaceOptd describe the fine mesh to be op-

timised. The parameter cnv is the number of vertices of a coarse mesh such that

the fine mesh topology was obtained by one or more refinement operations. The

coarse mesh itself is unnecessary, all that is needed is the refinement matrix (rep-

resented as a sparse matrix with nonzero coefficients distributed irregularly, see

Section 3.6.2). The procedure g2mbl_InitBlCMPSurfaceOptd prepares a precondi-

tioner for the conjugate gradient method with a term defined with the refinement

matrix, which is much more efficient than the preconditioner without this term,

especially when the number of small blocks is big (say, greater than four).

The return value of each of the above procedures is true in case of success, or

false after a failure.

The procedure g2mbl_FindBlSurfaceAltBLMTd calls

g2mbl_InitBlSurfaceOptAltBLMTd to create the auxiliary data structure, then it

calls g2mbl_IterBlSurfaceOptAltBLMTd in a loop, and then it calls

g2mbl_OptLMTDeallocated to clean up.

12.3.4 Multilevel algorithm

Main procedures

boolean g2mbl_MLOptInitd (

int nv, BSMvertex *mv, int *mvhei, point3d *mvcp,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

double C, double dO, double dM,

int nkn1, int nkn2, short nlevels, void **data );

boolean g2mbl_MLCMPOptInitd (

int fnv, BSMvertex *fmv, int *fmvhei, point3d *fmvcp,

int fnhe, BSMhalfedge *fmhe,

int fnfac, BSMfacet *fmfac, int *fmfhei,
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byte *fmkcp,

int cnv,

int rmnnz, index2 *rmnzi, double *rmnzc,

double C, double dO, double dM,

int nkn1, int nkn2, short nlevels,

void **data );

boolean g2mbl_MLOptIterd ( void *data, boolean *finished );

void g2mbl_MLOptDeallocated ( void **data );

The procedures above implement the multilevel algorithm of finding a minimum

of the functional F. The first two, g2mbl_MLOptInitd and g2mbl_MLCMPOptInitd,

create the auxiliary data structure, which must eventually be destroyed by

g2mbl_MLOptDeallocated. The difference between the two procedures is the prepa-

ration of a preconditioner for the conjugate gradient method, with a term usnig the

refinement matrix.

The procedure g2mbl_MLOptIterd makes one iteration of the algorithm. If the

stop condition is satisfied, then the variable pointed by the parameter finished is

assigned true, which ought to terminate the computations.

The parameters, which describe the mesh and the other data are the same

as for the procedures described in the preceding sections. A new parameter is

nlevels, which is the height of the binary tree of blocks used by the algorithm. If

this parameter is 1, the procedures work as a nonblock algorithm. To choose the

height of the block tree one may call the procedure g2mbl_MLSuggestNLevels or

g2mbl_MLCPSuggetsNLevels, described below.

The procedure g2mbl_MLCMPOptInitd should be used if the height of the block

tree is at least 3.

The procedures return true to signal a success, or false to signal a failure.

boolean g2mbl_MLSOptInitd (

int nv, BSMvertex *mv, int *mvhei, point3d *mvcp,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

int nkn1, int nkn2, short nlevels, void **data );

boolean g2mbl_MLSCMPOptInitd (

int fnv, BSMvertex *fmv, int *fmvhei, point3d *fmvcp,

int fnhe, BSMhalfedge *fmhe,

int fnfac, BSMfacet *fmfac, int *fmfhei,

byte *fmkcp,

int cnv,

int rmnnz, index2 *rmnzi, double *rmnzc,

int nkn1, int nkn2, short nlevels,

void **data );
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boolean g2mbl_MLSOptIterd ( void *data, boolean *finished );

The procedures above implement the multilevel algorithm of finding a minimum of

the functional S. The first two, g2mbl_MLSOptInitd and g2mbl_MLSCMPOptInitd,

create the auxiliary data structure, which must eventually be destroyed by

g2mbl_MLOptDeallocated. The difference between the two procedures is the prepa-

ration of a preconditioner for the conjugate gradient method, with a term usnig the

refinement matrix.

The procedure g2mbl_MLSOptIterd makes one iteration of the algorithm. If the

stop condition is satisfied, then the variable pointed by the parameter finished is

assigned true, which ought to terminate the computations.

The parameters, which describe the mesh and the other data are the same as

for the procedures described in the preceding sections. Note that there are no

parameters C, dO and dM, which are not necessary to define the functional S. The

parameter nlevels is the height of the binary tree of blocks used by the algorithm.

If this parameter is 1, the procedures work as a nonblock algorithm. To choose the

height of the block tree one may call the procedure g2mbl_MLSSuggestNLevels or

g2mbl_MLCPSSuggetsNLevels, described below.

Auxiliary procedures

boolean g2mbl_MLSuggestNLevels ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

int *minlev, int *maxlev );

boolean g2mbl_MLCPSuggestNLevels ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

int *minlev, int *maxlev );

The two procedures above count the number of non-fixed vertices in a mesh and

then they compute the numbers, which seem to define a good range for the height

of the block tree for the multilevel block algorithm of finding a minimum of the

function F. These numbers are assigned to the variables pointed by the parameters

minlev and maxlev. It seems better to choose the lower bound of this range for

the tree height.

The first of the two procedures is appropriate if no refinement matrix is to

be used by the preconditioner for the conjugate gradient method. The second

procedure is supposed to be appropriate if such a matrix is available and intended

to use. As the block overlaps necessary in that case are smaller, the block tree in

some cases may be lower.
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The value returned is true to indicate a success, and false in case of failure.

boolean g2mbl_MLSSuggestNLevels (

int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

int *minlev, int *maxlev );

boolean g2mbl_MLCPSSuggestNLevels (

int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp,

int *minlev, int *maxlev );

The two procedures above count the number of non-fixed vertices in a mesh and

then they compute the numbers, which seem to define a good range for the height

of the block tree for the multilevel block algorithm of finding a minimum of the

function S. These numbers are assigned to the variables pointed by the parameters

minlev and maxlev. It seems better to choose the lower bound of this range for

the tree height.

The first of the two procedures is appropriate if no refinement matrix is to

be used by the preconditioner for the conjugate gradient method. The second

procedure is supposed to be appropriate if such a matrix is available and intended

to use. As the block overlaps necessary in that case are smaller, the block tree in

some cases may be lower.

The value returned is true to indicate a success, and false in case of failure.

int g2mbl_MLGetLastBlockd ( void *data );

The multilevel algorithm solves the local optimization problem for each block, from

the last one to the first, which is the global system of equations for all non-fixed

vertices. Each time one iteration is made, and then a decision is taken, whether to

advance to the next block, or not. The value returned is the number of the block,

which was processed in the last recent iteration. This information may be used by

the application to monitor the state of the computation.

void g2mbl_MLSetNextBlock ( void *data, int nbl );

Normally the multilevel algorithm begins the computation from the last small block.

This procedure may be used to override it, by explicitly setting the block number,

from which to start the next iteration.
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boolean g2mbl_MLGetBlockVCPNumbersd ( void *data, int bl,

int *nvcp, int **vncpi, int *seed );

After creating the auxiliary data structure for the multilevel algorithm, this proce-

dure may be used to obtain the information about blocks created for the multilevel

algorithm. The first parameter points to the auxiliary data structure, the second is

the block number, the parameter nvcp points to the variable, which is assigned the

number of vertices of the block, the parameter vncpi points to the variable, which

will be set to an array with indices of the vertices of the block (the application may

read this array, but it must not alter its contents), and the parameter seed points

to the variable, which is assigned the number of the vertex chosen for the seed of

the discrete Voronoi diagram used to choose the vertices for this block.

void g2mbl_MLGetTimes ( void *data,

float *time_prep, float *time_h, float *time_cg );

After the optimization using the multilevel algorithm is complete, but before de-

stroying the auxiliary data structure, this procedure may be called to obtain the

total times (in seconds), spent for the preparation (creating blocks etc.), computing

the Hessian coefficients, and solving the linear equations using the conjugate gradi-

ent method. These times are assigned to the variables pointed by the parameters.

12.3.5 Additional procedures

extern GHoleDomaind *g2mbl_domaind[GH_MAX_K-3];

extern double *g2mbl_patchmatrixd[GH_MAX_K-3];

boolean g2mbl_SetupHolePatchMatrixd ( int k );

void g2mbl_CleanupHoleDomainsd ( void );

The construction of the function space for representation of the surface involves con-

structing binonic polynomials filling k-sided holes in the piecewise bicubic surface

represented by the mesh (where k may be any number from 3 to 16, except 4). This

is done using procedures of the libeghole library. For each type of special element

present in the mesh, an auxiliary data structure defined in the libeghole library

is created (these types correspond to different numbers k). After the optimization

these data structures remain allocated, and they may be reused to optimise a next

mesh.

The procedure g2mbl_SetupHolePatchMatrixd may be called to demand cre-

ating the data structure for filling the k-sided hole by the appropriate procedure

from the libeghole library. The value true returned denotes a success.

The procedure g2mbl_CleanupHoleDimaonsd destroys all data structures for

filling k-sided holes in order to free the memory they occupy. If a mesh is optimised
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after that, the data structures must be created again, which takes some time, though

insignificant, when compared with the times of optimization of the meshes.

int g2mbl_GetNvcp ( int nv, BSMvertex *mv, int *mvhei,

int nhe, BSMhalfedge *mhe,

int nfac, BSMfacet *mfac, int *mfhei,

byte *mkcp );

This procedure returns the number of non-fixed vertices in a mesh. It may be useful

to choose the number of blocks for the two-level optimization block algorithm.

extern void (*g2mbl_outputnzdistr)( int nbl, int blnum,

boolean final,

int nvcp, int n, byte *nzdistr );

This pointer is NULL by default. An application may set it to point a procedure,

which will be called during the preparation of the auxiliary data structure for op-

timization, to pass to the application the distribution of nonzero coefficients in

the Hessian matrices for small blocks. This possibility was helpful for writing and

debugging of the procedures of creating blocks.

12.3.6 Example of using the optimization procedures

An example of using the mesh optimization procedures is the program optblmesh,

whose source file is test/optblmesh/optblmesh.c. The program works in batch

mode; it reads the file specified by the command line, performs the optimization

and writes the result to a file. It does not make any pictures, but the files may be

read in by the demonstration program pozwalaj, which allows one to examine the

surfaces at will, edit them and interactively create meshes, which may be optimized

(see Section 16.6).

The program pozwalaj also has the optimization procedures built in, but the

source code of optblmesh is much shorter (about 650 lines) and easier to explore.

It is intended to serve as an example, how to prepare data and to call properly

the optimization procedures. There are not too many comments, but most of the

program are instructions of calling library procedures, which usually have signif-

icant names. The parameters and jobs of these procedures are described in this

documentation.
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#define BSF_SYMB_EOF 0

#define BSF_SYMB_ERROR 1

#define BSF_SYMB_INTEGER 2

#define BSF_SYMB_FLOAT 3

#define BSF_SYMB_LBRACE 4

#define BSF_SYMB_RBRACE 5

#define BSF_SYMB_PLUS 6

#define BSF_SYMB_MINUS 7

#define BSF_SYMB_STRING 8

#define BSF_SYMB_COMMA 9

#define BSF_FIRST_KEYWORD 10

#define BSF_SYMB_BCURVE 10

#define BSF_SYMB_BPATCH 11

#define BSF_SYMB_BSCURVE 12

#define BSF_SYMB_BSHOLE 13

#define BSF_SYMB_BSPATCH 14

#define BSF_SYMB_CLOSED 15

#define BSF_SYMB_CPOINTS 16

#define BSF_SYMB_DEGREE 17

#define BSF_SYMB_DIM 18

#define BSF_SYMB_DOMAIN 19

#define BSF_SYMB_KNOTS 20

#define BSF_SYMB_KNOTS_U 21

#define BSF_SYMB_KNOTS_V 22

#define BSF_SYMB_NAME 23

#define BSF_SYMB_RATIONAL 24

#define BSF_SYMB_SIDES 25

#define BSF_SYMB_UNIFORM 26

#define BSF_NKEYWORDS 17

extern const char *bsf_keyword[BSF_NKEYWORDS];

extern FILE *bsf_input, *bsf_output;

extern int bsf_nextsymbol;

extern int bsf_nextint;

extern double bsf_nextfloat;
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boolean bsf_OpenInputFile ( char *filename );

void bsf_CloseInputFile ( void );

void bsf_GetNextSymbol ( void );

void bsf_PrintErrorLocation ( void );

boolean bsf_ReadDoubleNumber ( double *number );

boolean bsf_ReadPointd ( int maxspdimen, double *point, int

*spdimen );

int bsf_ReadPointsd ( int maxspdimen, int maxnpoints,

double *points, int *spdimen );

boolean bsf_ReadSpaceDim ( int maxdim, int *spdimen );

boolean bsf_ReadCurveDegree ( int maxdeg, int *degree );

boolean bsf_ReadPatchDegree ( int maxdeg, int *udeg, int *vdeg );

boolean bsf_ReadKnotSequenced ( int maxlastknot, int *lastknot,

double *knots,

boolean *closed );

boolean bsf_ReadBezierCurve4d ( int maxdeg, int *deg, point4d

*cpoints,

int *spdimen, boolean *rational );

boolean bsf_ReadBSplineCurve4d ( int maxdeg, int maxlastknot, int

maxncpoints,

int *deg, int *lastknot, double *knots,

boolean *closed, point4d *cpoints,

int *spdimen, boolean *rational );

boolean bsf_ReadBezierPatch4d ( int maxdeg, int maxlastknot, int

maxncpoints,

int *udeg, int *vdeg,

int *pitch, point4d *cpoints,

int *spdimen, boolean *rational );
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boolean bsf_ReadBSplinePatch4d ( int maxdeg, int maxlastknot, int

maxncpoints,

int *udeg, int *lastknotu, double *knotsu,

int *vdeg, int *lastknotv, double *knotsv,

boolean *closed_u, boolean *closed_v,

int *pitch, point4d *cpoints,

int *spdimen, boolean *rational );

boolean bsf_ReadBSplineHoled ( int maxk, int *hole_k, double

*knots,

point2d *domain_cp, point3d *hole_cp );

boolean bsf_OpenOutputFile ( char *filename );

void bsf_CloseOutputFile ( void );

void bsf_WriteComment ( char *comment );

void bsf_WriteDoubleNumber ( double x );

void bsf_WritePointd ( int spdimen, const double *point );

void bsf_WritePointsd ( int spdimen, int cols, int rows, int pitch,

const double *points );

void bsf_WriteSpaceDim ( int spdimen );

void bsf_WriteCurveDegree ( int degree );

void bsf_WritePatchDegree ( int udeg, int vdeg );

void bsf_WriteKnotSequenced ( int lastknot, const double *knots,

boolean closed );

boolean bsf_WriteBezierCurved ( int spdimen, boolean rational,

int deg, const double *cpoints );

boolean bsf_WriteBSplineCurved ( int spdimen, boolean rational,

int deg, int lastknot, const double *knots,

boolean closed,

double *cpoints );

boolean bsf_WriteBezierPatchd ( int spdimen, boolean rational,

int udeg, int vdeg,

int pitch, const double *cpoints );
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boolean bsf_WriteBSplinePatchd ( int spdimen, boolean rational,

int udeg, int lastknotu, const double *knotsu,

int vdeg, int lastknotv, const double *knotsv,

boolean closed_u, boolean closed_v,

int pitch, const double *cpoints );

boolean bsf_WriteBSplineHoled ( int hole_k, const double *knots,

const point2d *domain_cp,

const point3d *hole_cp );



14. The libmengerc library

This library consists of procedures, whose purpose is to find minimal curves of the

integral Menger curvature, a functional defined with the formula

Kp(C) =
∫ ∫

C3

∫
K(p1,p2,p3)

p dµ(C) dµ(C) dµ(C)

where K(p1,p2,p3) is the Menger curvature of the triple of points of the curve C
(in R

3), p is an exponent, which should be greater than 3 (in practice: from 4 to

20) and the integral is taken over all triples of points of the curve, with respect to

the arc length measure.

The curve C is a closed B-spline curve of degree at least 3 with uniorm knots.

Such a curve is a knot in R
3. Given an initial curve, the procedures search local

minima of the integral Menger curvature in the set of curves, whose length is that

of the initial curve. The local minimum is a knot topologically equivalent to the

initial curve. The problem is discretized by defining a function, whose arguments

are Cartesian coordinates of the control points of the curve, and whose value is the

value of the functional to minimize.

The optimization method is described in the paper Shape optimization of

closed B-spline curves by minimization of the integral Menger curvature, in

preparation.

Actually, minima of the following functionals are searched:

K̃p(C) = L(C)p−3Kp(C), or

K̂p(C) = L(C)Kp(C)1/(p−3),

where L(C) is the length of the curve C. These functionals are an invariants of

geometric similarities, i.e. homotetiae and isometries. In any set of curves of a fixed

length the functionals Kp, K̃p and K̂p differ by constant factors. Their minimiza-

tion problems are still ill-posed; to obtain a well posed minimization problem, five

penalty terms, described in detail in the paper, are added.

The functional K̂p is more convenient in the numerical computations, as K̃p

grows fast with the growth of the exponent p. Both were used in experiments and

K̂p is chosen by default, though the code using K̃p is still present in the library.

14.1 Demo programs in the package

A batch-mode program reading the curve and searching for a minimum may be

found in the directory bstools/test/mengerc.

14.2

The procedures are also built in the demonstration program pozwalaj. To

experiment, create or read in a closed cubic B-spline curve with uniform knots,

click the Options button and the Menger curv. switch, set the parameters and

click the optimize button.

14.2 Library contents

14.2.1 Symbolic constants

#define MENGERC_MIN_NQKN 2

#define MENGERC_MAX_NQKN 10

The integral is approximated by the composite Gauss-Legendre quadrature; as the

curves processed by procedures in this library are B-splines, the domain of the curve

is divided into intervals between curve knots (as the curve knots are consecutive

integers, these are unit length intervals). The restriction of the curve to each of

those is a polynomial curve (of class C∞). The Gauss-Legendre quadrature of

order 2k in each unit interval is used. The symbolic constants above specify the

range for the number of quadrature knots, k.

#define MENGERC_NPPARAM 5

#define MENGERC_OPT_NONE 0

#define MENGERC_OPT_FULL1 1

#define MENGERC_OPT_FULL2 2

#define MENGERC_OPT_PART 3

To make the optimization problem regular, five penalty terms are added to

the integral Menger curvature, as described in the paper Shape optimization . . . .

These terms are multiplied by positive constants, which are nontrivial to choose so

as to achieve the convergence of the optimization method.

The constants (penalty parameters) are given in an array passed to the pro-

cedure mengerc_InitMCOptimization or mengerc_OptimizeMengerCurvature as

the parameter penalty_param.

The last four symbolic constant are used to specify the method of choosing the

parameters; they are supposed to be passed as the value of the parameter opt.

MENGERC_OPT_NONE selects no automatic choice of the penalty parameters—the

responsibility for choosing them is left to the caller.

MENGERC_OPT_FULL1, MENGERC_OPT_FULL2 and MENGERC_OPT_PART let the opti-

mization procedure choose the penalty parameters by minimization of a function,

which depends on the greatest and the smallest eigenvalue of the Hessian matrix

of the function to minimize—the sum of the Hessian of the discretized integral

Menger curvature and the Hessians of the five penalty terms. The goal is to obtain

a function (chosen heuristically based on numerical experiments), whose Hessian

(for the B-spline curve being the current approximation of the minimal curve) is
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positive-definite, with a moderate condition number. The minimization is done

using the same numerical procedure, which is used to find minimal curves of the

integral Menger curvature—minimization along the Levenberg–Marquardt trajec-

tories. In many cases the optimization gives good results, though more experiments

and theoretical research are needed.

14.2.2 Data structure

typedef struct {

...

} mengerc_data;

This structure has a number of fields to store the information necessary for the

optimization, like the pointer to the array of curve control points, arrays of quadra-

ture knots and coefficients, values of the B-spline functions and their derivatives at

the quadrature knots etc. In fact these are private data of hardly any interest to

applications (but potentially meaningful for debugging purposes and experiments

involving the algorithm modifications). The structure is filled with information by

the procedure mengerc_InitMCOptimization and then passed as the parameter to

the procedure mengerc_IterMCOptimization making the optimization step, which

should be executed in a loop.

14.2.3 Main optimization procedures

boolean mengerc_InitMCOptimization ( int deg, int lkn,

double *knots, point3d *cpoints,

double w,

double penalty_param[MENGERC_NPPARAM],

int nqkn, int npthr, int opt,

mengerc_data *md );

This procedure prepares the data necessary for the numerical optimization, ahoch

involves the alloation of necessary arrays, generating the quadrature knots and

coefficients, evaluating the necessary B-spline functions and their derivatives at the

quadrature knots etc. It ought to be called once before the optimization.

Parameters: deg, lkn, knots, cpoints specify the curve which is the starting

point for he optimization. The degree (deg) must be at least 3. The parameter lkn

must be greater than 3 times the degree. The curve knots in the array knots must

be consecutive integers from 0 to lkn.

The parameter w is the exponent p, which must be greater than 3.

The array penalty_param contains the penalty parameters—five positive con-

stants. Depending on the value of the parameter opt these are used without mod-

ificaton, or changed between some optimization steps.

The parameter nqkn is the number k of quadrature knots in each unit length
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interval between the spline curve knots. The Gauss-Legendre quadrature of order

2k is used to approximate the integrals.

The parameter npthr specifies the number of threads. If greater than 1, some

computations (e.g. the evaluation of quadratures) are done in parallel, which short-

ens the computation time on multiprocessor (or multicore) computers.

The parameter md points to the structure in which the data are stored. This

structure must then be passed to the procedure mengerc_IterMCOptimization.

The value returned is true in case of success and false after failure, which may

be caused by incorrect input data or insufficient memory.

boolean mengerc_IterMCOptimization ( mengerc_data *md,

boolean *finished );

This procedure makes one step of the numerical minimization. The first param-

eter points to the data structure prepared by mengerc_InitMCOptimization. The

second parameter points to a variable, which is set to true after the termination

condition is satisfied.

The optimization step is either a Newton method step (a zero of the function

gradient is searched) or a minimization along one Levenberg-Marquardt trajectory.

The return value true indicates a success, and false a failure.

boolean mengerc_OptimizeMengerCurvature (

int deg, int lkn, double *knots, point3d *cpoints,

double w, double penalty_param[MENGERC_NPPARAM],

int nqkn, int npthr, int opt, int maxit,

void (*outiter)(void *usrdata,

boolean ppopt, int mdi,

int it, int itres, double f, double g),

void *usrdata );

This procedure calls mengerc_InitMCOptimization and then in a loop the pro-

cedure mengerc_IterMCOptimization, until a stop criterion is satisfied or an error

occurs. The first nine parameters are the same as the parameters of the procedure

mengerc_InitMCOptimization.

The parameter maxit is the limit of the number of iterations.

The procedure pointed by outiter is called after each iteration and it may

output the result of this iteration, so that the application may visualise it. The

parameter usrdata is a pointer passed to the output procedure, allowing for a com-

munication with the application without global variables.

14.2.4 Auxiliary and private procedures

The procedures described below are of less interest to applications, though some of

them might be called to obtain a detailed information about a curve (like the value

of the functional). Most of them should be private to the library, i.e. have headers
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moved to a private header file (mengercprivate.h in the src directory), and not

the one intended to be included in application source files. In future some of the

headers will be moved to the private header file, after I decide that the library is

beyond the experimental stage.

boolean mengerc_TabBasisFunctions ( int deg, int nqkn,

mengerc_data *md );

This procedure evaluates B-spline functions of degree specified by the parameter

deg, with uniform (integer) knots at the knots of the Gauss-Legendre quadrature

with nqkn knots in the interval [0, 1]. The result is stored in the data structure

pointed by md.

boolean mengerc_BindACurve ( mengerc_data *md,

int deg, int lkn, double *knots,

point3d *cpoints,

int nqkn, double w, double *penalty_param,

boolean alt_scale );

This procedure binds the curve specified by the parameters deg, lkn, knots

and cpoints to the data structure pointed by md, and also calls the procedure

mengerc_TabBasisFunctions to prepare the numerical integration.

The parameter alt_scale choses between the minimization of the functional

K̃p and K̂p; mathematically they are equivalent, but with large exponent p (given

as the parameter w) the former one takes very big values, which is troublesome in

numerical computations. Therefore alt_scale should be true.

void mengerc_UntieTheCurve ( mengerc_data *md );

This procedure disposes of the arrays allocated by mengerc_BindACurve. It

is called after the minimization is done successfully or with a failure; it ought

to be called by an application, if the application has the loop, in which it calls

mengerc_IterMCOptimization, after breaking the loop.

boolean mengerc_intF ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *func );

boolean mengerc_gradIntF ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *intf, double *grad );

boolean mengerc_hessIntF ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *intf, double *grad, double *hess );
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boolean _mengerc_intF ( mengerc_data *md, double *func );

boolean _mengerc_gradIntF ( mengerc_data *md, double *func,

double *grad );

boolean _mengerc_hessIntF ( mengerc_data *md, double *func,

double *grad, double *hess );

The six procedures above evaluate the function obtained by discretization of K̃p

or K̂p and its gradient and Hessian. The last three functions are wrappers for

the first three. The function arguments are the Cartesian coordinates of the control

points of the B-spline curve; the curve of degree n withN+1 knots has N−n control

points, and the last n of them are the same that the first n. Thus the number of

function arguments is N− 2n.

boolean mengerc_intD ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *dl, double *acp );

boolean mengerc_gradIntD ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *dl, double *grdl, double *acp,

double *gracp );

boolean mengerc_hessIntD ( mengerc_data *md,

int lkn, double *knots, point3d *cpoints,

double *dl, double *grdl, double *hesdl,

double *acp, double *gracp, double *hesacp );

The three functions above evaluate the functional L(C), which is the length of

the curve C, and its gradient and Hessian. These are used to evaluate the penalty

terms, making the minimization problem regular.

boolean mengerc_IntegralMengerf ( int n, void *usrdata, double *x,

double *f );

boolean mengerc_IntegralMengerfg ( int n, void *usrdata, double *x,

double *f, double *g );

boolean mengerc_IntegralMengerfgh ( int n, void *usrdata,

double *x, double *f, double *g, double *h );

These procedures evaluate the functional, which is actually minimized, i.e.

the sum of K̃p or K̂p and the five penalty terms, and its gradient and Hessian.

These procedures are passed as parameters to the numerical optimization proce-

dure pkn_NLMIterd, which makes one minimization step; either the Newton method

step, or minimization along one Levenberg–Marquardt trajectory. Therefore their

headers have the form required by the optimization procedure.
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boolean mengerc_IntegralMengerTransC ( int n, void *usrdata,

double *x );

This procedure transforms the curve so as to minimize (annihilate) the penalty

terms, for which this is trivial. The transformation involves scaling of the curve to

obtain the curve of desired length, translating it so as to obtain the gravity centre

of the control points at the origin of the coordinate system and rotating it.

boolean mengerc_HomotopyTest ( int n, void *usrdata,

double *x0, double *x1, boolean *went_out );

If a curve has a self-intersection, then the integral Menger curvature with the

exponent greater than 3 is infinite. However, its approximation using a quadrature

may be finite. The test done by this procedure indicates, whether there exists

a self-intersection of a curve being the linear interpolant between two curves, whose

control points are given in the arrays x0 and x1. In that case x1 must not be taken

as the next approximation of the minimal point, because it indicates “untying” the

knot. The failure of the test is signalled by assigning true to the variable pointed

by went_out. The return value false signalls an error, i.e. lack of memory.

int mengerc_FindRemotestPoint ( int np, point3d *cpoints,

point3d *sc );

int mengerc_ModifyRemotestPoint ( int np, point3d *cpoints,

point3d *sc, int mdi );

One of the penalty terms introduced to obtain a regular problem (i.e. with

locally unique minimal points) is a parameter value corresponding to the point of

the curve most distant from the gravity centre of the curve. Instead of the gravity

centre of the curve, the gravity centre of the set of control points is used, and to

determine the necessary parameter value, the control point most distant from the

gravity centre is searched.

The two procedures with the headers above take care of finding the most dis-

tant point and taking decisione, whether the parameter corresponding to the most

distant point is to be changed.

boolean mengerc_OptPenaltyParams1 ( mengerc_data *md,

boolean wide );

boolean mengerc_OptPenaltyParams2 ( mengerc_data *md );

boolean mengerc_OptPenaltyParams3 ( mengerc_data *md );

The procedures with headers above use different methods of choosing the five

penalty parameters. I guess that plenty of effort (theoretical research and experi-

ments) are needed to replace these by something more reliable.
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The procedures of the libxgedit library support the interaction between an appli-

cation and a user, via the XWindow system. The library makes it possible to open

a number of windows and create various widgets for user interaction, and it is used

instead of more sophisticated packages built on top of XWindow. The library is

intended mainly for use with the demonstration programs of the BSTools packages

and perhaps it is good for nothing else.

15.1 Overview

15.2 Auxiliary #definitions

typedef unsigned int xgecolour_int;

#define xge_MAX_WINDOWS 8

#define xge_MAX_CURSORS 16

#define xge_MAX_WIDTH /*1024*/ 1280

#define xge_MAX_HEIGHT /* 768*/ 960

#define xge_WIDTH 480

#define xge_HEIGHT 360

#define XGE_AUTO_ASPECT

#ifndef XGE_AUTO_ASPECT

#define XGE_DEFAULT_ASPECT 1.0

#endif

#define xge_CHAR_WIDTH 6

#define xge_CHAR_HEIGHT 13

#define xge_RECT_NONE -1

#define xge_MINDIST 8

#define xge_FOCUS_DEPTH 8

#define xge_MAX_STRING_LENGTH 512
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#define xgemouse_LBUTTON_DOWN (1 << 0)

#define xgemouse_LBUTTON_CHANGE (1 << 1)

#define xgemouse_RBUTTON_DOWN (1 << 2)

#define xgemouse_RBUTTON_CHANGE (1 << 3)

#define xgemouse_MBUTTON_DOWN (1 << 4)

#define xgemouse_MBUTTON_CHANGE (1 << 5)

#define xgemouse_WHEELFW_DOWN (1 << 6)

#define xgemouse_WHEELFW_CHANGE (1 << 7)

#define xgemouse_WHEELBK_DOWN (1 << 8)

#define xgemouse_WHEELBK_CHANGE (1 << 9)

#define xgemsg_NULL 0

#define xgemsg_INIT 0x100

#define xgemsg_KEY 0x101

#define xgemsg_SPECIAL_KEY 0x102

#define xgemsg_MMOVE 0x103

#define xgemsg_MCLICK 0x104

#define xgemsg_OTHEREVENT 0x105

#define xgemsg_ENTERING 0x106

#define xgemsg_EXITING 0x107

#define xgemsg_RESIZE 0x108

#define xgemsg_MOVE 0x109

#define xgemsg_BUTTON_COMMAND 0x10A

#define xgemsg_SWITCH_COMMAND 0x10B

#define xgemsg_SLIDEBAR_COMMAND 0x10C

#define xgemsg_SLIDEBAR2_COMMAND 0x10D

#define xgemsg_DIAL_COMMAND 0x10E

#define xgemsg_TEXT_EDIT_VERIFY 0x10F

#define xgemsg_TEXT_EDIT_ENTER 0x110

#define xgemsg_TEXT_EDIT_ESCAPE 0x111

#define xgemsg_INT_WIDGET_COMMAND 0x112

#define xgemsg_LISTBOX_ITEM_SET 0x113

#define xgemsg_LISTBOX_ITEM_PICK 0x114

#define xgemsg_QUATROTBALL_COMMAND 0x115

#define xgemsg_2DWIN_RESIZE 0x116

#define xgemsg_2DWIN_PROJCHANGE 0x117

#define xgemsg_2DWIN_PICK_POINT 0x118

#define xgemsg_2DWIN_MOVE_POINT 0x119

#define xgemsg_2DWIN_SELECT_POINTS 0x11A
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#define xgemsg_2DWIN_UNSELECT_POINTS 0x11B

#define xgemsg_2DWIN_SPECIAL_SELECT 0x11C

#define xgemsg_2DWIN_SPECIAL_UNSELECT 0x11D

#define xgemsg_2DWIN_CHANGE_TRANS 0x11E

#define xgemsg_2DWIN_SAVE_POINTS 0x11F

#define xgemsg_2DWIN_TRANSFORM_POINTS 0x120

#define xgemsg_2DWIN_TRANSFORM_SPECIAL 0x121

#define xgemsg_2DWIN_FIND_REFBBOX 0x122

#define xgemsg_2DWIN_UNDO 0x123

#define xgemsg_2DWIN_KEY 0x124

#define xgemsg_2DWIN_ERROR 0x125

#define xgemsg_3DWIN_RESIZE 0x126

#define xgemsg_3DWIN_PROJCHANGE 0x127

#define xgemsg_3DWIN_PICK_POINT 0x128

#define xgemsg_3DWIN_MOVE_POINT 0x129

#define xgemsg_3DWIN_SELECT_POINTS 0x12A

#define xgemsg_3DWIN_UNSELECT_POINTS 0x12B

#define xgemsg_3DWIN_SPECIAL_SELECT 0x12C

#define xgemsg_3DWIN_SPECIAL_UNSELECT 0x12D

#define xgemsg_3DWIN_CHANGE_TRANS 0x12E

#define xgemsg_3DWIN_SAVE_POINTS 0x12F

#define xgemsg_3DWIN_TRANSFORM_POINTS 0x130

#define xgemsg_3DWIN_TRANSFORM_SPECIAL 0x131

#define xgemsg_3DWIN_FIND_REFBBOX 0x132

#define xgemsg_3DWIN_UNDO 0x133

#define xgemsg_3DWIN_KEY 0x134

#define xgemsg_3DWIN_ERROR 0x135

#define xgemsg_KNOTWIN_CHANGE_KNOT 0x136

#define xgemsg_KNOTWIN_INSERT_KNOT 0x137

#define xgemsg_KNOTWIN_REMOVE_KNOT 0x138

#define xgemsg_KNOTWIN_CHANGE_ALTKNOT 0x139

#define xgemsg_KNOTWIN_INSERT_ALTKNOT 0x13A

#define xgemsg_KNOTWIN_REMOVE_ALTKNOT 0x13B

#define xgemsg_KNOTWIN_MCLICK 0x13C

#define xgemsg_KNOTWIN_MMOVE 0x13D

#define xgemsg_KNOTWIN_CHANGE_MAPPING 0x13E

#define xgemsg_KNOTWIN_ERROR 0x13F

#define xgemsg_T2KNOTWIN_RESIZE 0x140

#define xgemsg_T2KNOTWIN_PROJCHANGE 0x141
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#define xgemsg_T2KNOTWIN_CHANGE_KNOT_U 0x142

#define xgemsg_T2KNOTWIN_CHANGE_KNOT_V 0x143

#define xgemsg_T2KNOTWIN_INSERT_KNOT_U 0x144

#define xgemsg_T2KNOTWIN_INSERT_KNOT_V 0x145

#define xgemsg_T2KNOTWIN_REMOVE_KNOT_U 0x146

#define xgemsg_T2KNOTWIN_REMOVE_KNOT_V 0x147

#define xgemsg_T2KNOTWIN_CHANGE_ALTKNOT_U 0x148

#define xgemsg_T2KNOTWIN_CHANGE_ALTKNOT_V 0x149

#define xgemsg_T2KNOTWIN_INSERT_ALTKNOT_U 0x14A

#define xgemsg_T2KNOTWIN_INSERT_ALTKNOT_V 0x14B

#define xgemsg_T2KNOTWIN_REMOVE_ALTKNOT_U 0x14C

#define xgemsg_T2KNOTWIN_REMOVE_ALTKNOT_V 0x14D

#define xgemsg_T2KNOTWIN_SELECT_POINTS 0x14E

#define xgemsg_T2KNOTWIN_UNSELECT_POINTS 0x14F

#define xgemsg_T2KNOTWIN_CHANGE_MAPPING 0x150

#define xgemsg_T2KNOTWIN_ERROR 0x151

#define xgemsg_POPUP_REMOVED 0x152

#define xgemsg_POPUPS_REMOVED 0x153

#define xgemsg_USER_MESSAGE_DISMISSED 0x154

#define xgemsg_IDLE_COMMAND 0x155

#define xgemsg_CHILD_MESSAGE 0x156

#define xgemsg_CHILD_FAILURE 0x157

#define xgemsg_LAST_MESSAGE xgemsg_CHILD_FAILURE

#define xgestate_NOTHING 0

#define xgestate_MOVINGSLIDE 1

#define xgestate_MOVINGSLIDE2A 2

#define xgestate_MOVINGSLIDE2B 3

#define xgestate_TURNINGDIAL 4

#define xgestate_QUATROT_TURNING1 5

#define xgestate_QUATROT_TURNING2 6

#define xgestate_QUATROT_TURNING3 7

#define xgestate_MESSAGE 8

#define xgestate_RESIZING_X 9

#define xgestate_RESIZING_Y 10

#define xgestate_RESIZING_XY 11

#define xgestate_TEXT_EDITING 12
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#define xgestate_2DWIN_MOVINGPOINT 13

#define xgestate_2DWIN_PANNING 14

#define xgestate_2DWIN_ZOOMING 15

#define xgestate_2DWIN_SELECTING 16

#define xgestate_2DWIN_UNSELECTING 17

#define xgestate_2DWIN_MOVING_GEOM_WIDGET 18

#define xgestate_2DWIN_USING_GEOM_WIDGET 19

#define xgestate_2DWIN_ALTUSING_GEOM_WIDGET 20

#define xgestate_2DWIN_USING_SPECIAL_WIDGET 21

#define xgestate_3DWIN_MOVINGPOINT 22

#define xgestate_3DWIN_PARPANNING 23

#define xgestate_3DWIN_PARZOOMING 24

#define xgestate_3DWIN_TURNING_VIEWER 25

#define xgestate_3DWIN_PANNING 26

#define xgestate_3DWIN_ZOOMING 27

#define xgestate_3DWIN_SELECTING 28

#define xgestate_3DWIN_UNSELECTING 29

#define xgestate_3DWIN_MOVING_GEOM_WIDGET 30

#define xgestate_3DWIN_USING_GEOM_WIDGET 31

#define xgestate_3DWIN_ALTUSING_GEOM_WIDGET 32

#define xgestate_3DWIN_USING_SPECIAL_WIDGET 33

#define xgestate_KNOTWIN_MOVINGKNOT 34

#define xgestate_KNOTWIN_PANNING 35

#define xgestate_KNOTWIN_ZOOMING 36

#define xgestate_T2KNOTWIN_MOVINGKNOT_U 37

#define xgestate_T2KNOTWIN_MOVINGKNOT_V 38

#define xgestate_T2KNOTWIN_MOVING_POINT 39

#define xgestate_T2KNOTWIN_PANNING 40

#define xgestate_T2KNOTWIN_ZOOMING 41

#define xgestate_T2KNOTWIN_SELECTING 42

#define xgestate_T2KNOTWIN_UNSELECTING 43

#define xgestate_LISTBOX_PICKING 44

#define xgestate_LAST xgestate_LISTBOX_PICKING

#define xgeCURSOR_CROSSHAIR xgecursor[0]

#define xgeCURSOR_HAND xgecursor[1]

#define xgeCURSOR_PENCIL xgecursor[2]

#define xgeCURSOR_FLEUR xgecursor[3]

#define xgeCURSOR_ARROW xgecursor[4]

#define xgeCURSOR_WATCH xgecursor[5]

#define xgeCURSOR_CIRCLE xgecursor[6]

#define xgeCURSOR_DEFAULT xgecursor[7]
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#define xgeCURSOR_INVISIBLE xgecursor[8]

15.3 Colours

#ifndef XGERGB_H

#include "xgergb.h"

#endif

#define xgec_MENU_BACKGROUND xgec_Grey5

#define xgec_INFOMSG_BACKGROUND xgec_Grey4

#define xgec_ERRORMSG_BACKGROUND xgec_Red

#define xgec_WARNINGMSG_BACKGROUND xgec_DarkMagenta

xgecolour_int xge_PixelColourf ( float r, float g, float b );

xgecolour_int xge_PixelColour ( byte r, byte g, byte b );

void xge_GetPixelColour ( xgecolour_int pixel,

byte *r, byte *g, byte *b );

void xge_GetPixelColourf ( xgecolour_int pixel,

float *r, float *g, float *b );

15.4 Xlib procedure wrappers

#define xgeSetBackground(colour) \

XSetBackground(xgedisplay,xgegc,colour)

#define xgeSetForeground(colour) \

XSetForeground(xgedisplay,xgegc,colour)

#define xgeSetLineAttributes(width,line_style,\

cap_style,join_style) \

XSetLineAttributes(xgedisplay,xgegc,width,line_style,cap_style, \

join_style)

#define xgeSetDashes(n,dash_list,offset) \

XSetDashes(xgedisplay,xgegc,offset,dash_list,n)

#define xgeDrawRectangle(w,h,x,y) \

XDrawRectangle(xgedisplay,xgepixmap,xgegc,x,y,w,h)

#define xgeFillRectangle(w,h,x,y) \

XFillRectangle(xgedisplay,xgepixmap,xgegc,x,y,w,h)

#define xgeDrawString(string,x,y) \

XDrawString(xgedisplay,xgepixmap,xgegc,x,y,string,strlen(string))
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#define xgeDrawLine(x0,y0,x1,y1) \

XDrawLine(xgedisplay,xgepixmap,xgegc,x0,y0,x1,y1)

#define xgeDrawLines(n,p) \

XDrawLines(xgedisplay,xgepixmap,xgegc,p,n,CoordModeOrigin)

#define xgeDrawArc(w,h,x,y,a0,a1) \

XDrawArc(xgedisplay,xgepixmap,xgegc,x,y,w,h,a0,a1)

#define xgeFillArc(w,h,x,y,a0,a1) \

XFillArc(xgedisplay,xgepixmap,xgegc,x,y,w,h,a0,a1)

#define xgeDrawPoint(x,y) \

XDrawPoint(xgedisplay,xgepixmap,xgegc,x,y)

#define xgeDrawPoints(n,p) \

XDrawPoints(xgedisplay,xgepixmap,xgegc,p,n,CoordModeOrigin)

#define xgeFillPolygon(shape,n,p) \

XFillPolygon(xgedisplay,xgepixmap,xgegc,p,n,shape,CoordModeOrigin)

#define xgeCopyRectOnScreen(w,h,x,y) \

XCopyArea(xgedisplay,xgepixmap,xgewindow,xgegc,x,y,w,h,x,y)

#define xgeRaiseWindow() \

XRaiseWindow(xgedisplay,xgewindow)

#define xgeResizeWindow(w,h) \

XResizeWindow(xgedisplay,xgewindow,w,h)

#define xgeMoveWindow(x,y) \

XMoveWindow(xgedisplay,xgewindow,x,y)

15.5 Global variables

extern int xge_winnum;

extern unsigned int xge_mouse_buttons;

extern int xge_mouse_x, xge_mouse_y;

extern short xge_xx, xge_yy;

extern Display *xgedisplay;

extern XVisualInfo *xgevisualinfo;

extern Colormap xgecolormap;

extern int xgescreen;

extern Window xgeroot;

extern Window xgewindow;

extern Pixmap xgepixmap;

extern GC xgegc;

extern Visual *xgevisual;

extern XSizeHints xgehints;
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extern Cursor xgecursor[];

extern KeySym xgekeysym;

extern XEvent xgeevent;

typedef struct {

unsigned short r_bits, g_bits, b_bits;

char nr_bits, ng_bits, nb_bits;

unsigned char r_shift, g_shift, b_shift;

unsigned char r_mask, g_mask, b_mask;

float ar, ag, ab;

} xge_rgbmap_bits;

extern xge_rgbmap_bits xge_rgbmap;

extern float xge_aspect;

extern unsigned int xge_current_width, xge_current_height;

extern char *xge_p_name;

extern char xge_done;

extern short xge_prevx, xge_prevy;

extern xgecolour_int xge_foreground, xge_background;

extern int xge_nplanes;

extern xgecolour_int *xge_palette;

extern const char *xge_colour_name[];

extern xge_widget *xge_null_widget;

15.6 Widgets

typedef struct xge_widget {

int id;

short w, h, x, y;

void *data0, *data1, *data2;

short xofs, yofs;

char rpos;

char window_num;

short state;

boolean (*msgproc)(struct xge_widget*,int,int,short,short);

void (*redraw) ( struct xge_widget*, boolean );

struct xge_widget *next, *prev, *up;

} xge_widget;
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typedef boolean (*xge_message_proc) ( struct xge_widget *er,

int msg, int key, short x, short y );

typedef void (*xge_redraw_proc) ( struct xge_widget *er,

boolean onscreen );

15.6.1 Generic widget constructor

xge_widget *xge_NewWidget (

char window_num, xge_widget *prev, int id,

short w, short h, short x, short y,

void *data0, void *data1,

boolean (*msgproc)(xge_widget*, int, int, short, short),

void (*redraw)(xge_widget*, boolean) );

void xge_SetWidgetPositioning ( xge_widget *edr,

char rpos, short xofs, short yofs );

15.6.2 Empty widget

void xge_DrawEmpty ( xge_widget *er, boolean onscreen );

boolean xge_EmptyMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewEmptyWidget ( char window_num,

xge_widget *prev, int id,

short w, short h, short x, short y );

15.6.3 Menu widgets

void xge_DrawMenu ( xge_widget *er, boolean onscreen );

boolean xge_MenuMsg ( xge_widget *er,

int msg, int key, short x, short y );

boolean xge_PopupMenuMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewMenu ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_widget *widgetlist );

void xge_DrawFMenu ( xge_widget *er, boolean onscreen );

xge_widget *xge_NewFMenu ( char window_num, xge_widget *prev,
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int id,

short w, short h, short x, short y,

xge_widget *widgetlist );

void xge_SetMenuWidgets ( xge_widget *menu, xge_widget *widgetlist,

boolean redraw );

15.6.4 Switch widget

void xge_DrawSwitch ( xge_widget *er, boolean onscreen );

boolean xge_SwitchMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewSwitch ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

char *title, boolean *sw );

15.6.5 Button widget

void xge_DrawButton ( xge_widget *er, boolean onscreen );

boolean xge_ButtonMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewButton ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

char *title );

15.6.6 Slidebar widgets

void xge_DrawSlidebarf ( xge_widget *er, boolean onscreen );

boolean xge_SlidebarfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewSlidebarf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

float *data );

void xge_DrawSlidebarfRGB ( xge_widget *er, boolean onscreen );

xge_widget *xge_NewSlidebarfRGB ( char window_num, xge_widget *prev,

int id,
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short w, short h, short x, short y,

float *data );

void xge_DrawVSlidebarf ( xge_widget *er, boolean onscreen );

boolean xge_VSlidebarfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewVSlidebarf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

float *data );

void xge_DrawSlidebar2f ( xge_widget *er, boolean onscreen );

boolean xge_Slidebar2fMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewSlidebar2f ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

float *data );

void xge_DrawVSlidebar2f ( xge_widget *er, boolean onscreen );

boolean xge_VSlidebar2fMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewVSlidebar2f ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

float *data );

float xge_LinSlidebarValuef ( float xmin, float xmax, float t );

float xge_LogSlidebarValuef ( float xmin, float xmax, float t );

15.6.7 Dial widget

void xge_DrawDialf ( xge_widget *er, boolean onscreen );

boolean xge_DialfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewDialf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

char *title, float *data );
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15.6.8 Quaternion ball widget

typedef struct xge_quatrotballf {

xge_widget *er;

quaternionf *q;

trans3f *tr;

vector3f axis;

short xc, yc, r1, r2, R;

boolean axis_ok, insert;

} xge_quatrotballf;

void xge_DrawQuatRotBallf ( xge_widget *er, boolean onscreen );

boolean xge_QuatRotBallfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewQuatRotBallf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y, short R,

xge_quatrotballf *qball, quaternionf *q,

trans3f *tr, char *title );

15.6.9 Text output widget

void xge_DrawText ( xge_widget *er, boolean onscreen );

xge_widget *xge_NewTextWidget ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

char *text );

15.6.10 Colour sample widget

void xge_DrawRGBSamplef ( xge_widget *er, boolean onscreen );

xge_widget *xge_NewRGBSamplef ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

float *data );
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15.6.11 Text editing widget

typedef struct xge_string_ed {

xge_widget *er;

short maxlength, /* maximal string length */

chdisp, /* number of characters displayed */

start, /* first character displayed */

pos; /* text cursor position */

} xge_string_ed;

void xge_DrawStringEd ( xge_widget *er, boolean onscreen );

boolean xge_StringEdMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewStringEd ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

short maxlength, char *text, xge_string_ed *ed );

15.6.12 Integer widget

typedef struct xge_int_widget {

xge_widget *er;

int minvalue, maxvalue;

char *title;

} xge_int_widget;

void xge_DrawIntWidget ( xge_widget *er, boolean onscreen );

boolean xge_IntWidgetMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewIntWidget ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

int minvalue, int maxvalue,

xge_int_widget *iw, char *title, int *valptr );
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15.6.13 List widgets

#define xge_LISTDIST 16

typedef struct xge_listbox {

xge_widget *er;

char dlistnpos; /* number of positions displayed */

char maxitl; /* maximal item length, in characters */

short nitems; /* current number of list elements */

short fditem; /* first displayed item */

short currentitem; /* current item */

int *itemind; /* indexes to the item strings */

char *itemstr; /* item strings */

xgecolour_int bk0, bk1; /* background colours for the items */

} xge_listbox;

void xge_DrawListBox ( xge_widget *er, boolean onscreen );

boolean xge_ListBoxMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewListBox ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_listbox *listbox );

void xge_ClearListBox ( xge_listbox *lbox );

void xge_ShortenString ( const char *s, char *buf, int maxlen );

boolean xge_GetCurrentListBoxString ( xge_listbox *lbox,

char *string );

int xge_MoveInListBox ( xge_listbox *lbox, short amount );

boolean xge_SetupFileList ( xge_listbox *lbox, const char *dir,

const char *filter );

boolean xge_SetupDirList ( xge_listbox *lbox, const char *dir,

const char *filter, const char *prevdir );

boolean xge_FilterMatches ( const char *name, const char *filter );
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15.6.14 2D geometry editing widget

#define xge_2DWIN_MIN_ZOOM 0.01

#define xge_2DWIN_MAX_ZOOM 100.0

#define xge_2DWIN_NO_TOOL 0

#define xge_2DWIN_MOVING_TOOL 1

#define xge_2DWIN_SCALING_TOOL 2

#define xge_2DWIN_ROTATING_TOOL 3

#define xge_2DWIN_SHEAR_TOOL 4

#define xge_2DWIN_SELECTING_TOOL 5

#define xge_2DWIN_PANNING_TOOL 6

#define xge_2DWIN_SPECIAL_SELECTING_TOOL 7

#define xge_2DWIN_SPECIAL_TRANS_TOOL 8

typedef struct xge_2Dwinf {

xge_widget *er;

CameraRecf CPos;

Box2f DefBBox, RefBBox;

boolean panning, selecting_mode, special_selecting_mode;

boolean display_coord, inside;

boolean moving_tool, scaling_tool, rotating_tool, shear_tool,

special_trans_tool;

char current_tool;

char tool_mode;

int current_tab, current_point;

short xx, yy;

float zoom;

Box2s selection_rect;

point2f saved_centre;

point2f scaling_centre;

vector2f scaling_factors;

short scaling_size;

point2f rotating_centre;

short rotating_radius;

vector2f trans_params;

point2f shear_centre;

vector2f shear_axis[2];

float shear_radius;

trans2f gwtrans;

} xge_2Dwinf;
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boolean xge_2DwinfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_New2Dwinf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_2Dwinf *_2Dwin,

void (*redraw)(xge_widget*, boolean) );

void xge_2DwinfSetDefBBox ( xge_2Dwinf *_2Dwin,

float x0, float x1, float y0, float y1 );

void xge_2DwinfSetupProjection ( xge_2Dwinf *_2Dwin );

void xge_2DwinfPan ( xge_widget *er, short x, short y );

void xge_2DwinfZoom ( xge_widget *er, short y );

void xge_2DwinfInitProjection ( xge_2Dwinf *_2Dwin,

float x0, float x1, float y0, float y1 );

void xge_2DwinfResetGeomWidgets ( xge_2Dwinf *_2Dwin );

void xge_2DwinfResetGeomWidgetPos ( xge_2Dwinf *_2Dwin );

void xge_2DwinfEnableGeomWidget ( xge_2Dwinf *_2Dwin, char tool );

void xge_2DwinfDrawGeomWidgets ( xge_widget *er );

char xge_2DwinfIsItAGeomWidget ( xge_2Dwinf *_2Dwin,

int key, short x, short y );

void xge_2DwinfMoveGeomWidget ( xge_2Dwinf *_2Dwin,

short x, short y );

boolean xge_2DwinfApplyGeomWidget ( xge_2Dwinf *_2Dwin,

short x, short y, boolean alt );

void xge_2DwinfExitWidgetMode ( xge_2Dwinf *_2Dwin );

void xge_2DwinfResetGeomWidget ( xge_2Dwinf *_2Dwin );

void xge_2DwinfDrawCursorPos ( xge_2Dwinf *_2Dwin,

short x, short y );

15.6.15 Four window widget

typedef struct xge_fourww {

xge_widget *er;

xge_widget *win[4];

float xsfr, ysfr;

short splitx, splity;

boolean resized;

char zoomwin;

} xge_fourww;
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boolean xge_CompSizeFourWW ( xge_widget *er, char cs );

void xge_DrawFourWW ( xge_widget *er, boolean onscreen );

boolean xge_FourWWMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewFourWW ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_widget *ww, xge_fourww *fwwdata );

15.6.16 3D geometry editing widget

#define xge_3DWIN_MIN_PARZOOM 0.01

#define xge_3DWIN_MAX_PARZOOM 100.0

#define xge_3DWIN_MIN_ZOOM 0.1

#define xge_3DWIN_MAX_ZOOM 1000.0

#define xge_3DWIN_NO_TOOL xge_2DWIN_NO_TOOL

#define xge_3DWIN_MOVING_TOOL xge_2DWIN_MOVING_TOOL

#define xge_3DWIN_SCALING_TOOL xge_2DWIN_SCALING_TOOL

#define xge_3DWIN_ROTATING_TOOL xge_2DWIN_ROTATING_TOOL

#define xge_3DWIN_SHEAR_TOOL xge_2DWIN_SHEAR_TOOL

#define xge_3DWIN_SELECTING_TOOL xge_2DWIN_SELECTING_TOOL

#define xge_3DWIN_PANNING_TOOL xge_2DWIN_PANNING_TOOL

#define xge_3DWIN_SPECIAL_SELECTING_TOOL \

xge_2DWIN_SPECIAL_SELECTING_TOOL

#define xge_3DWIN_SPECIAL_TRANS_TOOL xge_2DWIN_SPECIAL_TRANS_TOOL

typedef struct xge_3Dwinf {

xge_fourww fww; /* this must be the first component */

xge_widget *cwin[4];

CameraRecf CPos[5];

Box3f DefBBox, RefBBox, WinBBox, PerspBBox;

boolean panning, selecting_mode, special_selecting_mode;

boolean display_coord;

signed char CoordWin;

boolean moving_tool, scaling_tool, rotating_tool, shear_tool,

special_trans_tool;

char current_tool;

char tool_mode;

int current_tab, current_point;

short xx, yy;
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float perspzoom;

Box2s selection_rect;

point3f saved_centre;

point3f scaling_centre;

vector3f scaling_factors;

short scaling_size;

point3f rotating_centre;

short rotating_radius;

vector3f trans_params;

point3f shear_centre;

vector3f shear_axis[3];

float shear_radius;

trans3f gwtrans;

} xge_3Dwinf;

xge_widget *xge_New3Dwinf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_3Dwinf *_3Dwin,

void (*pararedraw)(xge_widget*, boolean),

void (*perspredraw)(xge_widget*, boolean) );

void xge_3DwinfSetDefBBox ( xge_3Dwinf *_3Dwin, float x0, float x1,

float y0, float y1, float z0, float z1 );

void xge_3DwinfSetupParProj ( xge_3Dwinf *_3Dwin, Box3f *bbox );

void xge_3DwinfSetupPerspProj ( xge_3Dwinf *_3Dwin,

boolean resetpos );

void xge_3DwinfUpdatePerspProj ( xge_3Dwinf *_3Dwin );

void xge_3DwinfPanParWindows ( xge_widget *er, short x, short y );

void xge_3DwinfZoomParWindows ( xge_widget *er, short y );

void xge_3DwinfPanPerspWindow ( xge_widget *er, short x, short y );

void xge_3DwinfInitProjections ( xge_3Dwinf *_3Dwin,

float x0, float x1, float y0, float y1, float z0, float z1 );

void xge_3DwinfResetGeomWidgets ( xge_3Dwinf *_3Dwin );

void xge_3DwinfResetGeomWidgetPos ( xge_3Dwinf *_3Dwin );

void xge_3DwinfEnableGeomWidget ( xge_3Dwinf *_3Dwin, char tool );

void xge_3DwinfDrawCursorPos ( xge_3Dwinf *_3Dwin,

int id, short x, short y );

void xge_3DwinfDrawSelectionRect ( xge_widget *er );

void xge_3DwinfDrawGeomWidgets ( xge_widget *er );

char xge_3DwinfIsItAGeomWidget ( xge_3Dwinf *_3Dwin, int id,

int key, short x, short y );
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void xge_3DwinfMoveGeomWidget ( xge_3Dwinf *_3Dwin,

int id, short x, short y );

boolean xge_3DwinfApplyGeomWidget ( xge_3Dwinf *_3Dwin,

int id, short x, short y, boolean alt );

void xge_3DwinfExitWidgetMode ( xge_3Dwinf *_3Dwin );

void xge_3DwinfResetGeomWidget ( xge_3Dwinf *_3Dwin );

void xge_3DwinfSavePerspCamera ( xge_3Dwinf *_3Dwin );

void xge_3DwinfSwapPerspCameras ( xge_3Dwinf *_3Dwin );

15.6.17 Knot sequence editing widget

#define xge_KNOTWIN_MIN_SCALE 0.01

#define xge_KNOTWIN_MAX_SCALE 100.0

#define xge_KNOT_EPS 1.0e-4

typedef struct {

xge_widget *er;

boolean panning, display_coord, moving_many, locked;

boolean closed, altkn, switchkn;

float akm, bkm, umin, umax, knotscf, knotshf;

int clcK;

float clcT;

unsigned char current_mult;

short xx;

int maxknots, lastknot, degree;

float *knots;

int maxaltknots, lastaltknot, altdegree;

float *altknots;

float newknot;

int current_knot;

} xge_KnotWinf;

void xge_DrawKnotWinf ( xge_widget *er, boolean onscreen );

boolean xge_KnotWinfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewKnotWinf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_KnotWinf *knw, int maxknots, float *knots );

void xge_KnotWinfDrawCursorPos ( xge_KnotWinf *knw );
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void xge_KnotWinfDrawAxis ( xge_KnotWinf *knw );

void xge_KnotWinfDrawKnots ( xge_KnotWinf *knw );

void xge_KnotWinfInitMapping ( xge_KnotWinf *knw,

float umin, float umax );

void xge_KnotWinfZoom ( xge_KnotWinf *knw, float scf );

void xge_KnotWinfPan ( xge_KnotWinf *knw, int dxi );

void xge_KnotWinfFindMapping ( xge_KnotWinf *knw );

void xge_KnotWinfResetMapping ( xge_KnotWinf *knw );

short xge_KnotWinfMapKnot ( xge_KnotWinf *knw, float u );

float xge_KnotWinfUnmapKnot ( xge_KnotWinf *knw, short xi );

boolean xge_KnotWinfFindNearestKnot ( xge_KnotWinf *knw,

int x, int y );

boolean xge_KnotWinfSetKnot ( xge_KnotWinf *knw, short x );

boolean xge_KnotWinfInsertKnot ( xge_KnotWinf *knw, short x );

boolean xge_KnotWinfRemoveKnot ( xge_KnotWinf *knw );

void xge_KnotWinfSetAltKnots ( xge_KnotWinf *knw,

int altmaxkn, int lastaltkn, int altdeg, float *altknots );

void xge_KnotWinfSwitchAltKnots ( xge_KnotWinf *knw );

15.6.18 Two knot sequences editing widget

typedef struct {

xge_widget *er;

CameraRecf CPos;

Box2f DefBBox, RefBBox;

point3f centre;

boolean panning, selecting_mode, moving_many,

locked_u, locked_v;

boolean display_coord, inside;

unsigned char current_mult;

int current_item;

short knot_margin;

short xx, yy;

float zoom;

Box2s selection_rect;

boolean closed_u, closed_v;

int clcKu, clcKv;

float clcTu, clcTv;

int maxknots_u, lastknot_u, degree_u;

float *knots_u;

int maxknots_v, lastknot_v, degree_v;
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float *knots_v;

float newknot;

boolean altknu, switchknu, altknv, switchknv;

int altmaxknots_u, altlastknot_u, altdeg_u;

float *altknots_u;

int altmaxknots_v, altlastknot_v, altdeg_v;

float *altknots_v;

} xge_T2KnotWinf;

boolean xge_T2KnotWinfMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewT2KnotWinf ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

short knot_margin,

xge_T2KnotWinf *T2win,

void (*redraw)(xge_widget*, boolean),

int maxknots_u, float *knots_u,

int maxknots_v, float *knots_v );

void xge_T2KnotWinfDrawKnots ( xge_T2KnotWinf *T2win );

void xge_T2KnotWinfSetupMapping ( xge_T2KnotWinf *T2win );

void xge_T2KnotWinfInitMapping ( xge_T2KnotWinf *T2win,

float umin, float umax, float vmin, float vmax );

void xge_T2KnotWinfZoom ( xge_T2KnotWinf *T2win, short y );

boolean xge_T2KnotWinfPan ( xge_T2KnotWinf *T2win,

short x, short y );

void xge_T2KnotWinfFindMapping ( xge_T2KnotWinf *T2win );

void xge_T2KnotWinfResetMapping ( xge_T2KnotWinf *T2win );

char xge_T2KnotWinfFindDomWinRegion ( xge_T2KnotWinf *T2win,

int x, int y );

char xge_T2KnotWinfFindNearestKnot ( xge_T2KnotWinf *T2win,

int x, int y );

short xge_T2KnotWinfMapKnotU ( xge_T2KnotWinf *T2win, float u );

float xge_T2KnotWinfUnmapKnotU ( xge_T2KnotWinf *T2win, short xi );

short xge_T2KnotWinfMapKnotV ( xge_T2KnotWinf *T2win, float v );

float xge_T2KnotWinfUnmapKnotV ( xge_T2KnotWinf *T2win, short eta );

boolean xge_T2KnotWinfSetKnotU ( xge_T2KnotWinf *T2win, short x );

boolean xge_T2KnotWinfInsertKnotU ( xge_T2KnotWinf *T2win,

short x );

boolean xge_T2KnotWinfRemoveKnotU ( xge_T2KnotWinf *T2win );
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boolean xge_T2KnotWinfSetKnotV ( xge_T2KnotWinf *T2win, short y );

boolean xge_T2KnotWinfInsertKnotV ( xge_T2KnotWinf *T2win,

short y );

boolean xge_T2KnotWinfRemoveKnotV ( xge_T2KnotWinf *T2win );

void xge_T2KnotWinfSelect ( xge_T2KnotWinf *T2win,

short x0, short x1, short y0, short y1 );

void xge_T2KnotWinfUnselect ( xge_T2KnotWinf *T2win,

short x0, short x1, short y0, short y1 );

void xge_T2KnotWinfSetAltKnots ( xge_T2KnotWinf *T2win,

int altmaxknu, int lastaltknu, int altdegu,

float *altknotsu,

int altmaxknv, int lastaltknv, int altdegv,

float *altknotsv );

void xge_T2KnotWinfSwitchAltKnots ( xge_T2KnotWinf *T2win,

boolean altu, boolean altv );

void xge_T2KnotWinfDrawCursorPos ( xge_T2KnotWinf *T2win,

short x, short y );

15.6.19 Scrolling widget

typedef struct {

xge_widget *er;

xge_widget *contents, *clipw, *xsl, *ysl;

float x, y;

boolean xslon, yslon;

} xge_scroll_widget;

void xge_SetupScrollWidgetPos ( xge_widget *er );

void xge_DrawScrollWidget ( xge_widget *er, boolean onscreen );

boolean xge_ScrollWidgetMsg ( xge_widget *er,

int msg, int key, short x, short y );

xge_widget *xge_NewScrollWidget ( char window_num, xge_widget *prev,

int id,

short w, short h, short x, short y,

xge_scroll_widget *sw, xge_widget *contents );
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15.7 Input focus processing

void xge_GrabFocus ( xge_widget *er, boolean all );

void xge_ReleaseFocus ( xge_widget *er );

xge_widget *xge_GetFocusWidget ( char win );

15.8 Popup widgets

void xge_AddPopup ( xge_widget *er );

void xge_RemovePopup ( boolean redraw );

void xge_RemovePopups ( boolean redraw );

boolean xge_IsPopupOn ( xge_widget *er );

void _xge_DisplayErrorMessage ( char *message,

xgecolour_int bk, int key );

void xge_DisplayErrorMessage ( char *message, int key );

void xge_DisplayWarningMessage ( char *message, int key );

void xge_DisplayInfoMessage ( char **msglines, int key );

15.9 Application initialisation, message loop
and closing

void xge_Init ( int argc, char *argv[],

int (*callback)(xge_widget*,int,int,short,short),

char *title );

void xge_MessageLoop ( void );

void xge_Cleanup ( void );

15.10 Other procedures

void xge_OutPixels ( const xpoint *buf, int n );

void xge_DrawBC2f ( int n, const point2f *cp );

void xge_DrawBC2Rf ( int n, const point3f *cp );

void xge_DrawBC2d ( int n, const point2d *cp );

void xge_DrawBC2Rd ( int n, const point3d *cp );

int xge_NewWindow ( char *title );
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boolean xge_SetWindow ( int win );

int xge_CurrentWindow ( void );

void xge_SetWinEdRect ( xge_widget *edr );

int xge_NewCursor ( int shape );

void xge_SetWindowCursor ( int win, Cursor cursor );

void xge_SetCurrentWindowCursor ( Cursor cursor );

void xge_SetOtherWindowsCursor ( Cursor cursor );

void xge_RedrawPopups ( void );

void xge_Redraw ( void );

void xge_RedrawAll ( void );

boolean xge_PointInRect ( xge_widget *edr, short x, short y );

void xge_BoundPoint ( xge_widget *er, short *x, short *y );

boolean xge_RectanglesIntersect (

short wa, short ha, short xa, short ya,

short wb, short hb, short xb, short yb );

boolean xge_IntersectXRectangles ( XRectangle *r1, XRectangle *r2 );

boolean xge_SetClipping ( xge_widget *edr );

void xge_ResetClipping ( void );

void xge_RepositionWidgets ( short w, short h, short x, short y,

xge_widget *edr );

void xge_DrawVShadedRect ( short w, short h, short x, short y,

xgecolour_int c0, xgecolour_int c1, short nb );

void xge_DrawHShadedRect ( short w, short h, short x, short y,

xgecolour_int c0, xgecolour_int c1, short nb );

void xge_OrderSelectionRect ( Box2s *sel_rect );

void xge_DrawGeomWinBackground ( xge_widget *er );

void xge_DrawGeomWinFrame ( xge_widget *er, boolean onscreen );

void xge_DrawGeomWinSelectionRect ( xge_widget *er,

Box2s *sel_rect );

void xge_GetWindowSize ( void );

void xge_PostIdleCommand ( unsigned int key, short x, short y );

void xge_dispatch_message ( unsigned int msg, unsigned int key,

short x, short y );



15.25

void xge_get_message ( unsigned int *msg, unsigned int *key,

short *x, short *y );

15.11 OpenGL support

#define xgleCopyGLRect(w,h,x,y) \

XCopyArea(xgedisplay,xglepixmap,xgepixmap,xgegc,0,\

xge_MAX_HEIGHT-h,w,h,x,y)

#define xgleClearColor3fv(rgb) \

glClearColor(rgb[0],rgb[1],rgb[2],1.0)

extern Pixmap xglepixmap;

extern XID _xglepixmap;

extern void *xglecontext;

extern GLfloat xgle_palette[XGLE_PALETTE_LENGTH][3];

void xgle_Init ( int argc, char *argv[],

int (*callback)(xge_widget*,int,int,short,short),

char *title,

boolean depth, boolean accum, boolean stencil );

void xgle_Cleanup ( void );

void xgle_SetIdentMapping ( xge_widget *er );

boolean xgle_SetGLCameraf ( CameraRecf *CPos );

boolean xgle_SetGLCamerad ( CameraRecd *CPos );

boolean xgle_SetGLaccCameraf ( CameraRecf *CPos,

float pixdx, float pixdy,

float eyedx, float eyedy, float focus );

boolean xgle_SetGLaccCamerad ( CameraRecd *CPos,

double pixdx, double pixdy,

double eyedx, double eyedy, double focus );

void xgle_MultMatrix3f ( trans3f *tr );

void xgleDrawPoint ( int x, int y );

void xgleDrawPoints ( int n, XPoint *p );

void xgleDrawLine ( int x0, int y0, int x1, int y1 );

void xgleDrawRectangle ( int w, int h, int x, int y );

void xgleDrawString ( char *string, int x, int y );

15.26

void xgle_DrawGeomWinBackground ( xge_widget *er, GLbitfield mask );

void xgle_2DwinfDrawCursorPos ( xge_2Dwinf *_2Dwin,

short x, short y );

void xgle_3DwinfDrawCursorPos ( xge_3Dwinf *_3Dwin,

int id, short x, short y );

void xgle_T2KnotWinfDrawCursorPos ( xge_T2KnotWinf *T2win,

short x, short y );

15.12 Interprocess communication

15.12.1 Overview

15.12.2 Common variables

extern pid_t xge_parent_pid, xge_child_pid;

extern int xge_pipe_in[2], xge_pipe_out[2];

extern Window xgeparentwindow, xgechildwindow;

15.12.3 Parent side procedures

boolean xge_MakeTheChild ( const char *name,

const char *suffix, int magic );

boolean xge_ChildIsActive ( void );

void xge_CallTheChild ( int cmd, int size );

void xge_SignalTheChild ( void );

void xge_ParentFlushPipe ( void );

15.12.4 Child side procedures

extern void (*xge_childcallback) ( int msg, int size );

void xge_CallTheParent ( int cmd, int size );

void xge_ChildCallYourself ( int cmd );

void xge_ChildMessageLoop ( void );

void xge_ChildFlushPipe ( void );
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boolean xge_ChildInit ( int argc, char **argv, int magic,

void (*callback) ( int msg, int size ) );



16. Demonstration programs

The demonstration programs accompanying the libraries (in the demo directory sub-

tree) are meant to reach three goals. Firstly, they display movable pictures, which

may help to learn about the curves and surfaces. They are also tests of the library

procedures (plenty of errors were extincted after detecting them in these programs).

Finally, the demonstration programs may serve as sources of information on the way

of using the library procedures in new applications.

The programs were developed in a not very systematic way, with new possibil-

ities added when I fancied them. Therefore they are not examples of a particu-

larly good programming style. The basic assumption was that apart from a working

XWindow environment, no special libraries or packages (e.g. Gnome, KDE, Athena,

Motif, OpenGL) are present. The programs use only the Xlib interface, and there-

fore it should be possible to compile and execute them on any computer equipped

with XWindow. The people unsatisfied with the possibilities or with the user in-

terface are welcome to write their own programs; no doubt that they will be much

better.

16.1 The pokrzyw program

The program pokrzyw1 (directory demo/pokrzyw) displays and makes it possible

to bend a planar (polynomial or rational) B-spline curve of degree from 1 to 8.

Two windows on the right side of the screen (of the program window opened by

XWindow) show the image of the curve (with the control polygon and other objects)

and the knot sequence.

Most of commands are given using the left button of the mouse. It serves for

“picking” and “holding” the control points and knots, as well as for clicking the

widgets (buttons etc.) in the menu on the left side.

The right button is used only for inserting new knots. To move a knot or

a control point, point it with the cursor, then press the left mouse button, then

move the mouse. To remove a knot, point it with the cursor, press the left button,

and type the key
✄

✂

�

✁
R .

On the left side of the screen there is a menu, i.e. a collection of widgets, to

issue other commands. To halt the program, click (with the left mouse button) the

button labelled Quit , or type the key
✄

✂

�

✁
Q .

Typing
✄

✂

�

✁
M causes the window to take the maximal size, and typing

✄

✂

�

✁
m minimizes

it. Other commands are easy to guess after reading the labels of the widgets.

1The program name in Polish means “bend it” and also “nettle”.
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16.2 The pognij program

The program pognij2 (the directory demo/pognij) displays and makes it possible

to model a three-dimensional B-spline curve. The main difference between this

program and the previous one is the presence of four windows showing the curve,

instead of one.

Three of those windows show the images of the curve in orthographic projections

onto the planes xy, yz, zx of the coordinate system. It is possible to change the

control points via these three windows (using the left mouse button). The fourth

window shows the curve in a perspective projection. The left mouse button pressed

in this window makes it possible to rotate the viewer position around the curve,

and the right button may be used for zooming (one should press it and then move

the mouse, forward or back).

Typing
✄

✂

�

✁
R while the cursor is in the perspective view window resets the initial

viewer position.

The four windows may be resized. To do it, place the cursor in the narrow area

between the windows (this causes changing the cursor shape), press the left button

and move the mouse. Typing
✄

✂

�

✁
R while the cursor is altered resets the default equal

dimensions of the four windows.

Other details of using this program are the same as for the pokrzyw program.

16.3 The pomnij program

.....................

16.4 The polep program

The program polep demonstrates the effects of using a simple procedure of filling

a polygonal hole in a spline surface made of bicubic patches. This procedure is

described in Section 17.1. A detailed description (in Polish) of the algorithm is in

my book Podstawy modelowania krzywych i powierzchni. Four windows in which

three orthographic projections and one perspective projection of the surface are

displayed, are used in exactly the same way as the similar four windows of the

programs pognij and pozwalaj.

The control points of the surface may be modified with the mouse (via the

orthographic projection windows). The program has a built-in data generator of

“ready” data, controlled by three slidebars in the upper part of the menu.

2The name of this program in Polish means “bend it” or “get rotten a little”.
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16.5 The policz program

.....................

16.4

16.6 The pozwalaj program

.....................

The executable file, pozwalaj, by default is located in the directory demo/bin/

where there is also the file pozwalaj_proc, containing the shape optimization

procedures; as the computations may take a long time, they are performed in-

dependently of the interaction provided by the main executable file. The program

pozwalaj_proc is supposed to be executed only when invoked by the program

pozwalaj (and run from the command line it will immediately terminate).

16.6.1 A session log

This section contains screen dumps and comments written during a session with

the program pozwalaj. During this session a blending surface has been designed,

using the interactive tools of the program and one of the built in shape optimization

procedures for such surfaces.

After invoking, the program displays two windows (some XWindow managers

may place them initially in such a way that one window obscures the other one). The

first window displays the geometric data (curves, surfaces and their control polygons

and meshes). If 3D objects are displayed, the geometry window is divided into four

areas. Three of them show orthogonal projections of the geometric objects onto the

xz, yz and xy planes, and one (lower right) shows a perspective projection. A user

may change the projection centre by moving the cursor into this area, pressing the

left button and moving the cursor.
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One of the geometric objects (curves or surfaces, none are present at the begin-

ning of program execution) is distinguished as current. The second window allows

the user to make actions specific for the current object, via menus specific for that

object. After clicking the button labelled Objects and then New in the popup

menu, the window looks like this:

Then, after clicking the button B-spline mesh and then Add in yet another

popup, the program creates a new object, which is a spline surface represented by

a mesh. Initially this mesh has one facet with four vertices and edges.

After clicking the buttons Data and cube , we choose a mesh, whose facets

form the boundary of a cube; the length of its edges is 2. Then clicking the Edit

button returns to the menu making it possible to edit the mesh topology. Resizing

the window (making it slightly higher) causes all widgets of this menu to fit in.
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With the cursor back in the first window, on the object images, typing F makes

the program find a bounding cube of the object and fit it in the visible area.

Now we edit the mesh. In the second window, click twice (using the left mouse

button) the green widget labelled facet (to decrease the number, use the right

button, also the mouse wheel works here). This will distinguish the facet number 1,

which will be displayed as follows:

In the second window, click the double edges button. This executes the Eule-

rian operation, which produces four new facets surrounding the distinguished facet.

The new facets are quadrangular, but they are degenerated to line segments.
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In the first window, click the Transform button. Then, using the text editing

widgets (the blue ones, they are activated by clicking on them, and deactivated by

clicking aside), type in the coordinates of the reference vector [0,−1, 0], and then

click the translate button. Then, in the second window, click double edges and

in the first window click translate again. Then click the remove button below

the facet number widget. The window now looks as follows:
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After removing the facet, another facet became number 1. We click the button

double edges , then in the first window we enter the reference vector [1, 0, 0] and

click translate , we double edges and translate once more and again we remove the

facet. After removing it, we double the edges of the new facet number one, translate

its vertices by the vector [0, 1, 0], again we double and translate and remove the

facet. For the fourth facet, which became number 1, twice we double the edges and

translate the vertices by the vector [−1, 0, 0], then we remove the facet. The result

is shown on the next picture:
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The mesh has now four closed boundaries, each formed by four edges adjacent

to the removed facets. Now, in the second window, we click the refine button. It

invokes the procedure implementing the mesh refinement operator, the composition

of mesh doubling followed by three averaging operations (actually, the number of

averagings is the surface degree, 3 by default). Here is what we obtain:

The light grey lines are constant parameter curves of the bicubic patches, cor-

responding to the regular elements of the surface domain. The binonic patches,

represented by special elements of the mesh, are drawn in light blue. For conve-

nience, we may click the View button in the second window and turn off (by

clicking) the switches which control displaying the surface (i.e. the bicubic patches)

and the hole filling (binonic patches), thus leaving only the mesh vertices and edges

on the picture.

We are going to obtain a blending surface, which is a junction of two crossing

cylindric tubes. Of course, bicubic splines cannot represent cylinders of revolution

exactly, but if the mesh is dense enough and the vertices are located on a cylinder of

revolution, the spline surface may approximate a cylinder with an arbitrarily small

error. Therefore in the next step the mesh vertices will be projected onto cylinders.

Here is the method: click the Edit button in the top menu of the first window.

Then click the mark/unmark switch to turn it on. Now move the cursor to one of

the object image windows. Vertices may be marked individually by clicking with
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the left mouse button and unmarked by clicking with the right button. Also it

is possible to press the button, move the cursor and release the button in order

to mark or unmark all vertices in the rectangular area indicated by this mouse

movement.

The marking of each vertex consists of five bits. They may be selected for

manipulating by five switches just below the mark/unmark switch. We process

two groups of vertices, so we need two bits. At first we mark the vertices shown

below (the marked vertices are red):
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Then we click the Transform button. There we have the coordinates of the

reference point [0, 0, 0] and reference vector [−1, 0, 0], which determine the axis of

the cylinder, and radius 1. Clicking the project on cylinder button makes the

program project all the marked vertices on this cylinder. Then we click Edit

again, and choose the second bit to mark/unmark (and we turn off switching the

first bit). We mark the second set of vertices, then we click Transform , we enter

the reference vector (direction of the cylinder axis) [0, 1, 0] and again we project the

vertices on the second cylinder. The result is as on the picture:
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Now we click the Edit button in the second window and then refine . The

refinement clears any vertex marking, therefore we go to the first window and in the

similar way we mark the vertices and then we project them onto two cylinders, but

this time we choose the cylinder radius 0.9267795297. After projecting the vertices

we may inspect the surface. To do this, we click the View button in the second

window, where we turn on displaying the surface and patches filling the holes in

it. Then in the first window we click the button labelled Picture , then shape f. ,

and we may choose the shape function to visualise. Clicking render starts the

rendering process (which is ray tracing). An image of mean curvature obtained in

this way is as follows:

Time to optimise the surface shape. To do this, we need both marked bits to

be selected in the editing menu, as the constraints, which we want, are imposed

by fixing all vertices having one of the currently selected bits set. The boundary

vertices (which we also marked in order to project them on the cylinders) are always

fixed for the optimization procedure.
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In the second window we click Options and then we turn on the blending

switch. Then we turn on the switch labelled constraints . Here is, how the second

window should look:

16.14

Now we click the optimize button. Some data are written out in the terminal,

from which the program has been invoked. Intermediate results (after subsequent

iterations of the optimization procedure) are displayed in the first window, and the

user may still interact, e.g. in order to look at these results from different sides

(this is useful during the optimization of surfaces represented by meshes with large

numbers of vertices). The computations on a PC with 3.0GHz Intel Core 2 processor

took less than 20 seconds, after which we may render the surface again. To obtain

a bigger picture, before doing that we may move the cursor to the perspective image

area and type S . The result is the following:



17. Obsolete projects

Once upon a time I wrote a very simple procedure of filling polygonal holes in

a bicubic spline surface with biquintic patches so as to obtain the tangent plane

(G1) continuity. This procedure is described in detail in my book Podstawy mode-

lowania krzywych i powierzchni, and it may have some educational value, which

is why I left it, even if the procedures of filling polygonal holes in the libeghole

library produce much better results.

17.1 Filling polygonal holes

The demonstration program polep uses the procedure of filling a polygonal hole in

a generalized bicubic B-spline surface, with Bézier patches of degree (5, 5), joined

with each other and with the patches around the hole with tangent plane (G1)

continuity. A detailed description of this procedure and the underlying theory is

in my book Podstawy modelowania krzywych i powierzchni (in Polish). The

construction carried out by this procedure is much simpler and less general than

the constructions performed by the procedures collected in the libraries libg1hole

and libg2hole; it was developed much earlier and the experience gathered then

helped in developing the constructions implemented in these libraries. Below is

a description of the representation of data for this procedure and its parameters.

The single precision source code is in the file g1holef.c, and its header file

is g1holef.h. The corresponding double precision source files are g1holed.c and

g1holed.h respectively.

boolean FillG1Holef ( int hole_k, point3f*(*GetBezp)(int i, int j),

float beta1, float beta2,

point3f *hpcp );

The procedure FillG1Holef constructs a surface filling a k-sided hole in a sur-

face. The parameters are as follows:

The parameter hole_k specifies the number k of sides (and corners) of the hole.

Its value has to be 3, 5, 6, 7 or 8.

The parameter GetBezp is a pointer of a procedure called by FillG1Holef in

order to get the data, i.e. the control points of bicubic Bézier patches around the

hole. The procedure has to return the pointer to an array with the control points

of the appropriate patch.

The patches around the hole are numbered with pairs of numbers (i, j), as shown

in Figure 17.1; the variable i (the parameter i) has the value from 0 to k − 1, the

variable j (the parameter j) is either 1 or 2. The figure shows also the order in
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which the control points are to be stored in the array. For each patch it is necessary

to supply only 8 points, whose numbers are shown.
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Figure 17.1. The numbering scheme of the patches around the hole

and the order of their control points in the arrays

The patches surrounding the hole have to satisfy the compatibility conditions

given below, which concern their corners, partial and mixed partial derivatives.

The m-th control point of the patch (i, j) is denoted by p
(i,j)
m . In addition, l =

i+ 1 mod k.

� Corner compatibility conditions:

p
(i,1)
0 = p

(i,2)
3 oraz p

(i,2)
0 = p

(l,1)
3 .

� Partial derivatives compatibility conditions:

p
(i,1)
0 − p

(i,1)
1 = p

(i,2)
2 − p

(i,2)
3 ,

p
(i,2)
0 − p

(i,2)
1 = p

(l,1)
7 − p

(l,1)
3 ,

p
(i,2)
0 − p

(i,2)
4 = p

(l,1)
2 − p

(l,1)
3 .

� Mixed partial derivatives compatibility conditions:

p
(i,1)
4 − p

(i,1)
5 = p

(i,2)
6 − p

(i,2)
7 ,

p
(i,2)
0 − p

(i,2)
1 − p

(i,2)
4 + p

(i,2)
5 = p

(l,1)
6 − p

(l,1)
7 − p

(l,1)
2 + p

(l,1)
3 .

The parameters beta1 and beta2 are factors, by which some vectors constructed

by the procedure FillG1Holef are multiplied. By default, their value should be 1,

but they may be modified to improve the filleting surface shape, if necessary (i.e.

if the effect of using 1 is unsatisfactory).
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The parameter hpcp points to the array, in which the procedure is supposed to

store the constructed control points of the Bézier patches filling the hole.

The procedure returns true if the construction has been successful, or false

otherwise.

extern void (*G1OutCentralPointf)( point3f *p );

extern void (*G1OutAuxCurvesf)( int ncurves, int degree,

const point3f *accp, float t );

extern void (*G1OutStarCurvesf)( int ncurves, int degree,

const point3f *sccp );

extern void (*G1OutAuxPatchesf)( int npatches, int degu, int degv,

const point3f *apcp );

The variables above are “hooks” for procedures, which may output the partial

results of the construction. Their initial value is NULL. If the address of the appropri-

ate procedure is assigned to any of those variables before calling FillG1Hole, then

this procedure will be called and it may output the data given by the parameters

or draw the appropriate picture.

The procedure pointed by the variable G1OutCentralPointf obtains as the

parameter the pointer to the “central” point of the filleting surface (i.e. the common

point of the patches filling the hole). This procedure is allowed to modify this

point, i.e. assign it new coordinates, as such an interference with the construction

is possible and sometimes desirable.

The other procedures must not modify the data they get. The procedure pointed

by the variable G1OutAuxCurvesf is called with the parameters, which describe the

so called auxiliary curves — Bézier curves of degree degree (here it is always 3).

Each curve is given in a separate call of this procedure.

The procedure pointed by the variable G1OutStarCurvesf is called with the

parameters, which describe the common boundary curves of the patches filling the

hole (the construction of those curves is one of the first steps of the algorithm). The

procedure parameters describe the Bézier representation of degree 3 of the curves.

Each call is made to output one curve.

The procedure pointed by the variable G1OutAuxPatchesf is called with the

parameters, which describe the so called auxiliary patches, which determine the

tangent planes at all points of the common curves of the patches filling the hole.

The auxiliary patches are of degree (3, 1) (the parameters ndegu and ndegv are

equal to 3 and 1 respectively). The parameters apcp is a pointer of an array with

the control points of one auxiliary patch.

Caution: The current version of the procedure does not contain any code to handle

exceptional situations, which might cause the safe return in case of failure. Such

a code has to be added and tested if the procedure is to be built into a “produc-

tion” software, to be used in industrial applications. Moreover, most of the library

procedures are not prepared to deal with exceptional situations (exit is called in
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Figure 17.2. A surface with a hole filled by the procedure FillG1Holef

case of error), and therefore the package may be used mainly for experiments (and

this is the cause, which made me write the package).


