BIJECTIVE PROOFS OF FORMULAS WITH $(-1)^{n}$

WOJCIECH GUZICKI AND PIOTR ZAKRZEWSKI

Abstract

We present simple bijective proofs of formulas involving the expression $(-1)^{n}$ connected to three different combinatorial problems. Our arguments somewhat resemble the combinatorial proofs of Benjamin-Ornstein and Elizalde of the familiar derangement recurrence.

1. Introduction

Let us recall the well-known recurrence $D_{n}=n D_{n-1}+(-1)^{n}$ satisfied for $n>0$ by the derangement numbers D_{n} describing the number of fixed-point-free permutations of an n element set. It is the best-known example of a the phenomenon that solutions to various combinatorial problems sometimes lead to formulas that contain the expression $(-1)^{n}$. This is precisely what causes a challenge when one tries to present a bijective proof of such a formula. Combinatorial proofs of the derangement recurrence were given by Remmel [6], Wilf [7], Désarménien [3], Benjamin-Ornstein [1] and recently by Elizalde [2]. The bijective proofs of this formula often reduce to creating an "almost-1-to-1" correspondence between some sets A_{n} and B_{n} where the word "almost" refers to the fact that there will either be an unmapped element of A_{n} or an unhit element of B_{n}, depending on the parity of n (cf. [1]).

The purpose of this note is to present a sample of bijective proofs of some well-known formulas containing the expression $(-1)^{n}$. The formulas themselves seem to belong to the folklore of Discrete Math exercises. The novelty of our approach lies in presenting in each case a bijective argument based on the construction of an "almost-1-to-1" correspondence between suitably chosen sets. This unified approach is intended to further confirm the usefulness of such "almost bijective" proofs in enumerative combinatorics.

In Section 2 we count the number z_{n} of those subsets in a $3 n$-element set whose number of elements is a multiple of 3 (cf. [4, Problem 1.1.2]). We present a combinatorial proof of the formula $z_{n}=\frac{8^{n}+2 \cdot(-1)^{n}}{3}, n \geq 1$. Its alternative proof goes by establishing first the recurrence $z_{n+1}=3 \cdot 8^{n}-z_{n}$ with the help of a combinatorial argument (see Remark 2.2).

In Section 3 we deal with the number v_{n} of vertex-colorings of the cycle graph $C_{n}, n \geq 3$, with $k \geq 2$ colors. We give a bijective proof of the well-known formula $v_{n}=(k-1)^{n}+(k-1)$. $(-1)^{n}$. Its standard inductive proof uses the deletion-contraction recurrence for the chromatic polynomial (see [5], where three other proofs are also given, including another bijective one, different from ours).

In Section 4 we look at the number w_{n} of all the words of length $n \geq 0$ over the alphabet $\{a, b, c, d, e\}$ such that each of the letters c, d, e is always preceded by the letter a. We give a bijective proof of the recurrence $w_{n}=3 w_{n-1}+(-1)^{n}$ satisfied for $n>0$ (with $w_{0}=1$). It is an immediate consequence of the recurrence $w_{n}=2 \cdot w_{n-1}+3 \cdot w_{n-2}$ which can be readily justified by a straightforward combinatorial argument.

THE FIBONACCI QUARTERLY

2. Subsets of a $3 n$-ELEMENT SET

For any non-empty set X let

$$
\begin{array}{lll}
Z(X) & =\{A \subseteq X:|A| \equiv 0 & (\bmod 3)\}, \\
Z^{+}(X) & =Z(X) \backslash\{\emptyset\}, & \\
O(X) & =\{A \subseteq X:|A| \equiv 1 & (\bmod 3)\}, \\
T(X) & =\{A \subseteq X:|A| \equiv 2 & (\bmod 3)\} .
\end{array}
$$

For $n \geq 1$ let $X_{n}=\{1,2,3, \ldots 3 n-2,3 n-1,3 n\}$.
Our goal in this section is to give a bijective proof of the formula given if the following proposition.

Proposition 2.1.

$$
\left|Z\left(X_{n}\right)\right|=\frac{8^{n}+2 \cdot(-1)^{n}}{3} \quad \text { for } \quad n \geq 1
$$

Proof. Clearly, for any $n \geq 1$ we have
(1) $\left|O\left(X_{n}\right)\right|=\left|T\left(X_{n}\right)\right|$,
as witnessed by the bijection $A \mapsto X_{n} \backslash A$.
A key step of our reasoning is the following observation.
Claim. For any $n \geq 1$ we have
(2) $\left|Z\left(X_{n}\right)\right|=\left|O\left(X_{n}\right)\right|+(-1)^{n}$.

To see this, let us first note that equality (2) is obvious for $n=1$ and a straightforward computation shows that
(3) $\left|Z^{+}(X)\right|=|O(X)|$ for any X with $|X|=6$
which in particular gives (2) for $n=2$.
So assume now that $n>2$, let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and for each $i=1,2, \ldots, m$ let

$$
X_{n, i}=\{6(i-1)+1,6(i-1)+2,6(i-1)+3,6(i-1)+4,6(i-1)+5,6 i\} .
$$

Since $\left|X_{n, i}\right|=6$, for each $i=1,2, \ldots, m$ we fix three bijections (cf. (1) and (3)):

$$
f_{i}: Z^{+}\left(X_{n, i}\right) \rightarrow O\left(X_{n, i}\right), g_{i}: O\left(X_{n, i}\right) \rightarrow T\left(X_{n, i}\right), h_{i}: T\left(X_{n, i}\right) \rightarrow Z^{+}\left(X_{n, i}\right) .
$$

We describe a bijection $\varphi_{n}: Z^{*}\left(X_{n}\right) \rightarrow O^{*}\left(X_{n}\right)$, where

$$
Z_{n}^{*}=Z^{+}\left(X_{n}\right) \text { and } O^{*}\left(X_{n}\right)=O\left(X_{n}\right), \text { when } n \text { is even, }
$$

but

$$
Z_{n}^{*}=Z\left(X_{n}\right) \text { and } O^{*}\left(X_{n}\right)=O\left(X_{n}\right) \backslash\{\{3 n\}\}, \text { when } n \text { is odd. }
$$

Clearly, the existence of such a bijection justifies (2).
First, for an arbitrary $A \in Z^{+}\left(X_{2 m}\right)$, let $i \in\{1, \ldots, m\}$ be the smallest index with $A \cap X_{n, i} \neq$ \emptyset and then let $Y=X_{n, i}$ and $Z=X_{n, i+1} \cup \ldots \cup X_{n, m}=\{6 i+1, \ldots, 3 n\}$. Moreover, let $Q=\emptyset$ if n is even and $Q=\{6 m+1,6 m+2,6 m+3\}$ if n is odd (in which case $3 n=6 m+3$). Let $A_{1}=A \cap Y, A_{2}=A \cap Z$ and $A_{3}=A \cap Q$. Clearly, we have $A=A_{1} \cup A_{2} \cup A_{3}$.

Finally, for an arbitrary $A \in Z^{*}\left(X_{n}\right)$ we define

HYPERGEOMETRIC TEMPLATE

$$
\varphi_{n}(A)=\left\{\begin{array}{l}
f_{i}\left(A_{1}\right) \cup A_{2} \cup A_{3}, \text { if } A \in Z^{+}\left(X_{2 m}\right) \text { and } A_{1} \in Z^{+}(Y), \\
g_{i}\left(A_{1}\right) \cup A_{2} \cup A_{3}, \text { if } A \in Z^{+}\left(X_{2 m}\right) \text { and } A_{1} \in O(Y), \\
h_{i}\left(A_{1}\right) \cup A_{2} \cup A_{3}, \text { if } A \in Z^{+}\left(X_{2 m}\right) \text { and } A_{1} \in T(Y), \\
\{6 m+1\}, \text { if } n \text { is odd and } A=\{6 m+1,6 m+2,6 m+3\}, \\
\{6 m+2\}, \text { if } n \text { is odd and } A=\emptyset .
\end{array}\right.
$$

One readily checks that φ_{n} bijectively maps $Z^{*}\left(X_{n}\right)$ onto $O^{*}\left(X_{n}\right)$ which completes the proof of the claim.

Now, by (1) and (2), we have

$$
8^{n}=\left|Z\left(X_{n}\right)\right|+\left|O\left(X_{n}\right)\right|+\left|T\left(X_{n}\right)\right|=3 \cdot\left|Z\left(X_{n}\right)\right|-2 \cdot(-1)^{n}
$$

and consequently, $\left|Z\left(X_{n}\right)\right|=\frac{8^{n}+2 \cdot(-1)^{n}}{3}$, which completes the proof of the proposition.
Remark 2.2. The formula $\left|Z\left(X_{n}\right)\right|=\frac{8^{n}+2 \cdot(-1)^{n}}{3}$ is a straightforward consequence of the recurrence
(4) $\left|Z\left(X_{n+1}\right)\right|=3 \cdot 8^{n}-\left|Z\left(X_{n}\right)\right|$
which may be justified by the following combinatorial argument.
Consider the fibers of the mapping $\varphi: A \mapsto A \cap X_{n}$ defined for $A \in Z\left(X_{n+1}\right)$. Observe that if $B \subseteq X_{n}$ then $\left|\varphi^{-1}(B)\right|$ equals either 2 if $B \in Z\left(X_{n}\right)$ or 3 if $B \notin Z\left(X_{n}\right)$. Consequently,

$$
\left|Z\left(X_{n+1}\right)\right|=2 \cdot\left|Z\left(X_{n}\right)\right|+3 \cdot\left(2^{3 n}-\left|Z\left(X_{n}\right)\right|\right)
$$

completing the proof of (4).

3. Vertex colorings of C_{n}

Let us assume that the set of vertices of the cyclic graph $C_{n}(n \geq 3)$ is $\{1,2, \ldots, n\}$. The vertex coloring of C_{n} with k colors ($k \geq 2$) is any sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of length n with values in $\{1, \ldots, k\}$ such that $a_{i} \neq a_{i+1}$ for any $i<n$ and $a_{n} \neq a_{1}$.

Let us fix $k \geq 2$ and let v_{n} be the number of all vertex colorings of C_{n} with k colors. The goal in this section is to provide a combinatorial proof of the formula given if the following proposition.

Proposition 3.1.

$$
v_{n}=(k-1)^{n}+(k-1) \cdot(-1)^{n} \quad \text { for } \quad n \geq 3 .
$$

Proof. Let X_{n} be the set of all sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of length n with values in $\{1, \ldots, k\}$ such that $a_{1}=1$ and $a_{i} \neq a_{i+1}$ for any $i<n$; clearly, $\left|X_{n}\right|=(k-1)^{n-1}$. For each $m \in$ $\{1, \ldots, k\}$ let

$$
X_{n}^{(m)}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X_{n}: a_{n}=m\right\} .
$$

Let us notice that the set $X_{n}^{(2)} \cup \ldots \cup X_{n}^{(k)}$ consists of all the vertex colorings ($a_{1}, a_{2}, \ldots, a_{n}$) of C_{n} with $a_{1}=1$. It follows that
(1) $v_{n}=k \cdot\left|X_{n}^{(2)} \cup \ldots \cup X_{n}^{(k)}\right|$.

Moreover,
(2) $\left|X_{n}^{(2)}\right|=\left|X_{n}^{(l)}\right|$ for any $l \in\{2, \ldots, k\}$.

THE FIBONACCI QUARTERLY

Indeed, given l we can fix a permutation π of $\{1, \ldots, k\}$ which cyclically permutes the colors $\{2, \ldots, k\}$ so that $\pi(2)=l$. A bijection between $X_{n}^{(2)}$ and $X_{n}^{(l)}$ is now provided by composing each coloring from $X_{n}^{(2)}$ with π.

Consequently, (1) and (2) imply
(3) $v_{n}=k \cdot(k-1) \cdot\left|X_{n}^{(2)}\right|$.

On the other hand, since $X_{n}^{(1)}=X_{n} \backslash\left(X_{n}^{(2)} \cup \ldots \cup X_{n}^{(k)}\right)$ we have (cf. (2))
(4) $X_{n}^{(1)}=(k-1)^{n-1}-(k-1) \cdot\left|X_{n}^{(2)}\right|$.

In view of (3) and (4), a key point of our argument is the following observation which establishes another relation between $X_{n}^{(1)}$ and $\left|X_{n}^{(2)}\right|$.

Claim. For any $n \geq 1$ we have
(5) $X_{n}^{(2)}=\left|X_{n}^{(1)}\right|+(-1)^{n}$.

To show this, it suffices to define a bijection

$$
\varphi_{n}: X_{n}^{(2)} \backslash\{(1,2, \ldots, 1,2)\} \rightarrow X_{n}^{(1)} \backslash\{(1,2, \ldots, 1,2,1)\},
$$

where the sequence $(1,2, \ldots, 1,2)$ consists of the pair $(1,2)$ repeated $\left\lfloor\frac{n}{2}\right\rfloor$ times (so it has length $\left.2 \cdot\left\lfloor\frac{n}{2}\right\rfloor\right)$ and the sequence $(1,2, \ldots, 1,2,1)$ consists of the pair $(1,2)$ repeated $\left\lfloor\frac{n}{2}\right\rfloor$ times followed at the end by the number 1 (so it has length $2 \cdot\left\lfloor\frac{n}{2}\right\rfloor+1$).

For an arbitrary sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X_{n}^{(2)} \backslash\{(1,2, \ldots, 1,2)\}$ let $i \in\{1, \ldots, n\}$ be the largest index for which $a_{i} \notin\{1,2\}$.

Clearly, i is well-defined and $1<i<n$.
Then we let φ_{n} map $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to $\left(a_{1}, a_{2}, \ldots, a_{i}, a_{i+1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, where for $j>i, a_{j}^{\prime}=1$ if $a_{j}=2$ and $a_{j}^{\prime}=2$ if $a_{j}=1$. One readily checks that this works which completes the proof of the claim.

Now, by (3), (4) and (5), a straightforward computation leads to the formula $v_{n}=(k-$ $1)^{n}+(k-1) \cdot(-1)^{n}$ completing the proof of the proposition.

4. Counting the number of words

Let $w_{n}, n \geq 1$ be the number of all the words of length n that can be formed from letters a, b, c, d, e in such a way that each of the letters c, d, e is always preceded by the letter a. We are going to give a bijective proof of the recurrence given if the following proposition.

Proposition 4.1.

$$
w_{n}=3 w_{n-1}+(-1)^{n} \quad \text { for } \quad n \geq 2 .
$$

Proof. Let A_{n} be the set of words under consideration and let B_{n} be the subset of A_{n+1} consisting of words with the endings $a c, a d$ or $a e$.

One immediately observes that $\left|B_{n}\right|=3 \cdot\left|A_{n-1}\right|=3 w_{n-1}$, so the proof reduces to the following

Claim. For any $n \geq 2$
(1) $\left|A_{n}\right|=\left|B_{n}\right|+(-1)^{n}$.

To prove this, let $x_{k}=a e \ldots a e$ be the word of length $2 k$ consisting of the group of letters ae repeated k times (we assume that x_{0} is the empty word).

Let us note that if $m=\left\lfloor\frac{n+1}{2}\right\rfloor$, then $x_{m} \in A_{n}$ when $n=2 m$ is even and $x_{m} \in B_{n}$ when $n=2 m-1$ is odd.

We will describe now a bijection $\varphi_{n}: B_{n}^{*} \rightarrow A_{n}^{*}$, where $B_{n}^{*}=B_{n}$ and $A_{n}^{*}=A_{n} \backslash\left\{x_{m}\right\}$ when n is even, but $B_{n}^{*}=B_{n} \backslash\left\{x_{m}\right\}$ and $A_{n}^{*}=A_{n}$ when n is odd. Clearly, the existence of such a bijection justifies (1).

If s and t are words (of lengths $i=l h(s)$ and $j=l h(t)$, respectively) then by $s t$ we denote their concatenation (of length $i+j$). In particular, we always have $\varsigma x_{0}=s$.

The definition of φ_{n} splits into the following cases

- if $\operatorname{lh}(s)=n-1$, then

$$
\varphi_{n}(s \frown a c)=s \curvearrowleft a \text { and } \varphi_{n}\left(s^{\frown} a d\right)=s \preceq b,
$$

- if $1 \leq k<m$ and $l h(s)=n-2 k$, then

$$
\varphi_{n}\left(\curvearrowright \frown \frown x_{k}\right)=s \frown a c \frown x_{k-1} \text { and } \varphi_{n}\left(s^{\frown} \frown x_{k}\right)=s \frown a d \frown x_{k-1}
$$

- if $1 \leq k<m$ and $l h(s)=n-2 k-1$, then

$$
\varphi_{n}\left(s \frown a c \frown x_{k}\right)=s \frown a x_{k} \text { and } \varphi_{n}\left(s^{\frown} a d \frown x_{k}\right)=s \frown b x_{k} .
$$

It can be readily checked that φ_{n} bijectively maps B_{n}^{*} onto A_{n}^{*} which completes the proof of (1) and the proof of the proposition.

References

[1] A. T. Benjamin and J. Ornstein, A bijective proof of a derangement recurrence Fibonacci Quart. 55(5) (2017), 28-29.
[2] S. Elizalde, A simple bijective proof of a familiar derangement recurrence Fibonacci Quart. 59(2) (2021), 150-151.
[3] J. Désarménien, Une autre interprétation du nombre de dérangements, Sém. Lothar. Combin. B08b (1982).
[4] L. C. Larson, Problem-Solving Through Problems, Problem Books in Mathematics Series, Springer-Verlag, New York, 1983.
[5] J. Lee, H. Shin, The chromatic polynomial for cycle graphs, Korean J. Math. 27(2) (2019), 525-534.
[6] J. B. Remmel, A note on a recursion for the number of derangements, European J. Combin. 4(4) (1983), 371-374.
[7] H. S. Wilf, A bijection in the theory of derangements, Mathematics Magazine 57(1) (1984), 37-40.
MSC2020: 05A19, 05C15
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
E-mail address: guzicki@mimuw.edu.pl
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
E-mail address: piotrzak@mimuw.edu.pl

