ON COUNTABLY PERFECTLY MEAGER AND COUNTABLY PERFECTLY NULL SETS

TOMASZ WEISS AND PIOTR ZAKRZEWSKI

ABSTRACT. We study a strengthening of the notion of a universally meager set and its dual counterpart that strengthens the notion of a universally null set.

We say that a subset A of a perfect Polish space X is countably perfectly meager (respectively, countably perfectly null) in X, if for every perfect Polish topology τ on X, giving the original Borel structure of X, A is covered by an F_{σ} -set F in X with the original Polish topology such that F is meager with respect to τ (respectively, for every finite, non-atomic, Borel measure μ on X, A is covered by an F_{σ} -set F in X with $\mu(F) = 0$).

We prove that if $2^{\aleph_0} \leq \aleph_2$, then there exists a universally meager set in $2^{\mathbb{N}}$ which is not countably perfectly meager in $2^{\mathbb{N}}$ (respectively, a universally null set in $2^{\mathbb{N}}$ which is not countably perfectly null in $2^{\mathbb{N}}$).

1. INTRODUCTION

We continue the study of countably perfectly meager sets undertaken by Pol and Zakrzewski [20]. We say (cf. [20]) that a subset A of a perfect Polish space X is countably perfectly meager in X ($A \in \mathbf{PM}_{\sigma}$), if for every sequence of perfect subsets $\{P_n : n \in \mathbb{N}\}$ of X, there exists an F_{σ} -set F in X such that $A \subseteq F$ and $F \cap P_n$ is meager in P_n for each n. Let us also recall that A is universally meager ($A \in \mathbf{UM}$), if for every Borel isomorphism f between X and any perfect Polish space Ythe image of A under f is meager in Y (see [27], [28], [1], [2] and also [10], [11], [12], where this class was earlier studied by Grzegorek and denoted by $\overline{\mathbf{AFC}}$). By [2, Theorem 7] we have $\mathbf{PM}_{\sigma} \subseteq \mathbf{UM}$ and by [20, Theorem 1.1], this inclusion is consistently proper, namely it holds if there exists a universally meager set of cardinality 2^{\aleph_0} , in particular, if CH is true.

In this note we prove (see Theorem 2.2) that $\mathbf{PM}_{\sigma} \neq \mathbf{UM}$ follows also from the assumption that $2^{\aleph_0} = \aleph_2$. Whether it is consistent that $\mathbf{PM}_{\sigma} = \mathbf{UM}$ remains an open problem (it is consistent that $\mathbf{UM} \subseteq$

Date: August 24, 2022.

²⁰¹⁰ Mathematics Subject Classification. 03E20, 03E15, 54E52, 28E15,

 $Key\ words\ and\ phrases.$ perfectly meager set, universally meager set, universally null set.

PM but also that $\mathbf{UM} = \mathbf{PM}$ (see [1]), where **PM** denotes the family of all perfectly meager subsets of X).

If I is a σ -ideal of subsets of X, i.e., it is hereditary, closed under taking countable unions and contains all singletons, then by I^* we denote the σ -ideal on X generated by the closed subsets of X which belong to I (cf. [23]).

If τ is a perfect Polish topology on X giving the original Borel structure of X, then by $\mathscr{M}(X,\tau)$ we denote the σ -ideal of meager sets with respect to τ . Let us note that $\mathscr{M}^*(X,\tau)$ consists of such $A \subseteq X$ that there exists an F_{σ} -set F in X (with the original Polish topology) with $A \subseteq F$ and $F \in \mathscr{M}(X,\tau)$. By [27, Theorem 2.1], A is universally meager in X if and only if A belongs to the intersection of all σ -ideals of the form $\mathscr{M}(X,\tau)$, whereas by [20, Proposition 4.6], A is countably perfectly meager in X if and only if A belongs to the intersection of all σ -ideals of the form $\mathscr{M}^*(X,\tau)$.

Universally meager sets may be seen as a category counterpart of universally null sets in X. Namely, if for a finite, non-atomic, Borel measure μ is on X (i.e., a countably additive measure $\mu : \mathbf{B}(X) \to [0, +\infty)$ defined on the σ -algebra $\mathbf{B}(X)$ of Borel subsets of X and vanishing on singletons of X), we denote by $\mathcal{N}(X,\mu)$ the σ -ideal of μ -null sets (i.e., sets of outer μ -measure zero), then the collection **UN** of universally null subsets of X is the intersection of all σ -ideals of the form $\mathcal{N}(X,\mu)$.

The following definition of a measure analogue of countably perfectly meager sets was suggested by Taras Banakh. We say that A is *countably perfectly null in* X ($A \in \mathbf{PN}_{\sigma}$), if A belongs to the intersection of all σ -ideals of the form $\mathcal{N}^*(X,\mu)$. In other words, $A \in \mathbf{PN}_{\sigma}$ if for every finite, non-atomic, Borel measure μ on X, A is covered by an F_{σ} -set Fin X with $\mu(F) = 0$. Let us note that if λ is the standard probability product measure on the Cantor space $2^{\mathbb{N}}$, then $\mathcal{N}^*(2^{\mathbb{N}},\lambda)$ is a wellknown σ -ideal which is usually denoted by \mathscr{E} (cf. [3]).

The name of the class \mathbf{PN}_{σ} is further justified by the following observation.

Proposition 1.1. A set $A \subseteq X$ is countably perfectly null in X if and only if for every sequence of perfect subsets $\{P_n : n \in \mathbb{N}\}$ of X with associated probability non-atomic Borel measures μ_n on P_n , there exists an F_{σ} -set F in X such that $A \subseteq F$ and $\mu_n(F \cap P_n) = 0$ for each n.

Proof. If $A \in \mathbf{PN}_{\sigma}$ and for each n we have a perfect set P_n together with the respective measure μ_n on P_n , then it is enough to cover A by an F_{σ} -set F with $\mu(F) = 0$ for μ defined by

$$\mu(B) = \sum_{n} \frac{1}{2^n} \mu_n(B \cap P_n) \quad \text{for} \quad B \in \mathbf{B}(X).$$

For the other direction, given a finite, non-atomic, Borel measure μ on X let us note that the regularity of μ (cf. [16, 17.C]) implies the

existence of (pairwise disjoint) perfect sets $\{P_n : n \in \mathbb{N}\}$ of positive μ -measure such that $\mu(X \setminus \bigcup_n P_n) = 0$. Then it suffices to cover A by an F_{σ} -set F with $\mu(F \cap P_n) = 0$ for each n.

Clearly, we have $\mathbf{PN}_{\sigma} \subseteq \mathbf{UN}$. One easily observes that we also have $\mathbf{PN}_{\sigma} \subseteq \mathbf{PM}_{\sigma}$.

Proposition 1.2. Every countably perfectly null subset of X is countably perfectly meager.

Proof. Let us assume that $A \in \mathbf{PN}_{\sigma}$ and let $\{P_n : n \in \mathbb{N}\}$ be a sequence of perfect subsets of X. For each n let μ_n be a Borel probability, nonatomic measure on P_n which assigns positive values to all non-empty, relatively open subsets of P_n (e.g., one may concentrate μ_n on a dense in P_n homeomorphic copy of the irrationals). Let F be an F_{σ} -set in X such that $A \subseteq F$ and $\mu_n(F \cap P_n) = 0$ for each n (cf. Proposition 1.1). Clearly, $F \cap P_n$ is meager in P_n for each n, so $A \in \mathbf{PM}_{\sigma}$.

The inclusion $\mathbf{PN}_{\sigma} \subseteq \mathbf{PM}_{\sigma}$ is, at least consistently, proper. Indeed, if $A \subseteq 2^{\mathbb{N}}$ is a Sierpiński set with respect to the measure λ , then $A \in \mathbf{PM}_{\sigma}$ in $2^{\mathbb{N}}$ (cf. [20, Corollary 2.9 and Remark 2.11]) but A has positive outer measure λ .

An analogous argument shows the consistency of $\mathbf{PN}_{\sigma} \neq \mathbf{UN}$. Namely, if $A \subseteq 2^{\mathbb{N}}$ is a Luzin set in $2^{\mathbb{N}}$ (which exists e.g. under CH), then $A \in \mathbf{UN}$ (A has even strong measure zero, cf. [18]) but $A \notin \mathbf{PN}_{\sigma}$, A being non-meager in $2^{\mathbb{N}}$.

In this note we prove (see Theorem 3.2) that the inequality $\mathbf{PN}_{\sigma} \neq \mathbf{UN}$ follows also from the assumptions that either there exists a universally null set in $2^{\mathbb{N}}$ of cardinality 2^{\aleph_0} (then we actually have that even $\mathbf{UN} \setminus \mathbf{PM}_{\sigma} \neq \emptyset$; cf. Proposition 1.2) or $2^{\aleph_0} = \aleph_2$. Whether it is consistent that $\mathbf{PN}_{\sigma} = \mathbf{UN}$, remains an open problem.

Section 2 is devoted to the proof of Theorem 2.2 stating that if $2^{\aleph_0} = \aleph_2$, then there is a universally meager set in 2^{\aleph} which is not countably perfectly meager in 2^{\aleph} .

In Section 3 we give some examples of countably perfectly null sets and prove Theorem 3.2 which shows the inequality $\mathbf{PN}_{\sigma} \neq \mathbf{UN}$ under the assumption that either there exists a universally null set in $2^{\mathbb{N}}$ of cardinality 2^{\aleph_0} (then we actually have that even $\mathbf{UN} \setminus \mathbf{PM}_{\sigma} \neq \emptyset$, cf. Proposition 1.2) or $2^{\aleph_0} = \aleph_2$.

In Section 4 we collect some remarks and open problems.

2. Universally meager not countably perfectly meager sets

Let us recall that the cardinal number \mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ which is unbounded in the ordering \leq^* of eventual domination. Following [25, Definition 2.8], by a \mathfrak{b} -scale (in $\mathbb{N}^{\mathbb{N}}$) we mean a subset $B = \{f_{\alpha} : \alpha < \mathfrak{b}\}$ of $\mathbb{N}^{\mathbb{N}}$ with the following properties:

- $f_{\alpha} : \mathbb{N} \to \mathbb{N}$ is strictly increasing,
- α < β < b implies f_α <* f_β,
 for every f ∈ N^N there is α < b with f_α ≰* f.

By identifying each f_{α} with the characteristic function of its range (or just its range, respectively), we obtain a homeomorphic copy A of B in $2^{\mathbb{N}}$ (respectively, in $\mathcal{P}(\mathbb{N})$ with the Cantor set topology) which we also call a \mathfrak{b} -scale in $2^{\mathbb{N}}$ (respectively, in $\mathcal{P}(\mathbb{N})$) (cf. [25]). It is wellknown and easy to see that \mathfrak{b} -scales can be constructed in ZFC. They are also classical examples of sets which are both universally meager and universally null (cf. [19]).

Let us recall that given a subset A of a perfect Polish space X, by a γ -cover of A we mean a countable relatively open cover \mathscr{U} of A which is infinite and such that for each $x \in A$ the set $\{U \in \mathscr{U} : x \notin U\}$ is finite. We say that A satisfies property $S_1(\Gamma, \Gamma)$ if for every sequence $(\mathscr{U}_n : n \in \mathbb{N})$ of γ -covers of A we can select for each n a set $V_n \in \mathscr{U}_n$ such that $\{V_n : n \in \mathbb{N}\}$ is a γ -cover of A (cf. [14], [25]). It is well-known (and due to Hurewicz [13]) that property $S_1(\Gamma, \Gamma)$ implies the Hurewicz property (for a definition of the Hurewicz property see Section 3).

If $\mathfrak{b} = \omega_1$, then there exists a \mathfrak{b} -scale $A = \{a_\alpha : \alpha < \mathfrak{b}\}$ in $\mathcal{P}(\mathbb{N})$ with the additional property that $\alpha < \beta < \mathfrak{b}$ implies that $a_{\beta} \setminus a_{\alpha}$ is finite (see [25, page 8]) and by a theorem of Scheepers [24] (see also [5, Theorem 123]), if A is such a \mathfrak{b} -scale in $\mathcal{P}(\mathbb{N})$, then $A \cup [\mathbb{N}]^{<\aleph_0}$ has property $S_1(\Gamma, \Gamma)$. The following observation is an easy corollary of this result. Let us recall that if κ is an infinite cardinal, then a set $A \subseteq X$ is κ -concentrated on a set $Q \subseteq X$, if $|A \setminus U| < \kappa$ for each open set U in X containing Q.

Lemma 2.1. Assume that $\mathfrak{b} = \omega_1$. Let $A = \{a_\alpha : \alpha < \mathfrak{b}\}$ be a \mathfrak{b} -scale in $\mathcal{P}(\mathbb{N})$ with the additional property that $\alpha < \beta < \mathfrak{b}$ implies that $a_{\beta} \setminus a_{\alpha}$ is finite.

For each n let $\mathscr{U}_n = \{U_k^n : k \in \mathbb{N}\}$ be an ascending (i.e., $U_k^n \subseteq U_{k+1}^n$) sequence of open sets in $\mathcal{P}(\mathbb{N})$ with $[\mathbb{N}]^{<\aleph_0} \subseteq \bigcup_k U_k^n$ but $[\mathbb{N}]^{<\aleph_0} \subseteq U_k^n$ for no k. Then we can select for each n a set $V_n = U_{k_n}^n$ such that $\{V_n : n \in \mathbb{N}\}\$ is a γ -cover of $(A \cup [\mathbb{N}]^{<\aleph_0}) \setminus Y$ for a certain countable set $Y \subseteq A$.

Proof. The set A being a \mathfrak{b} -scale in $\mathcal{P}(\mathbb{N})$, is \mathfrak{b} -concentrated on $[\mathbb{N}]^{<\aleph_0}$ (see [25, Lemma 2.10]). Consequently, since $\mathfrak{b} = \omega_1$, there is $\xi < \omega_1$ such that if we let $A' = \{a_{\alpha} : \xi < \alpha < b\}$, then for each n we have $A' \cup [\mathbb{N}]^{<\aleph_0} \subseteq \bigcup_k U_k^n \text{ and by the properties of the sequence } \{U_k^n : k \in \mathbb{N}\},$ $\{(A' \cup [\mathbb{N}]^{<\aleph_0}) \cap U_k^n : k \in \mathbb{N}\}$ is a γ -cover of $A' \cup [\mathbb{N}]^{<\aleph_0}$. Since at the same time A' is still a \mathfrak{b} -scale in $\mathcal{P}(\mathbb{N})$ with the additional property above, Scheepers's theorem gives the desired conclusion.

Let us recall that non(\mathscr{M}) is the smallest cardinality of a non-meager subset of $2^{\mathbb{N}}$. It is well-knows that if τ is a perfect Polish topology on a Polish space X, then non(\mathscr{M}) is the smallest cardinality of a subset of X not in $\mathscr{M}(X,\tau)$. We denote by \mathbb{Q} the copy of the rationals in $2^{\mathbb{N}}$ consisting of all eventually zero binary sequences.

Now we are ready to prove the main result of this section (cf. the proof of [26, Theorem 4]).

Theorem 2.2. If $2^{\aleph_0} \leq \aleph_2$, then there is a universally meager set in $2^{\mathbb{N}}$ which is not countably perfectly meager in $2^{\mathbb{N}}$.

Proof. If $2^{\aleph_0} = \aleph_1$, then the result follows from [20, Theorem 1.1], so from now on let us assume that $2^{\aleph_0} = \aleph_2$.

We shall split the argument into three cases.

Case (A): $\operatorname{non}(\mathscr{M}) = \aleph_2$.

Then, by a result of Grzegorek (see [11, Theorem 1]), there exists a universally meager set in $2^{\mathbb{N}}$ of cardinality $\aleph_2 = 2^{\aleph_0}$ and the result follows from [20, Theorem 1.1].

Case (B): $\mathfrak{b} = \aleph_2$.

This case is already covered by the previous one, since it is well-known that $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$.

Case (C): non(\mathscr{M}) = $\mathfrak{b} = \aleph_1$.

Let C and D be disjoint copies of the Cantor set in $2^{\mathbb{N}}$ such that

(1) the operation + of addition is a homeomorphism between $C \times D$ and C + D (cf. [21]).

Let us fix a homeomorphism $h: 2^{\mathbb{N}} \to C$.

Let $A = \{a_{\alpha} : \alpha < \mathfrak{b}\}$ be a \mathfrak{b} -scale in $\mathcal{P}(\mathbb{N})$ with the additional property that $\alpha < \beta < \mathfrak{b}$ implies that $a_{\beta} \setminus a_{\alpha}$ is finite (cf. the paragraph preceding Lemma 2.1) and let us identify it with its homeomorphic copy in $2^{\mathbb{N}}$.

Let $X = A \cup \mathbb{Q}$ and $\tilde{X} = h(X)$. Since X is universally meager, so is \tilde{X} .

Let us fix a set $M \subseteq D$ of cardinality $\operatorname{non}(\mathscr{M}) = \aleph_1$ such that

(2) M is relatively non-meager in D.

Since $|\tilde{X}| = \aleph_1$, we can fix a surjection $m : \tilde{X} \to M$ onto M and let $H = \{(x, m(x)) : x \in \tilde{X}\} \subseteq C \times D$ be the graph of m. Let us note that since \tilde{X} is the injective continuous image of H under the projection onto the first axis and \tilde{X} is universally meager, so is H.

Finally, let $Z = \{x+m(x) : x \in X\}$. Clearly, Z is universally meager as the image of H under the homeomorphism + between $C \times D$ and C + D (cf. (1)).

We shall show that

(3) Z is not a \mathbf{PM}_{σ} -set in $2^{\mathbb{N}}$

and this will end the proof of the theorem.

To that end, let $\mathbb{Q} = h(\mathbb{Q}) = \{q_n : n \in \mathbb{N}\}\$ and let us suppose, towards a contradiction, that there are closed sets F_n in $2^{\mathbb{N}}$ such that $Z \subseteq \bigcup_n F_n$ and F_n is relatively nowhere dense in $q_k + D$ or equivalently, $(q_k + F_n) \cap D$ is relatively nowhere dense in D for each n and k.

Let $\{I_n : n \in \mathbb{N}\}$ be an enumeration with infinitely many repetitions of the elements of a countable basis \mathscr{B} of D.

Let us fix an arbitrary i and let $F = F_i$.

As the set F is compact, for each n we can define by induction on k an ascending sequence $\{U_k^n : k \in \mathbb{N}\}$ of open sets in C with $\{q_i : i < k\} \subseteq U_k^n \cap \tilde{\mathbb{Q}} \neq \tilde{\mathbb{Q}}$ for every k together with a sequence $\{D_k^n : k \in \mathbb{N}\}$ of non-empty, relatively clopen sets in D such that

(4)
$$D_{k+1}^n \subseteq D_k^n \subseteq I_n$$
 and $cl_D((U_k^n + F) \cap D) \cap D_k^n = \emptyset$ for every k.

Now, since \tilde{X} and $\tilde{\mathbb{Q}}$ are the respective images of X and \mathbb{Q} under the homeomorphism h, and $\mathscr{U}_n = \{U_k^n : k \in \mathbb{N}\}$ is an ascending sequence of open sets in C with $\tilde{\mathbb{Q}} \subseteq \bigcup_k U_k^n$ but $\tilde{\mathbb{Q}} \subseteq U_k^n$ for no k, Lemma 2.1 enables us to select for each n a set $V_n = U_{k_n}^n$ such that

(5) $\{V_n : n \in \mathbb{N}\}$ is a γ -cover of $X \setminus Y$ for a certain countable set $Y \subseteq \tilde{X}$.

We will show that

(6) $((\tilde{X} \setminus Y) + F) \cap D$ is meager in D.

To see this, for each m let $K_m = \bigcap_{n \ge m} cl_D((V_n + F) \cap D)$ and let us note that K_m is a closed relatively nowhere dense subset of D. Indeed, any open set from \mathscr{B} is of the form I_n for some $n \ge m$ and $I_n \not\subseteq K_m$ by (4).

Moreover, we have $((\tilde{X} \setminus Y) + F) \cap D \subseteq \bigcup_m K_m$. Indeed, if $c \in \tilde{X} \setminus Y$, then there is m such that $c \in V_n$ for every $n \ge m$ (cf. (5)). Consequently, $(c+F) \cap D \subseteq \bigcap_{n \ge m} ((V_n+F) \cap D) \subseteq K_m$, completing the proof of (6).

Let us summarize: for each i we have found a countable set $Y_i \subseteq \hat{X}$ such that $((\tilde{X} \setminus Y_i) + F_i) \cap D$ is meager in D.

Consequently, letting $\tilde{Y} = \bigcup_i Y_i$ we get a countable subset of C such that $((\tilde{X} \setminus \tilde{Y}) + \bigcup_n F_n) \cap D$ is meager in D.

But since $Z \subseteq \bigcup_n F_n$, we conclude that

(7) $((\tilde{X} \setminus \tilde{Y}) + Z) \cap D$ is meager in D.

On the other hand, $M \setminus m(\tilde{Y}) \subseteq (\tilde{X} \setminus \tilde{Y}) + Z$. Indeed, if $m \in M \setminus m(\tilde{Y})$, then m = m(x) for some $x \in \tilde{X} \setminus \tilde{Y}$ and then $m = (x + (x + m(x))) \in x + Z$. This implies that $((\tilde{X} \setminus \tilde{Y}) + Z) \cap D$ is not meager in D (cf. (2)) contradicting (7) and thus completing the proof of (3).

Let us note that under CH we have $\operatorname{non}(\mathscr{M}) = \mathfrak{b} = \aleph_1$ and Case (C) of the proof above establishes the consistency of $\mathbf{PM}_{\sigma} \neq \mathbf{UM}$ in the way which avoids the use of [20, Theorem 1.1].

3. Countably perfectly null sets

Let us recall that given a perfect Polish space X a set $A \subseteq X$ has the Hurewicz property, if for each sequence $\mathscr{U}_1, \mathscr{U}_2, \ldots$ of open covers of A, there are finite subfamilies $\mathcal{F}_n \subseteq \mathscr{U}_n$ such that $A \subseteq \bigcup_n \bigcap_{m \ge n} (\bigcup \mathcal{F}_m)$. If A is a zero-dimensional subspace of X, then by a result of Hurewicz (cf. [13] and [22]) this is equivalent to the statement that every continuous image of A in $\mathbb{N}^{\mathbb{N}}$ is bounded in the ordering \leq^* of eventual domination.

The smallest cardinality of a subset of $2^{\mathbb{N}}$ which is nonmeasurable with respect to the standard probability product measure λ on $2^{\mathbb{N}}$ is denoted by non(\mathcal{N}). It is well-known that if μ is a non-zero, finite, nonatomic, Borel measure on X, then non(\mathcal{N}) is the smallest cardinality of a subset of X not in $\mathcal{N}(X, \mu)$.

Let us also recall that by \mathbb{Q} we denote the copy of the rationals in $2^{\mathbb{N}}$ consisting of all eventually zero binary sequences.

The following result provides examples of universally null countably perfectly meager sets which are countably perfectly null as well.

Proposition 3.1. The following collections of sets are countably perfectly null in the respective perfect Polish spaces:

- (1) universally null sets with the Hurewicz property in any perfect Polish space X,
- (2) any sets of cardinality less than min(non(N), b) in any perfect Polish space X,
- (3) γ -sets in any perfect Polish space X,
- (4) \mathfrak{b} -scales in $2^{\mathbb{N}}$,
- (5) Hausdorff (ω_1, ω_1^*) -gaps in $\mathcal{P}(\mathbb{N})$.

Proof. (1) Let $A \subseteq X$ be a universally null set with the Hurewicz property and let μ be a non-zero, finite, non-atomic Borel measure on X. Since $A \in \mathbf{UN}$, there is a G_{δ} -set G in X such that $A \subseteq G$ and $\mu(G) = 0$. Now, since A has the Hurewicz property, there is an F_{σ} set F in X such that $A \subseteq F \subseteq G$ (cf. [14, Theorem 5.7]). Consequently, $\mu(F) = 0$ which shows that $A \in \mathbf{PN}_{\sigma}$.

Statements (2) - (4) can be derived from (1) as follows.

(2) Sets of cardinality less than $\operatorname{non}(\mathcal{N})$ are universally null and sets of cardinality less than \mathfrak{b} have the Hurewicz property.

(3) γ -sets are universally null (as they actually have Rothberger's property C'', cf. [8]) and they have the Hurewicz property, by [7, Theorem 2].

(4) Let us assume that A is a \mathfrak{b} -scale in $2^{\mathbb{N}}$. Let $B = A \cup \mathbb{Q}$. Then B is a universally null set with the Hurewicz property (see e.g., [20, Example 4.1 and Remark 4.2]), so $B \in \mathbf{PN}_{\sigma}$ in $2^{\mathbb{N}}$. Consequently, $A \in \mathbf{PN}_{\sigma}$ in $2^{\mathbb{N}}$.

(5). This may actually be established by a classical argument showing that the Hausdorff gap is universally null, which we sketch here for the sake of completeness. Following the proof of [15, Lemma 20.5], let $\langle \langle a_{\alpha} : \alpha < \omega_1 \rangle, \langle b_{\alpha} : \alpha < \omega_1 \rangle \rangle$ be a Hausdorff gap, $F_{\alpha} = \{c \in \mathcal{P}(\mathbb{N}) :$ $a_{\alpha} \subseteq^* c \subseteq^* b_{\alpha}\}$ for $\alpha < \omega_1$ and let μ be a non-zero, finite, non-atomic Borel measure on $\mathcal{P}(\mathbb{N})$. Then F_{α} 's are F_{σ} -sets in $\mathcal{P}(\mathbb{N})$ and for a sufficiently large ξ we have $\mu(F_{\xi}) = 0$ (see [15, the proof of Lemma 20.5]). Letting

$$F = F_{\xi} \cup \{a_{\alpha} : \alpha < \xi\} \cup \{b_{\alpha} : \alpha < \xi\},\$$

we get an F_{σ} -set with $\{a_{\alpha} : \alpha < \omega_1\} \cup \{b_{\alpha} : \alpha < \omega_1\} \subseteq F$ and $\mu(F) = 0$ which shows that $\{a_{\alpha} : \alpha < \omega_1\} \cup \{b_{\alpha} : \alpha < \omega_1\} \in \mathbf{PN}_{\sigma}$ in $\mathcal{P}(\mathbb{N})$.

The main result of this section is a measure counterpart of [20, Theorem 1.1] and Theorem 2.2.

Theorem 3.2. If either

(a) there exists a universally null set in $2^{\mathbb{N}}$ of cardinality 2^{\aleph_0}

or

(b) $2^{\aleph_0} \leq \aleph_2$,

then there is a universally null set in $2^{\mathbb{N}}$ which is not countably perfectly null in $2^{\mathbb{N}}$.

Proof. (a) Let T be a universally null set in $2^{\mathbb{N}}$ of cardinality $2^{\mathbb{N}_0}$.

By Proposition 1.2, it suffices to show that there is also one which is not countably perfectly meager.

Let us recall that by [20, Theorem 1.1], there exist a set $H \subseteq T \times 2^{\mathbb{N}}$ intersecting each vertical section $\{t\} \times 2^{\mathbb{N}}, t \in T$, in a singleton and a homeomorphic copy E of H in $2^{\mathbb{N}}$ which is not a \mathbf{PM}_{σ} -set in $2^{\mathbb{N}}$. Now, since T is universally null, so is E as a preimage of T under a continuous injective function.

(b) If $2^{\aleph_0} = \aleph_1$, then any Luzin set in $2^{\mathbb{N}}$ provides an example of a non-meager, universally null set.

From now on let us assume that $2^{\aleph_0} = \aleph_2$.

Following closely the scheme of proof of the Theorem 2.2, we split the argument into three cases.

Case (A): $\operatorname{non}(\mathcal{N}) = \aleph_2$.

Then, by a theorem of Grzegorek (see [9]), there exists a universally null set in $2^{\mathbb{N}}$ of cardinality $\aleph_2 = 2^{\aleph_0}$ and the result follows from part (a).

Case (B): $\mathfrak{b} = \aleph_2$.

In this case any \mathfrak{b} -scale in $2^{\mathbb{N}}$ is a universally null set of cardinality $\mathfrak{b} = 2^{\aleph_0}$ and the result again follows from part (a).

Case (C): non(\mathcal{N}) = $\mathfrak{b} = \aleph_1$.

As in the proof of Theorem 2.2, we fix copies C, D of the Cantor set in $2^{\mathbb{N}}$ such that

(1) the operation + of addition is a homeomorphism between $C \times D$ and C + D (cf. [21]),

a homeomorphism $h: 2^{\mathbb{N}} \to C$, a \mathfrak{b} -scale X in $2^{\mathbb{N}}$ and we let $\tilde{X} = h(X)$. Since X is universally null, so is \tilde{X} .

We also fix a homeomorphism $g: 2^{\mathbb{N}} \to D$ and we define a Borel measure μ on $2^{\mathbb{N}}$ by letting

$$\mu(B) = \lambda(g^{-1}(B \cap D)), \quad \text{for} \quad B \in \mathbf{B}(2^{\mathbb{N}}).$$

Then we fix a set $M \subseteq D$ of cardinality $\operatorname{non}(\mathcal{N}) = \aleph_1$ with

(2) $\mu^*(M) > 0$,

we let $m : \tilde{X} \to M$ be a surjection onto M and we put $H = \{(x, m(x)) : x \in \tilde{X}\}$. Since \tilde{X} is the injective continuous image of H under the projection onto the first axis and \tilde{X} is universally null, so is H.

Finally, let $Z = \{x + m(x) : x \in X\}$. Clearly, Z is universally null as the image of H under the homeomorphism + between $C \times D$ and C + D (cf. (1)).

We shall show that on the other hand

(3) Z is not a \mathbf{PN}_{σ} -set in $2^{\mathbb{N}}$,

thus completing the proof of the theorem.

To that end, let $\mathbb{Q} = h(\mathbb{Q}) = \{q_n : n \in \mathbb{N}\}$ and let us suppose, towards a contradiction, that there are closed μ -null sets F_n in $2^{\mathbb{N}}$ such that $Z \subseteq \bigcup_n F_n$ and $\mu(q_k + F_n) = 0$ for each n and k (cf. Proposition 1.1.)

Let us fix an arbitrary $\varepsilon > 0$.

For each n, F_n being compact and μ -null, there is an open set U_n in C such that $\tilde{\mathbb{Q}} \subseteq U_n$ and

(4) $\mu(U_n + F_n) < \frac{\varepsilon}{2^{n+1}}$.

Now, X being a b-scale in $2^{\mathbb{N}}$, is b-concentrated on \mathbb{Q} (see [25, Lemma 2.10]). Consequently, \tilde{X} is b-concentrated on \mathbb{Q} which, taking into account that $\mathfrak{b} = \aleph_1$, implies that for each *n* there is a countable set $Y_n \subseteq \tilde{X}$ such that $\tilde{X} \setminus Y_n \subseteq U_n$. It follows (cf. (4)) that $\mu^*((\tilde{X} \setminus Y_n) + F_n) < \frac{\varepsilon}{2^{n+1}}$ which implies that, letting $F = \bigcup_n F_n$ and $\tilde{Y} = \bigcup_n Y_n$, we have $\mu^*((\tilde{X} \setminus \tilde{Y}) + F) < \varepsilon$. But since $Z \subseteq F$ and the choice of ε was arbitrary, we conclude that

(5) $\mu^*((\tilde{X} \setminus \tilde{Y}) + Z) = 0.$

On the other hand, exactly as in the proof of Theorem 2.2, we have $M \setminus m(\tilde{Y}) \subseteq (\tilde{X} \setminus \tilde{Y}) + Z$ which, \tilde{Y} being countable, implies that $\mu^*((\tilde{X} \setminus \tilde{Y}) + Z) > 0$ (cf. (2)), contradicting (5) and thus completing the proof of (3).

4. Remarks and open problems

The results of Sections 2 and 3 motivate the following questions. The first two are directly related to Theorems 2.2 and 3.2, respectively.

Problem 1. Is $\mathbf{PM}_{\sigma} = \mathbf{UM}$ consistent?

Problem 2. Is $\mathbf{PN}_{\sigma} = \mathbf{UN}$ consistent?

Let us note that we consistently have $\mathbf{PM}_{\sigma} \subseteq \mathbf{UN}$ since in the model obtained by adding \aleph_2 Cohen reals to a model of GCH we have $\mathbf{UM} \subseteq \mathbf{UN}$ (see Corazza [6, Theorem 0.6(b)] and Miller [17]; by a theorem of Bartoszyński and Shelah, cf [4, Theorem 3], it is consistently true that even all perfectly meager sets are universally null). By the fact that $\mathbf{PN}_{\sigma} \subseteq \mathbf{PM}_{\sigma}$ (see Proposition 1.2), the dual statement that $\mathbf{PN}_{\sigma} \subseteq \mathbf{UM}$ is just true but the following question remains open.

Problem 3. Is $\mathbf{PN}_{\sigma} = \mathbf{PM}_{\sigma}$ consistent?

Finally, in view of the inclusion $\mathbf{PN}_{\sigma} \subseteq \mathbf{PM}_{\sigma} \cap \mathbf{UN}$ one may ask **Problem 4.** Is $\mathbf{PN}_{\sigma} = \mathbf{PM}_{\sigma} \cap \mathbf{UN}$ true/consistent?

References

- T. Bartoszyński, On perfectly meager sets, Proc. Amer. Math. Soc. 130(4) (2002), 1189–1195.
- T. Bartoszyński, Remarks on small sets of reals, Proc. Amer. Math. Soc. 131(2) (2003), 625–630.
- T. Bartoszyński, H. Judah, Set theory: on the structure of the real line, A K Peters, Wellesley 1995.
- T. Bartoszyński, S. Shelah, Perfectly meager sets and universally null sets, Proc. Amer. Math. Soc. 130(12) (2002), 3701–3711.
- L. Bukovský, *The structure of the real line*, Monografie Matematyczne, vol. 71, Birkhäuser, Springer Basel AG, 2011.
- P. Corazza, The generalized Borel conjecture and strongly proper orders, Trans. Amer. Math. Soc. **316(1)** (1989), 115–140,
- F. Galvin, A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145–155.
- 8. J. Gerlits, Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.
- E. Grzegorek, Solution to a problem of Banach on σ-fields without continuous measures, Bull. Acad. Pol. Sci. 28 (1980), 7–10.
- E. Grzegorek, Solution to a problem of Banach on σ-fields without continuous measures, Bull. Acad. Pol. Sci. 28 (1980), 7–10.
- E. Grzegorek, Always of the first category sets, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 6 (1984), 139–147.
- E. Grzegorek, Always of the first category sets. II, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 10 (1985), 43–48.

- W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193– 204.
- W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, *The combinatorics of open covers (II)*, Topology Appl. **73** (1996), 241–266.
- W. Just, M. Weese, Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician, Graduate Studies in Mathematics 18, American Mathematical Society, 1997.
- A. S. Kechris, *Classical descriptive set theory*, Graduate Texts in Math. 156, Springer-Verlag, 1995.
- A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575–584.
- A. W. Miller, Special subsets of the real line in Handbook of set-theoretic topology, North-Holland 1984, 201–233.
- S. Plewik, Towers are universally measure zero and always of first category, Proc. Amer. Math. Soc. 119(3) (1993), 865-–868.
- R. Pol, P. Zakrzewski, Countably perfectly meager sets, J. Symbolic Logic (2021), 1-17. doi:10.1017/jsl.2021.35
- I. Recław, Some additive properties of special subsets of reals, Colloquium Mathematicum 62(2) (1991), 221-226.
- I. Recław, Every Lusin set is undetermined in Point-open Game, Fund. Math. 144 (1994), 43–54.
- M. Sabok, J. Zapletal, Forcing properties of ideals of closed sets, J. Symbolic Logic 76 (2011), 1075—1095.
- 24. M. Scheepers, $C_p(X)$ and Arhangel'skii's α_i -spaces, Topology Appl. 89 (1998), 265–275.
- 25. B. Tsaban, Menger's and Hurewicz's Problems: Solutions from "The Book" and refinements, Contemp. Math. 533 (2011), 211-226.
- T. Weiss, On perfectly meager sets in the transitive sense, Proc. Amer. Math. Soc. 130(2) (2001), 591–594.
- P. Zakrzewski, Universally Meager Sets, Proc. Amer. Math. Soc. 129(6) (2001), 1793–1798.
- P. Zakrzewski, Universally Meager Sets, II, Topology Appl. 155 (2008), 1445– 1449.

Institute of Mathematics, College of Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland

E-mail address: tomaszweiss@o2.pl

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSAW, POLAND

E-mail address: piotrzak@mimuw.edu.pl