
Teoria wspó lbieżności
Piotr Hofman

Theoretical aspects of concurrency

Lecture 5 − 6

How to compute the bisimilarity relation?

Properties of Bisimulation

Approximants
Let B0 be a set of all pairs of configurations.
(s, s ′) ∈ Bi+1 if and only if:

1 L(s) = L(s ′),
2 For all t such that s → t there is a s ′ → t ′ where (t, t ′) ∈ Bi .
3 For all t ′ such that s ′ → t ′ there is a s → t where (t, t ′) ∈ Bi .

Lemma
The bisimilarity relation is the biggest fix point of approximants i.e. if
Bi = Bi+1 then Bi =∼ .

Properties of Bisimulation

Approximants
Let B0 be a set of all pairs of configurations.
(s, s ′) ∈ Bi+1 if and only if:

1 L(s) = L(s ′),
2 For all t such that s → t there is a s ′ → t ′ where (t, t ′) ∈ Bi .
3 For all t ′ such that s ′ → t ′ there is a s → t where (t, t ′) ∈ Bi .

Lemma
The bisimilarity relation is the biggest fix point of approximants i.e. if
Bi = Bi+1 then Bi =∼ .

Proof

⊆
1 We prove that Bi+1 is a bisimulation relation (from the definition).
2 Take any pair (s, s ′) ∈ Bi+1. s −→ t and s ′ −→ t ′ such that

(t, t ′) ∈ Bi . But then (t, t ′) ∈ Bi+1 so Bi+1 is a bisimulation.

⊇
1 We prove that if (s, s ′) 6∈ Bi+1 then (s, s ′) 6∈∼.
2 We construct a winning strategy for Spoiler, by induction on i .
3 This works under the assumption that Bi converge for i ≤ ω (an

ordinal number).
4 This is a valid assumption for system with finite branching.

Approximation of the bisimilarity relation

Approximants
Let B0 be a set of all pairs of configurations.
(s, s ′) ∈ Bi+1 if and only if:

1 L(s) = L(s ′),
2 For all t such that s → t there is a s ′ → t ′ where (t, t ′) ∈ Bi .
3 For all t ′ such that s ′ → t ′ there is a s → t where (t, t ′) ∈ Bi .

Question?
What if the starting point B0 is different but it satisfies B0 ⊇∼.

Lemma
Approximants are monotone i.e. if Xi ⊂ Yj then Xi+1 ⊆ Yj+1.

Approximation of the bisimilarity relation

Approximants
Let B0 be a set of all pairs of configurations.
(s, s ′) ∈ Bi+1 if and only if:

1 L(s) = L(s ′),
2 For all t such that s → t there is a s ′ → t ′ where (t, t ′) ∈ Bi .
3 For all t ′ such that s ′ → t ′ there is a s → t where (t, t ′) ∈ Bi .

Question?
What if the starting point B0 is different but it satisfies B0 ⊇∼.

Lemma
Approximants are monotone i.e. if Xi ⊂ Yj then Xi+1 ⊆ Yj+1.

Algorithm 1

Lemma
The bisimilarity relation over a finite Kripke structure can be computed in
polynomial time (with respect to the size of the structure).

Let n be the size of the Kripke structure.

The key observations

1 In B0 there is n2 pairs and if ∀j<i Bj ⊃ Bj+1 then i ≤ n2.
2 A single approximant in time (very naive) n2 · |E |2.

Algorithm 1

Lemma
The bisimilarity relation over a finite Kripke structure can be computed in
polynomial time (with respect to the size of the structure).

Let n be the size of the Kripke structure.

The key observations
1 What is the bound on i (the moment when the approximants

converge).

2 A single approximant in time (very naive) n2 · |E |2.

Algorithm 1

Lemma
The bisimilarity relation over a finite Kripke structure can be computed in
polynomial time (with respect to the size of the structure).

Let n be the size of the Kripke structure.

The key observations
1 In B0 there is n2 pairs and if ∀j<i Bj ⊃ Bj+1 then i ≤ n2.

2 A single approximant in time (very naive) n2 · |E |2.

Algorithm 1

Lemma
The bisimilarity relation over a finite Kripke structure can be computed in
polynomial time (with respect to the size of the structure).

Let n be the size of the Kripke structure.

The key observations
1 In B0 there is n2 pairs and if ∀j<i Bj ⊃ Bj+1 then i ≤ n2.
2 What is the complexity of calculating a single approximant?

Algorithm 1

Lemma
The bisimilarity relation over a finite Kripke structure can be computed in
polynomial time (with respect to the size of the structure).

Let n be the size of the Kripke structure.

The key observations
1 In B0 there is n2 pairs and if ∀j<i Bj ⊃ Bj+1 then i ≤ n2.
2 A single approximant in time (very naive) n2 · |E |2.

THE PARTITION REFINEMENT
ALGORITHM

ROBERT PAIGE AND ROBERT E. TARJAN

A coarsest partition.

A given directed graph (V , E).
P ⊂ P(V) is a partition of V iff

1 ∀S,T∈PS ∩ T = ∅,
2

⋃
S∈P S = V .

A partition P is a refinement of a partition R if ∀S∈P∃T∈RS ⊆ T .

Let S ⊆ V , E−1(S) def= {x ∈ V : ∃y∈Sx → y}.
We say that the set S is stable with respect to the set T if
S ⊆ E−1(T) ∨ ∅ = S ∩ E−1(T).
We say that the partition P is stable with respect to the set T if
∀S∈PS is stable with respect to T .

We say that the partition P is stable if it is stable with respect to
every set in P.

A coarsest partition.

A given directed graph (V , E).
P ⊂ P(V) is a partition of V iff

1 ∀S,T∈PS ∩ T = ∅,
2

⋃
S∈P S = V .

A partition P is a refinement of a partition R if ∀S∈P∃T∈RS ⊆ T .

Let S ⊆ V , E−1(S) def= {x ∈ V : ∃y∈Sx → y}.
We say that the set S is stable with respect to the set T if
S ⊆ E−1(T) ∨ ∅ = S ∩ E−1(T).
We say that the partition P is stable with respect to the set T if
∀S∈PS is stable with respect to T .

We say that the partition P is stable if it is stable with respect to
every set in P.

A coarsest partition.

A given directed graph (V , E).
P ⊂ P(V) is a partition of V iff

1 ∀S,T∈PS ∩ T = ∅,
2

⋃
S∈P S = V .

A partition P is a refinement of a partition R if ∀S∈P∃T∈RS ⊆ T .

Let S ⊆ V , E−1(S) def= {x ∈ V : ∃y∈Sx → y}.

We say that the set S is stable with respect to the set T if
S ⊆ E−1(T) ∨ ∅ = S ∩ E−1(T).
We say that the partition P is stable with respect to the set T if
∀S∈PS is stable with respect to T .

We say that the partition P is stable if it is stable with respect to
every set in P.

A coarsest partition.

A given directed graph (V , E).
P ⊂ P(V) is a partition of V iff

1 ∀S,T∈PS ∩ T = ∅,
2

⋃
S∈P S = V .

A partition P is a refinement of a partition R if ∀S∈P∃T∈RS ⊆ T .

Let S ⊆ V , E−1(S) def= {x ∈ V : ∃y∈Sx → y}.
We say that the set S is stable with respect to the set T if
S ⊆ E−1(T) ∨ ∅ = S ∩ E−1(T).
We say that the partition P is stable with respect to the set T if
∀S∈PS is stable with respect to T .

We say that the partition P is stable if it is stable with respect to
every set in P.

A coarsest partition.

A given directed graph (V , E).
P ⊂ P(V) is a partition of V iff

1 ∀S,T∈PS ∩ T = ∅,
2

⋃
S∈P S = V .

A partition P is a refinement of a partition R if ∀S∈P∃T∈RS ⊆ T .

Let S ⊆ V , E−1(S) def= {x ∈ V : ∃y∈Sx → y}.
We say that the set S is stable with respect to the set T if
S ⊆ E−1(T) ∨ ∅ = S ∩ E−1(T).
We say that the partition P is stable with respect to the set T if
∀S∈PS is stable with respect to T .

We say that the partition P is stable if it is stable with respect to
every set in P.

Coarsest stable partition problem

Input: A graph G = (V , E) and its partition P.
Question: Find a coarsest stable partition R that is a refinement of P.

Lemma
Let K be a Kripke structure and P a partition of its vertices according to
labelling with predicates L i.e. ∀S∈P∀s∈S∀t∈V t ∈ S ⇐⇒ L(s) = L(t).
Then the coarsest stable partition R refining P defines the bisimilarity
relation for K.

Proof.

1 Any stable refinement of P defines an equivalence relation which is a
bisimulation.

2 Any equivalence relation which is a bisimulation defines a stable
refinement of P.

3 The bisimilarity defines a coarsest partition.

Coarsest stable partition problem

Input: A graph G = (V , E) and its partition P.
Question: Find a coarsest stable partition R that is a refinement of P.

Lemma
Let K be a Kripke structure and P a partition of its vertices according to
labelling with predicates L i.e. ∀S∈P∀s∈S∀t∈V t ∈ S ⇐⇒ L(s) = L(t).
Then the coarsest stable partition R refining P defines the bisimilarity
relation for K.

Proof.

1 Any stable refinement of P defines an equivalence relation which is a
bisimulation.

2 Any equivalence relation which is a bisimulation defines a stable
refinement of P.

3 The bisimilarity defines a coarsest partition.

Coarsest stable partition problem

Input: A graph G = (V , E) and its partition P.
Question: Find a coarsest stable partition R that is a refinement of P.

Lemma
Let K be a Kripke structure and P a partition of its vertices according to
labelling with predicates L i.e. ∀S∈P∀s∈S∀t∈V t ∈ S ⇐⇒ L(s) = L(t).
Then the coarsest stable partition R refining P defines the bisimilarity
relation for K.

Proof.
1 Any stable refinement of P defines an equivalence relation which is a

bisimulation.

2 Any equivalence relation which is a bisimulation defines a stable
refinement of P.

3 The bisimilarity defines a coarsest partition.

Coarsest stable partition problem

Input: A graph G = (V , E) and its partition P.
Question: Find a coarsest stable partition R that is a refinement of P.

Lemma
Let K be a Kripke structure and P a partition of its vertices according to
labelling with predicates L i.e. ∀S∈P∀s∈S∀t∈V t ∈ S ⇐⇒ L(s) = L(t).
Then the coarsest stable partition R refining P defines the bisimilarity
relation for K.

Proof.
1 Any stable refinement of P defines an equivalence relation which is a

bisimulation.
2 Any equivalence relation which is a bisimulation defines a stable

refinement of P.

3 The bisimilarity defines a coarsest partition.

Coarsest stable partition problem

Input: A graph G = (V , E) and its partition P.
Question: Find a coarsest stable partition R that is a refinement of P.

Lemma
Let K be a Kripke structure and P a partition of its vertices according to
labelling with predicates L i.e. ∀S∈P∀s∈S∀t∈V t ∈ S ⇐⇒ L(s) = L(t).
Then the coarsest stable partition R refining P defines the bisimilarity
relation for K.

Proof.
1 Any stable refinement of P defines an equivalence relation which is a

bisimulation.
2 Any equivalence relation which is a bisimulation defines a stable

refinement of P.

3 The bisimilarity defines a coarsest partition.

Algorithm 2
Definition - Split operation

Let split(S, Q) be the refinement of Q obtained by replacing each
block B ∈ Q such that B ∩ E−1(S) 6= ∅ ∧ B − E−1(S) 6= ∅ by the
two blocks B′ = B ∩ E−1(S) and B” = B − E−1(S).

We call S a splitter of Q if split(S, Q) 6= Q.
Q is unstable with respect to S if and only if S is a splitter of Q.

New algorithm, first try.
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Let Si ∈ Qi be a set such that Qi is unstable with respect to Si . If it

does not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Algorithm 2
Definition - Split operation

Let split(S, Q) be the refinement of Q obtained by replacing each
block B ∈ Q such that B ∩ E−1(S) 6= ∅ ∧ B − E−1(S) 6= ∅ by the
two blocks B′ = B ∩ E−1(S) and B” = B − E−1(S).
We call S a splitter of Q if split(S, Q) 6= Q.

Q is unstable with respect to S if and only if S is a splitter of Q.

New algorithm, first try.
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Let Si ∈ Qi be a set such that Qi is unstable with respect to Si . If it

does not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Algorithm 2
Definition - Split operation

Let split(S, Q) be the refinement of Q obtained by replacing each
block B ∈ Q such that B ∩ E−1(S) 6= ∅ ∧ B − E−1(S) 6= ∅ by the
two blocks B′ = B ∩ E−1(S) and B” = B − E−1(S).
We call S a splitter of Q if split(S, Q) 6= Q.
Q is unstable with respect to S if and only if S is a splitter of Q.

New algorithm, first try.
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Let Si ∈ Qi be a set such that Qi is unstable with respect to Si . If it

does not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Algorithm 2
Definition - Split operation

Let split(S, Q) be the refinement of Q obtained by replacing each
block B ∈ Q such that B ∩ E−1(S) 6= ∅ ∧ B − E−1(S) 6= ∅ by the
two blocks B′ = B ∩ E−1(S) and B” = B − E−1(S).
We call S a splitter of Q if split(S, Q) 6= Q.
Q is unstable with respect to S if and only if S is a splitter of Q.

New algorithm, first try.
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Let Si ∈ Qi be a set such that Qi is unstable with respect to Si . If it

does not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Algorithm 2

New algorithm, first try. Is it correct?
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Let Si ∈ Qi be an set such that Qi is unstable with respect to Si . If

it does not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

New algorithm, first try. Is it correct?
1 It returns a refinement of the initial partition Q0.
2 It is stable with respect to each its element.
3 The procedure guaranties that it is coarsest partition.

The proof is by showing that the coarsest partitions before and after
every split operations are the same.

Algorithm 2, determinization and analysis.

New algorithm, first try. The complexity?
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Find Si ∈ Qi such that Qi is unstable with respect to Si . If it does

not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Analysis.

1 What is the bound on i?

|V |.

2 Can we look for Si in time proportional to |E |?
3 Can we split in time proportional to |E |?.
4 It works in |E | · |V |.

Algorithm 2, determinization and analysis.

New algorithm, first try. The complexity?
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Find Si ∈ Qi such that Qi is unstable with respect to Si . If it does

not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Analysis.
1 What is the bound on i?

|V |.
2 Can we look for Si in time proportional to |E |?
3 Can we split in time proportional to |E |?.
4 It works in |E | · |V |.

Algorithm 2, determinization and analysis.

New algorithm, first try. The complexity?
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Find Si ∈ Qi such that Qi is unstable with respect to Si . If it does

not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Analysis.
1 What is the bound on i? |V |.
2 Can we look for Si in time proportional to |E |?
3 Can we split in time proportional to |E |?.

4 It works in |E | · |V |.

Algorithm 2, determinization and analysis.

New algorithm, first try. The complexity?
1 Let Q0 be a partition of the states of the Kripke structure along the

labels.
2 Find Si ∈ Qi such that Qi is unstable with respect to Si . If it does

not exist then return Qi .
3 Qi+1 = split(Si , Qi). Go to point 2.

Analysis.
1 What is the bound on i? |V |.
2 Can we look for Si in time proportional to |E |?
3 Can we split in time proportional to |E |?.
4 It works in |E | · |V |.

Algorithm 2, data structures.
All lists are two way linked lists.

We have states, blocks, a list of blocks in the partition Qi .

Every state remembers
pointers to representations of that vertex on every list that contain it,
a list of incoming edges,
its block.

Every block remembers
pointers to representations of that block on every list that contain it,
the list of its states,
the number of states.

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:

1 The algorithm is working in time proportional to the number of
operations on edges.

2 Instead of splitters the algorithm uses candidates for splitters. A
candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:
1 The algorithm is working in time proportional to the number of

operations on edges.

2 Instead of splitters the algorithm uses candidates for splitters. A
candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:
1 The algorithm is working in time proportional to the number of

operations on edges.
2 Instead of splitters the algorithm uses candidates for splitters. A

candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:
1 The algorithm is working in time proportional to the number of

operations on edges.
2 Instead of splitters the algorithm uses candidates for splitters. A

candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:
1 The algorithm is working in time proportional to the number of

operations on edges.
2 Instead of splitters the algorithm uses candidates for splitters. A

candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

The Page and Tarjan algorithm.

The complexity |E | · log(|V |).

Main ideas:
1 The algorithm is working in time proportional to the number of

operations on edges.
2 Instead of splitters the algorithm uses candidates for splitters. A

candidate sometimes does not split anything but can be found in a
constant time.

3 Every vertex belongs to a candidate for a splitter at most log(|V |)
number of times.

4 Every edge is processed only if it ends in the current candidate for a
splitter.

Why this gives us |E | · log(|V |)?

New refine strategy (two splits at once).

1 Let X and Y are partitions such that:
Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .

3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

5 Observe that:
Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).

5 Observe that:
Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

Is it correct?

New refine strategy (two splits at once).
1 Let X and Y are partitions such that:

Y is a refinement of X ,
Y is stable with respect to X .

2 Find a block S ∈ X that is not a block of Y .
3 Find a block B ∈ Y such that B ∈ S and |B| ≤ |S|2 .
4 X := X − S + B + (S \ B)

Y := split(S − B, split(B, Y)).
5 Observe that:

Y is a refinement of X ,
Y is stable with respect to X .

The algorithm (high level)
Take X = V and Y being an initial partition. Use new refine strategy
until X 6= Y .

How many times each vertex can be an element of B a candidate for
splitter?

2 Find a block S ∈ X that is not a block of Y .

Keep a list of compound blocks of X .

3 Find a block B ∈ Y such that B ⊂ S and |B| ≤ |S|2 .

For each S ∈ X we store a list of blocks to which it is refined in Y .
For each block of B ∈ Y we store a number of its elements.

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

Lemma
split(S − B, split(B, Y)) can be computed in a time proportional to
number of edges incoming to B.

To understand what are the precise data structures (lists and records) stored
to maintain all needed information please go to pages 9 (the last para-
graph), 10 and 11 of the Tarjan paper (in bibliography).

2 Find a block S ∈ X that is not a block of Y .

Keep a list of compound blocks of X .

3 Find a block B ∈ Y such that B ⊂ S and |B| ≤ |S|2 .

For each S ∈ X we store a list of blocks to which it is refined in Y .
For each block of B ∈ Y we store a number of its elements.

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

Lemma
split(S − B, split(B, Y)) can be computed in a time proportional to
number of edges incoming to B.

To understand what are the precise data structures (lists and records) stored
to maintain all needed information please go to pages 9 (the last para-
graph), 10 and 11 of the Tarjan paper (in bibliography).

2 Find a block S ∈ X that is not a block of Y .

Keep a list of compound blocks of X .

3 Find a block B ∈ Y such that B ⊂ S and |B| ≤ |S|2 .

For each S ∈ X we store a list of blocks to which it is refined in Y .
For each block of B ∈ Y we store a number of its elements.

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

Lemma
split(S − B, split(B, Y)) can be computed in a time proportional to
number of edges incoming to B.

To understand what are the precise data structures (lists and records) stored
to maintain all needed information please go to pages 9 (the last para-
graph), 10 and 11 of the Tarjan paper (in bibliography).

2 Find a block S ∈ X that is not a block of Y .

Keep a list of compound blocks of X .

3 Find a block B ∈ Y such that B ⊂ S and |B| ≤ |S|2 .

For each S ∈ X we store a list of blocks to which it is refined in Y .
For each block of B ∈ Y we store a number of its elements.

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

Lemma
split(S − B, split(B, Y)) can be computed in a time proportional to
number of edges incoming to B.

To understand what are the precise data structures (lists and records) stored
to maintain all needed information please go to pages 9 (the last para-
graph), 10 and 11 of the Tarjan paper (in bibliography).

2 Find a block S ∈ X that is not a block of Y .

Keep a list of compound blocks of X .

3 Find a block B ∈ Y such that B ⊂ S and |B| ≤ |S|2 .

For each S ∈ X we store a list of blocks to which it is refined in Y .
For each block of B ∈ Y we store a number of its elements.

4 X := X − S + B + (S \ B)
Y := split(S − B, split(B, Y)).

Lemma
split(S − B, split(B, Y)) can be computed in a time proportional to
number of edges incoming to B.

To understand what are the precise data structures (lists and records) stored
to maintain all needed information please go to pages 9 (the last para-
graph), 10 and 11 of the Tarjan paper (in bibliography).

Bibliography

1 The algorithm:
Robert Paige and Robert E. Tarjan. 1987. Three partition refinement
algorithms. SIAM J. Comput. 16, 6 (December 1987), 973-989.
DOI=10.1137/0216062 http://dx.doi.org/10.1137/0216062
ftp://ftp.cs.princeton.edu/reports/1986/038.pdf

2 The algorithm for branching bisimulation:
http://www.win.tue.nl/˜jfg/articles/mlogn_branching_
algorithm.pdf

ftp://ftp.cs.princeton.edu/reports/1986/038.pdf
http://www.win.tue.nl/~jfg/articles/mlogn_branching_algorithm.pdf
http://www.win.tue.nl/~jfg/articles/mlogn_branching_algorithm.pdf

