Teoria współbieżności

Piotr Hofman
Theoretical aspects of concurrency

Lecture 3-4

HML and Bisimulation

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?
- Can we express this in LTL?

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?
- Can we express this in LTL?

Definition

We say that two objects are distinguished by a formula ϕ if ϕ is satisfied for one object and not satisfied by the second.

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?
- Can we express this in LTL?

Definition

We say that two objects are distinguished by a formula ϕ if ϕ is satisfied for one object and not satisfied by the second.

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?
- Can we express this in LTL?

Definition

We say that two objects are distinguished by a formula ϕ if ϕ is satisfied for one object and not satisfied by the second.

Example

Consider a software controlling a car. We would like to have a property that in any state there is a possibility to brake.

- Question: How to formalise it in LTL?
- Can we express this in LTL?

Definition

We say that two objects are distinguished by a formula ϕ if ϕ is satisfied for one object and not satisfied by the second.

```
Lemma
If two Kripke structures S and S' have the same traces i.e.
\mathbb{R}(S)=\mathbb{R}(\mp@subsup{S}{}{\prime})\mathrm{ then for any LTL formula }\phi\mathrm{ does not distinguish S and}
S'.
```

Concluding: some interesting properties can not be analysed if we look only into traces.

Transition Tree (derivation tree)

Figure 15. Example of a Kripke structure

Figure 16. The unfolded tree of the Kripke structure of Figure

HMS Logic

Hennessy-Milner logic

A minimum to speak about tree, $\phi=$

- tt (true), ff (false),
- $\phi_{1} \vee \phi_{2}$,
- $\phi_{1} \wedge \phi_{2}$,
- [] $\phi \quad$ or $\square \phi$ or $A X \phi$,
- $<>\phi \quad$ or $\diamond \phi$ or $E X \phi$.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.
- if ϕ_{1} holds in the node s and ϕ_{2} holds in the node s then $\phi_{1} \wedge \phi_{2}$ holds in s.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.
- if ϕ_{1} holds in the node s and ϕ_{2} holds in the node s then $\phi_{1} \wedge \phi_{2}$ holds in s.
- $<>\phi$ holds in s if there is s^{\prime} a child of s such that ϕ holds in s^{\prime}.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.
- if ϕ_{1} holds in the node s and ϕ_{2} holds in the node s then $\phi_{1} \wedge \phi_{2}$ holds in s.
- $<>\phi$ holds in s if there is s^{\prime} a child of s such that ϕ holds in s^{\prime}.
- [] ϕ holds in s if for every s^{\prime} a child of s we have that ϕ holds in s^{\prime}.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.
- if ϕ_{1} holds in the node s and ϕ_{2} holds in the node s then $\phi_{1} \wedge \phi_{2}$ holds in s.
- $<>\phi$ holds in s if there is s^{\prime} a child of s such that ϕ holds in s^{\prime}.
- [] ϕ holds in s if for every s^{\prime} a child of s we have that ϕ holds in s^{\prime}.
- Later we will add to it modal operators to speak about descendants instead of children.

Semantic of HML

Formula is always evaluated in a node of the transition tree.

- tt holds in every node.
- ff holds in the empty set.
- if ϕ_{1} holds in the node s or ϕ_{2} holds in the node s then $\phi_{1} \vee \phi_{2}$ holds in s.
- if ϕ_{1} holds in the node s and ϕ_{2} holds in the node s then $\phi_{1} \wedge \phi_{2}$ holds in s.
- $<>\phi$ holds in s if there is s^{\prime} a child of s such that ϕ holds in s^{\prime}.
- [] ϕ holds in s if for every s^{\prime} a child of s we have that ϕ holds in s^{\prime}.
- Later we will add to it modal operators to speak about descendants instead of children.

Question what is the mining of []ff?

What is the power of HML
Question: What are the trees that can be distinguished using HML?

What is the power of HML
Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .

What is the power of HML

Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .
- What can we distinguish by formulas with modal depth 2 .

What is the power of HML

Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .
- What can we distinguish by formulas with modal depth 2 .
- What can we distinguish by formulas with modal depth 3 .

What is the power of HML

Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .
- What can we distinguish by formulas with modal depth 2 .
- What can we distinguish by formulas with modal depth 3.
- What can we distinguish by formulas with modal depth 4.

What is the power of HML

Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .
- What can we distinguish by formulas with modal depth 2 .
- What can we distinguish by formulas with modal depth 3 .
- What can we distinguish by formulas with modal depth 4.

Unlabelled case:

Definition

Bisimulation B is any relation on a set of configurations (nodes) that satisfies following conditions
(1) if $\left(s, s^{\prime}\right) \in B$ then for every t such that $s \rightarrow t$ there is t^{\prime} such that $s^{\prime} \rightarrow t^{\prime}$ and $\left(t, t^{\prime}\right) \in B$,
(2) if $\left(s, s^{\prime}\right) \in B$ then for every t^{\prime} such that $s^{\prime} \rightarrow t^{\prime}$ there is t such that $s \rightarrow t$ and $\left(t, t^{\prime}\right) \in B$.
We denote it by $s \sim_{B} s^{\prime}$.

What is the power of HML

Question: What are the trees that can be distinguished using HML?

- What can we distinguish by formulas with modal depth 1 .
- What can we distinguish by formulas with modal depth 2 .
- What can we distinguish by formulas with modal depth 3 .
- What can we distinguish by formulas with modal depth 4.

Labelled case:

Definition

Bisimulation B is any relation on a set of configurations (nodes) that satisfies following conditions
(1) if $\left(s, s^{\prime}\right) \in B$ then $L(s)=L\left(s^{\prime}\right)$,
(2) if $\left(s, s^{\prime}\right) \in B$ then for every t such that $s \rightarrow t$ there is t^{\prime} such that $s^{\prime} \rightarrow t^{\prime}$ and $\left(t, t^{\prime}\right) \in B$,
(3) if $\left(s, s^{\prime}\right) \in B$ then for every t^{\prime} such that $s^{\prime} \rightarrow t^{\prime}$ there is t such that $s \rightarrow t$ and $\left(t, t^{\prime}\right) \in B$.
We denote it by $s \sim_{B} s^{\prime}$.

Bisimulation relation

Theorem

A pair of configurations (s, s^{\prime}) can not be distinguished by HML formula if and only if there is a bisimulation relation B such that $s \sim_{B} s^{\prime}$.

We need a few lemmas.

Bisimulation relation

Theorem

A pair of configurations (s, s^{\prime}) can not be distinguished by HML formula if and only if there is a bisimulation relation B such that $s \sim_{B} s^{\prime}$.

We need a few lemmas.

Lemma

Union of bisimulations is a bisimulation.

Bisimulation relation

Theorem

A pair of configurations (s, s^{\prime}) can not be distinguished by HML formula if and only if there is a bisimulation relation B such that $s \sim_{B} s^{\prime}$.

We need a few lemmas.

Lemma

Union of bisimulations is a bisimulation.

Corollary

There is a biggest bisimulation.

Bisimulation relation

Theorem
 A pair of configurations (s, s^{\prime}) can not be distinguished by HML formula if and only if there is a bisimulation relation B such that $s \sim_{B} s^{\prime}$.

We need a few lemmas.

Lemma

Union of bisimulations is a bisimulation.

Definition

- The biggest bisimulation is called the bisimilarity relation and denoted by \sim.
- We say that two configurations $\left(s, s^{\prime}\right)$ are bisimilar if $s \sim s^{\prime}$.

Bisimulation relation

Theorem
 A pair of configurations (s, s^{\prime}) can not be distinguished by HML formula if and only if there is a bisimulation relation B such that $s \sim_{B} s^{\prime}$.

We need a few lemmas.

Lemma

Union of bisimulations is a bisimulation.

Definition

- The biggest bisimulation is called the bisimilarity relation and denoted by \sim.
- We say that two configurations $\left(s, s^{\prime}\right)$ are bisimilar if $s \sim s^{\prime}$.
- Bisimilarity is an equivalence relation.

The proof of the theorem (idea).

(1) By negation, suppose there is a formula ϕ that distinguishes $\left(s, s^{\prime}\right)$, we prove that $\left(s, s^{\prime}\right)$ is not en element of any bisimulation relation.

The proof of the theorem (idea).

(1) By negation, suppose there is a formula ϕ that distinguishes $\left(s, s^{\prime}\right)$, we prove that $\left(s, s^{\prime}\right)$ is not en element of any bisimulation relation.
(2) By induction on the modal depth of the formula.

The proof of the theorem (idea).

(1) By negation, suppose there is a formula ϕ that distinguishes $\left(s, s^{\prime}\right)$, we prove that $\left(s, s^{\prime}\right)$ is not en element of any bisimulation relation.
(2) By induction on the modal depth of the formula.
(1) Let X be a set of pairs of states that can not be distinguished by HML.
(2) We prove that X is a bisimulation relation.

CTL and CTL*

An extension of HML - CTL

Definition

(1) A state formula $\phi=t t\left|\neg \phi_{1}\right| \phi_{1} \wedge \phi_{2}\left|p_{i}\right| A \alpha \mid E \alpha$
(2) A path formula (restricted LTL) $\alpha=X \phi_{1}\left|\phi_{1} U \phi_{2}\right| F \phi_{1} \mid G \phi_{1}$
(3) where ϕ are state formulas and α are path formulas.

Semantics

- p_{i} means that the predicate p_{i} holds in the configuration in which the formula is evaluated (current configuration).
- $A \alpha$ for every run r starting at the current configuration the formula α holds for a sequence of states of r.
- E α there is a run r starting at the current configuration such that the formula α holds for the sequence of states of r.

Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$

[^0]
Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$
(1) $E F \phi$ and $E G \phi$,

[^1]
Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$
(1) $E F \phi$ and $E G \phi$,
(2) $E F \phi \vee E F \tau$ and $E F(\phi \vee \tau)$,

[^2]
Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$
(1) $E F \phi$ and $E G \phi$,
(2) $E F \phi \vee E F \tau$ and $E F(\phi \vee \tau)$,
(3) $A F \phi \vee A F \tau$ and $A F(\phi \vee \tau)$,

[^3]
Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$
(1) $E F \phi$ and $E G \phi$,
(2) $E F \phi \vee E F \tau$ and $E F(\phi \vee \tau)$,
(3) $A F \phi \vee A F \tau$ and $A F(\phi \vee \tau)$,
(9) $A F \neg \phi$ and $\neg E G \phi$.

[^4]
Exercise

- $F \phi=\operatorname{true} U \phi$,
- $G \phi=\neg(F \neg \phi)$

Which of the following pairs of CTL formulas are equivalent? For those which are not, find a model of one of the pair which is not a model of the other: ${ }^{a}$
(1) $E F \phi$ and $E G \phi$,
(2) $E F \phi \vee E F \tau$ and $E F(\phi \vee \tau)$,
(3) $A F \phi \vee A F \tau$ and $A F(\phi \vee \tau)$,
(4) $A F \neg \phi$ and $\neg E G \phi$.

- Write a CTL formula which stays that there is always a possibility of braking.

[^5]
LTL vs. CTL

Evaluation of LTL in a state.
We consider all traces starting in a given state.

LTL vs. CTL

Evaluation of LTL in a state.
We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

LTL vs. CTL

Evaluation of LTL in a state.
We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (CTL not in LTL)
A G E F (brake == true)

We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (CTL not in LTL)

A G E F (brake $==$ true)
Two systems have the same sets of traces but only one satisfies the formula in CTL.

LTL vs. CTL

Evaluation of LTL in a state.
We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (CTL not in LTL)
A G E F (brake $==$ true)
Two systems have the same sets of traces but only one satisfies the formula in CTL.

We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (LTL not in CTL)

A F G (black = true)
For all runs there will be a moment from which onward holds (black $=$ true).

LTL vs. CTL

Evaluation of LTL in a state.

We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (LTL not in CTL)

A F G (black = true)
For all runs there will be a moment from which onward holds (black $=$ true). The idea is to construct two sequences of systems T_{i} and T_{i}^{\prime} such that:
(1) $\left(T_{i}, s_{0}\right) \models A F G\left(\right.$ black = true) but $\left(T_{i}^{\prime}, s_{0}\right) \not \models A F G$ (black = true).
(2) $\left(T_{i}, s_{0}\right)$ and $\left(T_{i}^{\prime}, s_{0}^{\prime}\right)$ are not distinguished by any CTL formula of the modal depth i.

LTL vs. CTL

Evaluation of LTL in a state.

We consider all traces starting in a given state.

Lemma

There are properties which can be expressed in LTL and can not in CTL and vice versa.

Example (LTL not in CTL)

A F G (black = true)
For all runs there will be a moment from which onward holds (black $=$ true). The idea is to construct two sequences of systems T_{i} and T_{i}^{\prime} such that:
(1) $\left(T_{i}, s_{0}\right) \models A F G($ black $=$ true $)$ but $\left(T_{i}^{\prime}, s_{0}\right) \not \models A F G$ (black = true).
(2) $\left(T_{i}, s_{0}\right)$ and $\left(T_{i}^{\prime}, s_{0}^{\prime}\right)$ are not distinguished by any CTL formula of the modal depth i.

Look: https://www.youtube.com/watch?v=0Af7q3X71-o (min 58)

Proof.

Let \sim_{i} not distinguishable by CTL formulas of depth i.

Lemma (Auxiliary)
$P_{i} \sim_{i} P_{j}$ for $i \leq j . R_{i} \sim_{i} R_{j}$ for $i \leq j$.

Proof.

Via induction on i, (the size of the formula).
Induction hypothesis:
$P_{k} \sim_{i} P_{j}, R_{k} \sim_{i} R_{j}$ for $i \leq k \leq j$.

Proof.

Let \sim_{i} not distinguishable by CTL formulas of depth i.

$$
T_{i} \sim_{i} T_{i}^{\prime}
$$

Via induction on i, (the size of the formula). Induction hypothesis:

$$
T_{k} \sim_{i} T_{j}^{\prime} \text { for } i \leq k \leq j
$$

Evaluation of CTL

Lemma

A CTL formula ϕ can be evaluated in time proportional to the length of the formula times size of the Kripke structure.

Proof.

By induction on the derivation tree of the formula.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Bisimulation and CTL

Lemma
Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

Bisimulation and CTL

Lemma
Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.
- Indeed, HML with predicates is a fragment of CTL.

Bisimulation and CTL

Lemma
Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.
- Indeed, HML with predicates is a fragment of CTL.
- We already proved that if $\left(s, s^{\prime}\right)$ are not distinguished by HML then they are bisimilar.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.
- Indeed, HML with predicates is a fragment of CTL.
- We already proved that if $\left(s, s^{\prime}\right)$ are not distinguished by HML then they are bisimilar.
- The proof for HML extended with predicates is the same.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.
- Indeed, HML with predicates is a fragment of CTL.
- We already proved that if $\left(s, s^{\prime}\right)$ are not distinguished by HML then they are bisimilar.
- The proof for HML extended with predicates is the same.
- The implication is proven.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} can not be distinguished by any CTL formula ϕ.

Proof \leftarrow (not distinguishable by CTL \Longrightarrow bisimilar).

- If they are not distinguishable by CTL, then they are not distinguishable by HML with predicates.
- Indeed, HML with predicates is a fragment of CTL.
- We already proved that if $\left(s, s^{\prime}\right)$ are not distinguished by HML then they are bisimilar.
- The proof for HML extended with predicates is the same.
- The implication is proven.

Proof \rightarrow

We need to extend our understanding of bisimulation first.

Game characterisation of Bisimilarity

Definition

A bisimulation game is played in rounds between two players Spoiler and Duplicator. Arena is a set of pairs of configurations of the Kripke structure. Suppose that current pair of configurations is $\left(s, s^{\prime}\right)$. Rules of a round are as follows:

- First Spoiler chooses one of configurations s or s^{\prime}. Without lost of generality we may assume that it is s.
- Next he chooses a configuration t such that $s \rightarrow t$.
- Next Duplicator chooses a configuration t^{\prime} such that $s^{\prime} \rightarrow t^{\prime}$ where s^{\prime} is a configuration no chosen by Spoiler.
- The next round of the game will be plaid from $\left(t, t^{\prime}\right)$.

Winning conditions:

- If $L(s) \neq L\left(s^{\prime}\right)$ then Spoiler wins.
- If any player can not make his part of the move then he looses.
- Infinite plays are won by Duplicator.

Lemma

Duplicator has a winning strategy in the bisimulation game starting from a pair of configurations $\left(s, s^{\prime}\right)$ if and only if $s \sim s^{\prime}$.

Lemma

Duplicator has a winning strategy in the bisimulation game starting from a pair of configurations $\left(s, s^{\prime}\right)$ if and only if $s \sim s^{\prime}$.

Lemma

A winning strategy for Spoiler is a tree.

Bisimulation and CTL

Lemma

Two configurations s and s^{\prime} are bisimilar if and only if s and s^{\prime} are not distinguished by any CTL formula ϕ.

Proof \rightarrow (bisimilar \Longrightarrow not distinguishable by any CTL formula).

- If they are distinguishable by CTL, then they are distinguishable by some formula ϕ.
- We construct a winning strategy for Spoiler via induction on the modal depth of the formula.

Extend even more - CTL*

Definition

A state formula $\phi=t t\left|\neg \phi_{1}\right| \phi_{1} \wedge \phi_{2}\left|p_{i}\right| A \alpha \mid F \alpha$
A path formula (restricted LTL) $\alpha=\phi\left|\neg \alpha_{1}\right| \alpha_{1} \wedge \alpha_{2}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}$

Semantics

- A α for every run r starting at the current configuration the formula α holds for $\mathbb{T} \mathbb{R}(r)$.
- $F \alpha$ there is a run r starting at the current configuration such that the formula α holds for $\mathbb{T} \mathbb{R}(r)$.

Fact
 CTL* subsumes CTL and LTL.

Bibliography

CTL, CTL*

https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ
Unites: 9, 10, 11.
Bisimulation + CTL and more:
https://pdfs.semanticscholar.org/cb9f/
325389bd6ee5894dcf435159d34f9e20da2d.pdf

[^0]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

[^1]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

[^2]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

[^3]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

[^4]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

[^5]: ${ }^{a}$ exercise from
 https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf

