
Teoria wspó lbieżności
Piotr Hofman

Theoretical aspects of concurrency

My email: piotrek.hofman@gmail.com
My office: 4580

Outline

1 How to specify properties of a system?
LTL.
CTL.
Bisimulation.

2 How to model a system?
Process algebra.
Petri nets.

Assessment methods and assessment criteria
Oral exam 0 up to 15 point

3 questions each for 0-5 points
In the end of the semester I will provide a list of questions that may
appear on the exam.

[0− 8)↔ 2
[8− 10)↔ 3
[10− 11.5)↔ 3+
[11.5− 13)↔ 4
[13− 14)↔ 4+
[14− 15]↔ 5

Basic problems with concurrent programs

Three basic threats in concurrent programming

Data corruption
Consider a bank, an ATM, and a following protocol for withdrawing
money:

ATM

ATM

ATM

ATM

BANK

BANK

BANK

BANK

send a password
check the password

send an account balance
How much?

give money
send the new account balance

Three basic threats in concurrent programming

Deadlock
Consider philosophers working according a following schema:

think
put forks back

take left fork eat

take right fork

Solution
Priorities.

Three basic threats in concurrent programming

Deadlock
Consider philosophers working according a following schema:

think
put forks back

take left fork eat

take right fork

Solution
Priorities.

Three basic threats in concurrent programming

Starvation
Consider philosophers working according a following schema:

think
put forks back

take left fork eat

take right fork

Solution
Priorities.

Kripke structures
Let AP be a set of atomic propositions, i.e. boolean expressions over
variables, constants and predicate symbols.

Definition
A Kripke structure over AP is a 4-tuple M = (S, I,R, L) consisting of:

1 a finite set of states S,
2 a set of initial states I ⊆ S,
3 a transition relation R ⊆ S × S such that R is left-total, i.e.,
∀s∈S∃s′∈S such that (s, s ′) ∈ R,

4 a labeling (or interpretation) function L : S → 2AP.

Definition
By a run we mean a sequence of states interleaved with transitions,
s1, t1, s2, t2, s3 . . . such that (si , si+1) = ti .

Kripke structures
Let AP be a set of atomic propositions, i.e. boolean expressions over
variables, constants and predicate symbols.

Definition
A Kripke structure over AP is a 4-tuple M = (S, I,R, L) consisting of:

1 a finite set of states S,
2 a set of initial states I ⊆ S,
3 a transition relation R ⊆ S × S such that R is left-total, i.e.,
∀s∈S∃s′∈S such that (s, s ′) ∈ R,

4 a labeling (or interpretation) function L : S → 2AP.

Definition
By a run we mean a sequence of states interleaved with transitions,
s1, t1, s2, t2, s3 . . . such that (si , si+1) = ti .

Kripke structures
Let AP be a set of atomic propositions, i.e. boolean expressions over
variables, constants and predicate symbols.

Definition
A Kripke structure over AP is a 4-tuple M = (S, I,R, L) consisting of:

1 a finite set of states S,
2 a set of initial states I ⊆ S,
3 a transition relation R ⊆ S × S such that R is left-total, i.e.,
∀s∈S∃s′∈S such that (s, s ′) ∈ R,

4 a labeling (or interpretation) function L : S → 2AP.

Definition
By a run we mean a sequence of states interleaved with transitions,
s1, t1, s2, t2, s3 . . . such that (si , si+1) = ti .

Runs

Definition
For a given run we define a trace as follows:

TR(s1, t1, s2, t2, s3 . . .) = L(s1), L(s2), L(s3)

A set of traces of all possible infinite runs starting in I (one of initial
states) of a given Kripke structure S is called Traces of S. We denoted it
TR(S).

Runs

The first concept:
We describe properties of system by describing properties of the set of its
traces.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are witnesses of an error, say
some possible memory corruption.
If X ∩ TR(S) = ∅ then we know that the system does not allow for
data corruption.
Almost! It is under the assumption that model is correct and precise
enough.

Runs

The first concept:
We describe properties of system by describing properties of the set of its
traces.

Suppose that S is a Kripke structure that is a model of a given
system.

Let X be a set of infinite words that are witnesses of an error, say
some possible memory corruption.
If X ∩ TR(S) = ∅ then we know that the system does not allow for
data corruption.
Almost! It is under the assumption that model is correct and precise
enough.

Runs

The first concept:
We describe properties of system by describing properties of the set of its
traces.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are witnesses of an error, say
some possible memory corruption.

If X ∩ TR(S) = ∅ then we know that the system does not allow for
data corruption.
Almost! It is under the assumption that model is correct and precise
enough.

Runs

The first concept:
We describe properties of system by describing properties of the set of its
traces.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are witnesses of an error, say
some possible memory corruption.
If X ∩ TR(S) = ∅ then we know that the system does not allow for
data corruption.

Almost! It is under the assumption that model is correct and precise
enough.

Runs

The first concept:
We describe properties of system by describing properties of the set of its
traces.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are witnesses of an error, say
some possible memory corruption.
If X ∩ TR(S) = ∅ then we know that the system does not allow for
data corruption.
Almost! It is under the assumption that model is correct and precise
enough.

Runs

We may also partially specify a system by defining a set of correct
behaviours.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are correct behaviours.

If X ⊇ TR(S) then we know that the system does not allow data
corruption.

Runs

We may also partially specify a system by defining a set of correct
behaviours.

Suppose that S is a Kripke structure that is a model of a given
system.
Let X be a set of infinite words that are correct behaviours.
If X ⊇ TR(S) then we know that the system does not allow data
corruption.

Exercises

5→ 3 philosophers
What are the predicates?
How the Kripke structure looks like?
What are the properties that Traces should satisfy for 5 philosophers?

Philosopher may eat only if he has two forks.
Every philosopher eat infinite number of times.
Rene Descartes eat and think infinite number of times.

How to specify the above properties?

Exercises

5→ 3 philosophers
What are the predicates?
How the Kripke structure looks like?
What are the properties that Traces should satisfy for 5 philosophers?

Philosopher may eat only if he has two forks.
Every philosopher eat infinite number of times.
Rene Descartes eat and think infinite number of times.

How to specify the above properties?

Exercises

5→ 3 philosophers
What are the predicates?
How the Kripke structure looks like?
What are the properties that Traces should satisfy for 5 philosophers?

Philosopher may eat only if he has two forks.
Every philosopher eat infinite number of times.
Rene Descartes eat and think infinite number of times.

How to specify the above properties?

Automaton
Traces are languages, so we can try specify properties with automata.
Let Σ be a set of letters (a finite alphabet).

Definition
Automaton is an ordered 5-tuple A = (S, I,F ,R, L) where:

1 S is a finite set of states,
2 I is a set of initial states, I ⊆ S,
3 F is a set of accepting states, F ⊆ S,
4 R is a transition relation R ⊆ S × S,
5 L is a labelling (or interpretation) function L : R → Σ.

Definition
A language of an automaton A is a set of words ⊆ Σ∗ such that they can
be read along the paths from an initial state to a final state.

Automaton
Traces are languages, so we can try specify properties with automata.
Let Σ be a set of letters (a finite alphabet).

Definition
Automaton is an ordered 5-tuple A = (S, I,F ,R, L) where:

1 S is a finite set of states,
2 I is a set of initial states, I ⊆ S,
3 F is a set of accepting states, F ⊆ S,
4 R is a transition relation R ⊆ S × S,
5 L is a labelling (or interpretation) function L : R → Σ.

Definition
A language of an automaton A is a set of words ⊆ Σ∗ such that they can
be read along the paths from an initial state to a final state.

Automaton
Traces are languages, so we can try specify properties with automata.
Let Σ be a set of letters (a finite alphabet).

Definition
Automaton is an ordered 5-tuple A = (S, I,F ,R, L) where:

1 S is a finite set of states,
2 I is a set of initial states, I ⊆ S,
3 F is a set of accepting states, F ⊆ S,
4 R is a transition relation R ⊆ S × S,
5 L is a labelling (or interpretation) function L : R → Σ.

Problem
Traces are infinite words and words accepted by a non-deterministic
automaton are finite.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.

Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.

Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.

Attempt 4: A generalised Buchi automaton.
Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 S is a finite set of states,
2 I is a set of initial states, I ⊆ S,
3 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,
4 R is a transition relation R ⊆ S × S,
5 L is a labelling (or interpretation) function L : R → Σ.

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

Characterisations of languages of infinite words
Let’s try to define automata on infinite words.

Attempt 1: all words with a prefix from a regular language.
Attempt 2: an infinite word is accepted if from some moment a run
stays only in accepting states.
Attempt 3: Buchi automaton, word is accepted if it visits accepting
states infinitely often.
Attempt 4: A generalised Buchi automaton.

Definition
A generalised Büchi automaton is an ordered 5-tuple A = (S, I,F ,R, L)
where:

1 F is a finite set of sets {F1 . . .Fk} of accepting states, Fi ⊆ S,

Definition
A word is accepted if it visits infinitely often states in Fi for every
0 < i ≤ k.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.
7 Number of b is finite and number of a between any two b is not

divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.

2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.
7 Number of b is finite and number of a between any two b is not

divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.

3 Number of b is infinite and number of a between every two b is
divisible by 3.

4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.
7 Number of b is finite and number of a between any two b is not

divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.

4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.
7 Number of b is finite and number of a between any two b is not

divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.

5 Number of b is infinite and only finitely many times the number of a
between every two consecutive b is divisible by 3.

6 Number of b is finite and number of a between every two
consecutive b is divisible by 3.

7 Number of b is finite and number of a between any two b is not
divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.

6 Number of b is finite and number of a between every two
consecutive b is divisible by 3.

7 Number of b is finite and number of a between any two b is not
divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.

7 Number of b is finite and number of a between any two b is not
divisible by 3.

An exercise
Σ = {a, b}.

1 Infinite number of a.
2 Finite number of a.
3 Number of b is infinite and number of a between every two b is

divisible by 3.
4 Number of a between every two b is divisible by 3.
5 Number of b is infinite and only finitely many times the number of a

between every two consecutive b is divisible by 3.
6 Number of b is finite and number of a between every two

consecutive b is divisible by 3.
7 Number of b is finite and number of a between any two b is not

divisible by 3.

Büchi languages

Lemma
Languages recognised by Büchi automata and generalised Büchi
automata are the same.

Lemma
The emptiness problem for Büchi automaton is NL complete.

Lemma
Büchi languages are closed under:

1 union,
2 intersection,
3 complement (We will not do this)
4 determinisation does not work (we need to extend the model).

Büchi languages

Lemma
Languages recognised by Büchi automata and generalised Büchi
automata are the same.

Lemma
The emptiness problem for Büchi automaton is NL complete.

Lemma
Büchi languages are closed under:

1 union,
2 intersection,
3 complement (We will not do this)
4 determinisation does not work (we need to extend the model).

Büchi languages

Lemma
Languages recognised by Büchi automata and generalised Büchi
automata are the same.

Lemma
The emptiness problem for Büchi automaton is NL complete.

Lemma
Büchi languages are closed under:

1 union,
2 intersection,
3 complement (We will not do this)
4 determinisation does not work (we need to extend the model).

Kripke vs Büchi

Question
How to test if a system given via a Kripke structure satisfies a property
given by a Büchi automaton?

Lemma
For a given Kripke structure S there is a Büchi automaton A such that:

L(A) = TR(S).

So we can use intersection and test for non-emptiness.

Kripke vs Büchi

Question
How to test if a system given via a Kripke structure satisfies a property
given by a Büchi automaton?

Lemma
For a given Kripke structure S there is a Büchi automaton A such that:

L(A) = TR(S).

So we can use intersection and test for non-emptiness.

Kripke vs Büchi

Question
How to test if a system given via a Kripke structure satisfies a property
given by a Büchi automaton?

Lemma
For a given Kripke structure S there is a Büchi automaton A such that:

L(A) = TR(S).

So we can use intersection and test for non-emptiness.

(LTL) Linear temporal logic.

Automata are not very convenient to write, it would be better to have
some query language.

Definition
An LTL formula φ is generated according a following rules:

φ→ true|pi ∈ AP|φ1 ∧ φ2|¬φ1|Xφ1|φ1Uφ2

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.

2 It would be good to have a possibility to say that x is an immediate
consequence of y .

3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .

3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.

4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.

5 It should allow to say that if something is happening then later
something different must happen.

6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.

6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.

7 It should allow to say that before something happens another thing
holds.

8 It should allow to say that some property holds after something
happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.

8 It should allow to say that some property holds after something
happens.

Automata are not very convenient to write, it would be better to have
some query language.

What are good properties of a query language?
1 It should be closed under Boolean operations.
2 It would be good to have a possibility to say that x is an immediate

consequence of y .
3 It should allow to say something will happen eventually.
4 It should allow to say something is always satisfied.
5 It should allow to say that if something is happening then later

something different must happen.
6 It should allow to say that something is happening infinitely often.
7 It should allow to say that before something happens another thing

holds.
8 It should allow to say that some property holds after something

happens.

Automata are not very convenient to write, it would be better to have
some query language.

Definition
An LTL formula φ is generated according a following rules:

φ→ true|pi ∈ AP|φ1 ∧ φ2|¬φ1|Xφ1|φ1Uφ2

Semantics of LTL
p1 p2 p1p2 p2 p3 p2 p1p3 . . .

true ⇐⇒ true.
p1 ⇐⇒ p1 holds at position 0.
p2 ⇐⇒ p2 holds at position 0.
p1 ∧ p2 ⇐⇒ p1 and p2 holds at position 0.
¬p2 ⇐⇒ p2 does not hold at position 0.
Xp2 ⇐⇒ p2 holds at position 1.
XX (p1 ∧ p2) ⇐⇒ p2 and p1 holds at position 2.
¬(¬p1 ∧ ¬p2)Up3
⇐⇒ there is 0 ≤ j such that p3 holds at position j and ¬(¬p1 ∧
¬p2) holds for all 0 ≤ i < j .

Exercise
How to express:

1 Finally there will be a state in which p2 holds.

Fp2
2 Every state along the path satisfy p2.

Gp2

3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state
with index 4.

4 If in some state p1 is satisfied then in the future p2 has to be
satisfied.

Exercise
How to express:

1 Finally there will be a state in which p2 holds.
Fp2

2 Every state along the path satisfy p2.

Gp2

3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state
with index 4.

4 If in some state p1 is satisfied then in the future p2 has to be
satisfied.

Exercise
How to express:

1 Finally there will be a state in which p2 holds.
Fp2

2 Every state along the path satisfy p2.

Gp2
3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state

with index 4.
4 If in some state p1 is satisfied then in the future p2 has to be

satisfied.

Exercise
How to express:

1 Finally there will be a state in which p2 holds.
Fp2

2 Every state along the path satisfy p2.
Gp2

3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state
with index 4.

4 If in some state p1 is satisfied then in the future p2 has to be
satisfied.

Exercise
How to express:

1 Finally there will be a state in which p2 holds.
Fp2

2 Every state along the path satisfy p2.
Gp2

3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state
with index 4.

4 If in some state p1 is satisfied then in the future p2 has to be
satisfied.

Exercise
How to express:

1 Finally there will be a state in which p2 holds.
Fp2

2 Every state along the path satisfy p2.
Gp2

3 If p2 holds at the state with index 2 then p3 ∨ p1 holds in the state
with index 4.

4 If in some state p1 is satisfied then in the future p2 has to be
satisfied.

How to verify LTL formula?

Lemma
Let words(φ) denotes a set of words that satisfy the LTL formula φ. For a
given LTL formula φ one can construct an exponential size Büchi
automaton B recognising exactly the same set of words, i.e.

L(B) = words(φ)

1 Build an automaton A for the Kripke structure.
2 Build an automaton B for φ an LTL formula,

or build an automaton B for ¬φ.
3 Check non-emptiness of L(A) ∩ L(B).

How to verify LTL formula?

Lemma
Let words(φ) denotes a set of words that satisfy the LTL formula φ. For a
given LTL formula φ one can construct an exponential size Büchi
automaton B recognising exactly the same set of words, i.e.

L(B) = words(φ)

1 Build an automaton A for the Kripke structure.
2 Build an automaton B for φ an LTL formula,

or build an automaton B for ¬φ.
3 Check non-emptiness of L(A) ∩ L(B).

Bibliography
Units from 3 to 8 from (ordered by date)
https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ/
videos
There are a lot of videos first one is ”A problem in concurrency”.

https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ/videos
https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ/videos

