
VASS reachability



Preparations



Solution of linear equations in N
How to describe a set of solutions of a system of linear equations?

We say that a vector ~x ≤ ~y if ~x(i) ≤ ~y(i) for all i .

Definition
We say that ~x ∈ Nd is a minimal solution of a system A~x = 0 if

1 ~x is a solution A~x = 0.
2 for any nontrivial solution ~y of A~y = 0 holds ~y 6≤ ~x .

A set of minimal solutions of a system of linear equations we called a
Hilbert basis of the set of solutions.

Lemma
Every solution A~x = 0 can be expressed as a sum of minimal solutions.

Lemma
Hilbert basis is finite.
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Bound on the element of the basis.
Let r be a rank of a matrix A and ‖M‖1 = sup~x∈Hilbert(A~x=0)‖~x‖∞.
Let ‖A‖1,∞ = supi{

∑
j |A(i , j)|}.

Theorem

‖M‖1 ≤ (1 + ‖A‖1,∞)r

Proof.
Minimal solutions of linear Diophantine systems: bounds and algorithms
Loic Pottier.



Lemma
Let M∈ Nd be a set of solutions of A~x = ~b. There are two sets B and P
such that any ~x ∈M can be expressed as ~x1 + ~x2 where ~x1 ∈ B and ~x2 is
a sum of elements of P.
and

∀~x∈B∪P‖~x‖1 ≤ (2 + ‖A‖1,∞ + ‖b‖∞)m

where m is equal to the number of rows in the matrix A.

Proof.
Minimal solutions of linear Diophantine systems: bounds and algorithms
Loic Pottier.



VASS reachability
INPUT: The VASS V and two configurations i and f.
QUESTION: If there is a run form i to f in the VASS V .



The general concept.
We have a set of conditions.

1 Check the conditions.
2 If the conditions are satisfied then the reachability holds.
3 If they fail in a certain way then the reachability does not hold.
4 otherwise, there is a procedure to simplify the net, and go to point 1.

The simplification process has to terminate.



Three steps.

1 First, we formulate the conditions in a simplified versions 1 and 2.
Next, the final third version.

2 For each version we prove that the conditions implies the reachability.
3 For the third version we define the simplification procedures.
4 Next we define a well founded order on VASS-es such that the

simplification procedure returns a net smaller with respect to the
order.



Z runs.

Z semantics for VASS
Suppose VASS is d-dimensional. A set of configurations is equal Q × Zd

and there is a step from p, ~v1 to q ~v2 if there is a transition in the VASS
form p to q labelled with ~v2 − ~v1.

Z-reachability
There is a Z-run from p, ~v1 to q, ~v2 if the pair of configurations (p, ~v1) ,
(q, ~v2) is in the transitive closure of the step relation.
We denote it by p, ~v1 ⇒Z q, ~v2

Lemma
p, ~v1 ⇒Z q, ~v2 iff there is a solution of the state equation for
configurations (p, ~v1), (q, ~v2).



The step one.
Let i = p, ~v and f = q, ~v ′.

Θ1

For every m ∈ N there is a Z run from p, ~v1 to q, ~v2 that uses every
transition at least m times.

Θ2

There are vectors ∆ and ∆′ strictly positive on all coordinates such that
there are runs

p, ~v ⇒ p, ~v + ∆

q, ~v ′ + ∆′ ⇒ q, ~v ′



The step two.

split of the vector
Let D be the set of dimensions. We split it to two sets constrained and
unconstrained C and C̄ . By ~v ⊕C ~̄v we a sum of vectors ~v and ~̄v where ~v
is zero outside of C and ~̄v is zero outside C̄ .

Partially unconstrained reachability
Input: a VASS (Q, E ), two subsets C , C ′ ⊆ D, (p, ~v) ∈ Q × NC and
(q, ~v) ∈ Q × NC ′ .
Question: does there exist a run from (p, ~v ⊕ ~̄v) to (p, ~v ′ ⊕ ~̄v ′), for some
~̄v ∈ NC̄ , ~̄v ′ ∈ NC̄ ′?

We do not assume C = C ′.
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The step two.
Let C , C ′ ⊆ D, ~v ∈ NC , and ~v ′ ∈ NC ′

By N≥m we mean the set of natural number greater than m.
By ⇒C we mean Z-run such that intermediate configurations are non-
negative on coordinates form the set C .

Θ1

For every m ∈ N there is a Z run from p, ~v ⊕ ~̄v to q, ~v ′ ⊕ ~̄v ′ such that

~̄v ∈ NC̄
≥m and ~̄v ′ ∈ NC̄ ′

≥m ,
every transition at least m times.

Θ2

There are vectors ∆ ∈ NC
≥1, ∆̄ ∈ ZC̄ , ∆′ ∈ NC ′

≥1, and ∆̄′ ∈ ZC̄ ′ such that

p, ~v ⊕ ~̄0⇒Ci p, ~v ⊕ ~̄0 + ∆⊕ ∆̄

q, ~v ′ ⊕ ~̄0 + ∆′ ⊕ ∆̄′ ⇒C ′
i

p, ~v ′ ⊕ ~̄0



The step three
By a component we mean a d-dimensional VASS (Q, E ) together with the
following data:

1 initial and final state q, q′ ∈ Q,
2 a subset of rigid coordinates DC̄ ,
3 every transition is constant on rigid coordinates,
4 rigid vector ~̄v ∈ NDC̄

5 two partitions of D \ DC̄ to DC , DC̄ and DC ′ , DC̄ ′ ,
6 initial and final vectors ~v ∈ NDC and ~v ′ ∈ NDC′ .

The generalized VASS
It is a finite sequence of d-dimensional components Comi and a sequence
of edges going from final state of Comi to the initial state Comi+1.



The step three.

generalized reachability
Input: a generalized VASS Com1e1Com2e2Com3e3 . . . Coml .
If there is a sequence of pairs of vectors ~̄vi ,∈ NDC̄i , and ~̄v ′i ,∈ N

DC̄′
i . such

that there is a run of the following form

q1, ~v1 ⊕ ~̄v1 ⊕ ~̄v1 ⇒ q′1, ~v ′1 ⊕ ~̄v ′1 ⊕ ~̄v1
e1−→

q2, ~v2 ⊕ ~̄v2 ⊕ ~̄v2 ⇒ q′2, ~v ′2 ⊕ ~̄v ′2 ⊕ ~̄v2
e2−→

. . .

ql , ~vl ⊕ ~̄vl ⊕ ~̄vl ⇒ q′l , ~v ′l ⊕
~̄v ′l ⊕ ~̄vl



The step three.

Θ1

For every m ∈ N there are configurations ~̄vi ∈ N
DC̄i
≥m, and ~̄v ′i N

DC̄i
≥m such that

there is a Z -run of a form of the generalized run, where transition in the
components Comi are used at least m times.

Θ2

For every i ∈ {1 . . . l} there are vectors ∆̄i ∈ NDC̄i and ∆̄′i ∈ N
DC̄′

i such
that

qi , ~vi ⊕ ~̄0i ⊕ ~̄vi ⇒DCi
qi , ~vi + ∆i ⊕ ~̄0i + ∆̄i ⊕ ~̄vi .

q′i , ~v ′i + ∆′i ⊕ ~̄0i + ∆̄′i ⊕ ~̄v ′i ⇒DC′
i

q′i , ~vi ⊕ ~̄0′i ⊕ ~̄vi .



The order on generalized nets.

component
For a component its rank is a triple (d − |DC̄ |, |E |, |DC̄ |+ |DC̄ ′|) ∈ N3.
We order ranks lexicographically.

generalized VASSt
For a generalized VASS its rank is a multiset of ranks of its components,
ordered lexicographically.

The order on generalized VASS is well founded.

Lemma
All refinement operations are reducing the rank of the generalized VASS.



Proof
Look to the notes and paper:

1 https:
//www.mimuw.edu.pl/˜sl/teaching/16_17/Kosaraju.pdf

2 http://delivery.acm.org/10.1145/810000/802201/
p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%
20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%
2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=
1527858390_f66d35b467337d81ea2d7b79cbeeb15b

https://www.mimuw.edu.pl/~sl/teaching/16_17/Kosaraju.pdf
https://www.mimuw.edu.pl/~sl/teaching/16_17/Kosaraju.pdf
http://delivery.acm.org/10.1145/810000/802201/p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1527858390_f66d35b467337d81ea2d7b79cbeeb15b
http://delivery.acm.org/10.1145/810000/802201/p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1527858390_f66d35b467337d81ea2d7b79cbeeb15b
http://delivery.acm.org/10.1145/810000/802201/p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1527858390_f66d35b467337d81ea2d7b79cbeeb15b
http://delivery.acm.org/10.1145/810000/802201/p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1527858390_f66d35b467337d81ea2d7b79cbeeb15b
http://delivery.acm.org/10.1145/810000/802201/p267-kosaraju.pdf?ip=193.0.96.15&id=802201&acc=ACTIVE%20SERVICE&key=6AF5E6E07E3D4A13%2EF25B909119C68FF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1527858390_f66d35b467337d81ea2d7b79cbeeb15b

