
Subclasses of Petri Nets



Questions and tools.
We focus on analysis of systems modelled with Petri nets.

Most important questions:
1 Place coverability,
2 Reachability,
3 Liveness,
4 Death of a transition,
5 Deadlock-freeness.

Most important tools:
1 Coverability: ExpSpace complete,
2 Boundedness: ExpSpace complete,
3 Reachability: at least Tower-Hard.



Two solutions:

Do not try to be precise (approximations).
1 Place invariant.
2 State equation.
3 Continuous reachability.
4 Traps and siphons.

Do not try to be general (sub-classes).
1 S-systems
2 T-systems
3 Free-choice Petri Nets.
4 Conflict free Petri nets.
5 One counter systems.
6 2-dimensional VASS.
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Today Petri Nets do not have numbers onarcs



S-system

Definition
A net is an S-net if every transition consumes and produces exactly one
token.

1 A number of tokens does not change.
2 Bunch of asynchronous automata.



S-systems

Lemma
If the graph of S-system N is strongly connected and the initial marking
m0 marks at least one place, then the system is live.

Let m be a marking, by:
m(X ) we denote the marking restricted to the subset of places X .
In addition, by |m(X )| we denote the number of tokens used by the
marking m restricted to X i.e.

∑
q∈X |m(q)|.

Lemma
Let a graph of the S − net N = (P,T) is strongly connected and let
|m0(P)| = |m′0(P)| where m0,m′0 are two markings. Then
m′0 ∈ Reach[m0〉.
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Shuffle of languages.

Let Σ be a finite alphabet, and δ is a labeling function going from the set
of transitions to Σ.

A question.
Given a finite word, what is the complexity of checking if this word
represents a valid run of the S − net?

The answer:
1 It is in NP as we may specify the run.
2 With epsilon transitions it is NP − hard .

3 What without epsilons? (Homework).
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T-systems

Definition
A net is a T-net if for every place there is exactly one input arc and
exactly one output arc.

Definition
By a circuit we mean a simple cycle in the graph of the net. Let R
be a set of places that are on the circuit γ. Then m(γ) def= m(R).
We say that the circuit γ is marked if |m(γ)| > 0.
A circuit of a system is initially marked if it is marked at the initial
marking.

Lemma
Let γ be a circuit of a T − net (N ,m0). For every reachable marking m
holds |m(γ)| = |m0(γ)|.
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T-systems

Theorem
A T-system is live iff every circuit is initially marked.

Theorem
Let (N ,m0) be a strongly connected T-system. The following statements
are equivalent:

1 (N ,m0) is live.
2 (N ,m0) is deadlock-free.
3 (N ,m0) has an infinite run.
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T-systems
Definition
A N ,m0 is b-bounded iff for every reachable marking m and every place
p the number of tokens in m(p) 6 b.

Lemma
A live T -system N ,m0 is b-bounded iff for every place s there is a circuit
γ which contains s and satisfies |m0(γ)| 6 b.

Lemma
Let (N ,m0) be a live T-system.

1 A place q of (N ,m0) is bounded iff it belongs to some circuit of N .
2 If a place s of (N ,m0) is bounded, then its bound is equal to

min{|m0(γ)| : γ is a circuit of N containing s}

3 (N ,m0) is bounded iff N is strongly connected.
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T-systems

Genrich’s Theorem
Let N be a strongly connected T-system having at least one place and
one transition. There exists a marking m0 of N such that (N ,m0) is a
live and 1-bounded system.



Siphons and traps
We introduce a new notation:

1 •t for t ∈ T is a set of places from which t consumes tokens.
2 t• for t ∈ T is a set of places to which t produces tokens.
3 •p for p ∈ P is a set of transition that produce tokens in p.
4 p• for p ∈ P is a set of transitions that consumes tokens from p.
1 •T for T ⊆ T is

⋃
t∈T

•t.
2 T • for T ⊆ T is

⋃
t∈T t•.

3 •P for P ⊆ P is
⋃

p∈P
•p.

4 P• for P ⊆ P is
⋃

p∈P p•.



Siphons and traps
We introduce a new notation:

Definition
A set of places S is a siphon if •S ⊆ S•.

Definition
A set of places S is a trap if S• ⊆ •S.



Siphons and traps

Lemma
Every unmarked siphon remains unmarked.

Lemma
Every marked trap remains marked.

Lemma
Every nonempty siphon of a live system is initially marked.
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Siphons and traps

Lemma
Let (N ,m0) be a deadlocked system i.e., no transition can be fired from
m0. Then the set R of places of N unmarked at m0 is a proper siphon.

Lemma
If every proper siphon of a system includes an initially marked trap, then
the system is deadlock-free.

Lemma
1 The union of siphons (traps) is a siphon (trap).
2 Every siphon includes a unique maximal trap with respect to the set

inclusion (which maybe empty).
3 A siphon includes a marked trap iff its maximal trap is marked.
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Free-choice

Definition
A net N = (P,T) is free-choice if for every two places p, q either
p• ∩ q• = ∅ or p• = q•.

Lemma
A net is a free-choice iff for every two transitions t, s either •t ∩ •s = ∅
or •t = •s.

Commoner’s Theorem
A free-choice system is live if and only if every proper siphon includes an
initially marked trap.



Free-choice

Definition
A net N = (P,T) is free-choice if for every two places p, q either
p• ∩ q• = ∅ or p• = q•.

Lemma
A net is a free-choice iff for every two transitions t, s either •t ∩ •s = ∅
or •t = •s.

Commoner’s Theorem
A free-choice system is live if and only if every proper siphon includes an
initially marked trap.



Free-choice

Definition
A net N = (P,T) is free-choice if for every two places p, q either
p• ∩ q• = ∅ or p• = q•.

Lemma
A net is a free-choice iff for every two transitions t, s either •t ∩ •s = ∅
or •t = •s.

Commoner’s Theorem
A free-choice system is live if and only if every proper siphon includes an
initially marked trap.



Free-choice

Commoner’s Theorem
A free-choice system is live if and only if every proper siphon includes an
initially marked trap.

Lemma
Let N = (P,T) be a free-choice net. Suppose R ⊆ P and Q ⊆ R is a
maximal trap included in R. Then there is an order on O in places in
R \ Q such that for any marking m, |m(Q)| = 0 holds:

1 If there is a transition in R• which is fireable then there is
m′ ∈ Reach[m〉 such that |m′(Q)| = 0 and m′ < m in the
lexicographic order induced by O.

2 If R is a siphon such that R• 6⊆ Dead(m) then there is
m′ ∈ Reach[m〉 such that |m′(Q)| = 0 and m′ < m in the
lexicographic order induced by O.



Lemma
Non-liveness in free-choice nets is in NP.

1 guess a set of places S;
2 check if S is a siphon;
3 if S is a siphon, then compute the maximal trap Q ⊆ S;
4 if |i(Q)| = 0, then answer “non-live”.
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The algorithm computing maximal trap included in a given
set S.

Input: A net N = (P,T) and a set S ⊆ P
Output: X ⊆ S which is the maximal trap contained in S.
Initialization: X = S.
begin
while there exists s ∈ X and t ∈ s• such that t 6∈ •X do
X := X \ {s}
endwhile
end
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Lemma
Non-liveness in free-choice nets is NP-hard.

Proof
1 We encode the satisfiability of 3 CNF problem.

2 One state for every variable.
3 One state for every literal in the formula.
4 One state to indicate that valuation is False.
5 For every variable two transitions to chose a valuation.
6 For every clause there is a transition which can be fired if the clause

is valuated to false and it marks the state False
7 One transition which consumes from False and restarts the net.
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A characterisation of minimal siphons

Definition ( A cluster in a free-choice net N .)
Let x be a node (place of transition) of a net. The cluster of x , denoted
by [x ], is a minimal set of nodes such that

x ∈ [x ]
if a place s belongs to [x ] then s• ⊆ [x ]
if a transition t belongs to [x ] then •t ⊆ [x ]

Lemma
Clusters form a partition of the nodes of the N .
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A characterisation of minimal siphons

Lemma
A nonempty set of places S ⊂ P is a minimal siphon in the net
N = (P,T) if and only if

1 every cluster C of the N contains at most one place of S, and
2 the graph of a subnet generated by S ∪ •S is strongly connected.

Proof (=⇒)

1 a) Let S be a siphon and C a cluster such that |C ∩ S| > 1 then we
can shrink the siphon.

2 b) The graph of a subnet generated by S ∪ •S has to be
strongly-connected.
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can shrink the siphon.
2 b) S has to be strongly connected.

Let (x , y) be an arbitrary arc in NS = (S, •S), we prove that there is
a path from y to x in NS. Define

X = {s ∈ S| there exists a path from s to x in NS}.

X 6= ∅.
X is a siphon.
So X = S.
Thus S is strongly connected.
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1 S is a siphon,

due to strong connectivity.

2 S is a minimal siphon.

Take a smaller siphon and prove that it is not
a siphon.
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Books

1 S-sytems, T-systems, siphons and traps:
Free Choice Petri Nets, chapters 3 and 4
https://www7.in.tum.de/˜esparza/fcbook-middle.pdf

2 Commoner’s Theorem:
A concise proof of Commoner’s theorem.
http://www.cs.vsb.cz/jancar/pnn95.pdf

https://www7.in.tum.de/~esparza/fcbook-middle.pdf
http://www.cs.vsb.cz/jancar/pnn95.pdf

