Subclasses of Petri Nets



Questions and tools.

We focus on analysis of systems modelled with Petri nets.

Most important questions:
© Place coverability,

© Reachability,

© Liveness,

@ Death of a transition,
© Deadlock-freeness.

Most important tools:
@ Coverability: ExpSpace complete,
@ Boundedness: ExpSpace complete,
© Reachability: at least Tower-Hard.




Two solutions:

Do not try to be precise (approximations).
@ Place invariant.
@ State equation.
© Continuous reachability.

@ Traps and siphons.

Do not try to be general (sub-classes).
@ S-systems
© T-systems
© Free-choice Petri Nets.
@Q Conflict free Petri nets.
© One counter systems.
@ 2-dimensional VASS.
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Today Petri Nets do not have numbers on
arcs



S-system

Definition
A net is an S-net if every transition consumes and produces exactly one
token.

@ A number of tokens does not change.

@ Bunch of asynchronous automata.



S-systems

Lemma

If the graph of S-system N is strongly connected and the initial marking
mq marks at least one place, then the system is live.
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S-systems

Lemma

If the graph of S-system N is strongly connected and the initial marking
mq marks at least one place, then the system is live.

Let m be a marking, by:
e m(X) we denote the marking restricted to the subset of places X.

e In addition, by |m(X)| we denote the number of tokens used by the
marking m restricted to X i.e. - cx [m(q)|.

Lemma

Let a graph of the S — net N' = (P, T) is strongly connected and let
|mo(P)| = |my(P)| where mo, myy are two markings. Then
mg € Reach[myg).
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of transitions to ¥. J
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Let > be a finite alphabet, and ¢ is a labeling function going from the set
of transitions to ¥.
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A question.

Given a finite word, what is the complexity of checking if this word
represents a valid run of the S — net?

The answer:
@ Itis in NP as we may specify the run.
@ With epsilon transitions it is NP — hard.
© What without epsilons? (Homework).
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Definition
A net is a T-net if for every place there is exactly one input arc and
exactly one output arc.
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Definition
@ By a circuit we mean a simple cycle in the graph of the net. Let R
be a set of places that are on the circuit 7. Then m(y) £ m(R).

o We say that the circuit v is marked if |m(y)| > 0.
@ A circuit of a system is initially marked if it is marked at the initial
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T-systems

Definition
A net is a T-net if for every place there is exactly one input arc and
exactly one output arc.

Definition
@ By a circuit we mean a simple cycle in the graph of the net. Let R
be a set of places that are on the circuit 7. Then m(y) £ m(R).
o We say that the circuit v is marked if |m(y)| > 0.

@ A circuit of a system is initially marked if it is marked at the initial
marking.

Lemma

Let ~ be a circuit of a T — net (N, mg). For every reachable marking m
holds |m(y)| = [mo(7)].




T-systems

A T-system is live iff every circuit is initially marked. I
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T-systems

Theorem
A T-system is live iff every circuit is initially marked.

Theorem

Let (N, mo) be a strongly connected T-system. The following statements
are equivalent:

Q@ (N, mg) is live.
Q (N, mp) is deadlock-free.
© (N, mg) has an infinite run.




T-systems

Definition
A N, mg is b-bounded iff for every reachable marking m and every place
p the number of tokens in m(p) < b.

Lemma
A live T-system N, mg is b-bounded iff for every place s there is a circuit
v which contains s and satisfies |mg()| < b.

v




T-systems

Definition
A N, mg is b-bounded iff for every reachable marking m and every place
p the number of tokens in m(p) < b.

Lemma

A live T-system N, mg is b-bounded iff for every place s there is a circuit
v which contains s and satisfies |mg()| < b.

Lemma

Let (N, mg) be a live T-system.
@ A place q of (N, mg) is bounded iff it belongs to some circuit of N.
@ If a place s of (N, mg) is bounded, then its bound is equal to

min{|mo(¥)| : v is a circuit of N containing s}

© (N, mg) is bounded iff N is strongly connected.



T-systems

Genrich's Theorem

Let AV be a strongly connected T-system having at least one place and
one transition. There exists a marking mg of A such that (N, mg) is a
live and 1-bounded system.




Siphons and traps

We introduce a new notation:
@ °tforteTis a set of places from which t consumes tokens.
@ t* fort € T is a set of places to which t produces tokens.
© °pfor p € Pis a set of transition that produce tokens in p.

@ p°® for p € P is a set of transitions that consumes tokens from p.

Q@ °Tfor T CTisUer °t.
Q@ T°for T CTis Uper t*.
@ °*PforPCPis UpeP °p.
Q P*for PCPis Upepp®.



Siphons and traps

We introduce a new notation:

A set of places S is a siphon if °*S C S°.

*S.

A set of places S is a trap if S® C I
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Siphons and traps

Every unmarked siphon remains unmarked. I
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Siphons and traps

Every unmarked siphon remains unmarked.

Every marked trap remains marked.
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Siphons and traps

Every unmarked siphon remains unmarked.

Every marked trap remains marked.

Every nonempty siphon of a live system is initially marked.
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Siphons and traps

Lemma

Let (N, mg) be a deadlocked system i.e., no transition can be fired from
mg. Then the set R of places of N' unmarked at mq is a proper siphon.




Siphons and traps

Lemma

Let (N, mg) be a deadlocked system i.e., no transition can be fired from
mg. Then the set R of places of N' unmarked at mq is a proper siphon.

v

Lemma

If every proper siphon of a system includes an initially marked trap, then
the system is deadlock-free.




Siphons and traps

Lemma

Let (N, mg) be a deadlocked system i.e., no transition can be fired from
mq. Then the set R of places of N unmarked at mq is a proper siphon.

Lemma

If every proper siphon of a system includes an initially marked trap, then
the system is deadlock-free.

Lemma
@ The union of siphons (traps) is a siphon (trap).

@ Every siphon includes a unique maximal trap with respect to the set
inclusion (which maybe empty).

© A siphon includes a marked trap iff its maximal trap is marked.




Free-choice

A net N = (P, T) is free-choice if for every two places p, g either
pomqozmorp.:qo.
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Free-choice

Definition
A net N = (P, T) is free-choice if for every two places p, g either
pomq.:(z)orpo:qo‘

Lemma

A net is a free-choice iff for every two transitions t,s either *tN ®s =10
or °t= °s.




Free-choice

Definition
A net N = (P, T) is free-choice if for every two places p, g either
p'ﬂq':(borp':q'.

Lemma
A net is a free-choice iff for every two transitions t,s either *tN ®s =10
or °t= °s.

Commoner's Theorem
A free-choice system is live if and only if every proper siphon includes an
initially marked trap.




Free-choice

Commoner's Theorem

A free-choice system is live if and only if every proper siphon includes an
initially marked trap.

Lemma

Let N = (P, T) be a free-choice net. Suppose RCP and Q C R is a
maximal trap included in R. Then there is an order on O in places in
R\ Q such that for any marking m, |m(Q)| = 0 holds:
© /f there is a transition in R® which is fireable then there is
m' € Reachm) such that |m'(Q)| =0 and m" < m in the
lexicographic order induced by O.
@ If R is a siphon such that R®*  Dead(m) then there is
m’ € Reach[m) such that |m'(Q)| =0 and m" < m in the
lexicographic order induced by O.




Non-liveness in free-choice nets is in NP.

«O>» «Fr « =

Er» «E>»
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Lemma
Non-liveness in free-choice nets is in NP.

© guess a set of places S;
@ check if S is a siphon;
@ if S is a siphon, then compute the maximal trap Q C S;

Q if [i(Q)| =0, then answer “non-live".
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set S.



The algorithm computing maximal trap included in a given
set S.

Input: A net = (P,T) and aset SCP

Output: X C S which is the maximal trap contained in S.
Initialization: X = S.

begin

while there exists s € X and t € s® such that t € *X do
X:=X\{s}

endwhile

end




Lemma
Non-liveness in free-choice nets is NP-hard.

Proof
@ We encode the satisfiability of 3 CNF problem.
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@ One state for every variable.
© One state for every literal in the formula.

@ One state to indicate that valuation is False.




Lemma
Non-liveness in free-choice nets is NP-hard.

Proof
@ We encode the satisfiability of 3 CNF problem.
@ One state for every variable.
© One state for every literal in the formula.
@ One state to indicate that valuation is False.
© For every variable two transitions to chose a valuation.

Q@ For every clause there is a transition which can be fired if the clause
is valuated to false and it marks the state False

@ One transition which consumes from False and restarts the net.




A characterisation of minimal siphons

Definition (A cluster in a free-choice net \V.)

Let x be a node (place of transition) of a net. The cluster of x, denoted
by [x], is @ minimal set of nodes such that

® x € [x]
e if a place s belongs to [x] then s® C [x]

o if a transition t belongs to [x] then °t C [x]




A characterisation of minimal siphons

Definition ( A cluster in a free-choice net V")

Let x be a node (place of transition) of a net. The cluster of x, denoted
by [x], is @ minimal set of nodes such that

® x € [x]
e if a place s belongs to [x] then s® C [x]

o if a transition t belongs to [x] then °t C [x]

Lemma
Clusters form a partition of the nodes of the N .




A characterisation of minimal siphons

Lemma
A nonempty set of places S C IP is a minimal siphon in the net

N = (P, T) if and only if
@ every cluster C of the N contains at most one place of S, and
@ the graph of a subnet generated by SU °S is strongly connected.

Proof (=)
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A characterisation of minimal siphons

Lemma

A nonempty set of places S C IP is a minimal siphon in the net

N = (P, T) if and only if
@ every cluster C of the N contains at most one place of S, and
@ the graph of a subnet generated by SU °S is strongly connected.

Proof (=)
@ a) Let S be a siphon and C a cluster such that [CN'S| > 1 then we
can shrink the siphon.
@ b) The graph of a subnet generated by SU °S has to be
strongly-connected.




A characterisation of minimal siphons

Proof
Q a) Let S be a siphon and C a cluster such that [CN'S| > 1 then we
can shrink the siphon.
@ b) S has to be strongly connected.

o Let (x,y) be an arbitrary arc in Ng = (S, °S), we prove that there is
a path from y to x in As. Define

X = {s € S| there exists a path from s to x in Ns}.
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A characterisation of minimal siphons

Proof
Q a) Let S be a siphon and C a cluster such that [CN'S| > 1 then we
can shrink the siphon.
@ b) S has to be strongly connected.

o Let (x,y) be an arbitrary arc in Ng = (S, °S), we prove that there is
a path from y to x in Ng. Define

X = {s € S| there exists a path from s to x in Ns}.

X £ .

X is a siphon.

So X =S.

Thus S is strongly connected.




A characterisation of minimal siphons

Lemma
A nonempty set of places S C P is a siphon in the net N' = (P, T) if and
only if

@ every cluster C of the N contains at most one place of S, and
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Proof (<)
@ S is a siphon,

@ S is a minimal siphon.
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Lemma
A nonempty set of places S C P is a siphon in the net N' = (P, T) if and
only if

@ every cluster C of the N contains at most one place of S, and

@ the graph of a subnet generated by SU °S is strongly connected.

Proof (<)
© S is a siphon, due to strong connectivity.
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A characterisation of minimal siphons

Lemma
A nonempty set of places S C P is a siphon in the net N' = (P, T) if and
only if

@ every cluster C of the N contains at most one place of S, and

@ the graph of a subnet generated by SU °S is strongly connected.

Proof (<)
© S is a siphon, due to strong connectivity.

@ S is a minimal siphon. Take a smaller siphon and prove that it is not
a siphon.




Books

@ S-sytems, T-systems, siphons and traps:
Free Choice Petri Nets, chapters 3 and 4
https://www7.in.tum.de/~esparza/fcbook-middle.pdf

@ Commoner’s Theorem:
A concise proof of Commoner’s theorem.
http://www.cs.vsb.cz/jancar/pnn95.pdf


https://www7.in.tum.de/~esparza/fcbook-middle.pdf
http://www.cs.vsb.cz/jancar/pnn95.pdf

