Subclasses of Petri Nets

Questions and tools.

We focus on analysis of systems modelled with Petri nets.

Most important questions:

- Place coverability,
- Reachability,
- Liveness,
- Death of a transition,
- Deadlock-freeness.

Most important tools:

- Coverability: ExpSpace complete,
- ② Boundedness: ExpSpace complete,
- Reachability: at least Tower-Hard.

Two solutions:

Do not try to be precise (approximations).

- Place invariant.
- State equation.
- Continuous reachability.
- Traps and siphons.

Do not try to be general (sub-classes).

- S-systems
- 2 T-systems
- Free-choice Petri Nets.
- Conflict free Petri nets.
- One counter systems.
- O 2-dimensional VASS.

Two solutions:

Do not try to be precise (approximations).

- Place invariant.
- State equation.
- Continuous reachability.
- Traps and siphons.

Do not try to be general (sub-classes).

- S-systems
- 2 T-systems
- Free-choice Petri Nets.
- Conflict free Petri nets.
- One counter systems.
- 2-dimensional VASS.

Today Petri Nets do not have numbers on arcs

S-system

Definition

A net is an *S-net* if every transition consumes and produces exactly one token.

- A number of tokens does not change.
- Bunch of asynchronous automata.

S-systems

Lemma

If the graph of S-system \mathcal{N} is strongly connected and the initial marking m_0 marks at least one place, then the system is live.

S-systems

Lemma

If the graph of S-system \mathcal{N} is strongly connected and the initial marking m_0 marks at least one place, then the system is live.

Let m be a marking, by:

- m(X) we denote the marking restricted to the subset of places X.
- In addition, by |m(X)| we denote the number of tokens used by the marking m restricted to X i.e. $\sum_{q \in X} |m(q)|$.

S-systems

Lemma

If the graph of S-system \mathcal{N} is strongly connected and the initial marking m_0 marks at least one place, then the system is live.

Let m be a marking, by:

- m(X) we denote the marking restricted to the subset of places X.
- In addition, by |m(X)| we denote the number of tokens used by the marking m restricted to X i.e. $\sum_{q \in X} |m(q)|$.

Lemma

Let a graph of the S- net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ is strongly connected and let $|m_0(\mathbb{P})|=|m_0'(\mathbb{P})|$ where m_0,m_0' are two markings. Then $m_0'\in Reach[m_0\rangle$.

Let Σ be a finite alphabet, and δ is a labeling function going from the set of transitions to Σ .

Let Σ be a finite alphabet, and δ is a labeling function going from the set of transitions to Σ .

A question.

Given a finite word, what is the complexity of checking if this word represents a valid run of the S-net?

Let Σ be a finite alphabet, and δ is a labeling function going from the set of transitions to Σ .

A question.

Given a finite word, what is the complexity of checking if this word represents a valid run of the S-net?

The answer:

- 1 It is in NP as we may specify the run.
- ② With epsilon transitions it is NP hard.

Let Σ be a finite alphabet, and δ is a labeling function going from the set of transitions to Σ .

A question.

Given a finite word, what is the complexity of checking if this word represents a valid run of the S-net?

The answer:

- 1 It is in NP as we may specify the run.
- ② With epsilon transitions it is NP hard.
- What without epsilons? (Homework).

Definition

A net is a T-net if for every place there is exactly one input arc and exactly one output arc.

Definition

A net is a T-net if for every place there is exactly one input arc and exactly one output arc.

Definition

- By a circuit we mean a simple cycle in the graph of the net. Let R be a set of places that are on the circuit γ . Then $m(\gamma) \stackrel{\text{def}}{=} m(R)$.
- We say that the circuit γ is marked if $|m(\gamma)| > 0$.
- A circuit of a system is initially marked if it is marked at the initial marking.

Definition

A net is a T-net if for every place there is exactly one input arc and exactly one output arc.

Definition

- By a circuit we mean a simple cycle in the graph of the net. Let R be a set of places that are on the circuit γ . Then $m(\gamma) \stackrel{\text{def}}{=} m(R)$.
- We say that the circuit γ is marked if $|m(\gamma)| > 0$.
- A circuit of a system is initially marked if it is marked at the initial marking.

Lemma

Let γ be a circuit of a T – net (\mathcal{N}, m_0) . For every reachable marking m holds $|m(\gamma)| = |m_0(\gamma)|$.

Theorem

A T-system is live iff every circuit is initially marked.

Theorem

A T-system is live iff every circuit is initially marked.

Theorem

Let (N, m_0) be a strongly connected T-system. The following statements are equivalent:

- \bigcirc (\mathcal{N}, m_0) is live.
- **2** (\mathcal{N}, m_0) is deadlock-free.
- (\mathcal{N}, m_0) has an infinite run.

Definition

A \mathcal{N} , m_0 is b-bounded iff for every reachable marking m and every place p the number of tokens in $m(p) \leqslant b$.

Lemma

A live T-system \mathcal{N} , m_0 is b-bounded iff for every place s there is a circuit γ which contains s and satisfies $|m_0(\gamma)| \leq b$.

Definition

A \mathcal{N} , m_0 is b-bounded iff for every reachable marking m and every place p the number of tokens in $m(p) \leqslant b$.

Lemma

A live T-system \mathcal{N}, m_0 is b-bounded iff for every place s there is a circuit γ which contains s and satisfies $|m_0(\gamma)| \leq b$.

Lemma

Let (\mathcal{N}, m_0) be a live T-system.

- A place q of (\mathcal{N}, m_0) is bounded iff it belongs to some circuit of \mathcal{N} .
 - ② If a place s of (N, m_0) is bounded, then its bound is equal to

$$\min\{|m_0(\gamma)|: \gamma \text{ is a circuit of } \mathcal{N} \text{ containing } s\}$$

3 (\mathcal{N}, m_0) is bounded iff \mathcal{N} is strongly connected.

Genrich's Theorem

Let $\mathcal N$ be a strongly connected T-system having at least one place and one transition. There exists a marking m_0 of $\mathcal N$ such that $(\mathcal N,m_0)$ is a live and 1-bounded system.

We introduce a new notation:

- t for $t \in \mathbb{T}$ is a set of places from which t consumes tokens.
- ② t^{\bullet} for $t \in \mathbb{T}$ is a set of places to which t produces tokens.
- p for $p \in \mathbb{P}$ is a set of transition that produce tokens in p.
- **①** p^{\bullet} for $p \in \mathbb{P}$ is a set of transitions that consumes tokens from p.
- T for $T \subseteq \mathbb{T}$ is $\bigcup_{t \in T}$ t.
- \bullet T^{\bullet} for $T \subseteq \mathbb{T}$ is $\bigcup_{t \in T} t^{\bullet}$.
- P for $P \subseteq \mathbb{P}$ is $\bigcup_{p \in P} \bullet p$.
- $\bullet \ P^{\bullet} \text{ for } P \subseteq \mathbb{P} \text{ is } \bigcup_{p \in P} p^{\bullet}.$

We introduce a new notation:

Definition

A set of places \mathbb{S} is a *siphon* if ${}^{\bullet}\mathbb{S} \subseteq \mathbb{S}^{\bullet}$.

Definition

A set of places \mathbb{S} is a *trap* if $\mathbb{S}^{\bullet} \subseteq {}^{\bullet}\mathbb{S}$.

Lemma

Every unmarked siphon remains unmarked.

Lemma

Every unmarked siphon remains unmarked.

Lemma

Every marked trap remains marked.

Lemma

Every unmarked siphon remains unmarked.

Lemma

Every marked trap remains marked.

Lemma

Every nonempty siphon of a live system is initially marked.

Lemma

Let (N, m_0) be a deadlocked system i.e., no transition can be fired from m_0 . Then the set R of places of N unmarked at m_0 is a proper siphon.

Lemma

Let (\mathcal{N}, m_0) be a deadlocked system i.e., no transition can be fired from m_0 . Then the set R of places of \mathcal{N} unmarked at m_0 is a proper siphon.

Lemma

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Lemma

Let (\mathcal{N}, m_0) be a deadlocked system i.e., no transition can be fired from m_0 . Then the set R of places of \mathcal{N} unmarked at m_0 is a proper siphon.

Lemma

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free.

Lemma

- The union of siphons (traps) is a siphon (trap).
- 2 Every siphon includes a unique maximal trap with respect to the set inclusion (which maybe empty).
- **3** A siphon includes a marked trap iff its maximal trap is marked.

Definition

A net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ is free-choice if for every two places p,q either $p^{\bullet}\cap q^{\bullet}=\emptyset$ or $p^{\bullet}=q^{\bullet}$.

Definition

A net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ is free-choice if for every two places p,q either $p^{\bullet}\cap q^{\bullet}=\emptyset$ or $p^{\bullet}=q^{\bullet}$.

Lemma

A net is a free-choice iff for every two transitions t, s either ${}^{\bullet}t \cap {}^{\bullet}s = \emptyset$ or ${}^{\bullet}t = {}^{\bullet}s$.

Definition

A net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ is free-choice if for every two places p,q either $p^{\bullet}\cap q^{\bullet}=\emptyset$ or $p^{\bullet}=q^{\bullet}$.

Lemma

A net is a free-choice iff for every two transitions t,s either ${}^{\bullet}t\cap {}^{\bullet}s=\emptyset$ or ${}^{\bullet}t={}^{\bullet}s$.

Commoner's Theorem

A free-choice system is live if and only if every proper siphon includes an initially marked trap.

Commoner's Theorem

A free-choice system is live if and only if every proper siphon includes an initially marked trap.

Lemma

Let $\mathcal{N}=(\mathbb{P},\mathbb{T})$ be a free-choice net. Suppose $R\subseteq\mathbb{P}$ and $Q\subseteq R$ is a maximal trap included in R. Then there is an order on \mathcal{O} in places in $R\setminus Q$ such that for any marking m, |m(Q)|=0 holds:

- **●** If there is a transition in R^{\bullet} which is fireable then there is $m' \in Reach[m]$ such that |m'(Q)| = 0 and m' < m in the lexicographic order induced by \mathcal{O} .
- ② If R is a siphon such that $R^{\bullet} \nsubseteq Dead(m)$ then there is $m' \in Reach[m]$ such that |m'(Q)| = 0 and m' < m in the lexicographic order induced by \mathcal{O} .

Lemma

Non-liveness in free-choice nets is in NP.

Lemma

Non-liveness in free-choice nets is in NP.

- lacktriangle guess a set of places \mathbb{S} ;
- **3** if $\mathbb S$ is a siphon, then compute the maximal trap $Q\subseteq \mathbb S$;
- if |i(Q)| = 0, then answer "non-live".

Lemma

Non-liveness in free-choice nets is in NP.

- guess a set of places S;
- **3** if \mathbb{S} is a siphon, then compute the maximal trap $Q \subseteq \mathbb{S}$;
- if |i(Q)| = 0, then answer "non-live".

The algorithm computing maximal trap included in a given set \mathbb{S} .

The algorithm computing maximal trap included in a given set \mathbb{S} .

```
Input: A net \mathcal{N}=(\mathbb{P},\mathbb{T}) and a set \mathbb{S}\subseteq\mathbb{P} Output: \mathbb{X}\subseteq\mathbb{S} which is the maximal trap contained in \mathbb{S}. Initialization: \mathbb{X}=\mathbb{S}. begin while there exists s\in\mathbb{X} and t\in s^{\bullet} such that t\not\in{}^{\bullet}X do \mathbb{X}:=\mathbb{X}\setminus\{s\} endwhile end
```

Lemma

Non-liveness in free-choice nets is NP-hard.

Proof

• We encode the satisfiability of 3 CNF problem.

Lemma

Non-liveness in free-choice nets is NP-hard.

- We encode the satisfiability of 3 CNF problem.
- 2 One state for every variable.
- One state for every literal in the formula.
- One state to indicate that valuation is False.

Lemma

Non-liveness in free-choice nets is NP-hard.

- We encode the satisfiability of 3 CNF problem.
- 2 One state for every variable.
- One state for every literal in the formula.
- One state to indicate that valuation is False.
- For every variable two transitions to chose a valuation.
- For every clause there is a transition which can be fired if the clause is valuated to false and it marks the state False
- One transition which consumes from False and restarts the net.

Definition (A cluster in a free-choice net \mathcal{N} .)

Let x be a node (place of transition) of a net. The cluster of x, denoted by [x], is a minimal set of nodes such that

- $x \in [x]$
- if a place s belongs to [x] then $s^{\bullet} \subseteq [x]$
- if a transition t belongs to [x] then $t \subseteq [x]$

Definition (A cluster in a free-choice net \mathcal{N} .)

Let x be a node (place of transition) of a net. The cluster of x, denoted by [x], is a minimal set of nodes such that

- $x \in [x]$
- if a place s belongs to [x] then $s^{\bullet} \subseteq [x]$
- if a transition t belongs to [x] then $t \subseteq [x]$

Lemma

Clusters form a partition of the nodes of the N.

Lemma

A nonempty set of places $\mathbb{S} \subset \mathbb{P}$ is a minimal siphon in the net

 $\mathcal{N} = (\mathbb{P}, \mathbb{T})$ if and only if

- lacktriangle every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **2** the graph of a subnet generated by $\mathbb{S} \cup {}^{ullet}\mathbb{S}$ is strongly connected.

 $\mathsf{Proof} \mathrel{(\Longrightarrow)}$

Lemma

A nonempty set of places $\mathbb{S} \subset \mathbb{P}$ is a minimal siphon in the net $\mathcal{N} = (\mathbb{P}, \mathbb{T})$ if and only if

- **1** every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **2** the graph of a subnet generated by $\mathbb{S} \cup {}^{ullet}\mathbb{S}$ is strongly connected.

Proof (\Longrightarrow)

① a) Let $\mathbb S$ be a siphon and C a cluster such that $|C \cap \mathbb S| > 1$ then we can shrink the siphon.

Lemma

A nonempty set of places $\mathbb{S}\subset\mathbb{P}$ is a minimal siphon in the net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ if and only if

- **1** every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **2** the graph of a subnet generated by $\mathbb{S} \cup {}^{ullet}\mathbb{S}$ is strongly connected.

Proof (\Longrightarrow)

- **①** a) Let $\mathbb S$ be a siphon and C a cluster such that $|C \cap \mathbb S| > 1$ then we can shrink the siphon.
- ② b) The graph of a subnet generated by $\mathbb{S} \cup {}^{\bullet}\mathbb{S}$ has to be strongly-connected.

Proof

- **①** a) Let $\mathbb S$ be a siphon and C a cluster such that $|C \cap \mathbb S| > 1$ then we can shrink the siphon.
- b) S has to be strongly connected.
 - Let (x, y) be an arbitrary arc in $\mathcal{N}_{\mathbb{S}} = (\mathbb{S}, {}^{\bullet}\mathbb{S})$, we prove that there is a path from y to x in $\mathcal{N}_{\mathbb{S}}$. Define

 $\mathbb{X} = \{ s \in \mathbb{S} | \text{ there exists a path from } s \text{ to } x \text{ in } \mathcal{N}_{\mathbb{S}} \}.$

- **1** a) Let $\mathbb S$ be a siphon and C a cluster such that $|C \cap \mathbb S| > 1$ then we can shrink the siphon.
- b) S has to be strongly connected.
 - Let (x, y) be an arbitrary arc in $\mathcal{N}_{\mathbb{S}} = (\mathbb{S}, {}^{\bullet}\mathbb{S})$, we prove that there is a path from y to x in $\mathcal{N}_{\mathbb{S}}$. Define

$$\mathbb{X} = \{s \in \mathbb{S} | \text{ there exists a path from } s \text{ to } x \text{ in } \mathcal{N}_{\mathbb{S}} \}.$$

- $\mathbb{X} \neq \emptyset$.
- ullet is a siphon.
- So $\mathbb{X} = \mathbb{S}$.

- **①** a) Let $\mathbb S$ be a siphon and C a cluster such that $|C \cap \mathbb S| > 1$ then we can shrink the siphon.
- b) S has to be strongly connected.
 - Let (x, y) be an arbitrary arc in $\mathcal{N}_{\mathbb{S}} = (\mathbb{S}, {}^{\bullet}\mathbb{S})$, we prove that there is a path from y to x in $\mathcal{N}_{\mathbb{S}}$. Define

$$\mathbb{X} = \{s \in \mathbb{S} | \text{ there exists a path from } s \text{ to } x \text{ in } \mathcal{N}_{\mathbb{S}} \}.$$

- $\mathbb{X} \neq \emptyset$.
- ullet is a siphon.
- So $\mathbb{X} = \mathbb{S}$.
- \bullet Thus $\mathbb S$ is strongly connected.

Lemma

A nonempty set of places $\mathbb{S}\subset\mathbb{P}$ is a siphon in the net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ if and only if

- **1** every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **②** the graph of a subnet generated by $\mathbb{S} \cup \ ^{ullet}\mathbb{S}$ is strongly connected.

Proof (⇐=)

- S is a siphon,

Lemma

A nonempty set of places $\mathbb{S}\subset\mathbb{P}$ is a siphon in the net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ if and only if

- **1** every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **②** the graph of a subnet generated by $\mathbb{S} \cup {}^{ullet}\mathbb{S}$ is strongly connected.

Proof (⇐=)

- S is a siphon, due to strong connectivity.
- S is a minimal siphon.

Lemma

A nonempty set of places $\mathbb{S}\subset\mathbb{P}$ is a siphon in the net $\mathcal{N}=(\mathbb{P},\mathbb{T})$ if and only if

- **1** every cluster C of the $\mathcal N$ contains at most one place of $\mathbb S$, and
- **②** the graph of a subnet generated by $\mathbb{S} \cup {}^{ullet}\mathbb{S}$ is strongly connected.

Proof (⇐=)

- S is a siphon, due to strong connectivity.

Books

- S-sytems, T-systems, siphons and traps: Free Choice Petri Nets, chapters 3 and 4 https://www7.in.tum.de/~esparza/fcbook-middle.pdf
- Commoner's Theorem: A concise proof of Commoner's theorem. http://www.cs.vsb.cz/jancar/pnn95.pdf