Linear algebra + Petri nets

Piotr Hofman University of Warsaw

- Places.
- Transitions.

- Places.
- Transitions.
- Tokens, a Marking.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

Questions and tools.

We focus on analysis of systems modelled with Petri nets.

Most important questions:

- Place coverability,
- Reachability,
- Liveness,
- Death of a transition,
- Deadlock-freeness.

Most important tools:

- Coverability: ExpSpace complete,
- 2 Boundedness: ExpSpace complete,
- Reachability: at least ExpSpace Hard.

Two solutions:

Do not try to be precise (approximations).

- Place invariant.
- State equation.
- Continuous reachability.
- Traps and siphons.

Do not try to be general (sub-classes).

- Free-choice Petri Nets.
- Conflict free Petri nets.
- One counter systems.
- 2-dimensional VASS.
- 2-difficusional VA33
- Flat systems.

Linear algebra

Integer programming.

Input: An integer matrix M and a vector y.

Question: If there is a vector $extbf{\emph{x}} \in \mathbb{N}^d$ such that

$$M \cdot \mathbf{x} = \mathbf{y}$$
?

Theorem

The integer programming problem is NP-complete.

Linear algebra.

Linear programming.

Input: An integer matrix M and a vector y.

Question: If there is a vector $\mathbf{x} \in \mathbb{Q}^d_{\geqslant 0}$ such that

$$M \cdot \mathbf{x} = \mathbf{y}$$
?

Theorem

The linear programming problem is P-complete.

Description of the net, three matrices.

$$Pre(\mathcal{N}) = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}$$
 $Post(\mathcal{N}) = egin{bmatrix} 0 & 1 \ 1 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$
 $\Delta = Post(\mathcal{N}) - Pre(\mathcal{N})$
 $egin{bmatrix} -1 & 1 \ 1 & -1 \ 0 & 1 \end{bmatrix}$

Description of the net, three matrices.

$$\mathbf{0}[i] = 0$$
 for all i

$$\mathbf{1}_{p}[i] = \begin{cases} 1 & \text{if } p = i \\ 0 & \text{otherwise} \end{cases}$$

$$Pre(\mathcal{N}) = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}$$
 $Post(\mathcal{N}) = egin{bmatrix} 0 & 1 \ 1 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$
 $\Delta = Post(\mathcal{N}) - Pre(\mathcal{N})$
 $egin{bmatrix} -1 & 1 \ 1 & -1 \ 1 & -1 \ 0 & 1 \end{bmatrix}$

Let $Reach(\mathcal{N}, i)$ be a set of configurations reachable from i in $\mathcal{N}.$

Let $Reach(\mathcal{N},i)$ be a set of configurations reachable from i in $\mathcal{N}.$

Let $L_{\mathbb{N}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{N}^d} \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$

Let $Reach(\mathcal{N}, i)$ be a set of configurations reachable from i in \mathcal{N} .

Hard to describe.

Let
$$L_{\mathbb{N}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{N}^d} \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$$

Easier to describe (NP-complete).

Let $Reach(\mathcal{N}, i)$ be a set of configurations reachable from i in \mathcal{N} .

Hard to describe.

Let
$$L_{\mathbb{N}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{N}^d} \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$$

Easier to describe (NP-complete).

$$\begin{split} \text{Let } L_{\mathbb{Z}}RS(\mathcal{N},\mathfrak{i}) = \\ \{ \textbf{\textit{y}} : \exists_{\textbf{\textit{x}} \in \mathbb{Z}^d} \ \Delta \cdot \textbf{\textit{x}} = \textbf{\textit{y}} - \mathfrak{i} \}. \end{split}$$

Let $Reach(\mathcal{N}, i)$ be a set of configurations reachable from i in \mathcal{N} .

Hard to describe.

Let
$$L_{\mathbb{N}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{N}^d} \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$$

Easier to describe (NP-complete).

Let
$$L_{\mathbb{Z}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{Z}^d} \ \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$$

Easy to describe (PTime).

Let $Reach(\mathcal{N}, i)$ be a set of configurations reachable from i in \mathcal{N} .

Hard to describe.

Let
$$L_{\mathbb{N}}RS(\mathcal{N},\mathfrak{i}) = \{ \mathbf{y} : \exists_{\mathbf{x} \in \mathbb{N}^d} \Delta \cdot \mathbf{x} = \mathbf{y} - \mathfrak{i} \}.$$

Easier to describe (NP-complete).

$$\begin{split} \text{Let } L_{\mathbb{Z}}RS(\mathcal{N},\mathfrak{i}) = \\ \{ \textbf{\textit{y}} : \exists_{\textbf{\textit{x}} \in \mathbb{Z}^d} \ \Delta \cdot \textbf{\textit{x}} = \textbf{\textit{y}} - \mathfrak{i} \}. \end{split}$$

Easy to describe (PTime).

Lemma

 $Reach(\mathcal{N}, \mathfrak{i}) \subseteq L_{\mathbb{N}}RS(\mathcal{N}, \mathfrak{i}) \subseteq L_{\mathbb{Z}}RS(\mathcal{N}, \mathfrak{i}).$

An application.

Algorithm 1 for reachability.

Start from the initial configuration i and exhaustively build a graph of reachable configurations adding nodes one by one.

- if you find f then return 1;
- if you can not visit any new configuration then return 0;
- if you run out of memory then return I don't know.

An application.

Algorithm 1 for reachability.

Start from the initial configuration i and exhaustively build a graph of reachable configurations adding nodes one by one.

- if you find f then return 1;
- if you can not visit any new configuration then return 0;
- if you run out of memory then return I don't know.

Algorithm 2 for reachability.

Start from the initial configuration i and exhaustively build a graph of reachable configurations adding nodes one by one; but whenever you want to add a new node x to the graph you check if $f \in L_{\mathbb{N}}SR(\mathcal{N},x)$. You add the node if and only if the answer is yes.

- if you find f then return 1;
- if you can not add any new node then return 0;
- if you run out of memory then return "I don't know".

 ${\pmb y}$ is called a P-flow iff ${\pmb y}\cdot \Delta=0.$ If ${\pmb y}\geqslant 0$ then we call it P-semiflow.

 ${\pmb y}$ is called a P-flow iff ${\pmb y}\cdot \Delta=0.$ If ${\pmb y}\geqslant 0$ then we call it P-semiflow.

Lemma

If \mathfrak{f} is reachable from \mathfrak{i} then $\mathbf{y} \cdot \mathfrak{f} = \mathbf{y} \cdot \mathfrak{i}$.

 \mathbf{y} is called a P-flow iff $\mathbf{y} \cdot \Delta = 0$.

If $\mathbf{y} \geqslant 0$ then we call it

P-semiflow.

Lemma

If \mathfrak{f} is reachable from \mathfrak{i} then $\mathbf{y} \cdot \mathfrak{f} = \mathbf{y} \cdot \mathfrak{i}$.

Question

How do we test a boundedness of a place using P-semiflows?

 \mathbf{y} is called a P-flow iff $\mathbf{y} \cdot \Delta = 0$.

If $\mathbf{y} \geqslant 0$ then we call it

P-semiflow.

Lemma

If \mathfrak{f} is reachable from \mathfrak{i} then $\mathbf{y} \cdot \mathfrak{f} = \mathbf{y} \cdot \mathfrak{i}$.

Question

How do we test a boundedness of a place using P-semiflows?

Lemma

Let \mathbf{y} be a P-semiflow of the net \mathcal{N} , then the number of tokens is bounded for all $1 \leqslant i \leqslant d$ such that $\mathbf{y}[i] > 0$.

Structural boundedness

A place p in a net $\mathcal N$ is structurally bounded if for every initial marking $\mathfrak i$ the

 $max\{\mathbf{1_p}^T \cdot \mathbf{m} : \mathbf{m} \in RS(\mathcal{N}, \mathfrak{i})\}$ is finite.

Structural boundedness

A place p in a net $\mathcal N$ is structurally bounded if for every initial marking $\mathfrak i$ the

$$max\{\mathbf{1_p}^T \cdot \mathbf{m} : \mathbf{m} \in RS(\mathcal{N}, \mathfrak{i})\}$$
 is finite.

Theorem

A following conditions are equivalent:

- $oldsymbol{0}$ a place p in the net \mathcal{N} is structurally bounded,
- ② there exists $y \geqslant \mathbf{1}_p$ such that $y \cdot \Delta \leqslant \mathbf{0}$,
- lacksquare there is no $x\geqslant 0$ such that $\Delta\cdot x\geqslant 1_p$.

Theorem

A following conditions are equivalent:

- lacktriangledown a place p in the net $\mathcal N$ is structurally bounded,
- 2 there exists $y \geqslant 1_p$ such that $y \cdot \Delta \leqslant 0$,
- lacktriangledown there is no $x\geqslant 0$ such that $\Delta\cdot x\geqslant 1_p$.

Theorem

A following conditions are equivalent:

- lacktriangledown a place p in the net $\mathcal N$ is structurally bounded,
- ② there exists $y \geqslant \mathbf{1}_p$ such that $y \cdot \Delta \leqslant \mathbf{0}$,
- lacksquare there is no $x\geqslant 0$ such that $\Delta\cdot x\geqslant 1_p$.

Theorem

A following conditions are equivalent:

- lacktriangledown a place p in the net $\mathcal N$ is structurally bounded,
- 2 there exists $y \geqslant 1_p$ such that $y \cdot \Delta \leqslant 0$,
- lacksquare there is no $x\geqslant 0$ such that $\Delta\cdot x\geqslant 1_p$.
- 2 3 ⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

$$Ax \geqslant b$$
.

$$y \geqslant 0$$

$$y^{T} \cdot A = 0$$

$$y^{T} \cdot b > 0$$

Theorem

A following conditions are equivalent:

- lacktriangledown a place p in the net $\mathcal N$ is structurally bounded,
- ② there exists $y \geqslant 1_p$ such that $y \cdot \Delta \leqslant 0$,
- lacktriangledown there is no $x\geqslant 0$ such that $\Delta\cdot x\geqslant 1_p$.
- $2 3 \implies 2$ by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

$$Ax \geqslant b$$
.

$$y \geqslant 0$$
$$y^T \cdot A = 0$$

$$\mathbf{y}^T \cdot \mathbf{b} > 0.$$

3 2 -> 1 Direct.

Continuous reachability.

Linear programming + If formula.

Input: A $r \times c$ - integer matrix M and a vector $\mathbf{y} \in \mathbb{Z}^r$ and a set of predicates of a form $\mathbf{x}[i] > 0 \implies \mathbf{x}[j] > 0$.

Question: If there is a vector $\mathbf{x} \in \mathbb{Q}_{\geqslant 0}^c$ such that $M \cdot \mathbf{x} = \mathbf{y}$ and all predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Linear programming + If formula.

Input: A $r \times c$ - integer matrix M and a vector $\mathbf{y} \in \mathbb{Z}^r$ and a set of predicates of a form $\mathbf{x}[i] > 0 \implies \mathbf{x}[j] > 0$.

Question: If there is a vector $\mathbf{x} \in \mathbb{Q}_{\geqslant 0}^c$ such that $M \cdot \mathbf{x} = \mathbf{y}$ and all predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Proof

- The set of solutions is convex.
- ② If for every i there is a solution such that x[i] > 0 then there is a solution such that x[j] > 0 for all j.

Linear programming + If formula (the algorithm).

```
solve(Matrix \Delta, Vector \mathbf{y}, set_of_implications \mathbb{S}, set_of_zeros \mathbb{X})
          If there is no solution \Delta \cdot \mathbf{x} = \mathbf{y} in \mathbb{Q}_{>0}^c,
                             where x_i = 0 for all x_i \in \mathbb{X} then return false;
          If there is a solution \Delta \cdot \mathbf{x} = \mathbf{y} in \mathbb{Q}_{\geq 0}^c,
                             where x_i = 0 iff x_i \in \mathbb{X} and x_i > 0 if x_i \notin \mathbb{X}
                            then return true;
          Find a new coordinate x_i
                             which has to be equal 0 in every solution;
          Add x_i to \mathbb{X};
          Add to \mathbb{X} all x_i that has to be added due to implications;
          return solve(M, \mathbf{y}, \mathbb{S}, \mathbb{X});
```

Continuous Petri Nets.

- $\bullet \ \, \mathsf{Marking:} \ \, \mathcal{M}: \mathbb{P} \to \mathbb{Q}_{\geqslant 0}$
- Transitions: T
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q}_{\geqslant 0}$.

Continuous Petri Nets.

- $\bullet \ \ \mathsf{Marking:} \ \ \mathcal{M}: \mathbb{P} \to \mathbb{Q}_{\geqslant 0}$
- Transitions: T
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q}_{\geqslant 0}$.

Continuous Petri Nets.

- $\bullet \ \mathsf{Marking} \colon \, \mathcal{M} : \mathbb{P} \to \mathbb{Q}_{\geqslant 0} \,$
- ullet Transitions: ${\mathbb T}$
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q}_{\geqslant 0}$.

Continuous Petri Nets.

- $\bullet \ \mathsf{Marking} \colon \, \mathcal{M} : \mathbb{P} \to \mathbb{Q}_{\geqslant 0} \,$
- Transitions: T
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q}_{\geqslant 0}$.

Continuous Petri Nets.

- $\bullet \ \, \mathsf{Marking:} \,\, \mathcal{M}: \mathbb{P} \to \mathbb{Q}_{\geqslant 0}$
- ullet Transitions: ${\mathbb T}$
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q}_{\geqslant 0}$.

Continuous Petri Nets Reachability.

Input: Two configurations i and f

Question: If there is a run form $\mathfrak i$ to $\mathfrak f$ under continuous semantics.

A simpler variant of the problem.

Suppose, that

$$\forall_i \ (\mathfrak{i}[i] > 0 \text{ and } \mathfrak{f}[i] > 0).$$

f is reachable from i iff

$$\mathfrak{f} - \mathfrak{i} = \Delta \cdot \mathbf{\textit{x}}$$
 where $\mathbf{\textit{x}} \in \mathbb{Q}^d_{\geqslant 0}.$

Continuous Petri Nets Reachability.

Lemma

 $\mathfrak f$ is reachable from $\mathfrak i$ if

•

$$\mathfrak{f} - \mathfrak{i} = \Delta \cdot extbf{ extit{x}}$$
 where $extbf{ extit{x}} \in \mathbb{Q}_{\geqslant 0}^d$

2

$$x[t_i] > 0$$
 and $Pre[j, t_i] > 0 \implies i[j] > 0$,

3

$$\mathbf{x}[t_i] > 0$$
 and $Post[j, t_i] > 0 \implies \mathfrak{f}[j] > 0.$

Continuous Petri Nets Reachability.

Lemma

 $\mathfrak f$ is reachable from $\mathfrak i$ if

- $2 x[t_i] > 0 and Pre[j, t_i] > 0 \implies i[j] > 0,$

Theorem

 $\mathfrak f$ is reachable from $\mathfrak i$ iff there are two configurations $\mathfrak i'$ and $\mathfrak f'$ such that

- there is a run form i to i' that is using at most d steps.
- 2 there is a run form f' to f that is using at most d steps.
- 3 There is a run form i' to f' due to Lemma.

Translation to a formula (linear + lf).

Lemma

For a given Petri net $\mathcal N$ and two configurations $\mathfrak i$ and $\mathfrak f$ in PTime one can compute a formula (linear programming + if) such that it is satisfiable if and only if $\mathfrak f$ is continuously reachable from $\mathfrak i$ in the net $\mathcal N$.

We use:

Theorem

 $\mathfrak f$ is reachable from $\mathfrak i$ iff there are two configurations $\mathfrak i'$ and $\mathfrak f'$ such that

- \bullet there is a run form i to i' that is using at most d steps.
- 2 there is a run form f' to f that is using at most d steps.
- 3 There is a run form i' to f' due to Lemma.

IDEA: Take a backward coverability algorithm, and speed it up.

IDEA: Take a backward coverability algorithm, and speed it up.

What is the main obstacle?

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

How to cut the upward-closed set?

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $x \in M \uparrow$, if there is no $y \ge x$ such that $y \in RS(\mathcal{N}, \mathfrak{i})$ then we can throw x away.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $x \in M \uparrow$, if there is no $y \ge x$ such that $y \in RS(\mathcal{N}, i)$ then we can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015 SOLUTION: Let $x \in M \uparrow$, if there is no $y \ge x$ such that $y \in CRS(\mathcal{N}, \mathfrak{i})$ then we can throw x away.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $x \in M \uparrow$, if there is no $y \ge x$ such that $y \in RS(\mathcal{N}, i)$ then we can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015

SOLUTION: Let $x \in M \uparrow$, if there is no $y \geqslant x$ such that $y \in CRS(\mathcal{N}, \mathfrak{i})$ then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017

Actually, any over-approximation will work: LRS instead of CRS.

Bibliography

- Techniques for state equation and flow invariant: https://link.springer.com/content/pdf/10.1007/ 3-540-65306-6_19.pdf
- Ontinuous reachability: old paper: Estíbaliz Fraca, Serge Haddad: Complexity Analysis of Continuous Petri Nets. Fundam. Inform. 137(1): 1-28 (2015) (It has to be in the library)
 - new paper: http://www.lsv.fr/~haase/documents/bh17.pdf

Fast Termination.

Definition (VASS- Vector addition systems with states)

VASS is a finite automaton in which transitions are labelled with vectors in \mathbb{Z}^d . The set of states we denote by Q and the set of transition by T. The semantics is given by a labelled transition system where:

- Configurations are pairs a state and a vector in \mathbb{N}^d .
- There is transition from (p, m) to (q, m') if there is an automaton transition (p, q) labelled with \mathbf{v} such that $\mathbf{m} + \mathbf{v} = \mathbf{m}'$.
- **1** L(n) is the maximal length of a run from a configuration with the counters bounded by n.
- SCC -strongly connected component in the automaton.
- **3** Let A be a VASS, and R its strongly connected component, by A_R we mean the VASS obtained for A by restricting the set of states to R.

Our goal is to propose algorithm that approximates a function L(n).

Definition

An open half-space of \mathbb{Q}^d determined by a normal vector $\mathbf{n} \in \mathbb{Q}^d$, where $n \neq 0$, is the set $H_{\mathbf{n}}$ of all $\mathbf{x} \in \mathbb{Q}^d$ such that $\mathbf{x} \cdot \mathbf{n} < 0$ (dot product). A closed half-space $H_{\mathbf{n}}$ is defined in the same way but the above inequality is non-strict.

Definition

Given a finite set of vectors $U \subseteq \mathbb{Q}^d$, we use cone(U) to denote the set of all vectors of the form $\sum_{u \in U} c_u u$, where c_u is a non-negative rational constant for every $u \in U$.

Hyperplane separation theorem

Let A and B be two disjoint nonempty convex subsets of \mathbb{Q}^d . Then there exist a nonzero vector v and a real number c such that $\langle x,v\rangle\geq c$ and $\langle y,v\rangle\leq c$ for all $x\in A$ and $y\in B$; i.e., the hyperplane $\langle\cdot,v\rangle=c$, where v is the normal vector, separates A and B. If A and B are closed then inequality can be strict.

Let $d \in \mathbb{N}$, and let A = (Q, T) be a d-dimensional VASS. Then $L(n) \in O(n)$ iff $L_R(n) \in O(n)$ for every SCC R of Q, where $L_R(n)$ is the termination complexity of A_R .

Let $d \in \mathbb{N}$, and let A = (Q, T) be a d-dimensional VASS. Then $L(n) \in O(n)$ iff $L_R(n) \in O(n)$ for every SCC R of Q, where $L_R(n)$ is the termination complexity of A_R .

Definition

 $Inc \stackrel{\text{def}}{=} \{eff(\pi) | \pi \text{ is a cycle in } A \text{ not longer than } |Q|\}.$

Lemma

Let A = (Q, T) be a d-dimensional VASS. Then one of two cases holds:

- there exist $v_1,...,v_k \in Inc$ and $b_1,...,b_k \in \mathbb{N}$ such that $k \geq 1$ and $\sum_{i=1}^k b_i \mathbf{v_i} \geq 0$,
- there is an open half-space $H_n \subset \mathbb{R}^d$ defined by n > 0 such that $Inc \subseteq H_n$.

Let A = (Q, T) be a d-dimensional VASS. We have the following:

- If there is an open half-space H_s of \mathbb{Q}^d such that s > 0 and $Inc \subset H_s$, then $L(n) \in O(n)$.
- If there is a closed half-space H_s of \mathbb{Q}^d such that s > 0 and $Inc \subseteq H_s$, then $L(n) \in \Omega(n^2)$.
- If there is a vector $\mathbf{s} > 0$ that can be expressed as $\sum_{\mathbf{u} \in Inc} c_{\mathbf{u}} \cdot \mathbf{u}$ then the net has an infinite run.

Let A = (Q, T) be a d-dimensional VASS. We have the following:

- If there is an open half-space H_s of \mathbb{Q}^d such that s > 0 and $Inc \subset H_s$, then $L(n) \in O(n)$.
- If there is a closed half-space H_s of \mathbb{Q}^d such that s > 0 and $Inc \subseteq H_s$, then $L(n) \in \Omega(n^2)$.
- If there is a vector $\mathbf{s} > 0$ that can be expressed as $\sum_{\mathbf{u} \in Inc} c_{\mathbf{u}} \cdot \mathbf{u}$ then the net has an infinite run.

Theorem

Let $d \in \mathbb{N}$. The problem whether the termination complexity of a given d-dimensional VASS is linear is solvable in time polynomial in the size of A. More precisely, the termination complexity of a VASS A is linear if and only if there exists a weighted linear ranking function for A. Moreover, the existence of a weighted linear ranking function for A can be decided in time polynomial in the size of A.

Bibliography

https://arxiv.org/pdf/1708.09253.pdf