Linear algebra + Petri nets

Piotr Hofman
University of Warsaw

Petri Nets.

- Places.
- Transitions.

Petri Nets.

- Places.
- Transitions.
- Tokens, a Marking.

Petri Nets.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

Petri Nets.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

Petri Nets.

- Places.
- Transitions.
- Tokens, a Marking.
- Firing a transition.

Questions and tools.

We focus on analysis of systems modelled with Petri nets.

Most important questions:
(1) Place coverability,
(2) Reachability,
(3) Liveness,
(9) Death of a transition,
(6) Deadlock-freeness.

Most important tools:
(1) Coverability: ExpSpace complete,
(2) Boundedness: ExpSpace complete,
(3) Reachability: at least ExpSpace Hard.

Two solutions:

Do not try to be precise (approximations).
© Place invariant.
(3) State equation.

- Continuous reachability.
- Traps and siphons.

Do not try to be general (sub-classes).
(1) Free-choice Petri Nets.
(2) Conflict free Petri nets.

- One counter systems.
- 2-dimensional VASS.
- Flat systems.

Linear algebra

Integer programming.
Input: An integer matrix M and a vector \boldsymbol{y}.
Question: If there is a vector $\boldsymbol{x} \in \mathbb{N}^{d}$ such that

$$
M \cdot \boldsymbol{x}=\boldsymbol{y} ?
$$

Theorem

The integer programming problem is NP-complete.

Linear algebra.

Linear programming.
Input: An integer matrix M and a vector \boldsymbol{y}.
Question: If there is a vector $\boldsymbol{x} \in \mathbb{Q}_{\geqslant}^{d}$ such that

$$
M \cdot \boldsymbol{x}=\boldsymbol{y} ?
$$

Theorem

The linear programming problem is P -complete.

Description of the net, three matrices.

$$
\begin{aligned}
\operatorname{Pre}(\mathcal{N}) & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
\operatorname{Post}(\mathcal{N}) & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
\Delta & =\operatorname{Post}(\mathcal{N})-\operatorname{Pre}(\mathcal{N}) \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
1 & -1 \\
0 & 1
\end{array}\right] }
\end{aligned}
$$

Description of the net, three matrices.

$$
\begin{aligned}
\mathbf{0}[i] & =0 \text { for all } i \\
\mathbf{1}_{\boldsymbol{p}}[i] & = \begin{cases}1 & \text { if } p=i \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pre}(\mathcal{N}) & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
\operatorname{Post}(\mathcal{N}) & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
\Delta & =\operatorname{Post}(\mathcal{N})-\operatorname{Pre}(\mathcal{N}) \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
1 & -1 \\
0 & 1
\end{array}\right] }
\end{aligned}
$$

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

Let $L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{N}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

Hard to describe.

Let $L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{N}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

Easier to describe (NP-complete).

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

Hard to describe.

Let $L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{N}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

Easier to describe (NP-complete).

Let $L_{\mathbb{Z}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{Z}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

Hard to describe.

Let $L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{N}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

Easier to describe (NP-complete).

Let $L_{\mathbb{Z}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{Z}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.
Easy to describe (PTime).

State equation.

Let $\operatorname{Reach}(\mathcal{N}, \mathfrak{i})$ be a set of configurations reachable from \mathfrak{i} in \mathcal{N}.

Hard to describe.

> Let $L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{N}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

Easier to describe (NP-complete).

Let $L_{\mathbb{Z}} R S(\mathcal{N}, \mathfrak{i})=$ $\left\{\boldsymbol{y}: \exists_{\boldsymbol{x} \in \mathbb{Z}^{d}} \Delta \cdot \boldsymbol{x}=\boldsymbol{y}-\mathfrak{i}\right\}$.

Easy to describe (PTime).

Lemma
$\operatorname{Reach}(\mathcal{N}, \mathfrak{i}) \subseteq L_{\mathbb{N}} R S(\mathcal{N}, \mathfrak{i}) \subseteq L_{\mathbb{Z}} R S(\mathcal{N}, \mathfrak{i})$.

An application.

Algorithm 1 for reachability.

Start from the initial configuration \mathfrak{i} and exhaustively build a graph of reachable configurations adding nodes one by one.

- if you find \mathfrak{f} then return 1 ;
- if you can not visit any new configuration then return 0 ;
- if you run out of memory then return I don't know.

An application.

Algorithm 1 for reachability.

Start from the initial configuration \mathfrak{i} and exhaustively build a graph of reachable configurations adding nodes one by one.

- if you find \mathfrak{f} then return 1 ;
- if you can not visit any new configuration then return 0 ;
- if you run out of memory then return I don't know.

Algorithm 2 for reachability.

Start from the initial configuration \mathfrak{i} and exhaustively build a graph of reachable configurations adding nodes one by one; but whenever you want to add a new node \boldsymbol{x} to the graph you check if $\mathfrak{f} \in L_{\mathbb{N}} S R(\mathcal{N}, \boldsymbol{x})$. You add the node if and only if the answer is yes.

- if you find \mathfrak{f} then return 1;
- if you can not add any new node then return 0 ;
- if you run out of memory then return "I don't know".

P-flows
\boldsymbol{y} is called a P-flow iff $\boldsymbol{y} \cdot \Delta=0$.
If $\boldsymbol{y} \geqslant 0$ then we call it
P-semiflow.

P-flows

\boldsymbol{y} is called a P-flow iff $\boldsymbol{y} \cdot \Delta=0$.
If $\boldsymbol{y} \geqslant 0$ then we call it
P-semiflow.
Lemma
If \mathfrak{f} is reachable from \mathfrak{i} then $\boldsymbol{y} \cdot \mathfrak{f}=\boldsymbol{y} \cdot \mathfrak{i}$.

P-flows

\boldsymbol{y} is called a P-flow iff $\boldsymbol{y} \cdot \Delta=0$.
If $\boldsymbol{y} \geqslant 0$ then we call it
P-semiflow.
Lemma
If \mathfrak{f} is reachable from \mathfrak{i} then $\boldsymbol{y} \cdot \mathfrak{f}=\boldsymbol{y} \cdot \mathfrak{i}$.

Question

How do we test a boundedness of a place using P-semiflows?

P-flows

\boldsymbol{y} is called a P-flow iff $\boldsymbol{y} \cdot \Delta=0$.
If $\boldsymbol{y} \geqslant 0$ then we call it
P-semiflow.
Lemma
If \mathfrak{f} is reachable from \mathfrak{i} then $\boldsymbol{y} \cdot \mathfrak{f}=\boldsymbol{y} \cdot \mathfrak{i}$.

Question

How do we test a boundedness of a place using P-semiflows?

Lemma

Let \boldsymbol{y} be a P-semiflow of the net \mathcal{N}, then the number of tokens is bounded for all $1 \leqslant i \leqslant d$ such that $\boldsymbol{y}[i]>0$.

Structural boundedness

A place p in a net \mathcal{N} is structurally bounded if for every initial marking \mathfrak{i} the

$$
\max \left\{\mathbf{1}_{\boldsymbol{p}}{ }^{T} \cdot \boldsymbol{m}: \boldsymbol{m} \in R S(\mathcal{N}, \mathfrak{i})\right\} \text { is finite }
$$

Structural boundedness

A place p in a net \mathcal{N} is structurally bounded if for every initial marking \mathfrak{i} the

$$
\max \left\{\mathbf{1}_{\boldsymbol{p}}{ }^{T} \cdot \boldsymbol{m}: \boldsymbol{m} \in R S(\mathcal{N}, \mathfrak{i})\right\} \text { is finite. }
$$

Theorem
A following conditions are equivalent:
(1) a place p in the net \mathcal{N} is structurally bounded,
(2) there exists $\boldsymbol{y} \geqslant \mathbf{1}_{\boldsymbol{p}}$ such that $\boldsymbol{y} \cdot \Delta \leqslant \mathbf{0}$,
(3) there is no $\boldsymbol{x} \geqslant \mathbf{0}$ such that $\Delta \cdot \boldsymbol{x} \geqslant \mathbf{1}_{\boldsymbol{p}}$.

Proof

Theorem

A following conditions are equivalent:
(1) a place p in the net \mathcal{N} is structurally bounded,
(2) there exists $\boldsymbol{y} \geqslant \mathbf{1}_{\boldsymbol{p}}$ such that $\boldsymbol{y} \cdot \Delta \leqslant \mathbf{0}$,
(3) there is no $\boldsymbol{x} \geqslant \mathbf{0}$ such that $\Delta \cdot \boldsymbol{x} \geqslant \mathbf{1}_{\boldsymbol{p}}$.

Proof

Theorem

A following conditions are equivalent:
(1) a place p in the net \mathcal{N} is structurally bounded,
(2) there exists $\boldsymbol{y} \geqslant \mathbf{1}_{\boldsymbol{p}}$ such that $\boldsymbol{y} \cdot \Delta \leqslant \mathbf{0}$,
(3) there is no $\boldsymbol{x} \geqslant \mathbf{0}$ such that $\Delta \cdot \boldsymbol{x} \geqslant \mathbf{1}_{\boldsymbol{p}}$.
(1) $1 \Longrightarrow 3$ by $\neg 3 \Longrightarrow \neg 1$

Proof

Theorem

A following conditions are equivalent:
(1) a place p in the net \mathcal{N} is structurally bounded,
(2) there exists $\boldsymbol{y} \geqslant \mathbf{1}_{\boldsymbol{p}}$ such that $\boldsymbol{y} \cdot \Delta \leqslant \mathbf{0}$,
(3) there is no $\boldsymbol{x} \geqslant \mathbf{0}$ such that $\Delta \cdot \boldsymbol{x} \geqslant \mathbf{1}_{\boldsymbol{p}}$.
(1) $1 \Longrightarrow 3$ by $\neg 3 \Longrightarrow \neg 1$
(2) $3 \Longrightarrow 2$ by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

$$
A x \geqslant b
$$

$$
\begin{array}{r}
y \geqslant 0 \\
\boldsymbol{y}^{T} \cdot A=0 \\
\boldsymbol{y}^{T} \cdot \boldsymbol{b}>0
\end{array}
$$

Proof

Theorem

A following conditions are equivalent:
(1) a place p in the net \mathcal{N} is structurally bounded,
(2) there exists $\boldsymbol{y} \geqslant \mathbf{1}_{\boldsymbol{p}}$ such that $\boldsymbol{y} \cdot \Delta \leqslant \mathbf{0}$,
(3) there is no $\boldsymbol{x} \geqslant \mathbf{0}$ such that $\Delta \cdot \boldsymbol{x} \geqslant \mathbf{1}_{\boldsymbol{p}}$.
(1) $1 \Longrightarrow 3$ by $\neg 3 \Longrightarrow \neg 1$
(2) $3 \Longrightarrow 2$ by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

(3) $2 \Longrightarrow 1$ Direct.

Continuous reachability.

Linear programming + If formula.

Input: A $r \times c$ - integer matrix M and a vector $\boldsymbol{y} \in \mathbb{Z}^{r}$ and a set of predicates of a form $\boldsymbol{x}[i]>0 \Longrightarrow \boldsymbol{x}[j]>0$.
Question: If there is a vector $\boldsymbol{x} \in \mathbb{Q}_{\geqslant}^{c} \geqslant 0$ such that $M \cdot \boldsymbol{x}=\boldsymbol{y}$ and all predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Linear programming + If formula.

Input: A $r \times c$ - integer matrix M and a vector $\boldsymbol{y} \in \mathbb{Z}^{r}$ and a set of predicates of a form $\boldsymbol{x}[i]>0 \Longrightarrow \boldsymbol{x}[j]>0$.
Question: If there is a vector $\boldsymbol{x} \in \mathbb{Q}_{\geqslant}^{c} \geqslant 0$ such that $M \cdot \boldsymbol{x}=\boldsymbol{y}$ and all predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Proof

(1) The set of solutions is convex.
(2) If for every i there is a solution such that $\boldsymbol{x}[i]>0$ then there is a solution such that $\boldsymbol{x}[j]>0$ for all j.

Linear programming + If formula (the algorithm).

solve(Matrix Δ, Vector \boldsymbol{y}, set_of_implications \mathbb{S}, set_of_zeros \mathbb{X}) $\{$

If there is no solution $\Delta \cdot \boldsymbol{x}=\boldsymbol{y}$ in $\mathbb{Q}_{\geqslant}^{c}$, where $x_{i}=0$ for all $x_{i} \in \mathbb{X}$ then return false;
If there is a solution $\Delta \cdot \boldsymbol{x}=\boldsymbol{y}$ in $\mathbb{Q}_{\geqslant}^{c}$, where $x_{i}=0$ iff $x_{i} \in \mathbb{X}$ and $x_{i}>0$ if $x_{i} \notin \mathbb{X}$ then return true;
Find a new coordinate x_{j} which has to be equal 0 in every solution;
Add x_{j} to \mathbb{X};
Add to \mathbb{X} all x_{i} that has to be added due to implications; return solve $(M, \boldsymbol{y}, \mathbb{S}, \mathbb{X})$;

Continuous Petri Nets.

- Marking: $\mathcal{M}: \mathbb{P} \rightarrow \mathbb{Q} \geqslant 0$
- Transitions: \mathbb{T}
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q} \geqslant 0$.

Continuous Petri Nets.

- Marking: $\mathcal{M}: \mathbb{P} \rightarrow \mathbb{Q} \geqslant 0$
- Transitions: \mathbb{T}
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q} \geqslant 0$.

Continuous Petri Nets.

- Marking: $\mathcal{M}: \mathbb{P} \rightarrow \mathbb{Q} \geqslant 0$
- Transitions: \mathbb{T}
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q} \geqslant 0$.

Continuous Petri Nets.

- Marking: $\mathcal{M}: \mathbb{P} \rightarrow \mathbb{Q} \geqslant 0$
- Transitions: \mathbb{T}
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q} \geqslant 0$.

Continuous Petri Nets.

- Marking: $\mathcal{M}: \mathbb{P} \rightarrow \mathbb{Q} \geqslant 0$
- Transitions: \mathbb{T}
- Firing a transition $\mathfrak{t} \in \mathbb{T}$ with a coefficient $a \in \mathbb{Q} \geqslant 0$.

Continuous Petri Nets Reachability.

Input: Two configurations \mathfrak{i} and \mathfrak{f}
 Question: If there is a run form \mathfrak{i} to \mathfrak{f} under continuous semantics.

A simpler variant of the problem.
Suppose, that

$$
\forall_{i}(\mathrm{i}[i]>0 \text { and } \mathfrak{f}[i]>0) .
$$

\mathfrak{f} is reachable from \mathfrak{i} iff

$$
\mathfrak{f}-\mathfrak{i}=\Delta \cdot \boldsymbol{x} \text { where } \boldsymbol{x} \in \mathbb{Q}_{\geqslant 0}^{d} .
$$

Continuous Petri Nets Reachability.

Lemma
\mathfrak{f} is reachable from \mathfrak{i} if
(1)

$$
\mathfrak{f}-\mathfrak{i}=\Delta \cdot \boldsymbol{x} \text { where } \boldsymbol{x} \in \mathbb{Q}_{\geqslant 0}^{d}
$$

(2)

$$
\boldsymbol{x}\left[t_{i}\right]>0 \text { and } \operatorname{Pre}\left[j, t_{i}\right]>0 \Longrightarrow \mathrm{i}[j]>0,
$$

3

$$
\boldsymbol{x}\left[t_{i}\right]>0 \text { and } \operatorname{Post}\left[j, t_{i}\right]>0 \Longrightarrow f[j]>0 .
$$

Continuous Petri Nets Reachability.

Lemma

\mathfrak{f} is reachable from \mathfrak{i} if
(1) $\mathfrak{f}-\mathfrak{i}=\Delta \cdot x$ where $x \in \mathbb{Q}_{\geqslant 0}^{d} 0$
(2) $\boldsymbol{x}\left[t_{i}\right]>0$ and $\operatorname{Pre}\left[j, t_{i}\right]>0 \Longrightarrow \mathfrak{i}[j]>0$,
(3) $\boldsymbol{x}\left[t_{i}\right]>0$ and $\operatorname{Post}\left[j, t_{i}\right]>0 \Longrightarrow f[j]>0$.

Theorem

\mathfrak{f} is reachable from \mathfrak{i} iff there are two configurations \mathfrak{i}^{\prime} and \mathfrak{f}^{\prime} such that
(1) there is a run form \mathfrak{i} to \mathfrak{i}^{\prime} that is using at most d steps.
(2) there is a run form \mathfrak{f}^{\prime} to \mathfrak{f} that is using at most d steps.
(3) There is a run form \mathfrak{i}^{\prime} to \mathfrak{f}^{\prime} due to Lemma.

Translation to a formula (linear + If).

Lemma

For a given Petri net \mathcal{N} and two configurations \mathfrak{i} and \mathfrak{f} in PTime one can compute a formula (linear programming + if) such that it is satisfiable if and only if \mathfrak{f} is continuously reachable from \mathfrak{i} in the net \mathcal{N}.

We use:

Theorem

\mathfrak{f} is reachable from \mathfrak{i} iff there are two configurations \mathfrak{i}^{\prime} and \mathfrak{f}^{\prime} such that
(1) there is a run form \mathfrak{i} to \mathfrak{i}^{\prime} that is using at most d steps.
(2) there is a run form \mathfrak{f}^{\prime} to \mathfrak{f} that is using at most d steps.
(3) There is a run form \mathfrak{i}^{\prime} to \mathfrak{f}^{\prime} due to Lemma.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

What is the main obstacle?

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

How to cut the upward-closed set?

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $\boldsymbol{x} \in M \uparrow$, if there is no $\boldsymbol{y} \geqslant \boldsymbol{x}$ such that $\boldsymbol{y} \in R S(\mathcal{N}, \mathfrak{i})$ then we can throw \boldsymbol{x} away.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $\boldsymbol{x} \in M \uparrow$, if there is no $\boldsymbol{y} \geqslant \boldsymbol{x}$ such that $\boldsymbol{y} \in R S(\mathcal{N}, \mathfrak{i})$ then we can throw \boldsymbol{x} away.
M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015

SOLUTION: Let $\boldsymbol{x} \in M \uparrow$, if there is no $\boldsymbol{y} \geqslant \boldsymbol{x}$ such that $\boldsymbol{y} \in C R S(\mathcal{N}, \mathfrak{i})$ then we can throw \boldsymbol{x} away.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get too big.

IDEA: Let $\boldsymbol{x} \in M \uparrow$, if there is no $\boldsymbol{y} \geqslant \boldsymbol{x}$ such that $\boldsymbol{y} \in R S(\mathcal{N}, \mathfrak{i})$ then we can throw \boldsymbol{x} away.

```
M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let }\boldsymbol{x}\inM\uparrow\mathrm{ , if there is no }\boldsymbol{y}\geqslant\boldsymbol{x}\mathrm{ such that }\boldsymbol{y}\inCRS(\mathcal{N},\mathfrak{i} then we can throw \(\boldsymbol{x}\) away.
```

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: $L R S$ instead of $C R S$.

Bibliography

(1) Techniques for state equation and flow invariant: https://link.springer.com/content/pdf/10.1007/ 3-540-65306-6_19.pdf
(2) Continuous reachability:
old paper: Estíbaliz Fraca, Serge Haddad: Complexity Analysis of Continuous Petri Nets. Fundam. Inform. 137(1): 1-28 (2015) (It has to be in the library)
new paper: http://www.lsv.fr/~haase/documents/bh17.pdf

Fast Termination.

Definition (VASS- Vector addition systems with states)

VASS is a finite automaton in which transitions are labelled with vectors in \mathbb{Z}^{d}. The set of states we denote by Q and the set of transition by T. The semantics is given by a labelled transition system where:

- Configurations are pairs a state and a vector in \mathbb{N}^{d}.
- There is transition from (p, \boldsymbol{m}) to $\left(q, \boldsymbol{m}^{\prime}\right)$ if there is an automaton transition (p, q) labelled with \boldsymbol{v} such that $\boldsymbol{m}+\boldsymbol{v}=\boldsymbol{m}^{\prime}$.
(1) $L(n)$ is the maximal length of a run from a configuration with the counters bounded by n.
(2) SCC -strongly connected component in the automaton.
(3) Let A be a VASS, and R its strongly connected component, by A_{R} we mean the VASS obtained for A by restricting the set of states to R.

Our goal is to propose algorithm that approximates a function $L(n)$.

Definition

An open half-space of \mathbb{Q}^{d} determined by a normal vector $\boldsymbol{n} \in \mathbb{Q}^{d}$, where $n \neq 0$, is the set H_{n} of all $\boldsymbol{x} \in \mathbb{Q}^{d}$ such that $\boldsymbol{x} \cdot \boldsymbol{n}<0$ (dot product). A closed half-space H_{n} is defined in the same way but the above inequality is non-strict.

Definition

Given a finite set of vectors $U \subseteq \mathbb{Q}^{d}$, we use cone (U) to denote the set of all vectors of the form $\sum_{\boldsymbol{u} \in U} c_{\boldsymbol{u}} \boldsymbol{u}$, where $c_{\boldsymbol{u}}$ is a non-negative rational constant for every $\boldsymbol{u} \in U$.

Hyperplane separation theorem

Let A and B be two disjoint nonempty convex subsets of \mathbb{Q}^{d}. Then there exist a nonzero vector v and a real number c such that $\langle x, v\rangle \geq c$ and $\langle y, v\rangle \leq c$ for all $x \in A$ and $y \in B$; i.e., the hyperplane $\langle\cdot, v\rangle=c$, where v is the normal vector, separates A and B. If A and B are closed then inequality can be strict.

Lemma

Let $d \in \mathbb{N}$, and let $A=(Q, T)$ be a d-dimensional VASS. Then $L(n) \in O(n)$ iff $L_{R}(n) \in O(n)$ for every $S C C R$ of Q, where $L_{R}(n)$ is the termination complexity of A_{R}.

Lemma

Let $d \in \mathbb{N}$, and let $A=(Q, T)$ be a d-dimensional VASS. Then $L(n) \in O(n)$ iff $L_{R}(n) \in O(n)$ for every $S C C R$ of Q, where $L_{R}(n)$ is the termination complexity of A_{R}.

Definition

 $\operatorname{Inc} \stackrel{\text { def }}{=}\{\operatorname{eff}(\pi) \mid \pi$ is a cycle in A not longer than $|Q|\}$.
Lemma

Let $A=(Q, T)$ be a d-dimensional VASS. Then one of two cases holds:

- there exist $v_{1}, \ldots, v_{k} \in \operatorname{Inc}$ and $b_{1}, \ldots, b_{k} \in \mathbb{N}$ such that $k \geq 1$ and $\sum_{i=1}^{k} b_{i} \boldsymbol{v}_{i} \geq 0$,
- there is an open half-space $H_{\boldsymbol{n}} \subset \mathbb{R}^{d}$ defined by $\boldsymbol{n}>0$ such that Inc $\subseteq H_{n}$.

Lemma

Let $A=(Q, T)$ be a d-dimensional VASS. We have the following:

- If there is an open half-space H_{s} of \mathbb{Q}^{d} such that $\boldsymbol{s}>0$ and Inc $\subset H_{s}$, then $L(n) \in O(n)$.
- If there is a closed half-space H_{s} of \mathbb{Q}^{d} such that $\boldsymbol{s}>0$ and Inc $\subseteq H_{s}$, then $L(n) \in \Omega\left(n^{2}\right)$.
- If there is a vector $\boldsymbol{s}>0$ that can be expressed as $\sum_{\boldsymbol{u} \in \operatorname{lnc}} c_{\boldsymbol{u}} \cdot \boldsymbol{u}$ then the net has an infinite run.

Lemma

Let $A=(Q, T)$ be a d-dimensional VASS. We have the following:

- If there is an open half-space H_{s} of \mathbb{Q}^{d} such that $\boldsymbol{s}>0$ and Inc $\subset H_{s}$, then $L(n) \in O(n)$.
- If there is a closed half-space H_{s} of \mathbb{Q}^{d} such that $\boldsymbol{s}>0$ and Inc $\subseteq H_{s}$, then $L(n) \in \Omega\left(n^{2}\right)$.
- If there is a vector $\boldsymbol{s}>0$ that can be expressed as $\sum_{\boldsymbol{u} \in \operatorname{lnc}} c_{\boldsymbol{u}} \cdot \boldsymbol{u}$ then the net has an infinite run.

Theorem

Let $d \in \mathbb{N}$. The problem whether the termination complexity of a given d-dimensional VASS is linear is solvable in time polynomial in the size of A. More precisely, the termination complexity of a VASS A is linear if and only if there exists a weighted linear ranking function for A. Moreover, the existence of a weighted linear ranking function for A can be decided in time polynomial in the size of A.

Bibliography

(1) https://arxiv.org/pdf/1708.09253.pdf

