
Linear algebra + Petri nets
Piotr Hofman
University of Warsaw

Petri Nets.

P1 T1 P2

P3 T2 P4

Places.
Transitions.

Tokens, a Marking.
Firing a transition.

Petri Nets.

P1 T1 P2

P3 T2 P4

Places.
Transitions.
Tokens, a Marking.

Firing a transition.

Petri Nets.

P1 T1 P2

P3 T2 P4

Places.
Transitions.
Tokens, a Marking.
Firing a transition.

Petri Nets.

P1 T1 P2

P3 T2 P4

Places.
Transitions.
Tokens, a Marking.
Firing a transition.

Petri Nets.

P1 T1 P2

P3 T2 P4

Places.
Transitions.
Tokens, a Marking.
Firing a transition.

Questions and tools.
We focus on analysis of systems modelled with Petri nets.

Most important questions:
1 Place coverability,
2 Reachability,
3 Liveness,
4 Death of a transition,
5 Deadlock-freeness.

Most important tools:
1 Coverability: ExpSpace complete,
2 Boundedness: ExpSpace complete,
3 Reachability: at least ExpSpace Hard.

Two solutions:

Do not try to be precise (approximations).
1 Place invariant.
2 State equation.
3 Continuous reachability.
4 Traps and siphons.

Do not try to be general (sub-classes).
1 Free-choice Petri Nets.
2 Conflict free Petri nets.
3 One counter systems.
4 2-dimensional VASS.
5 Flat systems.

Linear algebra

Integer programming.

Input: An integer matrix M and a vector y .
Question: If there is a vector x ∈ Nd such that

M · x = y?

Theorem
The integer programming problem is NP-complete.

Linear algebra.

Linear programming.

Input: An integer matrix M and a vector y .
Question: If there is a vector x ∈ Qd

>0 such that

M · x = y?

Theorem
The linear programming problem is P-complete.

Description of the net, three matrices.

P1 T1 P2

P3 T2 P4

0[i] = 0 for all i

1p[i] =
{

1 if p = i
0 otherwise

Pre(N) =


1 0
0 1
0 1
0 0



Post(N) =


0 1
1 0
1 0
0 1


∆ = Post(N)− Pre(N)
−1 1
1 −1
1 −1
0 1



Description of the net, three matrices.

P1 T1 P2

P3 T2 P4

0[i] = 0 for all i

1p[i] =
{

1 if p = i
0 otherwise

Pre(N) =


1 0
0 1
0 1
0 0



Post(N) =


0 1
1 0
1 0
0 1


∆ = Post(N)− Pre(N)
−1 1
1 −1
1 −1
0 1



State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .

Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .

Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .
Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .
Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .
Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .
Hard to describe.

Let LNRS(N , i) =
{y : ∃x∈Nd ∆ · x = y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{y : ∃x∈Zd ∆ · x = y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).

An application.
Algorithm 1 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one.

if you find f then return 1;
if you can not visit any new configuration then return 0;
if you run out of memory then return I don’t know.

Algorithm 2 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one; but
whenever you want to add a new node x to the graph you check if
f ∈ LNSR(N , x). You add the node if and only if the answer is yes.

if you find f then return 1;
if you can not add any new node then return 0;
if you run out of memory then return ”I don’t know”.

An application.
Algorithm 1 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one.

if you find f then return 1;
if you can not visit any new configuration then return 0;
if you run out of memory then return I don’t know.

Algorithm 2 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one; but
whenever you want to add a new node x to the graph you check if
f ∈ LNSR(N , x). You add the node if and only if the answer is yes.

if you find f then return 1;
if you can not add any new node then return 0;
if you run out of memory then return ”I don’t know”.

P-flows

y is called a P-flow iff y ·∆ = 0.
If y > 0 then we call it

P-semiflow.

Lemma
If f is reachable from i then y · f = y · i.

Question
How do we test a boundedness of a place using
P-semiflows?

Lemma
Let y be a P-semiflow of the net N , then the number of
tokens is bounded for all 1 6 i 6 d such that y [i] > 0.

P-flows

y is called a P-flow iff y ·∆ = 0.
If y > 0 then we call it

P-semiflow.

Lemma
If f is reachable from i then y · f = y · i.

Question
How do we test a boundedness of a place using
P-semiflows?

Lemma
Let y be a P-semiflow of the net N , then the number of
tokens is bounded for all 1 6 i 6 d such that y [i] > 0.

P-flows

y is called a P-flow iff y ·∆ = 0.
If y > 0 then we call it

P-semiflow.

Lemma
If f is reachable from i then y · f = y · i.

Question
How do we test a boundedness of a place using
P-semiflows?

Lemma
Let y be a P-semiflow of the net N , then the number of
tokens is bounded for all 1 6 i 6 d such that y [i] > 0.

P-flows

y is called a P-flow iff y ·∆ = 0.
If y > 0 then we call it

P-semiflow.

Lemma
If f is reachable from i then y · f = y · i.

Question
How do we test a boundedness of a place using
P-semiflows?

Lemma
Let y be a P-semiflow of the net N , then the number of
tokens is bounded for all 1 6 i 6 d such that y [i] > 0.

Structural boundedness

A place p in a net N is structurally bounded if for every initial marking i
the

max{1p
T ·m : m ∈ RS(N , i)} is finite.

Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

Structural boundedness

A place p in a net N is structurally bounded if for every initial marking i
the

max{1p
T ·m : m ∈ RS(N , i)} is finite.

Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

Proof
Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

1 1 =⇒ 3 by ¬3 =⇒ ¬1
2 3 =⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem
Exactly one of the following systems of equations has a solution:

Ax >b. y >0

yT · A =0

yT · b >0.

3 2 =⇒ 1 Direct.

Proof
Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

1 1 =⇒ 3 by ¬3 =⇒ ¬1

2 3 =⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem
Exactly one of the following systems of equations has a solution:

Ax >b. y >0

yT · A =0

yT · b >0.

3 2 =⇒ 1 Direct.

Proof
Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

1 1 =⇒ 3 by ¬3 =⇒ ¬1
2 3 =⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem
Exactly one of the following systems of equations has a solution:

Ax >b. y >0

yT · A =0

yT · b >0.

3 2 =⇒ 1 Direct.

Proof
Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists y > 1p such that y ·∆ 6 0,
3 there is no x > 0 such that ∆ · x > 1p.

1 1 =⇒ 3 by ¬3 =⇒ ¬1
2 3 =⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem
Exactly one of the following systems of equations has a solution:

Ax >b. y >0

yT · A =0

yT · b >0.

3 2 =⇒ 1 Direct.

Continuous reachability.

Linear programming + If formula.

Input: A r × c- integer matrix M and a vector y ∈ Zr and a set of
predicates of a form x[i] > 0 =⇒ x[j] > 0.

Question: If there is a vector x ∈ Qc
>0 such that M · x = y and all

predicates are satisfied?

Theorem
The Linear programming + If formula problem is in PTime.

Proof
1 The set of solutions is convex.
2 If for every i there is a solution such that x[i] > 0 then there is a

solution such that x[j] > 0 for all j .

Linear programming + If formula.

Input: A r × c- integer matrix M and a vector y ∈ Zr and a set of
predicates of a form x[i] > 0 =⇒ x[j] > 0.

Question: If there is a vector x ∈ Qc
>0 such that M · x = y and all

predicates are satisfied?

Theorem
The Linear programming + If formula problem is in PTime.

Proof
1 The set of solutions is convex.
2 If for every i there is a solution such that x[i] > 0 then there is a

solution such that x[j] > 0 for all j .

Linear programming + If formula (the algorithm).

solve(Matrix ∆, Vector y , set of implications S, set of zeros X)
{

If there is no solution ∆ · x = y in Qc
>0,

where xi = 0 for all xi ∈ X then return false;
If there is a solution ∆ · x = y in Qc

>0,
where xi = 0 iff xi ∈ X and xi > 0 if xi 6∈ X

then return true;
Find a new coordinate xj

which has to be equal 0 in every solution;
Add xj to X;
Add to X all xi that has to be added due to implications;
return solve(M, y , S, X);

}

Continuous Petri Nets.

T1

T2

Marking: M : P → Q>0

Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q>0.

Continuous Petri Nets.

T1

1

1

T2

3
2

Marking: M : P → Q>0

Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q>0.

Continuous Petri Nets.

T1

1

1

T2

1
3

3
2

Marking: M : P → Q>0

Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q>0.

Continuous Petri Nets.

T1

2
3

2
3

T2

1
3

3
2

Marking: M : P → Q>0

Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q>0.

Continuous Petri Nets.

1
3

T1

2
3

2
3

T2

1
3

10
6

Marking: M : P → Q>0

Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q>0.

Continuous Petri Nets Reachability.

Input: Two configurations i and f

Question: If there is a run form i to f under continuous semantics.

A simpler variant of the problem.
Suppose, that

∀i (i[i] > 0 and f[i] > 0) .

f is reachable from i iff

f− i = ∆ · x where x ∈ Qd
>0.

Continuous Petri Nets Reachability.

Lemma
f is reachable from i if

1

f− i = ∆ · x where x ∈ Qd
>0

2

x[ti] > 0 and Pre[j , ti] > 0 =⇒ i[j] > 0,
3

x[ti] > 0 and Post[j , ti] > 0 =⇒ f[j] > 0.

Continuous Petri Nets Reachability.

Lemma
f is reachable from i if

1 f− i = ∆ · x where x ∈ Qd
>0

2 x[ti] > 0 and Pre[j , ti] > 0 =⇒ i[j] > 0,
3 x[ti] > 0 and Post[j , ti] > 0 =⇒ f[j] > 0.

Theorem
f is reachable from i iff there are two configurations i′ and f′ such that

1 there is a run form i to i′ that is using at most d steps.
2 there is a run form f′ to f that is using at most d steps.
3 There is a run form i′ to f′ due to Lemma.

Translation to a formula (linear + If).

Lemma
For a given Petri net N and two configurations i and f in PTime one can
compute a formula (linear programming + if) such that it is satisfiable if
and only if f is continuously reachable from i in the net N .

We use:

Theorem
f is reachable from i iff there are two configurations i′ and f′ such that

1 there is a run form i to i′ that is using at most d steps.
2 there is a run form f′ to f that is using at most d steps.
3 There is a run form i′ to f′ due to Lemma.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

What is the main obstacle?

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

How to cut the upward-closed set?

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the upward-closed set may get
too big.

IDEA: Let x ∈ M ↑, if there is no y > x such that y ∈ RS(N , i) then we
can throw x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let x ∈ M ↑, if there is no y > x such that y ∈ CRS(N , i)
then we can throw x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Bibliography

1 Techniques for state equation and flow invariant:
https://link.springer.com/content/pdf/10.1007/
3-540-65306-6_19.pdf

2 Continuous reachability:
old paper: Est́ıbaliz Fraca, Serge Haddad: Complexity Analysis of
Continuous Petri Nets. Fundam. Inform. 137(1): 1-28 (2015) (It has
to be in the library)
new paper: http://www.lsv.fr/˜haase/documents/bh17.pdf

https://link.springer.com/content/pdf/10.1007/3-540-65306-6_19.pdf
https://link.springer.com/content/pdf/10.1007/3-540-65306-6_19.pdf
http://www.lsv.fr/~haase/documents/bh17.pdf

Fast Termination.

Definition (VASS- Vector addition systems with states)
VASS is a finite automaton in which transitions are labelled with vectors
in Zd . The set of states we denote by Q and the set of transition by T .
The semantics is given by a labelled transition system where:

Configurations are pairs a state and a vector in Nd .
There is transition from (p,m) to (q,m′) if there is an automaton
transition (p, q) labelled with v such that m + v = m′.

1 L(n) is the maximal length of a run from a configuration with the
counters bounded by n.

2 SCC -strongly connected component in the automaton.
3 Let A be a VASS, and R its strongly connected component, by AR we

mean the VASS obtained for A by restricting the set of states to R.

Our goal is to propose algorithm that approximates a function L(n).

Definition
An open half-space of Qd determined by a normal vector n ∈ Qd , where
n 6= 0, is the set Hn of all x ∈ Qd such that x · n < 0 (dot product). A
closed half-space Hn is defined in the same way but the above inequality
is non-strict.

Definition
Given a finite set of vectors U ⊆ Qd , we use cone(U) to denote the set of
all vectors of the form

∑
u∈U cuu, where cu is a non-negative rational

constant for every u ∈ U.

Hyperplane separation theorem
Let A and B be two disjoint nonempty convex subsets of Qd . Then there
exist a nonzero vector v and a real number c such that
〈x , v〉 ≥ c and 〈y , v〉 ≤ c for all x ∈ A and y ∈ B; i.e., the hyperplane
〈·, v〉 = c, where v is the normal vector, separates A and B. If A and B
are closed then inequality can be strict.

Lemma
Let d ∈ N, and let A = (Q,T) be a d-dimensional VASS. Then
L(n) ∈ O(n) iff LR(n) ∈ O(n) for every SCC R of Q, where LR(n) is the
termination complexity of AR .

Definition
Inc def= {eff (π)|π is a cycle in A not longer than |Q|}.

Lemma
Let A = (Q,T) be a d-dimensional VASS. Then one of two cases holds:

there exist v1, ..., vk ∈ Inc and b1, ..., bk ∈ N such that k ≥ 1 and∑k
i=1 bivi ≥ 0,

there is an open half-space Hn ⊂ Rd defined by n > 0 such that
Inc ⊆ Hn.

Lemma
Let d ∈ N, and let A = (Q,T) be a d-dimensional VASS. Then
L(n) ∈ O(n) iff LR(n) ∈ O(n) for every SCC R of Q, where LR(n) is the
termination complexity of AR .

Definition
Inc def= {eff (π)|π is a cycle in A not longer than |Q|}.

Lemma
Let A = (Q,T) be a d-dimensional VASS. Then one of two cases holds:

there exist v1, ..., vk ∈ Inc and b1, ..., bk ∈ N such that k ≥ 1 and∑k
i=1 bivi ≥ 0,

there is an open half-space Hn ⊂ Rd defined by n > 0 such that
Inc ⊆ Hn.

Lemma
Let A = (Q,T) be a d-dimensional VASS. We have the following:

If there is an open half-space Hs of Qd such that s > 0 and
Inc ⊂ Hs , then L(n) ∈ O(n).
If there is a closed half-space Hs of Qd such that s > 0 and
Inc ⊆ Hs , then L(n) ∈ Ω(n2).
If there is a vector s > 0 that can be expressed as

∑
u∈Inc cu · u then

the net has an infinite run.

Theorem
Let d ∈ N. The problem whether the termination complexity of a given
d-dimensional VASS is linear is solvable in time polynomial in the size of
A. More precisely, the termination complexity of a VASS A is linear if and
only if there exists a weighted linear ranking function for A. Moreover,
the existence of a weighted linear ranking function for A can be decided in
time polynomial in the size of A.

Lemma
Let A = (Q,T) be a d-dimensional VASS. We have the following:

If there is an open half-space Hs of Qd such that s > 0 and
Inc ⊂ Hs , then L(n) ∈ O(n).
If there is a closed half-space Hs of Qd such that s > 0 and
Inc ⊆ Hs , then L(n) ∈ Ω(n2).
If there is a vector s > 0 that can be expressed as

∑
u∈Inc cu · u then

the net has an infinite run.

Theorem
Let d ∈ N. The problem whether the termination complexity of a given
d-dimensional VASS is linear is solvable in time polynomial in the size of
A. More precisely, the termination complexity of a VASS A is linear if and
only if there exists a weighted linear ranking function for A. Moreover,
the existence of a weighted linear ranking function for A can be decided in
time polynomial in the size of A.

Bibliography

1 https://arxiv.org/pdf/1708.09253.pdf

https://arxiv.org/pdf/1708.09253.pdf

	Intro
	Serge
	Fast Termination

