
Mazurkiewicz traces



Runs of the system.
We go back to the beginning, and take a look on the set of runs (traces)
of a given system. We use them to characterise the behaviours of the
system.

Example
2 independent automata Let A be an automaton that accepts words a10,
and B accepts b10.

What is the set of possible runs?
How many of them there is?
Is there a better way to describe the system?



Histories

Assumptions:
1 We have k processes running in parallel.
2 Each action of the processi has a unique name in Σi .
3 They communicate via rendezvous.
4 If a belongs to the alphabets of a few systems then all of them

perform it synchronously.

We consider a monoid M = Σ∗
1 × Σ∗

2 × . . .Σ∗
k with concatenation defined

via coordinates
(u1, u2, . . . , uk) + (w1,w2, . . . ,wk) = (u1w1, u2w2, . . . , ukwk).

Let Σ = Σ1 ∪Σ2 ∪ . . .Σk . For a ∈ Σ we define ua ∈ M as (x1, x2, . . . , xk)
where xi = ε if a 6∈ Σi and xi = a if a ∈ Σi . We call the set of ua
elementary histories.
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Histories

The history is
a submonoid of M generated by elementary histories.

Projection πi

For a word w ∈ Σ∗ its projection πi is a word wi ∈ Σ∗
i obtained from w

by removing letters not in Σi .

Projection π

For a word w ∈ Σ∗ its projection π is an element of the monoid M
(π1(w), π2(w), . . . , πk(w)).

Mathematical structure of histories
Monoid structure.
Projections goes form strings to the monoid of histories.
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Algebraic approach
We consider strings over the alphabet Σ.

Dependency relation.
It is a relation on the letters from the alphabet Σ.

reflexive,
symmetric.

We denote by Dep.

Independency relation.
It is a a complement of the dependency relation. We denote it by Ind .

Mazurkiewicz traces
are the equivalence classes of the smallest congruence on the string
monoid Σ∗ that contains ab ≡ ba if (a, b) ∈ Ind .
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Algebraic approach
We use:

a, b, c for letters in Σ.
x , y , u, v ,w for strings in Σ∗.

The swap operation
Let xaby we a string where (a, b) ∈ Ind then xbay is an effect of a swap
operation.

Lemma
Two strings u, v are in the same trace (equivalence class of the
Mazurkiweicz traces relation) iff there is a sequence of swap operations
that transforms u to v.
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Algebraic approach

Our goal is to show that Mazurkiewicz traces and histories are isomorphic.

There is a theory similar to theory of strings developed for Mazurkiewicz
traces.
There is an ongoing research around theory of traces but in recent years
there are very few papers on top conferences about them.



By u ÷ a we mean right cancellation of a from u. For u beeing a string it
is defined as follows:

u ÷ a =


ε for u = ε,

v for u = va
(v ÷ a)b for u = vb where b 6= a

Lemma
u ≡ w =⇒ u ÷ a ≡ w ÷ a for any a ∈ Σ.

A dependency morphism w.r.t. Dep is any homomorphism from the
monoid of strings over Σ on to another monoid such that
A1 φ(w) = φ(ε) =⇒ w = ε;
A2 (a, b) ∈ Ind =⇒ φ(ab) = φ(ba);
A3 φ(ua) = φ(v) =⇒ φ(u) = φ(v ÷ a);
A4 φ(ua) = φ(vb) ∧ a 6= b =⇒ (a, b) ∈ Ind
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We want to prove 3 theorems.

Theorem
Let φ and ψ are two dependency morphism going from Σ∗ to monoids M
and N. Then M and N are isomorphic.

Lemma
Let φ be a dependency morphism, u, v ∈ Σ∗ a, b ∈ Σ. If φ(ua) = φ(vb)
and a 6= b then there exists w ∈ Σ∗ such that φ(u) = φ(wb) and
φ(v) = φ(wa).

Theorem
Canonical homomorphism of string into Mazurkiewicz traces is a
dependency morphism.

Theorem
Canonical homomorphism of string into histories is a dependency
morphism.
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