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Theoretical aspects of concurrency



How to specify systems
Process Algebra,
Petri nets and their extensions.



Process algebra
A gentle introduction.



What do we need to model a system with many independent
components?

1 We need to have a possibility to model individual components
(processes).
(LTS)

2 We need to have a possibility to execute a two processes in parallel.
Tokens.

3 We need to have some notion of communication between
processes/synchronisation.

1 channels,
2 rendezvous,
3 sheared resources,
4 broadcasting.

4 A possibility of creation of new processes.
5 A private communication. (static / dynamic)



CCS
The calculus of communicating systems.



Concurrent process expressions, syntax
Let Σ be a set of names. Suppose that our systems communicates using
signals form a following set Σ× { 1, −1} where for α ∈ Σ α1 = α means
send α and α−1 means receive α. (Convection: (α−1)−1 = α).

Definition CCS
The set P of concurrent process expressions is defined by a following
syntax

P := 0,A,∑
i∈I αi .Pi

P1|P2
(να)P

Where:
αi ∈ Σ× { 1, −1} ∪ {τ}.
every process identifier A has its
own unique expression that defines
it A := PA, where PA is a process
expression.
ν (new) and α ∈ Σ



Formal semantic

Non-deterministic choice: α.P +
∑

i∈I αi .Pi
α−→ P

REL: PA
α−→P′

A
α−→P′

if A := PA,

R − par : Q α−→ Q′

P|Q α−→ P|Q′
L− part : P α−→ P ′

P|Q α−→ P ′|Q

RES: P
α−→P′

(νβ)P
α−→(νβ)P′

if α 6∈ {β, β−1}

Internal:P
α−→P′ Q

α−1
−−→Q′

P|Q
τ−→P′|Q′



Example

A = α.A′ A′ = β−1.A
B = α−1.B′ B′ = δ−1.B

1 What are the possible actions of (A|B) ?
2 What are the possible actions of (ν{α})(A|B) ?
3 Draw LTS induced by A|B.
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Example 2

C = 0 + (α.(C |B)) + (β.(C |A))
A = α.0
B = β.0

1 What are the possible traces of C ?
2 Draw an initial fragment of the LTS induced by C .



Example 3 - a counter
How we can model a counter using process algebra?

Count0
def= inc.Count1 + zero.Count0

Counti
def= inc.Counti+1 + dec.Counti−1

(1)

Z := zero.Z + inc.((νa)(C1|a.Z ))
C1 :=dec.a−1.0 + inc.((νb)(C2|b.C1))
C2 :=dec.b−1.0 + inc.((νa)(C1|a.C2))

(2)
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Proof of the equivalence

1 Equivalence - weak bisimulation
2 How to prove? Define a winning region for Duplicator and prove that

it is closed for one round of the weak bisimulation game.
3 Let us start from counti ≈ (Z inc i

−−→)
count0 ≈ Z ,
count1 ≈ (νa)(a.Z |C1),
count2 ≈ (νa)(a.Z |((νb)(b.C1|C2))) ≈ count2
count3 ≈ (νa)(a.Z |((νb)(b.C1|((νa)(a.C2|C1))))) ≈ count3
. . .
Terms.

4 Problem - what is happening if dec is used?



When processes are equivalent?
So what are the properties of the equivalence that we are looking for?

Syntactic equivalence ≡
1 P ≡ Q should imply P ≈ Q.

2 ≡ is a relation on the syntactical level.
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When processes are equivalent?
Let us denote process equivalence by ≡.

1 P|Q ≡ Q|P

2 P|0 ≡ P
3 P + P ≡ P
4 (νa)a.P ≡ 0.
5 if A := P then A ≡ P

Problem
Let P = A|a.0 then A = P has many solutions.

A = b.0|a.0|a.0|a.0| . . .
A = c.0|a.0|a.0|a.0| . . .

This two processes should not be equivalent.
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Unique solutions of recurrent definitions.

Definition (a guarded process identifier)
An occurrence of a process identifier A in a process q is strongly guarded
in q if such occurrence of A occurs within a prefixed sub-process α.q′ of q.
Unfold procedure:

take each not strongly guarded process identifier and substitute it
with the defining expression.
repeat this process until you have some not strongly guarded process
identifiers.

Constant A, defined as A = p, is guarded if the unfolding process stops.

Lemma
If all process identifiers are guarded then the equation has unique solution
up to bisimulation.



Unique solutions of recurrent definitions.

Definition (CCS - guarded)
We restrict our-self to the fragment of CCS where every process identifier
is guarded.

Observe that all examples considered until now were guarded.



When processes are equivalent?
Let us denote process equivalence by ≡.

1 P|Q ≡ Q|P
2 P|0 ≡ P
3 P + P ≡ P
4 P + 0 ≡ P.

What is the fundamental property of a good notion of equivalence?
(compositionality)

if P ≡ Q then for example R|P ≡ R|Q and P + R ≡ Q + R.

Let us try to generalise this.



Congruence
Definition
Context is a process with a hole represented by []. Formally it is given by
a grammar:

C := [] , α.C , C +
∑
i∈I

Pi , (να)C , C |P , P|C

where I is a finite family and Pi are processes.

Definition
A congruence relation ∼= (or simply congruence) is an equivalence relation
on an algebraic structure that is compatible with the structure i.e. If
P ∼= Q then for any context C holds C [P] ∼= C [Q].

Which relations are congruencies?

Trace equivalence.
Bisimilarity.

Weak bisimilarity.
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Trace equivalence
We analyse rule by rule. Suppose that P =Tr Q.

P + R =Tr Q + R and R + P =Tr R + Q.
P|R =Tr Q|R and R|P =Tr R|Q.
a.P =Tr a.Q
νaP =Tr νaQ.
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Completed trace equivalence

Definition
For a given system a set of completed traces is a set of words via which
we may reach a state which is a deadlock in the induced LTS.

It was introduced, because sometimes we are interested in deadlocks.
Question: Does the completed traces equivalence is a congruence?
Answer: No. we apply νc to two equivalent processes

1 a.(b.0 + c.0)
2 a.b.0 + a.c.0
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Bisimilarity

Theorem
The bisimilarity relation is a congruence.

Proof.
Let ∼C is a set of pairs (C [P/X ],C [Q/X ]) where C [X ] is some
context and P ∼ Q is a pair of bisimilar processes.
We have to prove that ∼C is a bisimulation.

Take a pair P ∼ Q and any context C [X ], we have to verify that for
every α if C [P/X ] α−→ P ′ then there is Q′ such that C [Q/X ] α−→ Q′
and P ′ ∼ Q′.
We prove by induction on the size of the context.
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Weak Bisimilarity

Fact
Weak bisimilarity is not a congruence.

P ≈ τ.P but a.0 + P not necessarily weakly bisimilar with a.0 + τ.P.

Lemma
Weak bisimilarity is a congruence with respect to the following
operations. Let P ≈ Q and R ≈ S then

1 P|R ≈ Q|S
2 νaP ≈ νaQ
3 α.P +

∑
i Ri ≈ α.Q +

∑
i Ri where α 6= τ

Weak bisimilarity is good as it abstract form internal τ moves.
New concept, let us try to identify a biggest congruence included in weak
bismilarity.
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Biggest congruence included in the weak bisimilarity
relation.

Lemma
Equivalence closure of a union of a family of congruence relations is a
congruence.

Lemma
There is a biggest congruence included in the weak bisimilarity relation.



Rooted Weak Bisimilarity
By a+=⇒ is a sequence of transitions like a+=⇒ but a nonempty one.

Definition
The rooted weak bisimulation is a relation R on the set of configurations
such that if (s, s ′) ∈ R then

1 For any label a ∈ Σ ∪ Σ−1 ∪ {τ} and every step s a−→ t there is an
answer s ′ a+=⇒ t ′ such that t ≈ t ′.

2 For any label a ∈ Σ ∪ Σ−1 ∪ {τ} and every step s ′ a−→ t ′ there is an
answer s a+=⇒ t such that t ≈ t ′

The difference, comparing with the weak bisimulation relation, is only in
the first move!

Definition
Rooted Weak bisimilarity ≈R is the biggest rooted weak bisimulation.

Question: design a system where Rooted Bisimilarity is in between strong
and weak bisimilarity.
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Rooted Weak Bisimilarity
Definition (Free names)
The free names of a process p, denoted fn(p), are defined as the set
F (p, ∅), where F (p, I), with I a set of process identifiers, is defined as
follows:

F (0, I) = ∅,
F (a.p, I) = F (a−1.p, I) = F (p, I) ∪ {a}
F (τ.p, I) = F (p, I)
F (p + q, I) = F (p|q, I) = F (p, I) ∪ F (q, I)
F ((νa)p, I) = F (p, I) \ {a}

F (C , I) =
{

F (q, I ∪ {C}) if C = q and C 6∈ I
∅ if C ∈ I.

(3)

According to this definition, fn(p) is effectively computable for any
process p.



Rooted Weak Bisimilarity

Lemma
Rooted Weak bisimilarity is a congruence for CCS.

Lemma
Rooted Weak Bisimilarity is a biggest congruence contained in Weak
Bisimilarity for CCS.

We can prove correctness of syntactic equivalences via
1 Strong Bisimilarity,
2 Rooted Weak Bisimilarity.
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Syntactic equivalences
1 Monoid laws:

P + Q ∼= Q + P
P + (Q + R) ∼= (P + Q) + R
P + 0 ∼= P
P + P ∼= P

2 τ laws:
α.τ.P ∼= α.P
P + τ.P ∼= τ.P
α.(P + τ.Q) + α.Q ∼= α.(P + τ.Q)

3 The expansion law:
Let P ∼= (νb1) . . . (νbk ) (P1| . . . |Pn) then

P ∼=
∑

α

α.(νb1) . . . (νbk ) (P1| . . . |P
′
i | . . . |Pn) : Pi

α
−→ P′i , α 6∈ {b1, . . . b−1

k }+∑
α

τ.(νb1) . . . (νbk ) (P1| . . . |P
′
i | . . . |P

′
j | . . . |Pn) : Pi

α
−→ P′i , Pj

α−1
−−−→ P′j

4 Composition laws:
P|Q ∼= Q|P
P|(Q|R) ∼= (P|Q)|R
P|0 ∼= P



Syntactic equivalences

5 Restriction laws
(νa) (νa) P ∼= (νa)P
(νa) (νb) P ∼= (νb)(νa)P
νa P ∼= P if {a, a−1} ∩ fn(P) = ∅
νa(P|Q) ∼= νa P|νa Q if fn(P) ∩ fn(Q) ∩ {a, a−1} = ∅



Example 3 - a counter. The second attempt.

Count0
def= inc.Count1 + zero.Count0

Counti
def= inc.Counti+1 + dec.Counti−1

(4)

Z := zero.Z + inc.((νa)(C1|a.Z ))
C1 :=dec.a−1.0 + inc.((νb)(C2|b.C1))
C2 :=dec.b−1.0 + inc.((νa)(C1|a.C2))

(5)



CCS reachability.

Lemma
The reachability problem for CCS is undecidable.

Proof.
1 Fact: The reachability problem for two counter machine is

undecidable.
2 Using the construction form Example 3 one can simulate the two

counter machine using CCS.



The two counter machine.

Definition
A two counter machine is a tuple (Q, q0,F ,T , L) where Q is a finite set
of states q0 is the initial state, F is the set of final states, T ⊆ Q × Q is
the transition relation and L is a function from T into the set
{r1 = 0, r2 = 0, r1 + +, r1 −−, r2 + +, r2 −−}.
Semantics: configurations are elements of the set Q × N× N. From
(p, c1, c2) there is a step to (p′, c ′1, c ′2) if (p, p′) ∈ T and

(c ′i , c ′1−i ) =


(0, c1−i ) if L((p, p′)) = ri = 0 and ci = 0
(ci + 1, c1−i ) if L((p, p′)) = ri + +
(ci − 1, c1−i ) if L((p, p′)) = ri −−



Two counter machine reachability.

Lemma
The reachability problem for two counter machine is undecidable.

Proof - Homework, may appear on the exam!
1 The halting problem for Turing machines is undecidable.
2 The reachability problem for an automaton with two pushdowns is

undecidable.
3 One can simulate operations on the pushdown using counters (binary

encoding, push - multiply by 2, pop - divide by 2).
4 Many counters can be reduced to two counters. We encode values of

many counters on a single counter as pc1
1 pc2

2 pc3
3 . . . where pi are

different prime numbers and ci are counter values, the second
counter is auxiliary.



Analysis of CCS is not possible.

The question if α can be a next observable action is undecidable.

In theory analysis of CCS is not possible.

But you can be lucky, maybe
there is a proof that can be found and your system can be verified. You
can try brute force for example.

So what are benefits of CCS?

1 It is a simple formalism. Thus it is easier to design algorithms
analysing it (even a brute force).

2 Compositionality, helps to reflect the original structure of our system.
(For example LTS are not compositional).

3 We can try to describe some principles of concurrency.
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Concurrency
For a word w ∈ (Σ ∪ Σ−1 ∪ {τ})∗, where w = α1 . . . αk by

w−→ we mean a sequence of moves α1−→ α2−→ . . .
αk−→,

w=⇒ we mean a sequence of moves α1=⇒ α2=⇒ . . .
αk=⇒,

Definition (determinism)
We say that a process is deterministic if for every sequence of observable
actions w we have that if P w=⇒ P1 and P w=⇒ Q1 then P1 ≈ Q1.

This definition is a natural extension of determinism that we know.



Which operations preserve the determinacy?

If the processes P and Pi are deterministic then deterministic are also:
1 0, α.P, (να) P are always,

2
∑

i∈I αi .Pi assuming that if αi = αj then Pi ≈ Pj ,

(αi 6= τ)

,
3 P1|P2 if fn(P1) ∩ fn(P2) = ∅,
4 relabelling if it is one to one.
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Problems with the determinacy?

Problem 1
The rule P1|P2 if fn(P1) ∩ fn(P2) = ∅, is very restrictive. The parallel
composition is allowed if processes can not interact, at all.

We can not weakened the restriction.
Take processes

P = α.γ.0 + β−1.α.0|β.0 .

Processes can interact, thus P α=⇒ γ.0|β.0 and α=⇒ 0|0.

Problem 2
Determinacy does not speak about concurrent behaviours.



Concurrency

Definition (Confluence)
We say that a process P is confluent all its successors are and for every P ′

and P ′′ such that P α−→ P ′ and P β=⇒ P ′′ hold :
if α 6= β then there are Q′ ≈ Q′′ such that P ′ β=⇒ Q′ and P ′′ α=⇒ Q′′.
if α = β then there are Q′ ≈ Q′′ such that P ′ τ=⇒ Q′ and P ′′ τ=⇒ Q′′.

Intuition
Programs that are confluent have to be linear. It is impossible to branch
without joining later.



Confluence, simpler characterisation

Definition
The excess of r over s, written r/s is defined recursively upon r as follows:

ε/s = ε

(α.r)/s =
{
α.(r/s) if α 6∈ s
r/(s/α) if α ∈ s

lemma
A process P is confluent if for all r , s ∈ Σ∗ and P r=⇒ P ′ and P s=⇒ P ′′, we
have that P ′ s/r=⇒ Q′, and P ′′ r/s=⇒ Q′′, and Q′ ≈ Q′′.



Confluence, properties

Lemma
If P is confluent then P is determinate.

Lemma
If P1 and P2 are confluent then so also the following:

1 0, α.P1, and (να) P1 for α ∈ Σ,
2 P[f ], provided that f is injective,
3 α.β.P1 + β.α.P1.



Definition (Free names 2)
The free names2 of a process p, denoted fn2(p), are defined as the set
F (p, ∅), where F (p, I), with I a set of process identifiers, is defined as
follows:

F (0, I) = ∅,
F (a.p, I) = F (p, I) ∪ {a}
F (a−1.p, I) = F (p, I) ∪ {a−1}
F (τ.p, I) = F (p, I)
F (p + q, I) = F (p|q, I) = F (p, I) ∪ F (q, I)
F ((νa)p, I) = F (p, I) \ {a}

F (C , I) =
{

F (q, I ∪ {C}) if C = q and C 6∈ I
∅ if C ∈ I.

(6)

According to this definition, fn2(p) is effectively computable for any
process p.



Confluence, properties

Definition
Restricted Composition For L ⊂ Σ we define a restricted composition by
P1|LP2

def= νL (P1|P2)
and we call it a confluent composition if additionally
fn2(P1)−1 ∩ fn2(P2) ⊆ L ∪ L−1, and fn2(P1) ∩ fn2(P2) = ∅.

Lemma
Let P1 and P2 are confluent. Then, if P1|LP2 is a confluent composition
then it is also confluent.



Promela and Spin

Please read the following tutorial:
https://spinroot.com/spin/Man/Manual.html

and try to do the following excerxcises:
http://www.cse.chalmers.se/edu/year/2016/course/TDA293/
Lab1.html

I will ask you about Promela at the exam.

https://spinroot.com/spin/Man/Manual.html
http://www.cse.chalmers.se/edu/year/2016/course/TDA293/Lab1.html
http://www.cse.chalmers.se/edu/year/2016/course/TDA293/Lab1.html

