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Abstract. The paper investigates the issue of existence of solutions to
the stationary Navier-Stokes equations in a two dimensional bounded do-
main. The system is studied with nonhomogeneous slip boundary conditions
admitting flow across the boundary. The main result proves the existence
of weak solutions for arbitrary data. An advantage of our approach is that
the proof is constructive. Properties of the obtained result allow to study
turbulent flows in description of such phenomena as polymers and blood
motion.
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1 Introduction

Nonhomogeneous boundary conditions appear in numerous models in hy-
drodynamics. Thanks to them we are able to study phenomena with large
velocity of fluids in bounded domains. Such systems are in particular in-
terest of applied sciences [5],[6], because they can describe turbulent flows.
Basic models in this area are based on the classical Navier-Stokes equations
[7],[12],[18]. Sometimes there are coupled with extra equations analyzing
additional information about the system, however mathematical and com-
putational difficulties are connected with the description of motion of the
fluid.
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Mathematical aspects of these models deliver still a lot of interesting
questions. The simplest approach is to reduce the nonhomogeneous system
to a model with homogeneous boundary data. Then the tools of functional
analysis can be applied effectively in the reasonable class of models. However
the technique works if we are able to find a suitable extension of boundary
data to have a possibility to obtain a good a priori bound. Such a construc-
tion is not elementary, since the behavior of nonlinear terms in the modified
equation as well as the boundary terms must be controlled [7].

In this note we investigate the steady Navier-Stokes equations in a two
dimensional bounded domain with nonhomogeneous slip boundary conditions

v · ∇v − div T(v, p) = F in Ω,
div v = 0 in Ω,
n · T(v, p) · τ + fv · τ = b on ∂Ω,
n · v = d on ∂Ω,

(1.1)

where v = (v1, v2) is the velocity function, p - the pressure, T is the stress ten-
sor of Newtonian fluids: T(v, p) = νD(v) − pId, where ν - positive constant
is the viscosity coefficient, Id - the identity matrix and D(v) = ∇v+(∇v)T =
{vi

,j + vj
,i}i,j=1,2 is the deformation tensor; F is the external force, n and τ

are the normal and tangent vectors to boundary ∂Ω; f is the friction coeffi-
cient which should be nonnegative, but in general not constant, b and d are
boundary data: d describes the flow across ∂Ω and b can represent some ex-
tra friction forces at the boundary. Additionally we assume that Ω is simply
connected, then (1.1)2 implies the following compatibility condition

∫

∂Ω

d dσ = 0, (1.2)

which must be satisfied by datum d from (1.1)4.
Slip boundary conditions [4],[9],[14],[16] have slightly different properties

than the most popular Dirichlet data. Relation (1.1)3 is just Newton’s second
law which governs the motion of particles at the boundary and d describes the
flows across the boundary. If friction f → ∞ and b, d ≡ 0 then we get at the
limit the no-slip Dirichlet relation u|∂Ω ≡ 0 and if f ≡ 0 the fluid reacts with
surface ∂Ω as the perfect gas [3],[13], [11]. These types of boundary relations
appear in model of motion of blood, polymers or liquid metals [6],[9]. The
above phenomena are related with flows with large velocity vectors what re-
quires to examine the mathematical problem with inhomogeneous boundary
data.
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The aim of the present paper is to prove existence of solutions to system
(1.1) for arbitrary data. Since our proof is based on explicite constructions a
direct way to obtain to the numerical scheme for system (1.1) is given. A sim-
ilar problem for the Dirichlet boundary conditions, where the velocity vector
at the boundary is given, in simply connected domains has been solved years
ago [1],[8],[10] by the standard energy method applied straightforwardly to
equations (1.1)1,2. Using the Hopf construction one can extend the boundary
data by introducing a vector field a : Ω → R2, then the sought function is
modified as follows

v = u+ a. (1.3)

As a result a new system for the unknown function u is obtained, but with
homogeneous boundary data. This construction guarantees that for any ε > 0
one is able to find a vector field a such that

∣

∣

∣

∣

∫

Ω

u · ∇audx

∣

∣

∣

∣

≤ ε||u||2H1
0(Ω) = ε

∫

Ω

|∇u|2 dx (1.4)

provided that u ∈ H1
0 (Ω). Homogeneity of boundary conditions simplifies

the considerations, since all boundary terms vanish.
In the present case of slip boundary conditions the situation is more

complex. A direct application of the Hopf method to equations (1.1) does
not work, because homogeneity of slip boundary conditions do not imply
u|∂Ω ≡ 0; the tangent part is not controlled, so we are not able to estimate
boundary terms coming from the nonlinear term. That is the main reason
why we should look for a new approach. We restrict our attention only
to the two dimensional case, since the full three dimensional system requires
probably a different more advanced and complex methods. Basic calculations
show that we meet similar difficulties as in the problem for the Dirichlet
conditions for non simply connected domains - the famous flux problem [2].

Here we reformulate the original problem (1.1). Taking the vorticity of
equation (1.1)1 we get

v · ∇α− ν∆α = rotF in Ω, (1.5)

where
α = rot v = v2

,x1
− v1

,x2
(1.6)

is the vorticity of the velocity and it is a scalar function and the comma
denotes the differentiation. Next, as in [13],[14] from the boundary relations
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(1.1)3,4 we obtain the Dirichlet data on the vorticity:

α = (2χ− f/ν)v · τ + b− 2d,s on ∂Ω, (1.7)

where χ is the curvature of the boundary.
To close the reformulation a way to recover the velocity should be de-

scribed. This information can be obtained from the following problem

rot v = α in Ω,
div v = 0 in Ω,
n · v = d on ∂Ω.

(1.8)

The coupled system (1.5)-(1.7) and (1.8) is an alternative version of the
original problem (1.1) and from now we will investigate it instead of system
(1.1). It is elementary to see that each of solutions to the coupled system
defines a solution to the original problem because the kernel of operator in
(1.8) is trivial. The last fact follows from the simply connectedness of domain
Ω.

Let us recall the standard notation we use: H1(Ω) is the Sobolev space
of functions f ∈ L2(Ω) for which ∇f exists in a weak sense and ∇f ∈ L2(Ω)
equipped with the norm ||f ||2H1(Ω) =

∫

Ω
|f |2 + |∇f |2 dx; (H1(Ω))∗ states for

the Banach space of all bounded linear functionals defined on H1(Ω) for
which the following norm is finite:

||F ||(H1(Ω))∗ = sup
x∈H1(Ω):||x||≤1

|F (x)|.

The L∞(∂Ω) is the Banach space of all essentially bounded functions on
∂Ω; H1/2(∂Ω) is the space of all functions g on ∂Ω, for which there exists
G ∈ H1(Ω) such that g ≡ G|∂Ω in the trace sense; we also define

||g||2H1/2(∂Ω) = inf
G∈H1(Ω):G|∂Ω≡g

||G||2H1(Ω).

For another (equivalent) definition of the space H1/2(Ω) see Appendix. Fi-
nally H−1/2(∂Ω) is the Banach space of all bounded linear functionals on
H1/2(∂Ω) (with a norm similar to (H1(Ω))∗ norm).

The main result of our note is the following.

Theorem 1. Let ∂Ω ∈ C2, F ∈ (H1(Ω))∗, f ∈ L∞(∂Ω), d ∈ H1/2(∂Ω)
and b ∈ H−1/2(∂Ω); then there exists at least one weak solution to problem
(1.1) such that v ∈ H1(Ω) and for this solution the following estimate is valid

‖v‖H1(Ω) ≤ c(||d||H1/2(∂Ω), ||b||H−1/2(∂Ω), ||F ||(H1(Ω))∗).

4



Our proof of the above result is based on analysis of the coupled system
(1.5)-(1.8). A key element is an extension related with boundary datum
(1.1)4. Having a suitable extention of d we are able to find the a priori
bound. The same as in the case of the Dirichlet boundary conditions the
main difficulty is to prove an inequality being a modification of (1.4). Then
we apply the Hopf approach to the vorticity problem (1.5)-(1.7) and here the
kernel of our note is hidden.

A similar result even for non-simply connected domains has been proved
in [15], however for a restricted class of domains, only.

As an elementary corollary of Theorem 1 we obtain the following regu-
larity result.

Corollary. Let ∂Ω ∈ C∞, F ∈ C∞(Ω); f, b, d ∈ C∞(∂Ω), then the
weak solution given by Theorem 1 is in the C∞(Ω)-class and represents the
classical solution to system (1.1).

The paper is organized as follows. First we construct an extension of
boundary data which satisfies an inequality of type (1.4). Next, we show the
a priori bound. In section 4 we present a sketch of the proof of existence of
weak solutions and finally in Appendix we prove an auxiliary results about
the regularity of the extension.

Throughout the paper we try to use standard notations [12],[18].

2 The extension

In this section we construct an extension of boundary data to get homogeneity
property at the boundary. The properties are described by the below lemma.

Lemma 2.1 Let Ω be bounded domain with ∂Ω ∈ C2. Given d ∈ H1/2(∂Ω)
satisfying compatibility condition (1.2).

Then for any ε > 0 there exists vector field v0 such that v0 ∈ H1(Ω) and

div v0 = 0 in Ω,
v0 · ~n = d on ∂Ω

(2.1)

and for every ϕ ∈ H̄2
0 (Ω) = H2(Ω) ∩ {φ|∂Ω = 0} the following inequality

holds:
∣

∣

∣

∣

∫

Ω

(v0 · ∇ϕ)2 dx

∣

∣

∣

∣

≤ ε ‖∆ϕ‖2
L2(Ω) . (2.2)
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Moreover, the following estimate is valid

‖v0‖H1(Ω) ≤ C ‖d‖H1/2(∂Ω) . (2.3)

Proof. Let s : [0, L] → R
2 be a normal parameterization of boundary

∂Ω, i.e.

s([0, L]) = ∂Ω, s(0) = s(L) = x0 ∈ ∂Ω, and s′(t) = 1 (2.4)

for a fixed point x0 and L – the length of ∂Ω. Next we introduce the following
map p : [0, L] × [0, ζ] → R

2 such that

p(t1, t2) = s(t1) − t2~n(s(t1)), (2.5)

where ~n is the outer normal vector to boundary ∂Ω. If ζ is small enough
(comparing to curvature χ of boundary ∂Ω), then the map is one-to-one and
p ∈ C1. Moreover

dist(p(t1, t2), ∂Ω) = t2. (2.6)

Using the definition we compute the gradient of map p as follows

p,t1 = (1 − t2χ)~τ(s(t1)), p,t2 = ~n(s(t1)). (2.7)

Then we see that

p,1 ⊥ p,2 and (∇p)−1 = (
1

1 − t2χ
~τ , ~n)T . (2.8)

We proceed the construction of the extension. Introduce a function
D : [0, L] → R such that D ∈ H3/2((0, L)) and

D(t) =
L

2π

∫ t

0

d(p(s, 0)) ds.

Next, we define a function D̄ : S1 → R (where S1 is the unit circle) such
that

D̄(r(x)) ≡ D(x) for x ∈ [0, L] and
∥

∥D̄
∥

∥

H3/2(S1)
≤ C ‖D‖H3/2(0,L) ,

where r : [0, L] → [0, 2π] is a simple parameterization: r(s) = 2π
L
s. Let

E : S1×R
+ → R be an extension of function D such that E ∈ H2

(loc)(S
1×R

+)
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(see Lemma 5.1 with u0 = D̄ in Appendix). Now we take ξ : [0, L]×[0, ζ] → R

defined as follows:
ξ(t1, t2) = E(r(t1), t2)ηε(t2), (2.9)

where a smooth function ηε(t) is defined as follows:

ηε(t) =







1 for t < γ2(ε),

ε ln γ(ε)
t

for γ2(ε) ≤ t < γ(ε),
0 for t ≥ γ2(ε),

(2.10)

where γ(ε) = exp
(

−1
ε

)

. Then ξ ∈ H2([0, L] × R
+).

For ε < ζ we use the mapping p : [0, L] × [0, ζ] → R
2 to define ξ on Ω:

ξ(x) = ξ(p−1(x)) for x ∈ p([0, L]× [0, ζ]) and ξ(x) = 0 otherwise. (2.11)

To avoid misunderstandings we will denote ∇t as a gradient in (t1, t2)
coordinates, and ∇x as a gradient in (x1, x2) coordinates. Then we have:

∇xξ · ~τ = d on ∂Ω, (2.12)

since ∇xξ · ~τ = ∇tξ · (∇p)−1 · ~τ = ∇tξ · [1, 0] = ξ,t1 = D′(t)r′(t) = d(p(t, 0)).
Our sought field will be given as follows

v0 = ∇⊥
x ξ in Ω. (2.13)

By the construction conditions (2.1) are satisfied.
Let us show inequality (2.2). Taking ϕ ∈ H̄2

0 (Ω) we have

∫

Ω

(v0 · ∇ϕ)2 dx =

∫ L

0

∫ ζ

0

(v0∇ϕ)2|Jp| dt1dt2

≤ C

∫ L

0

∫ ζ

0

(v0 · p,1∇ϕ · p,1)
2 + (v0 · p,2∇ϕ · p,2)

2dt1dt2

= I1 + I2.

Recalling (2.8) and (2.13) we calculate the first integral

I1 = C

∫ L

0

∫ ζ

0

[(∇xξ · (1 − t2χ)p,2)(∇ϕ · p,1)]
2dt1dt2.

Introducing the following notation:

f1(t1, t2) = (1 − t2χ)2∇xξ · p,2, g1(t1, t2) = ∇ϕ · ~τ , (2.14)
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we calculate

f1(t1, t2) = (1 − t2χ)2∇tξ · (∇p)−1 · p,2 = (1 − t2χ)2∇tξ · [0, 1]

= (1 − t2χ)2ξ,t2 = (1 − t2χ)2

(

∂E

∂t2
ηε(t2) + E(t1, t2)η

′
ε(t2)

)

and since (1 − t2χ)2 is bounded we rewrite integral I1 as follows

I1 = C

∫ L

0

∫ ζ

0

|f1g1|
2 dt1dt2

≤ C

∫ L

0

∫ ζ

0

∣

∣

∣

∣

∂E

∂t2
ηε(t2)

∣

∣

∣

∣

2

|g1|
2dt1dt2 + C

∫ L

0

∫ ζ

0

|E(t1, t2)η′ε(t2)|2|g1|
2dt1dt2

= I11 + I12.

To estimate integral I11 we recall that supp ηε ⊂ [0, L] × [0, ε] and the fact
H1((0, L) × (0, ζ)) ⊂ L∞(0, ζ;L4(0, L)), then we get

I11 ≤ C

∫ L

0

∫ ε

0

∣

∣

∣

∣

∂E

∂t2
ηε(t2)

∣

∣

∣

∣

2

|g1|
2dt1dt2

≤ εC ‖E‖2
H2(Ω)

∫

Ω

|∆ϕ|2 dx.

To consider I12 we apply the Hopf estimate (see [7],[11]): for each u ∈
H1

0 (Ω) the following bound is valid
∥

∥

∥

u

δ

∥

∥

∥

L2(Ω)
≤ C ‖u‖H1

0 (Ω) , (2.15)

where δ(x) = dist(x, ∂Ω) and constant C does not depend on u. By (2.10)
we see that

η′ε(t2) =
ε

t2
for t2 ∈ [γ2(ε), γ(ε)] and η′ε(t2) = 0 otherwise.

Moreover from the definition g1 ∈ H1
0 (Ω), hence with the help of (2.15),

recalling (2.14) we conclude

I12 ≤ εC ‖E‖2
H2(Ω)

∫

Ω

|∆ϕ|2 dx,

since ||g1||H1
0 (Ω) ≤ C||∆φ||L2(Ω). The integral I2 is estimated similarly to the

integral I11, choosing support of ηε small enough. Lemma 2.1 is proved. �
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3 A priori estimate

To construct the a priori bound there is a need of the Korn inequality to
control the H1(Ω)-norm of the solutions (for the proof see [17])

Lemma 3.1 Let ∂Ω ∈ C2, f ≥ 0, and Ω is not a disk (see Note below).
Then there exists K > 0 such that for

u ∈ H1(Ω) such that div u = 0 and n · u = 0

the following estimate is valid

ν

∫

Ω

D2(u)dx ≥ K||u||2H1(Ω).

Note: If Ω is a disk we additionally assume f ≡/ 0. Then for u as above
the following estimate holds:

ν

∫

Ω

D2(u)dx+

∫

∂Ω

f(u · τ)2dσ ≥ K||u||2H1(Ω),

for proper constant K > 0.
Reasoning in this section may be easily modified to include this case.

Next, we prove the a priori bound.

Lemma 3.2 Sufficiently smooth solution to problem (1.1) satisfies the fol-
lowing estimate

‖v‖H1(Ω) ≤ DATA, (3.1)

where DATA depends on ‖F‖H1(Ω)∗ ,Ω, ν, ‖b‖H−1/2(∂Ω) , ‖d‖H1/2(∂Ω).

Proof. The first step is to modify the sought function v by the vector field
v0 from Lemma 2.1 with ε ≤ K/2. Then the solution to (1.8) is in the form:

v = u+ v0. (3.2)

The above identity implies that function u satisfies the following problem

rotu = α− rot v0 in Ω,
div u = 0 in Ω,
n · u = 0 on ∂Ω.

(3.3)
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Since domain Ω is simply connected we apply the Poincare lemma and con-
clude existence of a scalar function φ (so called stream function, defined
uniquely up to a constant) such that

u = ∇⊥φ = (−∂x2φ, ∂x1φ). (3.4)

Moreover the boundary conditions imply the following relation

0 = n · u = n · ∇⊥φ =
d

ds
φ, (3.5)

so φ is constant on ∂Ω and we choose zero at the boundary. Taking into
account (3.4) and (3.5) system (3.3) reads

∆φ = α− rot v0 in Ω,
φ = 0 on ∂Ω.

Next, we analyze the vorticity equation (1.5). Multiplying (1.5) by φ,
integrating by parts we get

ν

∫

Ω

α∆φdx− ν

∫

∂Ω

α
∂φ

∂n
dσ =

=

∫

Ω

u · ∇φαdx+

∫

Ω

v0 · ∇φαdx+

∫

Ω

F · ∇⊥φdx. (3.6)

Since ∂φ
∂n

= u · τ , by (1.7) and (3.4) we get

ν

∫

Ω

(α2 − αrot v0)dx− ν

∫

∂Ω

α(v − v0) · τdσ =

=

∫

Ω

v0 · ∇φαdx+

∫

Ω

F · ∇⊥φdx. (3.7)

Using the following identity:

∫

Ω

α2 dx −

∫

∂Ω

α(v · τ)dσ =

∫

Ω

D2(v)2 dx +

∫

∂Ω

((v · τ)2f − b(v · τ))dσ

(3.8)
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one gets that the l.h.s. of (3.7) equals:

(l.h.s. of (3.7)) = ν

∫

Ω

D2(v) dx− ν

∫

Ω

αrot v0 dx+ ν

∫

∂Ω

α(v0 · τ) dσ

+ν

∫

∂Ω

[

(v · τ)2f − b(v · τ)
]

dσ

= ν

∫

Ω

D2(v) dx− ν

∫

Ω

αrot v0 dx+

+ν

∫

∂Ω

[(2χ− f/ν)v · τ + b− 2d,s](v0 · τ) dσ

+ν

∫

∂Ω

[

(v · τ)2f − b(v · τ)
]

dσ

= ν

∫

Ω

(D2(u) + 2D(u) : D(v0) + D2(v0)) dx− ν

∫

Ω

αrot v0 dx+

+ν

∫

∂Ω

[(2χ− f/ν)(u+ v0) · τ + b− 2d,s](v0 · τ) dσ

+ν

∫

∂Ω

[(u+ v0) · τ)2f − b((u+ v0) · τ ]dσ.

By the Korn inequality - Lemma 3.1 - we get

(l.h.s.) ≥ K||u||2H1(Ω) + ν

∫

Ω

[−C(|∇u||∇v0| + |∇v0|
2] dx− ν

∫

Ω

αrot v0 dx+

+ν

∫

∂Ω

[(2χ− f/ν)(u+ v0) · τ + b− 2d,s](v0 · τ) dσ (3.9)

+ν

∫

∂Ω

[(u+ v0) · τ)2f − b((u+ v0) · τ ]dσ

Since α = rot (v0 + u) and f ≥ 0 we see that there is no term of second
order (with respect to ‖u‖H1(Ω)) with negative coefficient, so to close the
estimate we should only look at the r.h.s. of (3.7). Since u · ∇φ = 0 we are
only interested in the term

∫

Ω
v0 · ∇φα dx. Using Schwarz inequality we get

∣

∣

∣

∣

∫

Ω

v0 · ∇φα dx

∣

∣

∣

∣

≤ ‖v0 · ∇φ‖L2(Ω) ‖α‖L2(Ω)

≤ ‖v0 · ∇φ‖L2(Ω) C(‖∇u‖L2(Ω) + ‖∇v0‖L2(Ω)).
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Imposing no restriction on the viscosity coefficient we require Lemma 2.1
with ε ≤ K/2 to get the following inequality:

∣

∣

∣

∣

∫

Ω

v0 · ∇φα dx

∣

∣

∣

∣

≤
K

2
||∇u||2H1(Ω) + C ‖∇u‖L2(Ω) ‖∇v0‖L2(Ω) . (3.10)

From (3.9) and (3.10) we can derive the following inequality:

K

2
||u||2H1(Ω) ≤

∣

∣

∣

∣

ν

∫

Ω

αrot v0dx+ C ‖∇u‖L2(Ω) ‖∇v0‖L2(Ω) + ‖∇v0‖
2
L2(Ω)

−ν

∫

∂Ω

[(2χ− f/ν)(u+ v0) · τ + b− 2d,s](v0 · τ)dσ (3.11)

+ν

∫

∂Ω

b((u+ v0) · τ)dσ +

∫

Ω

F · ∇⊥φ dx

∣

∣

∣

∣

.

We cannot apply directly any inequality on terms consisting u because we
know only that ∂u

∂~n
= 0 on the boundary. However if we recall that u = ∇⊥φ

we see that
∫

Ω
|∇u|2 =

∫

Ω
|∇2φ|2. Moreover φ ≡ 0 on the boundary, so the

norm
∫

Ω
|∇2φ|2 is equivalent to norm ‖φ‖2

H2(Ω), hence all terms from (3.11)

consisting of u and derivatives of u are estimated by (
∫

Ω
|∇2φ|2 dx)1/2 =

(
∫

Ω
|∇u|2 dx)1/2.
The above considerations together with (3.11) justify the following in-

equality:

‖u‖H1(Ω) ≤ C(‖v0‖H1(Ω) , ‖b, 2d,s‖L2(∂Ω) , ||F ||(H1(Ω))∗).

Since v = u + v0 and ‖v0‖H1(Ω) ≤ C ‖d‖H1/2(Ω) we obtain (3.1). Lemma 3.2
is proved. �

4 Existence

In this section we give a sketch of a proof of existence. First, let us recall the
system of equations (equivalent to the original system (1.1)):

v · ∇α− ν∆α = rotF in Ω,
α = (2χ− f/ν)v · τ + b− 2d,s on ∂Ω,

rot v = α in Ω,
div v = 0 in Ω,
n · v = d on ∂Ω.

(4.1)
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For system (4.1) we introduce the following definition of weak solutions:

Definition 4.1 We say that v ∈ H1(Ω) is a weak solution to problem (1.1)
(or (4.1)) iff v = ∇⊥φ+v0, where φ ∈ H̄2

0 (Ω), vector v0 is defined by Lemma
2.1 with ε ≤ K/2 and the following identity holds

∫

Ω

(∇⊥ϕ+ v0) · ∇ψ(∆ϕ + ᾱ)dx + ν

∫

Ω

(∆ϕ+ ᾱ)∆ψ dx+

−ν

∫

∂Ω

(2χ−f/ν)(∇⊥ϕ+v0)·τ
∂ψ

∂~n
dσ =

∫

Ω

F ·∇⊥ψ dx+

∫

∂Ω

(b−2d,s)
∂ψ

∂~n
dσ

(4.2)

for any ψ ∈ H̄2
0 (Ω).

To show existence we apply the standard technique - the Galerkin method.
Since H̄2

0 (Ω) is Hilbertian and separable we take a base {wi}
∞
i=1

H̄2
0 (Ω) = span{w1, w2, . . . , wn, . . .}

‖·‖H2(Ω).

Next, we introduce a finite dimensional subspace of H̄2
0 (Ω):

V N = span{w1, . . . , wN}.

We assume, without loss of generality, that (wi, wj)V N (Ω) = δij, where (·, ·)V N (Ω)

is the inner product in V N (Ω). An approximation of the sought function φ
will be searched in the form:

ϕN(x) =

N
∑

j=1

cNj wj ∈ V N .

To find coefficients cNj we solve the following system

−

∫

Ω

(∇⊥ϕN + v0) · ∇wk(∆ϕN + ᾱ)dx− ν

∫

Ω

(∆ϕN + ᾱ)∆wk dx+

+ν

∫

∂Ω

(2χ−f/ν)(∇⊥ϕN+v0)·τ
∂wk

∂~n
dσ = −

∫

Ω

F ·∇⊥wk dx−

∫

∂Ω

(b−2d,s)
∂wk

∂~n
dσ

(4.3)

for k = 1, . . . , N .
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Standard methods show existence to (4.3) - see [7], [11] or [18]. Repeating
the calculations from section 3 we obtain a uniform in N bound

||∇2φN ||L2(Ω) ≤ C.

The weak compactness delivers a Cauchy subsequence such that

∇2ϕi ⇀ ∇2ϕ∗ weakly in L2(Ω), ∇ϕi → ∇ϕ∗ strongly in L2(Ω),(4.4)

where φ∗ ∈ H̄2
0 (Ω) defines the sought solution fulfilling Definition 4.1 . Con-

vergences stated by (4.4) are sufficient to pass to the limit in nonlinear terms
in the system. Theorem 1 is proved.

5 Appendix

In Appendix we construct the extension which was necessary in section 2
(function E).

Lemma 5.1 Given the following problem:
(

∂2

∂t2
+

∂2

∂x2

)2

u = 0 in S1 × R
+,

∂u

∂t
= 0 on S1 × {0}, (5.1)

u(x, 0) = u0(x) for x ∈ S1,

u → 0 as t→ ∞,

where u0 ∈ H3/2(S1). There exists a solution u ∈ H2
loc(S

1 × R) to this
problem, satisfying the following estimate

‖u‖H2(S1×(0,1)) ≤ C ‖u0‖H3/2(S1) . (5.2)

Proof. We define E : Z × [0, 2π] → R as follows:

E(k, z) =

{

sin kz for k > 0
cos kz for k ≤ 0.

(5.3)

We have ∂zE(k, z) = kE(−k, z) and span{{E(k, z)}k∈Z}
‖·‖L2(S1) = L2(S

1).
We require u : S1 × R

+ → R to be in the following form:

u(x, t) =
∑

k∈Z

ck(t)E(k, x), (5.4)
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where ck(t) are sought functions with initial data given by

u0(x) =
∑

k∈Z

ck(0)E(k, x). (5.5)

Since u0(x) ∈ H3/2(S1) and {E(k, x)}k∈Z
is an orthogonal basis of L2(S1) we

have:
∑

k

c2k(0)(1 + |k|2)3/2 ≤ C ‖u0‖
2
H3/2 . (5.6)

From (5.1)1 and (5.4) we get ordinary differential equations for coefficients
ck(t):

(

∂2

∂t2
− k2

)2

ck(t) = 0 for every k ∈ Z. (5.7)

Taking into account the initial condition (5.5) and (5.14) we find a solution
to (5.7)

ck(t) = (1 + |k|t)ck(0)e−|k|t. (5.8)

Let us show that u ∈ H2(S1 × (0, 1)). First

‖u‖2
L2(S1×(0,1)) =

∫ 1

0

∫ 2π

0

∑

k∈Z

(1 + |k|t)2c2k(0)E2(k, x)e−2|k|t dx dt

≤ C
∑

k

(1 + |k|3)c2k(0) ≤ C ‖u0‖
2
H3/2(S1) .

Next, we prove utt ∈ L2(S1 × (0, 1)):

‖utt‖
2
L2 ≤ C

∫ 1

0

∑

k

c2k(0)(1 + |k|6t2)e−2|k|tdt

≤ C
∑

k

(1 + |k|3)c2k(0) = C ‖u0‖
2
H3/2(S1) .

Other derivatives can be estimated similarly. �
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