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Abstract. We prove (see Theorem 1.3 below) that a generalized harmonic map into a
round sphere, i.e. a map u ∈ W

1,1
loc (�, S

n−1) which solves the system

div (ui∇uj − uj∇ui) = 0, i, j = 1, . . . , n,

is smooth as soon as |∇u| ∈ Lq for any q > 1, and the norm of u in BMO is sufficiently
small. Here, � ⊂ R

m is open, and m, n are arbitrary. This extends various earlier results
of Almeida [1], Ge [15], and R. Moser [38].

A version of this result for generalized p-harmonic maps into spheres is also proved.
The proofs rely on the duality of Hardy space and BMO combined with Lp stability of the
Hodge decomposition and reverse Hölder inequalities.

The results of this note belong to the regularity theory of nonlinear elliptic sys-
tems with the right hand side growing critically with the gradient of solution. The
particular system we have in mind may appear special but it is closely linked with
vast parts of geometric analysis and PDE. In case m = n = 2 its solutions agree
with asymptotic limits of solutions of a complex valued Ginzburg–Landau equa-
tion involving a small parameter, see Bethuel, Brezis and Hélein [4] and Hardt and
Lin [22]. We consider solutions with weak integrability assumptions, weaker than
those which are needed for a variational interpretration of the system. The proofs
are based on a mixture of (well known) subtle hard analytic methods.

1. Introduction

In late 60’s and early 70’s famous examples of De Giorgi [6], Giusti and Miranda
[19], Frehse [10] and others have ruined all hopes for a positive answer to Hilbert’s
19th problem [28] in case of elliptic systems (see Giaquinta [17, Chap. II.3] for
more information). Since then it is known that regularity requires either some small-
ness condition or a special structure of the nonlinear terms. This latter condition
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is satisfied for example in the case of harmonic and p-harmonic maps into (some)
Riemannian manifolds. Here are the necessary definitions.

Let N be a compact closed Riemannian manifold, isometrically embedded in
R

n. Let � ⊂ R
m be open and bounded, and let p ∈ [2, m]. Consider mappings

u : � → N such that the p-Dirichlet energy of u, given by the functional

Ep[u] : = 1

p

∫
�

|∇u|p dx = 1

p

∫
�

(∑
i,j

(
∂ui

∂xj

)2)p/2

dx , (1.1)

is finite. Here, u = (u1, . . . , un) is a map into R
n with all coordinates uj ∈

W 1,p(�), satisfying the additional constraint u(x) ∈ N a.e. The class of all such
maps is traditionally denoted by W 1,p(�, N ).

We say that u ∈ W 1,p(�, N ) is weakly p-harmonic (or weakly harmonic when
p = 2) iff u is a critical point of Ep with respect to variations in the range, i.e.

d

dt

∣∣∣∣
t=0

Ep

[
π ◦ (u + tϕ)

]
= 0 for each ϕ ∈ W

1,p
0 (�, R

n) ∩ L∞(�, R
n). (1.2)

Here, π denotes the nearest point projection of a tubular neighbourhood of the
manifold N onto N .

A standard computation (see e.g. Fuchs [14] or Hélein [27]) shows that condition
(1.2) leads to the Euler–Lagrange system

−div (|∇u|p−2∇u) ⊥ TuN in the sense of D′(�, R
n). (1.3)

In what follows we consider only the case N = S
n−1 = {x ∈ R

n : |x| = 1}.
Condition (1.3) takes then the form∫

�

|∇u|p−2∇uj∇ϕj dx =
∫

�

|∇u|pujϕj dx, j = 1, . . . , n, (1.4)

for all ϕ ∈ W
1,p
0 (�) ∩ L∞(�).

Regularity of weakly p-harmonic maps has a long history, dating back to the
celebrated paper of Morrey on Plateau’s problem. Morrey proved that for m =
p = 2 mappings which minimize E2 are of class C∞. During the 1980’s, a more
or less complete partial regularity theory has been developed: for arbitrary m ≥ p,
mappings minimizing Ep are regular (i.e. C∞ for p = 2 and C1,α for p �= 2) outside
a closed singular set Sing u which has Hausdorff dimension at most m − [p] − 1;
see Schoen and Uhlenbeck [41] for p = 2, and Hardt and Lin [21], Fuchs [11],
[12] , and Luckhaus [36] for p �= 2. The estimate of the dimension of the singular
set is sharp. Moreover, for p = 2, Sing u is countably rectifiable (the proof, see
Simon [43], is extremely technical).

When one drops the assumption that u (locally) minimizes Ep, there is no hope
for a general partial regularity theory. Rivière [40] has proved that for any smooth
nonconstant Dirichlet boundary data φ : ∂B

3 → S
2 there exists an everywhere

discontinuous weakly harmonic u : B
3 → S

2 with u = φ on ∂B
3.

However, for m = p = 2, on the borderline of Sobolev imbedding of W 1,p(�)

into Hölder continuous functions, all weakly harmonic maps into arbitrary compact
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Riemannian manifolds are smooth. This delicate result has been proved by Hélein
in a series of papers [23], [24], [25] (see also Hélein’s book [27] and the survey
[26]), first for N = S

n−1, then for N being a homogeneous space, and finally for
arbitrary compact targets. The proof was based on the duality of Hardy space and
BMO (see next Section for definitions of these spaces).

Extending Hélein’s methods, Evans [7] (for round spheres) and then Bethuel [3]
(for arbitrary targets) have proved that the (m−2)-dimensional Hausdorff measure
of the singular set of a stationary harmonic map is equal to zero. The key analytic
indregedient of their results is the following.

Theorem 1.1. Let m ≥ 2, � ⊂ R
m. Assume that N is a compact Riemannian

manifold. There exists a number ε0 = ε0(m, N ) > 0 such that if u : � → N is a
weakly harmonic map with ‖u‖BMO < ε0, then u is of class C∞.

Many authors, see e.g. Fuchs [13], Takeuchi [48], Toro and Wang [49], and
the author [46, 47], have observed that for symmetric targets this result can be
generalized to p-harmonic maps. (There are also generalizations to the subellitpic
setting, see [20], [50].)

Theorem 1.2. Let m ≥ 2, � ⊂ R
m, p ∈ [2, m]. There exists a number ε0 =

ε0(m, n, p) > 0 such that if u ∈ W 1,p(�, S
n−1) is weakly p-harmonic and

‖u‖BMO < ε0, then u is of class C1,α for some α > 0.

For N = S
n−1 Theorem 1.1 is grounded on the following observation: for

u ∈ W 1,2(�, S
n−1) the harmonic map system −�u = |∇u|2u is equivalent to

div (ui∇uj − uj∇ui) = 0, i, j = 1, . . . , n. (1.5)

The reason behind that is Noether’s theorem (see Hélein [27] for an explanation),
but one can also give an easy straightforward proof based on the fact that u ⊥ ∂u

∂xk
.

Now, to interpret (1.5) in the sense of distributions one does not have to know
that |∇u| ∈ L2; it is enough to assume u ∈ L∞ and |∇u| ∈ L1. This motivates the
following definition: u ∈ W

1,1
loc (�, S

n−1) is a generalized harmonic map iff it is a
weak solution of (1.5), i.e.

∫
�

(ui∇uj − uj∇ui)∇ϕ dx = 0 for all ϕ ∈ C∞
0 (�), i, j = 1, 2, . . . , n.

The map x/|x| solves (1.5) and is of class W
1,1
loc . (Incidentally: this is the exam-

ple proposed — for a different system — by Giusti and Miranda in [19], and
used in the theory of harmonic maps since Hildebrandt, Kaul and Widman [29].)
Thus, generalized harmonic maps can have singularities. However, Almeida [1] has
shown that for � ⊂ R

2 generalized harmonic maps with ‖∇u‖L2,∞ < ε, where
ε = ε(m, n) > 0, are smooth. Here, L2,∞ denotes the Lorentz space, see [45]
for a definition. Ge [15] gave another proof of this result, and has shown that gen-
eralized harmonic maps with |∇u| ∈ L2,r for some r ∈ [2, ∞) also are smooth.
Both authors were using an extension of the compensated compactness results from
Coifman, Lions, Meyer and Semmes [5] (cf. inequality (2.5) below) to the setting
of Lorentz spaces.
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Very recently, R. Moser has realised that the condition ‖∇u‖L2,∞ < ε was used
by Almeida and Ge only to control the BMO norm of u, and extended their result
to all dimensions, using the method of reverse Hölder inequalities and a nonlocal
construction of test functions, relying on Lp estimates for Hodge decomposition
due to Iwaniec and Martin [31]. Roughly speaking, he has shown that each gener-
alized harmonic map u ∈ W

1,p
loc (�, S

n−1) is of class C∞ provided that ‖u‖BMO is
small and p is sufficiently close to 2.

Let us now look back at the example of u(x) = x/|x|. This map belongs to
W 1,p(Bm, S

n−1) for every p ∈ [1, m); however, the BMO norm of u is not small
(u has mean oscillation 1 on every ball centered at 0). One is tempted to suspect
that the lack of regularity is caused only by the latter fact, and that the degree of
integrability of |∇u| plays a secondary role.

We show that this is indeed the case and sharpen Moser’s result. It turns out
that integrability of |∇u| with any power > 1 leads to full regularity, if the BMO
norm of the map is appropriately small.

Theorem 1.3. For every q ∈ (1, 2] there exists a constant µ0 = µ0(m, n, q) > 0
such that each generalized harmonic map u ∈ W

1,q
loc (�, S

n−1) with ‖u‖BMO < µ0
is of class C∞(�).

It would be very interesting to know what is the best value of µ0(m, n, q).
The above theorem has the following immediate corollary.

Theorem 1.4. If a generalized harmonic map u ∈ W
1,1
loc (�, S

n−1) has vanishing
mean oscillation and

|∇u| ∈ L
q
loc(�) for some q > 1

then |∇u| ∈ L2
loc(�), and u ∈ C∞(�) is a classical solution of −�u = |∇u|2u.

The proofs rely on a nonlocal construction of test functions via the Hodge
decomposition, dating back to Iwaniec [30]. Critical nonlinearities in first order
derivatives are estimated in a standard way, using the duality of Hardy space and
BMO. We apply this method in a way slightly different from Moser [38], and obtain
a reverse Hölder inequality which implies higher integrability of ∇u. What is more
important, we show that the whole reasoning may be iterated, and each time the
gain of integrability exceeds some fixed treshold level. One has to trace various
constants carefully — this, however, is a rather elementary task. In fact, one can
use this method to give a new, relatively simple proof of smoothness of harmonic
maps into spheres (see the end of Section 3.1 for more details).

There is a version of these results also for p �= 2. To state it, we adopt the
following definition: u ∈ W 1,p−1(�, S

n−1) is a generalized p-harmonic map iff
∫

�

|∇u|p−2(ui∇uj − uj∇ui)∇ϕ dx = 0

for all ϕ ∈ C∞
0 (�), i, j = 1, 2, . . . , n. (1.6)

Note that this condition, meaning formally that div
(|∇u|p−2(ui∇uj −uj∇ui)

) =
0, is equivalent to (1.4) — but only for u ∈ W 1,p(�, S

n−1).
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Theorem 1.5. Let p ∈ (2, m]. There exist two numbers ε0 = ε0(m, n, p) > 0
and µ0 = µ0(m, n, p) > 0 such that if u ∈ W 1,q(�, S

n−1) is a generalized
p-harmonic map and

q ∈ (p − ε0, p), ‖u‖BMO < µ0,

then |∇u| ∈ L
p
loc and u is locally Hölder continuous in �.

The proof is similar to that of Theorems 1.3 and 1.4. One has to use one more
subtle ingredient, namely the stability theorem for Hodge decomposition, due to
Iwaniec and Iwaniec–Sbordone (see Section 2.1 below).

The notation throughout the paper is standard. Barred integrals denote averages,
i.e.

∫
A

g dx = |A|−1
∫
A

g dx, where |A| is the Lebesgue measure. Sometimes
we also write gA = ∫

A
g dx. Hölder conjugates of various exponents p, q, s etc.

∈ (1, ∞) are denoted by p′, q ′, s′ etc. ; p∗ is an exponent for which p is the Sobolev
conjugate, i.e. p∗ = mp/(m+p) in dimension m. The letter C traditionally denotes
a general constant which can change its value even in a single string of estimates.
We write C(a, b, c, . . . ) when C depends only on a, b, c, . . .

2. The tools

To prove the results stated in the introduction, we need three different tools.

2.1. Hodge decomposition: Lp estimates and stability.

Hodge decomposition allows one to write a vector field X as X = ∇v+H , where H

is divergence free. In case of X ∈ L2(Rm, R
m) this is just the orthogonal projection

onto gradient fields. In early 1990’s, motivated mainly by beautiful applications to
quasiconformal and quasiregular mappings, T. Iwaniec has obtained a series of
sophisticated Lp estimates for the Hodge decomposition; see e.g. Iwaniec [30],
Iwaniec and Martin [31], Iwaniec and Sbordone [34]. One of his main results [30,
Thm. 8.1], improved and simplified in [34], is the so-called stability theorem. It
expresses in a precise, quantitative way the following naive intuition: for |ε| ≈ 0
the vector field X = |∇w|ε∇w is close to a gradient, hence its divergence free
component should not be too large. Here is a precise statement, adapted to our
purposes.

Theorem 2.1. Let w ∈ W 1,r (Rm), r > 1, ε ∈ (−1, r − 1). Then there exist
v ∈ W 1,r/(1+ε)(Rm) and H ∈ Lr/(1+ε)(Rm, R

m) such that

|∇w|ε∇w = ∇v + H, div H = 0 in D′(Rm). (2.1)

Moreover,

‖H‖Lr/(1+ε) ≤ C(r) |ε| ‖∇w‖1+ε
Lr . (2.2)
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Finally, if s1 < s2 are two fixed numbers in (1, ∞) such that both r and r/1 + ε

belong to (s1, s2), then

C(r) ≤ 2r(s2 − s1)

(r − s1)(s2 − r)

(
A(s1) + A(s2)

)
, (2.3)

where A(s) stands for the norm of the operator Id + (Rij ) : Ls(Rm, R
m) →

Ls(Rm, R
m), Rij = Ri ◦ Rj being the second order Riesz transforms, i, j =

1, . . . , m.

The proof, including estimates of the constant C(r), can be found in Iwaniec
and Sbordone [34]. Iwaniec and Martin [33] show that A(s) is dimension free.

Since |ε| ≤ max(1, r − 1), a trivial application of the triangle inequality and
(2.2) yields

‖∇v‖Lr/(1+ε) ≤ C(r) max(2, r) ‖∇w‖1+ε
Lr . (2.4)

2.2. Hardy space and BMO.

Let us recall that f ∈ L1(Rm) belongs to the Hardy space H1(Rm) if and only if

f∗ : = sup
ε>0

|ϕε ∗ f | ∈ L1(Rm).

Here,ϕε(x) := ε−mϕ(x/ε) for a fixedϕ ∈ C∞
0 (Bm)withϕ ≥ 0 and

∫
ϕ(y) dy = 1.

The definition does not depend on the choice of ϕ (see [9]).
Equivalently, one can define H1(Rm) as the space of those f ∈ L1(Rm) for

which all the Riesz transforms Rjf , j = 1, 2, . . . , n, also belong to L1(Rm). The
third equivalent definition uses the notion of an atomic decomposition. The reader
is referred to [42] and [44, Chapters 3 and 4] for more details; we just mention that
H1(Rm) is a Banach space with the norm

‖f ‖H1 = ‖f ‖L1 + ‖f∗‖L1 ,

One proves that
∫

f (y) dy = 0 for all f ∈ H1(Rm). This is the primary reason of
diverse cancellation phenomena.

Recall that a locally integrable function u belongs to the space of functions of
bounded mean oscillation, BMO(Rm), iff

‖u‖BMO : = sup

( ∫
B

|u(x) − uB | dx

)
< +∞,

the supremum being taken over all balls B in R
m. If, in addition,

∫
B

|u − uB | dx

tends to zero uniformly as diam B → 0, then u is said to have vanishing mean
oscillation, u ∈ VMO for short. (We also write ‖u‖BMO(�) if the supremum is
taken only over balls B ⊂ � for some fixed domain �.) C. Fefferman [8], [9]
proved that BMO(Rm) is the dual of H1(Rm).

Coifman, Lions, Meyer and Semmes [5] have shown that if 1 < q < ∞, the
vector field E ∈ Lq(Rm, R

m) is divergence free, and B ∈ Lq ′
(Rm, R

m) is rotation
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free, then the scalar product E · B belongs to H1. (The Jacobian det Dv of a map
v ∈ W 1,m(Rm, R

m) serves as a crucial example). Moreover,

‖E · B‖H1 ≤ C(m, q)‖E‖q‖B‖q ′ . (2.5)

Combining this inequality with Fefferman’s duality theorem, and using standard
extension methods, one easily obtains the following local result.

Theorem 2.2. Let B be a ball compactly contained in � ⊂ R
m and q ∈ (1, ∞).

Suppose that E ∈ L
q
loc(�, R

m) satisfies div E = 0 in the sense of distributions,

u ∈ W 1,1(�, S
n−1) ∩ BMO, and w ∈ W

1,q ′
0 (B). Then, for each i = 1, 2, . . . , n,∣∣∣∣

∫
B

uiE · ∇w dx

∣∣∣∣ ≤ C(m, q)‖u‖BMO(B) ‖E‖Lq(B) ‖∇w‖
Lq′

(B)
(2.6)

for a constant C(m, q) that depends only on m and q, and not on the size of B.
Moreover, if one assumes that q ∈ [1+δ0, 1+1/δ0] for a fixed number δ0 > 0,

then (2.6) holds with a constant C(m, δ0) which does not depend on q.

A uniform estimate C(m, q) ≤ C(m, δ0) for q ∈ [1 + δ0, 1 + 1/δ0] follows
from a simple analysis of the argument in [5, Section 2]. One has to bound the
constants in Hardy–Littlewood maximal theorem (for p in a compact subinterval
of (1, ∞)) and Sobolev imbedding theorem (for p∗ = mp/(m + p) in a compact
subinterval of [1, m)). Uniform bounds follow from the Riesz–Thorin theorem, or
from an elementary analysis of known values of these constants.

2.3. Reverse Hölder inequalities.

Gehring’s lemma [16], often used in a local variant given by Giaquinta and Modica
[18], is a standard tool applied to prove higher integrability of derivatives of solu-
tions to elliptic equations and systems. (See also Iwaniec’s survey [32].) We shall
use the following version.

Proposition 2.3. Let 0 ≤ f ∈ L
q
loc(�) for some open domain � ⊂ R

m. Assume
there exist two constants b, θ such that∫

Bρ/2

f q dx ≤ b

( ∫
Bρ

f dx

)q

+ θ

∫
Bρ

f q dx

for each pair of concentric balls Bρ/2 = B(a,
ρ
2 ) ⊂ Bρ = B(a, ρ) compactly

contained in �.
There exists a constant θ0 = θ0(q, m) such that if 0 ≤ θ < min(θ0, b), then

f ∈ L
p
loc(�) for all p < q + γ0, where γ0 = γ0(q, m, θ, b) > 0.

Moreover, if q ∈ (1, 2m], then one can take e.g.

θ0 := θ0(m) = 2−10mm−2m > 0, (2.7)

and the gain of integrability satisfies

γ0 = γ0(m, b, q) > θ0 · q − 1

2b
. (2.8)



480 P. Strzelecki

We refer to Bensoussan and Frehse [2, pages 25–36] for a proof, with cubes
instead of balls. A. Zatorska–Goldstein [51] has recently adapted the proof to a
general setting of a metric space equipped with a doubling measure, replacing
the traditional Calderon–Zygmund subdivision of cubes by a tricky application of
Vitali’s lemma. The values (not best possible, of course) of θ0 and γ0 given above
come from her proof. In fact, if q belongs to an arbitrary finite interval (1, K), then
one can find a θ0 = θ0(m, K) so that (2.8) is still satisfied.

3. The proofs

3.1. Generalized harmonic maps.

We begin with the following lemma which provides the crucial tool for the proof
of Theorem 1.3 (and Theorem 1.4).

Lemma 3.1. Fix an arbitrary δ0 ∈ (0, 1). There exist two numbers

γ0 = γ0(δ0, m, n) > 0, µ0 = µ0(δ0, m, n) > 0

such that each generalized harmonic map u ∈ W 1,1(�, S
n−1) with

|∇u| ∈ Lq, 1 + δ0 ≤ q ≤ 2, ‖u‖BMO(�) < µ0 ,

satisfies |∇u| ∈ L
q+γ0
loc (�).

Proof. We use the constraint |u|2 = 1 a.e. to write

∇uj =
n∑

i=1

uiEij , (3.1)

where Eij : = ui∇uj −uj∇ui . Next, we multiply this identity by ∇ϕ and integrate
over �.

The test function ϕ is constructed as follows. We fix two concentric balls Bρ ⊂
B2ρ ⊂ �, a cutoff function ζ ∈ C∞

0 (B2ρ) with ζ = 1 on Bρ and |∇ζ | ≤ C(m)/ρ,
and set ũ : = ζ(u − uB2ρ ). Using the Hodge decomposition, we write

|∇ũ|q−2∇ũj = ∇vj + Hj , j = 1, . . . , n, (3.2)

where div Hj = 0 for each j . Applying Theorem 2.1 with ε = q − 2 and r = q =
q ′(1 + ε), we check that

‖∇vj‖
Lq′

(Rm)
+ ‖Hj‖

Lq′
(Rm)

≤ C ‖∇ũ‖q−1
Lq(Rm)

≤ C
∥∥∇u

∥∥q−1
Lq(B2ρ)

(3.3)

for some constant C = C(m, δ0). (One may select s1 = 1 + δ0/2, s2 = s′
1 in (2.3).

The second line in (3.3) follows from Minkowski and Poincaré inequalities.) We
set ϕj = ζ(vj − v

j
B2ρ

). By Poincaré inequality,

‖∇ϕj‖
Lq′

(Rm)
≤ C(m, δ0)‖∇u

∥∥q−1
Lq(B2ρ)

. (3.4)
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Since div Eij = 0, the estimate of the integral which results from the right hand
side of (3.1) follows immediately from Theorem 2.2 and (3.3). Namely,

∣∣∣∣
n∑

i=1

∫
�

uiEij∇ϕj dx

∣∣∣∣ ≤ C(m, δ0)n‖u‖BMO(�)‖∇u‖Lq(B2ρ)‖∇ϕ‖
Lq′

(B2ρ)

(3.4)≤ C(m, n, δ0)‖u‖BMO(�)‖∇u‖q

Lq(B2ρ) . (3.5)

To deal with the left hand side of (3.1), note that
∫

�

∇uj∇ϕj dx =
∫

�

∇uj
(
ζ∇vj + (vj − v

j
B2ρ

)∇ζ
)

dx

=
∫

B2ρ

∇ũj∇vj dx

+
∫

B2ρ

(
(vj − v

j
B2ρ

)∇uj − (uj − u
j
B2ρ

)∇vj
)∇ζ dx

= I1 + I2,

where

I1 : =
∫

B2ρ

∇ũj (∇vj + Hj) dx ≥
∫

Bρ

|∇u|q−2|∇uj |2 dx , (3.6)

and

I2 : =
∫

B2ρ

(
(vj − v

j
B2ρ

)∇uj − (uj − u
j
B2ρ

)∇vj
)
∇ζ dx . (3.7)

Our aim is now to obtain an estimate of integral (3.7) by an integral of |∇u|s with
some exponent s < q. To this end we apply Hölder and Sobolev inequalities,
splitting I2 into two terms. We have

|I2,1| =
∣∣∣∣
∫

B2ρ

(vj − v
j
B2ρ

)∇uj∇ζ dx

∣∣∣∣

≤ Cρm−1
( ∫

B2ρ

|v − vB2ρ |t dx

)1/t( ∫
B2ρ

|∇u|t ′ dx

)1/t ′

≤ Cρm

( ∫
B2ρ

|∇v|t∗ dx

)1/t∗( ∫
B2ρ

|∇u|t ′ dx

)1/t ′

(3.3)≤ Cρm

( ∫
B2ρ

|∇u|t∗(q−1) dx

)1/t∗( ∫
B2ρ

|∇u|t ′ dx

)1/t ′

. (3.8)

To choose the exponent t , we consider now two cases.

Case 1. If q > 1+ 1
m

, set t = qm/(qm−m−1). Then 1 < t ′ = qm/(m+1) < q,
and t∗ = tm/(t + m) = q ′m/(m + 1). Thus, we have t∗(q − 1) = t ′, and both
exponents in (3.8) are equal.
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Case 2. If 1 < q ≤ 1 + 1
m

, set t = (q + 1)/(q − 1), so that t ′ = (q + 1)/2. We
have then

1

t∗(q − 1)
= 1

q + 1
+ 1

m(q − 1)
≥ 1

q + 1
+ 1 ≥ 2

q + 1
= 1

t ′
.

It is clear that in both cases t < C(δ0) < ∞ and one applies Sobolev inequal-
ity with |t∗ − m| > θ(δ0) > 0, i.e. ‘far away’ from the borderline case t → ∞,
t∗ → m. Therefore (3.8) holds with a constant C = C(m, δ0) independent from the
particular value of q ∈ [1 + δ0, 2]. Thus (applying Hölder inequality in the second
case to obtain two identical integrands) we arrive at the estimate

|I2,1| ≤ C(m, δ0)ρ
m

( ∫
B2ρ

|∇u|qλ dx

)1/λ

, (3.9)

where

λ = max
( m

m + 1
,
q + 1

2q

)
≤ max

( m

m + 1
,

2 + δ0

2 + 2δ0

)
= : λ0 < 1 . (3.10)

The second term resulting from I2, i.e. the integral

|I2,2| : =
∣∣∣∣
∫

B2ρ

(uj − u
j
B2ρ

)∇vj∇ζ dx

∣∣∣∣ ,

does not exceed the right hand side of (3.9). The details of this computation are left
to the reader.

Combining the estimates of I1 and I2 with (3.5), and summing w.r.t. j , we
finally obtain

∫
Bρ

|∇u|q dx ≤ C1(m, n, δ0)

( ∫
B2ρ

|∇u|qλ dx

)1/λ

+ C2(m, n, δ0)‖u‖BMO(�)

∫
B2ρ

|∇u|q dx . (3.11)

Both constants C1 and C2 above do not depend on q ∈ [1 + δ0, 2] (but they both
blow up to ∞ as δ0 → 0 since then estimates of singular integral operators in Lp

for p near 1 are involved in the Hodge decomposition). Thus, for ‖u‖BMO appropri-
ately small, the assumptions of Proposition 2.3 are satisfied. The lemma follows. It
also follows from (2.7)–(2.8) that γ0, measuring the gain of integrability, depends
only on n, m and δ0. ��

The proof of Theorem 1.3 is now standard. Iterating the above lemma finitely
many times, one concludes that |∇u| ∈ L2. Thus, u is a weakly harmonic map, and
smoothness follows from Theorem 1.1.

In fact, Lemma 3.1 may be used to obtain a relatively simple proof of smooth-
ness of harmonic maps into spheres, different from the one based on arguments
by Ladyzhenskaya and Ural’tseva and described by Hélein [27, Chap. 1.5] or Jost
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[35, Chap. 8.5]. The advantage is that one does not have to pass through tedious con-
siderations of difference quotients; special structure of the harmonic map system
can be exploited instead.

Here is a sketch of this argument. It is clear that the constraint q ≤ 2 plays no
significant role in the proof above. What matters is that q does not approach either
1 or ∞; the statement remains unchanged, one only has to adjust the constants.
Thus, iterating Lemma 3.1 finitely many times, we conclude that |∇u| ∈ L2r

loc for

some r > m = dimension. Since −�u = |∇u|2u, we obtain u ∈ W
2,r
loc by a

standard argument using Calderon–Zygmund Lp theory. Hence, |∇u| is Hölder
continuous by Sobolev imbedding. By bootstrap, smoothness follows now from
classical Schauder theory.

3.2. Generalized p-harmonic maps.

Lemma 3.2. Let u ∈ W
1,p−1
loc (�, S

n−1) be a generalized p-harmonic map. There
exist two numbers ε0 = ε0(m, n, p) > 0 and µ0 = µ0(m, n, p) > 0 with the fol-
lowing property: if |∇u| ∈ L

q
loc(�) for some q ∈ (p − ε0, p) and ‖u‖BMO < µ0,

then |∇u| ∈ L
p+ε0
loc (�).

It is clear that Theorem 1.5 follows immediately from this lemma; one can use
the higher integrability of ∇u to apply Theorem 1.2.

Proof of the lemma. As before, we apply the method of reverse Hölder inequalities.
Set, for sake of brevity, Eij = |∇u|p−2(ui∇uj − uj∇ui). Since |u|2 = 1 a.e., we
have u ⊥ ∂u

∂xk
. Hence

|∇u|p−2∇uj =
n∑

i=1

uiEij , (3.12)

We construct test functions, using the Hodge decomposition again. Fix two con-
centric balls Bρ = B(a, ρ) ⊂ B2ρ = B(a, 2ρ) compactly contained in � and pick
ζ with ζ ≡ 1 on Bρ , supp ζ ⊂ B2ρ and |∇ζ | ≤ Cρ−1. Set ũ = ζ(u − uB2ρ ). For
ε = p − q we write

|∇ũj |−ε∇ũj = ∇vj + Hj , j = 1, . . . , n, (3.13)

where div Hj = 0 for each j . By Theorem 2.1 and Poincaré inequality, for all
exponents s ∈ (1,

q
1−ε

] we have

‖Hj‖Ls(Rm) ≤ C(m, s) ε ‖∇u‖1−ε

Ls(1−ε)(B2ρ)
, (3.14)

and moreover

‖∇vj‖Ls(Rm) ≤ C(m, s)‖∇u‖1−ε

Ls(1−ε)(B2ρ)
. (3.15)

In the sequel, we shall apply both these inequalities only for s ∈ [ m
m+1

p−ε
1−ε

,
p−ε
1−ε

],

where ε ∈ (0, 1
2 ) is small. It is clear that for such s both (3.14) and (3.15) hold with

constants C(m, p) instead of C(m, s).
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Multiplying the left-hand side of (3.12) by ∇(
ζ(vj − v

j
B2ρ

)
)

and integrating
over B2ρ , we obtain

∫
B2ρ

|∇u|p−2∇uj∇(ζ(vj − v
j
B2ρ

)) dx

=
∫

B2ρ

|∇u|p−2∇(
ζ(uj − u

j
B2ρ

)
)(∇vj + Hj

)
dx

−
∫

B2ρ

|∇u|p−2∇ũj H j dx

−
∫

B2ρ

|∇u|p−2((uj − u
j
B2ρ

)∇vj − (vj − v
j
B2ρ

)∇uj
)∇ζ dx

= : I1 − I2 − I3 .

We have

I1 =
∫

B2ρ

|∇u|p−2|∇ũj |2−ε dx ≥
∫

Bρ

|∇u|p−2|∇uj |2−ε dx , (3.16)

whereas

|I2| ≤ C ε

∫
B2ρ

|∇u|p−ε dx . (3.17)

(To check this, apply Hölder inequality with exponents p−ε
p−1 and p−ε

1−ε
, and next

invoke the stability estimate (3.14).) The last integral, I3, is a lower order term. We
bound it, applying Hölder inequality, Sobolev inequality and (3.15) in the following
way:

|I3,1| : =
∣∣∣∣
∫

B2ρ

|∇u|p−2(uj − u
j
B2ρ

)∇ζ∇vj dx

∣∣∣∣

≤ Cρm−1
( ∫

B2ρ

|∇u|(p−2)s1 dx

)1/s1

×
( ∫

B2ρ

|u − uB2ρ |s2 dx

)1/s2
( ∫

B2ρ

|∇v|s3 dx

)1/s3

≤ Cρm

( ∫
B2ρ

|∇u|(p−2)s1 dx

)1/s1

×
( ∫

B2ρ

|∇u|s2∗ dx

)1/s2∗( ∫
B2ρ

|∇u|s3(1−ε) dx

)1/s3

.

It is convenient to set λ = m
m+1 and choose s1 = λ

p−ε
p−2 , s3 = λ

p−ε
1−ε

, since then
s2∗ = (p−ε)λ and all integrands become equal. The second term, I3,2 : = I3−I3,1,
can be estimated in a similar way. Thus,

|I3| ≤ Cρm

( ∫
B2ρ

|∇u|(p−ε)λ dx

)1/λ

. (3.18)
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To cope with the right hand side of (3.12), note that

∣∣∣∣
n∑

i=1

∫
uiEij∇(

ζ(vj − v
j
B2ρ

)
)
dx

∣∣∣∣ ≤ C‖u‖BMO

∫
B2ρ

|∇u|p−ε dx (3.19)

by Theorem 2.2, (3.15) and Poincaré inequality. Gathering the estimates (3.16),
(3.17), (3.18), and (3.19), and summing w.r.t. to j = 1, . . . , n, we obtain

∫
Bρ

|∇u|p−ε dx ≤ C1

( ∫
B2ρ

|∇u|(p−ε)λ dx

)1/λ

+ C2(‖u‖BMO + ε)

∫
B2ρ

|∇u|p−ε dx ,

with constants C1 and C2 that depend only on m, n, p. Thus, if ‖u‖BMO + ε is
small enough, Proposition 2.3 can be applied, to yield higher integrability of |∇u|.
Iterating the whole reasoning finitely many times, we finish the proof. (Note that
each time the gain of integrability does exceed some fixed positive constant.) ��
Remark. Contrary to the case p = 2, one cannot use this proof to go down with q

almost to p − 1. The problem is caused by the error term
∫

B2ρ

|∇u|p−2∇ũj H j dx ,

which vanishes for p = 2. For p �= 2 it must be absorbed via an application of the
stability theorem, and this forces |p − q| small.
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