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Regularity of p-harmonic maps from the
p-dimensional ball into a sphere

Pawel Strzeleckil

We prove that, for p > 2, all weakly p-harmonic maps v = (uy,...,u,) from
the p-dimensional ball into a sphere, i.e. weak solutions of class WP of the
constrained elliptic system

—div (|VulP~2Vy;) = u;|Vul
2:(11,')2 =1,

are Holder continuous. This result is an analogue of an earlier theorem of
F. Hélein for the case p = 2.

1. Introduction

Let B? = {z € IR?: Y (;)? < 1} denote the unit p-dimensional ball, and write
S"=1 to denote the unit sphere in IR". Define the functional

L(u) = / Vu(z)Pdz  for u€ WHP(BP,S™1).
Br
We wish to investigate those mappings which are critical points of I,.

Definition. By a weakly p-harmonic map (or simply p-harmonic map) we mean
here any u belonging to the Sobolev space

WhP(BP, 5™ Y) = {f = (f1,..., fa) | fs € W'P(BP) and zn:(fs'(x))2 =1lael},

i=1

and being a critical point of the functional I, in the class of functions having
fixed trace (equal to that of u) on OBP, with respect to variations on S"~1, i.e.

L]
dt

u+ty n
— ) = 11 Cc(B?,R"). 1
t:OIP<lu+t¢|) 0 forallp € C§( ) (1)

T —————
! This work is partially supported by KBN grant no. 2 1057 91 01
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Condition (1) is easily checked to be equivalent to the fact that u €
W1P(BP,S""1) is a weak solution to the Euler-Lagrange elliptic system

—div (|VulP~2Vy) = u|Vup, i=12,...,n (2)

More precisely, the integral identity
J 1Y 9hide = [ gl val da, 3)
B B

holds true for all ¢ = 1,...,n, and for every ¢ = (¥1,...,%,) € C§°(B,IR").
Here and everywhere below,

|Vul? i L (61‘.‘)2

ul® = — .
i=1j=1 azj

One can find solutions of (2) which are minimizers of I, in the class of mappings

with fixed boundary values. However, weakly p-harmonic maps do not have to

be minimizers of I,. It is also possible to define and consider p-harmonic maps

u: M™ — N" between Riemannian manifolds.

In general, weakly p-harmonic maps do not have to be continuous: the fa-
miliar map z — z/|z| from the unit ball B to its boundary dB™ = S"~! is
singular at 0 and weakly p-harmonic for all p € [1,n). However, there are lots
of results about regularity and partial regularity of weakly p-harmonic maps
under various additional assumptions. Let us mention below just a few; the list
is obviously far from being complete.

M. Fuchs [7], R. Hardt and F.H. Lin [11], and S. Luckhaus [16] proved
indepedently a theorem stating that minimizing p-harmonic maps u : M™ —
N™ are of class C1'*, 0 < & < 1, outside a set of Hausdorff dimension m — [p]—1
(that was a generalization af an earlier result of R. Schoen and K. Uhlenbeck
[19] concerning the case p = 2 of minimizing harmonic maps). In the series
of his recent papers [12], [13], [14] F. Hélein proved that any weakly harmonic
map f : M — N defined on a two-dimensional Riemannian manifold M is
continuous; [12] contains the proof for N = S™~!, [13] concerns the case when
N is a compact manifold with a Lie group of isometries acting transitively,
and [14] deals with the case of arbitrary compact Riemannian N. By standard
elliptic regularity methods, continuity of a weakly harmonic map implies its C*°-
smoothness. L.C. Evans [3] and F. Bethuel [1] generalized Hélein’s result to the
case of the so-called stationary harmonic maps on n-dimensional manifolds, n >
2, proving their regularity outside a singular set of (n—2)-dimensional Hausdorft
measure zero. The interested reader is referred to the papers mentioned above
for brief lists of other results in the field.

In this paper we give a short proof of an analogue of the main result of [12],
namely of the following

Theorem 1. Let u be a weakly p-harmonic map from the p-dimensional ball
unit ball BP = {z € RP:|z| < 1} into the sphere S™~! of arbitrary dimension
(p > 2). Then, u is necessarily Hélder continuous on BP.
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Remark. M. Fuchs in his recent paper [8] has proved (among other things) the
same result independently and with different methods.

In the case p = 2 this is precisely Hélein’s theorem. Note that for minimizing
p-harmonic maps u our Theorem 1 follows immediately e.g. from [11, Theorem
1]. However, this restrictive assumption about the map u is not needed here.

Our proof heavily relies on the results of Coifman, Lions, Meyer, and Semmes
(2] and the fact that the right-hand side of (2) turns out to be an element of
the local Hardy space Hj._, a proper subspace of L! (for p = 2 this was noticed
and exploited by Hélein [12], [13], [14]). This is a starting point of our proof. In
Section 2, for the reader’s convenience, we recall an important theorem from [2]
and state explicitly some of its consequences (well known in the folklore).

The idea of the remaining part of the proof resembles slightly that of Evans
(3]. Here is a brief sketch of our reasoning. First, note that u € W1P(BP)
implies u € BMO. Then, exploit the duality between H!(IR?) and BMO(IR?)
to obtain, by appropriate choice of test functions in (3), the inequality

f Vu()P dy < ) / Vu)Pdy, 0<A<l,
B(z,r) B(z,2r)

valid for all sufficiently small radii r, and finally apply Dirichlet growth theorem
(10], [17]. Section 3 contains all necessary details of that proof.

Notation. For a measurable function w and a measurable set A of positive
Lebesgue measure, we write

[w)a ‘=‘]£ w(z)dz:= 1 /;w(m) dz

meas A

to denote the average of w over A.

The standard Sobolev space of functions of class LP(§2) having their first
order distributional partial derivatives in L?(§2) is denoted by W'P(£2). If V is
a normed vector space of finite dimesion m with a fixed basis, then W1P(£2,V)
is the space of mappings

u=(u1,...,Um): 2>V

with all coordinates u; of class W1P(£2).

A*(IR™) denotes the (})-dimensional space of all &-covectors in IR (with the
standard norm and basis).

In all the calculations, C denotes a general constant (depending only on the
dimension and integrability exponents) which may change its value from one
line to another.

Throughout Section 2, by a slight abuse of notation, p stands for an arbitrary
real from (1, 00), not necessarily an integer.

Acknowledgement. The author is very grateful to Piotr Hajlasz for numerous stimu-
lating conversations about the Hardy spaces and for his helpful comments about the
first draft of this paper.
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2. Prerequisites for the proof

Definition. A measurable function f € L}(IR") belongs to the Hardy space
H(IR™) if and only if

fo:=sup |p. * f| € L'(R").
e>0

Here, ¢(z) := e "p(z/¢€), and ¢ is a fixed function of class C§°(B(0,1))
with [ ¢(y)dy = 1. The definition does not depend on the choice of ¢ (see [5]).

Equivalently, one can define H!(IR") as the space of those elements of
L'(IR™), for which all the Riesz transforms R;f, j = 1,2,...,n, are also of
class L!(IR™). The reader is referred to [9] or [20] for more details. Let us just
mention here that H!(IR") is a Banach space with the norm

£l = [1£1lLs + (1 felles-

Moreover, the condition f € H!(IR") implies [ f(y)dy = 0.

C. Fefferman [4], [5] proved that the dual of H(IR") is equal to the space of
functions of bounded mean oscillation, BMO(IR™). More precisely, there exists
a constant C such that

... B dy < Clllla [¥lawro, @

for all functions h € H!(IR") and € BMO(IR").
The interesting paper of S. Miiller [18] inspired some of the research reported
in [2], in particular the following remarkable theorem.

Theorem 2 (Coifman, Lions, Meyer, Semmes). Let u € W}P(IR*), 1 <
p < 0o, and assume that H € LP/(P=1)(IR",IR") satisfies the condition div H =
0 in D'(IR"). Then, Vu- H € H}(IR"™), and

IVu - Hllwr < C - |VullLe - [|Hl|Lsrc-0 (5)

for some constant C depending only on n and p.

The estimate (5) was not explicitly stated in [2], but follows from the proof
presented there (cf. also [3, Section 2]).

Let us now make explicit a corollary of the above theorem (more or less well
known to specialists).

Corollary 3. Let 2 be a ball in R®. Assume that u € WHP(2), 1 < p < o,
and that H € LP/(P~1)(2,IR") satisfies the condition div H = 0 in D'(2). Then,
one can find a function h € H!(R") such that

h(z) = Vu(z) - H(z), T €,
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and
lIklln: £ C-[IVullLsiay - | HlLrro-1(a).
The constant C does not depend on the size of 2.

Proof. 'This is a simple consequence of Theorem 2 and the results of [15, Section
4]. The idea is to extend Vu to a gradient field on IR" and H to a divergence
free vector field on IR" without increasing too much the appropriate L*-norms,
and then to apply Theorem 2.

Denote ¢ = p/(p — 1). Take the bounded, linear operator

T: LY(2, AYR™)) — WH(2, A Y(R"), £=1,2,...,n

satisfying
w=T(dw) +d(Tw),  [IT|| £ C(n,q)
for all forms w € LI(£2, A4(R"™)) such that dw € LI(£2, A*+!(IR™)). (See [15,
Section 4] for the precise definition of T'.)
Let, for 1 < s < 00, E, be the extension operator,

E,: Wh* (2, A4(R™)) — W, (R, 44R™)),

loc
such that ||V E,(u)||z+(rr) < C(n, 5)||Vu||L(q). Identify the vector field H with
the (n — 1)-form w,

n
w=Y (-1 "'Hjde; A...Adz,, dw=divH -dzy A...Adz,.
N, e’

j=1 dz; omitted

It is easy to see that h = VE,(u) - d(E,T(w)) has all the desired properties.
Here, as before, we identify the (n— 1)-form d(E,T'(w)) with a (divergence free)
vector field of class LI(IR"). 0

3. Proof of Theorem 1

Let us begin with a straightforward calculation proving that the right-hand side
of each equation of system (2) can be extended to a function h; € H!(IR?). In
the case p = 2 this crucial observation is due to F. Hélein.

Write V; = |Vu[P~2Vuy;. The condition Y (ux)? = 1 implies that }_ uxVu, =
0, hence

n
W:Zuk(ukv.--—u,-Vk) fori=1,2,...,n.
k=1

Now, note that (2) implies
div (up Vi — w; Vi) = Vg - Vi = Vi - Vi + updiv Vi — uidivVe = 0,

and therefore
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n
divV; = ZV‘uk . (‘ung — U;Vk). (6)
k=1

This is a starting point for the following energy decay estimate.

Lemma 1. Let u € W1P(BP,S"~!) be a weak solution of (2). Then, there ezist
A €(0,1) and ro > 0 such that

/ (Vu()lP dy < A / Vu(y)lP dy ™)
B?(z,r) Br(z,2r)

for all z € B?(0,1) and all r < § min(ro, dist (z, 8 BP)).

Proof. Fixz € B? and r < %dist (z,0BP). Use Corrolary 3 to construct, for
eachi=1,2,...,n, a function k; € H!(IRP) satisfying

—div(|VulP~3Vy;) = h;  on BP(z,2r),

and such that
Wil <C [ [VuP ay. (®)
Br(z,2r)

Therefore, for all test functions ; with support contained in BP(z,2r),
-/B, [Vu(y) P~ Vui(y) - Vebi(y) dy = /B, hi(y)¥i(y) dy. 9)

Write A, to denote the annulus B? (z,2r)\ B?(z,r). Choose 9; = 7 (ui —[ui]a, ),
where n € C§°(BP(z,2r)) satisfies

c
0<n(y) <1, Valy)l < — 7(y) =1 for y € BP(z, ).

Then, identity (9) leads after a routine calculation to
[ VP <+
Br(z,r)

where

h=3

=1

Ja=p3 [ 1VuP 10 i) ~
=1 Ar

/m , hi(y)¥i(y) dy\ :

In the second sum, all the integrations are performed over the annulus A, since
V1 vanishes on BP(z,r). We apply Holder inequality and then Poincaré inequal-
ity to estimate J in the following way
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n< ([ mura) S ) > ([ 1 =t pay)”

(10)
<c [ [vuwpa.
A,
To deal with J;, we shall prove that ¢; € BMO(IR?) and
1/p
llasomn < ([ (vutipay) )
Br(z,2r)

Indeed, take a cube @ C IRP. We apply Poincaré inequality two times: first, to
estimate the integral over cube, and then to estimate the one over QN{Vn # 0},
a subset of A,. This calculation gives:

1/p
7{) () — [Wilol dy < (ﬂ I¥i(3) — [ilal? dy)

1/p
< C (diam Q) (ﬂ IVei(y)IP dy)

<< ) -tulab ) o [ wpa)

Qn{Va#0} Qn{n#0}

1/p
< C( [ vur dy) ,
Br(z,2r)

and (11) is proved.
To conclude the proof, note that (4), (8), and (11) imply that

n 141/p
7 5C Y- Idhscan Wllanrormsy < € | oy ITHOP W) . )
i=1 P(z,2r

Hence, denoting I(z,r) = fB,(”) |Vu(y)|P dy, we obtain from (10) and (12) the
inequality

I(z,7) < Co - (I(z,2r))* /P + Cy - (I(z,2r) — I(z,7)),

or, equivalently,

I(z,7) S Gy 1@, 20) (14 (=, 20))7) . (13)
Now, use absolute continuity of the integral to find ro such that for all z € B?
and a.ll r < 1 min(ro, dist (2, 0BP)) the integral I(z, 2r) does not exceed (2Co)~?.
Then, (13) 1mphes that

2Co+1

20,12 €O

I(z,r) < M(z,2r), A=
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This completes the proof of Lemma 1. n]

Proof of Theorem 1. By iterations of inequality (7), Lemma 1 implies that for
some positive constants C and § we have

/ [Vu(y)lPdy< C-rP (14)
B?(z,r)

for all z € BP(0, 1) and all sufficiently small r. Inequality (14) allows us to apply
Morrey’s Dirichlet growth theorem (see 17, Theorem 3.5.2] or [10, Chapter 3,
pages 64-65]) and conclude that u is uniformly Holder continuous with exponent
a = (3/p on compact subsets of BP.

Remark. Theorem 1 is of course not a final result; we expect that it is possible
to generalize the results of Bethuel [1] and prove that stationary p-harmonic
maps u : M™ — N™ between arbitrary compact Riemannian manifolds are of
class C1'*(V') for some open V C M™ with H™~P(M \ V) = 0 (or maybe even
with dim (M \ V) < m — p).
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