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Abstract. We prove an ε-regularity result for a wide class of parabolic sys-
tems

ut − div
(
|∇u|p−2∇u) = B( · , u,∇u)

with the right hand side B growing critically, like |∇u|p. It is assumed a priori

that the solution u(t, ·) is uniformly small in the space of functions of bounded
mean oscillation. The crucial tool is provided by a sharp nonlinear version of

the Gagliardo–Nirenberg inequality which has been used earlier in the elliptic

context by T. Rivière and the last named author.

1. Introduction

In this note, we study the ε-regularity of solutions of the system of nonlinear
parabolic equations,

(1.1) ut − div (|∇u|p−2∇u) = B( · , u,∇u) ,

for a vector u = (u1, . . . uN ), given a vector B = (B1, . . . , BN ) with

uk : (0, T ]× Ω→ R, Bk : Ω× RN × RNm → R, 1 ≤ k ≤ N,
where Ω stands for an open domain in Rm. We restrict ourselves to the case p > 2.
We assume that the functions Bk, prescribing the nonlinearity of the right hand
side, satisfy the growth condition

(1.2) |Bk( · , u,∇u)| ≤ Λ|∇u|p.
The study of regularity of weak solutions to equations involving the parabolic p-

Laplace operator ut−div (|∇u|p−2∇u) was initiated by DiBenedetto and Friedman
[7] (see also DiBenedetto’s book [5] and the recent memoirs of Duzaar, Mingione
and Steffen [8] and of Bögelein, Duzaar and Mingione [1]). Known explicit solutions
to (1.1) with Bk = 0 show that even in this case no regularity higher than C1,α can
be expected. Such regularity was indeed shown in [7] for (1.1) with Bk satisfying
at most

(1.3) |Bk( · , u,∇u)| ≤ Λ|∇u|p−1.

However, the more restrictive growth assumption (1.3) is typically not satisfied
in numerous inhomogeneous flows of geometric origin. The p-harmonic heat flow
with values in a Riemannian manifold N (which is assumed to be isometrically
embedded in some Rd) is a prototype of (1.1); in this case

(1.4) B( · , u,∇u) = |∇u|p−2A(u)(∇u,∇u),

where A(u)(·) is the second fundamental form of N at u(·). The interest in such
systems arose in connection with the homotopy problem for (p-)harmonic maps,
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i. e. the problem of finding a (p-)harmonic map homotopic to a given map between
smooth compact Riemannian manifolds M and N .1 In this context, with m =
2, p = 2, the flow of harmonic maps was investigated by Eells and Sampson [9],
who proved the existence of global regular solutions under the assumption that
N has non-positive sectional curvature (and solved the homotopy problem in this
case).

Without this assumption one cannot expect global regularity. In the case N =
Sm, m > 3 examples of evolutions with finite time blow-up were constructed (see [4],
also [2] and references therein). Later, Struwe [15, 16] and Struwe in collaboration
with Chen [3] considered weak solutions to the harmonic heat flow with values in
arbitrary N and were able to show existence and bounds on the set of singularities.
The crucial tool in their work (in case m > 2) was Struwe’s monotonicity formula
[16, Proposition 3.3.], which is only available if p = 2.

To the best of our knowledge, there is no general existence result for the flow of
p-harmonic maps into an arbitrary compact manifold for p > 2. Partial results in
this direction include the work of Misawa [13] which generalizes the classic work of
Eells and Sampson (p = 2) obtaining global regular solutions for N of nonpositive
sectional curvature, and the paper [10] by Hungerbühler, where the existence of
weak solutions is shown for N being a homogeneous space. In the latter case,
the proof exploits symmetry of the image and no additional regularity is obtained.
Finally, Hungerbühler [11] obtained the existence of global weak solutions (regular
except a finite set of times) in the conformally invariant case p = m. The proof
is based on a local estimate on energy concentration together with a conditional
a priori estimate that controls the norms of ∇u in higher Lq spaces allowing to
bound ∇u in L∞ via Moser iteration. Those estimates hold provided the m-energy
is appropriately small,

(1.5) sup
t,x

∫
BR(x)

|∇u(t, x)|mdx < ε.

In the present paper, we obtain conditional estimates of a similar form, but
instead of smallness of the energy (1.5), we assume smallness of local BMO norm
of the solution (which, in light of the embedding W 1,m into BMO in dimension m, is
a weaker assumption). In particular, our method works for any p > 2 and (formally)
we only need to control a norm of the solution and not of its derivatives. On the
other hand, we have no proof of existence; therefore we do need the assumption
that the solution actually exists in Lp((0, T ],W 2,p(Ω)).

Before we state our results, let us introduce some notation for properly scaled
cylinders. For a point (t0, x0) ∈ (0, T )× Ω we write

(1.6)

BR = BR(x0) = {|x− x0| < R} ,
QR = QR(x0, t0) = BR × (t0 −Rp, t0) ,

QR(σ1, σ2) = BR−σ1R × (t0 − (1− σ2)Rp, t0) for σi ∈ (0, 1) .

Theorem 1. Assume that u ∈ Lp((0, T ],W 2,p(Ω)), where Ω is an open domain in
Rm, is a weak solution to (1.1). Let q > p, Ω′ ⊂⊂ Ω, δ > 0. There exist a positive
number ε0 = ε0(Ω, N, p, q,Λ) such that if

(1.7) ‖u‖L∞((0,T ],BMO(Ω)) < ε0

1Strictly speaking, in this case the p-Laplace operator has to be substituted with appropriate
p-Laplace-Beltrami operator on M.
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then there holds

‖∇u‖Lq((δ,T ]×Ω′) ≤ C,
where C = C(Ω, N, p, q,Λ,dist (Ω′, ∂Ω), δ).

Theorem 2. Assume that u ∈ Lp((0, T ],W 2,p(Ω)), where Ω is an open domain
in Rm, is a weak solution to (1.1), satisfying the smallness assumption (1.7). Let
ϑ0 >

p+m
2 , m ≥ 2. There exists a constant C = C(Ω, N, p,Λ, ϑ0, R) such that

‖∇u‖L∞(QR/2) ≤ C
(

1 +

∫
QR

|∇u|2ϑ0

) 1

ϑ0−
p+m

2 .

Together with the work of DiBenedetto and Friedman, these two theorems imply
the following.

Corollary 3. Assume that u ∈ Lp((0, T ],W 2,p(Ω)) is a weak solution to (1.1).
There exists a constant ε0 = ε0(Ω,m, p,Λ) such that if the condition

‖u‖L∞((0,T ],BMO(Ω)) < ε0

is satisfied, then u ∈ C1,α
loc ((0, T ]× Ω).

Comparing these results with Kuusi and Mingione [12], we see that Corollary 3
is, on one hand, stronger than e.g. [12, Thm 1.3] which gives a borderline version
of the L∞–boundedness of Du from [5, Chapter VIII]. Even for solutions u ∈
L∞((0, T ], BMO∩W 2,p(Ω)) the right hand side of (1.1) is formally only in L2, and
not in the Lorentz space Lm+2,1, as it is assumed in [12, Thm 1.3]. On the other
hand, the smallness assumption (1.7) is pretty strong and seems to be restrictive
(yet, in a sense, necessary: even in the elliptic case, e.g. for harmonic maps into
Riemannian manifolds, an assumption of this kind is needed for regularity; it is
well known that near to an isolated singularity of a harmonic map w : B3 → S2 the
BMO norm of w is not small).

Our main technical tool is an interpolation inequality of Gagliardo-Nirenberg
type, discovered by Rivière and the last named author of the present paper, see
[14]. Let ψ ∈ C∞c (Rm) be fixed. Using H1 − BMO duality, the authors of [14]
proved the existence of a constant C = C(m) such that

(1.8)

∫
Rm

ψs+2|∇u|s+2 ≤ Cs2‖u‖2BMO(Rm)

{∫
Rm

ψs+2|∇u|s−2|∇2u|2

+ ‖∇ψ‖2L∞(Rm)

∫
Rm

ψs|∇u|s
}

for any function u ∈ W 2,1
loc (Rm) ∩ BMO(Rm) for which the right hand side is

finite. A version of (1.8) in time-dependent setting follows immediately. Let now
ψ ∈ C∞c ([0, T ]× Rm). Integrating (1.8) over time yields

(1.9)

∫ T

0

∫
Rm

ψs+2|∇u|s+2 ≤ Cs2‖u‖2L∞([0,T ],BMO(Rm))

·
{∫ T

0

∫
Rm

ψs+2|∇u|s−2|∇2u|2 + ‖∇ψ‖2L∞([0,T ]×Rm)

∫ T

0

∫
Rm

ψs|∇u|s
}

for any u ∈ L∞([0, T ],W 2,1
loc (Rm)) ∩ L∞([0, T ], BMO(Rm)). This inequality allows

us to control the right hand side of (1.1) provided that the smallness condition from
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Theorem 1 is satisfied. This part of our work is in fact a parabolic version of [14].
Having obtained such conditional bounds on sufficiently high local Lq norms of the
gradient, one may then proceed with Moser iteration similarly as in [11], obtaining
Theorem 2.

Notation. We denote by BMO(Ω) the space of functions on a given domain Ω of
bounded mean oscillation, with the seminorm

‖f‖BMO(Ω) := sup
Q

(
−
∫
Q

|f(y)− fQ|dy
)
<∞,

the supremum being taken over all cubes Q in Ω, where fQ denotes the average of
f on Q, i.e. −

∫
Q
fdx = |Q|−1

∫
Q
fdx, |Q| being the Lebesgue measure of Q. Given

t ∈ (0, T ], we write Ωt for the cylindrical domain (0, t]× Ω.

2. Caccioppoli inequality

In order to obtain Lq estimates in the homogeneous case (i. e. the right hand side
of (1.1) equal 0) DiBenedetto and Friedman [6] tested the system with ζ2|∇u|2α∇u,
where ζ is a suitably chosen smooth cutoff function. The same standard test func-
tions were used by Hungerbühler in the conformally invariant case and by Rivière
and the last author in the elliptic case.

We modify their derivation obtaining the following Caccioppoli inequality for
derivatives of solutions of (1.1).

Lemma 4. Assume that u ∈ Lp((0, T ],W 2,p(Ω)) is a weak solution of (1.1). Let
ζ ∈ C∞c ((0, T ]×Ω) and set w := |∇u|2. There exists a constant C1 = C1(m,N, p,Λ)
such that for each α ≥ 0 we have

1

2 + 2α
ess sup
t∈(0,T ]

∫
Ω

ζ(t, ·)2w1+α +
p− 2 + α

8

∫∫
ΩT

ζ2w
p
2−2+α |∇w|2

+
1

2

∫∫
ΩT

ζ2w
p
2−1+α|∇2u|2 ≤

(
2(p− 1)2

p− 2 + 2α
+

1

2

)∫∫
ΩT

|∇ζ|2w
p
2 +α

+
1

1 + α

∫∫
ΩT

ζζtw
1+α + C1(p+ α)

∫∫
ΩT

ζ2w
p
2 +1+α,

(2.1)

provided the right hand side is finite.

Proof. Differentiating both sides of (1.1) with respect to xj , we see that for
t ∈ (0, T ] and each matrix of test functions ϕij compactly supported in (0, T ]× Ω
(indices i, j are summed),

(2.2)

∫∫
Ωt

∂

∂xj

(
∂ui

∂t

)
ϕij

+

∫∫
Ωt

[
|∇u|p−2∇

(
∂ui

∂xj

)
+

∂

∂xj

(
|∇u|p−2

)
∇ui

]
· ∇ϕij

= −
∫∫

Ωt

∂ϕij

∂xj
Bi(x, u,∇u).

Now, we plug in ϕij = ζ2|∇u|2αuixj , where α ≥ 0 and ζ ∈ C∞c ((0, T ] × Ω) is
nonnegative.
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We estimate the left and right hand side of (2.2) separately.

Left hand side of (2.2). A routine but somewhat tedious computation leads to the
following three equalities:

(2.3)

∫∫
Ωt

∂

∂xj

(
∂ui

∂t

)
ϕij =

1

1 + α

∫∫
Ωt

∂

∂t

(
w1+α

)
ϕij

=
1

2 + 2α

∫
Ω

w1+αζ2(t, ·)− 1

1 + α

∫∫
Ωt

w1+αζ
∂ζ

∂t
;

(2.4)

∫∫
Ωt

|∇u|p−2∇
(
∂ui

∂xj

)
· ∇ϕij =

∫∫
Ωt

ζ2w
p−2
2 +α

∣∣∣∣∇( ∂ui∂xj

)∣∣∣∣2
+
α

2

∫∫
Ωt

ζ2w
p−2
2 −1+α|∇w|2 +

∫∫
Ωt

ζ(∇ζ · ∇w)w
p−2
2 +α

=: I1 + I2 + I3 ;

(2.5)

∫∫
Ωt

∂

∂xj

(
|∇u|p−2

)
∇ui · ∇ϕij

=
p− 2

4

∫∫
Ωt

ζ2w
p−2
2 −1+α|∇w|2

+
(p− 2)α

2

∫∫
Ωt

ζ2w
p−2
2 −2+α

∑
i

(
∇w · ∇ui

)2
+ (p− 2)

∫∫
Ωt

ζw
p−2
2 −1+α

∑
i

(∇ζ · ∇ui)(∇w · ∇ui)

=: I4 + I5 + I6.

Using Cauchy’s inequality with ε: ab ≤ ε2a2

2 + b2

2ε2 , we estimate

|I3|+ |I6| ≤ (p− 1)

∫ T

t

∫
Ω

ζ|∇ζ| |∇w|w
p−2
2 +α

≤ (p− 1)ε2

2

∫∫
Ωt

ζ2w
p−2
2 −1+α|∇w|2 +

p− 1

2ε2

∫∫
Ωt

|∇ζ|2w
p
2 +α ,

(2.6)

splitting the integrand so that the term with |∇w|2 can be absorbed in I2 + I4.
Choosing ε2 so that (p − 1)ε2/2 = (p − 2 + 2α)/8, and combining (2.4), (2.5) and
(2.6), we obtain finally

left hand side of (2.2) ≥ 1

2 + 2α

∫
Ω

w1+αζ2(t, ·)− 1

1 + α

∫∫
Ωt

w1+αζ
∂ζ

∂t

+
p− 2 + 2α

8

∫∫
Ωt

ζ2w
p−2
2 −1+α|∇w|2

+

∫ T

t

∫
Ω

ζ2w
p−2
2 +α|∇uixj |

2

+
(p− 2)α

2

∫∫
Ωt

ζ2w
p−2
2 −2+α

∑
i

(
∇w · ∇ui

)2
− 2(p− 1)2

p− 2 + 2α

∫∫
Ωt

|∇ζ|2w
p
2 +α.

(2.7)
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Right hand side of (2.2). Using the growth condition |B(x, u,∇u)| ≤ Λ|∇u|p, we
write

(2.8)

∣∣∣∣∫∫
Ωt

∂ϕij

∂xj
Bi(x, u,∇u)

∣∣∣∣ ≤ C(J1 + J2 + J3) ,

where the constant C = C(m,N,Λ) and

J1 =

∫∫
Ωt

ζ2w
p
2 +α

∣∣∇uixj ∣∣ J2 = α

∫∫
Ωt

ζ2w
p−1
2 +α |∇w|

J3 =

∫∫
Ωt

ζ|∇ζ|w
p+1
2 +α.

(2.9)

Set

J0 : =

∫∫
Ωt

ζ2w
p
2 +1+α .

To absorb all terms that contain second order derivatives of u, we again apply the
Cauchy–Schwarz inequality in a familiar way and obtain

J1 ≤ ε2
1

2

∫∫
Ωt

ζ2w
p−2
2 +α

∣∣∇uixj ∣∣2 +
1

2ε2
1

J0 ,

J2 ≤ αε2
2

2

∫∫
Ωt

ζ2w
p
2−2+α |∇w|2 +

α

2ε2
2

J0 .

Finally,

(2.10) J3 ≤
C

2
J0 +

1

2C

∫∫
Ωt

|∇ζ|2w
p
2 +α .

Making appropriate choices of ε1, ε2 > 0, we combine the estimates of J1, J2, J3

with (2.7) and, taking supremum of both sides over t ∈ (0, T ], complete the proof
of the lemma. �

3. Gradient estimates

This section contains proofs of Theorems 1 and 2. The high integrability of
solution to (1.1) that we seek will eventually follow upon the iterations of the
Caccioppoli inequality (2.1) combined with a parabolic version of the Sobolev in-
equality,∫∫

(δ,T ]×Ω′
|w|

p+2α
2 + 2

m (1+α) ≤ C(m) ess sup
t∈(δ,T ]

(∫
Ω′
|w(t, ·)|1+α

) 2
m

·

(∫∫
(δ,T ]×Ω′

∣∣∇w p+2α
4

∣∣2 + cΩ′

∫∫
(δ,T ]×Ω′

|w|
p+2α

2

)
,(3.1)

which holds for any δ > 0, any smooth bounded Ω′ b Ω, and will be applied to
w = |w| = |∇u|2. Recall that inequality (3.1) is obtained by an application of
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Hölder inequality and Sobolev embedding2 W 1,2 ↪→ L
2m
m−2 in dimension m,∫

Ω′
|w|

p+2α
2 + 2

m (1+α) ≤
(∫

Ω′
|w|1+α

) 2
m
(∫

Ω′
|w|

p+2α
4 · 2m

m−2

)m−2
2m ·2

≤ C(m)

(∫
Ω′
|w|1+α

) 2
m
(∫

Ω′

∣∣∇w p+2α
4

∣∣2 + cΩ′

∫
Ω′
|w|

p+2α
2

)
,

and integrating the result over the time interval (δ, T ]. We also note that if Ω′ is a
cube or a ball, then the above inequalities hold with

(3.2) cΩ′ = (diam Ω′)−2 .

However, it is easy to see that if the exponent α is small, then the combined
inequalities (Caccioppoli and ‘parabolic’ Sobolev) do not yield any increase in inte-
grability of w. This is caused precisely by the critical term (3.3), with |∇u|p+2+2α =

w
p
2 +1+α. Therefore, we need first to control ∇u in a sufficiently high Lq space. This

is why some smallness assumption is required for our assertions to hold. We exploit
such an assumption through a bootstrap procedure involving a finite number of
applications of the interpolation inequality (1.9) to control the ‘bad’ term

(3.3) C1(p+ α)

∫∫
ΩT

ζ2w
p
2 +1+α

on the right hand side of the Caccioppoli inequality.
Once the threshold level of q = p+m is exceeded, one indeed gets an increase of

integrability of ∇u only from the equation, and may use Moser iteration to obtain
the assertion of Theorem 2. We set forth the details below, giving a parabolic
version of the ‘elliptic’ argument from [14].

3.1. Lq estimate for ∇u. We now explain how to iterate the Caccioppoli inequal-
ity, using the Gagliardo–Nirenberg inequality at each step. Let C1 and C2 denote
the constants from Caccioppoli inequality (2.1) and the interpolation inequality
(1.9), respectively. Fix a sufficiently large number αmax that shall be specified
later.

We need the following smallness condition:

(3.4) C1C2(p+ 2α)3‖u‖2L∞((0,T ],BMO(Ω)) ≤
1

2
,

for every α ∈ [0, αmax]. We choose two nonnegative functions ζ, ψ ∈ C∞c (ΩT ) so
that ψ ≡ 1 on (δ, T ]× Ω′ and

(3.5) ζ2 = ψp+2+2α, 0 ≤ ζ ≤ 1, |∇ζ| ≤ 2dist (Ω′, ∂Ω)−1, |ζt| ≤ 2δ−1.

We set s = p + 2α in the interpolation inequality (1.9) and use it to estimate the
bad term (3.3).

2We tacitly assume here that m > 2; for m = 2 the exponent 2m/(m− 2) can be replaced by
any s ∈ (2,∞).
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Due to smallness condition (3.4) we get

1

2 + 2α
ess sup
t∈(0,T ]

∫
Ω

ζ(t, ·)2w1+α +
1

2

∫∫
ΩT

ζ2w
p
2−1+α|∇2u|2

+
p− 2 + α

8

∫∫
ΩT

ζ2w
p
2−2+α |∇w|2

≤
(

2(p− 1)2

p− 2 + 2α
+

1

2

)∫∫
ΩT

|∇ζ|2w
p
2 +α +

1

1 + α

∫∫
ΩT

ζζtw
1+α(3.6)

+
1

2
‖∇ψ‖2L∞(ΩT )

∫∫
ΩT

ψp+2αw
p
2 +α +

1

2

∫∫
ΩT

ζ2w
p
2−1+α|∇2u|2.

The last term in the right-hand side cancels with the matching term in the left
hand side. Invoking the properties of ζ and ψ, cf. (3.5), and remembering that(

p+ 2α

4

)2

w
p
2−2+α |∇w|2 =

∣∣∣∇w p+2α
4

∣∣∣2 ,
we obtain from (3.6), upon multiplication by 2(1 + α),

(3.7)

ess sup
t∈(δ,T ]

∫
Ω′
w1+α +

∫∫
(δ,T ]×Ω′

∣∣∣∇w p+2α
4

∣∣∣2
≤ γ(1 + α)

(∫∫
ΩT

w
p
2 +α +

∫∫
ΩT

w1+α

)
,

where γ stands for a generic constant which may depend on Ω, T , m, p, δ, and
Ω′. Inequality (3.7), combined with the parabolic Sobolev embedding (3.1), leads
to the estimate

(3.8)

(∫∫
(δ,T ]×Ω′

|∇u|p+2α+ 4
m (1+α)

) 1
κ

≤ γ(1 + α)

(∫∫
ΩT

|∇u|p+2α +

∫∫
ΩT

|∇u|2+2α

)
,

where κ = 1+ 2
m (and γ could change). Now, applying Hölder inequality to replace

2+2α by p+2α in the second exponent of the right hand side, we obtain, adjusting
the constant γ again,

(3.9)

(∫∫
(δ,T ]×Ω′

|∇u|p+2α+ 4
m (1+α)

) 1
κ

≤ γ(1 + α)

(∫∫
ΩT

|∇u|p+2α +

(∫∫
ΩT

|∇u|p+2α

) 2+2α
p+2α

)
.

We iterate this inequality finitely many times, starting from α = 0. After each step
we obtain higher local integrability of ∇u (on a smaller domain). To achieve the
desired goal, we choose αmax large enough to get ∇u ∈ Lqloc(ΩT ) for the given value
of q. Since the time instant δ > 0 above can be arbitrary, Theorem 1 follows.

3.2. L∞ estimates for ∇u. In this section we obtain boundedness of the gradient
of the solution to (1.1). To prove the estimates on the gradient of the solution we
mimic the approach from [11, Lemma 8, p. 608-611], adjusting it to match the case
p > 2, m ≥ 2. In the Caccioppoli inequality (2.1) we use a cutoff function ζ such
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that

ζ = 1 on QR(σ1, σ2) ,

ζ = 0 in a neighborhood of the parabolic boundary of QR ,

and

(3.10) 0 ≤ ζ ≤ 1, |∇ζ| ≤ 2

σ1R
, |ζt| ≤

2

σ2Rp
.

Throughout this Section γ denotes a generic constant independent of α. Combining
the Caccioppoli inequality (2.1) with (3.1), we obtain

(3.11)

∫∫
QR(σ1,σ2)

w
p+2α

2 + 2
m (1+α) ≤

γ

((
1 + α

σ2
1R

2
+

1

R2(1− σ1)2

)∫∫
QR

w
p+2α

2 +
1

σ2Rp

∫∫
QR

w1+α

+ (1 + α2)

∫∫
QR

w
p+2+2α

2

)1+ 2
m

.

We introduce the notation

αν = α, Rν =
R0

2

(
1 +

1

2ν

)
, Qν = QRν ,

σ1Rν =
R0

2ν+2
, σ2R

p
ν =

Rp0
2ν+p

, κ = 1 +
2

m
.

A calculation shows

Qν+1 ⊆ QRν (σ1, σ2).

For each ν ∈ N we apply Young’s inequality to (3.11) and obtain

(3.12)

∫∫
Qν+1

w
p+2αν

2 + 2
m (1+αν) ≤

γ

(
4ν

Rp0
|Qν |+

(
1 + α2

ν +
4ν

Rp0

)∫∫
Qν

w
p+2+2αν

2

)κ
,

Next we define

ϑν =
p+ 2 + 2αν

2
,

ϑν+1 =
p+ 2αν

2
+

2

m
(1 + αν) .

We see that sequence ϑν satisfies the recurrence

ϑν+1 = κϑν −
(

1 +
p

m

)
.

Thus,

ϑν = κν
(
ϑ0 −

p+m

2

)
+
p+m

2
.

Hence, ϑν →∞ as ν →∞ provided that we start with ϑ0 >
p+m

2 .

We check that αν = κν
(
ϑ0 − p+m

2

)
+ m

2 − 1. We rewrite inequality (3.12) in the
form
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(3.13)

∫∫
Qν+1

wϑν+1 ≤ γ8νκ
(

1 +

∫∫
Qν

wϑν
)κ

We also set

Iν =

∫
Qν

wϑν ,

since m ≥ 2 we have κ ≤ 2 and (1 + x)κ ≤ 4(1 + xκ) for each x ≥ 0. Hence,
inequality (3.13) implies the recursive relation

(3.14) Iν+1 ≤ 4 · 64νγ (1 + Iκν )

for every ν ∈ N. It can be proved by induction that

Iν ≤ Lbν
(

1 + Iκ
ν

0

)
with L = 4γ + 64 and a convenient choice of exponents bν satisfying

bν+1 = κbν + 2κ+ ν, b0 = 0.

From elementary calculations one derives the explicit formula for bν which turns
out to be

bν = κν
(

2 +m+
m2

4

)
−
(

2 +m+
m2

4
+
νm

2

)
.

We immediately obtain the limits

κν

ϑν
→ A =

1

ϑ0 − p+m
2

,

bν
ϑν
→ B =

2 +m+ m2

4

ϑ0 − p+m
2

.

Hence from (3.14) we have following estimate

‖∇u‖L∞(QR0/2)
= sup

ν∈N
I1/ϑν
ν ≤ LB(1 + IA0 ).

This proves Theorem 2.
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