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Abstract. We prove a new regularity result for systems of nonlinear elliptic equations with
quadratic Jacobian type nonlinearity in dimension two. Our proof is based on an adaptation
of John Lewis’ method which has not been used for such systems so far.

1. Introduction

Rivière [16] proved the following remarkable result.

Theorem 1.1. Let D ⊂ R
2 be an open set. If �i

j ∈ L2(D, R
2), �i

j = − �
j
i ,

i, j = 1, 2, . . . , m and u = (u1, u2, . . . , um) ∈ W 1,2(D, R
m) solves the system of

equations

− �ui =
m∑

j=1

�i
j · ∇u j , i = 1, 2, . . . , m, (1.1)

then u is continuous.

This result solves a conjecture of Heinz about regularity of solutions to the
prescribed bounded mean curvature equation and a conjecture of Hildebrandt about
regularity of all critical points of continuously differentiable elliptic conformally
invariant Lagrangians in dimension two. In particular it provides a new proof of
Hélein’s theorem [10,12] about regularity of two dimensional harmonic mappings
into arbitrary compact manifolds.
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An important example is provided by the equation of prescribed mean curvature
(H -surface equation):

�u = 2H(u)ux1 ∧ ux2 , (1.2)

where u ∈ W 1,2(D, R
3), D ⊂ R

2 and H ∈ L∞(R3) is a Borel function. Heinz
conjectured that under these assumptions u is continuous. Let ∇⊥ = (−∂y, ∂x ). It
is easy to see that (1.2) can be rewritten in the form

−�ui =
3∑

j=1

�i
j · ∇u j , i = 1, 2, 3,

where

� = (�i
j )i, j=1,2,3 = H(u)

⎡

⎢⎣
0 ∇⊥u3 −∇⊥u2

−∇⊥u3 0 ∇⊥u1

∇⊥u2 −∇⊥u1 0

⎤

⎥⎦

and therefore the Heinz conjecture directly follows from Rivière’s theorem.
The antisymmetry condition �

j
i = −�i

j is crucial in Theorem 1.1 because
a well known example of Frehse [8] (cf. [16]) shows that without this condition
solutions to the system (1.1) may be discontinuous.

Our aim is to generalize Rivière’s theorem to the case in which we lack the
antisymmetric structure, but on the other hand the functions �i

j are more regular
than in Theorem 1.1. Our main result reads as follows.

Theorem 1.2. Let D ⊂ R
2 be an open set. Let h jk = (hi

jk)i=1,...,m ∈ L∞ ∩
W 1,2(D, R

m), j, k = 1, . . . , m, and let v ∈ W 1,2(D, R
m). If u ∈ W 1,2(D, R

m) is
a solution to the system

− �ui =
m∑

j=1

�i
j · ∇u j , i = 1, 2, . . . , m, (1.3)

where

�i
j =

m∑

k=1

hi
jk∇⊥vk,

then u is locally Hölder continuous.

In this theorem the Laplacian can easily be replaced by a more general elliptic
operator in divergence form, but since the main difficulty lies in the structure of the
right hand side, we prefer to consider the Laplace operator for the sake of simplicity.

The theorem (with the proof almost unchanged) is true even for a more general
right hand side

�i
j =

m∑

k=1

hi
jk∇⊥vk

i ,

where hi
jk ∈ L∞ ∩ W 1,2(D), vk

i ∈ W 1,2(D), i, j, k = 1, . . . , m.
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Theorem 1.2 cannot be deduced from that of Rivière, because the functions
�i

j do not necessarily satisfy �i
j = −�

j
i . On the other hand the condition h jk ∈

L∞ ∩ W 1,2 is a very strong one. This is a price we have to pay for the lack of the
antisymmetry.

Observe that our system can be written as

−�u =
m∑

j,k=1

h jk dvk ∧ du j ,

i.e.

− �ui =
m∑

j,k=1

hi
jk dvk ∧ du j , i = 1, 2, . . . , m. (1.4)

Here dvk ∧ du j = vk
x1

u j
x2 − vk

x2
u j

x1 . In particular if v = u and

Hjk = (Hi
jk)i=1...,m : R

m → R
m, 1 ≤ j < k ≤ m,

is a family of bounded Lipschitz functions, then h jk = −Hjk ◦ u ∈ L∞ ∩ W 1,2

and hence the theorem gives local Hölder continuity for the solutions to the system
which generalizes the H -surface equation

− �u =
∑

1≤ j<k≤m

Hjk(u) du j ∧ duk . (1.5)

Once we know that u is continuous, Gehring’s lemma gives higher integrability of
|∇u| and then a routine bootstrap argument implies that solutions to (1.4) belong
to C2,α

loc (D) for all 0 < α < 1.
In the case of the H -surface Eq. (1.2), this regularity result for solutions to (1.5)

gives the following theorem which is, however, weaker than that of Rivière.

Corollary 1.3. (Bethuel [2]) Let H : R
3 → R be a bounded Lipschitz function.

Assume that u ∈ W 1,2(D, R
3) is a weak solution of the H-surface Eq. (1.2). Then,

u ∈ C2,α
loc (D) for every α < 1.

Two different proofs of Bethuel’s theorem presented in [2,17] can be adapted to
cover Theorem 1.2, but the main novelty in our paper is a new method of the proof.
The common feature of all proofs is a heavy use of delicate analytic tools: the duality
of Hardy space and BMO (inspired by Coifman et al. [5]), L p estimates for Hodge
decomposition and its variants, interpolation in Lorentz spaces, etc. Our approach
is more elementary. It still employs the the duality of Hardy space and BMO, but
even that can be replaced by a more elementary argument (we will comment on it
later on).

All known proofs seem to be purely two-dimensional (including Rivière’s
result). That is, they all break down when one tries to adapt them to the case
of higher-dimensional H -systems,

− div (|∇u|n−2∇u) = H(u)ux1 ∧ ux2 ∧ · · · ∧ uxn , (1.6)
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where u ∈ W 1,n(�, R
n+1) for some domain � ⊂ R

n , or to the system of
n-harmonic maps into compact manifolds,

−div (|∇u|n−2∇u) ⊥ Tu(x)N a.e., u(x) ∈ N a.e.

One of our motivations was to give one more argument, fairly general, and to see
whether it can be generalized to obtain full regularity of W 1,n weak solutions of
H -system (1.6) for n > 2.

The main difficulty in proving regularity of the solutions to the system (1.3)
stems from the fact that the right hand side of (1.3) is only in L1 and we cannot use
u as a test function. Instead, we follow an idea of Lewis [13] (cf. [6,7,14,15,18])
and we build a test function that coincides with u on the set where the maximal
function of the gradient does not exceed t and which has Lipschitz constant equal
to Ct , see [1]. This method is combined here with the proof given in [17].

The notation is mostly standard. The integral average over a ball will be denoted
by

u B =
∫

B
u dx = 1

|B|
∫

B

u dx

and C will denote a general constant that can change its value in a single string of
estimates. By an absolute constant we mean a constant that does not depend on any
parameter involved. The symbol B will be used to denote a ball.

2. Proof of Theorem 1.2

Some of the steps of the proof are similar to analogous steps in [17] and they will
be sketched only.

Lemma 2.1. Assume that u ∈ W 1,2(D, R
m) is a weak solution of the system (1.3).

There exist numbers r0 > 0, ε ∈ (0, 1
2 ) and λ ∈ (0, 1) such that for all a ∈ D and

all radii r < min(r0,
1
4 dist (a, ∂ D)) the following decay inequality holds:

M2−ε(a, r) ≤ λM2−ε(a, 4r), (2.1)

where

M2−ε(a, r) : = sup
1

�ε

∫

B(z,�)

|∇u|2−ε dx,

the supremum being taken over all z, � such that B(z, �) ⊂ B(a, r).

If B(a, R) � D and R < r0, then for 0 < r < R iterations of estimate (2.1)
and the Hölder inequality lead to

∫

B(a,r)

|∇u|2−ε dx ≤ rγ+ε R−γ λ−1πε/2

⎛

⎜⎝
∫

B(a,R)

|∇u|2 dx

⎞

⎟⎠

(2−ε)/2

≤ Crγ+ε‖∇u‖2−ε
2 ,
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where γ = log4(1/λ) > 0. Thus by the Dirichlet Growth Theorem u is locally
Hölder continuous with the exponent γ /(2 − ε).

The proof of Lemma 2.1 has two separate stages. First, we test system (1.3)
with functions that are good Lipschitz approximations of u (i.e. they agree with u
on the set where the maximal function of the gradient of u is not too large). This
yields an estimate for the integral of |∇u|2 on, roughly speaking, sets of the form
{x : M |∇u|(x) ≤ t}.

The second stage is to average this estimate w.r.t. t , with weight equal to t−1−ε,
and to obtain an averaged Caccioppoli inequality. Then, we show that any function
u satisfying this averaged Caccioppoli inequality must also satisfy (2.1). In this last
step, is not at all important that u solves (1.2).

3. Proof of Lemma 2.1

Fix a and r > 0 such that Br ≡ B(a, r) ⊂ B4r = B(a, 4r) � D. The choice of
r0, ε and λ shall be specified later on.

It suffices to prove that

1

rε

∫

B(a,r)

|∇u|2−ε ≤ λM2−ε(a, 4r). (3.1)

Indeed, for B(z, �) ⊂ B(a, r), (3.1) gives

1

�ε

∫

B(z,�)

|∇u|2−ε ≤ λM2−ε(z, 4�) ≤ λM2−ε(a, 4r)

and hence (2.1) follows after taking supremum over all B(z, �) ⊂ B(a, r). If

∫

B2r

|∇u|2−ε > 8
∫

Br

|∇u|2−ε,

then

1

rε

∫

Br

|∇u|2−ε <
2ε

8

1

(2r)ε

∫

B2r

|∇u|2−ε ≤ 1

4
M2−ε(a, 2r)

and hence (3.1) follows with λ = 1/4. Therefore we can assume that

∫

B2r

|∇u|2−ε ≤ 8
∫

Br

|∇u|2−ε. (3.2)

We will frequently use the following well known lemma.
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Lemma 3.1. If u ∈ W 1,p
loc (Rn), then

|u(x) − u(y)| ≤ C |x − y|(M|∇u|(x) + M|∇u|(y)) a.e.

and

|u(x) − u B | ≤ CrM|∇u|(x) for a.e. x ∈ B,

where r is the radius of the ball B and M|∇u| is the Hardy–Littlewood maximal
function of |∇u|.

For the proof see, for example [1,7,9,13,14].

Step 1: Choice of test functions. Fix t > 0 and a cutoff function ϕ ∈ C∞
0 (B2r ) such

that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Br and |∇ϕ| ≤ C/r .
Set

g(x) = |ϕ(x)| |∇u(x)| + |u(x) − u B2r | |∇ϕ(x)| .
We define g ≡ 0 in R

2\B2r . Let

Ft : = {x ∈ B2r : Mg(x) ≤ t}
and ũ(x) = ϕ(x)

(
u(x) − u B2r

)
. We claim that ũ is Lipschitz continuous with con-

stant Ct on (R2\B2r ) ∪ Ft .

Case 1. Let x, y ∈ Ft . Then, since |∇ũ| ≤ g, we have

|ũ(x) − ũ(y)| ≤ C |x − y|(M|∇ũ|(x) + M|∇ũ|(y)
) ≤ Ct |x − y|

by definition of Ft .

Case 2. Assume that x ∈ Ft , y ∈ R
2\B2r . Let � : = 2dist (x, ∂ B2r ). Since ũ

equals zero on a large part of the ball B(x, �), Poincaré inequality yields

|ũ B(x,�)| ≤ C�

∫

B(x,�)

|∇ũ| ≤ C�Mg(x) ≤ C |x − y|t.

Therefore

|ũ(x) − ũ(y)| = |ũ(x)| ≤ |ũ(x) − ũ B(x,�)| + |ũ B(x,�)|
≤ C�M|∇ũ|(x) + Ct |x − y|
≤ Ct |x − y|.

This proves the claim. We now extend ũ : Ft ∪ (R2\B2r ) → R
m to a Lipschitz

continuous function ut : R
2 → R

m such that Lip (ut ) ≤ Ct , i.e. |∇ut | ≤ Ct on
R

2, and ut ≡ ũ in Ft ∪ (R2\B2r )—so that, in particular, ut ≡ 0 off B2r .
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Step 2. We use ut as a test function for system (1.4) which is equivalent to (1.3).
This gives

∫

Ft

∇u · ∇ut dx ≤ Ct
∫

B2r \Ft

|∇u| dx

+

∣∣∣∣∣∣∣

m∑

j,k=1

∫

R2

h jk · ut dvk ∧ du j

∣∣∣∣∣∣∣
.

and next
∫

Ft

|∇u|2ϕ dx ≤
∫

Ft

|∇u| |∇ϕ| |u − u B2r | dx

+ Ct
∫

B2r \Ft

|∇u| dx + |It |, (3.3)

where

It : =
m∑

j,k=1

∫

R2

h jk · ut dvk ∧ du j . (3.4)

Inequality (3.3) holds for all t > 0. To obtain estimates for solutions to (1.3) involv-
ing local norms of |∇u| in Morrey spaces, we multiply (3.3) by t−1−ε and integrate
with respect to t ∈ (t0,∞), for an appropriately chosen number t0. Before doing
that, however, we record a crucial estimate for It .

Step 3: Estimating the critical nonlinearity. We claim that

|It | ≤ Kε ·
⎛

⎜⎝
∫

B2r

|∇ut |2+ε dx

⎞

⎟⎠

1/(2+ε)

, (3.5)

where

Kε : = C(ε)M2−ε(a, 4r)1/(2−ε)rε/(2+ε)(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )
, (3.6)

and the constant C(ε) does depend on ε.
This estimate follows from the duality of Hardy space H1 and the space BMO

of functions of bounded mean oscillation. Here are some details. It is the sum of
expressions I i

jk , where

I i
jk =

∫

R2

hi
jk ui

t dvk ∧ du j .
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Let ζ1 ≡ 1 on B2r , |∇ζ1| ≤ 2/r , ζ1 ≡ 0 off B3r . Formal integration by parts gives

I i
jk =

∫

R2

hi
jkui

t dvk ∧ d(ζ1(u
j − ui

B2r
))

= −
∫

R2

ζ1(u
j − u j

B2r
) dvk ∧ d[hi

jkui
t ]. (3.7)

Observe, however, that the integral on the right hand side does not necessarily
exist, because the Jacobian dvk ∧ d[hi

jkui
t ] is integrable only and ζ1(u j − u j

B2r
)

is not necessarily bounded. However, it follows from the Poincaré inequality that
ζ1(u j − u j

B2r
) belongs to BMO, and by the theorem of Coifman, Lions, Meyer and

Semmes, see [5], dvk ∧d[hi
jkui

t ] belongs to the Hardy space H1. Hence we interpret

the right hand side of (3.7) as a duality between H1 and BMO. More precisely, if
we replace ζ1(u j − u j

B2r
) by a compactly supported smooth function, then the

integration by parts in (3.7) is fully justified. Then we approximate ζ1(u j − u j
B2r

)

by such functions in the W 1,2 norm and passing to the limit yields (3.7). Now we
have

|I i
jk | ≤

∣∣∣∣
∫

R2

ζ1(u
j − u j

B2r
)dvk ∧ d[hi

jkui
t ]
∣∣∣∣

≤ C‖ζ1(u
j − u j

B2r
)‖BMO ‖∇vk‖L2(B2r )

‖∇[hi
jkui

t ]‖L2(B2r )

≤ C M2−ε(a, 4r)1/(2−ε) ‖∇vk‖L2(B2r )
‖∇[hi

jkui
t ]‖L2(B2r )

.

The first inequality follows from Fefferman’s duality theorem and the result of
Coifman et al. [5]. The second inequality is an elementary estimate of the BMO
norm of ζ1(u j − u j

B2r
); see [17] for details.

Since we estimate the BMO norm in terms of the Morrey norm of the gradient,
the above inequality can be proved in a more elementary way bypassing Fefferman’s
theorem, see [3,4] and (P. Hajłasz, P. Strzelecki, X. Zhong, in preparation).

Further,

‖∇[hi
jkui

t ]‖L2(B2r )
≤ ‖h‖∞‖∇ut‖L2(B2r )

+ ‖∇h‖2‖ut‖L∞(B2r )

≤ C(ε)rε/(2+ε)(‖h‖∞ + ‖∇h‖2)

⎛

⎜⎝
∫

B2r

|∇ut |2+ε dx

⎞

⎟⎠

1/(2+ε)

.

To obtain the last line, we apply the Hölder inequality to deal with ‖∇ut‖L2 , and
the Sobolev imbedding theorem to deal with ‖ut‖L∞ (this explains why C(ε) does
depend on ε: W 1,2(R2) is not imbedded in L∞ and therefore C(ε) → ∞ as
ε → 0+). The point here is that ut is a priori more regular than u is.
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Step 4: Averaging. We now rewrite (3.3) as

∫

Ft

|∇u|2ϕ dx ≤
∫

Ft

|∇u| |∇ϕ| |u − u B2r | dx

+ Ct
∫

B2r \Ft

|∇u| dx

+ C Kε ·
⎛

⎜⎝
∫

B2r

|∇ut |2+ε dx

⎞

⎟⎠

1/(2+ε)

, (3.8)

multiply both sides of (3.8) by t−1−ε and integrate w.r.t. t ∈ (t0,∞), setting

t0 : = δ

(∫

Br

|∇u|2−ε dx

)1/(2−ε)

. (3.9)

Here, δ is a small absolute constant (and hence independent of ε) that will be chosen
later. We obtain an averaged Caccioppoli inequality of the form

J1 ≤ C1(J2 + J3 + J4), (3.10)

where C1 is an absolute constant and

J1 =
∞∫

t0

t−1−ε

∫

Ft

|∇u|2ϕ dx dt , (3.11)

J2 =
∞∫

t0

t−1−ε

∫

Ft

|∇u| |∇ϕ| |u − u B2r | dx dt , (3.12)

J3 =
∞∫

t0

t−ε

∫

B2r \Ft

|∇u| dx dt , (3.13)

J4 = Kε

∞∫

t0

t−1−ε

⎛

⎜⎝
∫

B2r

|∇ut |2+ε dx

⎞

⎟⎠

1/(2+ε)

dt. (3.14)

Step 5: Estimates of J1–J4. Tedious but elementary estimates of J1–J4 (involving
only the Fubini theorem, Hölder, Young and Poincaré inequalities, and the Hardy–
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Littlewood maximal theorem) yield the following inequalities:

J1 ≥ C2

ε

∫

Br

|∇u|2−ε dx , (3.15)

J2 ≤ C3

ε

⎛

⎜⎝
∫

B2r \Br

|∇u|2−ε dx

⎞

⎟⎠

1
2−ε

⎛

⎜⎝
∫

Br

|∇u|2−ε dx

⎞

⎟⎠

1−ε
2−ε

≤ C4

ε

∫

B2r \Br

|∇u|2−ε dx + C2

4C1ε

∫

Br

|∇u|2−ε dx , (3.16)

J3 ≤ C5

∫

Br

|∇u|2−ε dx , (3.17)

J4 ≤ C6(ε)r
ε(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )

M2−ε(a, 4r) , (3.18)

where the constants C1, C2, C3, C4, C5 are absolute and hence they do not depend
on ε, whereas C6 = C6(ε) does.

The details of these estimates are given in the next Section. Here we just show
how to conclude the proof of Lemma 2.1, assuming these estimates.

Step 6: Conclusion. Inserting the above estimates into (3.10), we obtain

∫

Br

|∇u|2−ε dx ≤ C7

∫

B2r \Br

|∇u|2−ε dx + 1

4

∫

Br

|∇u|2−ε dx

+ C8ε

∫

Br

|∇u|2−ε dx

+ C9(ε)r
ε(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )

M2−ε(a, 4r). (3.19)

Now we add C7
∫

Br
|∇u|2−ε dx to both sides to “fill the hole” on the right hand

side and after elementary calculations we arrive at

1

rε

∫

Br

|∇u|2−ε ≤ C72ε

C7 + 1

1

(2r)ε

∫

B2r

|∇u|2−ε +
1
4 + C8ε

C7 + 1

1

rε

∫

Br

|∇u|2−ε

+C9(ε)(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )

C7 + 1
M2−ε(a, 4r)

≤ C72ε + 1
4 + C8ε + C9(ε)(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )

C7 + 1
M2−ε(a, 4r).

We now fix ε so small that

C72ε + 1

4
+ C8ε < C7 + 1

2



A new approach to interior regularity of elliptic systems

and then r0 = r0(ε) so small that

C9(ε)(‖h‖∞ + ‖∇h‖2)‖∇v‖L2(B2r )
<

1

4

for all points a ∈ D and all radii r < r0(ε). Now (3.1) follows with λ = (C7 +
3/4)/(C7+1). This completes the proof of the lemma and hence that of the theorem.

��

4. Averaged Caccioppoli inequality: proofs of (3.15)–(3.18)

In this Section we provide details of Step 5 of the proof from the previous Section.
Numerous estimates are based on the inequalities

∫

B2r

(Mg)2−ε dx ≤ C
∫

B2r

g2−ε dx ≤ C
∫

B2r

|∇u|2−ε dx

≤ C
∫

Br

|∇u|2−ε dx . (4.1)

All constant are absolute and hence independent of ε. The first estimate follows from
Hardy–Littlewood maximal theorem, the second one—from Poincaré inequality.
The last one is just the assumption (3.2).

Estimate of J1. Recall that Ft = {x ∈ B(a, 2r) : Mg(x) ≤ t}. Since ϕ ≡ 1 on
Br , Fubini’s theorem yields

J1 =
∞∫

t0

t−1−ε

∫

Ft

|∇u|2ϕ dx dt ≥
∫

Br ∩{Mg>t0}
|∇u|2ϕ

∞∫

Mg(x)

t−1−ε dt dx

= 1

ε

∫

Br

|∇u|2(Mg)−ε dx − 1

ε

∫

Br ∩{Mg≤t0}
|∇u|2(Mg)−ε dx

=: J11 − J12 .

We apply Hölder’s inequality and (4.1) to estimate J11. We have

∫

Br

|∇u|2−ε dx
(H)≤

⎛

⎜⎝
∫

Br

|∇u|2(Mg)−ε dx

⎞

⎟⎠

2−ε
2

⎛

⎜⎝
∫

Br

(Mg)2−ε dx

⎞

⎟⎠

ε
2

(4.1)≤ C

⎛

⎜⎝
∫

Br

|∇u|2(Mg)−ε dx

⎞

⎟⎠

2−ε
2

⎛

⎜⎝
∫

Br

|∇u|2−ε dx

⎞

⎟⎠

ε
2

.
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(with some constant C that is independent from ε). Thus,

J11 ≥ C0

ε

∫

Br

|∇u|2−ε dx .

To estimate J12 we note that |∇u| ≤ g ≤ Mg in Br . Hence,

|J12| ≤ 1

ε
t2−ε
0 |Br | = 1

ε
δ2−ε

∫

Br

|∇u|2−ε dx .

Choosing δ = min( 1
2 , C0/2), we obtain δ2−ε < δ ≤ C0/2. Combining the esti-

mates of J11 and J12, we finish the proof of (3.15).

Estimate of J2. Using Fubini’s theorem, we have

J2 ≤
∞∫

0

t−1−ε

∫

Ft

|∇u| |∇ϕ| |u − u B2r | dx dt

=
∫

B2r

|∇u| |∇ϕ| |u − u B2r |
∞∫

Mg(x)

t−1−ε dt dx

= 1

ε

∫

B2r

|∇u| |∇ϕ| |u − u B2r | (Mg)−ε dx

≤ 1

ε

∫

B2r

|∇u| |∇ϕ|1−ε |u − u B2r |1−ε dx

≤ C

ε

⎛

⎜⎝
∫

B2r \Br

|∇u|2−ε dx

⎞

⎟⎠

1
2−ε

⎛

⎜⎝
∫

Br

|∇u|2−ε dx

⎞

⎟⎠

1−ε
2−ε

.

[Note that |∇ϕ| |u − u B2r | ≤ g ≤ Mg. In the last line, we apply Hölder and
Poincaré inequalities combined with assumption (3.2).] By a standard application
of Young’s inequality, (3.16) follows.

Estimate of J3. Since t < Mg(x) in the complement of Ft , we obtain

J3 ≤
∞∫

0

t−ε

∫

B2r \Ft

|∇u| dx dt

= 1

1 − ε

∫

B2r

|∇u| (Mg)1−ε dx
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(H)≤ 1

1 − ε

⎛

⎜⎝
∫

B2r

|∇u|2−ε dx

⎞

⎟⎠

1
2−ε

⎛

⎜⎝
∫

B2r

(Mg)2−ε dx

⎞

⎟⎠

1−ε
2−ε

≤ C
∫

Br

|∇u|2−ε dx .

To obtain the last line, one applies inequalities (4.1) and the fact that 1/(1−ε) < 2.

Estimate of J4. This is the heart of the matter. We split

J4 = Kε

∞∫

t0

t−1−ε

⎛

⎜⎝
∫

B2r

|∇ut |2+ε dx

⎞

⎟⎠

1/(2+ε)

dt

≤ Kε

∞∫

t0

t−1−ε

⎛

⎜⎝
∫

Ft

|∇ũ|2+ε dx

⎞

⎟⎠

1/(2+ε)

dt

+Kε

∞∫

t0

t−1−ε · Ct · |B2r\Ft |1/(2+ε) dt

=: Kε(J41 + J42).

We used the fact that ∇ut = ∇ũ in Ft and |∇ut | ≤ Ct everywhere, in particular
in B2r\Ft . To estimate J41 observe that |∇ũ| ≤ g ≤ Mg ≤ t in Ft and hence
|∇ũ|2+ε ≤ t2ε|∇ũ|2−ε. Moreover, the Poincaré inequality gives

⎛

⎜⎝
∫

Ft

|∇ũ|2−ε

⎞

⎟⎠

1
2+ε

≤ C

⎛

⎜⎝
∫

B2r

|∇u|2−ε

⎞

⎟⎠

1
2+ε

.

Hence

J41 ≤
∞∫

t0

t−1−εt
2ε

2+ε

⎛

⎜⎝
∫

Ft

|∇ũ|2−ε dx

⎞

⎟⎠

1
2+ε

dt

≤ C(ε)t
−ε+ 2ε

2+ε

0

⎛

⎜⎝
∫

B2r

|∇u|2−ε

⎞

⎟⎠

1
2+ε

≤ C(ε)r
2ε2

4−ε2

⎛

⎜⎝
∫

Br

|∇u|2−ε

⎞

⎟⎠

1−ε
2−ε

.
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The last constant depends also on δ, but δ is an absolute constant, so there is no
need to write dependence on δ explicitly.

To estimate J42 first observe that Cavalieri’s principle and (4.1) give

(2 − ε)

∞∫

0

t1−ε|B2r\Ft | dt =
∫

B2r

(Mg)2−ε dx ≤ C
∫

Br

|∇u|2−εdx .

Hence

J42 ≤ C

∞∫

t0

t−ε|B2r\Ft | 1
2+ε dt

≤ C

⎛

⎝
∞∫

t0

(
t−ε− 1−ε

2+ε

) 2+ε
1+ε

⎞

⎠

1+ε
2+ε

⎛

⎝
∞∫

t0

t1−ε|B2r\Ft | dt

⎞

⎠

1
2+ε

≤ C(ε)

(
t
1+(−ε− 1−ε

2+ε
) 2+ε

1+ε

0

) 1+ε
2+ε

⎛

⎜⎝
∫

Br

|∇u|2−ε dx

⎞

⎟⎠

1
2+ε

= C(ε)r
2ε2

4−ε2

⎛

⎜⎝
∫

Br

|∇u|2−ε

⎞

⎟⎠

1−ε
2−ε

.

Now (3.18) follows from the definition of Kε. This completes the whole proof. ��
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