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On a nonlinear fourth order elliptic system
with critical growth in first order derivatives

Paweł Strzelecki and Anna Zatorska-Goldstein
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Abstract. We prove that all bounded weak solutions of the fourth order system

�2u D Q.x; u;ru/; u 2 W 2;2;

where the nonlinearity grows critically with the gradient of a solution, i.e., jQ.x; u;ru/j .
jruj4, are regular once an appropriate smallness condition (expressed in terms of Morrey
norms and guaranteeing that u is small in BMO) is satisfied. The result holds in every dimen-
sion.
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1 Introduction

In this paper, we consider the regularity of bounded weak solutions u 2 W 2;2.�;RN /
of the fourth order nonlinear elliptic system

�2u D Q.x; u;ru/; (1.1)

where Q W � � RN � RnN ! RN is of class C1 and satisfies, for some constant ƒ,
the growth condition

jQ.x; u;ru/j � ƒjruj4: (1.2)

No other assumptions about Q – in particular no special structure assumptions – are
needed. It follows from (1.2) and the classical Gagliardo–Nirenberg inequality that for
each map u 2 W 2;2

loc .�;R
N / \ L1.�;RN / the nonlinear term Q.x; u;ru/ is (only)

of class L1, and therefore the following definition makes sense.

Definition 1.1. A mapping u 2 W 2;2
loc .�;R

N / \ L1.�;RN / is a weak solution of
(1.1) if and only if the identityZ

�u�' dx D

Z
' Q.x; u;ru/ dx (1.3)

is satisfied for each ' 2 C10 .�;RN /.
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Our main result is the following.

Theorem 1.2. Assume that u 2 W 2;2
loc .�;R

N / \ L1.�;RN / is a weak solution of
(1.1). Denote M D kuk1. There exists a constant "0 D "0.n;N;ƒ;M/ such that if
jruj 2 L4;n�4.�/ and

sup
x2�;%>0

%4�n
Z
�\B.x;%/

jru.�/j4 d� < "4
0 (1.4)

then u 2 C1.�/.

Remark. This is of course a local result. We do not claim that u is smooth up to @�
(and do not in fact know under what conditions such a result would hold).

Note that the smallness condition (1.4) implies that the solution u has a small norm
in the space BMO of functions of bounded mean oscillation. This will play an ab-
solutely crucial role in the sequel. The boundedness of u alone would not be suffi-
cient, as the eternal example of u0.x/ D x=jxj shows: in dimensions n > 4 we have
u0 2 W

2;2 \ L1 and
�2u0 D c.n/jru0j

4u0

with c.n/ D �1C 2.4 � n/=.n � 1/. This system satisfies the growth condition (1.2)
but u0 is not small in BMO.

Theorem 1.2 might seem surprising at first glance. It is well known that the regular-
ity theory of nonlinear elliptic systems with right hand side that grows critically with
the derivatives of solutions is a delicate topic. Weak solutions are sometimes regular,
under appropriate growth, smallness and structure assumptions.

Let us however note that the right hand side of (1.1) is critical – a priori just L1 –
but it does not contain the second order derivatives of the solution. This is the key
to Theorem 1.2: due to this fact, we may use a sharp version of Gagliardo–Nirenberg
inequalities1, see Lemma 2.6 in Section 2 for a precise statement, and interpolate be-
tween BMO andW 2;2 to show that for all solutions satisfying the smallness conditions
(1.4) the critical term is small and can be absorbed. This is why the precise structure
of the nonlinearity is not important. To see this in a better perspective, let us discuss a
handful of well-known examples and results.

For second order systems, a classical example by Frehse [4] shows that even in di-
mension n D 2 bounded weak solutions u 2 W 1;2.D2;R2/ of systems of the form
�u D F.u;ru/ with jF j . jruj2 may have singularities. On the other hand, har-
monic maps u 2 W 1;2.D2;N / from a disk into an arbitrary compact Riemannian
manifold N are smooth, see Hélein [7], [8]. However, this celebrated result is linked
in an intricate way to hidden symmetries of the harmonic map system

��u D A.u/.ru;ru/; (1.5)
1Roughly speaking, in the sharp version of Gagliardo–Nirenberg inequalities one may replace the

supremum norm of a function by its BMO norm.
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where A stands for the second fundamental form of the isometric embedding N �

Rd . If N is a round sphere, or more generally a homogeneous space, then (1.5) is
equivalent to a system of (first order) conservation laws in divergence form, see the
discussion in [7, Ch. 3]. In this case the right hand side of (1.5) turns out to be not just
integrable, but also an element of the Hardy space.

For general targets N the situation is more complicated. Roughly speaking, one has
to see that the nonlinearity possesses some Jacobian-like structure and combine this
observation with the duality of Hardy space and BMO. The imbedding W 1;2.R2/ �

VMO is used to show that, locally, critical terms coming from the right hand side can
be absorbed. Thus, both structure of the right hand side and appropriately understood
smallness of solutions are vital ingredients of the proof.

Extending Hélein’s work to higher dimensions, Evans [3] (for targets that are round
spheres) and then Bethuel [1] (for arbitrary compact targets) have proved that the .n�
2/-dimensional Hausdorff measure of the singular set of every stationary harmonic
map is equal to zero. We do not want to discuss all definitions and formal statements
of their results here. Let us just say that the key step in their work is the following
statement: one can find a positive number "0 D "0.n;N / such that if u W Rn � �!
N , u 2 W 1;2, is a weak solution of (1.5) with kukBMO < "0, then u is of class C1.

Very recently, Rivière [14], solving a conjecture of Hildebrandt on critical points of
conformally invariant variational functionals in dimension 2, has proved the following
result: if u 2 W 1;2.D2;RN / solves the system

�ui D

NX
jD1

�ijru
j ; i D 1; : : : ; N; (1.6)

where �ij 2 L2.D2;R2/ are vector fields satisfying the antisymmetry condition
�ij D ��j i , i; j D 1; : : : ; N , then u is continuous. His work yields, as a byproduct,
a new proof of Hélein’s result. Again, the structure assumption�ij D ��j i is of cru-
cial importance. In a sense, it is used to build a change of variables in the image after
which the right hand side of (1.6) becomes a linear constant coefficient combination
of Jacobian determinants, see [14] for more details.

Rivière and Struwe [15] have proved that in fact weak solutions of (1.6) are contin-
uous in any dimension if one assumes that

sup
x;r

r2�n
Z
B.x;r/

jru.y/j2 dy �M <1 :

Similar results are known for fourth order systems, in particular for biharmonic
maps into Riemannian manifolds, see e.g. [2, 9, 11, 17, 19, 20] and references therein.
In particular, Lamm and Rivière [9] have recently obtained a general result similar to
[14] for fourth order system in dimension four. They formulate quite general sym-
metry conditions which the right hand side of a fourth order nonlinear system should
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satisfy in order to guarantee that all weak solutions of class W 2;2 are continuous. One
particular example of a system that satisfies these conditions is given by (1.1), see [9,
Remark 1.6]. For this particular system in dimension 4, regularity of weak solutions
was proved by Wang, as a byproduct of his work on regularity of biharmonic maps.
(His proof for n D 4, using Lorentz spaces, is different from the one presented in this
paper for all dimensions n � 4.)

Indeed, it was our main motivation to provide an explicit example of a situation
where the structure of critical nonlinearity does not matter at all and only the growth
conditions and a smallness assumption (which allows to control the mean oscillation
of a solution) are satisfied. We believe that this is, in fact, a more general phenomenon,
deserving further investigation. Namely, consider a nonlinear elliptic system of order
2k, of the type

�ku D Q.x; u;ru; : : : ;rk�1u/; (1.7)

where k � 2 and the solution u is of class W k;2 \ L1.�;RN / for some domain
� � Rn, n � 2k. Assume that the growth conditions

jQ.x; u;ru/j .
k�1X
jD1

jr
juj2k=j

imposed onQ imply, via standard Gagliardo–Nirenberg interpolation inequalities, that
for all u 2 W k;2 \ L1 the right hand side is of class L1. This means that the right
hand side is critical but does not contain the highest derivatives of u. We conjecture
that if u satisfies an appropriate smallness condition, say e.g.

sup
x;r

r2k�n
Z
B.x;r/\�

jru.y/j2k dy < "0;

then u is C1.
The readers which are familiar with the role of cancellation phenomena in the theory

of harmonic maps, H -systems etc. should bear in mind that cancellation also plays a
hidden role in Theorem 1.2 and in the conjecture stated above. Indeed, the sharp
Gagliardo–Nirenberg inequalities are based not on size conditions for the function,
but on cancellation – see the proofs in [10] or [18]; the latter one, translated to the
particular case needed in our proof of Theorem 1.2, uses the fact that for u 2 W 2;2.Rn/
the 4-laplacian div .jruj2ru/ is not only integrable, but also belongs to the Hardy
space.

Let us finally say a few words about the structure of proof of Theorem 1.2. First,
we show that jD2uj C jruj2 is integrable with an exponent larger than 2. Here, sharp
Gagliardo–Nirenberg inequalities (see Section 2 below) play a crucial role. Next, we
derive Morrey decay estimates for first and second derivatives, comparing u with har-
monic and biharmonic functions. At this stage, to overcome the lack of maximum
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principle for fourth order systems, we combine sharp Gagliardo–Nirenberg inequal-
ities with a result of Muckenhoupt and Wheeden on Riesz potentials and fractional
maximal functions (and we use explicit estimates of the Green function for the bihar-
monic operator with zero boundary data on the unit ball). Some technical difficulties
are caused by the fact that the reverse Hölder inequalities we obtain are valid for the
sum jD2uj C jruj2, and not for first and second derivatives separately.

The rest of the paper is organized as follows. In Section 2, we gather all neces-
sary technical tools and auxiliary facts. In Section 3, we prove higher integrability
of jD2uj C jruj2. In Section 4, we prove Morrey estimates and conclude the whole
proof.

2 Notation and tools

Barred integrals denote averages, i.e.Z
B.x;%/

udy D
1

jB.x; %/j

Z
B.x;%/

udy;

where B.x; %/ stands for an open ball with a center x 2 Rn and a radius %. From time
to time we write B% instead of B.x; %/ and .u/B% instead of

R
B%
udy. By C we will

denote a general constant which is allowed to depend on n;N and the growth constant
ƒ. We remark that constants in the proofs may change from line to line.

Remark 2.1. Let f; g � 0. We write f . g, iff there is C > 0 depending only on n,
N , ƒ such that

f .x/ � C g.x/:

We write f � g iff there are C1; C2 > 0 such that

C1g.x/ � f .x/ � C2g.x/:

We recall first a couple of well-known analytic results. Gehring–Giaquinta–Modica
lemma on self improving property of reverse Hölder inequalities and Campanato char-
acterization of Hölder continuous functions can be found e.g. in the book of Giaquinta
[5].

Lemma 2.2. Let � be an open set in Rn, 1 < p <1 and g 2 Lploc.�/ be a nonnega-
tive function such that for any ball B% with B4% b � there holdsZ

B%

gp dx � b

�Z
B4%

g dx

�p
C �

Z
B4%

gp dx

where b > 1 and 0 < � � �0 D �0.n; p/. Then there exist constants r0 D

r0.n; p; b/ > p and C D C.n; p; b/ > 0 such that g 2 Lrloc for all 1 < r < r0
and Z

B%

gr dx � C

�Z
B4%

gp dx

�r=p
:
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Lemma 2.3. Let � be an open set in Rn, 1 � p < 1 and f 2 L1
loc.�/. If for some

˛ 2 .0; 1/ there holds Z
B.x;%/

jf � .f /B.x;%/j
p dx � C%nCp˛

for all x 2 � and all % < min¹R0; dist .x; @�/º then f 2 C 0;˛
loc .�/.

At a certain point we will need a result of Muckenhoupt and Wheeden [12] which
provides estimates for Riesz potentials in terms of the fractional maximal function

M˛f .x/ D sup
r>0

r˛�n
Z
B.x;r/

jf .y/j dy for 0 � ˛ � n:

Lemma 2.4. Let 0 < q <1 and I˛ denote the Riesz potential operator, i.e.,

I˛ � f .x/ D

Z
Rn

f .y/

jx � yjn�˛
dy:

There exists a constant C > 0, independent of f , such that

kI˛ � f kq � CkM˛f kq:

Remark. The above result is valid for all exponents q > 0, cf. [12, Theorem 1];
however, we shall use it only for q > 1.

We shall use the Green function G2;n for the bi-Laplacian with zero boundary data
on the unit ball of Rn, which is defined as follows: if u W Rn � B � B.0; 1/ ! R
satisfies

�2u D f in B; u D
@u

@n
D 0 on @B;

then

u.x/ D

Z
B

G2;n.x; y/f .y/ dy :

Such Green functions for biharmonic and polyharmonic operators were first explored
by Boggio. Later Grunau and Sweers [6] provided precise estimates for them; in
particular for n > 4 and the bi-Laplacian operator we have

G2;n.x; y/ � jx � yj
4�n min

²
1;
.1 � jxj/2.1 � jyj/2

jx � yj4

³
: (2.1)

The following estimate for biharmonic functions in the unit ball of Rn is standard.
A proof can be found e.g. in [19, Claim 2.4].



On a nonlinear fourth order elliptic system 211

Lemma 2.5. If h W B1 � B.0; 1/ ! R is biharmonic, then for every � 2 .0; 1
4/ we

have Z
B�

jrhj2 dx � C �n
Z
B1

jrhj2 dx; (2.2)

where the constant C depends only on n.

To estimate the term jruj4 coming out from the growth condition (1.2) for Q we
will employ the Gagliardo–Nirenberg inequality in the sharp form, proved originally
by Meyer and Rivière in [10]. We will use the local version from Rivière and Strzelecki
[16].

Lemma 2.6. Assume u 2 W 2;2
loc .R

n/ \ BMO. Let � 2 C10 .Rn/, 0 � � � 1. There
exists a constant C D C.n/ such thatZ

�4
jruj4 dx � Ckuk2

BMO

²Z
�4
jD2uj2 dx C kr�k2

1

Z
jruj2 dx

³
: (2.3)

Here BMO stands for the space of functions of bounded mean oscillation with the
seminorm

kukBMO WD sup
%>0

 Z
B%

ju.x/ � .u/B% j dx

!
<1:

Note that (2.3) with kukL1 instead of kukBMO can be easily proved using integra-
tion by parts. Inequalities similar to (2.3) hold not only for p D 2, but also for other
exponents p > 1, see [13, 18].

3 Reverse Hölder inequalities

We begin with a simple extension lemma which is included for the sake of complete-
ness (we were not able to pinpoint a precise reference to the existing literature).

Without loss of generality assume that 0 2 � and fix two concentric balls

Br � B4r b �; where r <
1
16

dist .0; @�/:

Lemma 3.1. Assume that u 2 W 1;4.�/ satisfies

K4
WD sup

x2�;%>0
%4�n

Z
�\B.x;%/

jru.�/j4 d� <1:

Then there exists a constant C D C.n/ such that the extension of u defined as

Qu WD uBr C �.u � .u/Br /;

where � 2 C10 .B8r/ is a cutoff function such that � � 1 on some neighbourhood of
B4r and jr�j . 1=r , satisfies

sup
x2Rn;%>0

%4�n
Z
B.x;%/

jr Qu.�/j4 d� � C.n/K4 : (3.1)
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Proof. We have r Qu D �ru C .u � uBr /r�. Thus, r Qu � 0 outside B8r . In fact,
changing � if necessary we may assume that suppr Qu is a compact subset of B7r .
Then, it is easy to see that it is enough to check the inequality in (3.1) only for balls
B.x; %/ with x 2 B8r and % < r=2. From now on, B D B.x; %/ denotes such a ball.

We fix k 2 N such that

log2
r

%
C 1 � k > log2

r

%

and write

r Qu D �ruCr�
�
u�.u/BC.u/B�.u/2BC� � �C.u/2k�1B�.u/2kBC.u/2kB�.u/Br

�
:

Applying Minkowski inequality to the whole long sum above, we obtain2

%

�Z
B.x;%/

jr Quj4 dy

�1=4

. %

�Z
B.x;%/

jruj4 dy

�1=4

C
%

r

kX
lD0

�Z
2lB
ju � .u/2lB j

4 dy

�1=4

(3.2)

C
%

r

�Z
Br

ju � .u/2kB j
4 dy

�1=4

:

Since B D B.x; %/ � 2kB � B.x; 2r/ � B10r � �, we have

%

�Z
B.x;%/

jruj4 dy

�1=4

� K :

Moreover, by Poincaré inequality, each term in the sum appearing in the right hand
side of (3.2) satisfies

%

r

�Z
2lB
ju � .u/2lB j

4 dy

�1=4

� C.n/
%

r
K :

Finally, since Br � 9 � 2kB.x; %/, the last term on the right hand side of (3.2) does not
exceed a constant multiple of %K=r (this follows directly from Poincaré inequality).
Putting all these estimates together, we obtain

%1�n4

�Z
B.x;%/

jr Quj4 dy

�1=4

� CK
�

1C k
%

r

�
� C K

�
1C

%

r
log2

r

%

�
� CK;

since x log2
1
x

is bounded on Œ0; 2�.

2Such a telescopic splitting of u � uBr is necessary since we cannot compare u to uBr in L4 norm
on a much smaller ball B% – note that the ratio %=r is not a priori bounded away from zero.
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Lemma 3.2. Assume u 2 W 2;2
loc .�;R

N / \ L1.�/ to be a weak solution of (1.1).
Denote kuk1 D M . There exist constants "0 D "0.n;N;ƒ;M/ and C; s > 0,
depending also on n, N , ƒ, M such that if u satisfies the smallness condition (1.4),
then�Z

Br

�
jD2uj C jruj2

�2.1Cs/
dx

�1=.1Cs/

� C

Z
B4r

�
jD2uj2 C jruj4

�
dx (3.3)

for every ball Br � B4r b �.

Proof. To derive reverse Hölder inequalities for weak solutions of (1.1), we fix two
balls Br b B2r b �, assuming w.l.o.g. that they are centered at 0 2 Rn and that
r < 1

4 dist .0; @�/.
Fix a standard cutoff function � 2 C10 .B2r/ such that � � 0, � � 1 on Br ,

jr�j . 1=r and jD2�j . 1=r2. Set

' WD �2�u � T 1
B2r
u
�
; where T 1

B2r
u.x/ WD uB2r C

�
ru
�
B2r
x:

By a density argument, ' is admissible as a test map in (1.3) and we haveZ
�u�' dx D

Z
'Q.x; u;ru/ dx: (3.4)

The left hand side of (3.4) equalsZ
�2
j�uj2 C I1 C I2;

where

jI1j .
1
r

Z
j�uj

ˇ̌
ru �

�
ru
�
B2r
j dx;

jI2j .
1
r2

Z
j�uj

ˇ̌
u � T 1

B2r
u
ˇ̌
dx:

Setting p D 2n=.n C 1/ (so that p0� WD np0=.n C p0/ D p) and applying Hölder,
Poincaré and Sobolev inequalities in a standard way, we estimate these integrals as
follows:

jI1j . rn�1
�Z

B2r

j�ujp dx

�1=p�Z
B2r

ˇ̌
ru �

�
ru
�
B2r

ˇ̌p0
dx

�1=p0

. rn
�Z

B2r

j�ujp dx

�1=p�Z
B2r

jD2ujp
0
� dx

�1=p0�

. rn
�Z

B2r

jD2ujp dx

�2=p

I
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jI2j . rn�2
�Z

B2r

j�ujp dx

�1=p�Z
B2r

ˇ̌
u � T 1

B2r
u
ˇ̌p0
dx

�1=p0

. rn�1
�Z

B2r

j�ujp dx

�1=p�Z
B2r

ˇ̌
ru �

�
ru
�
B2r

ˇ̌p0
dx

�1=p0

. rn
�Z

B2r

jD2ujp dx

�2=p

:

Next, setting w D �.u � T 1
B2r
u/, we have

�w D ��uC 2r� �
�
ru �

�
ru
�
B2r

�
C��.u � T 1

B2r
u/:

Therefore,
�2
j�uj2 D j�wj2 C lower order terms;

where – as in the estimates of I1 and I2 – one can check thatZ
B2r

ˇ̌
lower order terms

ˇ̌
dx . rn

�Z
B2r

jD2ujp dx

�2=p

:

Thus, an easy Fourier transform argument givesZ
Br

jD2uj2 dx D

Z
Br

jD2wj2 dx �

Z
Rn
jD2wj2 dx

�

Z
Rn
j�wj2 dx (3.5)

�

Z
B2r

�2
j�uj2 dx C C rn

�Z
B2r

jD2ujp dx

�2=p

:

Combining this inequality with estimates of I1; I2, we finally obtain an estimate of the
left hand side of (3.4),Z

�'�udx �

Z
Br

jD2uj2 dx � C rn
�Z

B2r

jD2uj
2n
nC1 dx

�.nC1/=n

: (3.6)

Now, to estimate the right hand side of (3.4), we employ the Gagliardo–Nirenberg
inequalities in their sharp form. Due to Lemma 3.1 we may assume that u satisfies
the equation in B2r and ru has compact support in B8r and satisfies the smallness
condition (1.4) in the whole space Rn, i.e.

sup
%>0;z2Rn

%4�n
Z
B.z;%/

jruj4 dx < C.n/"4
0: (3.7)
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Set v D u � T 1
B2r
u; then, using the above inequality, we have

D2v D D2u; rv D ru �
�
ru
�
B2r
; (3.8)

kvkBMO . kukBMO C r j
�
ru
�
B2r

ˇ̌
� C.n/"0 ; (3.9)

where the BMO norm of v is taken over the whole space.
Noting that k'k1 � kvk1 � 2.M C "0/, where M D kuk1, we haveZ
B2r

' Q.x; u;ru/ dx . .M C "0/

Z
B2r

jruj4 dx

. .M C "0/

²Z
B2r

jrvj4 dx C rnj
�
ru
�
B2r

ˇ̌4³
: (3.10)

Pick a standard cutoff function � 2 C10 .B4r/ with � � 1 on B3r . By the Gagliardo–
Nirenberg inequality (2.3) and Poincaré inequality,Z

B2r

jrvj4 dx �

Z
�4
jrvj4 dx

. kvk2
BMO

²Z
B4r

jD2vj2 dx C
1
r2

Z
B4ř̌

ru �
�
ru
�
B2r

ˇ̌2
dx

³
. "2

0

Z
B4r

jD2uj2 dx : (3.11)

Inserting this estimate into the previous one and assuming w.l.o.g. M � 1 , we obtainˇ̌̌̌Z
'Q.x; u;ru/ dx

ˇ̌̌̌
. M"2

0

Z
B4r

jD2uj2 dx CMrnj
�
ru
�
B2r

ˇ̌4
. M"2

0

Z
B4r

jD2uj2 dx

CMrn
�Z

B2r

jruj4n=.nC1/ dx

�.nC1/=n

: (3.12)

Finally, combining inequalities (3.6) and (3.12), and assuming that M"2
0 is small

enough (smaller that �0 in Lemma 2.2), we obtain a reverse Hölder inequality for

g WD jD2uj C jruj2

which proves that g is not just in L2
loc.�/, but also in L2.1Cs/

loc .�/ for some s > 0.
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4 Morrey estimates for derivatives of u

In dimension n D 4 higher integrability of ru yields immediately the desired result.
Indeed, ifru 2 L4.1Cı/

loc , then the right hand side of (1.1) is inL1Cı
loc , and by Calderón–

Zygmund theory D4u 2 L1Cı
loc . Applying Sobolev imbedding theorem in dimension

4, we obtain ru 2 L4p
loc, where p D .1 C ı/=.1 � 3ı/ > 1 C 2ı. Thus, we have

Q.x; u;ru/ 2 L1C2ı
loc , and therefore D4u 2 L1C2ı

loc . After finitely many steps, we
obtain ru 2 C ˛ for some ˛ > 0 and then Theorem 1.2 follows by classical bootstrap
using Schauder estimates.

For n > 4 more work is necessary.

Lemma 4.1. Assume u 2 W 2;2
loc .�;R

N /, where � � Rn, n > 4, to be a weak solution
of (1.1) satisfying kukL1.�/ � M and the smallness condition (1.4). If M"2

0 is
sufficiently small, then there exists a number ı D ı.n/ 2 .0; 1

16/ such that

%4�n
Z
B.a;%/

�
jD2uj2 C jruj4

�
dx � ı3

�R4�n
Z
B.a;R/

�
jD2uj2 C jruj4

�
dx (4.1)

whenever B.a; %/ b B.a;R/ b � and %=R D ı.

Proof. The crucial difficulty is to obtain appropriate decay estimates for integrals of
jD2uj2. Suppose w.l.o.g. that a D 0 and let

% D � r; R D 4r < dist .a; @�/; � D
%

r
<

1
4
; ı D

%

R
D
�

4
:

We write u D u0 C u1, where u0 is a minimizer of the energy functional

E.w/ D

Z
Br

jD2wj2 dx

in the class of admissible mappings

A WD ¹w 2 W 2;2.Br ;RN / W w � u 2 W 2;2
0 .Br ;RN /º :

Then u0 is smooth and�2u0 D 0 in Br ; u1 2 W
2;2

0 .Br ;RN / and�2u1 D �
2u in Br .

Step 1 (decay estimates for D2u0). We apply Lemma 2.5 noting that a similar es-
timate holds also for D2h (the derivatives of a biharmonic function are again bihar-
monic). Setting h.x/ D u0.rx/ for x 2 B1 and scaling from B1 to Br , we obtain

%4�n
Z
B%

jD2u0j
2 dx � C�4r4�n

Z
Br

jD2u0j
2 dx

� C�4r4�n
Z
Br

jD2uj2 dx

� 4nC � ı4
�R4�n

Z
BR

jD2uj2 dx : (4.2)
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Step 2. Decay estimates for jD2u1j. We have

u1 D G2;n �Q.x; u;ru/ in Br

where G2;n denotes the Green function of �2 with zero boundary conditions in Br .
Rescaling to B1, i.e., setting v1.x/ D u1.rx/, and using the Green function estimates
obtained by Grunau and Sweers (2.1), we estimate u1 as follows

ju1.rx/j D jv1.x/j

�

Z
B.0;1/

jG2;n.x; y/j j�
2v1.y/j dy

.
Z
B.0;1/

jG2;n.x; y/j r
4
jru.ry/j4„ ƒ‚ …
DWf .y/

dy

.
Z
B.0;1/

jx � yj4�n f .y/ dy: (4.3)

Now we use the fact that f can be extended from B1 onto Rn so that the smallness
condition (3.7) is satisfied – see Lemma 3.1. (Note that R D 4r is fixed and the
extended function stays unchanged in BR D B4r .) Thus, ju1.rx/j . I4 � f .x/ and
f � 0 satisfies

M4f .x/ D sup
%>0

%4�n
Z
B.x;%/

f .y/ dy

� sup
x2Rn

;%>0

.r%/4�n
Z
B.rx;r%/

jru.�/j4 d� � "4
0 : (4.4)

Therefore, by Lemma 2.4,

�Z
B.0;1/

ju1.rx/j
q dx

�1=q

. kI4 � f kLq.B.0;1//

. kM4f kLq.B.0;1// . "4
0

by (4.4). Scaling back to Br , we obtain

�Z
Br

ju1.x/j
q dx

�1=q

. rn=q"4
0 : (4.5)

(By Lemma 2.4, such an estimate holds for any q > 1, with a constant depending
on q.)
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Choosing q as the Hölder conjugate of 1Cs and applying the results of the previous
section, we now writeZ

Br

jD2u1j
2 dx �

Z
Br

j�u1j
2 dx

D

ˇ̌̌̌Z
Br

u1�
2udx

ˇ̌̌̌

.
�Z
Br

ju1j
q dx

�1=q�Z
Br

jruj4.1Cs/ dx

�1=.1Cs/

. rn=q"4
0

�Z
Br

jruj4.1Cs/ dx

�1=.1Cs/

. "4
0

Z
BR

�
jD2uj2 C jruj4

�
dx : (4.6)

Putting together inequalities (4.2) and (4.6), we obtain

%4�n
Z
B%

jD2uj2 dx � Cı4R4�n
Z
BR

jD2uj2 dx (4.7)

C C"4
0ı

4�nR4�n
Z
BR

�
jD2uj2 C jruj4

�
dx :

Step 3. Decay estimates for the gradient. To finish the proof, we now need to
combine (4.7) with a decay estimate for jruj4. Reasoning as in (3.10) and (3.11), we
write Z

B%

jruj4 dx .
Z
B%

jru � .ru/B% j
4 dx C %nj.ru/B% j

4

. "2
0

Z
B4%

jD2uj2 dx C %n
�Z

B%

jruj2 dx

�2

: (4.8)

To cope with the last term in the right hand side, we use a different splitting of u.
Namely, set u D u2Cu3, where u2 is harmonic in Br and u3 2 W

1;2
0 .Br ;RN /. Since

jru2j
2 is subharmonic, the mean value property and Dirichlet principle yield

%2�n
Z
B%

jru2j
2 dx � �2r2�n

Z
Br

jru2j
2 dx

� �2r2�n
Z
Br

jruj2 dx

� 4nı2R2�n
Z
BR

jruj2 dx : (4.9)
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Next, since �u3 D �u, we haveZ
Br

jru3j
2 dx D

ˇ̌̌̌Z
Br

u3�udx

ˇ̌̌̌

.
�Z
Br

ju3j
2 dx

�1=2�Z
Br

jD2uj2 dx

�1=2

: (4.10)

As u3 2 W
1;2

0 .Br ;RN / (D the closure of C10 in the norm ofW 1;2), we can invoke the
standard Green’s representation formula and, after one integration by parts, conclude
that

ju3.x/j .
Z
jr�.x � y/j � jru.y/j dy;

where � stands for the fundamental solution of the Laplace operator in Rn. Now, a
reasoning mimicking the proof of (4.3)–(4.5) (employing the result of Muckenhoupt
and Wheeden on Riesz potentials, cf. Lemma 2.4) leads to�Z

Br

ju3j
2 dx

�1=2

. "0 I (4.11)

thus, coming back to (4.10), we obtain

%4
�Z

B%

jru3j
2 dx

�2

� C�4�2n"2
0r

4�n
Z
Br

jD2uj2 dx

� 4nCı4�2n"2
0R

4�n
Z
BR

jD2uj2 dx: (4.12)

Estimates (4.9) and (4.12) combined with (4.8) give

%4�n
Z
B%

jruj4 dx . "2
0.ı

4�n
C ı4�2n/R4�n

Z
BR

jD2uj2 dx

C ı4R4�n
Z
BR

jruj4 dx :

Adding this inequality to (4.7), we finally obtain

%4�n
Z
B.a;%/

�
jD2uj2 C jruj4

�
dx � C1

�
ı4
C ı4�n."4

0 C "
2
0/
�
R4�n

Z
BR

jD2uj2 dx

C C2

�
ı4
C ı4�n"4

0 C ı
4�2n"2

0

�
R4�n

Z
BR

jruj4 dx : (4.13)

Fixing first a small number � 2 .0; 1
4/ so that Ciı D Ci�=4 < 1

3 for i D 1; 2, and then
choosing "0 < 1 so that

"0ı
�n < min

� 1
3Ci

;
1
4

�
for i D 1; 2;

we complete the proof of (4.1).
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Lemma 4.2. If u 2 W 2;2.�;RN / is a weak solution of (1.1) satisfying

kukL1.�/ �M; sup
%>0; a2Rn

%4�n
Z
B.a;%/

jruj4 dx � "4
0;

and M"2
0 is sufficiently small, then there exists a constant C D C.n/ such thatZ

B%

jru � .ru/B% j
2 dx � C%R

Z
BR

�
jD2uj2 C jruj4

�
dx (4.14)

for each pair of concentric balls B% b BR b �.

Proof. Iterating inequality (4.1), we obtain

%4�n
Z
B.a;%/

�
jD2uj2 C jruj4

�
dx .

�
%

R

�3

R4�n
Z
B.a;R/

�
jD2uj2 C jruj4

�
dx

whenever % < R < dist .a; @�/. By Poincaré inequality,Z
B%

jru � .ru/B% j
2 dx . %2

Z
B%

jD2uj2 dx :

Putting these two estimates together, we obtain (4.14).

Proof of the main theorem. The inequality (4.14) together with Theorem 2.3 gives
ru 2 C

0;1=2
loc . Since we assume that Q 2 C1 it follows that the right hand side

of (1.1) is Hölder continuous, i.e. Q.x; u;ru/ 2 C 0;1=2
loc . Then Schauder theory yields

u 2 C
4;1=2
loc . The standard bootstrap technique gives u 2 C1loc .�/.
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