
manuscripta math. 118, 383–397 (2005) © Springer-Verlag 2005

Bogdan Bojarski · Piotr Hajłasz · Paweł Strzelecki

Sard’s theorem for mappings in Hölder and Sobolev
spaces

Received: 8 February 2005 / Revised version: 8 July 2005
Published online: 5 October 2005

Abstract. We prove various generalizations of classical Sard’s theorem to mappings f :
Mm → Nn between manifolds in Hölder and Sobolev classes. It turns out that if f ∈
Ck,λ(Mm, Nn), then—for arbitrary k and λ—one can obtain estimates of the Hausdorff
measure of the set of critical points in a typical level set f −1(y). The classical theorem of
Sard holds true for f ∈ Ck with sufficiently large k, i.e., k > max(m−n, 0); our estimates
contain Sard’s theorem (and improvements due to Dubovitskiı̆ and Bates) as special cases.
For Sobolev mappings between manifolds, we describe the structure of f −1(y).

1. Introduction

Throughout the paper we assume that Mm and Nn are smooth Riemannian mani-
folds of dimension m and n respectively. In 1942 A. Sard [22] (see also Sternberg’s
book [23]) proved the following theorem.

Theorem 1.1. Let f : Mm → Nn be of class Ck , and let S = Crit f . If k >

max(m − n, 0), then Hn(f (S)) = 0.

Here and in the sequel Hs denotes the s-dimensional Hausdorff measure (we
shall follow the convention that Hs ≡ the counting measure for all s ≤ 0) and, for
a C1 mapping f : Mm → Nn,

Crit f : = {x ∈ Mm | rankDf (x) < n}

denotes the set of critical points of f .
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It is well known that the assumptions of Theorem 1.1 are optimal within the scale
of Ck spaces. Whitney [25] has given an example of a Cm−1 function f : (0, 1)m →
R which is non-constant on a connected set of its critical points. Other examples
of this kind can be found e.g. in [13], [15], [16]. Norton [20] explains how com-
plicated all such examples must be: if A is a connected set of critical points of
f ∈ Ck,β(Rm, R) and for each two points x, y ∈ A there is a connected subset S

of A such that x, y ∈ S and the Hausdorff dimension of S is < k + β, then f is
constant on A.

Now, several years after Sard’s paper, A.Ya. Dubovitskiı̆ [8] obtained a more
general, better result. We give it here translating his notation to a more standard
language.

Theorem 1.2. Let f : Mm → Nn be a mapping of class Ck . Set s = m−n−k+1.
Then

Hs(f −1(y) ∩ Crit f ) = 0 for Hn a.e. y ∈ Nn. (1.1)

This theorem implies that for Hn almost all y ∈ Nn the preimage f −1(y)

consists of the regular part f −1(y) \ Crit f and the critical part f −1(y) ∩ Crit f .
By the implicit function theorem the regular part is a Ck manifold of dimension
(m − n), while the critical part is a set of vanishing Hs measure.

It is clear that for k > max(m − n, 0) we have s = m − n − k + 1 ≤ 0
and Hs in (1.1) is just the counting measure. Thus for such k (1.1) translates to
f −1(y) ∩ Crit f = ∅, i.e. Theorem 1.2 contains the classical Sard’s theorem as a
particular case.

Dubovitskiı̆, like a large number of mathematicians in the Soviet Union of that
time, was isolated from the West and from the new results of western mathematics.
He does not quote Sard’s paper. On pages 398–402 of [8] he gives a variant of
Whitney’s example, and an example of a function f ∈ Ck

(
(0, 1)m, (0, 1)n

)
such

that all sets f −1(y) ∩ Crit f have (m − n − k)-dimensional Hausdorff measure
greater than zero, where m, k, n are positive integers such that m − n − k > 0. He
attributes the first example to Menshov but gives no reference, and acknowledges
Menshov, Novikov, Kronrod and Landis in his Introduction.

Taking all that into account, it seems likely that his Theorem 1.2 was proved
independently from Sard’s paper. The isolation mentioned above worked in fact both
ways and, as far as we know, Dubovitskiı̆’s work remained more or less unnoticed
in the West.

Theorem 1.2 can be generalized to functions with Hölder continuous derivatives.
(The definitions of Ck,λ and Ck,λ+ are given in Section 2.)

Theorem 1.3. Let f ∈ Ck,λ(Mm, Nn) for some k ≥ 1 and λ ∈ (0, 1), and let
s = m − n − (k + λ) + 1. Then for Hn almost all y ∈ Nn the set f −1(y) ∩ Crit f
is s-sigmafinite. In particular,

dimH (f −1(y) ∩ Crit f ) ≤ s.

(Recall that a set E is called s-sigmafinite if and only if E is a countable union of
Ei such that Hs(Ei) < ∞.)
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Lipschitz functions are differentiable a.e. and hence by the result of Whitney
[26] Ck−1,1 functions coincide with Ck functions on complements of sets of arbi-
trarily small measure. This fact can be used to prove the following improvement of
Theorem 1.3 for λ = 1.

Theorem 1.4. Let f ∈ Ck−1,1(Mm, Nn) for some k ≥ 1, and let s = m−n−k+1.
Then

Hs
(
f −1(y) ∩ Crit f

) = 0 for Hn almost all y ∈ Nn.

Remark. If k = 1, then f is Lipschitz, hence a.e. differentiable; in this case Crit f
is defined as a subset of the set of those x for which Df (x) exists.

In particular, for k = m − n + 1 we recover (with a different proof) the result
of Bates [2] who proved that the differentiability condition in the classical Sard’s
theorem can be weakened from Ck to Ck−1,1.

For λ < 1 Hölder continuous functions are, in general, nowhere differentiable.
Thus, in order to obtain a sharpened version of Theorem 1.3 with the conclusion as
in Theorem 1.4, one has to strengthen the assumptions imposed on f .

Theorem 1.5. Let f ∈ Ck,λ+(Mm, Nn) for some k ≥ 1 and λ ∈ (0, 1), and let
s = m − n − (k + λ) + 1. Then

Hs
(
f −1(y) ∩ Crit f

) = 0 for Hn almost all y ∈ Nn.

Let us now state a version of Sard’s theorem which is valid for mappings in
Sobolev spaces Wk,p(Mm, Nn) of mappings between two manifolds. We write ∇
to denote the covariant derivative associated to the Riemannian metric g of Mm.
Consider the subspace of C∞(Mm, R) that consists of all those smooth f for which
the norm

‖f ‖k,p : =
( ∑

0≤j≤k

∫

Mm

|∇j f |p d vol

)1/p

is finite. Wk,p(Mm, R) is defined as the completion of this subspace in the above
norm. (If Mm is compact then this definition does not depend on the choice of g.)
Next,

Wk,p(Mm, R
ν)={f =(f1, . . . , fν) | fi ∈ Wk,p(Mm, R) for all i = 1, . . . , ν}.

Finally, for a manifold Nn embedded in R
ν we set

Wk,p(Mm, Nn) = {f ∈ Wk,p(Mm, R
ν) | f (x) ∈ Nn for a.e. x ∈ Mm} .

One also defines the space W
k,p
loc (Mm, Nn) consisting of those mappings for which

the Sobolev norm is finite on every compact subset of Mm.
It is a well known result of Calderón and Zygmund [6] that functions in Sobo-

lev spaces W
k,p
loc coincide with functions of class Ck on complements of sets of

arbitrarily small measure. Applying Theorem 1.2 to Ck functions that agree with a
given Sobolev function on large sets, we obtain the following result.
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Theorem 1.6. Assume that f ∈ W
k,p
loc (Mm, Nn). Then there exists a Borel repre-

sentative of the map f such that the following is true.

(i) For Hn-almost all y ∈ Nn we have

f −1(y) = Z ∪
∞⋃

j=1

Kj

where Hm−n−k+1(Z) = 0 and, for each j , Kj ⊂ Kj+1 and Kj ⊂ Sj for some
(m − n)-dimensional Ck-submanifold Sj ⊂ Mm.

(ii) If moreover kp ≥ n and Mm, Nn are both compact, then for Hn-almost all
y ∈ Nn we have

Hm−n
(
f −1(y)

)
< ∞ .

This means, in particular, that the level sets f −1(y) are (Hm−n, m − n)-
rectifiable of class Ck in the sense of Anzellotti and Serapioni [1]. It follows from
(i) that in the general case the set f −1(y) has Hm−n-sigmafinite measure, which is
slightly less than the conclusion of (ii). (One can obtain variants of Theorem 1.6;
we comment on this at the end of Section 4.)

A related but somewhat different result has been obtained by L. De Pascale [21]:
iff ∈ Wk,p(Rm, R

n)with k = m−n+1 ≥ 2 andp > m, thenHn(f ( Crit f )) = 0.
(Note that the assumptions on k and p imply that in this case Wk,p imbeds into C1.
Thus Crit f can be defined in a usual way.) For other results related to the Sard
theorem for Sobolev mappings see [14] and [17].

For k = 1 Theorem 1.6 implies the following well known result, see e.g. [14],
[17].

Corollary 1.7. If f ∈ W
1,p
loc (Mm, Nn), then there exists a Borel representative of

f such that f −1(y) is countably (m − n)-rectifiable for almost all y ∈ Nn.

In differential geometry one considers, as a rule, only smooth mappings. Thus,
for most applications it does not really matter that Sard’s theorem can be applied
only for functions or mappings with sufficiently high smoothness. On the other
hand, assuming that a map belongs to the Sobolev space Wk,p for a sufficiently
large k is not natural. Sobolev mappings appear mostly as solutions to nonlinear
PDE or as critical points of variational functionals. This usually imposes serious
restrictions on the number of derivatives, k. Thus, it is often impossible to apply
the classical Sard’s theorem directly; one has to use Theorem 1.2 which allows to
cope with maps that have few derivatives.

The aim of this paper is twofold. First, we give a short, self-contained proof of
Dubovitskiı̆’s Theorem 1.2 (his original paper is difficult, uses awkward notation
and has 38 pages) and of its improvements, Theorems 1.3–1.5. Second, we combine
these results with approximation theorems for Sobolev functions and apply them
to mappings in Sobolev spaces to obtain Theorem 1.6.

The rest of the paper is organized as follows. In Section 2 we recall the defi-
nitions of Ck,λ, Ck,λ+, Hausdorff measure, Hausdorff dimension, and state some
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auxiliary lemmata (the lemma of Morse in various guises, and an inequality of
Eilenberg). The necessary prerequisites from the theory of Sobolev spaces (includ-
ing the theorem of Calderón and Zygmund, the co-area formula and the Nirenberg
inequality) are explained briefly at the end of Section 2. Section 3 contains the
proofs of Theorems 1.2–1.5. Finally, in Section 4 we prove Sard’s theorem for
Sobolev mappings, Theorem 1.6.

2. Prerequisites for the proofs

2.1. Spaces of Hölder continuous functions

In the sequel, two variants of Hölder spaces are used. Let λ ∈ (0, 1]. We say that
f ∈ Ck,λ(Rm, R

n) if and only if f is of class Ck and for each compact set K there
exists a constant M = MK such that for each partial derivative Dα of order |α| = k

|Dαf (x) − Dαf (y)| ≤ M|x − y|λ for all x, y ∈ K .

The class Ck,λ+(Rm, R
n) is a proper subset of Ck,λ: a function f ∈ Ck,λ+(Rm, R

n)

if and only if f ∈ Ck and for each compact set K there exists a nondecreasing
continuous function ω : R → R with ω(0) = 0 such that for each α with |α| = k,

|Dαf (x) − Dαf (y)| ≤ ω
(|x − y|)|x − y|λ for all x, y ∈ K .

Both definitions have obvious generalizations to mappings of Riemannian mani-
folds.

2.2. The inverse function theorem in Hölder spaces

We shall need the following variant of inverse function theorem. The proof is
sketched e.g. in Norton’s paper [20]; we repeat here his sketch for the sake of
completeness.

Theorem 2.1. Let � : R
n → R

n, �(0) = 0, be a mapping of class Ck,λ (resp., of
class Ck,λ+), k ≥ 1, λ ∈ (0, 1], such that D�(0) is a linear isomorphism of R

n.
Then �−1 exists in a neighbourhood of 0 and is also of class Ck,λ (resp., of class
Ck,λ+).

Proof. By the standard inverse function theorem, see e.g. [19], �−1 ∈ Ck in a
neighbourhood of 0. Moreover, D(�−1)(y) = (

D�(�−1(y)
)−1, i.e., the differen-

tial D(�−1) is given as a composition of three mappings,

D(�−1) = Inv ◦ D� ◦ �−1.

Since the inverse Inv : A �→ A−1 is of class C∞ on the set of invertible matrices,
D� is of class Ck−1,λ (resp., Ck−1,λ+), and �−1 ∈ Ck , we conclude the whole
proof by applying the following Lemma. ��
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Lemma 2.2. If G is of class Ck−1,λ (resp., Ck−1,λ+) and H ∈ Ck , k ≥ 1, then
G ◦ H is of class Ck−1,λ (resp., Ck−1,λ+).

Proof. Induction on k (the case k = 1 is easy; for the induction step one has to
write D(G ◦ H) = DG ◦ H · DH and use the induction hypothesis). ��

A similar reasoning yields the following.

Lemma 2.3. Let k ≥ 1. If G, H are of class Ck,λ (resp., Ck,λ+), then G ◦ H is of
class Ck,λ (resp., Ck,λ+).

2.3. The lemma of Morse and its variants

The proofs of Sard’s theorem and its various generalizations are usually based on
a famous lemma of A.P. Morse. We recall two versions of this lemma which are
suitable for our purposes.

Lemma 2.4 (A.P. Morse). Let A ⊂ R
m. Fix a positive integer k. Then A =⋃∞

i=0 Ai , where the Ai , i ≥ 0, have the following property:
Let f ∈ Ck(V ), where V is an open neighbourhood of A, be such that A ⊂

Crit f . Then there exist nondecreasing functions bi : R → R such that bi(ε) → 0
as ε → 0 and

|f (x) − f (y)| ≤ bi(|x − y|)|x − y|k for all x, y ∈ Ai . (2.1)

See e.g. Sternberg’s book [23, Lemma 3.3] for a proof. Norton [20, Theorem 3]
obtains the following generalization to Hölder classes.

Lemma 2.5 (generalized Morse lemma). Let A ⊂ R
m. Fix a positive integer k and

λ ∈ (0, 1]. Then the following statements hold true.
(i) There exist Ai ⊂ A such that A = ⋃∞

i=0 Ai , where the Ai , i ≥ 0, have the
following property:

Let f ∈ Ck,λ(V ), where V is an open neighbourhood of A, be such that
A ⊂ Crit f . Then there exist constants Mi such that

|f (x) − f (y)| ≤ Mi |x − y|k+λ for all x, y ∈ Ai . (2.2)

(ii) There exist A′
i ⊂ A such that A = ⋃∞

i=0 A′
i , where the A′

i , i ≥ 0, have the
following property:

Let f ∈ Ck,λ+(V ), where V is an open neighbourhood of A, be such that
A ⊂ Crit f . Then there exist nondecreasing functions bi : R → R such that
bi(ε) → 0 as ε → 0 and

|f (x) − f (y)| ≤ bi

(|x − y|)|x − y|k+λ for all x, y ∈ A′
i . (2.3)



Sard’s theorem for mappings in Hölder and Sobolev spaces 389

2.4. Hausdorff measure

If X is an arbitrary metric space and s ≥ 0, then for E ⊂ X one defines

Hs
ε(E) : = ωs2−s inf

∞∑

j=1

(diam Aj)
s ,

where ωs = πs/2/	(1 + s
2 ) is a normalizing constant (this is the volume of

Bs(0, 1) ⊂ R
s when s is a positive integer). The infimum is taken over all countable

coverings {Aj }j=1,2,... of E with all Aj having their diameter less than ε. It is clear
that Hs

ε(E) is a nonincreasing function of ε; thus, the s-dimensional Hausdorff
measure of E,

Hs(E) : = lim
ε→0

Hs
ε(E),

is always well defined. Hs is an outer measure. All Borel sets in X are Hs-measur-
able. H0 is the counting measure. We adopt the following notation: Hs ≡ H0 for
s < 0. Hausdorff dimension of a set E ⊂ X is defined as

dimH (E) = inf{s ≥ 0 : Hs(E) = 0} .

To define the Hausdorff measure on a manifold, one needs a Riemannian metric.
However, sets of zero Hs-measure are well defined on an arbitrary manifold: their
definition does not depend on the choice of Riemannian structure. For s = dim M

the s-dimensional Hausdorff measure on a Riemannian manifold M coincides with
the standard volume form of M .

2.5. Eilenberg’s inequality

We now state a general form of Eilenberg’s inequality. A metric space is called
boundedly compact if bounded and closed sets are compact.

Theorem 2.6. Let f : X → Y be a Lipschitz mapping between two boundedly com-
pact metric spaces X and Y . Let m and n be real numbers such that 0 ≤ n ≤ m.
Assume that a subset E of X is Hm–measurable and Hm(E) < ∞. Then

(i) f −1(y) ∩ E is Hm−n–measurable for Hn almost all y,
(ii) y �→ Hm−n(f −1(y) ∩ E) is Hn–measurable, and moreover

∫

Y

Hm−n(f −1(y) ∩ E) dHn(y) ≤ (Lip f )n
ωnωm−n

ωm

Hm(E) . (2.4)

See Federer’s monograph [10], Theorem 2.10.25 and the remarks in 2.10.26.

Remark. Davies [7] has proved a stronger result: inequality (2.4) holds for Lips-
chitz mappings between arbitrary metric spaces (in this general case one replaces
the integral by the so-called upper integral). This generalization does not play any
role in our proofs, as we shall restrict ourselves to the case when X and Y are
Euclidean spaces with a metric equal to some power of the classical Euclidean
metric. A proof of Eilenberg’s inequality in this case can also be found in Burago
and Zalgaller’s monograph [5].
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2.6. Auxiliary facts on Sobolev spaces

For a domain 
 ⊂ R
m, k = 1, 2, . . . and 1 ≤ p ≤ ∞, the Sobolev space Wk,p(
)

consists of all those functions f ∈ Lp whose all distributional partial derivatives
up to order k also belong to Lp. If f ∈ Wk,p(U) for all U � 
, then we say
that f ∈ W

k,p
loc (
). More information can be found in any monograph on Sobolev

spaces, see e.g. Evans and Gariepy [9], Gilbarg and Trudinger [12, Chap. 7], or
Ziemer [27].

We shall need the following theorem of Calderón and Zygmund [6] (see also
[3], [4], [18], [24], [27] for more refined results).

Theorem 2.7. Let 
 ⊂ R
m, f ∈ W

k,p
loc (
) and ε > 0. Then there exists a closed

set F ⊂ 
 and a function g of class Ck(
) such that

Hm(
 \ F) < ε and g(x) = f (x) for all x ∈ F .

It is well known that W
k,∞
loc (
) = Ck−1,1(
). The following special case of

Theorem 2.7 was proved already by Whitney in [26].

Theorem 2.8. Let f ∈ Ck−1,1(Rm), k ≥ 1. Then for every ε > 0 there exists
a closed set F ⊂ R

m such that Hm(Rm \ F) < ε and there exists a function
g ∈ Ck(Rm) such that all partial derivatives of f of order ≤ k exist in F and equal
to those of g. In particular f = g in F .

Both theorems generalize to mappings from a manifold to the Euclidean space.
We will need the following special case of Nirenberg’s inequality.

Theorem 2.9. Let 
 ⊂ R
n be a bounded domain with smooth boundary. Let k ≥ 1

be an integer and 1 ≤ p ≤ ∞. Then f ∈ Wk,p(
)∩L∞(
) satisfies the inequality

‖∇f ‖Lkp(
) ≤ C(
, k, p)‖f ‖1−1/k
L∞ ‖f ‖1/k

Wk,p(
)
.

For the proof see Friedman [11, Theorem 1.10.1]. The following result readily
follows from Theorem 2.9.

Corollary 2.10. Let M be a compact Riemannian manifold. If f ∈ Wk,p(M) ∩
L∞(M), then ∇f ∈ Lkp(M).

We will also need a version of the co-area formula for Sobolev mappings be-
tween Riemannian manifolds.

Theorem 2.11. Assume that m ≥ n. If f ∈ W
1,1
loc (Mm, Nn), then there exists a

Borel representative of f such that for every measurable set E ⊂ Mm

∫

E

|Jf (x)| dHm(x) =
∫

Nn

Hm−n(f −1(y) ∩ E) dHn(y) , (2.5)

where |Jf (x)| =
√

det(Dfx) ◦ (Dfx)T .

The case of Lipschitz mappings is due to Federer [10, Theorem 3.2.11] and the
case of Sobolev mappings was proved in [14] (see also [17]). If f is Lipschitz, then
formula (2.5) holds for the continuous representative of f i.e. we do not have to
modify f on a set of measure zero (like in the case f ∈ W

1,1
loc ) in order for (2.5) to

be satisfied.
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3. Dubovitskiı̆’s theorem and its variants

Since Theorems 1.2–1.5 are of purely local nature, we may assume that Mm = R
m,

Nn = R
n. We use these assumptions throughout this section. The whole reasoning

is split into several lemmata.
Throughout this section, for a mapping f = (f1, . . . , fn) : R

m → R
n of class

C1 we set

Kr : = {x ∈ R
m : rankDf (x) = r}, r = 0, 1, 2, . . .

Sometimes we write Kr = Kr(f ), to make the dependence on f explicit. Note
that x ∈ K0(f ) if and only if x ∈ Crit fi for all i = 1, . . . , n. Moreover,

Crit f =
n−1⋃

i=0

Ki . (3.1)

3.1. Points of rank zero in level sets

We begin with an estimate of Hausdorff measure of f −1(y) ∩ K0.

Lemma 3.1. Let f ∈ Ck(Rm, R
n), k ≥ 1. Then

Hm−kn
(
f −1(y) ∩ K0

) = 0 for Hn-a.e. y ∈ R
n. (3.2)

Proof. With no loss of generality assume that K0 ⊂ (0, 1)m. We use the Morse
lemma to decompose K0 into the union of sets Ai . Next, we split each Ai ,

Ai =
∞⋃

j=0

Bij , where bi(diam Bij ) < ε for j = 0, 1, 2, . . .

Thus

K0 =
∞⋃

i,j=0

Bij

and

|f (x) − f (y)| ≤ ε|x − y|k for all x, y ∈ Bij . (3.3)

Of course we can assume that the sets Bij are pairwise disjoint. If we define a new
metric in R

n by

dk(p, q) = |p − q|1/k,

then (3.3) yields

dk(f (x), f (y)) ≤ ε1/k|x − y| for all x, y ∈ Bij , (3.4)
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i.e., f : Bij → (Rn, dk) is an ε1/k-Lipschitz mapping. Assume now that m ≥ kn.
By Eilenberg’s inequality with n replaced by kn we obtain

∫

R
n
Hm−kn(f −1(y) ∩ Bij ) dHkn

dk
(y) ≤ (ε1/k)kn ωknωm−kn

ωm

Hm(Bij ) , (3.5)

where Hm−kn and Hm are standard Hausdorff measures in R
m, while Hkn

dk
is the

Hausdorff measure in R
n with respect to the metric dk . Since Hkn

dk
coincides with

the standard Hn measure on R
n up to the constant factor ωkn2−kn/(ωn2−n), we

conclude from (3.5) that
∫

R
n
Hm−kn(f −1(y) ∩ Bij ) dHn(y) ≤ εnC(k, m, n)Hm(Bij ) , (3.6)

and, upon adding up all Bij ,
∫

R
n
Hm−kn(f −1(y) ∩ K0) dHn(y) ≤ εnC(k, m, n)Hm(K0) .

Since Hm(K0) < ∞ and ε can be made arbitrarily small, we conclude that the left
hand side is zero. Thus, the integrand Hm−kn

(
f −1(y) ∩ K0

)
must be zero for Hn-

a.e. y ∈ R
n. If m < kn, then it easily follows from (3.3) that Hm/k(f (Bij )) < ∞

and hence Hn(f (K0)) = ∑
i,j Hn(f (Bij )) = 0. This yields (3.2) because in this

case (3.2) means that f −1(y) ∩ K0 = ∅ for Hn-a.e. y ∈ R
n. ��

For mappings f ∈ Ck,λ(Rm, R
n), resp. f ∈ Ck,λ+(Rm, R

n), a similar reason-
ing based on the generalized Morse lemma yields the following two lemmata. We
will sketch the proof of the first lemma only. The proof of the second lemma is
almost the same as that for Lemma 3.1. Later we will prove Lemma 3.4 which is
an improvement of Lemma 3.2 for λ = 1.

Lemma 3.2. Let f ∈ Ck,λ(Rm, R
n), k ≥ 1, λ ∈ (0, 1]. Then the set f −1(y) ∩ K0

is (m − (k + λ)n)-sigmafinite for Hn-a.e. y ∈ R
n.

Lemma 3.3. Let f ∈ Ck,λ+(Rm, R
n), k ≥ 1, λ ∈ (0, 1]. Then

Hm−(k+λ)n
(
f −1(y) ∩ K0

) = 0 for Hn-a.e. y ∈ R
n. (3.7)

To prove Lemma 3.2 we decompose the set K0 into the Ai’s using the general-
ized Morse lemma. If B ⊂ R

m is an arbitrary set, then the mapping f : Ai ∩ B →
(Rn, dk+λ) is M

1/(k+λ)
i -Lipschitz and hence Eilenberg’s inequality yields

∫

R
n
Hm−(k+λ)n

(
f −1(y) ∩ Ai ∩ B

)
dHn(y) ≤ Mn

i C(m, n, k, λ)Hm(Ai ∩ B).

(3.8)

This inequality implies that Hm−(k+λ)n(f −1(y) ∩ Ai ∩ B) < ∞ for each cube B

and Hn-a.e. y ∈ R
n. Hence the set f −1(y) ∩ K0 is (m − (k + λ)n)-sigmafinite for

Hn-a.e. y ∈ R
n.
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Lemma 3.4. Let f ∈ Ck−1,1(Rm, R
n), k ≥ 2. Then

Hm−kn
(
f −1(y) ∩ K0

) = 0 for Hn-a.e. y ∈ R
n. (3.9)

Proof. Applying Whitney’s theorem, Theorem 2.8, we select a sequence of closed
sets Fi ⊂ R

m and of functions gi ∈ Ck(Rm, R
n) such that

Hm(Rm \ Fi) ≤ 1

i
and Dαf

∣∣
Fi

= Dαgi

∣∣
Fi

for all |α| ≤ k, i = 1, 2, . . .

(3.10)

In particular

K0(f ) ∩ Fi = K0(gi) ∩ Fi for i = 1, 2, . . .

Let B = R
m \ ⋃∞

i=1 Fi . To conclude the proof, it is enough to show that
Hm−kn(f −1(y) ∩ K0 ∩ Fi) = 0, i = 1, 2, . . . and Hm−kn(f −1(y) ∩ K0 ∩ B) = 0
for Hn-a.e. y ∈ R

n. The first family of equalities (for i = 1, 2, . . . ) follows from
Lemma 3.1 applied to gi . Since Hm(B) = 0, the last equality follows from (3.8)
for λ = 1, with k replaced by k − 1.

3.2. Points of rank r > 0 in level sets

To prove Theorems 1.2–1.5, we need now to estimate the size of f −1(y) ∩ Kr for
r > 0. To this end, we apply (as one does in the proof of classical Sard’s theorem)
the inverse function theorem and reduce the problem to the case r = 0 considered
above.

Lemma 3.5. Let f ∈ Ck(Rm, R
n), k ≥ 1. Assume that r ≤ n − 1. Then

Hm−r−k(n−r)
(
f −1(y) ∩ Kr

) = 0 for Hn-a.e. y ∈ R
n.

Proof. Fix an arbitrary point p ∈ Kr . It is enough to prove that for some open
neighbourhood U of p we have

Hm−r−k(n−r)
(
f −1(y) ∩ Kr ∩ U

) = 0 for Hn-a.e. y ∈ R
n.

By an easy argument involving the inverse function theorem, we can assume with
no loss of generality that p = 0 ∈ R

m and moreover that in some open cube
U = {x : |xi | < δ, i = 1, . . . , m} centered at p the mapping f satisfies

fi(x1, . . . , xm) = xi for all i = 1, . . . , r . (3.11)

Indeed, by renumbering the coordinates if necessary, we can assume that

det
[
∂fi/∂xj (p)

]
i,j=1,... ,r

�= 0.

Hence the mapping � : R
m → R

m defined by

�(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fr (x1, . . . , xm), xr+1, . . . , xm)
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satisfies det D�(p) �= 0. Thus by the inverse mapping theorem �−1 is of class Ck

in a neighbourhood of �(p). Now it is easy to see that

(f ◦ �−1)i(x1, . . . , xm) = xi for all i = 1, . . . , r .

Since the diffeomorphism � maps Kr(f ) onto Kr(f ◦ �−1) it suffices to prove
the lemma for f replaced by f ◦ �−1. That means we can assume (3.11).

We write U = U ′ × U ′′ and x = (x′, x′′), where

x′ = (x1, . . . , xr ), x′′ = (xr+1, . . . , xn),

and U ′, U ′′ denote cubes of dimensions r and m− r , respectively. For each x′ ∈ U ′
consider an auxiliary mapping Fx′ : R

m−r ⊃ U ′′ → R
n−r defined by

Fx′(x′′) := (fr+1(x), . . . , fn(x)). (3.12)

With this notation f (x′, x′′) = (x′, Fx′(x′′)). Note that (x′, x′′) ∈ Kr if and only
if rankDFx′(x′′) = 0 i.e., x′′ ∈ K0(Fx′), where the Jacobi matrix DFx′(x′′) is
computed with respect to the variables x′′. We have Fx′ in Ck . Let Z denote the set
of all those y ∈ R

n for which

Hm−r−k(n−r)
(
f −1(y) ∩ Kr ∩ U

)
> 0.

We write y = (y′, ỹ) where y′ = (y1, . . . , yr ) ∈ R
r and ỹ = (yr+1, . . . , yn) ∈

R
n−r . To show that Hn(Z) = 0 we shall show that for each y′ the slice

Zy′ = {ỹ ∈ R
n−r : y = (y′, ỹ) ∈ Z}.

satisfies Hn−r (Zy′) = 0. The whole lemma will follow then from Fubini’s theorem.
Now, fix y′ ∈ R

r . For each y = (y′, ỹ) ∈ R
n (3.11) yields

f −1(y) ∩ Kr ∩ U = ({y′} × F−1
y′ (ỹ)

) ∩ Kr ∩ U.

Thus a point x = (x′, x′′) ∈ R
r × R

m−r belongs to f −1(y) ∩ Kr ∩ U if and only
if x′ = y′, x′′ ∈ F−1

y′ (ỹ) ∩ U ′′ and rankDFy′(x′′) = 0. In other words, the slice

Zy′ is equal to the set of those ỹ ∈ R
n−r for which

Hm−r−k(n−r)
(
F−1

y′ (ỹ) ∩ K0(Fy′) ∩ U ′′) > 0 .

Therefore, Lemma 3.1 gives Hn−r (Zy′) = 0, and the argument is complete. ��
Theorem 1.2 follows immediately from the last lemma. Just observe that

max
0≤r≤n−1

(
m − r − k(n − r)

) = m − n − k + 1.

To obtain Theorems 1.3, 1.5, and Theorem 1.4 for k ≥ 2, we replace Lemma 3.5
by the following result.

Lemma 3.6. Let f ∈ Ck,λ(Rm, R
n), k ≥ 1. Assume that r ≤ n − 1 and set

s = m − r − (k + λ)(n − r).

(i) The set f −1(y) ∩ Kr is s-sigmafinite for Hn-a.e. y ∈ R
n.
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(ii) If λ = 1 or if f ∈ Ck,λ+(Rm, R
n), then Hs(f −1(y) ∩ Kr) = 0 for Hn-a.e.

y ∈ R
n.

The proof is identical to the proof of Lemma 3.5. One only needs to: (a) adapt
the construction of good coordinates, i.e., use Theorem 2.1 and Lemma 2.3 to
prove that f ◦ �−1 is of class Ck,λ or Ck,λ+; (b) quote an appropriate lemma from
Section 3.1 in the last step.

Theorem 1.4 for k = 1 follows directly from the co-area formula (2.5) with
E = Crit f and the fact that |Jf (x)| = 0 for x ∈ Crit f .

4. Sard’s theorem for Sobolev mappings

In this section we prove Theorem 1.6.
Part (i). Assume that Nn is a submanifold of R

ν . With no loss of generality we
may assume that f (x) ∈ Nn for all x ∈ Mm. Locally, the manifold Nn has a tubular
neighbourhood. Adding up the local tubular neighbourhoods we obtain an open set
U ⊂ R

ν such that Nn ⊂ U and that the nearest point projection π : U → Nn is
well defined and smooth. Applying Theorem 2.7, we pick gj ∈ Ck(Mm, R

ν) such
that

Hm
({

x ∈ Mm : f (x) �= gj (x)
})

<
1

2j
, j = 1, 2, . . . (4.1)

Set

Wj : = g−1
j (U), hj : = π ◦ gj

∣∣
Wj

: Wj → Nn.

Obviously hj is a mapping of class Ck from an open set Wj ⊂ Mm into Nn.
Applying Theorem 1.2, we write

h−1
j (y) = Mj(y) ∪ Zj (y) ,

where, for almost all y ∈ Nn, Mj(y) is an (m − n)-dimensional Ck submanifold
of Mm, and Hm−n−k+1(Zj (y)) = 0. Set

Ds =
∞⋂

j=s

{
x ∈ Mm : f (x) = gj (x)

}
.

Obviously, Ds ⊂ Ds+1. Moreover, Hm
(
Mm \ ⋃∞

s=1 Ds

) = 0. Since the three
mappings f , gj and hj = π ◦ gj coincide on Dj , for Hn-a.e. y ∈ Nn we obtain

f −1(y) ∩ Dj = g−1
j (y) ∩ Dj

= h−1
j (y) ∩ Dj

= [
Mj(y) ∪ Zj (y)

] ∩ Dj .

To complete the proof of part (i), it suffices now to define

Z : =
∞⋃

j=1

(
Zj (y) ∩ Dj

)
, Kj : = (Mj (y) \ Z) ∩ Dj,
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and to redefine f on Mm \ ⋃∞
j=1 Dj , making it constant on this set.

Part (ii). Since the manifoldMm is compact,Wk,p
loc (Mm, Nn) = Wk,p(Mm, Nn).

Then compactness of Nn implies that f ∈ Wk,p(Mm, Nn) is bounded as a map-
ping into R

ν . Hence Corollary 2.10 gives Df ∈ Lkp(Mm) ⊂ Ln(Mm). Now, by
Hölder’s inequality, the Jacobian

|Jf (x)| =
√

det(Dfx) ◦ (Dfx)T

is integrable, and the co-area formula for Sobolev mappings, Theorem 2.11, with
E = Mm yields

∫

Nn

Hm−n(f −1(y)) dHn < +∞ .

This completes the proof. ��
Let us remark that in the proof of Theorem 1.6 one can replace the result of

Calderón and Zygmund, Theorem 2.7, by more refined theorems, ascertaining that
on complements of sets of arbitrarily small Bessel capacity quasicontinuous rep-
resentatives of Sobolev functions f ∈ Wk,p coincide with functions of class Cr,α ,
r + α < k, see [4] and [24]. This change yields slightly worse information on the
differentiability class of Sj ’s and Hausdorff measure of the exceptional set Z in
Theorem 1.6 (i). However, the advantage is that one needs to modify f not on an
unspecified set of measure zero, but only on a set having appropriate capacity zero,
provided that the representative of f is quasicontinuous.
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