
COMPACTNESS AND ISOTOPY FINITENESS FOR SUBMANIFOLDS
WITH UNIFORMLY BOUNDED GEOMETRIC CURVATURE ENERGIES

S£AWOMIR KOLASIŃSKI, PAWE£ STRZELECKI, AND HEIKO VON DER MOSEL

A�������. We prove isotopy finiteness for various geometric curvature energies including
integral Menger curvature, and tangent-point repulsive potentials, defined on the class of
compact, embedded m-dimensional Lipschitz submanifolds in Rn. That is, there are only
finitely many isotopy types of such submanifolds below a given energy value, and we provide
explicit bounds on the number of isotopy types in terms of the respective energy. Moreover,
we establish C1-compactness: any sequence of submanifolds with uniformly bounded en-
ergy contains a subsequence converging in C1 to a limit submanifold with the same energy
bound. In addition, we show that all geometric curvature energies under consideration are
lower semicontinuous with respect to Hausdor�-convergence, which can be used to min-
imise each of these energies within prescribed isotopy classes.

1. I�����������
1.1. Introduction and main results. In this paper, we prove compactness and isotopy
finiteness for several functionals E : C 0,1

m,n ! [0,1] — we refer to them as geometric
curvature energies — defined on the class C 0,1

m,n of all compact, m-dimensional embedded
Lipschitz submanifolds of Rn. To reach this goal, we use previously established uniform
C1,↵-a priori estimates on local graph representations to not only prove compactness, but
also to gain su�cient geometric rigidity, such that two submanifolds of finite energy that
have small Hausdor�-distance are ambiently isotopic. As a consequence of this two-fold
regularisation of these energies, we obtain isotopy finiteness: each sub-level set

AE
m,n(E,d) :=

⌦
⌃ 2 C 0,1

m,n : E(⌃) 6 E, diam⌃ 6 d
↵

(1)

contains only finitely many manifolds up to di�eomorphism but also up to isotopy. We also
give a crude yet explicit estimate of the number of these isotopy classes. In addition, we
prove lower semicontinuity of all geometric curvature energies with respect to Hausdor�-
convergence, which can be combined with compactness to minimise each energy in a fixed
isotopy class.

The compactness and finiteness theorems for abstract (smooth) Riemannian mani-
folds, in di�erent guises and under several sets of assumptions, date back at least to
J. Cheeger’s paper [10]. In particular, [10, Thm. 3.1] states that for n 6= 4 and any given
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constant C < 1 there are only finitely many di�eomorphism types of Riemannian man-
ifolds M such that

�� |K
M

|
��1/2
L

1 · Vol (M)1/n +
diamM

Vol (M)1/2 < C .

The left-hand side is bounded if, for example, the sectional curvature satisfies |K
M

| 6 1,
the diameter of M is at most d and the volume – at least v; the lower bound on VolM
can be replaced by a lower bound on the injectivity radius. Later on, M. Gromov, see [19]
and [20, Thm. 8.28], generalised Cheeger’s work and introduced the powerful concept of
Gromov–Hausdor� convergence, enabling the study of collapse of sequences of manifolds
with bounded curvature, where in the absence of bounds on the injectivity radius sin-
gularities can appear in the limit. For a proof of Gromov’s compactness theorem with
an improvement on the regularity of the limiting metric, we refer to S. Peters [31]. An-
derson and Cheeger [4] prove that the space of all Riemannian manifolds with uniform
lower bounds on the Ricci curvature Ric

M

and the injectivity radius, and uniform upper
bounds on the volume, is compact in the C↵ topology for any ↵ < 1 (meaning C↵ conver-
gence of the Riemannian metrics). The same authors in [3] obtain a finiteness theorem for
m-dimensional Riemannian manifolds with uniform upper bounds for the diameter and
|Ric

M

|, uniform lower bounds for the volume, and uniform bounds for the scalar curvature
in Lm/2. Newer developments include the papers by A. Petrunin and W. Tuschmann [32],
W. Tuschmann [44], and V. Kapovich, A. Petrunin and W. Tuschmann [23]. In partic-
ular, Tuschmann [44] proves that the class M(n,C,D) of simply connected closed n-
dimensional Riemannian manifolds with sectional curvature |K| 6 C and diameter 6 D
contains finitely many di�eomorphism types provided n 6 6 (surprisingly, this result
fails in each dimension n > 7).

As Cheeger writes in his survey [11, p. 235], in a passage commenting on one of the
versions of his own finiteness theorem, Intuitively, the idea is that these manifolds can
be constructed from a definite numbers of standard pieces. The same comment applies in
the present paper, with one notable di�erence: all the submanifolds we deal with are em-
bedded in the same Rn, but their Riemannian metrics g induced by this embedding are,
typically, only of class C↵ and not better, so that there is no way to define the classic cur-
vature tensor of g. Instead of that, we pick up a family of geometric ‘energies’ that can be
defined without relying on the C2 (or C1,1) regularity of the underlying manifold; a bound
on each of these energies, combined with a bound on the diameter, yields a bound on the
number of ambient isotopy types (which is stronger than bounding the number of di�eo-
morphism types). Each of these energies can, in fact, be defined also for non-smooth sets,
more general than Lipschitz submanifolds. It also can be minimised in a given isotopy
class.

To state our results precisely, let us introduce the appropriate definitions first. For
an (m + 2)-tuple (x0, x1, . . . , x

m+1) of points of Rn, we denote the (m + 1)-dimensional
simplex with vertices at the x

i

’s by 4(x0, x1, . . . , x
m+1). The discrete Menger curvature of

(x0, x1, . . . , x
m+1) is defined by

K(x0, . . . , x
m+1) =

Hm+1(4(x0, . . . , x
m+1))

diam({x0, . . . , x
m+1})m+2 .(2)
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For m = 1, n = 3 we have

K(x0, x1, x2) =
Area(4(x0, x1, x2))

max(|x0 - x1|, |x1 - x2|, |x2 - x0|)3 6

1
4R(x0, x1, x2)

,

where R(x0, x1, x2) stands for the circumradius1 of the triangle 4(x0, x1, x2).
For a Lipschitz manifold ⌃ 2 C 0,1

m,n, a number l 2 {1, . . . ,m+ 2}, and p > 0 we set

El

p

(⌃) =

Z

⌃

l

sup
x

l

,...,x
m+12⌃

K(x0, . . . , x
m+1)

p dHml

x0,...,x
l-1 .(3)

The integration in (3) is performed over the product ⌃l = ⌃⇥ . . .⇥⌃ of l copies of ⌃, with
respect to the m-dimensional Hausdor� measure Hm on each copy, i.e., with respect to
Hml on ⌃l. Before that, one takes the supremum of K(x0, . . . , x

m+1) with respect to all
variables x

i

with indices i > l. (For l = m + 2, no supremum is being taken). Please
note that formally the integrand is undefined on the diagonal of the product. However,
we tacitly omit this issue: the choice of values of the integrand on the diagonal does not
a�ect the value of the integral in (3), as the diagonal is of measure zero in the product.

In particular, the functional Em+2
p

is called the integral Menger curvature of ⌃.
Besides all the El

p

energies, we consider also two other functionals that are defined via
averaging the inverse powers of the radii of spheres that are tangent to ⌃ at one point
and pass through another point of ⌃. Namely, we write

Rtp(x,y) = |x- y|2

2 dist(y, x+ T
x

⌃)
(4)

to denote the radius of the smallest sphere which passes through y 2 ⌃ and is tangent to
the m-dimensional a�ne plane x+ T

x

⌃. (Note that for a Lipschitz manifold ⌃ 2 C 0,1
m,n the

tangent plane T
x

⌃ 2 G(n,m) is indeed well-defined for Hm-almost all x 2 ⌃ due to the
classic Rademacher theorem.) Set

T
p

(⌃) =

Z

⌃

Z

⌃

Rtp(x,y)-p dHm

x

dHm

y

,(5)

TG

p

(⌃) =

Z

⌃

sup
y2⌃

�
Rtp(x,y)-p

�
dHm

x

.(6)

(Again, in (5) it does not matter how 1/Rtp is defined on the diagonal in ⌃⇥ ⌃.)
For each of the energies E 2 {El

p

,T
p

,TG

p

}, we write p0(E) to denote the scaling invariant
exponent for E. Since K and 1/Rtp scale like the inverse of length, it is easy to see that
p0(E) equals the product of m and the number of integrals of ⌃ in the definition of E.
Thus,

p0(E
l

p

) = ml, p0(Tp

) = 2m, p0(T
G

p

) = m.(7)
Theorem 1 (finiteness of isotopy types). Let E,d > 0 be some numbers. Assume that
E 2 {El

p

,T
p

,TG

p

} and p > p0(E). There are at most K = K(E,d,m,n, l,p) di�erent (ambient)
isotopy types in AE

m,n(E,d).

1The triple integral over the inverse squared circumradius also known as total Menger curvature was
an essential tool in G. David’s proof [12] of the famous Vitushkin conjecture on characterising the one di-
mensional compact subsets of the complex plane that are removable for bounded analytic functions; see,
e.g., [43]. The most obvious generalisation to inverse powers of circumsphere radii of simplices turns out to
be too singular for our purposes here; see the discussion in [41, Appendix B].
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Recall that two topological embedded submanifolds ⌃1,⌃2 of Rn are ambient isotopic
if and only if there exists a continuous map H : Rn ⇥ [0, 1] ! Rn such that

H
t

= H(·, t) is an embedding for each t 2 [0, 1] ,
H(x, 1) = x for all x 2 Rn, and H(⌃2 ⇥ {0}) = ⌃1 .(8)

(Note that the inclusion mapping f2 : ⌃2 ! Rn yields one embedding of ⌃2 in Rn, and
f1 := H0 � f2 : ⌃2 ! Rn yields another one, so that (8) agrees with the definition of
ambient isotopy H̃ : Rn⇥ [0, 1] ! Rn⇥ [0, 1], H̃(x, t) := (H(x, t), t) between the embeddings
f2 and f1 as in Burde–Zieschang [9, p.2].) However, because of the smoothing properties
of all geometric curvature energies described in more detail in Section 1.2 all Lipschitz
submanifolds with finite energy are actually of class C1, so that Theorem 1 is stronger
than di�eomorphism finiteness since it even bounds the C1-isotopy types.

Remark 1.1. We do not have an optimal estimate for the number K = K(E,d,m,n, l,p) in
the above theorem. However, a crude check of constants involved in the argument yields

(9) log log K 6 c(m,n, l,p)
⇣
| log d|+ log

�
E1/p + 1

�
+ 1
⌘

with a constant c(m,n, l,p) that blows up for p & p0(E). (See Section 6, Remark 6.2).
Thus, as expected, for fixed dimensions m and n, K blows up for E ! 1 (with E and d
fixed), and for p & p0(E) (with E and d fixed).

It is also worth noting that no lower bounds for the volume (or lower bounds for the
injectivity radius) are needed in our work. Intuitively, the reason is that the onset of
thin tubes or narrow tentacles is being penalised by each of the energies we consider.
The same penalisation e�ect takes care of a quantitative embeddedness: if two roughly
parallel sheets of an embedded manifold ⌃ are too close to each other preventing ⌃ to be
described locally as one graph, then there are lots of roughly regular very small simplices
with vertices on ⌃ (and of small tangent spheres passing through a second point of ⌃),
causing the integrands K and 1/Rtp in (2) and (4) to be very large on a set of positive
measure. We will describe the energies’ quantitative control on local graph patches more
precisely in Section 1.2.

Our next result states that for any geometric curvature energy all sublevel sets are
sequentially closed and compact with respect to Hausdor� convergence, and that all these
energies are sequentially lower semicontinuous.

Theorem 2 (lower semicontinuity and compactness). For E,d 2 (0,1) and for a
geometric curvature energy E 2 {El

p

,T
p

,TG

p

}, where p > p0(E) and l 2 {1, 2, . . . ,m + 2},
the following holds.

(i) If ⌃
j

2 AE
m,n(E,d) for all j 2 N and if the ⌃

j

converge to a compact set ⌃ ⇢ Rn with
respect to the Hausdor�-metric as j ! 1, then ⌃ 2 AE

m,n(E,d), and moreover,
E(⌃) 6 lim inf

j!1
E(⌃

j

).

(ii) For any sequence (⌃
j

)
j

⇢ AE
m,n(E,d) there is a submanifold ⌃ 2 AE

m,n(E,d) and a
subsequence (⌃

j

k

)
k

⇢ (⌃
j

)
j

such that dH(⌃
j

k

,⌃) ! 0 as k ! 1.

With the energies’ quantitative control over local graph patches described in more de-
tail in Section 1.2 one actually obtains C1-compactness of these graph patches, which
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considerably improves the Hausdor�-convergence to C1-convergence in both parts of The-
orem 2. Since, roughly speaking, isotopy types stabilise under C1-convergence we can use
Theorem 2 to deduce the following existence result by means of the direct method in the
calculus of variations.

Corollary 1 (existence of minimisers in isotopy classes). Let E, p, E and d be as
in Theorem 2. For each reference manifold M0 2 AE

m,n(E,d) there exists ⌃0 2 AE
m,n(E,d)

such that
E(⌃0) = inf

⌦
E(⌃) : ⌃ 2 AE

m,n(E,d) and ⌃ is ambient isotopic to M0
↵

.

Remark. It is easy to see, via simple covering arguments, that Theorems 1 and 2 hold
under another set of assumptions, with the diameter bounds replaced by volume bounds,
i.e. with classes AE

m,n(E,d) replaced by

ÃE
m,n(E,H) := {⌃ 2 C 0,1

m,n : E(⌃) 6 E, Hm(⌃) 6 H} .

There are numerous papers in the literature dealing with compactness and finiteness
results for immersed manifolds, starting with J. Langer [26] who considers immersed
surfaces in R3 of class W2,p for p > 2, with Lp bounds on the second fundamental form;
for a generalization to immersed hypersurfaces in Rn see [13]. G. Smith [35, 36] consid-
ers compactness of immersed complete submanifolds of class Ck,↵ with k > 2, ↵ 2 (0, 1),
assuming uniform bounds on the second fundamental forms (and their derivatives). Re-
cently, P. Breuning [8] has studied compactness for a wide class of (r, �)–immersions, i.e.,
C1 immersions that can be represented as �-Lipschitz graphs at a uniform length scale r.

Our work di�ers from all these papers in that we deal only with embedded objects. The
upper bounds on any of the geometric curvature energies we consider do guarantee that
the limit of a convergent sequence of submanifolds – even if the convergence, a priori,
takes place only in the Hausdor� distance – is again an embedded submanifold; this is
due to the penalisation e�ects mentioned before. It is easy to see that under the assump-
tions of [26], [35] or [8] a sequence of embedded submanifolds might converge to a limit
which is only immersed, not embedded.

The only comparable result that we are aware of is due to O. Durumeric: [14, Thm. 2]
ascertains that there are only finitely many di�eomorphism and isotopy classes of con-
nected C1,1 manifolds with lower bounds on a very specific functional, namely on the
normal injectivity radius r

ni

, combined roughly speaking with bounds on volume and
diameter. Our estimate (9) on the number of isotopy types is similar in spirit to Du-
rumeric’s [14, Sec. 5] where E1/p (which controls the bending of ⌃ in a single coordinate
chart, cf. Section 1.2 below) is replaced by the inverse of the injectivity radius. (In [29],
A. Nabutovsky studies the intriguing ‘energy landscape’ of E(⌃) = vol1/n(⌃)/r

ni

(⌃) on
the set of C1,1 topological hyperspheres ⌃ = ⌃n ⇢ Rn+1; in particular his energy E has
infinitely many distinct local minima.)

Let us note that for curves in R3, J. O’Hara, see [1, pp. 1340–1343], mentions a few
results that use the same analytic mechanism of proof that we deal with: sequences of
knots f : S1 ! R3 that are uniformly bilipschitz and remain bounded in a fixed C1,↵ space,
are precompact in C1; moreover, the knot class has to be preserved in the limit. A bound
for the bilipschitz constant of f and for its C1,↵-norm translates into a bound on the num-
ber of possible knot types parameterised by f. For m = 1, all our energies are valid knot
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energies of that type: upon fixing the length, upper bounds on the energy yield bilipschitz
and C1,↵ bounds on the arc-length parameterisations of knots, resulting in bounds on the
number of knot classes, on the average crossing number, stick number etc.; see [39] for
more details. The results of the present paper open several questions in higher dimen-
sional geometric knot theory, concerning, e.g., the possible relations between bounds on
the energies of ‘knot conformations’ and bounds on higher dimensional knot invariants.

1.2. The strategy of proofs and more general results for C1,↵-submanifolds. Let
us start by explaining why we assume integrability above scale-invariance for each of
the geometric curvature energies. A simple scaling argument shows that if ⌃ ⇢ Rn =
Rn-1 ⇥R is a cone over an (m- 1)-dimensional smooth manifold ⌃0 ⇢ Rn-1, with vertex
v = (0, . . . , 0, 1) and E 2 {El

p

,T
p

,TG

p

}, then E(⌃) = 1 whenever p > p0(E). In fact, for such
p the sequence of energies of disjoint pieces of ⌃,

✏
j

:= E
�
⌃ \ {x 2 Rn : 2-j-1 < |x- v| 6 2-j}

�
, j = 0, 1, 2, . . . ,

is nondecreasing (by scaling!), and we have E(⌃) > ✏0 + ✏1 + · · · .
Intuitively, each fold or cusp of ⌃ should introduce even ‘more’ small simplices (or small

tangent spheres that contain another point of ⌃), and thereby should lead to an increase
of energy. This strongly suggests that for any p > p0(E) the functional E should have
nice smoothing properties. This is indeed true; if E(⌃) is finite for some p above the crit-
ical exponent p0(E), then ⌃ is an embedded manifold of class C1,↵. Moreover, ⌃ can be
assembled from a finite number of standard graph patches – corresponding to the stan-
dard pieces in Cheeger’s words quoted in Section 1.1 above – with the size and the graph
norms (controlling how much ⌃ can bend at length scales determined by the energy) ex-
plicitly controlled in terms of E(⌃). This is the reason why we can obtain compactness
and finiteness results, along with semicontinuity of all these energies.

Here is a precise description of what we mean by standard graph patches.
For ↵ 2 (0, 1], let C 1,↵

m,n denote the set of all compact, C1,↵-smooth, m-dimensional em-
bedded submanifolds of Rn.

Definition 1 (C1,↵-graph patches). For R > 0,L > 0, d > 0, and ↵ 2 (0, 1] we define
C 1,↵
m,n(R,L,d) to be the class of those submanifolds ⌃ 2 C 1,↵

m,n that satisfy the following
three conditions:

(i) diameter bounds: ⌃ ⇢ Bn

(0,d);
(ii) size of graph patches: for each point x 2 ⌃ there exists a function f

x

: T
x

⌃! T
x

⌃?

of class C1,↵ such that ⌃ \ B(x,R) = (x + graph(f
x

)) \ B(x,R), f
x

(0) = 0, and
Df

x

(0) = 0;
(iii) controlled bending: for each x 2 ⌃, we have kDf

x

(⇠) -Df
x

(⌘)k 6 L|⇠ - ⌘|↵ for all
⇠,⌘ 2 T

x

⌃, and Lip(f
x

) 6 1.

We state below – in a version that is adapted for our needs in this paper – a general
regularity result which has been proved in our earlier works, see [42] for the case of
T
p

, [25] for TG

p

, and [24] for all the El

p

-energies, l = 1, . . . ,m + 2. (The case of Em+2
p

for
m = 2, n = 3 dates back to [41]; for curves in Rn, see also [38], [37] and [40]).

Regularity Theorem. Fix E 2 {El

p

,T
p

,TG

p

} and p > p0(E). Assume that a Lipschitz
manifold ⌃ 2 C 0,1

m,n satisfies E(⌃) 6 E < 1. If ⌃ ⇢ Bn(0,d), then ⌃ 2 C 1,↵
m,n(R,L,d) for the



COMPACTNESS AND FINITENESS OF ISOTOPY TYPES 7

exponent ↵ = 1 - p0(E)/p 2 (0, 1), with R and L depending only on m,n, l,p,p0 and E. In
fact, one can take

R = c1(m,n, l,p)E-1/(p-p0(E)) , L = c2(m,n, l,p)E1/p(10)
for some constants c1 and c2 depending only on m,n, l, and p.

Let us note here that according to Blatt and Kolasiński [6], for an m-dimensional em-
bedded C1-submanifold ⌃ ⇢ Rn and p1 = m(l - 1) < p (note that p0(E

l

p

) = ml > p1) the
condition El

p

(⌃) < 1 is equivalent to ⌃ being locally a graph of a function in the fractional
Sobolev space W1+s,p with s = 1 -m(l - 1)/p 2 (0, 1). In combination with the Sobolev
imbedding, this implies that the exponent ↵ in the Regularity Theorem (which is one
of the key technical tools for the present paper) is best possible. Moreover, there are m-
dimensional graphs in Rn with finite curvature energy El

p

for which the graph function
is nowhere twice di�erentiable, so we definitely cannot work with classic curvatures in
our setting!

Nevertheless, the Regularity Theorem paves the way to our results on compactness,
finiteness and semicontinuity of geometric curvature energies with respect to sequences
⌃
j

⇢ AE
m,n(E,d), but also in the more general subclass of C 1,↵

m,n introduced in Definition
1. The key idea is the following: due to the regularity estimates, energy and diameter
bounds present in the definition of AE

m,n(E,d) force all the ⌃
j

to be in the same, fixed, class
C 1,↵
m,n(R,L,d) up to translations. Then, the controlled bending condition satisfied by all the
⌃
j

enters the scene: after a technical preparation involving some graph tilting, it enables
applications of the Arzelà–Ascoli compactness theorem in all graph patches. Thus, in fact
much more can be said about the convergence of ⌃

j

, at least along a subsequence. Let us
make this more precise.

Definition 2 (C1,↵-convergence of graph patches). A sequence (⌃
j

)
j2N ⇢ C 1,↵

m,n is
said to converge in C 1,↵

m,n to the set ⌃0 ⇢ Rn if
(i) dH(⌃

j

,⌃0)
j!1���! 0;

(ii) ⌃0 is a C1,↵-smooth embedded submanifold of Rn;
(iii) there is an index j0 2 N and a radius ⇢ > 0 such that for each x 2 ⌃0 and for each

j 2 N with j > j0 or j = 0 there exists a function f
x,j 2 C1,↵(T

x

⌃0, T
x

⌃?
0 ) such that

⌃
j

\ B(x, ⇢) = (x+ graph(f
x,j)) \ B(x, ⇢)

and
kf

x,j - f
x,0k

C

1,↵ 0(T
x

⌃0,T
x

⌃

?
0 )

j!1���! 0 for each ↵ 0 2 (0,↵).

As suggested above and mentioned in Section 1.1, the following stronger compactness
result on C 1,↵

m,n(R,L,d) holds, from which part (ii) of Theorem 2 follows directly, but which
is also essential to prove the other results stated in Section 1.1.
Theorem 3 (compactness). Let R,L,d 2 (0,1) and ↵ 2 (0, 1]. Any sequence of sub-
manifolds (⌃

j

)
j2N ⇢ C 1,↵

m,n(R,L,d) contains a subsequence which converges in C 1,↵
m,n to some

submanifold ⌃0 2 C 1,↵
m,n(R,L,d).

The convergence in C 1,↵
m,n is strong enough to make all the ⌃

j

with j large enough ambi-
ent isotopic to the limiting manifold ⌃0. It also turns out that there is a di�eomorphism
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of the ambient space J
j

: Rn ! Rn which is close to the identity in the bilipschitz sense
and maps ⌃

j

to ⌃0.
Theorem 4 (isotopy and di�eomorphism of ambient space). Let R,L,d 2 (0,1),
↵ 2 (0, 1] and let (⌃

j

)
j2N ⇢ C 1,↵

m,n(R,L,d) be a sequence of submanifolds which converges
in C 1,↵

m,n to ⌃0 2 C 1,↵
m,n(R,L,d). Then there exists j0 2 N such that for each j > j0 the mani-

folds⌃
j

and⌃0 are ambient isotopic. Moreover, for each j > j0 there exists a di�eomorphism
of the ambient space J

j

: Rn ! Rn such that
J
j

(⌃
j

) = ⌃0 and biLip(J
j

) 6 1 + C
J

dH(⌃0,⌃
j

)↵/2 ,
where C

J

= C
J

(R,L,↵,m,n).
Here, biLip(f) denotes the bilipschitz constant of an injective map f : X ! f(X) ⇢ Y

between two metric spaces (X,d
X

) and (Y,d
Y

), i.e. whenever A ⇢ X,
biLip(f,A) := max{Lip(f,A), Lip(f-1, f(A))} , biLip(f) := biLip(f,X) .

As usual,

Lip(f,A) = sup
x,y2A, x 6=y

d
Y

(f(x), f(y))
d
X

(x,y) and Lip(f) = Lip(f,X)

denotes the Lipschitz constant of f : X ! Y.
We actually establish an upper bound ⇢ on the Hausdor�-distance dH(⌃1,⌃2) depend-

ing only on the parameters R,L,↵,m, and n, such that if dH(⌃1,⌃2) 6 ⇢, then ⌃1 and ⌃2
are ambiently isotopic, and such that a global bilipschitz di�eomorphism J on Rn with
J(⌃2) = ⌃1 exists (see Corollary 4.9 and Lemma 4.10). This uniform bound leads not only
to the proof of Theorem 4 but allows us also in the end to give a quantitative estimate on
the number of isotopy types in Theorem 1.

The rest of the paper is organised as follows. In Section 2, we gather simple preliminary
material. In Section 3, after a technical preparation devoted to graph tilting for functions
of class C1,↵, we prove Theorem 3. In Section 4, we construct the isotopies between the
submanifolds ⌃

j

which converge in C 1,↵
m,n, employing a C1-version of the tubular neigh-

bourhood theorem; parts of this material seem to be ‘folklore’ but we give the details for
the sake of completeness. This leads to the proof of Theorem 4. Section 5 contains the
proof of semicontinuity and compactness, Theorem 2, and of Corollary 1, and the final
Section 6 lays out the explicit estimate for the number of isotopy types (stated in Theo-
rem 1). The whole exposition is more or less self-contained.
Remark. The letter C will denote a constant whose value may change even in a single
string of estimates. Subscripted constants (e.g. C

l

, Cang etc.) have global meaning and
their value is fixed. We write C = C(↵,�,�) when C depends only on ↵, � and �.

2. P������������
Most of the notation in the paper is standard. In particular, we use the usual k·k

C

1,↵

norms, and
dH(E, F) := sup{dist(y, F) : y 2 E}+ sup{dist(z,E) : z 2 F}

denotes the Hausdor� distance of sets in Rn.
For a measure µ, we write f⇤µ to denote its push-forward, and spt(µ) to denote its

support, cf. Federer [17, Chapter 2] or Matilla [27, Chapter 1] for definitions.
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2.1. The Grassmannian. Throughout the paper, G(n,m) stands for the Grassmannian
of all m-dimensional linear subspaces2 of Rn.

For an m-plane U 2 G(n,m) we let U? be the orthogonal complement of U. The symbol
U\ denotes the orthogonal projection of Rn onto U. For U,V 2 G(n,m) we set

(11) <)(U,V) := kU\ - V\k.

This is a metric, and G(n,m) endowed with this metric is compact.

Remark 2.1. Using [2, 8.9(3)] we have for U,V 2 G(n,m)

<)(U,V) = kU\ - V\k = kU?
\ - V?

\ k = kU?
\ � V\k = kU\ � V?

\ k = kV?
\ �U\k = kV\ �U?

\ k .

In particular

<)(U,V) = sup
e2U\S

|V?
\ e| = sup

e2V\S
|U?

\ e| .

Here and later S = {x 2 Rn : |x| = 1} denotes the unit sphere in Rn.

Lemma 2.2. Assume U,V 2 G(n,m). If <)(U,V) < 1, then
• U\|V : V ! U is a linear isomorphism,
• U? \ V = {0},
• setting L = (U\|V)-1 : U ! V we have

kLk = (1 -<)(U,V)2)-1/2 .

Proof. If <)(U,V) < 1, then, by Remark 2.1, for each v 2 V, v 6= 0

|U\v|
2 = |v|2(1 - |U?

\ (v/|v|)|
2 > 0 .

Hence, kerU\|V = {0} and, since dimU = dimV, U\|V is a linear isomorphism. In partic-
ular kerU\ \ V = U? \ V = {0}. Observe that, by Remark 2.1,

inf
e2V\S

|U\e|
2 = 1 - sup

e2V\S
|U?

\ e|
2 = 1 -<)(U,V)2 .

Set L = (U\|V)-1 and compute

kLk = sup
u2U,u 6=0

|Lu||u|-1 = sup
v2V ,v 6=0

|LU\v||U\v|
-1

= sup
v2V ,v 6=0

|v||U\v|
-1 =

✓
inf

v2V ,v 6=0
|U\(v/|v|)|

◆-1
= (1 -<)(U,V)2)-1/2 . ⇤

Remark 2.3. Let X 2 G(n,m) and Y 2 G(n,n -m) be such that <)(X?, Y) < 1. Then, by
Lemma 2.2, X \ Y = {0} and we can define the oblique projection P : Rn ! X along Y, i.e.,
a linear map such that

P � P = P , ker P = Y and im P = X .(12)

Note that P can also be characterised by the requirement

{Pv} = (v+ Y) \ X .(13)
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F����� �. The situation in Proposition 2.4: if x, X,Z are fixed, ✓! 0, and z - x 2 Y, then
z ! 0 and |z| . ✓.

Proposition 2.4. Let ✓ 2 [0, 1], � 2 [0, 1) and k 2 {1, . . . ,n - 1}. Let X, Y 2 G(n, k) and
Z 2 G(n,n - k) be such that <)(X, Y) 6 ✓ and <)(Y,Z?) 6 �. For any x 2 X and z 2 Z with
z - x 2 Y one has the estimate

|z| 6 ✓

1 - �
|x| .

Proof. Since Z?
\ u = X?

\ x = 0, two applications of the triangle inequality lead to

|z| 6 |Y\z|+ |Y?
\ z| 6 |(Y\ -U?

\ )z|+ |Y?
\ (z - x)|+ |(Y?

\ - X?
\ )x| 6 �|z|+ ✓|x| . ⇤

2.2. An elementary topological result. In a few proofs, we need to rely on the follow-
ing standard topological result. For the sake of completeness, we present a proof using
degree mod 2. (There are of course other proofs, relying on the non-existence of the re-
traction of a ball onto its boundary or, equivalently, on Brouwer’s fixed point theorem.)
Proposition 2.5. Let ⇢ > 0, � 2 (0, 1) and F 2 C0(Bm

(0, ⇢),Rm) be such that
|F(x)- x| 6 �⇢ for all x 2 Bm

(0, ⇢) .

Then for each y 2 Bm(0, (1 - �)⇢) there exists x 2 Bm

(0, ⇢) such that F(x) = y.

Proof. Fix y 2 Bm(0, (1 - �)⇢). Assume that y /2 F(Bm

(0, ⇢)). Then,

G : @Bm(0, ⇢) ! @Bm

(0, ⇢) , G(z) =
F(z)- y

|F(z)- y|
⇢ for z 2 @Bm

(0, ⇢),

is well defined and continuous. Since |F(x)- x| 6 �⇢ for all x 2 Bm

(0, ⇢),
|- tz+ t(F(z)- y)| 6 t|F(z)- z|+ t|y| < t�⇢+ t(1 - �)⇢ < ⇢ = |z|

2Formally, G(n,m) is defined as the homogeneous space
G(n,m) := O(n)/(O(m)⇥O(n-m)) ,

where O(n) is the orthogonal group; see e.g. A. Hatcher’s book [21, Section 4.2, Examples 4.53–4.55]. Thus
G(n,m) becomes a topological space with the quotient topology. We work with the angular metric, cf. (11).
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for all z 2 @Bm

(0, ⇢) and t 2 [0, 1); hence (1 - t)z + t(F(z) - y) 6= 0 for all z 2 @Bm(0, ⇢)
and for all t 2 [0, 1]. Thus, the map

H : [0, 1]⇥ @Bm

(0, ⇢) ! @Bm

(0, ⇢) , H(t, z) = (1 - t)z+ t(F(z)- y)

|(1 - t)z+ t(F(z)- y)|
⇢

yields a well defined homotopy of G and the identity map on the sphere @Bm

(0, ⇢). Hence
G has mod 2 degree 1. On the other hand, one can extend G to the continuous mapping

G̃ : Bm

(0, ⇢) ! @Bm

(0, ⇢) , G̃(z) =
F(z)- y

|F(z)- y|
⇢ .

Thus G has mod 2 degree 0, a contradiction. For the relevant results on the mod 2 degree
one may, e.g., consult [22, pp. 124,125]. ⇤

3. C����������
Each manifold ⌃ 2 C 1,↵

m,n(R,L,d) is assembled from standard graph patches that have
controlled bending at length scales . R. Thus, intuitively, if two such manifolds ⌃1,⌃2 2
C 1,↵
m,n(R,L,d) are su�ciently close in Hausdor� distance, their tangent planes at points

x 2 ⌃1, y 2 ⌃2 with |x - y| . dH(⌃1,⌃2) must be close, too, for otherwise the Haus-
dor� distance of the manifolds would be too large. Before giving the precise quantita-
tive statement, let us mention two simple consequences of Definition 1 valid for each
⌃ 2 C 1,↵

m,n(R,L,d): For any r 2 (0,R] one finds x + v + f
x

(v) 2 Bn(x,
p

2r) for all x 2 ⌃,
v 2 T

x

⌃ \ Bn(0, r), since |f
x

(v)| = |f
x

(v)- f
x

(0)| 6 |v| < r so that

|x- (x+ v+ f
x

(v))|2 = |v|2 + |f
x

(v)|2 < 2r2.
Secondly, one can improve the estimate for |f

x

(v)| for such x, v, and r 2 (0,R] as follows.

(14) |f
x

(v)| =
���
Z1

0

d

dt
f
x

(tv)dt
��� =

���
Z1

0
(Df

x

(tv)-Df
x

(0))v dt
��� 6 L|v|1+↵ < Lr1+↵.

Lemma 3.1 (proximity of tangent planes). Let R,L,d > 0, ↵ 2 (0, 1], A > 1, and
⌃1,⌃2 2 C 1,↵

m,n(R,L,d) such that

dH(⌃1,⌃2) < min
�

2-6A-2R2, L-2/↵, 1
 

,
and let x 2 ⌃1 and y 2 ⌃2 be such that |x- y| 6 AdH(⌃1,⌃2). Then there exists a constant
C
ang

= Cang(L,A) such that

<)(T
x

⌃1, T
y

⌃2) 6 CangdH(⌃1,⌃2)
↵/2 .(15)

In fact, one can take Cang(L,A) = L
�
1 + (4A)2�+ 2A.

Proof. For dH(⌃1,⌃2) = 0 we have x = y and ⌃1 = ⌃2 as C1-manifolds, so that T
x

⌃1 =
T
y

⌃2; hence both sides of (15) are zero. So, let us assume that dH(⌃1,⌃2) > 0. The follow-
ing arguments hold for all u 2 T

x

⌃1 with
0 < |u| = dH(⌃1,⌃2)

1/2 < min
�

2-3A-1R, L-1/↵, 1
 

.(16)

Since ⌃1 2 C 1,↵
m,n(R,L,d) we find

p := x+ u+ f
x

(u) 2 ⌃1 \ B(x,R)
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by our remark preceding this lemma, since |u| < R/(23A) < R/
p

2. We thus infer
(T

x

⌃1)\(p- x) = (T
x

⌃1)\(u+ f
x

(u)) = u,
and

(17) dist(p- x, T
x

⌃1) = dist(u+ f
x

(u), T
x

⌃1) = |f
x

(u)|
(14)
6 L|u|1+↵

(16)
< L|u|

1
L
= |u|.

In particular,
|p- x|2 = |u|2 + |f

x

(u)|2 = |u|2 + dist2(p- x, T
x

⌃1) < 2|u|2.
Next choose a point q 2 ⌃2 such that |p - q| 6 dH(⌃1,⌃2) and set v := (T

y

⌃2)\(q - y).
Then one finds

|v| 6 k(T
y

⌃2)\k|q- y| = |q- y|

6 |q- p|+ |p- x|+ |x- y| 6 dH(⌃1,⌃2) +
p

2|u|+AdH(⌃1,⌃2)

6 |u|
h
(1 +A)|u|+

p
2
i
6 A|u|

h
2|u|+

p
2
i (16)

< 4A|u|
(16)
<

1p
2
R,

so that y+ v+ f
y

(v) 2 Bn(y,R) and q-y = v+ f
y

(v) 2 graph(f
y

), by virtue of our remark
preceding this lemma. Employing the identities dist(p- x, T

x

⌃1) = |f
x

(u)| = |p- (x+ u)|
and dist(q- y, T

y

⌃2) = |f
y

(v)| = |q- (y+ v)| we can write
dist(u, T

y

⌃2) 6 |u- v| 6 |u+ (x- p)|+ |p- q|+ |q- (y+ v)|+ |y- x|

6 |f
x

(u)|+ dH(⌃1,⌃2) + |f
y

(v)|+A|u|2

(14)
6 L

�
|u|1+↵ + |v|1+↵

�
+ (1 +A)dH(⌃1,⌃2)

(16)
<

⇥
L
�
1 + (4A)2�+ 2A

⇤
|u|1+↵ =: Cang(L,A)|u|1+↵.

Since dist(u, T
y

⌃2) = |(T
y

⌃2)
?
\ (u)| = |u|

��(T
y

⌃2)
?
\

�
u

|u|

��� = |u|dist
�

u

|u|
, T

y

⌃2
�

we arrive at
dist

�
u

|u|
, T

y

⌃2
�
6 Cang(L,A)|u|↵ = Cang(L,A)dH(⌃1,⌃2)

↵/2. Since the requirement (16) on
u 2 T

x

⌃1 does not depend on the direction e := u/|u| 2 Sn-1 = S we obtain by Remark 2.1
<)(T

x

⌃1, T
y

⌃2) = sup
e2T

x

⌃1\S
|(T

y

⌃2)
?
\ e| = sup

e2T

x

⌃1\S
dist(e, T

y

⌃2) 6 CangdH(⌃1,⌃2)
↵/2 . ⇤

To prove Theorem 3, one applies the Arzelà–Ascoli theorem to graph patches of the
sequence ⌃

j

. To make this possible, it is necessary to tilt all the graphs (of a subsequence
of the ⌃

j

’s intersected with a fixed ball of radius ⇡ R) so that they are all defined over the
same plane. Here is a technical lemma that we shall use.

Lemma 3.2 (graph tilting). Let V 2 G(n,m), ↵ 2 (0, 1], # 2 (0, 1
100), L > 0, v 2 V,

r 2 (0,1] and f 2 C1,↵(V,V?) is such that Lip(f) 6 1 and
kDf(x)-Df(y)k 6 L|x- y|↵ for x,y 2 V \ B(v, r) .

Then the following holds. For each U 2 G(n,m) with <)(U,V) 6 # if! = U\(v+ f(v)), there
exists a function g 2 C1,↵(U,U?) such that

graph(f) = graph(g)
and kDg(⇠)-Dg(⌘)k 6 L

g

(L, #,↵)|⇠- ⌘|↵ for ⇠,⌘ 2 U \ B(!, 1
1+3#r) ,



COMPACTNESS AND FINITENESS OF ISOTOPY TYPES 13

where L
g

(L, #,↵) := L (1 + 12#)(1 + 3#)↵/(1 - 4#). Moreover, Lip(g) 6 (1 + 2#)/(1 - 2#),
and g(0) = 0 if f(0) = 0. If f(0) = 0 and Df(0) = 0 then

(18) kDg(0)k2
6

#2

1 - #2 .

Remark. By taking r = 1 we mean B(v, r) = Rn.
Proof. If U = V simply set g := f, and we are done. So assume <)(U,V) 2 (0, #] in the
following.
Step 1: defining g. Set ⌃ := graph(f) and for p1,p2 2 ⌃ define x1 := V\(p1), x2 := V\(p2),
z1 := U\(p1), and z2 := U\(p2). Then p

i

= x
i

+ f(x
i

) for i = 1, 2, and since Lip(f) 6 1 and
<)(U,V) 6 # < 1

100 we have
|(x2 - x1)- (z2 - z1)| = |(V\ -U\)(p2 - p1)| 6 kV\ -U\k|p2 - p1| 6 #|p2 - p1|(19)

= #
��(x2 - x1) + (f(x2)- f(x1))

��
6 2#|x2 - x1| <

1
50 |x2 - x1|,

where only the very last inequality is restricted to the case x1 6= x2. If z1 = U\(p1) =
U\(p2) = z2 then (19) implies 0 6 (1 - 2#)|x2 - x1| 6 0, hence x1 = V\(p1) = V\(p2) = x2,
so that

p1 = x1 + f(x1) = x2 + f(x2) = p2.
In other words, if p1 6= p2 then U\(p1) 6= U\(p2), or U\|⌃ : ⌃! U is injective.

Setting q := U\(0 + f(0)) 2 U,
�1 : V 3 x 7�! x+ f(x) 2 ⌃, �2 : ⌃ 3 p 7�! U\(p)- q,

we find that� := �2��1 : V ! U is injective, since both�1 and�2 are injective. Moreover,
� is continuous, and �(0) = �2(�1(0)) = �2(0 + f(0)) = 0. Letting x1 := 0 in (19), and
setting x := x2, z := z2 = �(x2) = �(x) we infer from (19)
(20) |x- �(x)| 6 2#|x| for all x = V\(x+ f(x)) 2 V\(graph(f)) = V.
Notice that the restricted projection V\|U : U ! V is bijective, since <)(U,V) 6 # < 1.
Indeed, since dimU = dimV it su�ces to check that V\|U is injective. But V\(u1) = V\(u2)
for u1,u2 2 U with u1 6= u2 would imply that 0 6= u1 - u2 2 U would be contained in the
kernel of V\, so that we would arrive at the contradictory inequality

kV\ -U\k >

���V\

⇣ u1 - u2
|u1 - u2|

⌘
-U\

⇣ u1 - u2
|u1 - u2|

⌘��� =
���
u1 - u2
|u1 - u2|

��� = 1 > kV\ -U\k > 0.

To show that � is also surjective (hence bijective) consider a linear isometry I
V

: V ! Rm,
define F 2 C0(Rm,Rm) to be F := I

V

� V\|U � � � I-1
V

, and estimate for ⇠ 2 Rm

|⇠- F(⇠)| = |I
V

� V\

�
I-1
V

(⇠)
�
- I

V

� V\ � �
�
I-1
V

(⇠)
�
| = |V\

�
I-1
V

(⇠)
�
- V\ � �

�
I-1
V

(⇠)
�
|

6 |I-1
V

(⇠)- �
�
I-1
V

(⇠)
�
|

(20)
6 2#|I-1

V

(⇠)| = 2#|⇠|.
Thus, F satisfies the assumptions of Proposition 2.5 for each ⇢ > 0 and � := 2# < 1, which
implies that F : Rm ! Rm is surjective. Therefore V\|U � � : V ! V is surjective, and
finally also � : V ! U is surjective, hence bijective.

We are now in the position to define g := U?
\ � �1 � �-1 � ⌧-q

: U ! U?, where
⌧
q

(x) = x + q for x 2 Rn is the usual translation. Since �1 is of class C1,↵ one finds
� 2 C1,↵, and so �-1 2 C1,↵, and hence g 2 C1,↵(U,U?); see, e.g., [7, Section 2.2] for
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a brief self-contained argument showing that the class C1,↵ is closed under composition
and inversion. Moreover, if p 2 ⌃, V\p = x and U\p = z, then z = �(x) + q and x +
f(x) = p = z + g(z); hence, graph(f) = ⌃ = graph(g). In particular, if f(0) = 0 then
0 = 0+ f(0) = z+g(z) for z = U\(0) = 0; hence g(0) = 0. Since x 7! x+ f(x) parameterises
⌃ = graph(f), one has in the point p = x + f(x) 2 ⌃ the m-dimensional tangent plane
T
p

⌃ = (Id + Df(x))(T
x

V) = (Id + Df(x))(V), and likewise, T
p

⌃ = (Id + Dg(z))(U) if p =
z+ g(z). Thus, if f(0) = 0 and Df(0) = 0, then we find
T0⌃ = (Id +Df(0))(V) = V = (Id +Dg(0))(U) and <)(U, (Id +Dg(0)(U)) = <)(U,V) 6 #,
so that we can apply [2, 8.9(5)] with S ⌘ S2 := U and S1 := (Id + Dg(0))(U), ⌘2 := 0,
⌘1 := Dg(0), to obtain (18).
Step 2: Lipschitz continuity of g and oscillation of Dg. By definition, z + g(z) = x + f(x)
for z = �(x) + q 2 U, x 2 V, so that by (19) and by the assumption Lip(f) 6 1,
|g(z2)- g(z1)| = |(z2 + g(z2)- (z1 + g(z1))- (z2 - z1)|

= |(x2 + f(x2)- (x1 + f(x1))- (�(x2)- �(x1)|

6 |f(x2)- f(x1)|+ |(x2 - �(x2))- (x1 - �(x1))|

6 |x2 - x1|+ |U\(f(x1)- f(x2)) +U?
\ (x2 - x1)|

Rem. 2.1
6 |x2 - x1|+<)(U,V)(|f(x1)- f(x2)|+ |x2 - x1|)

(19)
6

1 + 2#
1 - 2# |z2 - z1| .

With T
p

⌃ = (Id +Df(x))(V) for p := x+ f(x) 2 ⌃ we obtain for any v 2 V, v 6= 0,
���V?

\

⇣ v+Df(x)v

|v+Df(x)v|

⌘���
2
=

|Df(x)v|2

|v|2 + |Df(x)v|2
6

kDfk2
1|v|2

|v|2 + kDfk2
1|v|2

6

1
2,

since kDfk1 = Lip(f) 6 1, and by the fact that for c > 0 the function ⇠ 7! ⇠/(c + ⇠) is
non-decreasing on [0,1). Thus, according to Remark 2.1,

(21) <)(T
p

⌃?,V?) = <)(T
p

⌃,V) 6 1p
2
< 1,

which implies

(22) <)(T
p

⌃?,U?) = <)(T
p

⌃,U) 6 <)(T
p

⌃,V) +<)(V,U) 6
1p
2
+ # < 1.

Consequently, the oblique projections F
p

: Rn ! X := T
p

⌃ along V? with ker F
p

= V?,
and G

p

: Rn ! X along U? with kerG
p

= U? are well-defined, and satisfy kF
p

k =
max

e2S |Fp(e)| 6
p

2 < 2, and kG
p

k < 2, which can be seen as follows. Assume without
loss of generality kF

p

k > 0. Since

|F
p

(e)|2 = |F
p

(V\(e)) + F
p

(V?
\ (e))|2 = |F

p

(V\(e))|
2 < kF

p

k2
⇣
|V\(e)|

2 + |V?
\ (e)|2

⌘
= kF

p

k,

if V?
\ (e) 6= 0. But S = Sn-1 is compact, so that there exists e⇤ 2 S (not necessarily unique)

with kF
p

k2 = |F
p

(e⇤)|2, which then necessarily means that V?
\ (e⇤) = 0, i.e., e⇤ 2 S \ V.

For any such e⇤ we can write

|F
p

(e⇤)|2 = |e⇤ + F
p

(e⇤)- e⇤|2
(13)
= 1 + |F

p

(e⇤)- e⇤|2 = 1 + |V?
\ (F

p

(e⇤))|2,



COMPACTNESS AND FINITENESS OF ISOTOPY TYPES 15

since F
p

(e⇤)- e⇤ 2 V? and e⇤ 2 V; see (13). Now, with

|V?
\ (F

p

(e⇤))| 6 <)(V,X)|F
p

(e⇤)|
(21)
6

1p
2
|F
p

(e⇤)|

one finds |F
p

(e⇤)|2 6 1+ 1
2 |Fp(e

⇤)|2, which immediately gives kF
p

k = |F
p

(e⇤)| 6
p

2. A sim-
ilar argument for G

p

using (22) instead of (21) leads to kG
p

k2
6 1+ ((1/

p
2) + #)2kG

p

k2,
and hence

kG
p

k 6

1q
1 - ((1/

p
2) + #)2

<
1q

1 - ((1/
p

2) + (1/100))2
< 2.

For z1, z2 2 U and p
i

:= z
i

+ g(z
i

), i = 1, 2, let x1, x2 2 V be those unique points
with p

i

= x
i

+ f(x
i

) for i = 1, 2. With T
p

i

⌃ = (Id + Df(x
i

))(V) = (Id + Dg(z
i

))(U), and
Df(x

i

)(V) ⇢ V?, Dg(z
i

)(U) ⇢ U? for i = 1, 2, one obtains for v 2 V and u 2 U

v+Df(x
i

)v , u+Dg(z
i

)u 2 T
p

i

⌃ for i = 1, 2,
which implies v+Df(x

i

)v = F
p

i

(v) and u+Dg(z
i

)u = G
p

i

(u) for i = 1, 2. Thus, it su�ces
to estimate

kDg(z1)-Dg(z2)k = sup
e2U\S

|(G
p1 -G

p2)(e)|.

For any given unit vector e 2 U \ S, we set
a
e

= F
p1e- F

p2e 2 V? , b
e

= G
p1e-G

p2e 2 U? , c
e

= F
p1e-G

p1e 2 T
p1⌃ ,

and ā
e

= F
p1(Gp1e)- F

p2(Gp1e) = G
p1e- F

p2(Gp1e) 2 V? .
Since F

p1e 2 e + V?, we have e + V? = F
p1e + V?, which means that F

p2(Fp1e) = F
p2e.

In consequence we may write
|ā

e

| 6 |(F
p1 - F

p2)(Gp1e- F
p1e)|+ |F

p1(Fp1e)- F
p2(Fp1e)|(23)

6 kF
p1 - F

p2k|ce|+ |(F
p1 - F

p2)e| .
Recall that <)(U?,V?) 6 # by assumption, and by (22) for p := p1 2 ⌃ that

<)(U?, T
p1⌃

?) = <)(U, T
p1⌃) 6

1p
2
+ # <

3
4,

so that we can apply Proposition 2.4 to the subspaces X := V?, Y := U?, Z := T
p1⌃, and

to the points x := F
p1(e)- e 2 V?, and z := c

e

2 T
p1⌃ (hence z- x = -(G

p1(e)- e) 2 U?)
to arrive at
(24) |c

e

| 6 4#|F
p1(e)- e| 6 4#

�
kF

p1k+ |e|
�
< 12#.

Combining (24) and (23) we get
|ā

e

| < kF
p1 - F

p2k(1 + 12#) .
Observe that ā

e

- b
e

= G
p2(e) - F

p2

�
G

p1(e)
�
2 T

p2⌃. Applying Proposition 2.4 to z :=
b
e

- ā
e

2 T
p2⌃ =: Z, x := b

e

2 U? =: X (with z - x = -ā
e

2 V? =: Y, so that <)(X, Y) =
<)(U?,V?) 6 # =: ✓, and <)(Y,Z?) = <)(V, T

p2⌃) 6 1/
p

2 =: � < 3/4 by (21)) yields
|b

e

- ā
e

| < 4#|b
e

|, and in consequence, |G
p1(e) - G

p2(e)| = |b
e

| 6 |b
e

- ā
e

| + |ā
e

| 6

4#|b
e

|+ |ā
e

|, i.e.,
|b

e

| 6 1
1-4# |āe

| 6 1+12#
1-4# kF

p1 - F
p2k.
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F����� �. A unit vector e 2 U \ S and its corresponding a
e

,b
e

, c
e

and ā
e

.

Since e 2 U \ Sn-1 was arbitrary, we conclude
kDg(z1)-Dg(z2)k 6

1+12#
1-4# kF

p1 - F
p2k = 1+12#

1-4# kDf(x1)-Df(x2)k .(25)
At this point we know already that ⌃ = graph(f) = graph(g) and that

(26) Lip(g) 6 1 + 2#
1 - 2# .

Exchanging U with V and f with g, and using (26) (instead of Lip(f) 6 1) in the derivation
of (19) one shows

|(x2 - x1)- (z2 - z1)| 6 #
�
1 + 1+2✓

1-2✓
�
|z2 - z1| 6 3#|z2 - z1| ,(27)

whenever x
i

= V\(pi

), z
i

= U\(pi

) and p
i

= z
i

+ g(z
i

) 2 ⌃ for i = 1, 2. Set s = 1
1+3#r.

If v 2 U, x = V\(v + g(v)), z
i

2 U \ B(v, s) and x
i

= V\(zi + g(z
i

)) for i = 1, 2, then
|x

i

- x| 6 (1 + 3#)|z
i

- v| < (1 + 3#)s = r by (27). Hence, employing (25), (27), and our
assumption on the oscillation of Df on V \ B(v, r) one obtains

kDg(z1)-Dg(z2)k
(25)
6

1+12#
1-4# kDf(x1)-Df(x2)k

6

1+12#
1-4# L|x1 - x2|

↵

(27)
6

(1+12#)(1+3#)↵
1-4# L|z1 - z2|

↵ ,

for all z1, z2 2 U \ B(v, 1
1+3#r). ⇤

Proof of Theorem 3. Applying Blaschke’s selection theorem (cf. [34]) to the sequence (⌃
j

)
j

contained in the class C 1,↵
m,n(R,L,d) we obtain a subsequence (still denoted by (⌃

j

)
j

) that
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converges in the Hausdor� metric to a compact set ⌃0 ⇢ B(0,d) ⇢ Rn. Up to possibly
choosing another subsequence we can assume that dH(⌃0,⌃

j+1) 6
1
2dH(⌃0,⌃

j

) for each
j 2 N ⇠{0}. Then, by induction,

dH(⌃0,⌃
j+k

) 6 2-kdH(⌃0,⌃
j

)

and in consequence, by the triangle inequality,

dH(⌃
j

,⌃
j+k

) > (1 - 2-k)dH(⌃0,⌃
j

)(28)

for j, k 2 N ⇠{0}.
We will prove in the first step that ⌃0 2 C 1,↵

m,n(R,L,d), that is, ⌃0 satisfies Definition 1,
and then in the second step that the sequence (⌃

j

)
j2N converges to ⌃0 in C 1,↵

m,n, i.e., con-
verges in the sense of Definition 2. Note that condition (i) of Definition 1 for ⌃0 and con-
dition (i) of Definition 2 for (⌃

j

)
j2N are automatically satisfied.

Step 1: ⌃0 2 C 1,↵
m,n(R,L,d). The convergence of the ⌃

j

in the Hausdor� metric implies
that there is an index j0 2 N such that

dH(⌃
j

,⌃
l

) < min
⌦

2-10R2 , L-2/↵ , 1
↵

8j, l > j0 .(29)

Fix a point in the limit set x0 2 ⌃0. Choose points x
j

2 ⌃
j

which realise the distance from
x0, i.e.

|x0 - x
j

| = dist(x0,⌃
j

) 6 dH(⌃0,⌃
j

) for j 2 N.(30)

Then x
j

! x0 as j ! 1 and

|x
j

- x
j+k

| 6 |x
j

- x0|+ |x0 - x
j+k

|
(30)
6 2dH(⌃0,⌃

j

)

(28)
6 4dH(⌃

j

,⌃
j+k

) for all j, k > 1.
(31)

Recalling (29), we may apply Lemma 3.1 with A := 4 to deduce, for the above x
j

2 ⌃
j

and
x
l

2 ⌃
l

with j, l > j0, the angle estimate

(32) <)(T
x

j

⌃
j

, T
x

l

⌃
l

) 6 Cang(L, 4)dH(⌃
j

,⌃
l

)↵/2 .

Consequently, (T
x

j

⌃
j

)
j

is a Cauchy sequence inG(n,m) that converges to some T 2 G(n,m),
i.e.,

(33) #
j

:= <)(T
x

j

⌃
j

, T) ! 0 as j ! 1 .

Recall that by Definition 1 we find for each j 2 N a function f
j

2 C1,↵(T
x

j

⌃
j

, T
x

j

⌃?
j

) with
f
j

(0) = 0, Df
j

(0) = 0, such that

(34) ⌃
j

\ B(x
j

,R) = (x
j

+ graph(f
j

)) \ B(x
j

,R),

with the uniform estimates Lip(f
j

) 6 1 and kDf
j

(x) - Df
j

(y)k 6 L|x - y|↵ for all x,y 2
T
x

j

⌃
j

. We can assume by (32) that #
j

2 (0, 1/100) for all j > j0, so that Lemma 3.2 applied
to the radius r = 1 leads to functions g

j

2 C1,↵(T , T?) such that graph(f
j

) = graph(g
j

),
g
j

(0) = 0 and

(35) kDg
j

(⇠)-Dg
j

(⌘)k 6 L
j

|⇠- ⌘|↵ for all ⇠,⌘ 2 T and j > j0,
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where L
j

:= L
g

j

(L, #
j

,↵) ! L as j ! 1. Moreover,

(36) Lip(g
j

) 6
1 + 2#

j

1 - 2#
j

! 1 on T , and kDg
j

(0)k2
6

#2
j

1 - #2
j

! 0 as j ! 1.

In addition, (34) translates into
(37) ⌃

j

\ B(x
j

,R) = (x
j

+ graph(g
j

)) \ B(x
j

,R) for all j > j0.
Because of the uniform estimates (35) and (36) we can repeatedly apply Arzela-Ascoli’s
theorem to successively choose subsequences (j

i+1)i+1 ⇢ (j
i

)
i

for i 2 N, such that g
j

i

converges in C1 to a function G
i

2 C1,↵(T \ B(0, i), T?) with G
i

(0) = 0, such that
(38) kDG

i

(⇠)-DG
i

(⌘)k 6 L|⇠- ⌘|↵ for all ⇠,⌘ 2 T \ B(0, i),
and with
(39) Lip(G

i

) 6 1 on T \ B(0, i) and DG
i

(0) = 0.
In addition, one has G

i+1|B(0,i) = G
i

for all i 2 N. Then the diagonal sequence g
j

j

converges in C1
loc(T , T?) to some limit function G 2 C1,↵(T , T?) satisfying G(0) = 0,

DG(0) = 0, Lip(G) 6 1 on T , and the estimate
(40) kDG(⇠)-DG(⌘)k 6 L|⇠- ⌘|↵ for all ⇠,⌘ 2 T .
Applying (37) to the diagonal sequence (g

j

j

)
j

j

⇢ (g
j

)
j

combined with (30) one finds
(41) ⌃0 \ B(x0,R) = (x0 + graph(G)) \ B(x0,R),
which concludes Step 1 since ⌃0 is represented near the arbitrarily chosen point x0 2 ⌃0
as a graph of the C1,↵ function G : T ! T? satisfying all the requirements in Definition 1
observing, in addition, that since x 7! x + G(x) parameterises ⌃0 locally near x0 one has
T
x0⌃0 = (Id+DG(0))(T) = T s ince DG(0) = 0, which a posteriori shows that the m-plane
T does not depend on the sequence x

j

! x0.
Step 2: ⌃

j

converges in C 1,↵
m,n to ⌃0. It su�ces to check condition (iii) of Definition 2.

Let j2 2 N, j2 > 200 be such that

dH(⌃
j

,⌃0) < min
⌦

2-10R2 , L-2/↵ , 2-8R ,
�
2-7Cang(L, 4)-1�2/↵ , 2-8

↵
for j > j2 .(42)

Fix x 2 ⌃0 and set T = T
x

⌃0. As before for each j 2 N find x
j

2 ⌃
j

such that |x - x
j

| =
dist(x,⌃

j

) 6 dH(⌃0,⌃
j

) and let f
j

: T
x

j

⌃
j

! T
x

j

⌃?
j

and f0 := f
x

: T ! T? be the functions
whose existence is guaranteed by condition (ii) of Definition 1. According to Lemma 3.1
(generously for A = 4), we get by (42)

<)(T
x

⌃0, T
x

j

⌃
j

) 6 Cang(L, 4)dH(⌃0,⌃
j

)↵/2 (42)
< 2-7 < 1

100 for j > j2.(43)
An application of Lemma 3.2 yields now functions g

j

2 C1,↵(T , T?) such that graph(g
j

) =
graph(f

j

) and Lip(g
j

) 6

51
49 < 2 for each j > j2, or j = 0 where g0 = f0. Set h

j

(⌘) =
g
j

(⌘- T\(xj - x)) + T?
\ (x

j

- x) for ⌘ 2 T and j > j2, and for j = 0 we have h0 = g0 = f0, so
that x

j

+ graph(g
j

) = x+ graph(h
j

) and consequently, recalling (42),
⌃
j

\ B(x, (1 - 2-8)R) = (x+ graph(h
j

)) \ B(x, (1 - 2-8)R) for j > j2 or j = 0.(44)
Set ⇢ := min{ 1

12R, 1
2(2-7/L)1/↵} and note that

{x+ ⌘+ h
j

(⌘) : ⌘ 2 T \ B(0, 3⇢)} ✓ ⌃
j

for j > j2 or j = 0,(45)
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because Lip(g
j

) = Lip(h
j

) < 2. Let ⌘ 2 T\B(0, 2⇢), j 2 N, j > j2 and set p := x+⌘+h0(⌘) 2
⌃0 and q := x + ⌘ + h

j

(⌘) 2 ⌃
j

. There exists z 2 ⌃
j

with |z - p| 6 dH(⌃0,⌃
j

). By (42) we
have dH(⌃0,⌃

j

) < ⇢, and if we write z = x + ⇠ + h
j

(⇠), then ⌘ - ⇠ = T\(p - x) - T\(z - x)
so that |⌘- ⇠| 6 |z- p| 6 dH(⌃0,⌃

j

), and therefore ⇠ 2 T \ B(0, 3⇢). Since Lip(h
j

) < 2 we
obtain

(46) |h0(⌘)- h
j

(⌘)| = |p- q| 6 |p- z|+ |z- q|

6 dH(⌃0,⌃
j

) + |⌘- ⇠|+ |h
j

(⌘)- h
j

(⇠)| < 4dH(⌃0,⌃
j

) .

We already know that ⌃0 2 C 1,↵
m,n(R,L,d) so employing Lemma 3.1 for A = 4, we get

<)(T
p

⌃0, T
q

⌃
j

) 6 Cang(L, 4)dH(⌃0,⌃
j

)↵/2 for j > j2 or j = 0.(47)

Apply [2, 8.9(5)] with ⌘1 := Dh
j

(⌘), ⌘2 := Dh0(⌘), S1 := T
q

⌃
j

, S2 := T
p

⌃0, and S := T to
obtain, recalling (43) and Lip(h0) = Lip(f0) 6 1,

(48) kDh
j

(⌘)-Dh0(⌘)k2
6

<)(T
q

⌃
j

, T
p

⌃0)
2

1 -<)(T
q

⌃
j

, T)2

⇣
1 + kDh0(⌘)k2

⌘

6

2
1 -<)(T

q

⌃
j

, T)2Cang(L, 4)2dH(⌃
j

,⌃0)
↵ .

To analyze the term in the denominator we estimate using (47) and (42)

<)(T
q

⌃
j

, T) 6 <)(T
q

⌃
j

, T
p

⌃0) +<)(T
p

⌃0, T)
(47),(42)

6 2-7 +<)(T
p

⌃0, T).

For the last summand we again use [2, 8.9(5)], this time for S := T , ⌘1 := Dh0(⌘), S1 :=
T
p

⌃0 = (Id + ⌘1)(T), ⌘2 := 0, and S2 := (Id + ⌘2)(T) = T , to deduce by virtue of Dh0(0) =
Df0(0) = 0 the angle estimate

<)(T
p

⌃0, T) 6 kDh0(⌘)k 6 L|⌘|↵
(42)
6 2-7

by our choice of ⇢. Therefore we can insert the resulting estimate <)(T
q

⌃
j

, T)2
6 2-12 into

(48) to obtain

(49) kDh
j

(⌘)-Dh0(⌘)k2
6 3Cang(L, 4)2dH(⌃

j

,⌃0)
↵.

Since ⌘ 2 T \ B(0, 2⇢) and j > j2 were chosen arbitrarily, the estimates (46) and (49)
hold for any ⌘ 2 T \ B(0, 2⇢) and j > j2. Fix a smooth cuto� function ' : T ! R such
that '(⌘) = 1 for ⌘ 2 T \ B(0, ⇢) and '(⌘) = 0 for ⌘ 2 T ⇠B(0, 2⇢). For j > j2 define f

x,j 2
C1,↵(T , T?) by f

x,j(⌘) := h
j

(⌘)'(⌘) for ⌘ 2 T \ B(0, 2⇢) and f
x,j(⌘) = 0 for ⌘ 2 T ⇠B(0, 2⇢).

Estimates (46) and (49) show that the sequence (f
x,j)j2N converges in C1(T , T?) to the

function h0. Since the limit function h0 2 C1,↵, it follows that (f
x,j)j2N actually converges

in C1,↵ 0 for any ↵ 0 2 (0,↵). Moreover, by (44) and (45) one sees that

⌃
j

\ B(x, ⇢) = (x+ graph(f
x,j)) \ B(x, ⇢) for j > j2 or j = 0.

Therefore, (⌃
j

)
j2N satisfies condition (iii) of Definition 2 and the proof is complete. ⇤
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4. I��������, ������� �������������� ��� ���������������
To prove Theorem 4 we proceed as in [22, Chapter 4, Section 5].
We assign to each V 2 G(n,n-m) an orthogonal projection V\ 2 Hom(Rn,Rn) onto V.

By [17, 3.1.19(2)] the set
G = {P 2 Hom(Rn,Rn) : P � P = P, P⇤ = P, traceP = n-m}

is a C1-submanifold of Rn

2 , and the mapping V 7! V\ is a C1-di�eomorphism and an
isometry.

Definition 4.1. Let ⌃ ⇢ Rn be an m-dimensional C1-submanifold of Rn and " > 0. A
map � : ⌃! G is called an "-normal map for ⌃ if � is C1-smooth, Lip(�) < 1 and if

k�(x)- (T
x

⌃)?\ k 6 " 8x 2 ⌃ .

Lemma 4.2 (nearly normal spaces of class C1). Let L,R,d > 0, ↵ 2 (0, 1], and ⌃ 2
C 1,↵
m,n(R,L,d). Then there exists a constant C = C(L,R,↵,m,n) > 1 such that for each
" 2 (0, 1] there is an "-normal map�"[⌃] : ⌃! G for⌃ satisfying, in addition, Lip(�"[⌃]) 6
C"-1/↵.

Remark. A similar statement for smooth manifolds (including the C1-case) can be found
in [45, Thm. 10A, p.121], but for the convenience of the reader, and to emphasise how the
constants depend quantitatively on the the parameters determining the class C 1,↵

m,n(R,L,d)
we provide the full argument here. We are going to construct �"[⌃] simply by mollifying
the map x 7! (T

x

⌃)\. Note that since ⌃ is embedded we do not need to use the center of
mass tool known from Riemannian geometry, which was used in [8].

Proof. For �0 : ⌃! G given by �0(x) := (T
x

⌃?)\ for x 2 ⌃, we first prove a simple Hölder
estimate as follows. For x,y 2 ⌃ we find

k�0(x)-�0(y)k = k(T
x

⌃)?\ - (T
y

⌃)?\ k 6

2|x- y|↵

min{R↵, (L
p

2)-1}
(50)

if |x- y|↵ > min{R↵, (L
p

2)-1}. If not, then y 2 B(x,R) so that we can use the local graph
representation

⌃ \ B(x,R) = (x+ graph(f)) \ B(x,R)
to express the point y as y = x + ⇠ + f(⇠) for some ⇠ 2 T

x

⌃ and the function f := f
x

2
C1,↵(T

x

⌃, T
x

⌃?) with f(0) = 0, Df(0) = 0, Lip(f) 6 1, and the Hölder estimate on Df as in
Definition 1. In other words, the mapping F(⇠) := x + ⇠ + f(⇠) for ⇠ 2 T

x

⌃ parameterises
⌃ over the tangent plane T

x

⌃ locally near x, so that its di�erential DF(⇠) : T
x

⌃! T
y

⌃ can
be used to estimate for an orthonormal basis {e1, . . . , e

m

} of T
x

⌃

dist(e
i

, T
y

⌃) 6 |e
i

-DF(⇠)e
i

| = |e
i

- (Id +Df(⇠))e
i

|

6 kDf(⇠)-Df(0)k 6 L|⇠|↵ 6 L|(x+ ⇠+ f(⇠))- x|↵ = L|y- x|↵ 8i = 1, . . . ,m,

where we also used that f(⇠) ? ⇠ by definition of f. Since |y - x|↵ < min{R↵, (L
p

2)-1} 6
(L
p

2)-1 in the present case, we can apply a quantitative linear algebra estimate [25,
Prop. 2.5] to find a constant C = C(m) such that

k�0(x)-�0(y)k = <)(T
x

⌃, T
y

⌃) 6 C(m)L|x- y|↵.
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Combining both cases leads to the desired Hölder estimate for �0 with Hölder constant

C0 = C0(L,R,↵,m) := max
⌦ 2

min{(L
p

2)-1,R↵}
,C(m)L

↵
.

Notice that the constant C0 does not depend on R or ↵ if R↵

> (L
p

2)-1.
Choosing an orthonormal coordinate system in Rn we can represent �0 as an (n⇥n)-

matrix of functions (�ij

0 )n
i,j=1 and extend each �ij

0 to all of Rn by setting

�ij

1 (x) = inf
z2⌃

{�i,j
0 (z) + C0|z- x|↵}

preserving the same Hölder exponent ↵ and Hölder constant C0 for each i, j = 1, . . . ,n
(cf. for the proof of [15, Theorem 1, p.80] which carries over to all ↵ 2 (0, 1]). The ma-
trix (�ij

1 )n
i,j=1 represents the Hölder continuous mapping �1 : Rn ! Hom(Rn,Rn) with

�1|⌃ = �0 and the estimate
k�1(x)-�1(y)k 6 C1|x- y|↵ 8x,y 2 Rn ,(51)

where C1 = C1(L,R,↵,m,n) := nC0(L,R,↵,m). Now let � 2 C1
0 (B(0, 1)) with �(x) = 1 for

all x 2 B(0, 1/2)), 0 6 �(x) 6 1 and |r�(x)| 6 4 for all x 2 B(0, 1), and
R
Rn

�(x)dx = 1,
and consider for r > 0 the usual scaling �

r

(x) := r-n�(x/r) to define the convolution
�2,r : Rn ! Hom(Rn,Rn) as

�2,r(x) = �r

⇤�1(x) =

Z

Rn

�
r

(x- z)�1(z)dz .

Since
k�1(z)k 6 k�1(x)k+ C1|x- z|↵ = k�0(x)k+ C1|x- z|↵ 6 1 + C1r

↵

6 1 + 2C1

for all x 2 ⌃, z 2 B(x, r), r 2 (0, 2], we find
(52) k�1(·)k 6 1 + 2C1 on ⌃+ B(0, 2),
where the constant on the right-hand side depends on L,R,↵,m, and n. Therefore, we can
estimate for x,y 2 ⌃+ B(0, 1), e 2 Sn-1, r 2 (0, 1),

(53) |�2,r(x)e| =
���
Z

Rn

�
r

(x- z)�1(z)e dz
��� 6

Z

B(x,r)
k�1(z)k�r

(x- z)dz 6 1 + 2C1,

because dist(z,⌃) 6 |z- x|+ 1 < 2 for all z 2 B(x, r), whence

(54) k�2,r(x)-�2,r(y)k 6 2(1 + 2C1) 6 2(1 + 2C1)
|x- y|

r

for all x,y 2 ⌃+B(0, 1) with |x-y| > r, r 2 (0, 1). On the other hand, for x,y 2 B(0, 1)+⌃
with |x- y| < r and for e 2 Sn-1 one estimates
����2,r(x)-�2,r(y)

�
e
�� =

���
Z1

0
r�2,r(tx+ (1 - t)y) · (x- y)e dt

���

6

1
rn+1

Z1

0

Z

B(tx+(1-t)y),r)

��r�
�
tx+(1-t)y-z

r

���k�1(z)kdzdt|x- y|.(55)

Since dist(tx+ (1- t)y,⌃) 6 dist(x,⌃) + (1- t)|x- y| for all t 2 [1/2, 1] and dist(tx+ (1-
t)y,⌃) 6 dist(y,⌃)+ t|x-y| for all t 2 [0, 1/2] we find dist(tx+(1- t)y,⌃) < 1+ r/2 for all
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t 2 [0, 1]; hence dist(z,⌃) < 1 + 3r/2 < 2 for all z 2 B(tx + (1 - t)y, r), r 2 (0, 2/3), which
implies k�1(z)k 6 1 + 2C1 for such z by virtue of (52), which inserted in (55) gives

k�2,r(x)-�2,r(y)k 6 4(1 + 2C1)
!

n

r
|x- y| 6 24(1 + 2C1)

|x- y|

r

=: C2(L,R,↵,m,n) |x- y|

r

(56)

for all x,y 2 ⌃ + B(0, 1) and r 2 (0, 2/3). (We have used that the volume !
n

of the n-
dimensional unit ball is at most 6 for all n = 1, 2, . . .)

Furthermore, for x 2 ⌃,

�0(x)-�2,r(x) =

Z

Rn

�
�0(x)-�1(z)

�
�
r

(x- z)dz =

Z

B(x,r)

�
�1(x)-�1(z)

�
�
r

(x- z)dz,

since �1|⌃ = �0, so that by (51)

(57) k�0(x)-�2,r(x)k 6 C1

Z

B(x,r)
|x- z|↵�

r

(x- z)dz 6 C1r
↵ < C2r

↵ 8x 2 ⌃, r > 0.

Since G is a C1-submanifold of Hom(Rn,Rn) ' Rn

2 , it has positive reach rG = rG(m,n) >
0 in the sense of Federer [16, Definition 4.1] such that the nearest point projection PG :
G + B(0, rG) ! G is C1-smooth; see, e.g., [18, Lemma, p. 153]3. In addition, for any � 2
(0, rG/2] it follows from [16, Theorem 4.8(8)] that PG has Lipschitz constant Lip(PG) 6 2
on G+ B(0, �).

According to (57) the map �3,r := PG ��2,r|⌃ maps ⌃ into G if C2r
↵

6 rG/2. Now choose
for a given " 2 (0, 1] first
(58) �0 = �0(L,R,↵,m,n) := min{rG, (2/3)↵C2, 1},

and then r
"

:= (�0/(2C2))
1/↵"1/↵ 2 (0, 2/3). Then �"[⌃] := �3,r

"

: ⌃! G as a composition
of C1-maps is also of class C1, and according to (56) with Lipschitz constant

(59) Lip(�"[⌃]) 6 Lip(PG)C2/r" 6 (2C2)
1+(1/↵)(�0")

-1/↵ =: C(L,R,↵,m,n)"-1/↵

Finally, �"[⌃] is an "-normal map for ⌃, since by (57)

k�"[⌃](x)-(T
x

⌃)?\ k = kPG��2,r
"

(x)-PG��0(x)k 6 Lip(PG)k�2,r
"

(x)-�0(x)k
(57)
< 2C2r

↵

"

6 ".
⇤

Remark 4.3. An inspection of the proof yields C0 6 C(m)L+ 2R-↵

6 c(m,n, l,p)(L+ 1),
↵ = 1 - p0(E)/p, whenever R,L are given by (10) for an energy threshold E > E(⌃) for
a particular energy E 2 {El

p

,T
p

,TG

p

}. This gives C2 6 c(m,n, l,p)(E1/p + 1). Assuming
w.l.o.g. that C2 >

3
2 , we obtain �0 in (58) unrelated to C2, and finally, for a fixed " 2 (0, 1

100)
and ↵ = ↵(p) = 1 - p0(E)/p,

Lip(�"[⌃]) 6 c(m,n, l,p)(E1/p + 1)1+(1/↵)�
-1/↵
0 , where �0 = min{rG, 1}.

3Formally, Foote [18, Lemma, p. 153] mentions only a neighbourhood of the manifold M. However, this
neighbourhood is defined via an application of the inverse function theorem, which – in light of Federer [16,
Theorem 4.8(13)] – is possible on the whole G+ B(0, rG).
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Definition 4.4. Let R,L,d > 0, and ↵ 2 (0, 1], ⌃ 2 C 1,↵
m,n(R,L,d), and for some " 2

(0, 1/100) let � : ⌃ ! G be an "-normal map for ⌃. For � > 0 define the �-normal neigh-
bourhood

N
�

(⌃,�) := {(x, v) 2 ⌃⇥ Rn : �(x)v = v, |v| < �}
and the map  

�

[⌃,�] : N
�

(⌃,�) ! Rn ,  
�

[⌃,�](x, v) := x+ v .

Lemma 4.5 (tubular neighbourhoods for C1,↵ manifolds). Assume R,L,d > 0, ↵ 2
(0, 1], and let ⌃ 2 C 1,↵

m,n(R,L,d), and for " 2 (0, 1/100) let � : ⌃ ! G be an "-normal
map for ⌃. Then there is a constant �

tub

= �
tub

(R,L,↵, ", Lip(�)) > 0 such that for all
� 2 (0, �

tub

]

(i)  =  
�

[⌃,�] is a C1-embedding,
(ii) (1/4)|(x - y,u - v)| 6 | (x,u) -  (y, v)| 6

p
2|(x - y,u - v)| for all (x,u), (y, v) 2

N
�

(⌃,�),
(iii) dist( (x, v),⌃) > 1

4 |v| for all (x, v) 2 N
�

(⌃,�), v 6= 0,
(iv) ⌃+ B(0, �/2) ⇢  

�

[⌃,�](N
�

(⌃,�)).

Proof. For any � > 0 the mapping  =  
�

[⌃,�] is the restriction of the smooth function
Rn ⇥ Rn 3 (x, v) 7! x+ v 2 Rn

to the C1-submanifold

N := N
�

(⌃,�)) =
[

x2⌃

⇥
{x}⇥

�
ker (�(x)- Id) \ B(0, �)

�⇤
;

hence  is of class C1. To show that  is an embedding it su�ces to prove that it is
bilipschitz, i.e., that (ii) holds, for su�ciently small �. For any (x,u), (y, v) 2 N one has

| (x,u)-  (y, v)| = |(x- y) + (u- v)| 6
p

2|(x- y,u- v)| ,(60)

and therefore it is enough to prove the estimate from below in (ii). Set

�
tub

:= min
�
R

4 , 1
4
⇣ "
L

⌘1/↵
, "

4 Lip(�)
, 1
�

.(61)

Assume 0 < � 6 �
tub

. For (x,u), (y, v) 2 N define the subspaces U := im�(x) and
V := im�(y) and observe that if |x- y| > 4� then, on the one hand,

| (x,u)-  (y, v)| > |x- y|- |u|- |v| > |x- y|- 2� > |x- y|/2,
and, on the other hand,

|(x- y,u- v)| 6 |x- y|+ |u- v| 6 |x- y|+ 2� 6 3
2 |x- y|,

so that

| (x,u)-  (y, v)| > 1
3 |(x- y,u- v)| .(62)

Thus we have to treat the case |x - y| < 4�. Since ⌃ 2 C 1,↵
m,n(R,L,d) and |x - y| < 4� 6 R,

we can use the local graph representation
⌃ \ B(x,R) = (x+ graph(f

x

)) \ B(x,R)
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for a function f := f
x

2 C1,↵(T
x

⌃, T
x

⌃?) satisfying f(0) = 0, Df(0) = 0, Lip(f) 6 1, and
the Hölder estimate for Df as in Definition 1, to find for y = x + ⌘ + f(⌘) 2 x + graph(f),
⌘ 2 T

x

⌃, by means of (14)

dist(y, x+ T
x

⌃) = |f(⌘)|
(14)
6 L|⌘|1+↵

6 L|x- y|1+↵

6 L(4�)↵|x- y|,
so that we obtain by our choice of �

tub

in (61)

|(T
x

⌃?)\(y- x)| = dist(y, x+ T
x

⌃)
(61)
6 "|x- y| .(63)

Using this estimate together with the fact that � is an "-normal map for ⌃ we can write
|U?

\ (x- y)| > |(T
x

⌃)\(x- y)|- kU?
\ - (T

x

⌃)\k|x- y|

> (1 - ")|x- y|- k�(x)- (T
x

⌃)?\ k|x- y| > (1 - 2")|x- y| ,(64)

which implies by means of |U\(x-y)|2 = |x-y|2- |U?
\ (x-y)|2 the inequality |U\(x-y)|2 6�

1 - (1 - 2")2�|x- y|2 ; hence,

(65) |U\(x- y)| 6 2
p
"|x- y|.

Recall our choice of �
tub

in (61) to estimate for u = �(x)u 2 U \ B(0, �) and v = �(y)v 2
V \ B(0, �)

|U?
\ (u- v)| = |U?

\ v| = |(U\ - V\)v| 6 |v|k�(x)-�(y)k 6 �Lip(�)|x- y|
(61)
6 "|x- y| ,(66)

so that
|U\(u- v)| = |(Id -U?

\ )(u- v)| > |u- v|- "|x- y| .(67)
Combining (64), (65), (66), (67) with the triangle inequality, we arrive at

| (x,u)-  (y, v)| = |(U?
\ +U\)

�
(x- y) + (u- v)

�
|

> |U?
\ (x- y) +U\(u- v)|- |U\(x- y)|- |U?

\ (u- v)|

(65),(66)
>

1p
2

⇣
|U?

\ (x- y)|+ |U\(u- v)|
⌘
- (2

p
"+ ")|x- y|

(67),(64)
>

⇣ 1p
2
(1 - 3")- 2

p
"- "

⌘
|x- y|+

1p
2
|u- v|

>

1
4 |(x- y,u- v)| ,(68)

since " 2 (0, 1/100). So, part (ii) of Lemma 4.5 follows from (60), (62), and (68), which –
as observed above – implies part (i) as well.

We now turn to the proof of part (iii). For (x, v) 2 N
�

(⌃,�) with v 6= 0, denote u :=
(T

x

⌃)?\ v and note that by definition of N and the fact that � is an "-normal map for ⌃,

(69) |u- v| =
���T

x

⌃)?\ -�(x)
�
v
��
6 k
�
T
x

⌃)?\ -�(x)k|v| < "|v|.

Since ⌃ 2 C 1,↵
m,n(R,L,d), we find for any y 2 ⌃ with |y- x| < 4�

tub

(61)
6 R as in (63)

dist(y, x+ T
x

⌃) 6 L|y- x|1+↵

6 "|y- x| .(70)
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On the other hand, if y 2 B(x+ u, 1
2 |v|), then

|y- x| 6 |y- (x+ u)|+ |u| 6 1
2 |v|+

���T
x

⌃
�?
\ v
��
6

3
2 |v|,(71)

and by (69)

(72) dist(y, x+ T
x

⌃) =
���T

x

⌃
�?
\ (y- x)

��
>

���T
x

⌃
�?
\ u
��-
���T

x

⌃
�?
\ (y- (x+ u))|

= |u|-
���T

x

⌃
�?
\ (y- (x+ u))

�� (69)
> |v|- |u- v|- |y- (x+ u)| >

�1
2 - "

�
|v| .

Combining (70), (71) and (72) would yield for y 2 ⌃ \ B(x+ u, 1
2 |v|) \ B(x, 4�

tub

)

�1
2 - "

�
|v|

(72)
6 |T

x

⌃?
\ (y- x)| = dist(y, x+ T

x

⌃)
(70)
6 "|y- x|

(71)
6

3
2"|v|

contradicting " 2 (0, 1/100) because |v| 6= 0. Since B(x + u, 1
2 |v|) ⇢ B(x, 4�

tub

) because
|u| 6 |v| < � < �

tub

, this can only mean that B(x+ u, 1
2 |v|) \ ⌃ = ;, which implies by (69)

dist( (x, v),⌃) > dist(x+ u,⌃)- |u- v| > 1
2 |v|- |u- v|

(69)
>

�1
2 - "

�
|v| > 1

4 |v| .

Finally we prove part (iv). For x 2 ⌃ 2 C 1,↵
m,n(R,L,d) there exists a function f = f

x

2
C1,↵(T

x

⌃, T
x

⌃?) with f(0) = 0, Df(0) = 0, Lip(f) 6 1, and the Hölder condition for Df in
Definition 1, such that by (61)

B(x, 4�
tub

) \ ⌃ = (x+ graph(f)) \ B(x, 4�
tub

).
For any ⇠ 2 T

x

⌃ \ B(0, 4�
tub

) one can use (14) and (61) to estimate

|f(⇠)|
(14)
6 L|⇠|1+↵

6 L(4�
tub

)↵|⇠| 6 "|⇠| .(73)
Again by (61) in combination with Definition 4.1 we have for ⇣ 2 B(x, 4�

tub

) \ ⌃

k�(⇣)-
�
T
x

⌃
�?
\ k 6 k�(⇣)-�(x)k+ k�(x)-

�
T
x

⌃
�?
\ k < Lip(�)4�

tub

+ " 6 2" .(74)

For fixed � 2 (0, �
tub

] consider the C1-functions
 : B(0, �) ! ⌃ given by  (w) := x+ (T

x

⌃)\w+ f
�
(T

x

⌃)\w
�

,

F : B(0, �) ! N
�

(⌃,�) defined by F(z) :=
�
 (z),�( (z))

�
T
x

⌃
�?
\ z
�

,
and G =

�
 
�

[⌃,�] � F
�
- x : B(0, �) ! Rn .

Employing (73) and (74) we obtain for z 2 B(0, �)
|G(z)- z| = | (z) +�( (z))(T

x

⌃)?\ z- x- (T
x

⌃)\z- (T
x

⌃)?\ z|

6 | (z)- (T
x

⌃)\z- x|+ |�( (z))(T
x

⌃)?\ z- (T
x

⌃)?\ z|

6 |f
�
(T

x

⌃)\z
�
|+ k�( (z))- (T

x

⌃)?\ k|(Tx⌃)?\ z|
(73),(74)

6 "|(T
x

⌃)\z|+ 2"|(T
x

⌃)?\ z| 6 2
p

2"|z| < 2
p

2"�,
so that we can apply Proposition 2.5 to get

B(0, �/2) ⇢ B(0, (1 - 2
p

2")�) ⇢ G(B(0, �)) =  
�

[⌃,�](F(B(0, �)))- x;
hence

x+ B(0, �/2) ⇢  
�

[⌃,�](F(B(0, �))) ⇢  
�

[⌃,�](N
�

(⌃,�)).



26 S£AWOMIR KOLASIŃSKI, PAWE£ STRZELECKI, AND HEIKO VON DER MOSEL

⇤

Proposition 4.6. Let ✓ 2 [0, 1], �,� 2 [0, 1) and k 2 {1, . . . ,n - 1} and suppose that
W, T 2 G(n, k) and U,V 2 G(n,n - k) satisfy <)(W, T) 6 ✓, <)(T ,U?) 6 �, <)(T ,V?) 6 �,
and <)(U,V) 6 �. Given any vectors w 2 W, t 2 T , u 2 U and v 2 V such that u+t = w+v
the following holds:

�
|u|- ✓

1-�

|w|
� �

1 - �

1-�

�
6 |v| 6

�
|u|+ ✓

1-�

|w|
� �

1 + �

1-�

�
(75)

and |u - v| 6 �

1-�

�
|u|+ ✓

1-�

|w|
�
+ ✓

1-�

|w| .(76)

F����� �. The situation in Proposition 4.6: the vectors u - w and v - t are equal.

Proof. Let P : Rn ! U be the oblique projection onto U with ker P = T and set ū =
P(u - w) 2 U, so that

w + (ū - u) = w + (P(u - w)- u) = w - Pw + Pu - u = w - Pw 2 ker P = T .
Thus we can apply Proposition 2.4 to z := u - ū 2 U =: Z and x := w 2 W =: X (with
Y := T implying <)(X, Y) 6 ✓, <)(Y,Z?) 6 �, and z - x 2 Y) to obtain |ū - u| 6 ✓|w|/(1 - �)
which directly leads to

|u|-
✓

1 - �
|w| 6 |u|- |ū - u| 6 |ū| 6 |u|+ |ū - u| 6 |u|+

✓

1 - �
|w| .(77)

Applying Proposition 2.4 now to x := ū 2 U =: X and to
z := ū - v = P(u - w)- v = u - v - Pw = w - t - Pw 2 T =: Z

(so that z- x = -v 2 V =: Y, and hence <)(X, Y) = <)(U,V) 6 � and <)(Y,Z?) = <)(V, T?) =
<)(V?, T) 6 �) to arrive at |ū - v| 6 �|ū|/(1 - �), and in consequence

|ū|
�
1 - �

1-�

�
6 |ū|- |ū - v| 6 |v| 6 |ū|+ |v - ū| 6 |ū|

�
1 + �

1-�

�
.
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This together with (77) gives the first part of the proposition. To get the second we use
(77) to write

|u - v| 6 |ū - v|+ |ū - u| 6 ✓

1-�

|w|+ �

1-�

|ū|
(77)
6

✓

1-�

|w|+ �

1-�

�
|u|+ ✓

1-�

|w|
�

. ⇤

Definition 4.7. For t 2 R we define the continuous map

m
t

: Rn ⇥ Rn ! Rn ⇥ Rn , m
t

(x, v) := (x, tv) .

Lemma 4.8 (bilipschitz di�eomorphisms). For R,L,d 2 (0,1),↵ 2 (0, 1], " 2 (0, 10-2)
let⌃1,⌃2 2 C 1,↵

m,n(R,L,d)with ⇢ := dH(⌃1,⌃2) < �tub

/8, and with "-normal map�1 : ⌃1 !
G for ⌃1, where �

tub

= �
tub

(R,L,↵, ", Lip(�1)) is the radius of the tubular neighbourhood
of ⌃1 established in Lemma 4.5. Set  :=  

�

tub

[⌃1,�1] and define

F : ⌃2 ! Rn by F :=  �m0 �  -1|
⌃2 ,

G : ⌃2 ! Rn by G := F- Id .

Then ⌃1 ⇢ im(F), and there exist C
l

= C
l

(L, Lip(�1)) > 1 and ⇢
G

= ⇢
G

(R,L,↵, ", Lip(�1))
2 (0, �

tub

/8] such that for all ⇢ = dH(⌃1,⌃2) 2 (0, ⇢
G

)

(i) Lip(G) 6 C
l

⇢↵/2,
(ii) |G(x)| 6 4 dist(x,⌃1) for all x 2 ⌃2,

(iii) F is a bilipschitz di�eomorphism onto its image ⌃1 satisfying
�
1 - C

l

⇢↵/2�|x- y| 6 |F(x)- F(y)| 6
�
1 + C

l

⇢↵/2�|x- y| 8x,y 2 ⌃2 .

F����� �. The definition of F : ⌃2 ! ⌃1. Thin nearly vertical lines represent "-normal
spaces to ⌃1. We have x =  (a, v), so that  -1|

⌃2(x) = (a, v) 2 R2n. Next, m0(a, v) = (a, 0),
and  (a, 0) = a+ 0 = a. This yields F(x) = a.

Proof. Notice that  -1 is well-defined on a neighbourhood of ⌃2 by virtue of Lemma
4.5 (iv), since dH(⌃1,⌃2) < �

tub

/8, so that for x 2 ⌃2 we find a unique pair (⇠, v) 2
N

�

tub

(⌃1,�1) such that x = ⇠+ v =  (⇠, v).
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By definition of the map F it is clear that im(F) ⇢ ⌃1, however, the converse ⌃1 ⇢ im(F)
is not so obvious. To establish that we use a topological argument by means of the degree
mod 2 as follows. For the l-plane P 2 G(n, l) denote the l- 1-dimensional sphere

Sl-1(⇠, r,P) := ⇠+ {v 2 P : |v| = r} for ⇠ 2 Rn, r > 0,
and observe that for ⇠ 2 ⌃1, r 2 (0, �

tub

),

Sn-m-1(⇠, r, im(�1(⇠))) =  (⇠, im(�1(⇠))) \ @B(0, r),
so that by virtue of Lemma 4.5 (iii) Sn-m-1(⇠, r, im(�1(⇠))) \ ⌃1 = ; and, in addition,
Sn-m-1(⇠, r, im(�1(⇠))) and ⌃1 are nontrivially linked for all r 2 (0, �

tub

), that is, the
map

⌃1 ⇥ Sn-m-1(⇠, r, im(�1(⇠))) 3 (w, z) 7! w- z

|w- z|
2 Sn-1

has non-vanishing degree mod 2, for each ⇠ 2 ⌃1 and r 2 (0, �
tub

), since ⌃1 is a com-
pact m-dimensional C1-submanifold without boundary. Since dH(⌃1,⌃2) < �

tub

/8 also
⌃2 and Sn-m-1(⇠, r, im(�1(⇠))) are non-trivially linked for each ⇠ 2 ⌃1 and for all r 2
(�

tub

/2, �
tub

), because dH(⌃1,⌃2) < dH(⌃1, Sn-m-1(⇠, r, im(�1(⇠)))), again by virtue of
Lemma 4.5 (iii). Therefore, each n-m-dimensional disk
(78) Dn-m(⇠, r, im(�1(⇠))) := ⇠+{v 2 im(�1(⇠)) : |v| 6 r} = im

�
 (⇠, im(�1(⇠))\B(0, r))

�

for ⇠ 2 ⌃1 and r 2 (�
tub

/2, �
tub

) contains at least one point of ⌃2; see [25, Lemma 3.5].
Take for fixed ⇠ 2 ⌃1 and r = 3�

tub

/4 one of those points
z 2 ⌃2 \ Dn-m(⇠, 3�

tub

/4, im(�1(⇠))),
and use (78) to express z as z = ⇠+ v =  (⇠, v) for some v 2 im(�1(⇠)) with |v| < 3�

tub

/4
to find

F(z) =  �m0 �  -1(z) =  �m0(⇠, v) =  (⇠, 0) = ⇠,
which establishes ⌃1 ⇢ im(F).
Remark. One can also prove that ⌃1 ✓ im F later, right after proving that F is bilipschitz
(i.e. after proving that G is Lipschitz): once this is established, F is a C1,↵ di�eomorphism
onto its image. Thus, the image of F is a submanifold of Rn — actually it is a submanifold
of ⌃1, of the same dimension as ⌃1. Hence, it is open in ⌃1, which can be seen using a
local graph representation; it is also closed in ⌃1 as a continuous image of a compact set.
Therefore, ⌃1 ⇠ im F is a connected component of ⌃1; assuming ⌃1 ⇠ im F is not empty and
using the definition of C 1,↵

m,n(R,L,d) one sees that ⌃1 ⇠ im F is at least R away from im F
which contradicts the assumption dH(⌃1,⌃2) 6 �tub

.
Proof of (i): If ⇢ = dH(⌃1,⌃2) = 0 then ⌃1 = ⌃2 and F = Id, and there is nothing to prove.
Assume ⇢ > 0 from now on. Let x,y 2 ⌃2 and set

a := F(x) , b := F(y) , X = �1(a) , Y = �1(b) .
Observe that, by Lemma 4.5(iii), |x-a| 6 4 dist( (a, x-a),⌃1) 6 4⇢ for  (a, x-a) = x 2
⌃1, and in the same way, |y- b| 6 4⇢, so that we infer immediately

|G(x)-G(y)| 6 |a- x|+ |b- y|

6 8⇢ 6 8p⇢ |x- y| for all x,y 2 ⌃2 with |x- y| >
p
⇢ .(79)
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Assume now that x,y 2 ⌃2 satisfy |x- y| <
p
⇢. Note that by Lemma 4.5(ii)

Lip(F) 6 Lip( )Lip(m0)Lip( -1) 6 4
p

2 ;(80)
hence, |a- b| = |F(x)- F(y)| 6 4

p
2|x- y| < 4

p
2⇢ .

Set
⇢0 := min

⌦
2-3�

tub

, (2L)-2/↵ , 2-6R2 , 2-12/↵Cang(L, 4)-2/↵ , 2-9 Lip(�1)
-2
↵

.

As �
tub

6 1, cf. (61) in the proof of Lemma 4.5, we have ⇢0 6

1
8 . If we require

(81) dH(⌃1,⌃2) = ⇢ < ⇢0 ,
then, as |a- x| < 4⇢, we can use Lemma 3.1 with A := 4 to write
(82) <)(T

a

⌃1, T
x

⌃2) 6 Cang(L, 4)⇢↵/2 .
Moreover, by (80) and the choice of ⇢0 above,

<)(X, Y) = k�1(a)-�1(b)k 6 Lip(�1)|a- b|

6 4
p

2 Lip(�1)|x- y| 6 4
p

2⇢Lip(�1) <
1
4 .

(83)

Thus, by (83), (82), and our choice of ⇢0

(84) <)(Y?, T
x

⌃2) 6 <)(Y?,X?) +<)(X?, T
a

⌃1) +<)(T
a

⌃1, T
x

⌃2)

(83)
6 4

p
2⇢Lip(�1) + k�1(a)- (T

a

⌃1)
?
\ k+<)(T

a

⌃1, T
x

⌃2)

(82)
6 4

p
2⇢Lip(�1) + "+ Cang(L, 4)⇢↵/2 < 1

2 .
Similarly,

(85) <)(Y?, T
a

⌃1) 6 <)(Y?,X?) +<)(X?, T
a

⌃1)
(83)
6 4

p
2⇢Lip(�1) + " < 1

2 .
These angle conditions imply by Lemma 2.2 that Y \ T

a

⌃1 = Y \ T
x

⌃2 = {0}, Therefore,
there exist points b̄, ȳ 2 Rn (see Figure 5) such that

(y+ Y) \ (a+ T
a

⌃1) = {b̄} , and (y+ Y) \ (x+ T
x

⌃2) = {ȳ} .(86)
Indeed, the characterisation {P(y- a)} = ((y- a) + Y) \ T

a

⌃1 of the well-defined oblique
projection P : Rn ! T

a

⌃1 along Y (see Remark 2.3) immediately gives b̄ := P(y - a) + a,
and similarly one finds ȳ.

To prove that G is Lipschitz we need to estimate |G(x) -G(y)| = |(x- a)- (y - b)|. To
this end, we shall first estimate |(x-a)-(ȳ- b̄)| treating |(ȳ- b̄)-(y-b)| 6 |b̄-b|+ |ȳ-y|
as a small error term. Employing (76) of Proposition 4.6 with

U := Y , V := X , W := T
x

⌃2 , T := T
a

⌃1 ,
u := ȳ- b̄ , v := x- a , w := ȳ- x , t := b̄- a ,

in combination with (82), (83), (84), (85) to estimate the angles by our choice of ⇢0

<)(W, T) 6 ✓ := Cang(L, 4)⇢↵/2, <)(U,V) 6 � := 4
p

2 Lip(�1)|x- y|,

max
⌦
<)(T ,U?),<)(T ,V?)

↵
6 � :=

1
2,
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F����� �. An enlarged fragment of F����� �. We have G(x) = a-x, G(y) = b-y. However,
to prove that G is Lipschitz, we do not deal with (a- x)- (b- y) directly. Instead, we use
Proposition 4.6 to estimate |(a- x)- (b̄- ȳ)|, and add an error term |b- b̄|+ |y- ȳ|, which
is small as both ⌃1 and ⌃2 are of class C 1,↵

m,n(R,L,d). The final dependence of Lip(G) on a
power of ⇢ is due to this error term.

we obtain

(87) |(x- a)- (ȳ- b̄)|

(76)
6 8

p
2 Lip(�1)|x- y|

⇣
|ȳ- b̄|+ 2Cang(L, 4)⇢↵/2|ȳ- x|

⌘
+ 2Cang(L, 4)⇢↵/2|ȳ- x| .

By (80) and the choice of ⇢0 we have

|a- b| < 4
p

(2⇢) < 4(2-5R2)1/2 < R , |a- b|1+↵

6 (4
p

2)2|x- y|1+↵ = 25|x- y|1+↵ .

Thus, since ȳ - y 2 Y and b̄ - b = (b̄ - y) + (y - b) 2 Y (we use (86) and note that
y =  (b,y- b) with y- b 2 �1(b) = Y), it follows from (80), (84) and (85) that

|ȳ- y| 6 2 dist(y, x+ T
x

⌃2) 6 2L|x- y|1+↵

and |b̄- b| 6 2 dist(b,a+ T
a

⌃1) 6 2L|a- b|1+↵

6 26L|x- y|1+↵ ,
(88)

where we estimated similarly as in (17). Hence, since we observed |y - b| 6 4⇢ earlier,
and |x- y| <

p
⇢ 6

1p
8 < 1, we obtain

|ȳ- b̄| 6 |ȳ- y|+ |y- b|+ |b̄- b| 6 27L|x- y|1+↵ + 4⇢ < (27L+ 4)⇢↵/2 ,

|ȳ- x| 6 |ȳ- y|+ |y- x| 6 |y- x|
⇣

1 + 2L⇢↵/2
⌘
6 2|x- y| < 2p⇢ < 1 .
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Therefore, plugging these two estimates into (87), and adding the error |ȳ - y| + |b̄ - b|
which can be estimated by (88), we compute

|G(x)-G(y)|

= |(x- a)- (y- b)| 6 |(x- a)- (ȳ- b̄)|+ |ȳ- y|+ |b̄- b|
(87),(88)

6 |x- y|⇢↵/2
⌦

8
p

2 Lip(�1)
⇥
27L+ 4 + 2Cang(L, 4)

⇤
+ 4Cang(L, 4) + 2L+ 26L

↵
.

As ⇢ < 1, taking into account Cang(L, 4) = 257L+ 8 (cf. Lemma 3.1), we finally obtain an
estimate of the Lipschitz constant of G,
(89) |G(x)-G(y)| 6 C

l

⇢↵/2|x- y|, C
l

= C
l

(L, Lip(�1)) := 104(Lip(�1) + 1)(L+ 1) .

Proof of (ii): Directly from the definition of  we infer  (F(x), x-F(x)) = F(x)+x-F(x) = x
for any x 2 ⌃2, so that we obtain from Lemma 4.5(iii)

dist(x,⌃1) = dist( (F(x), x- F(x)),⌃1)
L.4.5(iii)

>

1
4 |x- F(x)| = 1

4 |G(x)| 8x 2 ⌃2 .

Proof of (iii): Since F is a composition of C1-smooth functions it is C1-smooth. We can find
⇢
G

= ⇢
G

(R,L,↵, Lip(�1)) 2 (0, ⇢0) so small that
(90) C

l

⇢↵/2 < 1 for all ⇢ 2 (0, ⇢
G

),
and then

|F(x)- F(y)| 6 |x- y|+ |F(x)- x- (F(y)- y)|

= |x- y|+ |G(x)-G(y)|
(89)
6

�
1 + C

l

⇢↵/2�|x- y|.
The lower estimate in (iii) follows in the same manner; hence F is bilipschitz and, in con-
sequence, a di�eomorphism. ⇤

As a corollary we can can establish a bound on the Hausdor�-distance dH(⌃1,⌃2) under
which two submanifolds ⌃1,⌃2 2 C 1,↵

m,n(R,L,d) are actually ambient isotopic. Moreover,
in Lemma 4.10 we construct a global di�eomorphism of the ambient space mapping ⌃2
onto ⌃1. Both results will be essential ingredients in the proof of Theorem 4.
Corollary 4.9 (ambient isotopies). For R,L,d 2 (0,1), ↵ 2 (0, 1], and " 2 (0, 1/100) let
⌃1,⌃2 2 C 1,↵

m,n(R,L,d) with "-normal map �1 for ⌃1, such that dH(⌃1,⌃2) 2 (0, ⇢
G

), where
⇢
G

= ⇢
G

(R,L,↵, ", Lip(�1)) is the constant of Lemma 4.8. Then ⌃1 and ⌃2 are C1-ambient
isotopic.
Proof. According to [5, Theorem 1.2] it su�ces to come up with a C1-isotopy h : ⌃2 ⇥
[0, 1] ! Rn, i.e., a family of C1-embeddings h

t

(·) := h(·, t) : ⌃2 ! Rn, with
(91) ⌃1 = h(⌃2 ⇥ {0}) and h(⌃2 ⇥ {1}) = ⌃2.
Indeed, the map h(x, t) :=  � m

t

�  -1|
⌃2(x) for (x, t) 2 ⌃2 ⇥ [0, 1], and with m

t

(y, v) =
(y, tv) and  :=  

�

tub

[⌃1,�1] for y, v 2 Rn will do. Here �
tub

is the constant from Lemma
4.5 defined in (61), and �1 is an "-normal map for ⌃1.

Observe that part (iv) of Lemma 4.5 implies that ⌃2 ⇢  (N
�

tub

(⌃1,�1)), since we have
dH(⌃1,⌃2) < ⇢

G

< �
tub

/8 (see Lemma 4.8). Therefore,  -1 is a well-defined C1-map in
an open neighbourhood of ⌃2, which implies that h itself as a composition of C1-maps
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is of class C1. With Lemma 4.8 (iii) we obtain h(⌃2 ⇥ {0}) = F(⌃2) = ⌃1, and h(·, 0) is a
bilipschitz di�eomorphism from⌃2 onto⌃1. Moreover, one immediately sees that h(x, 1) =
 �m1� -1(x) = x for all x 2 ⌃2 by the very definition of m

t

for t = 1, so that h(⌃2⇥{1}) =
⌃2, which proves (91).

So, it remains to be shown that h(·, t) : ⌃ ! Rn is an embedding for each t 2 (0, 1).
Note that  : N

�

(⌃1,�1) ! Rn is bilipschitz for all � 2 (0, �
tub

] by Lemma 4.5 (ii),
and hence so is  -1 on  (N

�

tub

(⌃1,�1)). In addition, m
t

is bilipschitz for t 2 (0, 1), and
m

t

(N
�

(⌃1,�1)) ⇢ N
�

(⌃1,�1) for all t 2 [0, 1], � 2 (0, �
tub

]. Recall again from Lemma
4.5 (iv) that dH(⌃1,⌃2) < ⇢

G

< �
tub

/8 implies that ⌃2 ⇢  (N2dH(⌃1,⌃2)(⌃1,�1)), so
that  -1|

⌃2 is just the restriction of a C1-bilipschitz map, and in consequence h(·, t) is
bilipschitz and C1-smooth, and therefore a C1-di�eomorphism onto its image h(⌃2, t) for
each t 2 [0, 1]. Consequently, h(·, t) : ⌃2 ! Rn is an embedding for each t 2 [0, 1]. ⇤

Lemma 4.10 (di�eomorphisms of the ambient space). For R,L,d > 0, ↵ 2 (0, 1] there
exist constants ⇢

g

:= ⇢
g

(R,L,↵,n,m) and C
J

= C
J

(R,L,↵,n,m) > 0, such that for any two
manifolds ⌃1,⌃2 2 C 1,↵

m,n(R,L,d) with ⇢ := dH(⌃1,⌃2) 2 (0, ⇢
g

] there exists a bilipschitz
C1-di�eomorphism J : Rn ! Rn satisfying

(1) J(⌃2) = ⌃1,
(2) J(x) = x for x 2 Rn ⇠(⌃2 + B(0, ⇢

g

)),
(3) (1 - C

J

⇢↵/2)|z1 - z2| 6 |J(z1)- J(z2)| 6 (1 + C
J

⇢↵/2)|z1 - z2| for all z1, z2 2 Rn.

The constant ⇢
G

was introduced in Lemma 4.8.

Proof. Set " := 1/200. Lemma 4.2 guarantees the existence of "-normal maps�
i

: ⌃
i

! G

for ⌃
i

, i = 1, 2. Define  2 =  
�

tub

[⌃2,�2] as in Definition 4.4.
Choose ⇢0 = ⇢0(R,L,↵, Lip(�1), Lip(�2)) 2 (0, min{�

tub

/16, ⇢
G

/2}) so small that

4C
l

⇢↵/2 < " =
1

200 for all ⇢ 2 (0, ⇢0],(92)

where we denote by �
tub

= �
tub

(R,L,↵, Lip(�2)) the tubular radius for ⌃2 established
in Lemma 4.5 for our fixed " = 1/200. Moreover, ⇢

G

= ⇢
G

(R,L,↵, Lip(�1)) and C
l

=
C
l

(L, Lip(�1)) are the constants estimating the maps F,G : ⌃2 ! Rn in Lemma 4.8 for
" = 1/200. Consider the projections ⇡1,⇡2 : N2 := N

�

tub

/2(⌃2,�2) ! Rn via ⇡1(x, v) := x
and ⇡2(x, v) := v for (x, v) 2 N2, define the map � : N2 ! Rn by �(x, v) := F(x) + v, and
finally,

J̃ : ⌃2 + B(0, ⇢0) ! Rn , J̃ = � �  -1
2

and the map I : ⌃2 + B(0, ⇢0) ! Rn , I(z) = J̃(z)- z .

measuring the deviation of J̃ from the identity. According to Lemma 4.8(ii) one has for
x 2 ⌃2

|G(x)| = |F(x)- x| 6 4 dist(x,⌃1)

6 4dH(⌃2,⌃1) = 4⇢ 6 4⇢0 < �
tub

/4 for all ⇢ 2 (0, ⇢0] ,
(93)

and therefore, for z 2 ⌃2 + B(0, ⇢0) with  -1
2 (z) = (x, v),

I(z) = J̃(z)- z = (F(x) + v)- (x+ v) = F(x)- x = G(x) = G � ⇡1 �  -1
2 (z) ,(94)
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so
(95) |I(z)| 6 4⇢ < �

tub

/4,
whence J̃(⌃2+B(0, ⇢0)) ⇢ ⌃2+B(0, �

tub

/2). The identity (94) together with Lemma 4.5(ii)
applied to ⌃2 and  2 and Lemma 4.8(i) implies

Lip(I) 6 Lip(G)Lip( -1
2 ) 6 4C

l

⇢↵/2 .(96)
Thus, we can estimate the di�erence J̃(z1) - J̃(z2) = I(z1) - I(z2) + z1 - z2 using (94) for
z1, z2 2 ⌃2 + B(0, ⇢0) as

(1 - 4C
l

⇢↵/2)|z1 - z2| 6 |J̃(z1)- J̃(z2)| 6 (1 + 4C
l

⇢↵/2)|z1 - z2| ,(97)

so that by our choice of ⇢0 in (92), J̃ turns out to be bilipschitz, and since  -1
2 is C1 on

 2(N2) and
⌃2 + B(0, ⇢0) ⇢ ⌃2 + B(0, �

tub

/4)
Lem.4.5

⇢  2(N2),
and � is C1 on N2, the map J̃ is a C1-di�eomorphism from ⌃2 + B(0, ⇢0) onto its image.
Note that this image J̃(⌃2 + B(0, ⇢0)) contains ⌃1, since by Lemma 4.8, F maps ⌃2 di�eo-
morphically onto ⌃1. In particular, for any ⇠ 2 ⌃1 there is exactly one x 2 ⌃2 such that
F(x) = ⇠, so that for z = x + 0 one has J̃(z) = �(x, 0) = F(x) + 0 = ⇠. This also shows that
J̃(⌃2) = ⌃1.

To construct the global di�eomorphism we smoothly extend J̃ to all of Rn by the identity
in the following way. Let � 2 C1(R) be a cut-o� function satisfying 0 6 � 6 1 on R,
�(t) = 0 for t 6 ⇢0/8, �(t) = 1 for t > ⇢0/4, and |� 0(t)| 6 16/⇢0 for all t 2 R. Define
⌘ : ⌃2+B(0, ⇢0) ! R as ⌘(z) := |⇡2� -1

2 (z)|, and the transition term T : ⌃2+B(0, ⇢0) ! Rn

as T(z) := �(⌘(z))I(z), which is of class C1 since �(⌘(z)) vanishes for 0 6 ⌘(z) 6 ⇢0/8. In
addition, we can estimate the Lipschitz constant of the transition term using Lemma
4.5(ii) for ⌃2 and  2, (95), and (96) as

Lip(T) 6 Lip(� � ⌘)kIk1 + k� � ⌘k1 Lip(I) 6 162

⇢0
⇢+ 4C

l

⇢↵/2
6 C

T

⇢↵/2, ⇢ 2 (0, ⇢0]

(98)

for C
T

:= 162/⇢↵/2
0 + 4C

l

. The global di�eomorphism J : Rn ! Rn can now be defined as

J(z) :=

�
J̃(z)- T(z) for z 2 ⌃2 + B(0, ⇢0)
z otherwise ,

which is of class C1 since T(z) = I(z) (and hence J̃(z) - T(z) = z) if z is contained in the
transition zone ⌃2 + B(0, ⇢0) ⇠B(0, ⇢0/2). Indeed, then z = x + v for some (x, v) 2 N2
satisfying, by Lemma 4.5(ii),
⇢0
2 6 dist(z,⌃2) = dist( 2(x, v),⌃2) 6 | 2(x, v)-  2(x, 0)| 6

p
2|(x- x, v- 0)| =

p
2|v|,

so that |v| > ⇢0/(2
p

2) > ⇢0/4, from which ⌘(z) = |⇡2 �  -1
2 (z)| = |⇡2(x, v)| = |v| > ⇢0/4

follows, and thus �(⌘(z)) = 1 for such z in the transition zone. Combining (97) with (98)
we arrive at the desired bilipschitz estimate

�
1 - (4C

l

+ C
T

)⇢↵/2�|z1 - z2| 6 |J(z1)- J(z2)| 6
�
1 + (4C

l

+ C
T

)⇢↵/2�|z1 - z2| ,
which establishes Part (3) of Lemma 4.10 if we set C

J

:= 4C
l

+C
T

, and if we choose ⇢
g

=
⇢
g

(R,L,↵, Lip(�1), Lip(�2)) 2 (0, ⇢0) so small that C
J

⇢↵/2 < 1 for all ⇢ 2 (0, ⇢
g

]. Recall
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that we have fixed " = 1/200 and that Lip(�1) and Lip(�2) depend only on ",R,L,↵,m,n
according to Lemma 4.2, which means that ⇢0 and hence also ⇢

g

and C
J

actually depend
on R,L,↵,m,n only. ⇤

Remark 4.11. Inspecting the above proof one can see that

Lip(J- Id) = Lip(I- T) = Lip(I(1 - � � ⌘)) 6 162C
l

⇢0
⇢↵/2 .

Proof of Theorem 4. According to Definition 2 we have dH(⌃0,⌃
j

) ! 0 as j ! 1, so
that we can choose j0 such that dH(⌃0,⌃

j

) 6 ⇢
g

< ⇢
G

/2 for all j > j0, where ⇢
G

is
the constant from Lemma 4.8 for fixed " := 1/200. Therefore, by Corollary 4.9, ⌃

j

is
ambient isotopic to ⌃0 for all j > j0. Moreover, by means of Lemma 4.10 we can find
for each j > j0 a C1-di�eomorphism of the ambient space J

j

: Rn ! Rn such that
biLip(J

j

) 6 1 + C
J

dH(⌃1,⌃2)
↵/2 and J

j

(⌃
j

) = ⌃0. ⇤

5. S�������������
5.1. Preliminaries. Before passing to the proof of Theorem 2, we set up some notation,
and prove two technical lemmata which explain how our discrete curvatures change un-
der small bilipschitz perturbations of the identity map.
Definition 5.1. Let N 2 N and µ,⌫ 2 M (RN) be Radon measures. We set

D(⌫,µ, x) = lim
r#0

⌫(BN(x, r))
µ(BN(x, r)) ,

where we interpret 0/0 = 0.
Definition 5.2. For any function F : X ! Y and any l 2 N, we define F⇥l : Xl ! Yl by the
formula F⇥l(x1, . . . , x

l

) = (F(x1), . . . , F(x
l

)).

Definition 5.3. Let l 2 {1, 2, . . . ,m+ 2} and ⌃ 2 C 1,↵
m,n. For l 6 m+ 1, we define

K
l

[⌃](y0, . . . ,y
l-1) = sup

y

l

,...,y
m+12⌃

K(y0, . . . ,y
m+1) for y0, . . . ,y

l-1 2 ⌃

for K given in the introduction by formula (2). We additionally set K
m+2[⌃] ⌘ K.

Definition 5.4. Let A ⇢ Rn and l 2 N. We define the l-diagonal of A
�lA = {(x0, . . . , x

l

) 2 Al : x0 = x1 = · · · = x
l

} .

Formally, the integrands K and R-1
tp are defined only o� the diagonal �l⌃. It does

not matter how one defines them on the diagonal: it does not a�ect the integral, since
Hml(�l⌃) = 0. Below, we also freely use the equivalence of measuresHml

x⌃l ' (Hm

x⌃)l

which holds as long as⌃ is an embedded submanifold due to [17, 3.2.23]. (Actually, it holds
even if ⌃ is just a subset of the image of a single Lipschitz function.)
Remark 5.5. Let N 2 N and µ, ⌫ be Radon measures on RN. The Radon-Nikodym theo-
rem (cf. [28, Theorem 2.12]) implies that if ⌫ is absolutely continuous with respect to µ,
then for any f 2 L1(RN,⌫)

Z
f(x) d⌫(x) =

Z
f(x)D(⌫,µ, x) dµ(x) .
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Lemma 5.6. Let ⌃1,⌃2 2 C 1,↵
m,n, F : Rn ! Rn be a bilipschitz homeomorphism such that

F(⌃1) = ⌃2. Set µ = Hml

x⌃l

2 and ⌫ = (F⇥l)⇤(Hml

x⌃l

1). Then µ and ⌫ are mutually
absolutely continuous and

D(⌫,µ, x) 6 Lip(F-1)ml and D(µ,⌫, x) 6 Lip(F)ml

for all x 2 Rnl.
Proof. If x 2 Rnl ⇠⌃l

2, then dist(x,⌃l

2) > 0, so for 0 < r < dist(x,⌃l

2)we have µ(Bml(x, r)) =
0 = ⌫(Bml(x, r)) and, according to Definition 5.1, D(µ,⌫, x) = D(⌫,µ, x) = 0.

Note that Lip(F⇥l) = Lip(F) and (F⇥l)-1 = (F-1)⇥l. Furthermore, observe that for
x 2 ⌃l

2 and 0 < r < 1

⌃l

1 \ (F⇥l)-1(Bml(x, r)) = ⌃l

1 \ (F⇥l)-1(⌃l

2 \ Bml(x, r)) = (F⇥l)-1(⌃l

2 \ Bml(x, r)) ;
hence

⌫(Bml(x, r))
µ(Bml(x, r)) =

Hml((F⇥l)-1(⌃l

2 \ Bml(x, r)))
Hml(⌃l

2 \ Bml(x, r)) 6 Lip(F-1)ml

and consequently D(⌫,µ, x) 6 Lip(F-1)ml. The estimate for D(µ,⌫, x) is obtained by writ-
ing

⌃l

2 \ Bml(x, r) = F⇥l((F⇥l)-1(⌃l

2 \ Bml(x, r))) . ⇤

Lemma 5.7. Let ⌃1,⌃2 2 C 0,1
m,n, 0 < " < 1/2. Assume F : ⌃1 ! Rn is bilipschitz and

satisfies F(⌃1) = ⌃2, F(z) = z + G(z) for z 2 ⌃1 and some G : ⌃1 ! Rn having Lip(G) 6 ".
Then for any T 2 ⌃l

1 ⇠�
l⌃1 and l 2 {2, . . . ,m+ 2}

��K
l

[⌃2](F
⇥l(T))-K

l

[⌃1](T)
��
6 "C5.7 diam(4 T)-1 ,

where C5.7 = C5.7(m) > 0.
Proof. First we treat the case l = m + 2. Let T = (x0, . . . , x

m+1) 2 ⌃l

1 ⇠�
l⌃1. Set u

i

=
x
i

- x0, v
i

= F(x
i

) - F(x0) and e
i

= G(x
i

) - G(x0) for i = 1, 2, . . . ,m + 1. Observe that
v
i

= u
i

+ e
i

and that |e
i

| 6 "|u
i

|. We compute
���Hm+1(4 F⇥l(T))-Hm+1(4 T)

��� = 1
(m+1)!

���|v1 ^ · · ·^ v
m+1|- |u1 ^ · · ·^ u

m+1|
���

6

1
(m+1)! diam(4 T)m+1

m+1X

i=1

�
m+1

i

�
"i 6 2m+1

(m+1)! diam(4 T)m+1" .

Since (1 - ")diam(4 T) 6 diam(4 F⇥l(T)) 6 (1 + ")diam(4 T) and recalling " < 1/2, we
obtain

��K(F⇥l(T))-K(T)
��
6

"

1-"

⇣
K(T) + 2m+1

"

(m+1)!(1-")
1

diam(4T)

⌘
6 C"diam(4 T)-1 ,(99)

where C = C(m) > 0.
In case 2 6 l < m+ 2 for T = (x0, . . . , x

l-1) 2 ⌃l

1 ⇠�
l⌃1 we employ the assumption that

F is bilipschitz, so that we can write
(K

l

[⌃2] � F⇥l)(T) = sup
y

l

,...,y
m+12⌃2

K(F(x0), . . . , F(x
l-1),yl

, . . . ,y
m+1)

= sup
x

l

,...,x
m+12⌃1

K(F(x0), . . . , F(x
m+1))
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and using (99)

sup
x

l

,...,x
m+12⌃1

K(F(x0), . . . , F(x
m+1))

6 sup
x

l

,...,x
m+12⌃1

⇣
K(x0, . . . , x

m+1) + C"diam({x0, . . . , x
m+1})

-1
⌘

6 K
l

[⌃1](T) + C"diam(4 T)-1 .

In the same way we obtain the lower bound

sup
x

l

,...,x
m+12⌃1

K(F(x0), . . . , F(x
m+1)) > K

l

[⌃1](T)- C"diam(4 T)-1 . ⇤

A similar lemma does hold for the Rtp function.

Lemma 5.8. Let ⌃1,⌃2 2 C 0,1
m,n, 0 < " < 1/2. Assume F : ⌃1 ! Rn is bilipschitz and

satisfies F(⌃1) = ⌃2, F(z) = z + G(z) for z 2 ⌃1 and some G : ⌃1 ! Rn having Lip(G) 6 ".
Then for Hm-almost all x1,y1 2 ⌃1, x1 6= y1, we have

����
1

Rtp[⌃1](x1,y1)
-

1
Rtp[⌃2](F(x1), F(y1))

���� 6
C5.8 "

|x1 - y1|
,(100)

where C5.8 = C5.8(m) > 0.

Proof. Set x2 = F(x1), y2 = F(y1). Without loss of generality, by the classic Rademacher
theorem, assume that G is di�erentiable at x1 and the tangent spaces to both manifolds,
U

i

:= T
x

i

⌃
i

, are well defined for i = 1, 2. Then,
1

Rtp[⌃
i

](x
i

,y
i

)
=

2d
i

|x
i

- y
i

|2
, i = 1, 2,

where d
i

= dist(y
i

- x
i

,U
i

). By the triangle inequality,
����

1
Rtp[⌃1](x1,y1)

-
1

Rtp[⌃2](F(x1), F(y1))

���� 6

2|d1 - d2|

|x1 - y1|2
(101)

+ 2d2

����
1

|x1 - y1|2
-

1
|x2 - y2|2

���� .

We shall show that each of these two terms is controlled by a constant multiple of "|x1 -
y1|

-1. Indeed, since d
i

6 |x
i

- y
i

| and

(1 - ")|x1 - y1| 6 |x2 - y2| = |F(x1)- F(y1)| 6 (1 + ")|x1 - y1| ,

we easily estimate the second term on the right hand side of (101),

2d2

����
1

|x1 - y1|2
-

1
|x2 - y2|2

���� 6
2|x2 - y2|

|x1 - y1|2|x2 - y2|2

���|x1 - y1|
2 - |x2 - y2|

2
���

6

2
(1 - ")|x1 - y1|3

· "(2 + ")|x1 - y1|
2(102)

<
10"

|x1 - y1|
as " 2 (0, 1

2).



COMPACTNESS AND FINITENESS OF ISOTOPY TYPES 37

To estimate the first term on the right hand side of (101), it is enough to check that
|d1 -d2| 6 C"|x1 -y1|. Note that d

i

= dist(x
i

-y
i

,U
i

) = |(x
i

-y
i

)- (U
i

)\(xi-y
i

)|, so that
|d1 - d2| 6 |(x1 - y1)- (x2 - y2)|+ |(U1)\(x1 - y1)- (U2)\(x2 - y2)|

6 "|x1 - y1|+
��(U1)\

�
(x1 - y1)- (x2 - y2)

���+ |((U1)\ - (U2)\)(x2 - y2)|(103)
6 2"|x1 - y1|+ k(U1)\ - (U2)\k · (1 + ")|x1 - y1| .

By the assumption on F and x1, we have
U2 = DF(x1)(U1) = (Id +DG(x1))(U1) , kDG(x1)k 6 "

The estimate of the angle between m-planes, see [25, Prop. 2.5], yields k(U1)\ - (U2)\k 6

C" for some constant C = C(m), and the lemma follows. ⇤

5.2. Semicontinuity, compactness and existence of minimizers. We are now ready
to give the proof of Theorem 2 and Corollary 1. We begin with lower semicontinuity which
is crucial for the compactness of sublevel sets of geometric curvature energies and the
existence of energy minimizers in isotopy classes.
Proof of part (i) of Theorem 2. Fix l 2 {1, 2, . . . ,m+ 2}. For j 2 N [ {0} let ⌃

j

2 AE
m,n(E,d).

Assume that ⌃
j

converges in Hausdor� distance to ⌃ and, without loss of generality, such
that
(104) lim

j!1
E(⌃

j

) = lim inf
j!1

E(⌃
j

).

Hence for some fixed x 2 ⌃ we find a sequence of points x
j

2 ⌃
j

such that x
j

! x as
j ! 1, so that the shifted submanifolds ⌃̃

j

:= ⌃
j

- x
j

converge in Hausdor�-distance
to ⌃̃ := ⌃ - x. Hence 0 2 ⌃̃ and 0 2 ⌃̃

j

, and by translation invariance of the geometric
curvature energies, E(⌃̃

j

) = E(⌃
j

) 6 E for all j 2 N. Thus, by the Regularity Theorem, ⌃
j

2
C 1,↵
m,n(R,L,d), for appropriate R,L given by (10) depending only on the fixed p and on the

uniform energy threshold E. Hence, by the compactness result in C 1,↵
m,n(R,L,d), Theorem

3, we find a subsequence still denoted by ⌃̃
j

and some submanifold ⌃̃0 2 C 1,↵
m,n(R,L,d)

such that ⌃̃
j

! ⌃̃0 in C 1,↵
m,n (see Definition 2), which immediately implies that ⌃̃ = ⌃̃0 is

contained in C 1,↵
m,n(R,L,d), so that we can apply all results of Section 4 to ⌃̃

j

and ⌃̃, and, in
addition, we may evaluate the energy at ⌃ = ⌃̃ + x to obtain E(⌃) = E(⌃̃), so it is enough
to establish E(⌃̃) 6 lim

j!1 E(⌃̃
j

). To simplify notation, we identify ⌃̃ with ⌃, and ⌃̃
j

with
⌃
j

from now on.
We may also assume that for each j

dH(⌃
j

,⌃) < ⇢
g

, where ⇢
g

is given by Lemma 4.10.
Now, for j 2 N set µ

j

:= Hml

x⌃l

j

, µ := Hml

x⌃, and let J
j

: Rn ! Rn be the di�eomorphism
constructed in Lemma 4.10 such that J

j

(⌃) = ⌃
j

.
Observe that, by Lemma 4.10, biLip(J

j

) 6 1+C
J

dH(⌃,⌃
j

)↵/2. Moreover, the restriction
F
j

: = J
j

|
⌃

satisfies
(105) F

j

(x) = x+G
j

(x) on ⌃, Lip(G
j

) =: "
j

, "
j

! 0 as j ! 1,
since by Lemma 4.8 "

j

6 C
l

dH(⌃
j

,⌃)↵/2.
Step 1 (fixing the domain of integration). We shall first check that if F 2 {El

p

,T
p

,TG

p

} is
one of the energies considered, then – in order to check that F(⌃) 6 lim inf F(⌃

j

) – we can
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consider the limes inferior of a sequence of integrals over a fixed domain ⌃, with appro-
priately perturbed integrands. (In our application we could write actual limits because
of (104), but that does not a�ect any of the following arguments.)

Indeed, in each of the cases considered we have

(106) F(⌃) =

Z

⌃

l

(K
⌃

)p dHml for an appropriate integrand K
⌃

: ⌃l ! [0,1] .

(To fix the ideas, we assume in all cases K
⌃

⌘ 1 on �l⌃; this does not a�ect the value of
F as Hml(�l⌃) = 0.) Thus, changing the variables and using Lemma 5.6, for a sequence
of ⌃

j

’s with sup
j

F(⌃
j

) finite we obtain
����F(⌃j

)-

Z �
K
⌃

j

� J⇥l

j

�
p

dµ

���� =

����
Z �

K
⌃

j

�
p

dµ
j

-

Z �
K
⌃

j

� J⇥l

j

�
p

dµ

����

=

����
Z �

K
⌃

j

�
p

dµ
j

-

Z �
K
⌃

j

�
p

d((J⇥l

j

)⇤µ)

����

=

����
Z �

K
⌃

j

�
p

⇣
1 -D

�
(J⇥l

j

)⇤µ,µ
j

, ·)
⌘

dµ
j

����

6 C

 

sup
j

F(⌃
j

)

!

dH(⌃
j

,⌃)↵/2 j!1���! 0 .

The last inequality follows from the fact that by Lemma 5.6 applied to ⌫ = (J⇥l

j

)⇤µ and
µ = µ

j

we have the density estimate
1

�
Lip J

j

�
ml

6 D
�
(J⇥l

j

)⇤µ,µ
j

, ·) 6
�

Lip J-1
j

�
ml

Therefore, as biLip(J
j

) 6 1 + C
J

dH(⌃,⌃
j

)↵/2 ! 1, we have

(107)
���1 -D

�
(J⇥l

j

)⇤µ,µ
j

, ·)
��� 6 CdH(⌃

j

,⌃)↵/2 .

All this yields

lim inf
j!1

Z �
K
⌃

j

� J⇥l

j

�
p

dµ = lim inf
j!1

F(⌃
j

) .(108)

Below, we work with the left hand side of (108).
Step 2 (energies with at least two integrals over the manifold). Suppose now that l > 2. If
F = El

p

, l > 2, with the integrand

K
⌃

= K
l

[⌃] : ⌃l ! [0,1)

being the discrete curvature from Definition 5.3, then, by Lemma 5.7, we have

(109) K
⌃

(T) 6 K
⌃

j

�
F⇥l

j

(T)
�
+

C(m) "
j

diam T
, T 2 ⌃l ⇠�l⌃ .

If on the other hand F = T
p

(so that l = 2), and

K
⌃

=
1

Rtp[⌃]
: ⌃⇥ ⌃! [0,1],
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with the tangent–point radius Rtp defined on ⌃2 ⇠�2⌃ by (4), then inequality (109) holds
by Lemma 5.8. Thus, in both cases we can use (109) to write, for a fixed T 2 ⌃l ⇠�l⌃,

K
⌃

(T)p 6 lim inf
j!1

✓
K
⌃

j

�
F⇥l

j

(T)
�
+

C(m) "
j

diam T

◆
p

= lim inf
j!1

K
⌃

j

�
J⇥l

j

(T)
�
p (as J

j

= F
j

on ⌃).

Since Hml(�l⌃) = 0, we can now ingrate both sides w.r.t. µ and invoke Fatou’s lemma
(cf. [17, 2.4.6]) to obtain

F(⌃) =

Z
K
⌃

(T)p dµ 6

Z
lim inf
j!1

K
⌃

j

�
J⇥l

j

(T)
�
p

dµ

6 lim inf
j!1

Z
K
⌃

j

�
J⇥l

j

(T)
�
p

dµ

= lim inf
j!1

F(⌃
j

)

by (108). This concludes the proof of Theorem 1 for F = El

p

with l > 2 and for F = T
p

.

Step 3 (energies with a single integral). The case l = 1, i.e. when F = E1
p

, resp. F = TG

p

,
needs a separate treatment. We shall now work with the auxiliary integrands

K
⌃

: ⌃⇥ ⌃! [0,1) ,
using K

⌃

= K2[⌃] for F = E1
p

, resp. K
⌃

= 1/Rtp[⌃] for F = TG

p

.
The argument from Step 2 does not work here, as for l = 1 we deal with simplices T

that degenerate to one point, and (109) would yield nothing. To avoid this problem, we
remove a small neighbourhood of the diagonal, and pass to the limit twice. Here are the
details.

For a fixed s 2 N, set
(110) K

⌃,s(x) = sup
y2⌃

|y-x|>1/s

K
⌃

(x,y) , x 2 ⌃ .

Define
F
s

(⌃) =

Z

⌃

Kp

⌃,s dH
m .

Note that 0 6 Kp

⌃,1 6 Kp

⌃,2 6 . . ., Kp

⌃,s % Kp

⌃

as s ! 1, so that by the monotone con-
vergence theorem, we have in each of the two cases (F = E1

p

or F = TG

p

) that are being
considered
(111) F(⌃) = sup

s2N
F
s

(⌃) = lim
s!1

F
s

(⌃) .

Repeating Step 1 for each of the F
s

, we obtain

(112) lim inf
j!1

Z �
K
⌃

j

,s � Jj
�
p

dµ = lim inf
j!1

F
s

(⌃
j

) .

Rewriting (109) for l = 2, T = (x,y), x 6= y 2 ⌃, for the auxiliary integrands K
⌃

, we obtain

(113) K
⌃

(x,y) 6 K
⌃

j

�
F
j

(x), F
j

(y)
�
+

C(m) "
j

|x- y|
.
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We shall use this estimate for s fixed and j > 1 so large that "
j

< 1
s+1 (keep in mind that

"
j

! 0 as j ! 1). Then, for points x,y 2 ⌃ with |x- y| > 1
s

, we have

|F
j

(x)- F
j

(y)| > (1 - "
j

)|x- y| >

✓
1 -

1
s+ 1

◆
1
s
=

1
s+ 1,

and upon taking the suprema of both sides of (113) with respect to y 2 ⌃, |x- y| > 1
s

, we
obtain

(114) K
⌃,s(x) 6 K

⌃

j

,s+1(Fj(x)) + C(m)s · "
j

.

Thus, for each x 2 ⌃,
K
⌃,s(x)

p

6 lim inf
j!1

K
⌃

j

,s+1(Fj(x))
p .

Integration and Fatou’s lemma yield now

F
s

(⌃) 6 lim inf
j!1

Z
K
⌃

j

,s+1(Fj(x))
p dµ

(112)
= lim inf

j!1
F
s

(⌃
j

)(115)

6 lim inf
j!1

F(⌃
j

) ,

as F
s

6 F for all s 2 N. Upon taking the supremum of the left-hand sides with respect to
s 2 N, in light of (111), we conclude the proof for F = E1

p

and for F = TG

p

. ⇤

Proof of part (ii) of Theorem 2. As in the proof of the first part we can assume that all
⌃
j

contain the origin, so that the Regularity Theorem implies that ⌃
j

2 C 1,↵
m,n(R,L,d) for

all j 2 N, where the parameters R,L are given by (10) and do not depend on j. Thus,
Theorem 3 implies that there is a subsequence (still denoted by ⌃

j

) and a submanifold
⌃ 2 C 1,↵

m,n(R,L,d), such that ⌃
j

! ⌃ in C 1,↵
m,n, i.e., in the sense of Definition 2, which implies

in particular that ⌃
j

! ⌃ in Hausdor�-distance, that diam⌃ 6 d, and that ⌃ 2 C 0,1
m,n

Therefore, we may evaluate the energy E on ⌃. Part (i) implies that ⌃ 2 AE
m,n(E,d). ⇤

Proof of Corollary 1. Notice that the class

C := {⌃ 2 AE
m,n(E,d) : ⌃ is ambient isotopic to M0}

contains the reference manifold M0, so that we can find a minimising sequence (⌃
j

)
j

⇢ C

with E(⌃
j

) ! infC E as j ! 1. The uniform energy bound E implies by the Regularity
Theorem that ⌃

j

2 C 1,↵
m,n(R,L,d) for all j 2 N, where the parameters R,L depend only on

the energy bound and on the integrability parameter p, so that we can apply the improved
compactness result, Theorem 3, to deduce the existence of a subsequence (still denoted
by ⌃

j

) that converges to a limit submanifold ⌃0 2 C 1,↵
m,n(R,L,d) in C 1,↵

m,n. Then the isotopy
result, Theorem 4, implies that ⌃

j

is ambient isotopic to ⌃0 for j su�ciently large, which
implies that ⌃0 2 C. Part (i) of Theorem 2 finally leads to

inf
C

E 6 E(⌃0) 6 lim inf
j!1

E(⌃
j

) = inf
C

E,

which concludes the proof. ⇤
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6. B����� �� ��� ������ �� �������������� ��� ������� �����
Proof of Theorem 1. Fix an energy E 2 {El

p

,T
p

,TG

p

} and a p > p0(E). Let ⌃ 2 AE
m,n(E,d)

be a manifold with controlled energy and diameter, cf. (1). Translating ⌃ if necessary, we
have ⌃ 2 C 1,↵

m,n(R,L,d) by the Regularity Theorem, where the parameters R and L depend
only on E and p. Thus, ⌃ ⇢ [-d,d]n.

Now fix " := 1/200 and let F = {Q1,Q2, . . .Q
N

} be a minimal collection of closed cubes
of edge e := ⇢

G

/(2pn) covering [-d,d]n; here ⇢
G

> 0 is the constant of Lemma 4.8 and
Corollary 4.9 for " = 1/200. Notice that the dependence of ⇢

G

on the Lipschitz constant
of an "-normal map for ⌃ boils down to ⇢

G

= ⇢
G

(R,L,↵,m,n) since we have fixed "; see
Lemma 4.2. Clearly, the cardinality of F satisfies

(116) H0(F) = N 6 kn, with k =
l2dpn

⇢
G

m
.

Following Durumeric [14, Section 5] (see also the remarks in Peters [30, Section 5]), to
each ⌃ 2 C 1,↵

m,n(R,L,d) we assign the subset P(⌃) ⇢ F which consists of those cubes Q 2 F
that intersect ⌃, i.e.

Q 2 P(⌃) ⇢ F () Q \ ⌃ 6= ; .

If P(⌃1) = P(⌃2), then obviously dH(⌃1,⌃2) does not exceed the diameter of all the
Q

i

which equals e
p
n = ⇢

G

/2. Hence, by Corollary 4.9, ⌃1 and ⌃2 are ambient isotopic.
Therefore, the number of distinct isotopy classes of manifolds ⌃ 2 AE

m,n(E,d) is not larger
than K = 2N, the number of all subsets of F.

Finally, since ⇢
G

= ⇢
G

(R,L,↵,m,n) depends only on R and L which are given, for a
particular energy E and an upper energy bound E, by (10) in the Regularity Theorem,
and on ↵ = 1 - p0(E)/p, it is clear that K = K(E,d,m,n,p). ⇤

Remark 6.1. The estimate K 6 2N is obviously not optimal for connected manifolds. If
⌃ is connected, then the union of all cubes in P(⌃) is connected, too; thus, one only needs
to count those subsets of F which have connected unions. (For n = 1 there are 2k subsets
of the family of intervals and only O(k2) connected subsets!) One can prove [33] that the
number Kcon of such subsets of F satisfies
(117) (2 - a(n))N 6 Kcon 6 (2 - b(n))N , N 6 kn ,
where a,b : N ! (0,1) are positive (but go to zero as the dimension n ! 1).

Here is the gist of the argument. Assume for the sake of simplicity that the closed cubes
in F have disjoint interiors, and that k = 2d/" is divisible by 3.

To obtain the upper bound, divide [-d,d]n into larger cubes eQ, each of them consisting
of 3n of the initial Q

j

’s. In each eQ0, one Q
j0 — call it central — contains the center of eQ0

and is separated from other eQ
i

’s by a layer of small Q
j

’s. Now, if for a connected ⌃ the
subset P(⌃) contains one of the small central Q

j

’s, then it must contain at least one small
cube from the layer around this Q

j

unless the whole P(⌃) = {Q
j

}. This limits the number
of possible choices of P(⌃) and yields the upper bound in (117).

To obtain the lower bound, one constructs a specific family of subsets of F with con-
nected unions, e.g. as follows. Let X ⇢ F consist of kn-1 little cubes adjacent to a fixed
(n - 1)-dimensional face of [-d,d]n (think of it as the bottom face) and of (k/3)n-1 thin
vertical, symmetrically placed ‘towers’ standing on the bottom face, each of these towers
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consisting of k- 1 little cubes and reaching to the top of the whole box [-d,d]n. Thus,

the number of cubes in X = kn-1 +
1

3n-1k
n-1(k- 1) .

Note that adding to X any subset of F ⇠X, we obtain a family of cubes with connected
union (because each of the cubes in F ⇠X touches one of the towers in X). From this, one
obtains the lower bound for Kcon.

It is however clear that (117) does not take into account any global information on ⌃
(e.g., it does not exclude those subsets of F that are too small or too flat to cover a ⌃ with
E(⌃) 6 E).
Remark 6.2 (Explicit bounds). One can track an estimate of N (the number of little
cubes in F) in terms of the energy bounds E(⌃) 6 E etc. as follows.

(i) Note that R and L given by (10) in the Regularity Theorem satisfy R↵L = c(m,n, l,p).
(ii) Lemma 3.1 with A = 4 yields Cang(L, 4) = 257L+ 8.

(iii) Lemma 4.2 gives the Lipschitz constant of the "-normal map, cf. (59) and Re-
mark 4.3.

(iv) The number ⇢
G

for fixed " = 1/200 emerges in Lemma 4.8 and Corollary 4.9, via
the constant C

l

; a combination of (89)–(90) with (i) above shows that we can have,
e.g.,

1
⇢
G

= C
2/↵
l

6 c(m,n, l,p)(L+ 1)2(2↵+1)/↵2

6 c̃(m,n, l,p)
�
E1/p + 1

�2(2↵+1)/↵2
, ↵ = 1 -

p0(E)

p
.

Plugging the last estimate into log log K 6 log N 6 n log
�
1 + 2dpn/⇢

G

�
, one obtains the

bound (9) stated in the Introduction.
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