Chapter 1

Time Series Modelling

1.1 Introduction

An observed time series is a set of observations (z;)ie7 where 7 denotes an indexing set of finite size;
each observation x; is recorded at a specific time, related to the index t. z; may be vector-valued if we
are considering a multivariate time series, where the components may be influencing each other.

This course deals with Time Series models and their applications. We consider four areas of

application:

1. The forecasting of future values of a time series from current and past values.

2. Computing a transfer function of a system, which shows the effect on the output of a system on

any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and assess the effects

of unusual intervention events on the behaviour of a time series.

4. Examining relationships between several related time series of interest and establishing multi-

variate dynamic models to represent these joint relationships over time.

For now, we consider univariate time series; each x; € R. We consider vector valued time series later.

1.2 Time Series Models

Definition 1.1 (Time Series Model). A time series model for the observed data {xy : t € T} is the
hypothesis that the observed data is an observation of a sequence of random variables { Xy : t € T} and

the specification of its joint probability distribution, or possibly only its expectations and covariances.

A time series can only be observed at a finite number of times, (x)7; and the n observations are a
realisation of an n dimensional random vector X = (X1, Xa,...,X,). These random variables may be

considered to come from an infinite sequence {X;, t € Zy or Z}, a stochastic process.
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Definition 1.2 (Stochastic Process). A stochastic process is a family of random variables {X; : t € T},
indexed by a set T, which is defined on a probability space (Q2, F,P).

Example 1.1 (The binary process).

A simple example of a stochastic process {X;, t € Z,} is a process where the variables are i.i.d.

(independent identically distributed) satisfying
PX;=1)=P(X;=-1) = -.
For this process, the finite dimensional marginals are well defined; for any i1 < ... < iy,
]P)(X’u - jla Xi2 - j27 e 9Xin - ]n) - 27”
for any {j1,...,jn} € {—1,1}"™. O

Definition 1.3 (IID noise). A process { Xy, t € Z} is said to be an IID noise with mean p and variance

o?, written

{Xt} ~ [[D(:u’7 0-2)7

if the random wvariables Xy are independent and identically distributed with E[X;] = p and Var(X;) =

a2

Usually, we are interested in 1ID(0, o) noise.

Notation Througout, Var(.) will be used to denote variance.
The binary process is clearly an example of an IID(0, 1) noise, since the variables are independent,
E[X;] =—-1x $+1x%=0and Var(X;) = E[X}] - E[X}] = E[X?] = 1.

In many situations, the complete specification of the underlying stochastic process is not required; the
methods will generally rely only on its means and covariances. Sometimes even less general assumptions

are needed, but these will not be treated here.

Definition 1.4 (Mean function, Covariance function). Let {Xy, t € T} be a stochastic process with
Var(X;) < oo for each t € T. The mean function of {X;} is denoted by px, or simply p when there

is no danger of ambiguity:

ux(t) =E[X)], teT (1.1)

The covariance function of {X;} is denoted by Cx or C when there is no danger of ambiguity and is
defined as:

Cx(r,s) == Cou(X,, Xs), r,seT. (1.2)
The symbol Cov will be used to denote covariance.
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1.3 Stationarity and Strict Stationarity

A stochastic process is said to be stationary, if its statistical properties do not change with time.

Formally, stationarity is defined in the following way.

Definition 1.5 (Stationary, Strictly Stationary, Wide sense stationary). A time series {Xy, t € Z} is

said to be weakly stationary, or wide sense stationary, or simply stationary if

1. Var(Xy) < oo forallt € Z,
2. ux(t)=p foralteZ,

3. Cx(r,r+h) =Cx(0,h) forallr,h € 7Z.

A process is said to be strictly stationary if any finite collection (X,,,, ..., Xp,) has the same distribution

as (Xn 4t -, Xnytt) for any k> 1 and any (n1,...,nk, t) € Z.

In many practical situations, only weak stationarity is considered; usually only expectation and covari-
ance, at most, can reasonably be assessed from data. In some situations, though (for example ARCH
and GARCH processes, which arise in the analysis of financial time series) it is worthwhile placing

additional modelling assumptions on the data generation mechanism.

The third point in the definition of weak stationarity implies that Cx(r, s) depends on r and s only

through r — s. It is therefore convenient to define

vx (h) := Cx(h,0).

When only one time argument appears in +, then it denotes the autocovariance (ACVF) function of a

stationary process. The value h is referred to as the lag.

Definition 1.6. Let { Xy, t € Z} be a stationary time series. The autocovariance function (ACVF) of
{X:} is defined as
vx (h) = Cov(Xyin, Xt).

The autocorrelation function (ACF) is defined as:

o vx (h)
px(h) = 7x(0)°

A simple example of a stationary process is the so-called white noise.

Definition 1.7 (White noise). A process {Xy, t € Z} is said to be a white noise with mean p and

2

variance o, written

{Xt} ~ WN(M? 02)7

if E[Xy] = u for allt € Z and



o2 ifh=0,
0 ifh#0.

y(h) =

Note that IID noise is an example of white noise, but not necessarily vice versa; the underlying
distribution can be different even if the mean and covariance structures are the same; strictly stationary
time series { X3, t € Z} with Var(X;) < oo is stationary, but a stationary time series { Xy, t € Z} does

not need to be strictly stationary

From now on, the term ‘stationary’ will be used to denote ‘weakly’ or ‘wide sense stationary’; the term

strictly stationary will be used for the stronger assumption.
Example 1.2 (AR(1) process).

Autoregressive (AR) processes will be considered in more detail later. A process {X;,t € Z} is said to
be AR(1) if it stationary and satisfies:

Xi=0Xi 1+ 2 {Z} ~WN(0,0?%).

For this process, the autocovariance may be computed as follows: by squaring up both sides and using
7x(0) = Var(Xy),

0.2

vx(0) = ¢*vx(0) + 02 = vx(0) = T

for h > 1,

vx(h) = Cov(Xipn, Xi) = ¢Cov(Xipn—1, Xt) + Cov(Zgn, Xi) = dyx(h — 1)

so that, since yx(—h) = vx(h),

(1) = T
1x(h) = 5o,
(1-¢%)
Its autocorrelation function (ACF) is
px(h) = o',
Note that the AR(1) process is not well defined if |¢| > 1. O

1.4 Linear filters

A linear process may be regarded as a linear filter. Let {X;} be a time series. A filter is an operation
on a time series in order to obtain a new time series {Y;}. {X;} is called the input and {Y;} the output.

A linear filter C is the following operation:



o0

C(X) =Y, = Z C kX (1.3)

k=—o00

We only consider the situation were E [Xf] < oo and E [Ytz] < 0.

A linear filter is said to be time-invariant if ¢; ;, = ¢;—, in which case it may be written as:

0
ift: Z Cth,j.

j=—o00

A time-invariant linear filter (TLF) is said to by causal if

c; =0 for j <O,

When the input { X;} of a time invariant linear filter is stationary, then the output {Y;} is also stationary
provided ), |cx| < 400.

Definition 1.8 (Stable Linear Filter). A TLF of the form (1.3) is stable if >72 _ |ck| < oc.

—0o0

Definition 1.9 (Transfer function, Power function). Consider a stable linear filter and set

c(z) = Z ;2.

j=—o00

The function c(e™™) :=3° ___cie™™N is known as the transfer function, while the function |c(e™*)|?
7 oo )

18 known as the power transfer function.
A filter may be written as ¢(B), in the sense that
}/t = C(B)Xt

where B as usual denotes the backward shift operator.

A linear process is a linear filter where the input is WN(0, o2).

Impulse Response Function In general, for a stationary process {X; : t € Z}, where the variables

{X;} are functions of impulses {¢; : t € Z}, the impulse response function g(s) is defined as:

00X
g(t;s) = eij

In the case of a causal linear filter X; = >, cjer—j, g(t;s) = g(s) = cs.

(1.4)

The impulse response function may be extended to vectors; if {X, : t € Z} is an m-vector valued

process which is a function of vector impulses {¢, : t € Z}, then

giJ'(t, S) = aet '74. (15)
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If {X,} is a linear causal vector valued process satisfying X;; = > <o D i Cjk;s€t—s,k then

ij(t, s) = 9ij(8) = cijs-

1.5 Trends and Seasonal Components
The classical decomposition model is:
Xt = pit + 8¢ + €,
where
e 1 is a slowly changing function (the trend);
e s is a function with known period d (the ‘seasonal component’);
® ¢; is a stationary time series.

The aim is to extract the deterministic components u; and s; and estimate them and then check

whether or not the residual component ¢; is a stationary time series.

1.5.1 No Seasonal Component

Assume that

Xt:/Lt+€t, t:l,...,n

where, without loss of generality, E[e;] = 0 (since the mean of the stationary process is systematic and
is therefore considered to be part of the trend).
There are several methods for estimating p. Three are considered here; least squares, moving

average and differencing.

Method 1 : Least Squares estimation of ;i; The function p; is modelled by a function with as few
parameters as necessary for accurate modelling and the parameters are estimated by the least squares
technique. For example, suppose that j; can be modelled by a quadratic function, j; = ag+ a1t + ast?.

The parameters (aj);_, are estimated by (@)7_, chosen to minimise

n
Z(mt —ag — ait — a2t2)2.

t=1

Method 2 : Smoothing by means of a moving average Let ¢ be a non-negative integer and

consider a smoothed version of X defined by

1 q
= Xt 1<t<n-—q.
2‘1+1jz_:q t+5, ¢+1<t<n-—gq

Wt:



If it turns out that p is approximately linear over the time interval [t — ¢,t 4 ¢] and also that ¢ is

sufficiently large so that ﬁ Z?Z_q Yiyj ~ 0, then

R R
Wy = —— N Vi, ~ .
t 2q+1jzzqﬂt+g+2q+1jzzq t+j = Mt

For t < qand ¢t >n —¢q, W has to be defined in a different way. For example,
ST et Xt t=1,....q
W, = 2L e ttﬂ R
n—
ij:_(n_t)Xt—j t=n—q+1,...,n

Unless p; is a straight line and the stationary time series component Y is very small, it will not be
possible to find a ¢ satisfying both the conditions that u is approximately linear over the interval
[t — q,t+ q] (requiring small ¢) and such that Tlﬂ Z?_‘g Y; ~ 0 (requiring large q).

Definition 1.10 (Linear Filter). A linear filter is defined as a linear combination:

=y aXes,
J
where Y a; =1 and a; = a_;.

A linear filter will allow a linear trend py = o + ast to pass without distortion since

Zaj(ao +ar(t+7)) = (o —l—alt)Zaj + oy Zajj = ap + ait.
J J J

It is possible to choose the weights {a;} so that a larger class of trend functions pass without distortion.

For example, the Spencer 15-point moving average, defined as

[ag, a+1, ..., a+7] = 535(74,67,46,21,3, -5, —6, —3]
a; =0 for |j| > 7

allows a cubic trend to pass without distortion. That is, applied to p; = at® + bt? + ct + d,

fi = Zant+j = Zaj.utﬂ' + Z%'Yt+j = Zaj,uﬂrj = ¢

Conditions required for a filter to pass a trend which is polynomial of degree k without distortion are

found in the exercises. Moving average methods will be considered in greater detail later.

Method 3: Differencing to generate stationarity Let B denote the backward shift operator;
(BX): = X;_1, with powers given by (B’X); = X;_;. In other words, applying B’ to X pushes it
back j time units. Strict stationarity means that B"X has the same distribution for all h € Z,..

The difference operator V is defined by
VX; =X —Xi-1=(1-B)Xy,
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where B is the backward shift operator. That is, (BX); = X;—1. For positive integer k, V¥ is defined
by: by:
VEX, = V(VF1X),.
For example,
VX, = VX — VX1 = (X — Xim1) — (Xpm1 — Xio0) = Xy — 2X31 + Xyo.
Using the backward shift operator, this may be expressed as:
VX, =(1-B)*X; = (1-2B+ B)X; = X; — 2X;-1 + X;o.

For a linear trend pu; = a + bt,

VX =V + VY, =a+ bt —a—b(t—1)+ VY =b+ VY,
For the covariance,
Cov(VY;, VYs) = Cov(Yy, Ys) — Cov(Yio1,Ys) — Cov(Ys, Ys—1) + CovYi1,Ys 1)
Wwt=s)—wlt—s-1)—pwt—-—s+1)+w(—s)
= 29w (t—8)—w({t—s+1)—yy(t—s—1).

It follows that VX, is stationary with

pvx =b  yvx(h) =2yy(h) —w(h+1) =y (h—1).

In general, if p; = 2?:0 cjt’, then
VEX, = kleg + VFY,,

which is stationary.

1.5.2 Trend and Seasonality

Now consider the model with a seasonal component:

Xt =+ s+ Yy,
where E[Y;] =0, s¢4.q4 = s and Zgzl s = 0. For simplicity in the representation, assume that n/d is

an integer; in any reasonable modelling situation, n and d will be chosen so that n/d is an integer.

In models with a seasonal component, the data is often indexed by period and time-unit;

) n
:L'j,k:xk%»d(jfl)) kzl,...,d,jzl,...,g.
In this notation, z; is the observation at the k:th time-unit of the j:th period.

Three methods for dealing with seasonal components will be considered; the small trend method,

the moving average estimation method and the differencing at lag d method.
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Method S1: Small trends If the trend is considered to be constant during each period, the model

may be written as:

Xjk = pj + sk + Yk

A natural way to estimate the trend is:

1 d
ﬁj = dkzlxj,k:

and a natural method for the seasonal component is:

d n/d
Sk= 1 ;(xj,k — Hj).

Method S2: Moving average estimation For a known period d, the trend is estimated by
applying a moving average to eliminate the seasonal component and to reduce the noise. For d even
set ¢ = d/2. The trend is estimated by:

~ 0.5£L‘t7q + Tt—q+1 + -+ Tttq—1 + O-5mt+q
Mt = d .

For for d odd, set ¢ = (d — 1)/2. The trend is estimated by:

o Tt—q T Tt—gy1 T+ Tpqg—1 + Titg
Ht = d ’

forg+1<t<n-—q.

The seasonal component sj is then estimated in the following way. Set

1 ~
Wi = E LTh+jd — Mk+jd)-
number of summands ( + Hhti )
q—k .n—q—k
7 <I<—

The seasonal component satisfies Zzzl 5 = 0 and therefore the estimates are:
1 d
sk:wk—ggwi, k=1,...,d.
1=

Method S3: Differencing at lag d Define the lag-d difference operator V; by
VaX; =X — X;_g=(1—-BY)X,.

Then
VaXt = Vaus + VaYs.

This has no seasonal component and the methods for dealing with time series without a seasonal

component may be applied.



1.6 The LOESS Algorithm

LOESS, or Locally Estimated Scatterplot Smoothing (the acronym is also sometimes understood as
LOcal regrESSion) is a non-parametric regression method used for smoothing data and fitting curves to
scatterplots. It is particularly useful for time series data where the relationship between variables may
be non-linear and complex. In LOESS, a regression model is computed for each point in the dataset.
The method fits a simple model to localised subsets of the data, using a weighted regression approach.
The weights are determined by a kernel function, such as the tricubic function, which assigns higher

weights to points closer to the point of interest and lower weights to points further away.

1. Weighting: Each data point is assigned a weight based on its distance from the point of interest.

We can select a value ¢ (which defines the bandwidth) and then set

S 3
0 s>q

This is known as the tricubic weighting function and is commonly used. Note that the weight is

0 for points outside a distance ¢ from the point of interest; the bandwidth is 2q + 1.

2. Local Regression: A weighted regression is performed on the subset of data points within the
bandwidth. This can be a linear regression, or quadratic regression, but higher-degree polyno-

mials can also be used. For quadratic, the regression then takes the form of: minimise

to+q d .
S w(lt—to) (e — B =3 B (¢t — o)),
t=to—q J=1

The default is d = 1.
The LOESS smoothed estimate of yy, is then

~ A(t
Yty = (()0)

3. Smoothing: The fitted values from the local regression are used as the initial estimates. These
estimates are then refined by iteratively adjusting the weights of outliers and re-fitting the model.

This is done by introducing so-called robustness weights p;. If |y; — ;| is small, then ¢ is assigned a

large robustness weight; if it is large, then ¢ is assigned a small robustness weight. Let Ry = y: — ¥z

(the residual), then
R
Pt = B ( ht|)

where h = 6 * median(|R;|) (the median of the absolute value is considered to be more robust

than a standard deviation) and B is the bi-square weight function. This is:

B(u) = (1 = u?)*1[_y 3j(u).
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1.7 STL LOESS

We now apply LOESS to the problem of decomposing a time series into trend, seasonal and a stationary
process. STL stands for Seasonal and Trend using LOESS. In Time Series, the goal is to separate a
time series X; : ¢t € {1,..., N} into {X; = T3 + S; + R:}; trend, seasonal and remainder components.
This is done through two loops. In the outer loop, the robustness weights are assigned to each data
point depending on the size of the remainder. This allows us to reduce (or even eliminate) the effects
of outliers. The inner loop iteratively updates the trend and seasonal components. This is done by
subtracting the current estimate of the trend from the raw series. The time series is then partition into
cycle-subseries (e.g. if it is monthly data with a yearly season, then there will be 12 cycle subseries:
all Januarys will be one TS, all February a second, etc.). The cycle-subseries are LOESS smoothed
and then passed through a low-pass filter (a filter that allows linear, quadratic or cubic trends to
pass without distortion, but reduces higher frequencies). The seasonal components are the smoothed
cycle-subseries minus the result from the low-pass filter. The seasonal components are subtracted from
the raw data. The result is LOESS smoothed, which becomes the trend. What is left is the remainder.

The algorithm is now outlined; see below for the parameters that are introduced.

1. Initialize trend as Tt(o) =0 and Rt(o) =0

2. Outer loop Run n,) times. Initially, p§°) =1 for all ¢.

e At iteration j, using jo ) calculate robustness weights p(jH)(t).

e Calculate R,Ej 1) (from inner loop)
e Calculate robustness weights pl71)(t)

e Repeat until convergence.
3. Inner loop

e Iteratively calculate trend and seasonal terms. Run n;) times

e Detrend: Let Dt(k) =Y — Tt(k) where k is the loop number and T is the current trend
estimate. Then {ng)} is the current de-trended time series. If the observed value Y; is

missing, then the detrended term is also missing

e Cycle-subseries smoothing: The detrended time series is broken into cycle-subseries.
For example, monthly data with a periodicity of twelve months would yield twelve cycle-
subseries, one of which would be all of the months of January. Each cycle-subseries is then
LOESS smoothed with ¢ = ny) (recall that 2¢ + 1 is the bandwidth) and d = 1 (the degree
of the polynomial in ¢). The smoothed values are then put together to give a seasonal time

series which we call C*+1).
e Low-pass filter: We now apply a low pass filter on C**1 to yield LFF1.

— Let 2m + 1 be the smallest odd integer greater than or equal to the period and apply
j=—m

a moving average C, = 57T i

. If the period is even, use:
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m

~k+1) 1 1, (k+1) (k+1) (k+1)
G = o | RCE + CE) + X G

j=—m
(e.g. for monthly data, we use m = 6 and the % correction) to get LF*+1.
— The output of the low-pass filter is LF*+1.
The parameter ngy = 2m + 1. Note that LF+1 has had the seasonal component removed.

e Detrending of smoothed cycle-subseries: S¥t1 = Ck*1 — [*+1 This is the k + 1-th
estimate of seasonal component. Importantly, the low-pass filter causes this seasonal time

series average to be nearly zero.
e Deseasonalising: To estimate the trend, we de-seasonalise Y by: D*+1) =y — gk+1

e Trend smoothing: LOESS smooth D**1) the deseasonalised time series with ¢ = n(t)-

This results in {T%!}, the k + 1-th estimate of the trend component.

Model parameters

There are six major parameters in the model.

n(p) (n.p) This is the periodicity of the seasonality.

n(i) (inner) This is the number of cycles through the inner loop. The number of cycles should be
large enough to reach convergence, which is typically only two or three. When there are multiple
outer cycles, the number of inner cycles can be smaller as they do not necessarily help get overall

convergence. The default value in stlplus is 2.

n(e) (outer) This is the number of cycles through the outer loop. More cycles here reduce the
affect of outliers. For most situations this can be quite small (even 0 if there are no significant

outliers). The default value in stlplus is 1.

n() (L.window) This is the span in lags for the low-pass filter. Almost always taken as the least

odd integer greater than or equal to n(,).

n(s) (s.window) This is the smoothing parameter for the seasonal filter. As n(y increases, each
cycle subseries becomes smoother. This is one of the parameters with the greeatest freedom of
choice from the modeller. It looks as if it can become a question of what the modeller believes to
be changes in seasonal behaviour versus aberrant behaviour. In stlplus, s.window can accept
the keyword ‘periodic’ instead. The package notes say this makes smoothing ‘effectively replaced

by taking the mean.’

n() (t.window) This is the smoothing parameter of the trend behaviour. As this increases, the
trend is increasingly smoothed. The authors recommend ‘consider the trend to be a component
whose estimation is needed to form an estimate of the seasonal.” If more careful trend modelling

is needed, they recommend first extracting the seasonal, then model the sum of T; + R;.
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In addition to these six primary parameters, the degree of the LOESS smoothing can be changed,
though this is hardly ever needed. The default is typically d = 1 (i.e. a linear function is used to
compute Y(tp)).

1.8 Autocovariance and Spectral Density of a stationary time series

Recall Definition 1.5 of a weakly stationary time series. It follows directly from the definition that:

7(0) = 0,
|v7(h)| <~(0) forall he€Z, (1.6)
v(h) =~(—=h) forall h € Z.

An autocovariance function is clearly non-negative definite, since Z;‘L=1 Y opoq ajagy(t; — tg) is the

variance of 3 0_; a; X

Definition 1.11. A function k : Z — R is said to be non-negative definite, or positive semi-definite,
if
n
Z aiajri(ti — tj) >0
ij=1
for all n and all vectors a € R™ and t € Z".

Theorem 1.12. The autocorrelation function of a stationary time series is a real valued, even non
negative definite function defined on Z. For any real valued even non negative definite function k
defined on Z and for any N > 1, there exists a sequence of random variables (X_n, ..., Xn) such that
Cov(X;, X;) = k(i — 7).

Proof Let v(-) be the autocovariance function of a stationary time series X;. Then for any (¢1,...,t,)

and any (ai,...,ay),

n
0 < Var Zanti = Zajak'y(tj — k).
j=1 3k

For the other way, Let Z = (Z_y, ..., ZnN) be a vector of i.i.d. N(0,1) variables. Let K denote the
2N + 1 x 2N + 1 matrix with entries K;; = k(¢ — j). Then K is a non negative definite matrix.
It follows that K has a decomposition PAP! where P is an orthonormal matrix and A is a diagonal
matrix whose entries are the eigenvalues. Let K'/2 = PAY2P! then (K'/?)? = K. Let X = K'/2Z,

then X is a random vector with covariance K as required. 1
1.9 Holt Winters Filtering
No trend, no seasonal component Given observations X1, Xo,..., X, from the model:

Xe=p+2Z  {Z} ~WN(0,0%)
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where g is considered to be approximately constant. The method of exponential smoothing is to

compute a smoothed series:

X, =AX,+(1-MN)Xi-1 A€ (0,1) (1.7)
where X is the smoothing parameter. The forecast for time ¢ + h given the series up to time ¢ is
Xiynie = Xt
The quantity X, is the estimate of i at time t; the assumption is that the underlying value of p will

not change between t and ¢ + h.

Linear trend, no seasonal component Holt and Winters independently extended this idea
(Holt (1959) and Winters (1960)) to deal with the model

X =+ Z {Z;} ~ WN(0,0?)

under the assumption that the trend is approximately linear. Let my = uy — py—1. Then the equations

suggested by Holt and Winters are:

X;=MXi+ (1= A1) ()?t—l + 7’7%—1)
me = A2 ()?t — )?tq) + (1 — Xo)my—1

where m; is the estimate of m; at time t. The h-step ahead forecasts are then given by:
Xt-i—hlt — Xt + hmt

Holt Winters with linear trend and additive seasonal component Now suppose that {X;} is

a time series with both trend and seasonal component where the seasonal component {s;} has period
d:

Xt = Wt + St + Zt {Zt} ~ WN(O, (72)

The Holt-Winters algorithm accommodates the seasonal component in the following way: let ¥; =

X; — s, then }Z is an approximation of p; and

Y= M(Xe = 3a) + (1= M) (Vi1 + 1)
my = Xa(Yy —Yi—1) + (1 — Ag)my—1
5t =A3(Xy = Y3) + (1 — A3)84—q

The initial conditions are:

1~/(Jz+1 = Xgv1
a1 = 5(Xap — X1)
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The predictors are:

)?t+h\t:)~/;f+hﬁlt+/§t+h h=1,2,...

The parameters Aj, A2, A3 € (0,1) may be chosen by minimising the sum of squares of the one-step

prediction error on data that has already been observed:
n

Z <Xi - Xi|i71)2

1=d+2

Holt Winters Seasonal Multiplicative The structural equation is:

Xyt = (Y: + P ) S 14 h—m(kt1)

Y; the estimate of 1t, My the trend, s the seasonal component, m the seasonal period and k = L%j
The seasonal values s; are relative percentages, that is they represent percentage deviations from the
level of the series. For example, s; = 0.95 means the series is at 95% of the level it would have been at

if there were no seasonal effect and the s;’s typically average to 1 over the length of a cycle.

Xy

Y=\ +(1—)\1)(3~/},—1+ﬁ%—1)

St—m
=AYy — Yic1) + (1 — Aa) ey

X
St = /\3% + (1 - )\3)St7m
Yio1 + my—1

1.10 Time Series in R

1.10.1 Extracting the Trend, Seasonal Component and Noise in R

The stl command may be used to decompose a time series into trend, seasonal component and noise.
The computation of ‘trend’ is based on moving average. For illustration, consider the carbon dioxide

data from Mauna Loa in the file atmospheric-carbon-dioxide-recor.csv .

> www =
"https://www.mimuw.edu.pl/ noble/courses/TimeSeries/data/atmospheric-
carbon-dioxide-recor.csv"

> carbon = read.csv(www)

Delete observation 611 which is ‘na’:

> carbon = carbon[-611,]

(this deletes the last row, which is ‘na’).
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> y = carbon$Maunal.oaC02
> MaunLoaCo2 = ts(data = y, frequency = 12)

(this gets it into an appropriate format - each row represents a year)

> output.stl = stl(MaunLoaCo2, s.window = "periodic")

> plot(output.stl)
This gives a plot of the original data, the seasonal component, the trend and the ‘remainder’.

> a <- output.stl$time.series

> acf(a)

The time.series part of the stl output gives a decomposition into trend, the seasonal and the noise. The
acf gives the autocorrelation for each of these; the trend, seasonal and noise, while the off-diagonals
show the cross autocorrelations.

The dotted blue lines indicate ‘error’ bars. The plot of interest is the residual (or ‘remainder’). The

acf indicates clear correlations between the residuals; they are not WN(0, 02). The plot is in Figure 1.1
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Figure 1.1: Mauna Loa: estimated acf for decomposition
To get the sample standard deviation of each column in the time series, try:

> apply(a,2,sd)
seasonal trend remainder
2.0402413 21.0085895 0.2735003

This indicates that the remainder is small compared with the trend and seasonal components.

1.10.2 Holt Winters Filtering: Implementation in R

The ‘Air Passengers’ data set is included in the data sets that come with R. Implementation of Holt-

Winters can be carried out as follows: Type
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> data(AirPassengers)

> AP <- AirPassengers

> str(AP)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119

The data set is now loaded. Type
> 7HoltWinters

to obtain the syntax for the command. Note that values for \i, Ao and A3 may be given; if the user
does not give the values, then they are computed by minimising the sum of squares of the one-step

prediction errors as outlined above. To make a multiplicative seasonal Holt Winters, try:

> AP.hw <- HoltWinters(AP,seasonal="mult")
> plot(AP.hw)
> legend("topleft",c("observed","fitted"),1ty=1,col=1:2)

This gives a plot showing both the original data and the one-step predictors. The plot is in Figure 1.2.

Holt-Winters filtering
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Figure 1.2: Air Passenger data with Holt Winters filtering

Prediction is made quite simply using the ‘predict’ command, which makes the arithmetical computa-

tions from the Holt Winters object. The following shows the predictions for the next four years.

> AP.predict <-predict(AP.hw,n.ahead=4%12)
> ts.plot (AP,AP.predict,lty=1:2)

The plot is found in Figure 1.3.
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Figure 1.3: Air Passenger data: Holt Winters prediction
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