
Tutorial 4: Written Exercises

1. Let {aj} be a sequence of numbers. Let

m(t) = c0 + c1t+ . . .+ ckt
k

be a polynomial of degree k. Show that for any (c0, . . . , ck),

m(t) =
∑

j

ajm(t− j) ∀t

if and only if { ∑
j aj = 1∑
j j

raj = 0 ∀r = 1, . . . , k.

2. Design a symmetric filter which eliminates seasonal components with period 3 and at the same

time allows quadratic trend functions to pass without distortion.

3. Let

Xt = a+ bt+ Yt

where {Yt : t ∈ Z} ∼ IID(0, σ2) and where a and b are constants. Define

Wt =
1

1 + 2q

q∑

j=−q

Xt+j .

Compute µW and CW (t, s) = Cov(Wt,Wt+s).

4. Let {St : t = 0, 1, 2, . . .} be the random walk with constant drift µ, defined by
{

S0 = 0

St = µ+ St−1 + ǫt t = 1, 2, 3, . . .

where {ǫt} ∼ IID(0, σ2). Show that ∇S is stationary and compute its mean and autocovariance

function.

5. If Xt = a+ bt for t = 1, . . . , n, let the sample autocorrelation function be defined by

ρ̂(k) =

∑n−k
t=1 (Xt −X)(Xt+k −X)∑n

t=1(Xt −X)2
.

Show that limn→+∞ ρ̂(k) = 1 for each fixed k.

6. Let ρ(k) = Corr(Xt, Xt+k) denote the autocorrelation function (ACF) of a stationary process

{Xt}. Suppose that {Xt} is an MA(2) process

Xt = ǫt + θ1ǫt−1 + θ2ǫt−2 {ǫt} ∼ WN(0, σ2).

Find ρ(1) and ρ(2) in terms of θ1 and θ2. Also, find the largest possible value of ρ(1) for an

MA(2) process and ρ(2) for n MA(2) process.
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7. Let {Xt} be an AR(2) process with generating polynomial φ(z) = 1− φ1z − φ2z
2. Suppose that

(φ1, φ2) satisfy:





φ1 + φ2 < 1

φ2 − φ1 < 1

|φ2| < 1.

Show that the process is causal.
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Answers

1. For a polynomial m(t) = c0 + . . .+ ckt
k,

∑

j

ajmt−j = c0
∑

j

aj + c1
∑

j

aj(t− j) + . . .+ ck
∑

j

aj(t− j)k

=
k∑

i=0

ti
k∑

m=i

cm

(
m

i

)∑

j

(−1)m−ijm−iaj

=
k∑

i=0

ti
k∑

m=i

(−1)m−icm

(
m

i

)∑

j

jm−iaj

It follows that for any collection (c0, . . . , ck) and each i,

ci =
∑

m=i

cm(−1)m−i

(
m

i

)∑

j

jm−iaj

and hence that { ∑
j aj = 1∑
j j

raj = 0 r = 1, . . . , k

as required.

2. Recall: a seasonal component with period d satisfies:
∑d

j=1 st+j = 0 for each t and st = st+d for

each t (it is taken to be mean 0 over the cycle).

For a symmetric filter, where d = 1 + 2q (i.e. d is an odd number), this is achieved by taking

a−q = a−q+1 = . . . = aq−1 = aq; we need the ai’s to be equal over blocks of length 2q + 1.

Let us compute the symmetric filter of smallest length which is symmetric, eliminates seasonal

components of period 3 and which passes quadratic trends without distortion. Here q = 1. We

need

∑

j

aj = 1

aj = a−j

(which gives
∑

j jaj = 0, so that we pass linear trends without distortion) and

∑

j

j2aj = 0

to get quadratic trends without distortion. Let us consider the shortest possible, which is:

(a−4, a−3, a−2, a−1, a0, a1, a2, a3, a4) and these numbers satisfy:

• aj = a−j (symmetry)

• a4 = a3 = a2 = a−2 = a−3 = a−4 = A1 and a−1 = a0 = a1 = A0 (symmetry together with

eliminating seasonal components of period 3). Such a filter satisfies
∑

j jaj = 0.
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• A0 + 2A1 =
1
3 (comes from

∑
j aj = 1)

• (42 + 32 + 22)A1 +A0 = 0 (comes from
∑

j j
2aj = 0)

A0 and A1 satisfy two equations

A0 + 2A1 =
1

3
26A1 +A0 = 0

so that

A1 = − 1

72
A0 =

13

36
.

3.

µW (t) = a+ bt

(passes a linear trend without distortion). For 0 ≤ s ≤ 1 + 2q,

Cov(Wt,Wt+s) =
1

(1 + 2q)2

q∑

j1=−q

q∑

j2=−q

Cov(Xt+j1 , Xt+s+j2)

=
σ2

(1 + 2q)2

q∑

j1=−q

q∑

j2=−q

1s(j1 − j2).

=
σ2(1 + 2q − s)

(1 + 2q)2

Answer: {
σ2(1+2q−|s|)

(1+2q)2
s ∈ [−(1 + 2q), (1 + 2q)]

0 otherwise

4.

Yt := ∇St = St − St−1 = µ+ St−1 + ǫt − St−1 = µ+ ǫt.

µY = µ, γY (h) =

{
1 h = 0

0 h 6= 0.

5. X = a+ b 1n
∑n

t=1 t = a+ b
2(n+ 1) so that

n−k∑

t=1

(Xt −X)(Xt+k −X) = b2
n−k∑

t=1

(t− n+ 1

2
)(t+ k − n+ 1

2
)

= b2
n∑

t=1

(t− n+ 1

2
)2 + b2k

n−k∑

t=1

(t− n+ 1

2
)− b2

n∑

t=n−k+1

(t− n+ 1

2
)2

Now,

lim
n→+∞

1

n3

n∑

t=1

(t− n+ 1

2
)2 = lim

n→+∞
2

n3

∫ n/2

1
x2dx =

1

4

while 1
n2 |

∑n−k
t=1 k(t− n+1

2 )| ≤ k and 1
n2 |

∑n
t=n−k+1(t− n+1

2 )2| ≤ k so that, for each fixed k,
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ρ̂(k)
n→+∞−→ 1.

6.

γ(0) = σ2(1 + θ21 + θ22)

γ(1) = σ2θ1(1 + θ2)

γ(2) = σ2θ2

hence

ρ(1) =
θ1(1 + θ2)

1 + θ21 + θ22
ρ(2) =

θ2

1 + θ21 + θ22

Now consider maximising these:

d

dθ1
ρ(1) =

1 + θ2

1 + θ21 + θ22
− 2θ21(1 + θ2)

(1 + θ21 + θ22)
2

d

dθ2
ρ(1) =

θ1

1 + θ21 + θ22
− 2θ1θ2(1 + θ2)

(1 + θ21 + θ22)
2

Set to 0 for critical points:

{
1− θ21 + θ22 = 0

1 + θ21 − θ22 − 2θ2 = 0

so that θ21 = 1 + θ22 and

2− 2θ2 = 0 ⇒ θ2 = 1, θ21 = 2 ⇒ θ1 = ±
√
2

and the max value is ρ(1) = 1√
2

(the + root gives the maximum).

0 = 1
1+θ2

− 2θ2 ⇒ (θ2 − 1
2)

2 = 1
4 ⇒ θ2 =

3
4 .

For ρ(2),

d

dθ1
ρ(2) = − 2θ1θ2

(1 + θ21 + θ22)
2

d

dθ2
ρ(2) =

1

1 + θ21 + θ22
− 2θ22

(1 + θ21 + θ22)
2

setting equal to zero gives θ1θ2 = 0 and 1 + θ21 − θ22 = 0. The maximiser is θ1 = 0, θ2 = 1 with

ρ(2) = 1
2 .
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7. Causal if and only if 1− φ1z − φ2z
2 6= 0 for any |z| ≤ 1.

Roots are:

z = − 1

2φ2
(φ1 ±

√
(φ2

1 + 4φ2))

First suppose φ2
1 + 4φ2 < 0, then φ2 < 0 and

|z|2 = φ2
1 − (4φ2 + φ2

1)

4|φ2|2
=

1

|φ2|
> 1

since |φ2| < 1.

Now consider φ2
1 + 4φ2 ≥ 0 and consider |z−| where z− denotes the root with lower modulus.

Then

|z−| =





1
2|φ2|

(√
φ2
1 + 4φ2 − |φ1|

)
φ2 > 0

1
2|φ2|

(
|φ1| −

√
φ2
1 + 4φ2

)
φ2 < 0

The conditions amount to φ2 < 1− |φ1|, so that, for φ2 > 0, |φ1| < 1 and

√
φ2
1 + 4φ2 >

√
φ2
1 + 4− 4|φ1| = ||φ1| − 2| = 2− |φ1|

hence
√

φ2
1 + 4φ2 − |φ1| > 2− |φ1| − |φ1| = 2− 2|φ1|

Hence |z| ≥ 1−|φ1|
|φ2| > 1. For φ2 < 0, |φ1| < 1 + |φ2| so that 1− |φ1| > −|φ2| and

φ2
1 − 4|φ2| < φ2

1 − 4|φ1|+ 4 = (|φ1| − 2)2

and

|z−| ≥
1

2|φ2|
(|φ1| − ||φ1| − 2|) =

{
1

|φ2| > 1 |φ1| ≥ 2
2(1−|φ1|)

2|φ2| > 1 |φ1| < 2
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