Tutorial 4: Written Exercises

1. Let $\left\{a_{j}\right\}$ be a sequence of numbers. Let

$$
m(t)=c_{0}+c_{1} t+\ldots+c_{k} t^{k}
$$

be a polynomial of degree k. Show that for any $\left(c_{0}, \ldots, c_{k}\right)$,

$$
m(t)=\sum_{j} a_{j} m(t-j) \quad \forall t
$$

if and only if

$$
\left\{\begin{array}{l}
\sum_{j} a_{j}=1 \\
\sum_{j} j^{r} a_{j}=0 \quad \forall r=1, \ldots, k .
\end{array}\right.
$$

2. Design a symmetric filter which eliminates seasonal components with period 3 and at the same time allows quadratic trend functions to pass without distortion.
3. Let

$$
X_{t}=a+b t+Y_{t}
$$

where $\left\{Y_{t}: t \in \mathbb{Z}\right\} \sim \operatorname{IID}\left(0, \sigma^{2}\right)$ and where a and b are constants. Define

$$
W_{t}=\frac{1}{1+2 q} \sum_{j=-q}^{q} X_{t+j} .
$$

Compute μ_{W} and $C_{W}(t, s)=\operatorname{Cov}\left(W_{t}, W_{t+s}\right)$.
4. Let $\left\{S_{t}: t=0,1,2, \ldots\right\}$ be the random walk with constant drift μ, defined by

$$
\left\{\begin{array}{l}
S_{0}=0 \\
S_{t}=\mu+S_{t-1}+\epsilon_{t} \quad t=1,2,3, \ldots
\end{array}\right.
$$

where $\left\{\epsilon_{t}\right\} \sim \operatorname{IID}\left(0, \sigma^{2}\right)$. Show that ∇S is stationary and compute its mean and autocovariance function.
5. If $X_{t}=a+b t$ for $t=1, \ldots, n$, let the sample autocorrelation function be defined by

$$
\widehat{\rho}(k)=\frac{\sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right)}{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2}} .
$$

Show that $\lim _{n \rightarrow+\infty} \widehat{\rho}(k)=1$ for each fixed k.
6. Let $\rho(k)=\operatorname{Corr}\left(X_{t}, X_{t+k}\right)$ denote the autocorrelation function (ACF) of a stationary process $\left\{X_{t}\right\}$. Suppose that $\left\{X_{t}\right\}$ is an MA(2) process

$$
X_{t}=\epsilon_{t}+\theta_{1} \epsilon_{t-1}+\theta_{2} \epsilon_{t-2} \quad\left\{\epsilon_{t}\right\} \sim W N\left(0, \sigma^{2}\right) .
$$

Find $\rho(1)$ and $\rho(2)$ in terms of θ_{1} and θ_{2}. Also, find the largest possible value of $\rho(1)$ for an MA(2) process and $\rho(2)$ for n MA(2) process.
7. Let $\left\{X_{t}\right\}$ be an $\operatorname{AR}(2)$ process with generating polynomial $\phi(z)=1-\phi_{1} z-\phi_{2} z^{2}$. Suppose that $\left(\phi_{1}, \phi_{2}\right)$ satisfy:

$$
\left\{\begin{array}{l}
\phi_{1}+\phi_{2}<1 \\
\phi_{2}-\phi_{1}<1 \\
\left|\phi_{2}\right|<1 .
\end{array}\right.
$$

Show that the process is causal.

Answers

1. For a polynomial $m(t)=c_{0}+\ldots+c_{k} t^{k}$,

$$
\begin{aligned}
\sum_{j} a_{j} m_{t-j} & =c_{0} \sum_{j} a_{j}+c_{1} \sum_{j} a_{j}(t-j)+\ldots+c_{k} \sum_{j} a_{j}(t-j)^{k} \\
& =\sum_{i=0}^{k} t^{i} \sum_{m=i}^{k} c_{m}\binom{m}{i} \sum_{j}(-1)^{m-i} j^{m-i} a_{j} \\
& =\sum_{i=0}^{k} t^{i} \sum_{m=i}^{k}(-1)^{m-i} c_{m}\binom{m}{i} \sum_{j} j^{m-i} a_{j}
\end{aligned}
$$

It follows that for any collection $\left(c_{0}, \ldots, c_{k}\right)$ and each i,

$$
c_{i}=\sum_{m=i} c_{m}(-1)^{m-i}\binom{m}{i} \sum_{j} j^{m-i} a_{j}
$$

and hence that

$$
\left\{\begin{array}{l}
\sum_{j} a_{j}=1 \\
\sum_{j} j^{r} a_{j}=0 \quad r=1, \ldots, k
\end{array}\right.
$$

as required.
2. Recall: a seasonal component with period d satisfies: $\sum_{j=1}^{d} s_{t+j}=0$ for each t and $s_{t}=s_{t+d}$ for each t (it is taken to be mean 0 over the cycle).

For a symmetric filter, where $d=1+2 q$ (i.e. d is an odd number), this is achieved by taking $a_{-q}=a_{-q+1}=\ldots=a_{q-1}=a_{q}$; we need the a_{i} 's to be equal over blocks of length $2 q+1$.
Let us compute the symmetric filter of smallest length which is symmetric, eliminates seasonal components of period 3 and which passes quadratic trends without distortion. Here $q=1$. We need

$$
\begin{aligned}
& \sum_{j} a_{j}=1 \\
& a_{j}=a_{-j}
\end{aligned}
$$

(which gives $\sum_{j} j a_{j}=0$, so that we pass linear trends without distortion) and

$$
\sum_{j} j^{2} a_{j}=0
$$

to get quadratic trends without distortion. Let us consider the shortest possible, which is: $\left(a_{-4}, a_{-3}, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ and these numbers satisfy:

- $a_{j}=a_{-j}$ (symmetry)
- $a_{4}=a_{3}=a_{2}=a_{-2}=a_{-3}=a_{-4}=A_{1}$ and $a_{-1}=a_{0}=a_{1}=A_{0}$ (symmetry together with eliminating seasonal components of period 3). Such a filter satisfies $\sum_{j} j a_{j}=0$.
- $A_{0}+2 A_{1}=\frac{1}{3}$ (comes from $\left.\sum_{j} a_{j}=1\right)$
- $\left(4^{2}+3^{2}+2^{2}\right) A_{1}+A_{0}=0\left(\right.$ comes from $\left.\sum_{j} j^{2} a_{j}=0\right)$
A_{0} and A_{1} satisfy two equations

$$
A_{0}+2 A_{1}=\frac{1}{3} \quad 26 A_{1}+A_{0}=0
$$

so that

$$
A_{1}=-\frac{1}{72} \quad A_{0}=\frac{13}{36} .
$$

3.

$$
\mu_{W}(t)=a+b t
$$

(passes a linear trend without distortion). For $0 \leq s \leq 1+2 q$,

$$
\begin{aligned}
\operatorname{Cov}\left(W_{t}, W_{t+s}\right) & =\frac{1}{(1+2 q)^{2}} \sum_{j_{1}=-q}^{q} \sum_{j_{2}=-q}^{q} \operatorname{Cov}\left(X_{t+j_{1}}, X_{t+s+j_{2}}\right) \\
& =\frac{\sigma^{2}}{(1+2 q)^{2}} \sum_{j_{1}=-q}^{q} \sum_{j_{2}=-q}^{q} \mathbf{1}_{s}\left(j_{1}-j_{2}\right) . \\
& =\frac{\sigma^{2}(1+2 q-s)}{(1+2 q)^{2}}
\end{aligned}
$$

Answer:

$$
\begin{cases}\frac{\sigma^{2}(1+2 q-|s|)}{(1+2 q)^{2}} & s \in[-(1+2 q),(1+2 q)] \\ 0 & \text { otherwise }\end{cases}
$$

4.

$$
\begin{gathered}
Y_{t}:=\nabla S_{t}=S_{t}-S_{t-1}=\mu+S_{t-1}+\epsilon_{t}-S_{t-1}=\mu+\epsilon_{t} . \\
\mu_{Y}=\mu, \quad \gamma_{Y}(h)= \begin{cases}1 & h=0 \\
0 & h \neq 0 .\end{cases}
\end{gathered}
$$

5. $\bar{X}=a+b \frac{1}{n} \sum_{t=1}^{n} t=a+\frac{b}{2}(n+1)$ so that

$$
\begin{aligned}
\sum_{t=1}^{n-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right) & =b^{2} \sum_{t=1}^{n-k}\left(t-\frac{n+1}{2}\right)\left(t+k-\frac{n+1}{2}\right) \\
& =b^{2} \sum_{t=1}^{n}\left(t-\frac{n+1}{2}\right)^{2}+b^{2} k \sum_{t=1}^{n-k}\left(t-\frac{n+1}{2}\right)-b^{2} \sum_{t=n-k+1}^{n}\left(t-\frac{n+1}{2}\right)^{2}
\end{aligned}
$$

Now,

$$
\lim _{n \rightarrow+\infty} \frac{1}{n^{3}} \sum_{t=1}^{n}\left(t-\frac{n+1}{2}\right)^{2}=\lim _{n \rightarrow+\infty} \frac{2}{n^{3}} \int_{1}^{n / 2} x^{2} d x=\frac{1}{4}
$$

while $\frac{1}{n^{2}}\left|\sum_{t=1}^{n-k} k\left(t-\frac{n+1}{2}\right)\right| \leq k$ and $\frac{1}{n^{2}}\left|\sum_{t=n-k+1}^{n}\left(t-\frac{n+1}{2}\right)^{2}\right| \leq k$ so that, for each fixed k,

$$
\widehat{\rho}(k) \xrightarrow{n \rightarrow+\infty} 1 .
$$

6.

$$
\begin{gathered}
\gamma(0)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \\
\gamma(1)=\sigma^{2} \theta_{1}\left(1+\theta_{2}\right) \\
\gamma(2)=\sigma^{2} \theta_{2}
\end{gathered}
$$

hence

$$
\rho(1)=\frac{\theta_{1}\left(1+\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}} \quad \rho(2)=\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}
$$

Now consider maximising these:

$$
\begin{aligned}
\frac{d}{d \theta_{1}} \rho(1) & =\frac{1+\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}-\frac{2 \theta_{1}^{2}\left(1+\theta_{2}\right)}{\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)^{2}} \\
\frac{d}{d \theta_{2}} \rho(1) & =\frac{\theta_{1}}{1+\theta_{1}^{2}+\theta_{2}^{2}}-\frac{2 \theta_{1} \theta_{2}\left(1+\theta_{2}\right)}{\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)^{2}}
\end{aligned}
$$

Set to 0 for critical points:

$$
\left\{\begin{array}{l}
1-\theta_{1}^{2}+\theta_{2}^{2}=0 \\
1+\theta_{1}^{2}-\theta_{2}^{2}-2 \theta_{2}=0
\end{array}\right.
$$

so that $\theta_{1}^{2}=1+\theta_{2}^{2}$ and

$$
2-2 \theta_{2}=0 \Rightarrow \theta_{2}=1, \quad \theta_{1}^{2}=2 \Rightarrow \theta_{1}= \pm \sqrt{2}
$$

and the max value is $\rho(1)=\frac{1}{\sqrt{2}}$ (the + root gives the maximum).
$0=\frac{1}{1+\theta_{2}}-2 \theta_{2} \Rightarrow\left(\theta_{2}-\frac{1}{2}\right)^{2}=\frac{1}{4} \Rightarrow \theta_{2}=\frac{3}{4}$.
For $\rho(2)$,

$$
\begin{gathered}
\frac{d}{d \theta_{1}} \rho(2)=-\frac{2 \theta_{1} \theta_{2}}{\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)^{2}} \\
\frac{d}{d \theta_{2}} \rho(2)=\frac{1}{1+\theta_{1}^{2}+\theta_{2}^{2}}-\frac{2 \theta_{2}^{2}}{\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)^{2}}
\end{gathered}
$$

setting equal to zero gives $\theta_{1} \theta_{2}=0$ and $1+\theta_{1}^{2}-\theta_{2}^{2}=0$. The maximiser is $\theta_{1}=0, \theta_{2}=1$ with $\rho(2)=\frac{1}{2}$.
7. Causal if and only if $1-\phi_{1} z-\phi_{2} z^{2} \neq 0$ for any $|z| \leq 1$.

Roots are:

$$
z=-\frac{1}{2 \phi_{2}}\left(\phi_{1} \pm \sqrt{\left(\phi_{1}^{2}+4 \phi_{2}\right)}\right)
$$

First suppose $\phi_{1}^{2}+4 \phi_{2}<0$, then $\phi_{2}<0$ and

$$
|z|^{2}=\frac{\phi_{1}^{2}-\left(4 \phi_{2}+\phi_{1}^{2}\right)}{4\left|\phi_{2}\right|^{2}}=\frac{1}{\left|\phi_{2}\right|}>1
$$

since $\left|\phi_{2}\right|<1$.

Now consider $\phi_{1}^{2}+4 \phi_{2} \geq 0$ and consider $\left|z_{-}\right|$where z_{-}denotes the root with lower modulus. Then

$$
\left|z_{-}\right|= \begin{cases}\frac{1}{2\left|\phi_{2}\right|}\left(\sqrt{\phi_{1}^{2}+4 \phi_{2}}-\left|\phi_{1}\right|\right) & \phi_{2}>0 \\ \frac{1}{2\left|\phi_{2}\right|}\left(\left|\phi_{1}\right|-\sqrt{\phi_{1}^{2}+4 \phi_{2}}\right) & \phi_{2}<0\end{cases}
$$

The conditions amount to $\phi_{2}<1-\left|\phi_{1}\right|$, so that, for $\phi_{2}>0,\left|\phi_{1}\right|<1$ and

$$
\sqrt{\phi_{1}^{2}+4 \phi_{2}}>\sqrt{\phi_{1}^{2}+4-4\left|\phi_{1}\right|}=\left|\left|\phi_{1}\right|-2\right|=2-\left|\phi_{1}\right|
$$

hence $\sqrt{\phi_{1}^{2}+4 \phi_{2}}-\left|\phi_{1}\right|>2-\left|\phi_{1}\right|-\left|\phi_{1}\right|=2-2\left|\phi_{1}\right|$
Hence $|z| \geq \frac{1-\left|\phi_{1}\right|}{\left|\phi_{2}\right|}>1$. For $\phi_{2}<0,\left|\phi_{1}\right|<1+\left|\phi_{2}\right|$ so that $1-\left|\phi_{1}\right|>-\left|\phi_{2}\right|$ and

$$
\phi_{1}^{2}-4\left|\phi_{2}\right|<\phi_{1}^{2}-4\left|\phi_{1}\right|+4=\left(\left|\phi_{1}\right|-2\right)^{2}
$$

and

$$
\left|z_{-}\right| \geq \frac{1}{2\left|\phi_{2}\right|}\left(\left|\phi_{1}\right|-\left|\left|\phi_{1}\right|-2\right|\right)= \begin{cases}\frac{1}{\left|\phi_{2}\right|}>1 & \left|\phi_{1}\right| \geq 2 \\ \frac{2\left(1-\left|\phi_{1}\right|\right)}{2\left|\phi_{2}\right|}>1 & \left|\phi_{1}\right|<2\end{cases}
$$

