
Chapter 9

ARCH and GARCH Processes

9.1 Introduction

When modelling time series, there are broadly speaking two approaches, the fundamentalist and the

data analyst. The first of these aims to construct a model based on the fundamental principles of the

situation and then use data to estimate the parameters so that the model may be used for forecasting

and prediction. The second of these makes no attempt to search for underlying principles and simply

tries to find a model that fits the available data. The ARCH and GARCH processes, motivated by

observed volatility of financial series, fall firmly into the second category.

The ARCH and GARCH processes are designed for situations where, after fitting a stationary time se-

ries model with residuals that satisfy {Xt} ∼ WN(0, σ2), the residuals do not correspond to IID(0, σ2),

because the volatility seems variable, with bursts of high volatility. More information on the nature of

the residuals can lead to more accurate prediction. The ARCH / GARCH processes are one attempt

to study the situation of variable volatility.

Let {Xt : t ∈ Z} be a stationary, mean zero time series. That is, the mean and possible trend have

already been removed. Suppose that the {Xt} appear uncorrelated, so that the WN(0, σ2) seems

justified, but that IID(0, σ2) does not seem justified, because the ‘volatility’ seems variable. One

approach is to model this by processes of the form:

{
Xt = σtZt {Zt} ∼ IIDN(0, 1)

σt ∈ F
(Z)
t−1

(9.1)

where F
(Z)
t−1 denotes the collection {Zs : s ≤ t− 1} and σt ∈ F

(Z)
t−1 denotes that σt is a function of these

random variables.
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9.2 The ARCH Process

A prominent model of this class is the so-called ARCH process, introduced by R.F. Engle (1982). The

abbreviation ARCH stands for autoregressive conditional heteroscedasticity.

Definition 9.1. The process {Xt : t ∈ Z} is said to be an ARCH(p) process if it is stationary and

{
Xt = σtZt {Zt} ∼ IIDN(0, 1)

σ2
t = α0 + α1X

2
t−1 + . . .+ αpX

2
t−p α0 > 0, αj ≥ 0 j = 1, . . . , p

(9.2)

The requirement that α0 > 0 and αj ≥ 0 for j = 1, . . . , p ensure that σt > 0. The coefficients

α0, α1, . . . , αp have to be chosen such that the process {Xt : t ∈ Z} defined in this way is stationary.

The following lemma, which holds for all processes of the form given by Equation (9.1), helps to

establish when {X2
t } may be represented as a linear stationary process with WN(0, σ2) innovations,

for some well defined σ2 < +∞.

Lemma 9.2. Let {Xt} be a stationary process satisfying Equation (9.1). Let

Z̃t = X2
t − σ2

t = σ2
t (Z

2
t − 1). (9.3)

Assume that {σt : t ∈ Z} is a stationary process satisfying E[σ4
t ] < +∞, then {Z̃t : t ∈ Z} is WN(0, σ2)

where σ2 = 2E[σ4
t ].

Proof By construction,

E[Z̃t] = E[σ2
t (Z

2
t − 1)] = E[σ2

t ](E[Z
2
t ]− 1) = 0

and

E[Z̃2
t ] = E[σ4

t ]E[Z
4
t − 2Z2

t + 1] = 2E[σ4
t ] = σ2.

and the proof is complete.

Lemma 9.3. Let {Xt : t ∈ Z} be an ARCH(p) process defined by Equation (9.2) satisfying E[X4
t ] <

+∞. Let Z̃ be defined by Equation (9.3). Then

X2
t −

p∑

j=1

αjX
2
t−j = α0 + Z̃t.

If {Xt} is defined by Equation (9.2), it follows that {X2
t } is an AR(p) process with mean

E[X2
t ] = µ =

α0

1−
∑p

j=1 αj

if and only if

1.
∑p

j=1 αj < 1 and

2. E[X4
t ] < +∞.
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Proof

X2
t − σ2

t = Z̃t = X2
t − α0 −

p∑

j=1

αjX
2
t−j

giving

X2
t −

p∑

j=1

αjX
2
t−j = α0 + Z̃t.

This has the form of an AR(p) process. Taking expectations gives

µ


1−

p∑

j=1

αj


 = α0

from which it follows that

µ =
α0

1−
∑p

j=1 αj

.

It remains to show that E[Z̃2
t ] < +∞ if and only if E[X4

t ] < +∞. This follows directly from:

E

[(
Z̃t + α0

)2]
=


1−

p∑

j=1

αj




2

E[X4
t ]

+2

p∑

j=1

αj

(
1−

p∑

k=1

αk

)
E[X2

t (X
2
t −X2

t−j)] +

p∑

j=1

p∑

k=1

αjαkE[(X
2
t −X2

t−j)(X
2
t −X2

t−k)]

= I + II + III.

Firstly, E[Z̃2
t ] < +∞ ⇔ E[(Z̃ + α0)

2] < +∞. Clearly each of these terms is non-negative;

I = c2E[X4
t ] c = 1−

p∑

j=1

αj > 0.

Since E[X2
t X

2
t−j ] ≤ E[X4

t ] by Hölder together with stationarity, it follows that

0 ≤ II ≤ 2




p∑

j=1

αj




1−

p∑

j=1

αj


E[X4

t ] = 2c(1− c)E[X4
t ]

Finally, let γ(j, k) = E[(X2
t −X2

t−j)(X
2
t −Xt−k)

2)] then γ is a covariance matrix and hence non negative

definite. It follows that αtγα > 0, so that III > 0. It follows that

0 ≤ III ≤ 4(1− c)2E[X4
t ].

The if and only if condition now follows directly.

Although it is the process {Xt} that is of interest, the process {X2
t } and its representation as an AR(p)

process, is very useful for parameter estimation. Most statistical tests rely on a central limit theorem

effect, which requires the innovations to have a well defined finite variance.
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For general models, there may be difficulties establishing conditions on the coefficients so that the

innovations for the AR(p) process corresponding to {X2
t } are WN(0, σ2) for a well defined σ2 < +∞.

The following example shows the parameter range for the ARCH(1) process.

Example 9.1 (ARCH(1) process).

Let {Xt} satisfy {
Xt = σtZt {Zt} ∼ IIDN(0, 1)

σ2
t = α0 + α1X

2
t−1.

Suppose that E[X2
t ] = µ < +∞. By stationarity, it follows from the first equation that

E[X2
t ] = E[σ2

t ] = µ > 0.

From the second, it therefore follows that

µ = α0 + α1µ ⇒ µ = E[X2
t ] =

α0

1− α1
,

in line with the general result.

Now consider the time series {X2
t : t ∈ Z}. With Z̃t = Z2

t − σ2
t ,

X2
t − σ2

t = Z̃t = X2
t − α0 − α1X

2
t−1

so that

X2
t − α1X

2
t−1 = α0 + Z̃t.

It follows that, provided E[Z̃2
t ] < +∞ and α1 < 1, the process {X2

t } is a causal AR(1) process with

mean µ = α0

1−α1
. For the AR(1) process, precise conditions on the coefficients can be established to

ensure that {X2
t } is an AR(1) process; the following computation shows that this is the case if and

only if α2
1 <

1
3 .

Using

Xt = σtZt ⇒ X4
t = σ4

tZ
4
t = (α0 + α1X

2
t−1)

2Z4
t ,

it follows, using E[Z4
t ] = 3, that

E[X4
t ] = 3E[α2

0 + 2α0α1X
2
t + α2

1X
4
t ]

= 3

(
α2
0 +

2α2
0α1

1− α1

)
+ 3α2

1E[X
4
t ] =

3α2
0(1 + α1)

1− α1
+ 3α2

1E[X
4
t ]

Clearly, E[X4
t ] = +∞ for 3α2

1 ≥ 1. For 3α2
1 < 1,

E[X4
t ] =

3α2
0(1 + α1)

(1− α1)(1− 3α2
1)
.
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It follows that {X2
t } is a causal AR(1) process if and only if α1 <

1√
3
.

Since E[Xt] = 0, it follows that the kurtosis of Xt is:

E[X4
t ]

Var(Xt)2
− 3 = 3×

α2
0(1 + α1)

(1− α1)(1− 3α2
1)

×
(1− α1)

2

α2
0

− 3 = 3
1− α2

1 − 1 + 3α2
1

1− 3α2
1

=
6α2

1

1− 3α2
1

> 0.

The kurtosis of an ARCH(p) process is always greater than 0, indicating thicker tails than a normal

distribution.

Generating Polynomials for the ARCH(p) Process Let

α(z) = α1z + . . .+ αpz
p.

Note that the α0 has not been included in the polynomial. Then the equation for σ2
t may be written

in the form:

σ2
t = α0 + α(B)X2

t .

In this notation,
∑p

j=1 αj = α(1) and hence the formula for E[X2
t ] may be written as:

E[X2
t ] = α0 + α(1)E[X2

t ] ⇒ E[X2
t ] =

α0

1− α(1)
.

9.2.1 ARCH - t Process

Sometimes the underlying noise {Zt} is not IID N(0, 1); it is heavier tailed. Instead, IID t may be

used; the degrees of freedom of the t distribution may be altered to fit the empirical distribution of

the residuals.

9.3 Testing for the ARCH Effect

Let (zt)
T
t=1 denote the estimates of the innovations of the time series. There are two prominent tests

available to determine whether a data set exhibits an ARCH effect. The first is simply the Ljung -

Box test. The Ljung-Box test determines whether or not the acf is significantly different from the acf

of white noise. This is applied to both the series (zt)
T
t=1 and (z2t )

T
t=1. If the first series is white noise,

but the second is not, then this is an indicator of ARCH effects.

9.3.1 Testing whether a series is white noise

In general, in Time Series, it is important to test whether or not a ‘white noise’ model fits. To indicate

whether or not there are ARCH effects, we also consider the series (Zt)t≥1.

As ever, ρ(0) = 1. If the series is white noise, then ρ(1) = ρ(2) = . . . = ρ(h) = 0 for all h ≥ 1.

In this situation, the Bartlett formula (5.1) (recall estimating the ACVF and ACF) reduces to (for

1 ≤ i ≤ j < +∞):
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wij =

{
0 i 6= j

1 i = j

so that ρ̂ ∼ AN(0, 1
n
I). Hence, consider testing:

{
H0 : The data are an observed random sample from WN(0, σ2)

H1 The data are not an observed random sample from WN(0, σ2).

The test statistic

Q := n

h∑

j=1

ρ̂(j)2
n→+∞
−→ (d) χ

2
h;

the null hypothesis is rejected for Q > χ2
h;α where χ2

h;α is the value such that P(X > χ2
h,α) = α for

X ∼ χ2
h.

The Ljung - Box test The Ljung–Box test (named after Greta M. Ljung and George E. P. Box)

is a statistical test of whether a of a group of autocorrelations of a time series are different from zero

and the test statistic is defined as:

Q = n (n+ 2)
h∑

k=1

ρ̂2(k)

n− k

where n is the sample size, ρ̂(k) is the sample autocorrelation at lag k, and h is the number of lags

being tested. Clearly, Q has asymptotic χ2 distribution, since limn→+∞
n+2
n−k

= 1.

The Ljung-Box statistic takes into account the fact that γ̂(h) = 1
n

∑n−h
j=1 (Xj−X)(Xj+h−X) where

a 1
n

is used instead of 1
n−h−1 .

Degrees of Freedom for Ljung-Box Note that the test is applied to the residuals of the fitted

model, not the original series. This means, for example, that if a causal invertible ARMA(p,q) is fitted

to the original series {Xt}t∈Z:

φ(B)Xt = θ(B)Zt

then {Zt}t∈Z is recovered by:

Zt = θ(B)−1φ(B)Xt

and the Ljung-Box test applied to {Zt}t∈Z.

In such applications the hypothesis being tested is that the residuals have no autocorrelation.

When testing the residuals of an estimated model, the degrees of freedom need to be adjusted to

reflect the number of parameters estimated. In a model with p+ q estimated parameters (for example

ARMA(p,q)), the degrees of freedom should be set to h− p− q.

The distribution of the test statistic is derived under the assumption that the residuals are normally

distributed; when the data is not normal, it is approximate and relies on a central limit theorem effect.
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9.3.2 Engle’s test

The second test available is the Lagrange multiplier test of Engle (1982). This test is equivalent to the

usual F statistic for testing αj = 0 for all j = 1, . . . , p in the linear regression

z2t = α0 + α1z
2
t−1 + . . .+ αpz

2
t−p + ǫt t = p+ 1, . . . , T. (9.4)

where ǫt denotes the error term, p is a pre-specified positive integer and T is the sample size. The null

hypothesis is:

H0 : α1 = . . . = αm = 0.

Let Q0 =
∑T

t=p+1(z
2
t −ω̃)2, where ω̃ = 1

T

∑T
t=1 z

2
t is the sample mean of (z2t )

T
t=1 and let Q1 =

∑T
t=p+1 ê

2
t

where êt is the least squares residual estimate for the regression problem of Equation (9.4). Then

F =
(SSR0 − SSR1)/p

SSR1/(T − 2p− 1)
∼T→+∞ χ2

p.

The decision rule is to reject H0 if F > χ2
p,α. Again, note that the statistic is based on a central limit

theorem effect.

9.3.3 Example

Consider the monthly log stock returns of Intel Corporation from 1973 - 2008, found in the file

m-intc7308.txt. Figures 9.1, 9.2, 9.3, 9.4 and 9.5 indicate that there is conditional heteroscedas-

ticity. Firstly, the time series plot indicates clusters of high volatility. Secondly, while the acf of the

log stock returns shows no significant serial correlations with only minor exceptions at 7 and 14, the

acf and pacf of the squared log returns indicates show serial correlations, indicating that the monthly

returns are not independent.

0 100 200 300 400

−
0
.6

−
0
.2

0
.2

Index

in
tc

Figure 9.1: Intel log stock returns time series plot
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Figure 9.2: Intel log stock returns acf
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Figure 9.3: Intel log stock returns pacf

These observations are confirmed by the Ljung - Box test: the Q(m) statistics of the log return series

give Q(12) = 18.26 with a p value of 0.11 confirming no serial correlations in the data (significance

level 5%). On the other hand, the Ljung - Box test on the squared log return series gives a value of

Q(12) = 89.85 with a p value close to 0, thus indicating that strong ARCH effects are present.

The R script is as follows:

www =

"https://www.mimuw.edu.pl/~noble/courses/TimeSeries/data/m-intc7308.

txt"

mintc7308 = read.table(www,header=T)

da = mintc7308

intc = log(da[,2]+1)

plot(intc, type = "l")
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Figure 9.4: Intel log stock returns squared acf
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Figure 9.5: Intel log stock returns squared pacf

acf(intc)

pacf(intc)

acf(intc^2)

pacf(intc^2)

to get the acf and pacf of the series and the squared values. The command for the Ljung Box test is:

Box.test(intc,lag=12,type=’Ljung’)

and the output of the Box-Ljung test is:

Box-Ljung test

data: intc
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X-squared = 18.2635, df = 12, p-value = 0.1079

Now remove the mean and take the square:

at=intc-mean(intc)

Box.test(at^2,lag=12,type=’Ljung’)

and the result of the test is:

Box-Ljung test

data: at^2

X-squared = 89.8509, df = 12, p-value = 5.274e-14

9.4 Building an ARCH model

Using the fact that X2
t is an AR(p) process, it follows that the pacf of {X2

t } is 0 for lags greater than

p. The sample pacfs may therefore be used to select an ARCH model. Having selected the order, there

are several methods for estimating the parameters. One way is to consider {X2
t : t ∈ Z}, subtract the

mean, and apply the techniques of fitting an AR(p) process.

Likelihood Method Under the distributional assumption that {Zt} ∼ IIDN(0, 1), the likelihood

function of an ARCH(p) model is:

f(z1, . . . , zT |α) = f(zT |FT−1)f(zT−1|FT−2) . . . f(zp+1|Fp)f(z1, . . . , zp|α)

=




T∏

t=p+1

1√
2πσ2

t

exp

{
−z2t
2σ2

t

}
 f(z1, . . . , zp|α),

where α = (α0, . . . , αp)
t. It follows that the log likelihood function L is:

L(zp+1, . . . zT |α) = const −
T∑

t=p+1

{
1

2
ln(σ2

t ) +
1

2

z2t
σ2
t

}
,

where

σ2
t = α0 + α1z

2
t−1 + . . .+ αpz

2
t−p.

The conditional likelihood is usually used since f(z1, . . . , zp|α) is usually rather complicated.

In heavy tailed applications, the normal density may be replaced by a standardised Student-t distri-

bution with degrees of freedom chosen to reflect the desired tail. Other distributions may be chosen

to reflect the fact that the innovations are often skewed.
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9.5 Forecasting

Forecasts from the ARCH model can be obtained recursively in exactly the same way as those for an

AR model. Consider an ARCH(p) model; at the forecast origin h, the 1-step ahead forecast of σ2
h+1 is:

σ2
h(1) = α0 + α1X

2
h + . . .+ αpX

2
h+1−p.

Since σ2
h+1 is Fh measurable, it follows that σ2

h(1) = σ2
h+1.

The two step ahead forecast is:

σ2
h(2) = α0 + α1σ

2
h(1) + α2X

2
h + . . .+ αpX

2
h+2−p

which follows because E[X2
h+1|Fh] = σ2

h+1 = σ2
h(1).

Similarly, the l step ahead forecast for σ2
h+l is:

σ2
h(l) = α0 +

p∑

i=1

αiE
[
X2

h+l−1|Fh

]

= α0 +

p∑

i=1

αiσ
2
h(l − i)

where

σ2
h(l − i) = X2

h+l−i l − i ≤ 0.

Example For fitting a GARCH model, the package fGarch package may be used; the command is

garchFit. I found it easier (using Kubuntu 21.04) to install fGarch using ‘Synaptic Package Manager’;

the package is r-cran-fgarch.

Again, the data considered is the log stock returns of Intel Corporation from 1973 - 2008. The

ARCH(1) model returned is:

{
Rt = 0.0126 +Xt

σ2
t = 0.0112 + 0.3795X2

t−1

All the parameter estimates are highly significant.

The acf of the residuals {xt} gives Q(10) = 12.54 with a p value of 0.25 and those of {x2t } give

Q(10) = 16.02 with a p value of 0.10, neither significant at the 5% level, indicating that the model fits.

Using the same data as before (and the series intc), the command for fitting is:

library(fGarch)

m1 = garchFit(intc~garch(1,0),data=intc,trace=F)

A summary of the fitted model is found by:
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> summary(m1)

Title:

GARCH Modelling

Call:

garchFit(formula = intc ~ garch(1, 0), data = intc, trace = F)

Mean and Variance Equation:

data ~ garch(1, 0)

<environment: 0x55b62d2ca050>

[data = intc]

Conditional Distribution:

norm

Coefficient(s):

mu omega alpha1

0.012637 0.011195 0.379492

Std. Errors:

based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 0.012637 0.005428 2.328 0.01990 *

omega 0.011195 0.001239 9.034 < 2e-16 ***

alpha1 0.379492 0.115534 3.285 0.00102 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log Likelihood:

288.0589 normalized: 0.6668031

Description:

Thu Apr 22 10:02:36 2021 by user:

Standardised Residuals Tests:

Statistic p-Value
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Jarque-Bera Test R Chi^2 137.919 0

Shapiro-Wilk Test R W 0.9679248 4.024057e-08

Ljung-Box Test R Q(10) 12.54002 0.2505382

Ljung-Box Test R Q(15) 21.33508 0.1264607

Ljung-Box Test R Q(20) 23.19679 0.2792353

Ljung-Box Test R^2 Q(10) 16.0159 0.09917814

Ljung-Box Test R^2 Q(15) 36.08022 0.001721296

Ljung-Box Test R^2 Q(20) 37.43683 0.01036728

LM Arch Test R TR^2 26.57744 0.008884586

Information Criterion Statistics:

AIC BIC SIC HQIC

-1.319717 -1.291464 -1.319813 -1.308563

Let us describe the contents of the output. We’ll deal with GARCH slightly later in the lecture. For

now, an ARCH(p) process is a GARCH(p,0) process. Here p = 1 and q = 0.

The µ, ω and α1 refer to estimates for the model:

{
Xt = µ+ at

at = σtǫt

where {ǫt} ∼ IIDN(0, 1) and

σ2
t = ω + α1a

2
t−1.

Here the µ is insignificant, while the ω is very significant and, since α1 is significant, there is a significant

ARCH effect.

Next follow the results of a series of tests on the autocorrelations. We have considered the Ljung-

Box test. Computing the power of the Ljung-Box test, and deciding on the optimal number of lags to

give the most powerful test available is not feasible. Therefore, several lags are chosen. We only need

one of these to reject the null hypothesis to conclude that the process is not white noise.

We see that, for the original series (denoted R), the null hypothesis is not rejected for a Ljung-Box

test at 10, 15 or 20 lags. The white-noise hypothesis looks reasonable.

For the series R2, the null hypothesis of ‘white noise’ is clearly rejected; the test at 15 lags is the

most powerful of the Ljung-Box tests offered.

An ARCH(1) model with Student t distribution may be fitted as follows:

m3 = garchFit(intc~garch(1,0),data=intc,trace=F,cond.dist=’std’)

The beginning of the summary is:

> summary(m3)
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Title:

GARCH Modelling

Call:

garchFit(formula = intc ~ garch(1, 0), data = intc, cond.dist =

"std",

trace = F)

Mean and Variance Equation:

data ~ garch(1, 0)

<environment: 0x55b62fed17f0>

[data = intc]

Conditional Distribution:

std

Coefficient(s):

mu omega alpha1 shape

0.016731 0.011939 0.285321 6.015194

Std. Errors:

based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 0.016731 0.005302 3.155 0.001603 **

omega 0.011939 0.001603 7.449 9.39e-14 ***

alpha1 0.285321 0.110608 2.580 0.009892 **

shape 6.015194 1.562619 3.849 0.000118 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The additional piece here is the shape. Here {ǫt} ∼ IIDtν where ν is the number of degrees of freedom,

estimated by shape.

The introduction of the additional parameter has led to a slight improvement in terms of the AIC.

It turns out that this data set needs a GARCH process; we now turn to GARCH.
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9.6 The GARCH Process

The GARCH process is defined as:





Xt = σtZt {Zt} ∼ IIDN(0, 1)

σ2
t = α0 + α1X

2
t−1 + . . .+ αpX

2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q

α0 > 0, αj ≥ 0 j = 1, . . . , p βk ≥ 0 k = 1, . . . , q

The equation for σ2 may be written, in terms of generating polynomials, as

σ2
t = α0 + α(B)X2

t + β(B)σ2
t ,

where

{
α(z) = α1z + . . .+ αpz

p

β(z) = β1z + . . .+ βqz
q

Using E[X2
t ] = E[σ2

t ] together with stationarity gives:

E[X2
t ] = α0 + (α(1) + β(1))E[X2

t ] ⇒ E[X2
t ] =

α0

1− α(1)− β(1)
.

Again using Z̃t = X2
t −σ2

t = σ2
t (Z

2
t −1), so that Z̃t ∼ WN(0, σ2) provided that E[σ4

t ] < +∞, it follows

that

X2
t − Z̃t = α0 + α(B)X2

t + β(B)(X2
t − Z̃t).

This may be written as

X2
t − (α(B) + β(B))X2

t = α0 + (1− β(B))Z̃t.

Provided E[Z̃2
t ] < +∞, this is an ARMA(max(p, q), q) process with mean µ = E[X2

t ] given by:

µ− (α(1) + β(1))µ = α0 ⇒ µ =
α0

1− (α(1) + β(1))
.

9.7 An Illustrative Example

Specifying the order of a GARCH process is not so easy. Only lower order GARCH processes are used

in most applications. Consider the monthly excess returns of S&P 500 index starting from 1926 for

792 observations. The ACF is shown in Figure 9.7 while the partial autocorrelations for the squared

excess returns is shown in Figure 9.8. The series of returns has some serial correlations at lags 1 and

3, but the key feature of the pacf of x2t is that it shows strong linear dependence and hence an MA(3)

model may seem appropriate.

An AR(3) model has the same number of parameters; it is considered here. The fitted model is:
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{
xt − 0.088xt−1 + 0.023xt−2 + 0.123xt−3 − 0.0066 = at

σ̂2
a = 0.00333

A joint estimation of the AR(3) - GARCH(1,1) model gives:

{
xt = 0.0078 + 0.032xt−1 − 0.029xt−2 − 0.008xt−3 + at

σ2
t = 0.000084 + 0.1213a2t−1 + 0.8523σ2

t−1

From the volatility equation, the implied (unconditional) variance of at is:

0.000084

1− 0.8523− 0.1213
= 0.00317.

which is in line with the variance estimate for the AR(3) model.

In the AR(3) - GARCH(1,1) model, however, the parameters for the three AR coefficients are

insignificant at the 5% level. It therefore seems appropriate to redefine the model by dropping all AR

parameters. The redefined model is:

{
xt = 0.0076 + at

σ2
t = 0.000086 + 0.1216a2t−1 + 0.8511σ2

t−1

The Ljung-Box statistics suggest that the model is adequate. The R code is as follows:

> ww2 =

"https://www.mimuw.edu.pl/~noble/courses/TimeSeries/data/sp500.dat"

> sp500 = read.table(ww2)

> sp500fit = garchFit(~arma(3,0)+garch(1,1),data=sp500,trace=F)

> summary(sp500fit)

A student t distribution can be added; this does not improve the model significantly.

sptfit = garchFit(~garch(1,1),data=sp500,trace=F,cond.dist="std")

#obtain standardised residuals

stresi = residuals(sptfit,standardize=T)

plot(stresi,type="l")

Box.test(stresi,10,type=’Ljung’)

Box-Ljung test

data: stresi

X-squared = 11.38, df = 10, p-value = 0.3287

The result is not significant; the null hypothesis is not rejected.

Let us now predict 5 time steps ahead for this model.
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predict(sptfit,5)

meanForecast meanError standardDeviation

1 0.008455033 0.05330091 0.05330091

2 0.008455033 0.05327888 0.05327888

3 0.008455033 0.05325782 0.05325782

4 0.008455033 0.05323770 0.05323770

5 0.008455033 0.05321847 0.05321847
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Figure 9.6: Standard and Poor standardised residuals
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Figure 9.7: Standard and Poor acf for (excess) return series

9.8 Further Extensions of ARCH / GARCH

There are numerous associated models:
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Figure 9.8: Standard and Poor partial autocorrelation for squared excess return series

Non-linear ARCH (NARCH)

σγ
t = α0 + α(B)|Xt|

γ + β(B)σγ
t .

The choice γ = 2 yields the GARCH model; γ = 1 is sometimes used.

The standard approach for constructing variations on ARCH / GARCH is as follows: some financial

data sets are considered. For each set, the hypothesis H0 : γ = 2 (GARCH) is tested against the

alternative H1 : γ 6= 2 (or rather: the null hypothesis is that the data may be modelled by one of

the current models; the alternative is that the wider class of models is more appropriate). The null

hypothesis is generally rejected. The creator of the generalisation is then happy and some papers are

written. The typical situation is that we have some further parameters to play with in H0 ∪H1. Since

most (in fact all) models are simplifications of reality, a null hypothesis H0 which is much smaller than

H0 ∪H1 is (almost) always rejected if the data set is large enough.

Asymmetric ARCH Processes One drawback with ARCH, GARCH and NARCH is that positive

and negative values have a summetric effect on the volatility. Many financial time series are strongly

asymmetric; negative returns are followed by larger increase in the volatility than positive returns.

Typical examples of this may be prices of gasoline or the interest on a loan. Let

X+
t = max(Xt, 0) X−

t = min(Xt, 0)

There are several examples which address this problem; for example, the exponential GARCH (EGARCH)

and quadratic GARCH (QGARCH).

The EGARCH is:

lnσ2
t = α0 + β lnσ2

t−1 + λZt−1 + φ (|Zt−1| − E [|Zt−1|]) .

Other examples may be found in the literature.
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