Chapter 8
Computing the Predictor

Recall that, for a univariate time series, the one-step predictor )/fn which minimises

on = E[| X — Xn|?]

is given by )?n = 2?:1 ¢n,j Xn—j where the vector ¢,  satisfies:

¢n,. == Fﬁl'Yna

I',, denotes the correlation matrix of the predictors I',,; j = Cov(X,,—;, Xp—j;) while v, ; = Cov(X,,, Xp—;).

The formula for the predictor can easily be generalised to a multivariate time series. If n is small,
the matrix I' may be inverted and the predictor computed explicitly with good results, but as n
increases, the computation of I',;! may not be feasible. There are several recursive methods available.
Recursive methods assume that )A(n has been computed, based on X1, Xo,..., X,,_1 and then, when X,
is obtained, the predictor Xn+1 is computed based on X1, Xo,...,X,,. The new information obtained
is 6 = X — Xon.

Recall the definition of ¢y, ;;

n
Xot1 =Y OnjXni1-j.
j=1
We also use v, to denote the mean squared error of the predictor:

v, = E

2
’Xnﬂ - Xn—i—l‘ ] -

The index n of v, refers to the time point from which the one-step-ahead prediction is made.

8.1 The Durbin-Levinson Algorithm

Assume now that @n_l and v,_1 have been computed, from which X’n was obtained. The Durbin -

Levinson algorithm is a method for obtaining )?nﬂ once, in addition, X, is known.
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Theorem 8.1 (The Durbin-Levinson Algorithm). Let {X;} be a zero-mean stationary time series with
ACVF ~ satisfying:
~(0) > 0, v(h) =0 as h— .

Then W
_ 14 _
¢1,1 = 7(0) , Vo = 7(0)7
n—1
d)n,n = V(n) - Z ¢n71,j’)/(n - ]) v;—ll (81)
j=1
On,1 dn-1,1 Gn-1,n-1
= - ¢n,n (8'2)
¢n,n—l ¢n—1,n—1 ¢n—1,1
and
Un = Un-1[1 — ¢ - (8.3)

Proof Consider the two orthogonal subspaces K1 = Mé)? and Ky = spa{X; — P, X1}. We use
M%{% to denote the closure of the space spanned by X,,, ..., Xy, so that Iy is the closure of the space
spanned by Xo, ..., X,,, while the space Ky is the subspace of the space spanned by X, ..., X,, which

is orthogonal to Ks.

Using this notation, the predictor )?m—l may be expressed as:

~

Xn+1 = P/Cl (Xn+1) + P/CQ (Xn+1) (8'4)

It follows from the construction that

Prey(Xnt1) = a(X1 — P, (X1)) (8.5)

for some constant a, and from the projection theorem,

0= C(Xpn41 — P, (Xn41), Pc,(Xn41)) = a(Xng1, X1 — Px, (X1)) — @[ X1 — P, (X0)[?, (8.6)

from which
o = (Xn+1, X1 — P, Xa) (8.7)
[ X1 — P, Xall> '

By stationarity, and using the fact that the ‘reversed’ process has the same ACVF,
n—1
P, (X1) = Z Pn—1,jXj+1, (8.8)
j=1
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n—1
Pe,(Xns1) = Y bn-1Xns1-5- (8.9)
7j=1
and
1X1 = Pre, (X017 = [| X1 = Py (Xng2) P = 1 X = Xa||? = vns (8.10)
From Equations (8.4), (8.5), (8.8) and (8.9)), it follows that

n—1

Xnj1=aX1+ Y (bn-15 — @bn-1.n—j) Xnt1—- (8.11)
=1

From Equations (8.7) and (8.8), it follows that

n—1 n—1
a= [ (Xny1, X1) =D bn1(Xng1, Xjp1) | v hy = [ 7(0) =D dn1v(n—j) | v,y
p i=1

Since o, =Ty 1ln and the matrix I';, is non singular, the representation

n
Xoi1 =Y bnjXnt1 (8.12)
j=1

is unique. Comparing coefficients in Equations (8.11) and (8.12) therefore gives

{ un = a (8.13)

d)nj = ¢n—1,j — agbn_l,j_l, j = 1, NS 1.
Equations (8.1) and (8.2) have therefore been established. It only remains to establish Equation (8.3).

~ ~

Using Xp4+1— Pic; (Xn+1) = Xnt1— Xnt1+ Pr, (Xn41) and, by the projection theorem, X411 —Xp41 L
Pic,(Xn+1), the mean squared error of the predictor is:

va = [ Xng1 = Xnpa
= [ Xnt1 = P, (Xnt1) = Prey (Xt ||
= [ Xnt1 = Py (X)) [P+ [1Pes (Xt )12 = 2(Xn1 — Py (Xng1), Prea (X))
= [ Xn = Xo|l? + | X1 — P, (X)|* — 20%[| X1 = Pry (X))
= v, 1(1 —d?)

where Equation (8.12), the orthogonality of 1 and Ky and Py, (X,+41) = a(X1 — Px,(X1)) and
Equation (8.6) have been used. From Equation (8.7), it follows that

Vp = Up—1(1 — a2)
as required. m

Theorem 8.2. Under the assumptions of Theorem 8.1, a(h) = ¢p 5 for h > 1.
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Proof Consider the proof of Theorem 8.1. From Equation (8.13) giving a = ¢y, 5, and Equation (8.7),
it follows that

oy, = i1, X1 = P, (X1))
o X1 = P, (X012
From the projection theorem, X — Pic, (X1) L P, (Xn+1), from which

<Xn+1 - PKI (Xn+1)7X1 - PK1 (X1)>
[ X1 — P, (X1) |1

= a(n).

¢n,n =

Example 8.1 (AR(p) process).

For an AR(p) process, it follows directly from the above that

)?n—i-l =91 Xp+--F ¢an+l—p7 for n>p.

8.1.1 Multivariate Durbin-Levinson Algorithm

The projection theorem and predictors remain largely the same, replacing scalars with appropriate
matrices. Let {X, : t € Z} be an m-variate time series. Let S, :=8pa(X,,...,X,,) and let P(Z|}"T(LX))

denote the projection of a random vector Y onto S,,. Then, by the projection theorem,

P(Y|F) e FY)
X_P(ZLFT(LX)) J‘Xn-i-l—i 1=1,...,n.

where

X 1Y & p(X,Y)) =0 Vi
The best linear predictor Xn—i—l of X, ., based on -7:1(:);) is simply the vector of best linear predictors,

each based on (Xi;)i=1,.. n;j=1,..,m and may be expressed as:

Xn+1 = q)nlxn +...+ (I)nnil

where (<I>jn)?:1 are m x m real valued matrices. The prediction equations are therefore:

n
> @ Kn+1-jn+l—i)=Kn+1ln+1-i) i=1,...,n (8.14)
j=1

where

K(i,j) = E[(X; - E[X,]))(X

; —EXD.

when X is stationary, K(i,j) = I'(¢ — j) and this reduces to
> @, T(i—j)=T() i=1...,n (8.15)
j=1
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The coefficients {®,,;} may be computed recursively from a multivariate version of the Durbin Levinson
algorithm, which involves calculation of both the forward and backward predictors P(X,, 4 |]-"1(i)) and
P(XO\}}(?). Let ®,1,...,P,, be the m x m coefficient matrices satisfying:

n
X .
PXo|lF)) =Y %X,  j=12,...
J=1

Then

n
Z I(j—i)=T(—1) i=1,....n
Let V,, and ‘7” denote the two prediction error covariance matrices:

{ Vi = El(X 51— Pt |[F) (X = P F13))
Vo = E[(Xo — P(Xo|F)) (X — P(XolF))]

These satisfy:

{ V, = E[(X,,, - P(X n+1|f1(f§~))12+1] =T(0) = 2 T(=1) = ... = ®pnl'(—n) (8.16)
V., =T(0) — 1F(1) — Ppnl’(n)
Let
Ay = E[( X,y — PX, | FONXE =T(n+ 1) = &,y T(n) — ... — ®,,0(1) (8.17)
R, = E[(Xy — POXIFNX, 1) = D(—n— 1) = B l(=n) — .. — Sl (~1) |

Proposition 8.3 (The Multivariate Durbin Levinson Algorithm). Let {X, : t € Z} be a stationary m-

variate linear time series, mean zero, with autocovariance function T'(h), such that covariance matriz

of vece(X,...,X,,) is non-singular for each n > 1. Then the coefficients {®p;}tn>1j=1,..n are given
by:

nn - An 1V 1

nn - An 1V_

D, = q)nfl,k - (bnn:I;nfl,nfk k=1,...,n—1
(I)nk = (I)nfl,k - ®,,P

n—1,n—k k‘:l,...,n—l

where V,, and V,, are defined by Equation (8.16) and A, and A, are defined by Equation (8.17) with

Vo = Vo = T(0)
Ag = Al =T(1).
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Proof The proof closely parallels the univariate case. For n = 1, the result follows directly from
Equation (8.15). For n > 2,

Xpi1 = P(Xnn1|[FSY) + AU

where U = X — P(Kﬂ]—éﬁ)) and A is an m x m matrix that satisfies:

Xy — AU L U;

in other words,

E X, U] = AE [U0].

It follows from stationarity that

P(X, | Fi)) = @11 Xy + o P01 X
U=X| -, 10Xy — ... —Py_1 1 X,

and
E [UU"] =V, 1.

It now follows from the foregoing that:

A = E[X,U'V,2
= E[(X,41 — P(Xppq|Fom) U]V,
= K [(Kn—&-l - P(Kn+1|"r2(§)) Xﬂ ‘7n_fll

= (T(n)—®p 11 0(n—1)—... =B, 1, 1 D)) VY
= Anfl‘N/n_jl
from which it follows that
n—1
X1 = AX, + z (P15 = APp1n—j) Xppi1—j,
j=1
which proves half of the recursions. The other half is established by a symmetric argument. O

8.2 The Innovations Algorithm

It is equivalent, and natural, to consider predictors which are linear combinations of the innovations

Xy — )?1, R )?n This is equivalent since

spa{ X1, Xa, ..., X} =spa{ X1 — X1,..., X — X, ).

The innovations algorithm uses these. It does not assume stationarity.
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Theorem 8.4 (The Innovations Algorithm). If {X;} has zero-mean and E [X;X;] = k(i,7), where the

n x n matriz K with entries K;j = k(4, j) is non-singular, then

N 0 ifn=20,
Xoi=4{ ~ , (8.18)
m On i (Xny1—j — Xnt1—j) ifn>1,
j=1
where:
vo = k(1,1)
k—1
Onn—t = vk_l </—z(n +1L,k+1)— > Hk,k_ﬂn,n_jvj> k=0,....,n—1,
= (8.19)

n—1
vp=k(n+1n+1)— > 9,227n7]»vj.
j=0

Proof Taking the inner product of Equation (8.18) with X1 — )?k—&-l and using orthogonality, it
follows that

n

(X1, X1 = Xiw1) = D O Xnr1—j = X1y Xiwr — Xig)
j=1

Onn—tel| Xi+1 — Xer1l]> = Onnrvr,

from which 1
Onn—t = a<Xn+1,Xk+1 — Xit1)-

From Equation (8.18), with n replaced by k,

k-1
One = v} (Fﬂ(n +1L,Ek+1)— Z Ok k—j (Xnt1, Xj1 — Xj+1>>

<

e
—= O

= 'Uk_l </§(n + 1,k + 1) — Hk’k_jﬁnynjvj> .

o

.

The form of v,, follows immediately from || X, — X, = | Xn||2 — | X% O

Prediction of an ARMA Process Using the Innovations Algorithm The innovations algo-

rithm can be applied directly to the causal ARMA process

¢(B)Xy = 0(B)Zt, {Zi} ~ WN(0,07),

but the calculations are simplified considerably by using the following transformation of the process:

Wy =0"1X =1,...
{ t g t 3 U (820)

Wt = 0'71¢(B)Xt, t>m,
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where m = max(p, q). It follows that, for ¢t > m, W is the MA(q) process W = 6(B)Z. It is clear that:

M, = 5pai X1, Xo, ..., Xn} = 5pa{Wi, Wa, ..., Wy).
As usual, set )?nﬂ = Py, (Xp+1) and Wn_i,_l = Py, (Wyh41). Tt follows directly that
/V[Z:U’U?t t=1,...,m,
{ Wt = U_l[)?t — 1 Xp1— - — Xy t>m.
From this,
X, — Xy =o(W,—W,) forallt>1.

The idea is now to apply the innovations algorithm to {W;}. A straightforward computation gives:

o ?yx (i = ) 1<ij<m
p
o2 |x(i—35) = X ¢rx(r— i = j])| min(s,5) < m < max(i, j) < 2m
kw (i, 7) =9 4 =1 N (8.21)
2007“97"+|i7j|) maX(Z’]) > m,
r=
0 otherwise,

where g = 1 and ; = 0 for j > ¢. The innovations algorithm, applied to W; gives the coefficients 6,
from which it follows that:

> On i (Xng1—j — Xnt1-j) 1<n<m,
X1 =4 7 . R (8.22)
01 Xn + -+ GpXnt1p + Z en,j(Xn—&-l—j - n+1—j) n > m.
j=1

8.2.1 Multivariate Innovations Algorithm

Proposition 8.5 (Multivariate Innovations Algorithm). Let {X, : t € Z} be an m dimensional time
series with mean E[X,] = 0 and covariance function K(i,j) = E [X,;X"]. Suppose the covariance
function of vect(X,...,X,)) is non singular for every n > 1. Then the one-step predictors Xn—l—l in >

0 and their prediction error covariance matrices Vy, :m > 1 are given by:

— 0 n=20
Xi=19 s S (8.23)
2.j=10n, (erlfj - XnJrlfj) n=1

and

Vo= K(1,1)
Opmi = <K(n +1Lk+1) - Ykl @n,n,ﬂ/j@;;’kfj) Vil k=01,...,n—1 (8.24)
Vo=Kn+1Ln+1) =312 0, V565,

The recursions are solved in the order:

Vo; ©11, V1; ©22, O21, V25 O33, O39, O31, V3;

130



Proof Fori < j, X, — X@ € fj(fl) and since each component of X ; — Xj is orthogonal to .Fj(fl) by

the prediction equation, it follows that

Post multiplying both sides of Equation (8.23) by X};H —X;H for 0 < k < n and taking expectations

gives:

~ ~ t
E |:Xn+1 <Kk;+1 - Xk+1) } = On Vi

from which it follows, by orthogonality, that

~ t ~ ~ t
E |:Xn+1 (Xkﬂ - K}cﬂ) ] =E |:Xn+1 (Xkﬂ - K}cﬂ) ] = Onn—1 Vi

It follows that

k-1
BN
Onn—kVe =K(n+1,k+1)— ZE [XnJrl (XjJrl - Kjﬂ) ] Ol h—j
=0

from which
k-1
Onn- iV =K(n+1,k+1)=> Onn ;V;Of 4 ;.
j=0
Nonsingularity of the covariance matrix of vect(X;...., X)) gives that Vj is non singular, from which
k-1
Onnr= | K(n+1L,Ek+1)=> Onn ;ViOh, ;| Vit
7=0

Finally, since

n—1
Xn—&-l = Kn-H - Kn-f-l + Z Gn,n—j (Xj-l-l - Kj—i—l) )
j=0
it follows, by orthogonality, that
n—1
Kn+1n+1)=Vot+ > Onn VO,
j=0

as required. 1
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Multivariate Innovations and Recursive Prediction of the VARMA (p,q) Process Let {X, :
t € Z} be an m dimensional causal VARMA (p,q) process,

®(B)X, = ©(B)Z, {Z,} ~ WN(0, %)
where, using I to denote the m x m identity matrix,

®B)=I—-®B—...—®,B", O(B)=I+6,B+...+0,B%, det(X)#0

As with the univariate ARMA, substantial computational savings can be made by applying the inno-

vations algorithm to the transformed process:

Et:Kt tzl,...,max(p,q)
W,=®(B)X, t>max(p,q)+1

Let T denote the covariance function for {X, : ¢t € Z} and let K denote the covariance function for W.

Let I = max(p, q). Then

I'(i— ) 1<i<j<lI
Pii—7)—->P ®&T(+r—j) 1<i<l<j<2l
K(i,j) =E[WWi] =¢ Y1 06,50, I<i<j<i+gq (8.25)
0 [<i, i+q<j
K*(i, ) j<i

By convention, ©; = Oy,xm for j > ¢. The covariance matrix for this process is zero when [i — j| > ¢.
The argument for the univariate setting carries over almost unaltered in the multivariate setting to

give:

~

S 021 Onj (Knﬂ—j - Knﬂ—j) l<n<l

Kn—i—l -

~

1N, o+ QX+ D0 O (Knﬂ—j - Xn+1—j) n>l1
Vo = E[(£n+1 - Xn+1)(£n+1 - XnJrl)t}
where ©,,; : j =1,...,n and V,, are found in Equation (8.24) with K (4, j) defined by Equation (8.25).

For a univariate ARMA, the coefficients 6,; : j = 1,...,q do not depend on the white noise variance

o?. In the multivariate case, though, the coefficients do depend on X.

~

When {X, : t € Z}, the differences X, ,; — X, satisfy:

i ~ N .
It is left as an exercise to show that

lim ©,; =06, 17=1,...,q, lim V, =3%.

n—-+oo n—-+oo
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VARMA (p,q) h step predictors Once Xl, e ,Xn have been computed, it is straightforward to
see that the h step predictor Pfg)gwh satisfies:

(X)Apt+h — R
Fiin > cI)iP}_l(ii)Kn—i-h—i + D h<j<q Onth—1,) <Kn+h_j - erh_j) h>l—-n+1
(8.26)
where, for fixed n, the predictors P 20 Xntj 1 j = 1,2,3,... are determined recursively from Equa-
1:n
tion (8.26).

Let g(h) := P]__SL)X”JF;L, then g(h) satisfies:

{ g(h) = C1g(h—1) — ... = Dpg(h —p) =0 h>gq (8.27)

9(a—1) =P X, yq i=0,1,...,p—1.

8.3 Large numbers of observations

Assume now that we at time 0 have observed X_,,11 ..., Xy and want to predict X; or, more generally

X, for h > 1. None of the approaches outlined so far give good results if n is very large.
Consider a predictor of X} based on X}, for k£ < 0;

Pp(Xn) = Pspax,, k<0 Xh-

Any linear predictor P, (X}) based on Psparx,, r<oyXh is of the form:

[ee]
Xh = Zan,j. (828)
7=0
It follows from Equation (2.8) that a linear predictor is Py (X}) is determined by the relations:
C(Ph(Xh)vX—i) = C(thX—i)v i:0717"'7
which gives

o
> x(i—j)a; =yx(h+i), i=0,1,.... (8.29)
j=0

This set of equations determines the set of coefficients and the result, P, (X}3) in Equation (8.28) is the

linear predictor provided the resulting series converges; otherwise the expression is not well defined.
Example 8.2 (MA(1) process).

Let {X;} be an MA(1) process, i.e.

Xi =2+ 021 {Z;} ~ WN(0,0?%).
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For the MA(1) process, the ACVF is:

(1+6*0% ifh=0,
vx(h) = { 602 if |n| =1,
0 if |h| > 1.
The coefficients for the linear predictor are obtained from Equation (8.29). For A > 2, the equation

is satisfied by «; = 0 and the linear predictor is: Py (X}) = 0. Clearly, for A > 2, X, is uncorrelated

with any of the observations.

For h = 1, Equation (8.29) reduces to

{ ap(1+6%) + a0 =0 (5.30)

i1+ a;(1+0*) +ai10=0 i=1,2,...

A standard way of solving solutions of this type is to consider the generating polynomial f(z) =
20 @izt From Equation (8.30), setting a—1 = 0,

HZai_lzi + (14 6?) Zaizi + HZaini =ag(1+6*)+a0=06.
=0 =0 =0

From this,

021(2) + (14 8)1(2) + L(F(2) ~ a0) = 0

from which

1) = 0z + o 2+
024+ (1402240 (z+0)(z+3)

(8.31)

Any ap € R gives a solution; the coefficients (c;);>1 can be obtained (in terms of «g) by taking the
coefficients polynomial expansion.

There are additional restrictions, though: convergence requires the additional assumption that
Yoo lag| < 4o00. This requires that the polynomial f(z) has no singularities in the unit ball {z € C:
2 <1}

From the equation for f(z), there are three cases: |#] > 1, |#| < 1 and |6] = 1.

Case 1: |0] > 1: If |§] > 1, then there is no singularity for |2| < 1 if and only if z + G = 2 + 6 for

all z € C and hence ag = #?. Therefore o is uniquely determined,
© s_q4N\I
—9 )
=03 (7)

giving o = (fl)jgj#_1 for 7 > 0.
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Case 2: || < 1: If |#] < 1, then there is no singularity for |z| < 1 if and only if oy = 1. Therefore
g is uniquely deterimined,
o0
) =03 (1
=0

J

giving a; = (—1)767"! for j > 0.

Case 3: |[0]| =1: If |§] =1, then

so that ag = 1 and

_ 1 _ 1iz 0=—1
f(z)_9z+0_{ 1 g1,

The expansion is not well defined when 8 = £1. Hence there are no solutions to the linear prediction

problem of this form in this case. O

Consider again 0| < 1. The linear predictor is:

oo
Xi=> —(-0)"x_;
=0

Recall that Xy = Z; 4+ 0Zp. Furthermore, an MA(1) process with |f| < 1 is invertible and Zy may be

written as:

Zy=Xo—0X_4 —|—92X,2 - 93X,3 +....
From this, it follows that:
Zp = PsITa{XO,X,l,...}(ZO)
Furthermore, Z; L spa{Xo, X_1,...}, from which
Xl - Pspia{Xo,X,hm}(Zl) + 0P@{X0,X717...}(ZO) = 0Z0

It follows that X; = 07Z,.

The natural question arises: When does there exists a predictor of the assumed form? This cannot be

answered in general, but the following theorem by Rozanov gives a partial answer.

Theorem 8.6. Let { X} be a stationary time series with spectral density f(-). AnyY € spa{X;, t € Z}
can be ezpressed in the formY = > Xy if and only if

0<c1 < f(A)<ca<oo for (almost) all X € [—7, .
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Proof Omitted OJ

Example 8.3.

For an MA(1) process,

—rT <A<

2y 2 2 2 2
(14+6°)0 _|_9L <ei’\+e_i’\> _o (14 6%+ 20 cos(N))

_ 1 s —ih\ _
F) = 2 Z € v(h) = 2 2T 2T ’

h=—o0
The upper bound is straightforward;
1 1 o? o?
< — v = =—(1+46%) + — .
_max O] < 5o RO+ (D] = 514+ 6%) + ZJ6] < oo
From the equation for f(\), it follows that f(0) =0if # = —1 and f(7) = f(—7) =01if § = 1, while

1 2_2 21_ 2
(A+67—20) o"A-10)°

T <A<
o om ’ T=AST

2
(OES
for all |0 # 1.

In general, predictors based on infinitely many observations are best expressed in terms of spectral
properties of the underlying time series. We will return to this later. Here we only give a preliminary

version of Kolmogorov’s formula for the one-step mean-square prediction error

Voo = E [(Xn—f—l — Xn+1)2:| where Xn—i-l = P@{Xt,tgn}(Xn+1)-

Theorem 8.7 (Kolmogorov’s formula). Let {X;} be a zero-mean stationary time series with spectral

density f such that there exist two constants (c1,c2) satisfying
0<cp < <40

such that
0<c < f(A)<e for (almost) all A€ [—m, 7).

The one-step mean-square prediction error is:
Voo = 2T €XP {% ST Inf(X) d)\} )

Proof Firstly, using the expansion

o0

m(l-2)=Y > |<1,
J

Jj=1
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together with [7_ e d\ = 0 for k # 0, it follows that for |a| < 1,

/ In|1— ae‘”‘]Qd}\ = / (ln(l — ae""\) +1In(1 — aei’\)) d\

[ 0 Go—ijA O —j ij\
_ _/ P S N
A \= —
j= j=
Let {X;} be an AR(p) process satisfying ¢(B)X; = Z;, where {Z;} ~ WN(0, ¢?) and
D) =1 iz — by |2 <1
then {X;} has spectral density
o? 1 o? £ 1
FN) = :=o- 17—
2 )1 . §:1 (bjeiij/\’ 2T J=1 |]. — aje |
for a collection of numbers a1, ..., a, satisfying |a;| < 1 for each j € {1,...,p}. It follows that

™ o2 p ™ o o2

— o —_ -

/ lnf()\)dA—Zﬂln%— El/_wln|1—a]e | d/\—27rln27r.
]:

—Tr

This establishes Kolmogorov’s formula for the causal AR process. The result, in the general case,
follows from the result, Theorem 3.8, that a stationary linear process can be approximated arbitrarily
closely by AR(p) processes. O
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