Chapter 8

Computing the Predictor

Recall that, for a univariate time series, the one-step predictor \widehat{X}_n which minimises

$$v_n := \mathbb{E}[|X_n - \widehat{X}_n|^2]$$

is given by $\widehat{X}_n = \sum_{j=1}^n \phi_{n,j} X_{n-j}$ where the vector $\phi_{n,j}$ satisfies:

$$\phi_{n,.} = \Gamma_n^{-1} \gamma_n,$$

 Γ_n denotes the correlation matrix of the predictors $\Gamma_{n,i,j} = \text{Cov}(X_{n-i},X_{n-j})$ while $\gamma_{n,i} = \text{Cov}(X_n,X_{n-i})$.

The formula for the predictor can easily be generalised to a multivariate time series. If n is small, the matrix Γ may be inverted and the predictor computed explicitly with good results, but as n increases, the computation of Γ_n^{-1} may not be feasible. There are several recursive methods available. Recursive methods assume that \widehat{X}_n has been computed, based on $X_1, X_2, \ldots, X_{n-1}$ and then, when X_n is obtained, the predictor \widehat{X}_{n+1} is computed based on X_1, X_2, \ldots, X_n . The new information obtained is $\widehat{\epsilon}_n := X_n - \widehat{X}_n$.

Recall the definition of $\phi_{n,j}$;

$$\widehat{X}_{n+1} = \sum_{j=1}^{n} \phi_{nj} X_{n+1-j}.$$

We also use v_n to denote the mean squared error of the predictor:

$$v_n := \mathbb{E}\left[\left|X_{n+1} - \widehat{X}_{n+1}\right|^2\right].$$

The index n of v_n refers to the time point from which the one-step-ahead prediction is made.

8.1 The Durbin-Levinson Algorithm

Assume now that $\underline{\phi}_{n-1}$ and v_{n-1} have been computed, from which \widehat{X}_n was obtained. The *Durbin* - *Levinson* algorithm is a method for obtaining \widehat{X}_{n+1} once, in addition, X_n is known.

Theorem 8.1 (The Durbin-Levinson Algorithm). Let $\{X_t\}$ be a zero-mean stationary time series with $ACVF \gamma$ satisfying:

$$\gamma(0) > 0, \quad \gamma(h) \to 0 \quad as \quad h \to \infty.$$

Then

$$\phi_{1,1} = \frac{\gamma(1)}{\gamma(0)}$$
, $v_0 = \gamma(0)$,

$$\phi_{n,n} = \left[\gamma(n) - \sum_{j=1}^{n-1} \phi_{n-1,j} \gamma(n-j) \right] v_{n-1}^{-1}$$
(8.1)

$$\begin{pmatrix} \phi_{n,1} \\ \vdots \\ \phi_{n,n-1} \end{pmatrix} = \begin{pmatrix} \phi_{n-1,1} \\ \vdots \\ \phi_{n-1,n-1} \end{pmatrix} - \phi_{n,n} \begin{pmatrix} \phi_{n-1,n-1} \\ \vdots \\ \phi_{n-1,1} \end{pmatrix}$$
(8.2)

and

$$v_n = v_{n-1}[1 - \phi_{n,n}^2]. (8.3)$$

Proof Consider the two orthogonal subspaces $\mathcal{K}_1 = \mathcal{M}_{2:n}^{(X)}$ and $\mathcal{K}_2 = \overline{\operatorname{spa}}\{X_1 - P_{\mathcal{K}_1}X_1\}$. We use $\mathcal{M}_{m:n}^{(X)}$ to denote the closure of the space spanned by X_m, \ldots, X_n , so that \mathcal{K}_1 is the closure of the space spanned by X_2, \ldots, X_n , while the space \mathcal{K}_1 is the subspace of the space spanned by X_1, \ldots, X_n which is orthogonal to \mathcal{K}_2 .

Using this notation, the predictor \widehat{X}_{n+1} may be expressed as:

$$\widehat{X}_{n+1} = P_{\mathcal{K}_1}(X_{n+1}) + P_{\mathcal{K}_2}(X_{n+1})$$
(8.4)

It follows from the construction that

$$P_{\mathcal{K}_2}(X_{n+1}) = a(X_1 - P_{\mathcal{K}_1}(X_1)) \tag{8.5}$$

for some constant a, and from the projection theorem,

$$0 = \mathbf{C}(X_{n+1} - P_{\mathcal{K}_2}(X_{n+1}), P_{\mathcal{K}_2}(X_{n+1})) = a\langle X_{n+1}, X_1 - P_{\mathcal{K}_1}(X_1) \rangle - a^2 ||X_1 - P_{\mathcal{K}_1}(X_1)||^2,$$
 (8.6)

from which

$$a = \frac{\langle X_{n+1}, X_1 - P_{\mathcal{K}_1} X_1 \rangle}{\|X_1 - P_{\mathcal{K}_1} X_1\|^2}.$$
(8.7)

By stationarity, and using the fact that the 'reversed' process has the same ACVF,

$$P_{\mathcal{K}_1}(X_1) = \sum_{j=1}^{n-1} \phi_{n-1,j} X_{j+1}, \tag{8.8}$$

$$P_{\mathcal{K}_1}(X_{n+1}) = \sum_{j=1}^{n-1} \phi_{n-1,j} X_{n+1-j}.$$
(8.9)

and

$$||X_1 - P_{\mathcal{K}_1}(X_1)||^2 = ||X_{n+1} - P_{\mathcal{K}_1}(X_{n+1})||^2 = ||X_n - \widehat{X}_n||^2 = v_{n-1}$$
(8.10)

From Equations (8.4), (8.5), (8.8) and (8.9)), it follows that

$$\widehat{X}_{n+1} = aX_1 + \sum_{j=1}^{n-1} (\phi_{n-1,j} - a\phi_{n-1,n-j}) X_{n+1-j}.$$
(8.11)

From Equations (8.7) and (8.8), it follows that

$$a = \left(\langle X_{n+1}, X_1 \rangle - \sum_{j=1}^{n-1} \phi_{n-1,j} \langle X_{n+1}, X_{j+1} \rangle \right) v_{n-1}^{-1} = \left(\gamma(n) - \sum_{j=1}^{n-1} \phi_{n-1,j} \gamma(n-j) \right) v_{n-1}^{-1}.$$

Since $\underline{\phi}_n = \Gamma_n^{-1} \underline{\gamma}_n$ and the matrix Γ_n is non singular, the representation

$$\widehat{X}_{n+1} = \sum_{j=1}^{n} \phi_{nj} X_{n+1-j} \tag{8.12}$$

is unique. Comparing coefficients in Equations (8.11) and (8.12) therefore gives

$$\begin{cases} \phi_{nn} = a \\ \phi_{nj} = \phi_{n-1,j} - a\phi_{n-1,j-1}, \quad j = 1, \dots, n-1. \end{cases}$$
 (8.13)

Equations (8.1) and (8.2) have therefore been established. It only remains to establish Equation (8.3).

Using $X_{n+1} - P_{\mathcal{K}_1}(X_{n+1}) = X_{n+1} - \widehat{X}_{n+1} + P_{\mathcal{K}_2}(X_{n+1})$ and, by the projection theorem, $X_{n+1} - \widehat{X}_{n+1} \perp P_{\mathcal{K}_2}(X_{n+1})$, the mean squared error of the predictor is:

$$v_{n} = \|X_{n+1} - \widehat{X}_{n+1}\|^{2}$$

$$= \|X_{n+1} - P_{\mathcal{K}_{1}}(X_{n+1}) - P_{\mathcal{K}_{2}}(X_{n+1})\|^{2}$$

$$= \|X_{n+1} - P_{\mathcal{K}_{1}}(X_{n+1})\|^{2} + \|P_{\mathcal{K}_{2}}(X_{n+1})\|^{2} - 2\langle X_{n+1} - P_{\mathcal{K}_{1}}(X_{n+1}), P_{\mathcal{K}_{2}}(X_{n+1})\rangle$$

$$= \|X_{n} - \widehat{X}_{n}\|^{2} + a^{2}\|X_{1} - P_{\mathcal{K}_{1}}(X_{1})\|^{2} - 2a^{2}\|X_{1} - P_{\mathcal{K}_{1}}(X_{1})\|^{2}$$

$$= v_{n-1}(1 - a^{2})$$

where Equation (8.12), the orthogonality of \mathcal{K}_1 and \mathcal{K}_2 and $P_{\mathcal{K}_2}(X_{n+1}) = a(X_1 - P_{\mathcal{K}_1}(X_1))$ and Equation (8.6) have been used. From Equation (8.7), it follows that

$$v_n = v_{n-1}(1 - a^2)$$

as required. \Box

Theorem 8.2. Under the assumptions of Theorem 8.1, $\alpha(h) = \phi_{h,h}$ for $h \ge 1$.

Proof Consider the proof of Theorem 8.1. From Equation (8.13) giving $a = \phi_{n,n}$ and Equation (8.7), it follows that

$$\phi_{n,n} = \frac{\langle X_{n+1}, X_1 - P_{\mathcal{K}_1}(X_1) \rangle}{\|X_1 - P_{\mathcal{K}_1}(X_1)\|^2}.$$

From the projection theorem, $X_1 - P_{\mathcal{K}_1}(X_1) \perp P_{\mathcal{K}_1}(X_{n+1})$, from which

$$\phi_{n,n} = \frac{\langle X_{n+1} - P_{\mathcal{K}_1}(X_{n+1}), X_1 - P_{\mathcal{K}_1}(X_1) \rangle}{\|X_1 - P_{\mathcal{K}_1}(X_1)\|^2} = \alpha(n).$$

Example 8.1 (AR(p) process).

For an AR(p) process, it follows directly from the above that

$$\widehat{X}_{n+1} = \phi_1 X_n + \dots + \phi_p X_{n+1-p}, \quad \text{for} \quad n \ge p.$$

8.1.1 Multivariate Durbin-Levinson Algorithm

The projection theorem and predictors remain largely the same, replacing scalars with appropriate matrices. Let $\{\underline{X}_t : t \in \mathbb{Z}\}$ be an *m*-variate time series. Let $S_n := \overline{\operatorname{spa}}(\underline{X}_1, \dots, \underline{X}_n)$ and let $P(\underline{Y}|\mathcal{F}_n^{(X)})$ denote the projection of a random vector \underline{Y} onto S_n . Then, by the projection theorem,

$$\begin{cases}
P(\underline{Y}|\mathcal{F}_n^{(X)}) \in \mathcal{F}_n^{(X)}) \\
\underline{Y} - P(\underline{Y}|\mathcal{F}_n^{(X)}) \perp \underline{X}_{n+1-i} \quad i = 1, \dots, n.
\end{cases}$$

where

$$\underline{X} \perp \underline{Y} \Leftrightarrow \rho(X_i, Y_i) = 0 \quad \forall i, j.$$

The best linear predictor \widehat{X}_{n+1} of X_{n+1} based on $\mathcal{F}_{1:n}^{(X)}$ is simply the vector of best linear predictors, each based on $(X_{t,j})_{t=1,\dots,n;j=1,\dots,m}$ and may be expressed as:

$$\widehat{\underline{X}}_{n+1} = \Phi_{n1}\underline{X}_n + \ldots + \Phi_{nn}\underline{X}_1$$

where $(\Phi_{jn})_{j=1}^n$ are $m \times m$ real valued matrices. The prediction equations are therefore:

$$\sum_{j=1}^{n} \Phi_{nj} K(n+1-j, n+1-i) = K(n+1, n+1-i) \qquad i = 1, \dots, n$$
(8.14)

where

$$K(i,j) = \mathbb{E}[(\underline{X}_i - \mathbb{E}[\underline{X}_i])(\underline{X}_j - \mathbb{E}[\underline{X}_j])^t].$$

when \underline{X} is stationary, $K(i,j) = \Gamma(i-j)$ and this reduces to

$$\sum_{i=1}^{n} \Phi_{nj} \Gamma(i-j) = \Gamma(i) \qquad i = 1, \dots, n$$
(8.15)

The coefficients $\{\Phi_{nj}\}$ may be computed recursively from a multivariate version of the Durbin Levinson algorithm, which involves calculation of both the forward and backward predictors $P(\underline{X}_{n+1}|\mathcal{F}_{1:n}^{(X)})$ and $P(\underline{X}_0|\mathcal{F}_{1:n}^{(X)})$. Let $\Phi_{n1}, \ldots, \Phi_{nn}$ be the $m \times m$ coefficient matrices satisfying:

$$P(\underline{X}_0|\mathcal{F}_{1:n}^{(X)}) = \sum_{j=1}^n \widetilde{\Phi}_{nj}\underline{X}_j \qquad j = 1, 2, \dots$$

Then

$$\sum_{j=1}^{n} \widetilde{\Phi}_{nj} \Gamma(j-i) = \Gamma(-i) \qquad i = 1, \dots, n$$

Let V_n and \widetilde{V}_n denote the two prediction error covariance matrices:

$$\begin{cases} V_n = \mathbb{E}[(\underline{X}_{n+1} - P(\underline{X}_{n+1}|\mathcal{F}_{1:n}^{(X)})(\underline{X}_{n+1} - P(\underline{X}_{n+1}|\mathcal{F}_{1:n}^{(X)})^t] \\ \widetilde{V}_n = \mathbb{E}[(\underline{X}_0 - P(\underline{X}_0|\mathcal{F}_{1:n}^{(X)})(\underline{X}_0 - P(\underline{X}_0|\mathcal{F}_{1:n}^{(X)})^t] \end{cases}$$

These satisfy:

$$\begin{cases}
V_n = \mathbb{E}\left[\left(\underline{X}_{n+1} - P(\underline{X}_{n+1} | \mathcal{F}_{1:n}^{(X)})\underline{X}_{n+1}^t\right] = \Gamma(0) - \Phi_{n1}\Gamma(-1) - \dots - \Phi_{nn}\Gamma(-n) \\
\widetilde{V}_n = \Gamma(0) - \widetilde{\Phi}_{n1}\Gamma(1) - \dots - \widetilde{\Phi}_{nn}\Gamma(n)
\end{cases}$$
(8.16)

Let

$$\begin{cases}
\Delta_n := \mathbb{E}\left[(\underline{X}_{n+1} - P(\underline{X}_{n+1} | \mathcal{F}_{1:n}^{(X)}))\underline{X}_0^t\right] = \Gamma(n+1) - \Phi_{n1}\Gamma(n) - \dots - \Phi_{nn}\Gamma(1) \\
\widetilde{\Delta}_n := \mathbb{E}\left[(\underline{X}_0 - P(\underline{X}_0 | \mathcal{F}_{1:n}^{(X)}))\underline{X}_{n+1}^t\right] = \Gamma(-n-1) - \widetilde{\Phi}_{n1}\Gamma(-n) - \dots - \widetilde{\Phi}_{nn}\Gamma(-1)
\end{cases}$$
(8.17)

Proposition 8.3 (The Multivariate Durbin Levinson Algorithm). Let $\{\underline{X}_t : t \in \mathbb{Z}\}$ be a stationary m-variate linear time series, mean zero, with autocovariance function $\Gamma(h)$, such that covariance matrix of $vec(\underline{X}_1, \ldots, \underline{X}_n)$ is non-singular for each $n \geq 1$. Then the coefficients $\{\Phi_{nj}\}_{n \geq 1, j=1, \ldots, n}$ are given by:

$$\begin{cases} \Phi_{nn} = \Delta_{n-1} \widetilde{V}_{n-1}^{-1} \\ \widetilde{\Phi}_{nn} = \widetilde{\Delta}_{n-1} V_{n-1}^{-1} \\ \Phi_{nk} = \Phi_{n-1,k} - \Phi_{nn} \widetilde{\Phi}_{n-1,n-k} & k = 1, \dots, n-1 \\ \widetilde{\Phi}_{nk} = \widetilde{\Phi}_{n-1,k} - \widetilde{\Phi}_{nn} \Phi_{n-1,n-k} & k = 1, \dots, n-1 \end{cases}$$

where V_n and \widetilde{V}_n are defined by Equation (8.16) and Δ_n and $\widetilde{\Delta}_n$ are defined by Equation (8.17) with

$$\begin{cases} V_0 = \widetilde{V}_0 = \Gamma(0) \\ \Delta_0 = \widetilde{\Delta}_0^t = \Gamma(1). \end{cases}$$

Proof The proof closely parallels the univariate case. For n = 1, the result follows directly from Equation (8.15). For $n \ge 2$,

$$\widehat{\underline{X}}_{n+1} = P(X_{n+1}|\mathcal{F}_{2:n}^{(X)}) + A\underline{U}$$

where $\underline{U} = \underline{X}_1 - P(\underline{X}_1 | \mathcal{F}_{2:n}^{(X)})$ and A is an $m \times m$ matrix that satisfies:

$$\underline{X}_{n+1} - A\underline{U} \perp \underline{U};$$

in other words,

$$\mathbb{E}\left[\underline{X}_{n+1}\underline{U}^t\right] = A\mathbb{E}\left[\underline{U}\underline{U}^t\right].$$

It follows from stationarity that

$$\begin{cases}
P(\underline{X}_{n+1}|\mathcal{F}_{2:n}^{(X)}) = \Phi_{n-1,1}\underline{X}_1 + \dots + \Phi_{n-1,n-1}\underline{X}_2 \\
\underline{U} = \underline{X}_1 - \Phi_{n-1,1}\underline{X}_2 - \dots - \Phi_{n-1,n-1}\underline{X}_n
\end{cases}$$

and

$$\mathbb{E}\left[\underline{U}\underline{U}^t\right] = \widetilde{V}_{n-1}.$$

It now follows from the foregoing that:

$$A = \mathbb{E}\left[\underline{X}_{n}\underline{U}^{t}\right]\widetilde{V}_{n-1}^{-1}$$

$$= \mathbb{E}\left[\left(\underline{X}_{n+1} - P(\underline{X}_{n+1}|\mathcal{F}_{2:n})\underline{U}^{t}\right]\widetilde{V}_{n-1}^{-1}$$

$$= \mathbb{E}\left[\left(\underline{X}_{n+1} - P(\underline{X}_{n+1}|\mathcal{F}_{2:n}^{(X)})\underline{X}_{1}^{t}\right]\widetilde{V}_{n-1}^{-1}$$

$$= (\Gamma(n) - \Phi_{n-1,1}\Gamma(n-1) - \dots - \Phi_{n-1,n-1}\Gamma(1))\widetilde{V}_{n-1}^{-1}$$

$$= \Delta_{n-1}\widetilde{V}_{n-1}^{-1}$$

from which it follows that

$$\widehat{\underline{X}}_{n+1} = A\underline{X}_1 + \sum_{i=1}^{n-1} (\Phi_{n-1,j} - A\Phi_{n-1,n-j}) \underline{X}_{n+1-j},$$

which proves half of the recursions. The other half is established by a symmetric argument.

8.2 The Innovations Algorithm

It is equivalent, and natural, to consider predictors which are linear combinations of the *innovations* $X_1 - \widehat{X}_1, \dots, X_n - \widehat{X}_n$. This is equivalent since

$$\overline{\operatorname{spa}}\{X_1, X_2, \dots, X_n\} = \overline{\operatorname{spa}}\{X_1 - \widehat{X}_1, \dots, X_n - \widehat{X}_n\}$$

The innovations algorithm uses these. It does not assume stationarity.

Theorem 8.4 (The Innovations Algorithm). If $\{X_t\}$ has zero-mean and $\mathbb{E}[X_iX_j] = \kappa(i,j)$, where the $n \times n$ matrix K with entries $K_{ij} = \kappa(i,j)$ is non-singular, then

$$\widehat{X}_{n+1} = \begin{cases} 0 & \text{if } n = 0, \\ \sum_{j=1}^{n} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j}) & \text{if } n \ge 1, \end{cases}$$
 (8.18)

where:

$$\begin{cases}
v_0 = \kappa(1,1) \\
\theta_{n,n-k} = v_k^{-1} \left(\kappa(n+1,k+1) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} v_j \right) & k = 0, \dots, n-1, \\
v_n = \kappa(n+1,n+1) - \sum_{j=0}^{n-1} \theta_{n,n-j}^2 v_j.
\end{cases}$$
(8.19)

Proof Taking the inner product of Equation (8.18) with $X_{k+1} - \widehat{X}_{k+1}$ and using orthogonality, it follows that

$$\langle \widehat{X}_{n+1}, X_{k+1} - \widehat{X}_{k+1} \rangle = \sum_{j=1}^{n} \theta_{n,j} \langle X_{n+1-j} - \widehat{X}_{n+1-j}, X_{k+1} - \widehat{X}_{k+1} \rangle$$
$$= \theta_{n,n-k} \|X_{k+1} - \widehat{X}_{k+1}\|^2 = \theta_{n,n-k} v_k,$$

from which

$$\theta_{n,n-k} = \frac{1}{v_k} \langle X_{n+1}, X_{k+1} - \widehat{X}_{k+1} \rangle.$$

From Equation (8.18), with n replaced by k,

$$\theta_{n,n-k} = v_k^{-1} \left(\kappa(n+1,k+1) - \sum_{j=0}^{k-1} \theta_{k,k-j} \langle X_{n+1}, X_{j+1} - \widehat{X}_{j+1} \rangle \right)$$

$$= v_k^{-1} \left(\kappa(n+1,k+1) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} v_j \right).$$

The form of v_n follows immediately from $||X_n - \widehat{X}_n||^2 = ||X_n||^2 - ||\widehat{X}_n||^2$.

Prediction of an ARMA Process Using the Innovations Algorithm The innovations algorithm can be applied *directly* to the causal ARMA process

$$\phi(B)X_t = \theta(B)Z_t, \quad \{Z_t\} \sim WN(0, \sigma^2),$$

but the calculations are simplified considerably by using the following transformation of the process:

$$\begin{cases}
W_t = \sigma^{-1} X_t & t = 1, ..., m, \\
W_t = \sigma^{-1} \phi(B) X_t, & t > m,
\end{cases}$$
(8.20)

where $m = \max(p, q)$. It follows that, for t > m, W is the MA(q) process $W = \theta(B) \frac{Z}{\sigma}$. It is clear that:

$$\mathcal{H}_n := \overline{\operatorname{spa}}\{X_1, X_2, \dots, X_n\} = \overline{\operatorname{spa}}\{W_1, W_2, \dots, W_n\}.$$

As usual, set
$$\widehat{X}_{n+1} = P_{\mathcal{H}_n}(X_{n+1})$$
 and $\widehat{W}_{n+1} = P_{\mathcal{H}_n}(W_{n+1})$. It follows directly that
$$\begin{cases} \widehat{W}_t = \sigma^{-1} \widehat{X}_t & t = 1, \dots, m, \\ \widehat{W}_t = \sigma^{-1} [\widehat{X}_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p}] & t > m. \end{cases}$$

From this,

$$X_t - \widehat{X}_t = \sigma(W_t - \widehat{W}_t)$$
 for all $t \ge 1$.

The idea is now to apply the innovations algorithm to $\{W_t\}$. A straightforward computation gives:

$$\kappa_{W}(i,j) = \begin{cases}
\sigma^{-2}\gamma_{X}(i-j) & 1 \leq i, j \leq m \\
\sigma^{-2} \left[\gamma_{X}(i-j) - \sum_{r=1}^{p} \phi_{r}\gamma_{X}(r-|i-j|) \right] & \min(i,j) \leq m < \max(i,j) \leq 2m \\
\sum_{r=0}^{q} \theta_{r}\theta_{r+|i-j|}, & \max(i,j) > m, \\
0 & \text{otherwise,}
\end{cases} \tag{8.21}$$

where $\theta_0 = 1$ and $\theta_j = 0$ for j > q. The innovations algorithm, applied to W_t gives the coefficients θ_{nj} , from which it follows that:

$$\widehat{X}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j}) & 1 \le n < m, \\ \phi_1 X_n + \dots + \phi_p X_{n+1-p} + \sum_{j=1}^{q} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j}) & n \ge m. \end{cases}$$
(8.22)

8.2.1Multivariate Innovations Algorithm

Proposition 8.5 (Multivariate Innovations Algorithm). Let $\{\underline{X}_t : t \in \mathbb{Z}\}$ be an m dimensional time series with mean $\mathbb{E}\left[\underline{X}_t\right] = \underline{0}$ and covariance function $K(i,j) = \mathbb{E}\left[\underline{X}_i\underline{X}_j^t\right]$. Suppose the covariance function of $vect(\underline{X}_1, \dots, \underline{X}_n)$ is non singular for every $n \ge 1$. Then the one-step predictors $\widehat{\underline{X}}_{n+1} : n \ge 1$ 0 and their prediction error covariance matrices $V_n: n \geq 1$ are given by:

$$\widehat{\underline{X}}_{t} = \begin{cases} \underline{0} & n = 0\\ \sum_{j=1}^{n} \Theta_{n,j} \left(\underline{X}_{n+1-j} - \widehat{\underline{X}}_{n+1-j} \right) & n \ge 1 \end{cases}$$
 (8.23)

and

$$\begin{cases}
V_0 = K(1,1) \\
\Theta_{n,n-k} = \left(K(n+1,k+1) - \sum_{j=0}^{k-1} \Theta_{n,n-j} V_j \Theta_{k,k-j}^t\right) V_k^{-1} & k = 0, 1, \dots, n-1 \\
V_n = K(n+1,n+1) - \sum_{j=0}^{n-1} \Theta_{n,n-j} V_j \Theta_{n,n-j}^t
\end{cases}$$
(8.24)

The recursions are solved in the order

$$V_0; \Theta_{11}, V_1; \Theta_{22}, \Theta_{21}, V_2; \Theta_{33}, \Theta_{32}, \Theta_{31}, V_3;$$

Proof For i < j, $\underline{X}_i - \widehat{\underline{X}}_i \in \mathcal{F}_{j-1}^{(X)}$ and since each component of $\underline{X}_j - \widehat{\underline{X}}_j$ is orthogonal to $\mathcal{F}_{j-1}^{(X)}$ by the prediction equation, it follows that

$$\underline{X}_i - \widehat{\underline{X}}_i \perp \underline{X}_j - \widehat{\underline{X}}_j \qquad i \neq j.$$

Post multiplying both sides of Equation (8.23) by $\underline{X}_{k+1}^t - \widehat{\underline{X}}_{k+1}^t$ for $0 \le k \le n$ and taking expectations gives:

$$\mathbb{E}\left[\widehat{\underline{X}}_{n+1}\left(\underline{X}_{k+1} - \widehat{\underline{X}}_{k+1}\right)^{t}\right] = \Theta_{n,n-k}V_{k}$$

from which it follows, by orthogonality, that

$$\mathbb{E}\left[\underline{X}_{n+1}\left(\underline{X}_{k+1} - \widehat{\underline{X}}_{k+1}\right)^t\right] = \mathbb{E}\left[\widehat{\underline{X}}_{n+1}\left(\underline{X}_{k+1} - \widehat{\underline{X}}_{k+1}\right)^t\right] = \Theta_{n,n-k}V_k.$$

It follows that

$$\Theta_{n,n-k}V_k = K(n+1,k+1) - \sum_{j=0}^{k-1} \mathbb{E}\left[\underline{X}_{n+1}\left(\underline{X}_{j+1} - \widehat{\underline{X}}_{j+1}\right)^t\right] \Theta_{k,k-j}^t$$

from which

$$\Theta_{n,n-k}V_k = K(n+1,k+1) - \sum_{j=0}^{k-1} \Theta_{n,n-j}V_j\Theta_{k,k-j}^t.$$

Nonsingularity of the covariance matrix of $\text{vect}(\underline{X}_1,\ldots,\underline{X}_n)$ gives that V_k is non singular, from which

$$\Theta_{n,n-k} = \left(K(n+1,k+1) - \sum_{j=0}^{k-1} \Theta_{n,n-j} V_j \Theta_{k,k-j}^t \right) V_k^{-1}.$$

Finally, since

$$\underline{X}_{n+1} = \underline{X}_{n+1} - \hat{\underline{X}}_{n+1} + \sum_{j=0}^{n-1} \Theta_{n,n-j} \left(\underline{X}_{j+1} - \hat{\underline{X}}_{j+1} \right),$$

it follows, by orthogonality, that

$$K(n+1, n+1) = V_n + \sum_{j=0}^{n-1} \Theta_{n,n-j} V_j \Theta_{n,n-j}^t$$

as required.

Multivariate Innovations and Recursive Prediction of the VARMA(p,q) Process Let $\{\underline{X}_t : t \in \mathbb{Z}\}$ be an m dimensional causal VARMA(p,q) process,

$$\Phi(B)\underline{X}_t = \Theta(B)\underline{Z}_t \qquad \{\underline{Z}_t\} \sim WN(\underline{0}, \Sigma)$$

where, using I to denote the $m \times m$ identity matrix,

$$\Phi(B) = I - \Phi_1 B - \dots - \Phi_p B^p, \qquad \Theta(B) = I + \Theta_1 B + \dots + \Theta_q B^q, \quad \det(\Sigma) \neq 0$$

As with the univariate ARMA, substantial computational savings can be made by applying the innovations algorithm to the transformed process:

$$\begin{cases} \underline{W}_t = \underline{X}_t & t = 1, \dots, \max(p, q) \\ \underline{W}_t = \Phi(B)\underline{X}_t & t \ge \max(p, q) + 1 \end{cases}$$

Let Γ denote the covariance function for $\{\underline{X}_t : t \in \mathbb{Z}\}$ and let K denote the covariance function for \underline{W} . Let $l = \max(p, q)$. Then

$$K(i,j) := \mathbb{E}\left[\underline{W}_{i}\underline{W}_{j}^{t}\right] = \begin{cases} \Gamma(i-j) & 1 \leq i \leq j \leq l\\ \Gamma(i-j) - \sum_{r=1}^{p} \Phi_{r}\Gamma(i+r-j) & 1 \leq i \leq l < j \leq 2l\\ \sum_{r=0}^{q} \Theta_{r}\Sigma\Theta_{r+j-i}^{t} & l < i \leq j \leq i+q\\ 0 & l < i, \quad i+q < j\\ K^{t}(i,j) & j < i \end{cases}$$
(8.25)

By convention, $\Theta_j \equiv 0_{m \times m}$ for j > q. The covariance matrix for this process is zero when |i - j| > q. The argument for the univariate setting carries over almost unaltered in the multivariate setting to give:

$$\widehat{\underline{X}}_{n+1} = \begin{cases}
\sum_{j=1}^{n-1} \Theta_{nj} \left(\underline{X}_{n+1-j} - \widehat{\underline{X}}_{n+1-j} \right) & 1 \le n \le l \\
\Phi_1 \underline{X}_n + \ldots + \Phi_p \underline{X}_{n+1-p} + \sum_{j=1}^q \Theta_{nj} \left(\underline{X}_{n+1-j} - \widehat{\underline{X}}_{n+1-j} \right) & n > l \end{cases}$$

$$V_n = \mathbb{E}\left[(\underline{X}_{n+1} - \widehat{\underline{X}}_{n+1}) (\underline{X}_{n+1} - \widehat{\underline{X}}_{n+1})^t \right]$$

where $\Theta_{nj}: j=1,\ldots,n$ and V_n are found in Equation (8.24) with K(i,j) defined by Equation (8.25).

For a univariate ARMA, the coefficients $\theta_{nj}: j=1,\ldots,q$ do not depend on the white noise variance σ^2 . In the multivariate case, though, the coefficients do depend on Σ .

When $\{\underline{X}_t : t \in \mathbb{Z}\}$, the differences $\underline{X}_{n+1} - \widehat{\underline{X}}_{n+1}$ satisfy:

$$\mathbb{E}\left[\left(\underline{X}_{n+1} - \widehat{\underline{X}}_{n+1} - \underline{Z}_{n+1}\right) \left(\underline{X}_{n+1} - \widehat{\underline{X}}_{n+1} - \underline{Z}_{n+1}\right)^t\right] \stackrel{n \to +\infty}{\longrightarrow} 0.$$

It is left as an exercise to show that

$$\lim_{n \to +\infty} \Theta_{nj} = \Theta_j \qquad j = 1, \dots, q, \qquad \lim_{n \to +\infty} V_n = \Sigma.$$

VARMA(p,q) h **step predictors** Once $\underline{\widehat{X}}_1, \dots, \underline{\widehat{X}}_n$ have been computed, it is straightforward to see that the h step predictor $P_{\mathcal{F}_{1:n}^{(X)}}\underline{X}_{n+h}$ satisfies:

$$P_{\mathcal{F}_{1:n}^{(X)}} \underline{X}_{n+h} = \begin{cases} \sum_{j=h}^{n+h-1} \Theta_{n+h-1} \left(\underline{X}_{n+h-j} - \widehat{\underline{X}}_{n+h-j} \right) & 1 \leq h \leq l-n \\ \sum_{i=1}^{p} \Phi_{i} P_{\mathcal{F}_{1:n}^{(X)}} \underline{X}_{n+h-i} + \sum_{h \leq j \leq q} \Theta_{n+h-1,j} \left(\underline{X}_{n+h-j} - \widehat{\underline{X}}_{n+h-j} \right) & h \geq l-n+1 \end{cases}$$
(8.26)

where, for fixed n, the predictors $P_{\mathcal{F}_{1:n}^{(X)}}X_{n+j}: j=1,2,3,\ldots$ are determined recursively from Equation (8.26).

Let $\underline{g}(h) := P_{\mathcal{F}_{1:n}^{(X)}} \underline{X}_{n+h}$, then $\underline{g}(h)$ satisfies:

$$\begin{cases}
\underline{g}(h) - \Phi_1 \underline{g}(h-1) - \dots - \Phi_p \underline{g}(h-p) = \underline{0} & h > q \\
\underline{g}(q-i) = P_{\mathcal{F}_{1:n}^{(X)}} \underline{X}_{n+q-i} & i = 0, 1, \dots, p-1.
\end{cases}$$
(8.27)

8.3 Large numbers of observations

Assume now that we at time 0 have observed $X_{-n+1} \dots, X_0$ and want to predict X_1 or, more generally X_h for $h \ge 1$. None of the approaches outlined so far give good results if n is very large.

Consider a predictor of X_h based on X_k for $k \leq 0$;

$$P_h(X_h) = P_{\overline{\text{Spa}}\{X_h, k < 0\}} X_h.$$

Any linear predictor $P_h(X_h)$ based on $P_{\overline{\text{Spa}}\{X_k, k\leq 0\}}X_h$ is of the form:

$$\widehat{X}_h = \sum_{j=0}^{\infty} \alpha_j X_{-j}. \tag{8.28}$$

It follows from Equation (2.8) that a linear predictor is $P_h(X_h)$ is determined by the relations:

$$C(P_h(X_h), X_{-i}) = C(X_h, X_{-i}), i = 0, 1, ...,$$

which gives

$$\sum_{i=0}^{\infty} \gamma_X(i-j)\alpha_j = \gamma_X(h+i), \quad i = 0, 1, \dots$$
 (8.29)

This set of equations determines the set of coefficients and the result, $P_h(X_h)$ in Equation (8.28) is the linear predictor provided the resulting series converges; otherwise the expression is not well defined.

Example 8.2 (MA(1) process).

Let $\{X_t\}$ be an MA(1) process, i.e.

$$X_t = Z_t + \theta Z_{t-1} \quad \{Z_t\} \sim WN(0, \sigma^2).$$

For the MA(1) process, the ACVF is:

$$\gamma_X(h) = \begin{cases} (1+\theta^2)\sigma^2 & \text{if } h = 0, \\ \theta\sigma^2 & \text{if } |h| = 1, \\ 0 & \text{if } |h| > 1. \end{cases}$$

The coefficients for the linear predictor are obtained from Equation (8.29). For $h \geq 2$, the equation is satisfied by $\alpha_j \equiv 0$ and the linear predictor is: $P_h(X_h) = 0$. Clearly, for $h \geq 2$, X_h is uncorrelated with any of the observations.

For h = 1, Equation (8.29) reduces to

$$\begin{cases} \alpha_0(1+\theta^2) + \alpha_1\theta = \theta \\ \alpha_{i-1}\theta + \alpha_i(1+\theta^2) + \alpha_{i+1}\theta = 0 & i = 1, 2, \dots \end{cases}$$
 (8.30)

A standard way of solving solutions of this type is to consider the generating polynomial $f(z) = \sum_{i=0}^{\infty} \alpha_i z^i$ From Equation (8.30), setting $\alpha_{-1} = 0$,

$$\theta \sum_{i=0}^{\infty} \alpha_{i-1} z^i + (1+\theta^2) \sum_{i=0}^{\infty} \alpha_i z^i + \theta \sum_{i=0}^{\infty} \alpha_{i+1} z^i = \alpha_0 (1+\theta^2) + \alpha_1 \theta = \theta.$$

From this,

$$\theta z f(z) + (1 + \theta^2) f(z) + \frac{\theta}{z} (f(z) - \alpha_0) = \theta$$

from which

$$f(z) = \frac{\theta z + \alpha_0}{\theta z^2 + (1 + \theta^2)z + \theta} = \frac{z + \frac{\alpha_0}{\theta}}{(z + \theta)(z + \frac{1}{\theta})}.$$
 (8.31)

Any $\alpha_0 \in \mathbb{R}$ gives a solution; the coefficients $(\alpha_i)_{i\geq 1}$ can be obtained (in terms of α_0) by taking the coefficients polynomial expansion.

There are additional restrictions, though: convergence requires the additional assumption that $\sum_{i=0}^{\infty} |\alpha_i| < +\infty$. This requires that the polynomial f(z) has no singularities in the unit ball $\{z \in \mathbb{C} : |z| \le 1\}$

From the equation for f(z), there are three cases: $|\theta| > 1$, $|\theta| < 1$ and $|\theta| = 1$.

Case 1: $|\theta| > 1$: If $|\theta| > 1$, then there is no singularity for $|z| \le 1$ if and only if $z + \frac{\alpha_0}{\theta} = z + \theta$ for all $z \in \mathbb{C}$ and hence $\alpha_0 = \theta^2$. Therefore α_0 is uniquely determined,

$$f(z) = \theta \sum_{j=0}^{\infty} \left(\frac{-1}{\theta}\right)^j z^j$$

giving $\alpha_j = (-1)^j \frac{1}{\theta^{j-1}}$ for $j \ge 0$.

Case 2: $|\theta| < 1$: If $|\theta| < 1$, then there is no singularity for $|z| \le 1$ if and only if $\alpha_0 = 1$. Therefore α_0 is uniquely determined,

$$f(z) = \theta \sum_{j=0}^{\infty} (-1)^j \theta^j z^j$$

giving $\alpha_j = (-1)^j \theta^{j+1}$ for $j \ge 0$.

Case 3: $|\theta| = 1$: If $|\theta| = 1$, then

$$f(z) = \frac{\alpha_0 + \theta z}{(z + \theta)^2}$$

so that $\alpha_0 = 1$ and

$$f(z) = \theta \frac{1}{z+\theta} = \begin{cases} \frac{1}{1-z} & \theta = -1\\ \frac{1}{1+z} & \theta = 1. \end{cases}$$

The expansion is not well defined when $\theta = \pm 1$. Hence there are no solutions to the linear prediction problem of this form in this case.

Consider again $|\theta| < 1$. The linear predictor is:

$$\widehat{X}_1 = \sum_{j=0}^{\infty} -(-\theta)^{j+1} X_{-j}.$$

Recall that $X_1 = Z_1 + \theta Z_0$. Furthermore, an MA(1) process with $|\theta| < 1$ is invertible and Z_0 may be written as:

$$Z_0 = X_0 - \theta X_{-1} + \theta^2 X_{-2} - \theta^3 X_{-3} + \dots$$

From this, it follows that:

$$Z_0 = P_{\overline{\operatorname{spa}}\{X_0, X_{-1}, \ldots\}}(Z_0)$$

Furthermore, $Z_1 \perp \overline{\operatorname{spa}}\{X_0, X_{-1}, \ldots\}$, from which

$$\widehat{X}_1 = P_{\overline{\text{spa}}\{X_0, X_{-1}, \dots\}}(Z_1) + \theta P_{\overline{\text{spa}}\{X_0, X_{-1}, \dots\}}(Z_0) = \theta Z_0.$$

It follows that $\widehat{X}_1 = \theta Z_0$.

The natural question arises: When does there exists a predictor of the assumed form? This cannot be answered in general, but the following theorem by Rozanov gives a partial answer.

Theorem 8.6. Let $\{X_t\}$ be a stationary time series with spectral density $f(\cdot)$. Any $Y \in \overline{spa}\{X_t, t \in \mathbb{Z}\}$ can be expressed in the form $Y = \sum_{-\infty}^{\infty} \psi_t X_t$ if and only if

$$0 < c_1 \le f(\lambda) \le c_2 < \infty$$
 for (almost) all $\lambda \in [-\pi, \pi]$.

Proof Omitted

Example 8.3.

For an MA(1) process,

$$f(\lambda) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} e^{-ih\lambda} \gamma(h) = \frac{(1+\theta^2)\sigma^2}{2\pi} + \frac{\theta\sigma^2}{2\pi} \left(e^{i\lambda} + e^{-i\lambda} \right) = \frac{\sigma^2 \left(1 + \theta^2 + 2\theta \cos(\lambda) \right)}{2\pi}, \quad -\pi \leq \lambda \leq \pi.$$

The upper bound is straightforward;

$$\max_{-\pi < \lambda < \pi} |f(\lambda)| \le \frac{1}{2\pi} |\gamma(0)| + \frac{1}{\pi} |\gamma(1)| = \frac{\sigma^2}{2\pi} (1 + \theta^2) + \frac{\sigma^2}{\pi} |\theta| < +\infty.$$

From the equation for $f(\lambda)$, it follows that f(0) = 0 if $\theta = -1$ and $f(\pi) = f(-\pi) = 0$ if $\theta = 1$, while

$$f(\lambda) \ge \frac{\sigma^2 (1 + \theta^2 - 2|\theta|)}{2\pi} = \frac{\sigma^2 (1 - |\theta|)^2}{2\pi} > 0, \quad -\pi \le \lambda \le \pi$$

for all $|\theta| \neq 1$.

In general, predictors based on infinitely many observations are best expressed in terms of spectral properties of the underlying time series. We will return to this later. Here we only give a preliminary version of Kolmogorov's formula for the *one-step mean-square prediction error*

$$v_{\infty} = \mathbb{E}\left[(\widehat{X}_{n+1} - X_{n+1})^2\right]$$
 where $\widehat{X}_{n+1} = P_{\overline{\text{spa}}\{X_t, t \leq n\}}(X_{n+1}).$

Theorem 8.7 (Kolmogorov's formula). Let $\{X_t\}$ be a zero-mean stationary time series with spectral density f such that there exist two constants (c_1, c_2) satisfying

$$0 < c_1 < c_2 < +\infty$$

such that

$$0 < c_1 \le f(\lambda) \le c_2$$
 for (almost) all $\lambda \in [-\pi, \pi]$.

The one-step mean-square prediction error is:

$$v_{\infty} = 2\pi \exp\left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln f(\lambda) d\lambda\right\}.$$

Proof Firstly, using the expansion

$$ln(1-z) = \sum_{j=1}^{\infty} \frac{z}{j} \qquad |z| < 1,$$

together with $\int_{-\pi}^{\pi} e^{ik\lambda} d\lambda = 0$ for $k \neq 0$, it follows that for |a| < 1,

$$\begin{split} \int_{-\pi}^{\pi} \ln|1 - ae^{-i\lambda}|^2 d\lambda &= \int_{-\pi}^{\pi} \left(\ln(1 - ae^{-i\lambda}) + \ln(1 - \overline{a}e^{i\lambda}) \right) d\lambda \\ &= -\int_{-\pi}^{\pi} \left(\sum_{j=1}^{\infty} \frac{a^j e^{-ij\lambda}}{j} + \sum_{j=1}^{\infty} \frac{\overline{a}^j e^{ij\lambda}}{j} \right) d\lambda = 0. \end{split}$$

Let $\{X_t\}$ be an AR(p) process satisfying $\phi(B)X_t=Z_t$, where $\{Z_t\}\sim \mathrm{WN}(0,\sigma^2)$ and

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \qquad |z| \le 1$$

then $\{X_t\}$ has spectral density

$$f(\lambda) = \frac{\sigma^2}{2\pi} \frac{1}{\left|1 - \sum_{j=1}^p \phi_j e^{-ij\lambda}\right|^2} = \frac{\sigma^2}{2\pi} \prod_{j=1}^p \frac{1}{|1 - a_j e^{-i\lambda}|^2}$$

for a collection of numbers a_1, \ldots, a_p satisfying $|a_j| < 1$ for each $j \in \{1, \ldots, p\}$. It follows that

$$\int_{-\pi}^{\pi} \ln f(\lambda) d\lambda = 2\pi \ln \frac{\sigma^2}{2\pi} - \sum_{i=1}^{p} \int_{-\pi}^{\pi} \ln |1 - a_j e^{-i\lambda}|^2 d\lambda = 2\pi \ln \frac{\sigma^2}{2\pi}.$$

This establishes Kolmogorov's formula for the causal AR process. The result, in the general case, follows from the result, Theorem 3.8, that a stationary linear process can be approximated arbitrarily closely by AR(p) processes.